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Abstract—This paper presents a chronological overview of the developments in interpolation
theory, from the earliest times to the present date. It brings out the connections between the
results obtained in different ages, thereby putting the techniques currently used in signal and image
processing into historical perspective. A summary of the insights and recommendations that follow
from relatively recent theoretical as well as experimental studies concludes the presentation.
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It is an extremely useful thing to have knowledge of the true origins of memorable
discoveries, especially those that have been found not by accident but by dint of
meditation. It is not so much that thereby history may attribute to each man his own
discoveries and others should be encouraged to earn like commendation, as that the art
of making discoveries should be extended by considering noteworthy examples of it.1

I Introduction

The problem of constructing a continuously-defined function from given discrete data is
unavoidable whenever one wishes to manipulate the data in a way that requires information
not included explicitly in the data. In this age of ever increasing digitization in the storage,
processing, analysis, and communication of information, it is not difficult to find examples
of applications where this problem occurs. The relatively easiest and in many applications
often most desired approach to solve the problem is interpolation, where an approximating
function is constructed in such a way as to agree perfectly with the usually unknown
original function at the given measurement points.2 In view of its increasing relevance, it
is only natural that the subject of interpolation is receiving more and more attention these
days.3 However, in times where all efforts are directed towards the future, the past may

1Leibniz, in the opening paragraph of his Historia et Origo Calculi Differentialis [188]. The translation
given here was taken from a paper by Child [49].

2The word “interpolation” originates from the Latin verb interpolare, a contraction of “inter”, meaning
“between”, and “polare”, meaning “to polish”. That is to say, to smooth in between given pieces of
information. It seems that the word was introduced in the English literature for the first time around
1612, and was then used in the sense of “to alter or enlarge [texts] by insertion of new matter” [293]. The
original Latin word appears [10] to have been used first in a mathematical sense by Wallis in his 1655 book
on infinitesimal arithmetic [341].

3A search in the multidisciplinary databases of bibliographic information collected by the Institute for
Scientific Information in the Web of Science will reveal that the number of publications containing the
word “interpolation” in the title, list of keywords, or the abstract, has dramatically increased over the
past decade, even when taking into account the intrinsic (and likewise dramatic) increase in the number
of publications as a function of time.
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easily be forgotten. It is no sinecure, scanning the literature, to get a clear picture of the
development of the subject through the ages. This is quite unfortunate, since it implies a
risk of researchers going over grounds covered earlier by others. History has shown many
examples of this, and several new examples are revealed here. The goal of the present paper
is to provide a systematic overview of the developments in interpolation theory, from the
earliest times to the present date, and to put the most well-known techniques currently
used in signal and image processing applications into historical perspective. The paper is
intended to serve as a tutorial and a useful source of links to the appropriate literature
for anyone interested in interpolation, whether it be its history, theory, or applications.

As already suggested by the title, the organization of the paper is largely chronological.
Section II presents an overview of the earliest-known uses of interpolation in antiquity and
describes the more sophisticated interpolation methods developed in different parts of the
world during the Middle Ages. Next, Section III discusses the origins of the most important
techniques developed in Europe during the period of Scientific Revolution, which in the
present context lasted from the early 17th until the late 19th century. A discussion of the
developments in what could be called the Information and Communication Era, covering
roughly the past century, is provided in Section IV. Here, the focus of attention is on the
results that have had the largest impact on the advancement of the subject in signal and
image processing, in particular on the development of techniques for the manipulation of
intensity data defined on uniform grids. Although recently developed alternative methods
for specific interpolation tasks in this area are also mentioned briefly, the discussion in this
part of the paper is restricted mainly to convolution-based methods, which is justified by
the fact that these are the most frequently used interpolation methods, probably because
of their versatility and relatively low complexity. Finally, summarizing and concluding
remarks are made in Section V.

II Ancient Times and the Middle Ages

In his 1909 book on interpolation [316], Thiele characterized the subject as “the art of
reading between the lines in a [numerical] table”. Examples of fields in which this problem
arises naturally and inevitably are astronomy and, related to this, calendar computation.
And because man has been interested in these since day one, it should not surprise us
that it is in these fields that the first interpolation methods were conceived. This section
discusses the earliest-known contributions to interpolation theory.

II.A Interpolation in Ancient Babylon and Greece

In antiquity, astronomy was all about time keeping and making predictions concerning
astronomical events. This served important practical needs: farmers, for example, would
base their planting strategies on these predictions. To this end it was of great importance
to keep up lists—so-called ephemerides—of the positions of the sun, moon, and the known
planets for regular time intervals. Obviously these lists would contain gaps, due to either
atmospherical conditions hampering observation or the fact that celestial bodies may not
be visible during certain periods. From his study of ephemerides found on ancient astro-
nomical cuneiform tablets originating from Uruk and Babylon in the Seleucid period (the
last three centuries BC), the historian-mathematician Neugebauer [230, 231] concluded
that interpolation was used in order to fill these gaps. Apart from linear interpolation, the
tablets also revealed the use of more complex interpolation methods. Precise formulations
of the latter methods have not survived, however.
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An early example of the use of interpolation methods in ancient Greece dates from
about the same period. Toomer [318] believes that Hipparchus of Rhodes (190–120 BC)
used linear interpolation in the construction of tables of the so-called “chord function” (re-
lated to the sine function) for the purpose of computing the positions of celestial bodies.
Later examples are found in the Almagest (“The Mathematical Compilation”, ca. 140 AD)
of Claudius Ptolemy, the Egypt-born Greek astronomer-mathematician who propounded
the geocentric view of the universe which prevailed until the 16th century. Apart from
theory, this influential work also contains numerical tables of a wide variety of trigonomet-
ric functions defined for astronomical purposes. To avoid the tedious calculations involved
in the construction of tables of functions of more than one variable, Ptolemy used an ap-
proach that amounts to tabulating the function only for the variable for which the function
varies most, given two bounding values of the other variable, and to provide a table of
coefficients to be used in an “adaptive” linear interpolation scheme for computation of the
function for intermediate values of this latter variable [335].

II.B Interpolation in Early-Medieval China and India

Analysis of the computational techniques on which early-medieval Chinese ephemerides
are based often reveals the use of higher-order interpolation formulae.4 The first person
to use second-order interpolation for computing the positions of the sun and the moon in
constructing a calendar is said to be the astronomer Liù Zhuó. Around 600 AD he used
this technique in producing the so-called Huáng j́ı l̀ı, or “Imperial Standard Calendar”.
According to L̆ı Yăn & Dù Sh́ırán [204], the formula involved in his computations reads,
in modern notation:5

f(x0 + ξT ) = f(x0) +
ξ

2
(∆1 + ∆2) + ξ(∆1 − ∆2) − ξ2

2
(∆1 − ∆2), (1)

with 0 6 ξ < 1, T > 0, ∆1 = f(x0+T )−f(x0), and ∆2 = f(x0+2T )−f(x0+T ), and with
f(x0), f(x0 + T ), and f(x0 + 2T ) the observed results at times x0, x0 + T , and x0 + 2T ,
respectively. This formula is closely related to later Western interpolation formulae, to be
discussed in the next section. Methods for second-order interpolation of unequal-interval
observations were later used by the astronomer Monk Yı̀ Xı́ng in producing the so-called
“Dà Yăn Calendar” (727 AD) and by Xú Áng in producing the “Xuān Mı́ng Calendar”
(822 AD). The latter also used a second-order formula for interpolation of equal-interval
observations equivalent to the formula used by Liù Zhuó.

Accurate computation of the motion of celestial bodies, however, requires more sophis-
ticated interpolation techniques than just second order. More complex techniques were
later developed by Guō Shŏuj̀ıng and others. In 1280 AD they produced the so-called
Shòu sh́ı l̀ı, or “Works and Days Calendar”, for which they used third-order interpolation.
Although they did not write down explicitly third-order interpolation formulae, it follows
from their computations recorded in tables that they had grasped the principle.

Important contributions in the area of finite-difference computation were made by the
Chinese mathematician Zhū Sh̀ıjié. In his book S̀ıyuán yùjiàn (“Jade Mirror of the Four
Origins”, 1303 AD), he gave the following problem (quoted freely from Martzloff [214]):

4The paragraphs on Chinese contributions to interpolation theory are based on the information provided
in the books by Martzloff [214] and L̆ı Yăn & Dù Sh́ırán [204]. For a more elaborate treatment of the
techniques and formulae mentioned here, see the latter. This reference was brought to the author’s attention
by Phillips in the brief historical notes on interpolation in his recent book [252].

5Note that, although supposedly unintended, the actual formula given by L̆ı Yăn and Dù Sh́ırán is only
valid in cases where the time interval equals one, since the variable is not normalized. The formula given
here is identical to theirs, except that we use a normalized variable.
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Soldiers are recruited in cubes. On the first day, the side of the cube is three. On the
following days, it is one more per day. At present, it is fifteen. Each soldier receives
two hundred and fifty guan per day. What is the number of soldiers recruited and
what is the total amount paid out?

In explaining the answer to the first question, Zhū Sh̀ıjié gives a sequence of verbal
instructions (a “resolutory rule”) for finding the solution, which, when cast in modern
algebraic notation, reveals the suggestion to use the following formula:

f(n) = n∆0 +
1
2!
n(n− 1)∆2

0

+
1
3!
n(n− 1)(n − 2)∆3

0

+
1
4!
n(n− 1)(n − 2)(n − 3)∆4

0,

(2)

where f(n) is the total number of soldiers recruited in n days and the differences are defined
by ∆j = f(j + 1) − f(j) and ∆i

j = ∆i−1
j+1 −∆i−1

j , with i > 1 and j > 0 integers. Although
the specific problem requires only differences up to fourth order, the proposed formula to
solve it can easily be generalized to any arbitrary degree, and has close connections with
later Western interpolation formulae to be discussed in the next section.

In India, work on higher-order interpolation started around the same time as in China.6

In his work Dhyānagraha (ca. 625 AD), the astronomer-mathematician Brahmagupta in-
cluded a passage in which he proposed a method for second-order interpolation of the sine
and versed sine functions. Rephrasing the original Sanskrit text in algebraic language,
Gupta [124] arrived at the following formula:

f(x0 + ξT ) = f(x0) +
ξ

2

{
∆f(x0 − T ) + ∆f(x0)

}

+
ξ2

2

{
∆f(x0) − ∆f(x0 − T )

}
,

(3)

with ∆f(x0) = f(x0 + T ) − f(x0). In a later work, Khandakhādyaka (665 AD), Brah-
magupta also described a more general method that allowed for interpolation of unequal-
interval data. In the case of equal intervals, this method reduces to (3).

Another rule for making second-order interpolations can be found in a commentary on
the seventh-century work Mahābhāskar̄ıya by Bhāskara I, ascribed to Govindasvāmi (ca.
800–850 AD). Expressed in algebraic notation, it reads [124]:

f(x0 + ξT ) = f(x0) + ξ∆f(x0) +
ξ(ξ − 1)

2

{
∆f(x0) − ∆f(x0 − T )

}
. (4)

It is not difficult to see that this formula is equivalent to (3). According to Gupta [124],
it is also found in two early 15th-century commentaries by Parameśvara.

II.C Late Medieval Sources on Interpolation

Use of the just described second-order interpolation formulae amounts to fitting a parabola
through three consecutive tabular values. Kennedy [164] mentions that parabolic inter-
polation schemes are also found in several Arabic and Persian sources. Noteworthy are

6Martzloff [214], referring to Cullen [58], conjectures that this may not be a coincidence, since it was
the time when Indian and Chinese astronomers were working together at the court of the Táng.
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the works al-Qānūn’l-Mas’ūdi (“Canon Masudicus”, 11th century) by al-B̄ırūn̄ı and Z̄ıj-i-
Khāqān̄ı (early 15th century) by al-Kāsh̄ı. Concerning the parabolic interpolation methods
described therein, Gupta [124] and later Rashed [260] have pointed at possible Indian in-
fluences, since the important works of Brahmagupta were translated into Arabic as early
as the eighth century AD. Not to mention the fact that al-B̄ırūn̄ı himself travelled through
and resided in several parts of India, studied Indian literature in the original, wrote a book
about India, and translated several Sanskrit texts into Arabic [163].

III The Age of Scientific Revolution

Apparently, totally unaware of the important results obtained much earlier in other parts
of the world, interpolation theory in Western countries started to develop only after a
great revolution in scientific thinking. Especially the new developments in astronomy and
physics, initiated by Copernicus, continued by Kepler and Galileo, and culminating in
the theories of Newton, gave strong impetus to the further advancement of mathematics,
including what is now called “classical” interpolation theory.7 This section highlights
the most important contributions to interpolation theory in Western countries until the
beginning of the 20th century.

