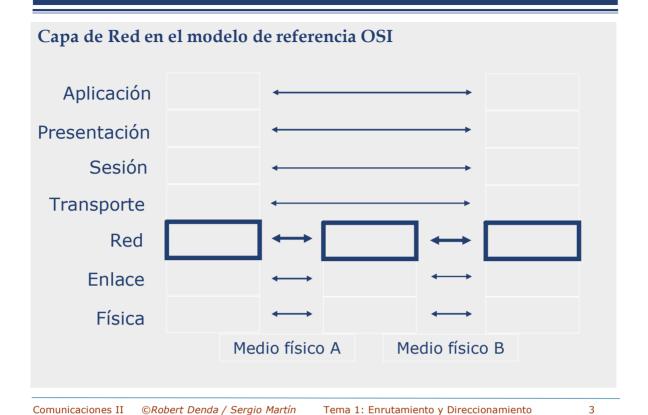
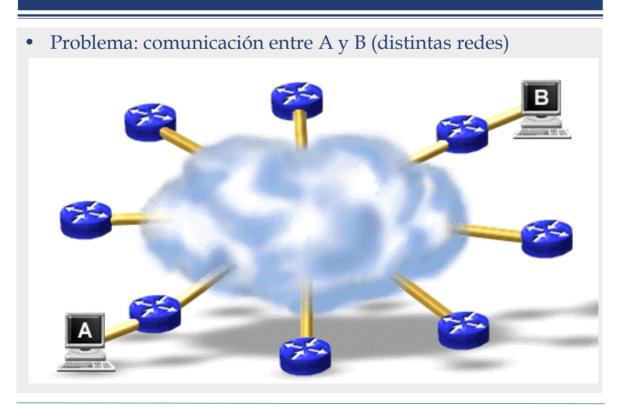
Comunicaciones II

Tema 1:

Capa 3 - Enrutamiento y Direccionamiento


Comunicaciones II

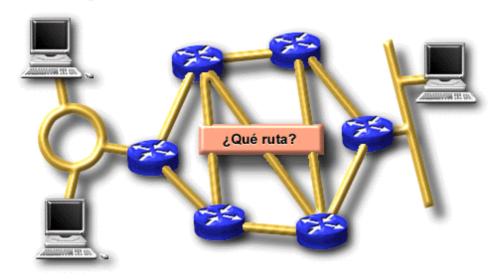
©Robert Denda / Sergio Martín


Índice: Tema 1 - Enrutamiento y Direccionamiento

- 0. Conceptos Previos
- 1. La Capa de Red
- 2. Enrutamiento
 - 2.1. Circuitos virtuales versus datagramas
 - 2.2. Unicast, Multicast, Broadcast y Anycast
 - 2.3. Enrutamiento Unicast
 - 2.4. Enrutamiento Multicast
- 3. Direccionamiento
 - 3.1. Protocolo IP
 - 3.2. Direcciones IP
 - 3.3. Clases de direcciones IP
 - 3.4. Direcciones IP reservadas
 - 3.5. IP versión 6
- 4. Subredes
 - 4.1. Conceptos básicos
 - 4.2. Creación de subredes

1. La Capa de Red

1. La Capa de Red



Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

1. La Capa de Red

Capa de red: Determinación de ruta

La Capa 3 opera para encontrar la mejor ruta a través de la internetwork

© Cisco Systems, Inc. 1999

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

1. La Capa de Red

Funciones de la capa de red:

- Enrutamiento de paquetes
- Direccionamiento lógico
- Multiplexión
- Segmentación de paquetes (fragmentación)
- Adicionalmente, en capas de red orientadas a conexión:
 - Establecimiento y terminación de la conexión
 - Detección y corrección de errores (extremo-extremo)
 - Garantizar el orden de los paquetes
 - Control de flujo (extremo-extremo)

Subredes heterogéneas se pueden interconectar por medio de la capa de red ("Internetworking").