III.A A General Interpolation Formula for Equidistant Data

Before reviewing the different classical interpolation formulae, we first study one of the
better known.8 Suppose that we are given measurements of some quantity at x0, x0 ± T ,
x0±2T , . . . , and that in order to obtain its value at any intermediate point x0+ξT, ξ ∈ R,
we locally model it as a polynomial f : R → R of given degree n ∈ N, that is, f(x0 +ξT ) =
a0 + a1ξ + a2ξ

2 + . . . + anξ
n. It is easy to show [349] that any such polynomial can be

written in terms of factorials [ξ]k = ξ(ξ − 1)(ξ − 2) · · · (ξ − k + 1), with k > 0 integer, as
f(x0 + ξT ) = c0 + c1[ξ] + c2[ξ]2 + . . . + cn[ξ]n. If we now define the first-order difference
of any function φ : R → R at any ξ as ∆φ(ξ) = φ(ξ + 1) − φ(ξ), and similarly the
higher-order differences as ∆pφ(ξ) = ∆p−1φ(ξ + 1) − ∆p−1φ(ξ), for all p > 1 integer, it
follows that ∆[ξ]k = k[ξ]k−1. By repeated application of the difference operator ∆ to the
factorial representation of f(x0 + ξT ), and taking ξ = 0, we find that the coefficients ck,
k = 0, 1, . . . , n, can be expressed as ck = ∆kf(x0)/k!, so that if n could be made arbitrarily
large, we would have:

f(x0 + ξT ) = f(x0) + ξ∆f(x0) +
1
2!
ξ(ξ − 1)∆2f(x0)

+
1
3!
ξ(ξ − 1)(ξ − 2)∆3f(x0)

+
1
4!
ξ(ξ − 1)(ξ − 2)(ξ − 3)∆4f(x0) + . . .

(5)

7In constructing the chronology of classical interpolation formulae presented in this section, the
interesting—though individually incomplete—accounts given by Fraser [105], Goldstine [112], Joffe [157],
and Turnbull [322] have been most helpful.

8This section includes explicit formulae only insofar as necessary to demonstrate the link with those in
the previous or next section. For a more detailed treatment of these and other formulae, including such
aspects as accuracy and implementation, see several early works on interpolation [63,105,157,238,302,349]
and the calculus of finite differences [23,102,160,224], as well as more general books on numerical analysis
[112, 138, 152, 232, 285, 310], most of which also discuss inverse interpolation and the role of interpolation
in numerical differentiation and integration.
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This general formula9 was first written down in 1670 by Gregory and can be found
in a letter by him to Collins [118]. Particular cases of it, however, had been published
several decades earlier by Briggs,10 the man who brought to fruition the work of Napier on
logarithms. In the introductory chapters to his major works [29,30] he described the precise
rules by which he carried out his computations, including interpolations, in constructing
the tables contained therein. In the first, for example, he described a subtabulation rule
that, when written in algebraic notation, amounts to (5) for the case when third- and
higher-order differences are negligible [112, 322]. It is known [112, 200] that still earlier,
around 1611, Harriot used a formula equivalent to (5) up to fifth-order differences.11 But
even he was not the first in the world to write down such rules. It is not difficult to see
that the right-hand side of the second-order interpolation formula used by Liù Zhuó, (1),
can be rewritten so that it equals the first three terms of (5). And if we replace the integer
argument n by the real variable x in Zhū Sh̀ıjié’s formula, (2), we obtain at once (5) for
the case when x0 = 0, f(0) = 0, and T = 1.

III.B Newton’s General Interpolation Formulae

Notwithstanding these facts, it is justified to say that “there is no single person who did
so much for this field, as for so many others, as Newton” [112]. His enthusiasm becomes
clear in a letter he wrote to Oldenburg [237], where he first describes a method by which
certain functions may be expressed in series of powers of x, and then goes on to say:12

But I attach little importance to this method because when simple series are not
obtainable with sufficient ease, I have another method not yet published by which the
problem is easily dealt with. It is based upon a convenient, ready and general solution
of this problem. To describe a geometrical curve which shall pass through any given
points. (...) And although it may seem to be intractable at first sight, it is nevertheless
quite the contrary. Perhaps indeed it is one of the prettiest problems that I can ever
hope to solve.

The contributions of Newton to the subject are contained in (i) a letter [236] to Smith in
1675, (ii) a manuscript entitled Methodus Differentialis [235], published in 1711, although
earlier versions were probably written in the mid-1670s, (iii) a manuscript entitled Regula
Differentiarum, written in 1676 but first discovered and published in the 20th century
[104,105], and (iv) Lemma V in Book III of his celebrated Principia [233], which appeared
in 1687.13 The latter was published first and contains two formulae. The first deals
with equal-interval data and is precisely (5), which Newton seems to have discovered

9It is interesting to note that Taylor [311] obtained his now well-known series as a simple corollary to
(5). It follows, indeed, by substituting ξ = h/T and taking T → 0. (It is important to realize here that
f(x0) is in fact f(x0 + ξT )|ξ=0, so that ∆f(x0) = f(x0 + T ) − f(x0), and similar for the higher-order
differences.) The special version for x0 = 0 was later used by Maclaurin [208] as a fundamental tool. See
also e.g. Kline [169].

10Gregory was also aware of a later method by Mercator, for in his letter he refers to his own method as
being “both more easie and universal than either Briggs or Mercator’s” [118]. In France, it was Mouton
who used a similar method around that time [228].

11Goldstine [112] speculates that Briggs was aware of Harriot’s work on the subject, and is inclined to
refer to the formula as the Harriot-Briggs relation. Neither Harriot nor Briggs, however, ever explained
how they obtained their respective rules, and it has remained unclear up till today.

12The somewhat free translation from the original Latin is from Fraser [105] and differs, although not
fundamentally, from that given by Turnbull [237].

13All of these are reproduced (whether or not translated) and discussed in a booklet by Fraser [105].
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independently of Gregory.14 The second formula deals with the more general case of
arbitrary-interval data and may be derived as follows.

Suppose that the values of the aforementioned quantity are given at x0, x±1, x±2, . . . ,
which may be arbitrary, and that in order to obtain its value at intermediate points we
model it again as a polynomial function f : R → R. If we then define the first-order divided
difference of any function φ : R → R for any two ξ0 6= ξ1 as φ(ξ0, ξ1) =

(
φ(ξ0)−φ(ξ1)

)
/(ξ0−

ξ1), it follows that the value of f at any x ∈ R could be written as f(x) = f(x0) + (x −
x0)f(x, x0). And if we define the higher-order divided differences15 as φ(ξ0, . . . , ξp) =(
φ(ξ0, . . . , ξp−1) − φ(ξ1, . . . , ξp)

)
/(ξ0 − ξp), for all p > 1 integer, we can substitute for

f(x, x0) the expression that follows from the definition of f(x, x0, x1), and subsequently
for f(x, x0, x1) the expression that follows from the definition of f(x, x0, x1, x2), etc., so
that if we could go on, we would have

f(x) = f(x0) + (x− x0)f(x0, x1)

+ (x− x0)(x− x1)f(x0, x1, x2)

+ (x− x0)(x− x1)(x− x2)f(x0, x1, x2, x3) + . . .

(6)

It is this formula that can be considered the most general of all classical interpolation
formulae. As we will see in the sequel, all later formulae can easily be derived from it.16

III.C Variations of Newton’s General Interpolation Formulae

The presentation of the two interpolation formulae in the Principia is heavily condensed
and contains no proofs. Newton’s Methodus Differentialis contains a more elaborate treat-
ment, including proofs and several alternative formulae. Three of those formulae for
equal-interval data were discussed a few years later by Stirling [306].17 These are the
Gregory-Newton formula, and two central-difference formulae, the first of which is now
known as the Newton-Stirling formula:18

f(x0 + ξT ) = f(x0) + ξ
∆f(x0) + ∆f(x0 − T )

2

+
1
2!
ξ2∆2f(x0 − T )

+
1
3!
ξ
(
ξ2 − 12

)∆3f(x0 − T ) + ∆3f(x0 − 2T )
2

+
1
4!
ξ2

(
ξ2 − 12

)
∆4f(x0 − 2T ) + . . .

(7)

It is interesting to note that Brahmagupta’s formula, (3), is in fact the Newton-Stirling
formula for the case when the third- and higher-order differences are zero.

14This is probably why it is nowadays usually referred to as the Gregory-Newton formula. There is
reason to suspect, however, that Newton must have been familiar with Briggs’ works [105].

15Although Newton appears to have been the first to use these for interpolation, he did not call them
“divided differences”. It has been said [349] that it was De Morgan [75] who first used the term.

16Equation (5), for example, follows by substituting x1 = x0 + T , x2 = x0 + 2T , x3 = x0 + 3T ,. . . , and
x = x0 + ξT , and rewriting the divided differences f(x0, . . . , xk) in terms of finite differences ∆kf(x0).

17Newton’s general formula was treated by him in his 1730 booklet [307] on the subject.
18The formula may be derived from (6) by substituting x1 = x0 + T , x2 = x0 − T , x3 = x0 + 2T ,

x4 = x0 − 2T ,. . . , and x = x0 + ξT , rewriting the divided differences f(x0, . . . , xk) in terms of finite
differences ∆kf(x0), and rearranging the terms [349].
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A very elegant alternative representation of Newton’s general formula (6) that does
not require the computation of finite or divided differences was published in 1779 by
Waring [344], and reads:

f(x) = f(x0)
(x− x1)(x− x2)(x− x3) · · ·

(x0 − x1)(x0 − x2)(x0 − x3) · · · +

f(x1)
(x− x0)(x− x2)(x− x3) · · ·

(x1 − x0)(x1 − x2)(x1 − x3) · · · +

f(x2)
(x− x0)(x− x1)(x− x3) · · ·

(x2 − x0)(x2 − x1)(x2 − x3) · · · + . . .

(8)

It is nowadays usually attributed to Lagrange, who, in apparent ignorance of Waring’s
paper, published it 16 years later [180]. The formula may also be obtained from a closely
related representation of Newton’s formula due to Euler [90]. According to Joffe [157],
it was Gauss who first noticed the logical connection and proved the equivalence of the
formulae by Newton, Euler, and Waring-Lagrange, as appears from his posthumous works
[110], although Gauss did not refer to his predecessors.

In 1812, Gauss delivered a lecture on interpolation, the substance of which was recorded
by his then student, Encke, who first published it not until almost two decades later [88].
Apart from other formulae, he also derived the one which is now known as the Newton-
Gauss formula:

f(x0 + ξT ) = f(x0) + ξ∆f(x0) +
1
2!
ξ(ξ − 1)∆2f(x0 − T )

+
1
3!

(ξ + 1)ξ(ξ − 1)∆3f(x0 − T )

+
1
4!

(ξ + 1)ξ(ξ − 1)(ξ − 2)∆4f(x0 − 2T ) + . . .

(9)

It is this formula19 that formed the basis for later theories on sampling and reconstruction,
as will be discussed in the next section. Note that this formula too had its precursor, in
the form of Govindasvāmi’s rule, (4).

In the course of the 19th century, two more formulae closely related to (9) were devel-
oped. The first appeared in a paper by Bessel [14] on computing the motion of the moon,
and was published by him because, in his own words, he could “not recollect having seen
it anywhere”. The formula is, however, equivalent to one of Newton’s in his Methodus
Differentialis, which is the second central-difference formula discussed by Stirling [306],
and has therefore been called the Newton-Bessel formula. The second formula, which
has frequently been used by statisticians and actuaries, was developed by Everett [91,92]
around 1900, and reads:

f(x0 + ξT ) = F (ξ, δ)f(x0 + T ) + F (1 − ξ, δ)f(x0), (10)

where

F (ξ, δ) = ξ +
1
3!
ξ(ξ2 − 12)δ2 +

1
5!
ξ(ξ2 − 12)(ξ2 − 22)δ4 + . . . , (11)

19Even more easily than the Newton-Stirling formula, this formula follows from (6) by proceeding in a
similar fashion as in the previous footnote.
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and use has been made of Sheppard’s central-difference operator δ, defined by δφ(ξ) =
φ(ξ + 1

2) − φ(ξ − 1
2 ) and δpφ(ξ) = δp−1φ(ξ + 1

2 ) − δp−1φ(ξ − 1
2), p > 1 integer, for any

function φ : R → R at any ξ. The elegance of this formula lies in the fact that, in
contrast with the earlier mentioned formulae, it involves only the even-order differences
of the two table-entries between which to interpolate.20 It was later noted by Joffe [157]
and Lidstone [193], respectively, that the formulae of Bessel and Everett had alternatively
been proven by Laplace by means of his method of generating functions [73,74].

III.D Studies on More General Interpolation Problems

By the beginning of the 20th century, the problem of interpolation by finite or divided dif-
ferences had been studied by astronomers, mathematicians, statisticians, and actuaries,21

and most of the now well-known variants of Newton’s original formulae had been worked
out. This is not to say, however, that there are no more advanced developments to report
on. Quite to the contrary. Already in 1821, Cauchy [43] studied interpolation by means
of a ratio of two polynomials and showed that the solution to this problem is unique, the
Waring-Lagrange formula being the special case for the second polynomial equal to one.22

Generalizations for solving the problem of multivariate interpolation in the case of fairly
arbitrary point configurations began to appear in the second half of the 19th century, in
the works of Borchardt and Kronecker [24,108,176].

A generalization of a different nature was published in 1878 by Hermite [134], who
studied and solved the problem of finding a polynomial of which also the first few deriva-
tives assume prespecified values at given points, where the order of the highest derivative
may differ from point to point. And in a paper [15] published in 1906, Birkhoff studied the
even more general problem: given any set of points, find a polynomial function that satis-
fies prespecified criteria concerning its value and/or the value of any of its derivatives for
each individual point.23 Hermite and Birkhoff type of interpolation problems—and their

20This is achieved by expanding the odd-order differences in the Newton-Gauss formula according to
their definition and rearranging the terms after simple transformations of the binomial coefficients [349].
Alternatively, we could expand the even-order differences so as to end up with only odd-order differences.
The resulting formula appears to have been described first by Steffensen [302], and is therefore sometimes
referred to as such [138,268], although he himself calls it Everett’s second interpolation formula.

21Many of them introduced their own system of notation and terminology, leading to confusion and
researchers reformulating existing results. The point was discussed by Joffe [157], who also made an
attempt to standardize yet another system. It is, however, Sheppard’s notation [290] for central and mean
differences that has survived in most later publications.

22It was Cauchy, also, who in 1840 found an expression for the error caused by truncating finite-difference
interpolation series [42]. The absolute value of this so-called Cauchy remainder term can be minimized
by choosing the abscissae as the zeroes of the polynomials introduced later by Tchebychef [312]. See e.g.
Davis [63], Hildebrand [138], or Schwarz [285] for more details.

23Birkhoff interpolation, also known as lacunary interpolation, initially received little attention, until
Schoenberg [276] revived interest in the subject. The problem has since usually been stated in terms of
the pair (E, X), where X = {xi}m

i=0 is the set of points, or nodes, and E = [ei,j ]
m
i=0,

k
j=0 is the so-called

incidence matrix, or interpolation matrix, with ei,j = 1 for those i and j for which the interpolating
polynomial P is to satisfy a given criterion P (j)(xi) = ci,j , and ei,j = 0 otherwise. Several special cases
had been studied earlier and carry their own name: if E is an (m+1)×1 column matrix with ei,0 = 1 for all
i = 0, . . . , m, we have the Waring-Lagrange interpolation problem; if, on the other hand, it is a 1× (k + 1)
row matrix with e0,j = 1 for all j = 0, . . . , k, we may speak of a Taylor interpolation problem [63]; if E
is an (m + 1) × (k + 1) matrix with ei,j = 1 for all i = 0, . . . , m and j = 0, . . . , ki, with ki 6 k, we have
Hermite’s interpolation problem, where the case ki = k for all i = 0, . . . , m, with usually k = 1, is also
called osculatory or osculating interpolation [63,138,302]; the problem corresponding to E = I , with I the
(m + 1)× (m + 1) unit matrix, was studied by Abel [1], and later by Gontcharoff and others [63,114,353];
and finally we mention the two-point interpolation problem studied by Lidstone [63,194,352,353], for which
E is a 2 × (k + 1) matrix with ei,j = 1 for all j even.
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multivariate versions, not necessarily on Cartesian grids—have received much attention in
the past decades. A more detailed treatment is outside the scope of this paper, however,
and the reader is referred to relevant books and reviews [22,108,109,201–203].

III.E Approximation versus Interpolation

Another important development from the late 1800s is the rise of approximation the-
ory. For a long time, one of the main reasons for the use of polynomials had been the
fact that they are simply easy to manipulate, e.g. to differentiate or integrate. In 1885,
Weierstrass [346] also justified their use for approximation by establishing the so-called
approximation theorem, which states that every continuous function on a closed interval
can be approximated uniformly to any prescribed accuracy by a polynomial.24 The the-
orem does not provide any means of obtaining such a polynomial, however, and it soon
became clear that it does not necessarily apply if the polynomial is forced to agree with the
function at given points within the interval, i.e., in the case of an interpolating polynomial.

Examples of meromorphic functions for which the Waring-Lagrange interpolator does
not converge uniformly were given by Méray [220, 221] and later Runge [266]—especially
the latter has become well known and can be found in most modern books on the topic.
A more general result is due to Faber [93], who in 1914 showed that for any prescribed
triangular system of interpolation points there exists a continuous function for which the
corresponding Waring-Lagrange interpolation process carried out on these points does
not converge uniformly to this function. Although it has later been proven possible to
construct interpolating polynomials that do converge properly for all continuous functions,
for example by using the Hermite type of interpolation scheme proposed by Fejér [96] in
1916, these findings clearly revealed the “inflexibility” of algebraic polynomials and their
limited applicability to interpolation.

IV The Information and Communication Era

When Fraser [105], in 1927, summed up the state of affairs in classical interpolation theory,
he also expressed his expectations concerning the future, and speculated: “The 20th cen-
tury will no doubt see extensions and developments of the subject of interpolation beyond
the boundaries marked by Newton 250 years ago”. This section gives an overview of the
advances in interpolation theory in the past century, proving that Fraser was right. In fact,
he was so right that our rendition of this part of history is necessarily of a more limited
nature than the expositions in the previous sections. After having given an overview of the
developments that led to the two most important theorems on which modern interpolation
theory rests, we focus primarily on their later impact on signal and image processing.

IV.A From Cardinal Function to Sampling Theory

In his celebrated 1915 paper [348], E. T. Whittaker noted that given the values of a
function f corresponding to an infinite number of equidistant values of its argument: x0,
x0 ± T , x0 ± 2T , . . ., from which we can construct a table of differences for interpolation,
there exist many other functions that give rise to exactly the same difference-table. He
then considered the Newton-Gauss formula, (9), and set out to answer the question of

24For more detailed information on the development of approximation theory, see the recently published
historical review by Pinkus [253].
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which one of the cotabular functions is represented by it. The answer, he proved, is that
under certain conditions it represents the cardinal function

C(x) =
+∞∑

k=−∞
f(x0 + kT )

sin
π

T
(x− x0 − kT )

π

T
(x− x0 − kT )

, (12)

which he observed to have the remarkable properties that, apart from the fact that it is
cotabular with the original function since C(x0 + kT ) = f(x0 + kT ) for all k ∈ Z, it has
no singularities and all “constituents” of period less than 2T are absent.

Although Whittaker did not refer to any earlier works, it is now known25 that the series
(12) with x0 = 0 and T = 1 had essentially been given as early as 1899 by Borel [26],
who had obtained it as the limiting case of the Waring-Lagrange interpolation formula.26

Borel, however, did not establish the “bandlimited” nature of the resulting function. Nor
did Steffensen in a paper [301] published in 1914, in which he gave the same formula as
Borel, though he referred to Hadamard [125] as his source. De la Vallée Poussin [71], in
1908, studied the closely related case where the summation is over a finite interval, but
the number of known function values in that interval goes to infinity by taking T = π/m
and m → ∞. In contrast with the Waring-Lagrange polynomial interpolator, which may
diverge as we have seen in the previous section, he found that the resulting interpolating
function converges to the original function at any point in the interval where that function
is continuous and of bounded variation.

The issue of convergence was an important one in subsequent studies of the cardinal
function. In establishing the equivalence of the cardinal function and the function obtained
by the Newton-Gauss interpolation formula, Whittaker had assumed convergence of both
series expansions. Later authors showed, by particular examples, that the former may
diverge when the latter converges. The precise relationship was studied by Ferrar [98],
who showed that when the series of type (12) converges, (9) also converges and has the same
sum; if, on the other hand, (9) is convergent, (12) is either convergent or has a generalized
sum in the sense used by de la Vallée Poussin for Fourier series [72,358]. Concerning the
convergence of the cardinal series, Ferrar [97–99], and later J. M. Whittaker [350,351,353],
studied several criteria. Perhaps the most important is that of

∑
k 6=0 |sk/k| < ∞, where

sk = f(x0 + kT ), being a sufficient condition for having absolute convergence—a criterion
that had also been given by Borel [26]. It was J. M. Whittaker [350,353], also, who gave
more refined statements as to the relation between the cardinal series and the truncated
Fourier integral representation of a function in the case of convergence—results that also
relate to the property called by Ferrar the “consistency” of the series [97, 99, 350, 353],
which implies the possibility of reproducing the cardinal function as given in (12) by using
its values C(x′0 + kT ′), with 0 < T ′ < T .

It must have been only shortly after publication of J. M. Whittaker’s works [350,
351, 353] on the cardinal series that Shannon recognized their evident importance to the
field of communication. He formulated the now well-known sampling theorem, which he

25For more information on the development of sampling theory, the reader is referred to the historical
accounts given by Higgins [135] and Butzer & Stens [35].

26Since Borel [26], the equivalence of the Waring-Lagrange interpolation formula and (12) in the case
of infinitely many known function values between which to interpolate has been pointed out and proven
by many authors [31, 35, 97, 135, 139, 149, 211, 353]. Apart from the Newton-Gauss formula, as shown by
Whittaker [348], equivalence also holds for other classical interpolation formulae, such as Newton’s divided
difference formula [301,353], or the formulae by Everett, Stirling, and Bessel [216], discussed in the previous
section. Given Borel’s result, this is an almost trivial observation, since all classical schemes yield the exact
same polynomial for a given set of known function values, irrespective of their number.



PP-12 A Chronology of Interpolation

first published [288] without proof in 1948, and the subsequent year with full proof in a
paper [289] apparently written already in 1940:

If a function f contains no frequencies higher thanW cycles per second, it is completely
determined by giving its ordinates at a series of points spaced 1/2W seconds apart.

Later on in the paper, he referred to the critical sampling interval T = 1/2W as the
Nyquist interval corresponding to the band W , in recognition of Nyquist’s discovery [240]
of the fundamental importance of this interval in connection with telegraphy. In describing
the reconstruction process, he pointed out that

There is one and only one function whose spectrum is limited to a band W , and which
passes through given values at sampling points separated 1/2W seconds apart. The
function can be simply reconstructed from the samples by using a pulse of the type
sin(2πWx)/2πWx. (...) Mathematically, this process can be described as follows. Let
sk be the kth sample. Then the function f is represented by

f(x) =
∞∑

k=−∞
sk

sinπ(2Wx− k)
π(2Wx− k)

. (13)

As pointed out by Higgins [135], the sampling theorem should really be considered in
two parts, as done above: the first stating the fact that a bandlimited function is completely
determined by its samples, the second describing how to reconstruct the function using
its samples. Both parts of the sampling theorem were given in a somewhat different
form by J. M. Whittaker [350, 351, 353] and before him also by Ogura [241, 242]. They
were probably not aware of the fact that the first part of the theorem had been stated
as early as 1897 by Borel [25].27 As we have seen, Borel also used around that time
what became known as the cardinal series. However, he appears not to have made the
link [135]. In later years it became known that the sampling theorem had been presented
before Shannon to the Russian communication community by Kotel’nikov [173]. In more
implicit, verbal form, it had also been described in the German literature by Raabe [257].
Several authors [33,205] have mentioned that Someya [296] introduced the theorem in the
Japanese literature parallel to Shannon. In the English literature, Weston [347] introduced
it independently of Shannon around the same time.28

IV.B From Osculatory Interpolation Problems to Splines

Having arrived at this point, we go back again more than half a century to follow a
parallel development of quite different nature. It is clear that practical application of any
of the classical polynomial interpolation formulae discussed in the previous section implies
taking into account only the first few of the infinitely many terms; in most situations
it will be computationally prohibitive to consider all, or even a large number of known
function values when computing an interpolated value. Keeping the number of terms fixed

27Several authors, following Black [16], have claimed that this first part of the sampling theorem was
stated even earlier by Cauchy, in a paper [41] published in 1841. However, the paper of Cauchy does not
contain such a statement, as has been pointed out by Higgins [135].

28As a consequence of the discovery of the several independent introductions of the sampling theorem,
people started to refer to the theorem by including the names of the aforementioned authors, resulting in
such catchphrases as “the Whittaker-Kotel’nikov-Shannon (WKS) sampling theorem” [155] or even “the
Whittaker-Kotel’nikov-Raabe-Shannon-Someya sampling theorem” [33]. To avoid confusion, perhaps the
best thing to do is to refer to it as the sampling theorem, “rather than trying to find a title that does
justice to all claimants” [136].
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implies fixing the degree of the polynomial curves resulting in each interpolation interval.
Irrespective of the degree, however, the composite piecewise polynomial interpolant will
generally not be continuously differentiable at the transition points.

The need for smoother interpolants in some applications led in the late 1800s to the
development of so-called osculatory interpolation techniques, most of which appeared in
the actuarial literature [122, 286, 291]. A well-known example of this is the formula pro-
posed in 1899 by Karup [162] and independently described by King [168] a few years later,
which may be obtained from Everett’s general formula (10) by taking

F (ξ, δ) = ξ +
1
2
ξ2(ξ − 1)δ2, (14)

and results in a piecewise third-degree polynomial interpolant that is continuous and, in
contrast with Everett’s third-degree interpolant, is also continuously differentiable every-
where.29 By using this formula, it is possible to reproduce polynomials up to second
degree. Another example is the formula proposed in 1906 by Henderson [130], which may
be obtained from (10) by substituting

F (ξ, δ) = ξ +
1
6
ξ(ξ2 − 1)δ2 − 1

12
ξ2(ξ − 1)δ4, (15)

and also yields a continuously differentiable, piecewise third-degree polynomial interpolant,
but is capable of reproducing polynomials up to third degree. A third example is the
formula published in 1927 by Jenkins [153], obtained from (10) by taking

F (ξ, δ) = ξ +
1
6
ξ(ξ2 − 1)δ2 − 1

36
ξ3δ4. (16)

The first and second term of this function are equal to those of Henderson’s and Everett’s
function, but the third term is chosen in such a way that the resulting composite curve is
a piecewise third-degree polynomial that is twice continuously differentiable. The price to
pay, however, is that this curve is not an interpolant.

The need for practically applicable methods for interpolation or smoothing of em-
pirical data also formed the impetus to Schoenberg’s study of the subject. In his 1946
landmark paper [274, 275] he noted that for every osculatory interpolation formula ap-
plied to equidistant data, where he assumed the distance to be unity, there exists an even
function Φ : R → R, in terms of which the formula may be written as

f(x) =
∞∑

k=−∞
yk Φ(x− k), (17)

where Φ, which he termed the basic function of the formula, completely determines the
properties of the resulting interpolant and reveals itself when applying the initial formula to
the impulse sequence defined by y0 = 1 and yk = 0, ∀k 6= 0. By analogy with Whittaker’s
cardinal series, (12), Schoenberg referred to the general expression (17) as a formula of

29The word “osculatory” originates from the Latin verb osculari, which literally means “to kiss” and
can be translated here as “joining smoothly”. Notice that the meaning of the word in this context is more
general than in Footnote 23: Hermite interpolation may be considered that type of osculatory interpolation
where the derivatives up to some degree are not only supposed to be continuous everywhere but are also
required to assume prespecified values at the sample points. It is especially this latter type of interpolation
problem to which the adjective “osculatory” has been attached in later publications [32,65,161,192, 267].
For a more elaborate discussion of osculatory interpolation in the original sense of the word, see several
survey papers [122,286,291].
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the cardinal type, but noted that the basic function Φ(x) = sin(πx)/πx is inadequate for
numerical purposes due to its excessively low damping rate. The basic functions involved in
Waring-Lagrange interpolation, on the other hand, possess the limiting property of being
at most continuous, but not continuously differentiable. He then pointed at the smooth
curves obtained by the use of a mechanical spline,30 argued that these are piecewise cubic
arcs with a continuous first- and second-order derivative, and continued to introduce the
notion of the mathematical spline:

A real function f defined for all real x is called a spline curve of order L and denoted
by SL if it enjoys the following properties: 1) it is composed of polynomial arcs of
degree at most L−1; 2) it is of class CL−2, i.e., f has L−2 continuous derivatives; 3)
the only possible function points of the various polynomial arcs are the integer points
x = L if L is even, or else the points x = L+ 1

2 if L is odd.

Notice that these requirements are satisfied by the curves resulting from the aforemen-
tioned smoothing formula proposed by Jenkins, and also studied by Schoenberg [274],
which constitutes one of the earliest examples of a spline generating formula.

After having given the definition of a spline curve, Schoenberg continued to prove that

Any spline curve SL may be represented in one and only one way in the form

SL(x) =
∞∑

k=−∞
yk ML(x− k) (18)

for appropriate values of the coefficients yk. There are no convergence difficulties
since ML(x) vanishes for |x| > L/2. Thus (18) represents an SL for arbitrary {yk}
and represents the most general one.

Here, ML : R → R denotes the so-called B-spline of degree n = L − 1, which he had
defined earlier in the paper as the inverse Fourier integral

ML(x) =
1
2π

∫ ∞

−∞

(
sin(ω/2)
ω/2

)L

eiωxdω, (19)

and, equivalently, also as31

ML(x) =
1

(L− 1)!
δLxL−1

+ , (20)

where δp is again the pth-order central difference operator and xn
+ denotes the one-sided

power function defined as

xn
+ ,

{
xn, if x > 0

0, if x < 0.
(21)

30The word “spline” can be traced back to the 18th century but by the end of the 19th century was
used to refer to “a flexible strip of wood or hard rubber used by draftsmen in laying out broad sweeping
curves” [293]. Such mechanical splines were used e.g. to draw curves needed in the fabrication of cross
sections of ships’ hulls. Drucks or weights were placed on the strip to force it to go through given points,
and the free portion of the strip would assume a position in space that minimized the bending energy [340].

31In his original 1946 paper [274, 275], Schoenberg referred to the ML strictly as “basic functions” or
“basic spline curves”. The abbreviation “B-splines” was first coined by him twenty years later [277]. It is
also interesting here to point at the connection with probability theory: as is clear from (19), ML(x) can be
written as the n-fold convolution of the indicator function M1(x) with itself, from which it follows that a
B-spline of degree n represents the probability density function of the sum of L = n+1 independent random
variables with uniform distribution in the interval [− 1

2
, 1

2
]. The explicit formula of this function was known

as early as 1820 by Laplace [73], and is essentially (20), as also acknowledged by Schoenberg [274]. For
further details on the history of B-splines, see e.g. Butzer et al. [34].
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IV.C Convolution-Based Function Representation

Although there are certainly differences, it is interesting to look at the similarities between
the theorems described by Shannon and Schoenberg: both of them involve the definition
of a class of functions f : R → R satisfying certain properties, and both involve the repre-
sentation of these functions by a mixed convolution of a set of coefficients ck with some
basic function, or kernel, ϕ : R → R, according to the formula

fT (x) =
∑
k∈Z

ck ϕ(x/T − k), (22)

where the subscript T , the sampling interval, is now added to stress the fact that we are
dealing with a representation—or, depending on ϕ, perhaps only an approximation—of any
such original function f based on its T -equidistant samples. In the case of Shannon, the f
are bandlimited functions, the coefficients ck are simply the samples sk = f(kT ), and the
kernel is the sinc function,32 defined as sinc(x) , sin(πx)/πx. In Schoenberg’s theorem,
the functions f are piecewise polynomials of degree n that join smoothly according to the
definition of a spline, the coefficients ck are computed from the samples sk, and the kernel
is the nth-degree B-spline.33

In the decades to follow, both Shannon’s and Schoenberg’s paper would prove most
fruitful, but largely in different fields. The former had great impact on communication
engineering [17, 54, 159, 287], numerous signal processing and analysis applications [39,
115, 136, 155, 211, 243], and to some degree also numerical analysis [127, 206, 304, 305].
Splines, on the other hand, and after some two decades of further study by Schoenberg
[278, 279, 281], found their way into approximation theory [64, 69, 77, 86, 140, 239, 284],
mono- and multivariate interpolation [22, 52, 298, 299], numerical analysis [256], statistics
[340], and other branches of mathematics [5]. With the advent of digital computers,
splines had a major impact on geometrical modeling and computer-aided geometric design
[78, 94, 182, 213, 223], computer graphics [9, 250], even font design [172], to mention but a
few practical applications. In the remainder of this section, we will focus primarily on the
further developments in signal and image processing.

IV.D Convolution-Based Interpolation in Signal Processing

When using Waring-Lagrange interpolation, the choice for the degree n of the resulting
polynomial pieces fixes the number of samples to be used in any interpolation interval to
n+1. There is still freedom, however, to choose the position of the interpolation intervals,
the end points of which constitute the transition points of the polynomial pieces of the
interpolant, relative to the sample intervals. It is easy to see that if they are chosen to
coincide with the sample intervals, there are n possibilities of choosing the position—in the
sequence of samples to be used—of the two samples making up the interpolation interval,
and that each of these possibilities gives rise to a different impulse response, or kernel.

In their 1973 study [271] of these kernels for use in digital signal processing, Schafer
& Rabiner concluded that the only ones that are symmetrical, and thus do not introduce
phase distortions, are those corresponding to the cases where n is odd and the number

32The term “sinc” is usually held to be short for the Latin sinus cardinalis [136]. Although it has become
well known in connection with the sampling theorem, it was not used by Shannon in his original papers,
but appears to have been introduced first in 1953 by Woodward [355].

33Later, in Section IV.I, it will become clear that the kinship between both theorems goes even further,
in the sense that the sampling theorem for bandlimited functions is the limiting case of the sampling
theorem for splines.
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of constituent samples on either side of the interpolation interval is the same. It must be
pointed out, however, that their conclusion does not hold in general but is a consequence
of letting the interpolation and sample intervals coincide. If the interpolation intervals are
chosen according to the parity of n, as in the aforementioned definition of the mathematical
spline, then the kernels corresponding to Waring-Lagrange central interpolation for even n
will also be symmetrical. Examples of these had already been given by Schoenberg [274].
Schafer & Rabiner also studied the spectral properties of the odd-degree kernels, concluded
that the higher-order kernels possess considerably better lowpass properties than linear
interpolation, and discussed the design of alternative finite impulse response interpolators
based on prespecified bandpass and bandstop characteristics. More information on this
can also be found in the tutorial review by Crochiere & Rabiner [57].

IV.E Cubic Convolution Interpolation in Image Processing

The early 1970s was also the time digital image processing really started to develop. One of
the first applications reported in the literature was the geometrical rectification of digital
images obtained from the first Earth Resources Technology Satellite (ERTS) launched
by the United States National Aeronautics and Space Administration (NASA) in 1972.
The need for more accurate interpolations than obtained by standard linear interpolation
in this application led to the development of a still very popular technique known as
cubic convolution, which involves the use of a sinc-like kernel composed of piecewise cubic
polynomials. Apart from being interpolating, the kernel was designed to be continuous and
to have a continuous first derivative. Cubic convolution was first mentioned by Rifman
[262], discussed in some more detail by Simon [292], but the most general form of the
kernel appeared first in a paper by Bernstein [13]:

ψ(x) =




(α+ 2)|x|3 − (α+ 3)|x|2 + 1, if 0 6 |x| < 1

α|x|3 − 5α|x|2 + 8α|x| − 4α, if 1 6 |x| < 2

0, if 2 6 |x|,
(23)

where α is a free parameter resulting from the fact that the interpolation, continuity, and
continuous differentiability requirements yield only seven equations, while the two cubic
polynomials defining the kernel make up a total of eight unknown coefficients.34 The
explicit cubic convolution kernel given by Rifman and Bernstein in their respective papers
is the one corresponding to α = −1, which results from forcing the first derivative of ψ to
be equal to that of the sinc function at x = 1. Two alternative criteria for fixing α were
given by Simon [292]. The first consists in requiring the second derivative of the kernel to
be continuous at x = 1, which results in α = −3

4 . The second amounts to requiring the
kernel to be capable of exact constant slope interpolation, which yields α = −1

2 . Although
not mentioned by Simon, the kernel corresponding to the latter choice for α is not only
capable of reproducing linear polynomials, but also quadratic polynomials.

IV.F Spline Interpolation in Image Processing

The use of splines for digital image interpolation was first investigated only a little later
[7,144,145,249]. An important paper providing a detailed analysis was published in 1978

34Notice here that the application of convolution kernels to two-dimensional data defined on Cartesian
grids, as digital images are in most practical cases, has traditionally been done simply by extending (22)
to fT (x, y) =

∑
k∈Z

∑
l∈Z

ck,l ϕ(x/Tx − k) ϕ(y/Ty − l), where Tx and Ty denote the sampling interval in x
and y direction, respectively. This approach can of course be extended to any number of dimensions and
allows for the definition and analysis of kernels in one dimension only.
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by Hou & Andrews [145]. Their approach, mainly centered around the cubic B-spline, was
based on matrix inversion techniques for computing the coefficients ck in (22). Qualitative
experiments involving magnification (enlargement) and minification (reduction) of image
data demonstrated the superiority of cubic B-Spline interpolation over techniques such as
nearest-neighbor or linear interpolation, and even interpolation based on the truncated
sinc function as kernel. The results of the magnification experiments also clearly showed
the necessity for this type of interpolation to use the coefficients ck rather than the original
samples sk in (22) in order to preserve resolution and contrast as much as possible.

IV.G Cubic Convolution Interpolation Revisited

Meanwhile, research on cubic convolution interpolation continued. In 1981, Keys [166]
published an important study that provided new, approximation-theoretic insights into
this technique. He argued that the best choice for α in (23) is that for which the Taylor
series expansion of the interpolant fT resulting from cubic convolution interpolation of
equidistant samples of an original function f , agrees in as many terms as possible with
that of the original function. By using this criterion, he found that the optimal choice is
α = −1

2 , in which case fT (x)−f(x) = O(T 3) for all x. This implies that the interpolation
error goes to zero uniformly at a rate proportional to the third power of the sample interval.
In other words, for this choice of α cubic convolution yields a third-order approximation
of the original function. For all other choices of α, he found that it yields only a first-order
approximation, just like nearest-neighbor interpolation. He also pointed at the fact that
cubic Lagrange and cubic spline interpolation both yield a fourth-order approximation—
the highest possible with piecewise cubics—and continued to derive a cubic convolution
kernel with the same property, at the cost of a larger spatial support.

A second, complementary study of the cubic convolution kernel (23) was published
a little later by Park & Schowengerdt [246]. Rather than studying the properties of the
kernel in the spatial domain, they carried out a frequency-domain analysis. The Maclaurin
series expansion of the Fourier transform of (23) can be derived to be

ψ̂(ω) = 1 − 4
15

(2α + 1)(ω/2)2 +
1
35

(16α + 1)(ω/2)4 + . . . , (24)

where, as usual, ω denotes radial frequency. Based on this fact, they argued that the
best choice for the free parameter is α = −1

2 , since this maximizes the number of terms
in which (24) agrees with the Fourier transform of the sinc kernel. That is to say, it
provides the best low-frequency approximation to the “ideal” reconstruction filter. Park
& Schowengerdt [245,246] also studied the mean-square error, or squared L2-norm

ε2 =
∫ ∞

−∞
|f1(x) − f(x)|2dx, (25)

with f1 the image obtained from interpolating the samples sk = f(k) of an original image
f using any interpolation kernel ϕ. They showed that if the original image is bandlimited,
i.e., f̂(ω) = 0 for all |ω| larger than some ωmax > 0 in this one-dimensional analysis, and if
sampling is performed at a rate equal to or higher than the Nyquist rate, this error—which
they called the “sampling and reconstruction blur”—is equal to

η2 =
1
2π

∫ ωmax

−ωmax

|f̂(ω)|2E(ω)dω, (26)

where
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E(ω) = |1 − ϕ̂(ω)|2 +
∑
k∈Z∗

|ϕ̂(ω + 2πk)|2, (27)

with Z∗ = Z\{0}. In the case of undersampling, η2 represents the average error 〈ε2〉,
where the averaging is over all possible sets of samples f(k + τ), with τ ∈ [0, 1]. They
argued that if the energy spectrum of f is not known, the optimal choice for α is the one
that yields the best low-frequency approximation to E(ω) = 0. Substituting ψ for ϕ and
computing the Maclaurin series expansion of the right-hand side of (27), they found that
this best approximation is obtained by taking, again, α = −1

2 .
Notwithstanding the achievements of Keys and Park & Schowengerdt, it is interesting

to note that cubic convolution interpolation corresponding to α = −1
2 had been suggested

in the literature at least three times before these authors. Already mentioned is Simon’s
paper [292], published in 1975. A little earlier, in 1974, Catmull & Rom [40] had studied
interpolation by “cardinal blending functions” of the type

Cn(x) =
n∑

i=0

w(x+ i)
i∏

j=i−n
j 6=0

(
x

j
+ 1

)
(28)

where n is the degree of polynomials resulting from the product on the right-hand side
and w is a weight function, or blending function, centered around x = n/2. Among the
examples they gave is the function corresponding to n = 1 and w the second-degree B-
spline. This function can be shown to be equal to (23) with α = −1

2 . In the fields of
computer graphics and visualization, the third-order cubic convolution kernel is therefore
usually referred to as the Catmull-Rom spline. It has also been called the (modified or
cardinal) cubic spline [12,120,132,167,207,225,226]. Finally, this cubic convolution kernel
is precisely the kernel implicitly used in the previously mentioned osculatory interpolation
scheme proposed around 1900 by Karup and King. More details on this can be found in
a recent paper [217], which also demonstrates the equivalence of Keys’ fourth-order cubic
convolution and Henderson’s osculatory interpolation scheme mentioned earlier.

IV.H Cubic Convolution versus Spline Interpolation

A comparison of interpolation methods in medical imaging was presented by Parker et
al. [247] in 1983. Their study included the nearest-neighbor kernel, the linear interpolation
kernel, the cubic B-spline, and two cubic convolution kernels,35 viz. the ones corresponding
to α = −1

2 and α = −1. Based on a frequency-domain analysis they concluded that the
cubic B-spline yields the most smoothing and that it is therefore better to use a cubic
convolution kernel. This conclusion, however, resulted from an incorrect use of the cubic
B-spline for interpolation, in the sense that the kernel was applied directly to the original
samples sk instead of the appropriate coefficients ck—an approach that has been suggested
(explicitly or implicitly) by many authors over the years [61, 101, 225, 227, 255, 270, 345].
The point was later discussed by Maeland [209], who derived the true spectrum of the
cubic spline interpolator, or cardinal cubic spline, as the product of the spectrum of the

35Note that Parker et al. referred to them consistently as “high-resolution cubic splines”. According to
Schoenberg’s original definition, however, the cubic convolution kernel (23) is not a cubic spline, regardless
of the value of α. Some people have called piecewise polynomial functions with less than maximum
(nontrivial) smoothness “deficient splines”. See also de Boor [65], who adopted the definition of a spline
function as a linear combination of B-splines. When using the latter definition, the cubic convolution
kernel may indeed be called a spline. We will not do so, however, in this paper.
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required prefilter and that of the cubic B-spline. From a correct comparison of the spectra,
he concluded that cubic spline interpolation is superior compared to cubic convolution
interpolation—a conclusion that would later be confirmed repeatedly by several evaluation
studies (to be discussed in Section IV.M).36

IV.I Spline Interpolation Revisited

In classical interpolation theory it was already known that it is better or even necessary in
some cases to first apply some transformation to the original data before applying a given
interpolation formula. The general rule in such cases is to apply transformations that will
make the interpolation as simple as possible. The transformations themselves, of course,
should preferably also be as simple as possible. Stirling, in his 1730 book [307] on finite
differences, wrote about this:37

As in common algebra, the whole art of the analyst does not consist in the resolution of
the equations, but in bringing the problems thereto. So likewise in this analysis: there
is less dexterity required in the performance of the process of interpolation than in the
preliminary determination of the sequences which are best fitted for interpolation.

It should be clear from the foregoing discussion that a similar statement applies to
convolution-based interpolation using B-splines: the difficulty is not in the convolution, but
in the preliminary determination of the coefficients ck. In order for B-spline interpolation
to be a competitive technique, the computational cost of this preprocessing step should be
reduced to a minimum—in many situations the important issue is not just accuracy, but
the trade-off between accuracy and computational cost. Hou & Andrews [145], as many
before and after them, solved the problem by setting up a system of equations followed
by matrix inversion. Even though there exist optimized techniques [113] for inverting the
Toeplitz type of matrices occurring in spline interpolation, this approach is unnecessarily
complex and computationally expensive.

In the early 1990s it was shown by Unser et al. [326,328,329] that the B-spline inter-
polation problem can be solved much more efficiently by using a digital filtering approach.
Writing βn rather than Mn+1 for a B-spline of degree n, we obtain the following from
applying the interpolation requirement to (22):∑

l∈Z

cl β
n(k − l) = sk, ∀k ∈ Z. (29)

Recalling that the z-transform of a convolution of two discrete sequences is equal to the
product of the individual z-transforms, the z-transform of (29) reads C(z)Bn(z) = S(z).
Consequently, the B-spline coefficients can be obtained as

C(z) =
(
Bn(z)

)−1
S(z). (30)

Since, by definition, Bn(z) =
∑

k∈Z
βn(k)z−k, it follows from insertion of the explicit

form of βn that (Bn(z))−1 = 1 for n = 0 and n = 1, which implies that in these cases
C(z) = S(z), that is to say, ck = sk. For any n > 2, however, (Bn(z))−1 is a digital “high-
boost” filter that corrects for the blurring effects of the corresponding B-spline convolution

36It is therefore surprising that, even though there are now textbooks that acknowledge the superiority
of spline interpolation [27,150,151,354], many books since the late eighties [11,115,282,297, 300] give the
impression that cubic convolution is the state-of-the-art in image interpolation.

37The translation from Latin is as given by Whittaker & Robinson [349].
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kernel. Although this was known to Hou & Andrews [145] and later authors [116,184,319],
they did not realize that this filter can be implemented recursively.

Since βn is even for any n ∈ N, we have (Bn(z))−1 = (Bn(z−1))−1, which implies that
the poles of the filter come in reciprocal pairs, so that the filter can be factorized as

(
Bn(z)

)−1 = γ

bn/2c∏
i=1

H(z; zi), (31)

where γ = 1/βn(bn/2c) is a constant factor and

H(z; zi) =
−zi

(1 − ziz−1)(1 − ziz)
(32)

is the factor corresponding to the pole pair {zi, z−1
i }, with |zi| < 1. Since the poles of

(Bn(z))−1 are the zeroes of Bn(z), they are obtained by solving Bn(z) = 0. By a further
factorization of (32) into H(z; zi) = H−(z; zi)H+(z; zi), with

H+(z; zi) =
1

(1 − ziz−1)
, H−(z; zi) =

−zi
(1 − ziz)

, (33)

and by using the shift property of the z-transform, it is not difficult to show that in the
spatial domain, application of H+(z; zi) followed by H−(z; zi) to given samples sk, k =
0, 1, 2, . . . ,K − 1, amounts to applying the recursive filters:

c+k = sk + zi c
+
k−1, k = 1, 2, . . . ,K − 1, (34)

c−k = zi
(
c−k+1 − c+k

)
, k = K − 2, . . . , 1, 0, (35)

where the c+k are intermediate output samples resulting from the first, causal filter, and
the c−k are the output samples resulting from the second, anti-causal filter. For the initial-
ization of the causal filter we may use mirror-symmetric boundary conditions, i.e., sk = sl

for (k + l)mod(2K − 2) = 0, which can be shown to result in [324]

c+0 =
1

1 − z2K−2
i

2K−3∑
l=0

zl
isl. (36)

In most practical cases, K will be sufficiently large to justify taking 1/(1−z2K−2
i ) = 1 and

terminating the summation much earlier. An initial value for the anti-causal filter may be
obtained from a partial-fraction expansion of (32), resulting in [329]

c−K−1 =
−zi

(1 − z2
i )

(
2c+K−1 − sK−1

)
. (37)

Summarizing, the prefilter (Bn(z))−1 corresponding to a B-spline of degree n has
bn/2c pole pairs {zi, z−1

i }, |zi| < 1, and (34) and (35), with initial conditions (36) and
(37), respectively, need to be applied successively for each zi, where the input to the next
iteration is formed by the output of the previous, and the input to the first causal filter by
the original samples sk. The coefficients ck to be used in (22) are precisely the c−k of the
final anti-causal filter, after scaling by the constant factor γ. Notice, furthermore, that in
the subsequent evaluation of the convolution (22) for any x, the polynomial pieces of the
kernel are computed most efficiently by using “nested multiplication” by x. In other words,
by considering each of the polynomials in the form x(· · · (x(xan + an−1) + an−2) . . . ) + a0
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rather than anx
n + an−1x

n−1 + . . . + a1x + a0. It can easily be seen that the nested
form requires only 2n floating-point operations (multiplications and additions) compared
to 3n− 1 in the case of direct evaluation of the polynomial.38

It is interesting to have a look at the interpolation kernel implicitly used in (22) in
the case of B-spline interpolation. Writing (bn)−1 for the spatial-domain version of the
prefilter (Bn)−1 corresponding to an nth-degree B-spline, it follows from (30) that the
coefficients are given by ck = ((bn)−1 ∗ s)k, where “∗” denotes convolution. Substituting
this expression into (22), together with ϕ = βn, we obtain

fT (x) =
∑
k∈Z

(
(bn)−1 ∗ s)

k
βn(x/T − k), (38)

which can be rewritten in cardinal form as

fT (x) =
∑
k∈Z

sk ϑ
n(x/T − k), (39)

where ϑn is the so-called cardinal spline of degree n, given by

ϑn(x) =
∑
k∈Z

(bn)−1
k βn(x− k). (40)

Similar to the sinc function, this kernel satisfies the interpolation property: it vanishes
for integer values of its argument, except at the origin, where it assumes unit value.
Furthermore, for all n > 2, it has infinite support. And as n goes to infinity, ϑn converges
to the sinc function. Although this result was already known to Schoenberg [280], it did
not reach the signal and image processing community until recently [6, 327].

In the years to follow, the described digital filtering approach to spline interpolation
would be used in the design of efficient algorithms for such purposes as image rotation [334],
the enlargement or reduction of images [183,331], the construction of multiresolution image
pyramids [330, 342], image registration [178, 315], wavelet transformation [332, 338, 339],
texture mapping [147], on-line signal interpolation [197], and fast spline transformation
[100]. For more detailed information, the reader is referred to mentioned papers as well
as several reviews [324,325].

IV.J Development of Alternative Piecewise Polynomial Kernels

Independent of the just mentioned developments, research on alternative piecewise polyno-
mial interpolation kernels continued. Mitchell & Netravali [225] derived a two-parameter
cubic kernel by imposing the requirements of continuity and continuous differentiability,
but by replacing the interpolation condition by the requirement of first-order approxima-
tion, i.e., the ability to reproduce the constant. By means of an analysis in the spirit of
Keys [166], they also obtained a criterion to be satisfied by the two parameters in order

38It is precisely this trick that is implemented in the digital filter structure described by Farrow [95] in
1988 and that later authors [81,89,179,258,336] have referred to as the “Farrow structure”. It was already
known, however, to medieval Chinese mathematicians. Jiă Xiàn (middle 11th century) appears to have used
it for solving cubic equations. A generalization to polynomials of arbitrary degrees was described first by
Qı́n Jiŭsháo [204,214] (also written as Ch’in Chiu-shao [251]), in his book Shùshū Jiŭzhāng (“Mathematical
Treatise in Nine Sections”, 1247 AD). In the West it was rediscovered by Horner [143] in 1819, and it can
be found under his name in many books on numerical analysis [131, 138, 171, 285, 310, 337]. Fifteen years
earlier, however, it had also been proposed by Ruffini [265] (see also Cajori [36]). And even earlier, around
1669, it was used by Newton [234].
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to have at least second-order approximation. Special instances of their kernel include the
cubic convolution kernel (23) corresponding to α = −1

2 , and the cubic B-spline. The
whole family, sometimes also referred to as BC-splines [226], was later studied by several
authors [207,212,226] in the fields of visualization and computer graphics.

An extension of the results of Park & Schowengerdt [246] concerning the previously
discussed frequency-domain error analysis was presented by Schaum [273]. Instead of the
L2-norm, (25), he studied the performance metric

ε2s =
∑
k∈Z

|f1(k + s) − f(k + s)|2, (41)

which summarizes the total interpolation error at a given shift s with respect to the original
sampling grid. He found that in the case of oversampling, this error too is given by (26),
where η2 and E may now be written as η2

s and Es, respectively, with

Es(ω) =

∣∣∣∣∣1 −
∑
k∈Z

ei2πksϕ̂(ω + 2πk)

∣∣∣∣∣
2

. (42)

Also, in the case of undersampling, η2
s represents the error ε2s averaged over all possible

grid placements. He then pointed out that interpolation kernels are optimally designed if
as many derivatives as possible of their corresponding error function Es are zero at ω = 0.
By further analyzing Es, he showed that for L-point interpolation kernels, i.e., kernels
that extend over L samples in computing (22) at any x with ck = sk, this requirement
implies that the kernel must be able to reproduce all monomials of degree n 6 L− 1, and
that this is the case for the Lagrange central interpolation kernels. Schaum also derived
optimal interpolators for specific power spectra |f̂(ω)|2.

Several authors have developed interpolation kernels defined explicitly as finite linear
combinations of B-splines. Chen et al. [46], for example, described a kernel which they
termed the “local interpolatory cardinal spline” and is composed of cubic B-splines only.
When applying a scaling factor of two to its argument, this function very closely resembles
Keys’ fourth-order cubic convolution kernel, except that it is twice rather than once con-
tinuously differentiable. Knockaert & Olyslager [170] discovered a class of what they called
“modified B-splines”. To each integral approximation order L > 0 corresponds exactly
one kernel of this class. For L = 1 and L = 2, these are (scaled versions of) the zeroth-
degree and first-degree B-spline, respectively. For any L > 2, the corresponding kernel is
a finite linear combination of B-splines of different degrees, such that the composite kernel
is interpolating and that its degree is as low as possible.

In recent years, the design methodologies originally used by Keys [166] have been em-
ployed more than once again in developing alternative interpolation kernels. Dodgson [79],
defying the earlier mentioned claim of Schafer & Rabiner concerning even-degree piecewise
polynomial interpolators, used them to derive a symmetric second-degree interpolation
kernel. In contrast with the quadratic Lagrange interpolator, this kernel is continuous. Its
order of approximation, however, is one less. German [111] used Keys’ ideas to develop a
continuously-differentiable quartic interpolator with fifth order of approximation. And the
present author [219] combined them with Park & Schowengerdt’s frequency-domain error
analysis to derive a class of odd-degree piecewise polynomial interpolation kernels with
increasing regularity. All of these kernels, however, have the same order of approximation
as the optimal cubic convolution kernel.
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IV.K The Impact of Approximation Theory

The notion of approximation order, defined as the rate at which the error of an approxi-
mation goes to zero when the distance between the samples goes to zero, has already been
used at several points in the previous subsections. In general, an approximating function
is computed as a linear combination of basis functions, whose coefficients are based on the
samples of the original function. This is the case e.g. with approximations obtained from
(22), where the basis functions are translates of a single kernel, ϕ.

The concept of convolution-based approximation has been studied intensively over
the past decades, primarily in approximation theory, but the interesting results that had
been obtained in this area of mathematics were not noticed by researchers in signal and
image processing until relatively recently [323, 333]. An important example is the theory
developed by Strang & Fix [308] in the early 1970s, and further studied by many others,
which relates the approximation error to properties of the kernel involved. Specifically, it
implies that the following conditions are equivalent:

i) The kernel ϕ has Lth-order zeroes in the Fourier domain. More precisely,{
ϕ̂(0) 6= 0,

ϕ̂(n)(2πk) = 0 ∀k ∈ Z∗, n ∈ {0, 1, . . . , L− 1}.
(43)

ii) The kernel ϕ is capable of reproducing all monomials of degree n 6 L− 1. That is,
for every n ∈ {0, 1, . . . , L− 1} there exist coefficients ck,n ∈ R such that

∑
k∈Z

ck,n ϕ(x− k) = xn. (44)

iii) The first L discrete moments of the kernel ϕ are constants. That is, for every
n ∈ {0, 1, . . . , L− 1}, there exists a µn ∈ R such that∑

k∈Z

(x− k)nϕ(x− k) = µn. (45)

iv) For each sufficiently smooth function f , that is a function whose derivatives up to
and including order L are in the space L2, there exists a constant C ∈ R, which
does not depend on f , and a set of coefficients ck ∈ R, such that the L2-norm of the
difference between f and its approximation fT obtained from (22) is bounded as

‖f − fT‖L2 6 C · TL · ‖f (L)‖L2 as T → 0. (46)

This result holds for all compactly supported kernels [308], but also extends to non-
compactly supported kernels having suitable inverse polynomial decay [70, 156, 195, 196]
or even less stringent properties [19, 68]. Extensions have also been made to Lp-norms,
1 6 p 6 ∞ [67, 70, 156, 187, 195]. Furthermore, although the classical Strang-Fix theory
applies to the case of an orthogonal projection, alternative approximation methods such
as interpolation and quasi-interpolation also yield an O(TL) approximation error [53, 66,
67,187]. A detailed treatment of the theory is outside the scope of the present paper and
the reader is referred to mentioned papers for more information.

An interesting observation that follows from these equivalence conditions is that even
though the original function does not at all have to be a polynomial, the capability of a
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given kernel to let the approximation error go to zero as TL when T → 0 (fourth condition)
is determined by its ability to exactly reproduce all polynomials of maximum degree L−1
(second condition). In particular it follows that in order for the approximation to converge
to the original function at all when T → 0, the kernel must have at least approximation
order L = 1, which implies that it must at least be able to reproduce the constant. And if
we take ϕ̂(0) = 1 (first condition), which yields the usually desirable property of unit DC
gain, we have µ0 = 1, which implies that the kernel samples must sum to one regardless of
the position of the kernel relative to the sampling grid (third condition). This is generally
known as the partition of unity condition—a condition that is not satisfied by virtually
all so-called windowed sinc functions, which have frequently been proclaimed as the most
appropriate alternative for the “ideal” interpolator.

As can be appreciated from (46), the theoretical notion of approximation order is still
rather qualitative and not suitable for precise determination of the approximation error.
In many applications it would be very useful to have a more quantitative way of estimating
the error ε(T ) = ‖f − fT‖L2 induced by a given kernel ϕ and sampling step T . In 1999 it
was shown by Blu & Unser [19–21] that for any convolution-based approximation scheme,
this error is given by the relation

ε(T ) = η(T ) + o(T r), (47)

where the first term is a Fourier-domain prediction of the error, given by

η(T ) =

√
1
2π

∫ ∞

−∞
|f̂(ω)|2 E(Tω)dω, (48)

and the second term goes to zero faster than T r. Here, r denotes the highest derivative
of f that still has finite energy. The error function E in (48) is completely determined by
the prefiltering and reconstruction kernels involved in the approximation scheme. In the
case where the scheme is actually an interpolation scheme, it follows that

E(ω) =

∣∣∣∣∣∣
∑
k∈Z∗

ϕ̂(ω + 2πk)

∣∣∣∣∣∣
2

+
∑
k∈Z∗

|ϕ̂(ω + 2πk)|2

∣∣∣∣∣
∑
k∈Z

ϕ̂(ω + 2πk)

∣∣∣∣∣
2 . (49)

If the original function f is bandlimited, or otherwise sufficiently smooth (which means
that its intrinsic scale is large with respect to the sampling step T ), the prediction (48) is
exact, that is to say, ε(T ) = η(T ). In all other cases, η2(T ) represents the average of ε2(T )
over all possible sets of samples f(kT + τ), with τ ∈ [0, T ]. Note that if the kernel ϕ itself
is forced to possess the interpolation property ϕ(k) = δk, with δk the Kronecker symbol,
we have from the discrete Fourier transform pair ϕ(k) = δk ⇔ ∑

k∈Z
ϕ̂(ω + 2πk) = 1 that

the denominator of (49) equals one, so that the error function reduces to the previously
mentioned function (27) proposed by Park & Schowengerdt [245,246].

It will be clear from (48) that the rate at which the approximation error goes to zero
as T → 0 is determined by the degree of flatness of the error function (49) near the
origin. This latter quantity follows from the Maclaurin series expansion of the function.
If all derivatives up to order 2L at the origin are zero, this expansion can be written as
E(ω) = C2

ϕ ω
2L + O(ω2L+2), where C2

ϕ = E(2L)(0)/(2L)!, and where use has been made
of the fact that all odd terms of the expansion are zero because of the symmetry of the
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function. Substitution into (48) then shows that the last condition in the Strang-Fix theory
can be reformulated more quantitatively as follows: for sufficiently smooth functions f ,
that is to say functions for which ‖f (L)‖L2 is finite, the L2-norm of the difference between
f and the approximation fT obtained from (22) is given by [20,313,314,325]

‖f − fT ‖L2 = Cϕ · TL · ‖f (L)‖L2 as T → 0. (50)

In view of the practical need in many applications to optimize the cost-performance
trade-off of interpolation, this raises the questions of which of the kernels of given ap-
proximation order L have the smallest support, and which of the latter kernels have
the smallest asymptotic constant Cϕ. These questions were recently answered by Blu et
al. [18]. Concerning the first, they showed that these kernels are piecewise polynomials of
degree L− 1 and that their support is of size L. Moreover, the full class of these so-called
maximal order, minimum support (MOMS) kernels is given by a linear combination of an
(L− 1)th-degree B-spline and its derivatives:39

ϕ(x) =
L−1∑
n=0

λn
dn

dxn
βL−1(x), (51)

where λ0 = 1, and the remaining λn are free parameters that can be tuned so as to let the
kernel satisfy additional criteria. For example, if the kernel is supposed to have maximum
smoothness, it turns out that all of the latter λn are necessarily zero, so that we are left
with the (L−1)th-degree B-spline itself. Alternatively, if the kernel is supposed to possess
the interpolation property, it follows that the λn are such that the kernel boils down to the
(L − 1)th-degree Lagrange central interpolation kernel. A more interesting design goal,
however, is to minimize the asymptotic constant Cϕ, the general form of which for MOMS
kernels is given by [18]

Cϕ =

√√√√ ∑
n∈Z∗

∣∣∣∣ΛL(i2πn)
(i2πn)L

∣∣∣∣
2

, (52)

where ΛL(x) =
∑L−1

n=0 λnx
n is a polynomial of degree L−1. It was shown by Blu et al. [18]

that the ΛL that minimizes (52) for any order L can be obtained from the induction
relation

Λn+1(x) = Λn(x) +
x2

4(4L2 − 1)
Λn−1(x), (53)

which is initialized by Λ1(x) = Λ2(x) = 1. The resulting kernels were coined optimized,
maximal order, minimum support kernels (or O-MOMS for short).

From inspection of (53) it is clear that regardless of the value of L, the corresponding
polynomial ΛL will always consist of even terms only. Hence, if L is even, the degree of ΛL

will be L− 2, and since an (L− 1)th-degree B-spline is precisely L− 2 times continuously
differentiable, it follows from (51) that the corresponding kernel is continuous, but that
its first derivative is discontinuous. If, on the other hand, L is odd, the degree of the
polynomial ΛL will be L− 1, so that the corresponding kernel itself will be discontinuous.
In order to have at least a continuous derivative, as may be required for some applications,
Blu et al. [18] also carried out constrained minimizations of (52). The resulting kernels
were termed suboptimal MOMS (or SO-MOMS for short).

39Blu et al. [18] point out that this fact had been published earlier by Ron [263] in a more mathematically
abstract and general context: the theory of exponential B-splines.
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IV.L Development of Alternative Interpolation Methods

Although—as announced in the introduction—the main concern in this section is the
transition from classical polynomial interpolation approaches to modern convolution-based
approaches and the many variants of the latter that have been proposed in the signal and
image processing literature, it may be good to extend the perspectives and briefly discuss
several alternative methods that have been developed since the 1980s. The goal here is
not to be exhaustive, but to give an impression of the more specific interpolation problems
and their solutions as studied in mentioned fields of research over the past two decades.
Pointers to relevant literature are provided for readers interested in more details.

Deslauriers and Dubuc [76,84], for example, studied the problem of extending known
function values f(k) at the integers to all integral multiples of 1/b, where the base b is also
integer. In principle, any type of interpolation can be used to compute the f(k+r/b), r =
0, 1, . . . , b − 1, and the process can be iterated to find the value f(x) for any rational
number x whose denominator is an integral power of b. As pointed out by them, the
main properties of this so-called b-adic interpolation process are determined by what they
called the “fundamental function”, i.e. the kernel, ϕ, which reveals itself when feeding the
process with a discrete impulse sequence. They showed that when using Waring-Lagrange
interpolation40 of any odd degree 2n − 1, the corresponding kernel has a support limited
to [−2n+1, 2n− 1] and is capable of reproducing polynomials of maximum degree 2n− 1.
Ultimately, it satisfies the b-scale relation

ϕ
( x

bm

)
=

∑
k∈Z

ck ϕ(x− k), (54)

where ck = ϕ(k/bm). Taking b = 2, we have a dyadic interpolation process, which has
strong links with the multiresolution theory of wavelets. Indeed, for any n, the Deslauriers-
Dubuc kernel of order 2n is the autocorrelation of the Daubechies n scaling function
[62, 210]. More details and further references on interpolating wavelets are given by e.g.
Mallat [210]. See Dai et al. [59] for a recent study on dyadic interpolation in the context
of image processing.

Another approach that has received quite some attention since the 1980s is to consider
the interpolation problem in the Fourier domain. It is well known [28] that multiplication
by a phase component in the frequency domain, corresponds to a shift in the signal or
image domain. Obvious applications of this property are translation and zooming of image
data [47, 82, 87, 148, 174]. Interpolation based on the Fourier shift theorem is equivalent
to another Fourier-based method, known as zero-filled or zero-padded interpolation [103,
141,254,294,295]. In the spatial domain, both techniques amount to assuming periodicity
of the underlying signal or image and convolving the samples with the “periodized sinc”,
or Dirichlet’s kernel [37, 44, 80, 272, 356, 357]. Because of the assumed periodicity, the
infinite convolution sum can be rewritten in finite form. Fourier-based interpolation is
especially useful in situations where the data is acquired in Fourier space, such as in
magnetic resonance imaging (MRI), but by use of the fast Fourier transform (FFT) may in
principle be applied to any type of data. Variants of this approach based on the fast Hartley
transform (FHT) [2,146,199] and discrete cosine transform (DCT) [3,4,343] have also been
proposed. More details can be found in mentioned papers and the references therein.

An approach that has hitherto received relatively little attention in the signal and image
processing literature is to consider sampled data as realizations of a random process at
given spatial locations, and to make inferences on the unobserved values of the process

40Subdivision algorithms for Hermite interpolation were later studied by Merrien and Dubuc [85,222].
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by means of a statistically optimal predictor. Here, “optimal” refers to minimizing the
mean-squared prediction error, which requires a model of the covariance between the data
points. This approach to interpolation is generally known as kriging—a term coined by
the statistician Matheron [215] in honor of D. G. Krige [175], a South-African mining
engineer who developed empirical methods for determining true ore-grade distributions
from distributions based on sampled ore grades [55, 56]. Kriging has been studied in the
context of geostatistics [50,56,303], cartography [181], and meteorology [106], and is closely
related to interpolation by thin-plate splines or radial basis functions [83,229]. In medical
imaging, the technique seems to have been applied first by Stytz & Parrot [248,309]. More
recent studies related to kriging in signal and image processing include those of Kerwin &
Prince [165] and Leung et al. [189].

A special type of interpolation problem arises when dealing with binary data, such as
e.g. segmented images. It is not difficult to see that in that case, the use of any of the
aforementioned convolution-based interpolation methods followed by requantization prac-
tically boils down to nearest-neighbor interpolation. In order to cope with this problem,
it is necessary to consider the shape of the objects—that is to say their contours, rather
than their “grey-level” distributions. For the interpolation of slices in a three-dimensional
(3D) data set, for example, this may be accomplished by extracting the contours of in-
terest and to apply elastic matching to estimate intermediate contours [48, 198]. An al-
ternative is to apply any of the described convolution-based interpolation methods to the
distance transform of the binary data. This latter approach to shape-based interpolation
was originally proposed in the numerical analysis literature [190], and was first adapted to
medical image processing by Raya & Udupa [261]. Later authors have proposed variants
of their method by using alternative distance transforms [133], and morphological opera-
tors [45, 123, 158, 185]. Extensions to the interpolation of tree-like image structures [137]
and even ordinary grey-level images [51,119] have also been made.

In a way, kriging and shape-based interpolation may be considered the precursors
of more recent image interpolation techniques, which attempt to incorporate knowledge
about the image content. The idea with most of these techniques is to adapt or choose
between existing interpolation techniques, depending on the outcome of an initial image
analysis phase. Since edges are often the more prevalent image features, most researchers
have focussed on gradient-based schemes for the analysis phase, although region-based
approaches have also been reported. Examples of specific applications where the potential
advantages of adaptive interpolation approaches have been demonstrated are image res-
olution enhancement or zooming [38, 61, 107, 142, 154, 191, 259, 317], spatial and temporal
coding or compression of images and image sequences [320, 321], texture mapping [147],
and volume rendering [269]. Clearly, the results of such adaptive methods depend on the
performance of the employed analysis scheme as much as on that of the eventual (often
convolution-based) interpolators.

IV.M Evaluation Studies and Their Conclusions

To return to our main topic: apart from the study by Parker et al. [247] discussed in
Section IV.H, many more comparative evaluation studies of interpolation methods have
been published over the years. Most of these appeared in the medical-imaging related
literature. Perhaps this can be explained from the fact that especially in medical appli-
cations, the issues of accuracy, quality, and also speed can be of vital importance. The
loss of information and the introduction of distortions and artifacts caused by any ma-
nipulation of image data should be minimized in order to minimize their influence on the
clinicians’ judgements [314].
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Schreiner et al. [283] studied the performance of nearest-neighbor, linear, and cubic
convolution interpolation in generating maximum intensity projections (MIPs) of 3D mag-
netic resonance angiography (MRA) data for the purpose of detection and quantification of
vascular anomalies. From the results of experiments involving both a computer-generated
vessel model and clinical MRA data they concluded that the choice for an interpola-
tion method can have a dramatic effect on the information contained in MIPs. However,
whereas the improvement of linear over nearest-neighbor interpolation was considerable,
the further improvement of cubic convolution interpolation was found to be negligible in
this application. Similar observations had been made earlier by Herman et al. [132] in the
context of image reconstruction from projections.

Ostuni et al. [244] analyzed the effects of linear and cubic spline interpolation, as
well as truncated and Hann-windowed sinc interpolation on the reslicing of functional
magnetic resonance imaging (fMRI) data. From the results of forward-backward geometric
transformation experiments on clinical fMRI data they concluded that the interpolation
errors caused by cubic spline interpolation are much smaller than those due to linear
and truncated-sinc interpolation. In fact, the errors produced by the latter two types
of interpolation were found to be similar in magnitude, even with a spatial support of
eight sample intervals for the truncated-sinc kernel compared to only two for the linear
interpolation kernel. The Hann-windowed sinc kernel with a spatial support extending
over six to eight sample intervals performed comparably to cubic spline interpolation in
their experiments, but it required much more computation time.

Using similar reorientation experiments, Haddad & Porenta [126] found that the choice
for an interpolation technique significantly affects the outcome of quantitative measure-
ments in myocardial perfusion imaging based on single photon emission computed tomog-
raphy (SPECT). They concluded that cubic convolution is superior to several alternative
methods, such as local averaging, linear interpolation, and what they called “hybrid”
interpolation, which combines in-plane 2D linear interpolation with through-plane cubic
Lagrange interpolation—an approach that had been shown earlier [177] to yield better re-
sults than linear interpolation only. Here we could also mention several studies in the field
of remote sensing [128, 167, 264], which also showed the superiority of cubic convolution
over linear and nearest-neighbor interpolation.

Grevera & Udupa [120] compared interpolation methods for the very specific task
of doubling the number of slices of 3D medical data sets. Their study included not
only convolution-based methods, but also several of the shape-based interpolation meth-
ods [117, 119] mentioned earlier. The experiments consisted in subsampling a number
of magnetic resonance (MR) and computed tomography (CT) data sets, followed by in-
terpolation to restore the original resolutions. Based on the results they concluded that
there is evidence that shape-based interpolation is the most accurate method for this task.
Note, however, that concerning the convolution-based methods, the study was limited
to nearest-neighbor, linear, and two forms of cubic convolution interpolation (although
they referred to the latter as cubic spline interpolation). In a later, more task-specific
study [121], which led to the same conclusion, shape-based interpolation was compared
only to linear interpolation.

A number of independent, large-scale evaluations of convolution-based interpolation
methods for the purpose of geometrical transformation of medical image data have recently
been carried out. Lehmann et al. [186], for example, compared a total of 31 kernels,
including the nearest-neighbor, linear, and several quadratic [79] and cubic convolution
kernels [60,166,225,246], as well as the cubic B-spline interpolator, various Lagrange- [273]
and Gaussian-based [8] interpolators, and truncated and Blackman-Harris [129] windowed-
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sinc kernels of different spatial support. From the results of computational-cost analyses
and forward-backward transformation experiments carried out on CCD-photographs, MRI
sections, and X-ray images, it followed that overall, cubic B-spline interpolation provides
the best cost-performance trade-off.

An even more elaborate study was presented by the present author [218], who carried
out a cost-performance analysis of a total of 126 kernels with spatial support ranging from
two to ten grid intervals. Apart from most of the kernels studied by Lehmann et al., this
study also included higher-degree generalizations of the cubic convolution kernel [219],
cardinal spline and Lagrange central interpolation kernels up to ninth degree, as well as
windowed-sinc kernels using over a dozen different window functions well known from the
literature on harmonic analysis of signals [129]. The experiments involved the rotation
and subpixel translation of medical data sets from many different modalities, including
CT, three different types of MRI, PET, SPECT, as well as 3D rotational and X-ray
angiography. The results revealed that of all mentioned types of interpolation, spline
interpolation generally performs statistically significantly better.

Finally we mention the studies by Thévenaz et al. [313,314], who carried out theoretical
as well as experimental comparisons of many different convolution-based interpolation
schemes. Concerning the former, they discussed the approximation-theoretical aspects of
such schemes and pointed at the importance of having a high approximation order, rather
than a high regularity, and a small value for the asymptotic constant, as discussed in the
previous subsection. Indeed, the results of their experiments, which included all of the
aforementioned piecewise polynomial kernels, as well as the quartic convolution kernel by
German [111], several types of windowed-sinc kernels, and the O-MOMS [18], confirmed
the theoretical predictions and clearly showed the superiority of kernels with optimized
properties in these terms.

V Summary and Conclusions

The goal in this paper was to give an overview of the developments in interpolation the-
ory of all ages and to put the important techniques currently used in signal and image
processing into historical perspective. We pointed at relatively recent research into the
history of science, in particular of mathematical astronomy, which has revealed that rudi-
mentary solutions to the interpolation problem date back to early antiquity. We gave
examples of interpolation techniques originally conceived by ancient Babylonian as well
as early-medieval Chinese, Indian, and Arabic astronomers and mathematicians, and we
briefly discussed the links with the classical interpolation techniques developed in Western
countries from the 17th until the 19th century.

The available historical material has not yet given reason to suspect that the earliest-
known contributors to classical interpolation theory were influenced in any way by men-
tioned ancient and medieval Eastern works. Among these early contributors were Harriot
and Briggs, who in the first half of the 17th century developed higher-order interpolation
schemes for the purpose of subtabulation. A generalization of their rules for equidistant
data was given independently by Gregory and Newton. We saw, however, that it is Newton
who deserves the credit for having put classical interpolation theory on a firm foundation.
He invented the concept of divided differences, allowing for a general interpolation formula
applicable to data at arbitrary intervals, and gave several special formulae that follow from
it. In the course of the 18th and 19th century, these formulae were further studied by many
others, including Stirling, Gauss, Waring, Euler, Lagrange, Bessel, Laplace, and Everett,
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whose names are nowadays inextricably bound up with formulae that can easily be derived
from Newton’s regula generalis.

Whereas the developments until the end of 19th century had been impressive, the de-
velopments in the past century have been explosive. We briefly discussed early results in
approximation theory, which revealed the limitations of interpolation by algebraic polyno-
mials. We then discussed two major extensions of classical interpolation theory introduced
in the first half of the 20th century: firstly the concept of the cardinal function, mainly
due to E. T. Whittaker, but also studied before him by Borel and others, and eventually
leading to the sampling theorem for bandlimited functions as found in the works of J. M.
Whittaker, Kotel’nikov, Shannon, and several others, and secondly the concept of oscu-
latory interpolation, researched by many and eventually resulting in Schoenberg’s theory
of mathematical splines. We pointed at the important consequence of these extensions: a
formulation of the interpolation problem in terms of a convolution of a set of coefficients
with some fixed kernel.

The remainder of the paper was focussed on the further development of convolution-
based interpolation in signal and image processing. The earliest and probably most im-
portant techniques studied in this context were cubic convolution interpolation and spline
interpolation, and we have discussed in some detail the contributions of various researchers
in improving these techniques. Concerning cubic convolution, we highlighted the work of
Keys and also Park & Schowengerdt, who presented different techniques for deriving the
mathematically most optimal value for the free parameter involved in this scheme. Con-
cerning spline interpolation, we discussed the work of Unser and his coworkers, who in-
vented a fast recursive algorithm for carrying out the prefiltering required for this scheme,
thereby making cubic spline interpolation as computationally cheap as cubic convolution
interpolation. As a curiosity we remarked that not only spline interpolation, but cubic
convolution interpolation too can be traced back to osculatory interpolation techniques
known from the beginning of the 20th century—a fact that, to the author’s knowledge,
has not been pointed out before.

After a summary of the development of many alternative piecewise polynomial kernels,
we discussed some of the interesting results known in approximation theory for some time
now, but brought to the attention of signal and image processors only recently. These
are, in particular, the equivalence conditions due to Strang & Fix, which link the behavior
of the approximation error as a function of the sampling step to specific spatial and
Fourier domain properties of the employed convolution kernel. We discussed the extensions
by Blu & Unser, who showed how to obtain more precise, quantitative estimates of the
approximation error, based on an error function that is completely determined by the
kernel. We also pointed at their recent efforts towards minimization of the interpolation
error, which has resulted in the development of kernels with minimal support and optimal
approximation properties.

After a brief discussion of several alternative methods proposed over the past two
decades for specific interpolation problems, we finally summarized the results of quite a
number of evaluation studies carried out recently, primarily in medical imaging. All of
these have clearly shown the dramatic effect the wrong choice for an interpolation method
can have on the information content of the data. From this it can be concluded that the
issue of interpolation deserves more attention than it has received so far in some signal and
image processing applications. The results of these studies also strongly suggest that in
order to reduce the errors caused by convolution-based interpolation, it is more important
for a kernel to have good approximation theoretical properties, in terms of approximation
order and asymptotic behavior, than to have a high degree of regularity. In applications
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where the latter is an important issue, it follows that the most suitable kernels are B-
splines, since they combine a maximal order of approximation with maximal regularity for
a given spatial support.
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[180] J. L. Lagrange, “Leçons Élémentaires sur les Mathématiques Données a l’École Normale”, in Œuvres
de Lagrange, J.-A. Serret (ed.), vol. 7, Gauthier-Villars, Paris, 1877, pp. 183–287. Lecture notes first
published in 1795.

[181] N. S.-N. Lam, “Spatial Interpolation Methods: A Review”, The American Cartographer, vol. 10,
no. 2, 1983, pp. 129–149.

[182] P. Lancaster & K. Salkauskas, Curve and Surface Fitting: An Introduction, Academic Press, London,
1986.

[183] C. Lee, M. Eden, M. Unser, “High-quality Image Resizing using Oblique Projection Operators”,
IEEE Transactions on Image Processing, vol. 7, no. 5, 1998, pp. 679–692.

[184] C.-H. Lee, “Restoring Spline Interpolation of CT Images”, IEEE Transactions on Medical Imaging,
vol. 2, no. 3, 1983, pp. 142–149.

[185] T.-Y. Lee & W.-H. Wang, “Morphology-Based Three-Dimensional Interpolation”, IEEE Transac-
tions on Medical Imaging, vol. 19, no. 7, 2000, pp. 711–721.



References PP-39

[186] T. M. Lehmann, C. Gönner, K. Spitzer, “Survey: Interpolation Methods in Medical Image Process-
ing”, IEEE Transactions on Medical Imaging, vol. 18, no. 11, 1999, pp. 1049–1075.

[187] J. Lei, “Lp-Approximation by Certain Projection Operators”, Journal of Mathematical Analysis
and Applications, vol. 185, no. 1, 1994, pp. 1–14.

[188] G. W. Leibniz, “Historia et Origo Calculi Differentialis”, in Mathematische Schriften, C. I. Gerhardt
(ed.), vol. 5, Georg Olms Verlag, Hildesheim, 1971, pp. 392–410. Manuscript written around 1714.

[189] W.-Y. V. Leung, P. J. Bones, R. G. Lane, “Statistical Interpolation of Sampled Images”, Optical
Engineering, vol. 40, no. 4, 2001, pp. 547–553.

[190] D. Levin, “Multidimensional Reconstruction by Set-Valued Approximation”, IMA Journal of Nu-
merical Analysis, vol. 6, no. 2, 1986, pp. 173–184.

[191] X. Li & M. T. Orchard, “New Edge-Directed Interpolation”, IEEE Transactions on Image Process-
ing, vol. 10, no. 10, 2001, pp. 1521–1527.

[192] X.-Z. Liang & L.-Q. Li, “On Bivariate Osculatory Interpolation”, Journal of Computational and
Applied Mathematics, vol. 38, 1991, pp. 271–282.

[193] G. J. Lidstone, “Notes on Everett’s Interpolation Formula”, Proceedings of the Edinburgh Mathe-
matical Society, vol. 40, 1922, pp. 21–26.

[194] G. J. Lidstone, “Notes on the Extension of Aitken’s Theorem (for Polynomial Interpolation) to the
Everett Types”, Proceedings of the Edinburgh Mathematical Society: Series 2, vol. 2, 1930, pp. 16–19.

[195] W. A. Light, “Recent Developments in the Strang-Fix Theory for Approximation Orders”, in Curves
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[220] Ch. Méray, “Observations sur la Légitimité de l’Interpolation”, Annales Scientifiques de l’École
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[282] R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 2nd ed., Academic
Press, San Diego, CA, 1997.

[283] S. Schreiner, C. B. Paschal, R. L. Galloway, “Comparison of Projection Algorithms used for the
Construction of Maximum Intensity Projection Images”, Journal of Computer Assisted Tomography,
vol. 20, no. 1, 1996, pp. 56–67.

[284] L. L. Schumaker, Spline Functions: Basic Theory, John Wiley & Sons, New York, NY, 1981.

[285] H. R. Schwarz, Numerical Analysis. A Comprehensive Introduction, John Wiley & Sons, New York,
NY, 1989.

[286] H. L. Seal, “Graduation by Piecewise Cubic Polynomials: A Historical Review”, Blätter der
Deutschen Gesellschaft für Versicherungsmathematik, vol. 15, 1981, pp. 89–114.

[287] K. S. Shanmugam, Digital and Analog Communication Systems, John Wiley & Sons, New York,
NY, 1979.



References PP-43

[288] C. E. Shannon, “A Mathematical Theory of Communication”, The Bell System Technical Journal,
vol. 27, 1948, pp. 379–423 & 623–656. See Part III, “Mathematical Preliminaries”, pp. 623–636.

[289] C. E. Shannon, “Communication in the Presence of Noise”, Proceedings of the Institution of Radio
Engineers, vol. 37, no. 1, 1949, pp. 10–21.

[290] W. F. Sheppard, “Central-Difference Formulæ”, Proceedings of the London Mathematical Society,
vol. 31, 1899, pp. 449–488.

[291] E. S. W. Shiu, “A Survey of Graduation Theory”, in Actuarial Mathematics, H. H. Panjer (ed.),
vol. 35 of Proceedings of Symposia in Applied Mathematics, American Mathematical Society, Provi-
dence, RI, 1986.

[292] K. W. Simon, “Digital Image Reconstruction and Resampling for Geometric Manipulation”, in
Symposium on Machine Processing of Remotely Sensed Data, C. D. McGillem & D. B. Morrison
(eds.), IEEE Press, New York, NY, 1975, pp. 3A–1–3A–11.

[293] J. Simpson & E. Weiner (eds.), The Oxford English Dictionary, 2nd ed., Oxford University Press,
Oxford, 1989.

[294] T. Smit, M. R. Smith, S. T. Nichols, “Efficient Sinc Function Interpolation Technique for Center
Padded Data”, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 9, 1990,
pp. 1512–1517.

[295] M. R. Smith & S. T. Nichols, “Efficient Algorithms for Generating Interpolated (Zoomed) MR
Images”, Magnetic Resonance in Medicine, vol. 7, no. 2, 1988, pp. 156–171.

[296] I. Someya, Waveform Transmission, Shyukyoo, Tokyo, 1949. In Japanese.

[297] M. Sonka, V. Hlavac, R. Boyle, Image Processing, Analysis, and Machine Vision, 2nd ed., PWS
Publishing, Pacific Grove, CA, 1999.

[298] H. Späth, One Dimensional Spline Interpolation Algorithms, A. K. Peters, Wellesley, MA, 1995.
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