Índice: Tema 1 - Enrutamiento y Direccionamiento

- 0. Conceptos Previos
- 1. La Capa de Red
- 2. Enrutamiento
 - 2.1. Circuitos virtuales versus datagramas
 - 2.2. Unicast, Multicast, Broadcast y Anycast
 - 2.3. Enrutamiento Unicast
 - 2.4. Enrutamiento Multicast
- 3. Direccionamiento
 - 3.1. Protocolo IP
 - 3.2. Direcciones IP
 - 3.3. Clases de direcciones IP
 - 3.4. Direcciones IP reservadas
 - 3.5. IP versión 6
- 4. Subredes
 - 4.1. Conceptos básicos
 - 4.2. Creación de subredes

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

2. Enrutamiento –

2.1. Circuitos virtuales versus datagramas

Circuito virtual

El camino a través de la red se determina en el momento de establecimiento de la conexión:

- Para cada nueva conexión virtual, la decisión sobre la ruta se toma solo una vez al inicio.
- Todo el tráfico enviado por esta conexión virtual sigue esta misma

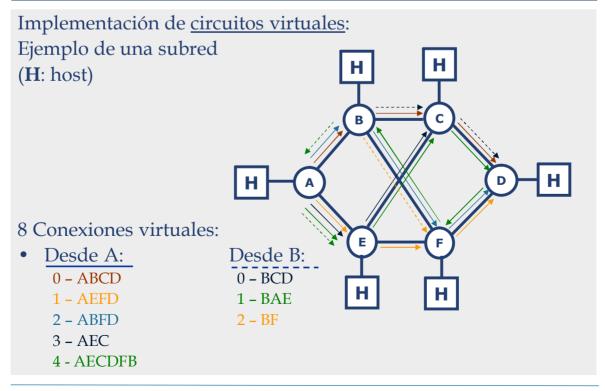
Datagrama

Cada paquete contiene la dirección completa de destino.

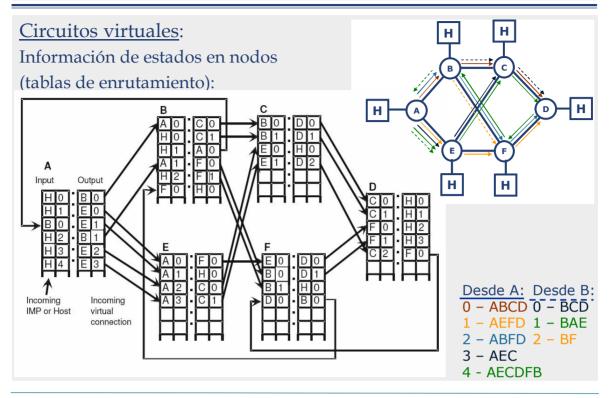
- En cuanto un paquete se recibe en un nodo intermedio, la información de la dirección de destino se extrae del paquete y
- Se determina el enlace de salida hacia el siguiente nodo intermedio

2.1. Circuitos virtuales versus datagramas

Circuito virtual:


- Canal "perfecto" a través de la red
 - Control de errores (errores de bit, control de paquetes perdidos y duplicados)
 - Control de flujo
 - Se mantiene el orden de los paquetes
- Fases
 - Establecimiento de la conexión
 - Transmisión de datos
 - Terminación de la conexión
- Ventajas
 - Mas eficiente:
 - menos información adicional se transmite durante la fase de transmisión de
 - Enrutamiento eficiente durante la fase de transmisión
 - Calidad alta en el flujo de paquetes recibido

Comunicaciones II © Robert Denda / Sergio Martín


Tema 1: Enrutamiento y Direccionamiento

2. Enrutamiento -

2.1. Circuitos virtuales versus datagramas

2.1. Circuitos virtuales versus datagramas

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

11

2. Enrutamiento -

2.1. Circuitos virtuales versus datagramas

Datagrama:

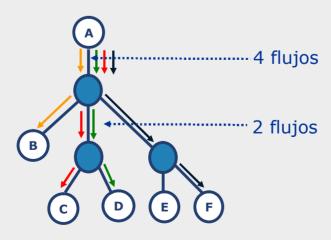
- Cada paquete (datagrama) es una unidad independiente:
 - Dirección de destino completa en cada paquete
 - Los paquetes pueden llegar desordenados
 - Sin control de error y flujo a nivel 3
- Ventajas:
 - Mas sencillo que los circuitos virtuales
 - Sin fase de establecimiento y terminación de conexión:
 - Mejor para conexiones de corta duración
 - Mas fiable en caso de fallo en nodos intermedios
 - Mejor para internetworking en subredes heterogéneas

Índice: Tema 1 - Enrutamiento y Direccionamiento

- 0. Conceptos Previos
- 1. La Capa de Red
- 2. Enrutamiento
 - 2.1. Circuitos virtuales versus datagramas
 - 2.2. Unicast, Multicast, Broadcast y Anycast
 - 2.3. Enrutamiento Unicast
 - 2.4. Enrutamiento Multicast
- 3. Direccionamiento
 - 3.1. Protocolo IP
 - 3.2. Direcciones IP
 - 3.3. Clases de direcciones IP
 - 3.4. Direcciones IP reservadas
 - 3.5. IP versión 6
- 4. Subredes
 - 4.1. Conceptos básicos
 - 4.2. Creación de subredes

Comunicaciones II © Robert Denda / Sergio Martín

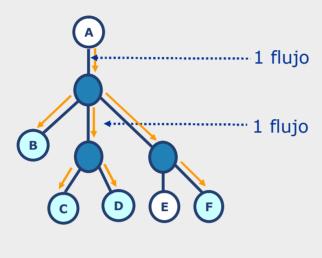
Tema 1: Enrutamiento y Direccionamiento


13

2. Enrutamiento –

2.2. Unicast, Multicast, Broadcast y Anycast

Unicast:


Ejemplo: A transmite a B, C, D y F 4 flujos individuales

2.2. Unicast, Multicast, Broadcast y Anycast

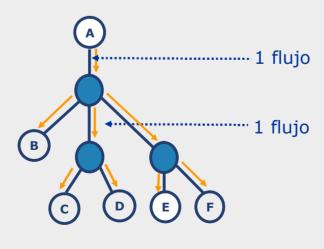
Multicast:

Ejemplo: A transmite al grupo (B, C, D, F) un único flujo

Comunicaciones II

©Robert Denda / Sergio Martín

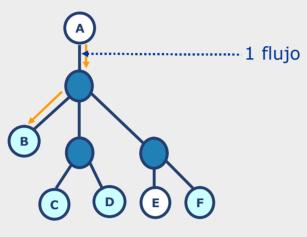
Tema 1: Enrutamiento y Direccionamiento


15

2. Enrutamiento -

2.2. Unicast, Multicast, Broadcast y Anycast

Broadcast:


Ejemplo: A transmite vía broadcast -> recepción por todos

2.2. Unicast, Multicast, Broadcast y Anycast

Anycast:

Ejemplo: A transmite al grupo (B, C, D, F) vía unicast -> recepción por un solo miembro del grupo

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

17

Índice: Tema 1 - Enrutamiento y Direccionamiento

- 0. Conceptos Previos
- 1. La Capa de Red
- 2. Enrutamiento
 - 2.1. Circuitos virtuales versus datagramas
 - 2.2. Unicast, Multicast, Broadcast y Anycast
 - 2.3. Enrutamiento Unicast
 - 2.4. Enrutamiento Multicast
- 3. Direccionamiento
 - 3.1. Protocolo IP
 - 3.2. Direcciones IP
 - 3.3. Clases de direcciones IP
 - 3.4. Direcciones IP reservadas
 - 3.5. IP versión 6
- 4. Subredes
 - 4.1. Conceptos básicos
 - 4.2. Creación de subredes

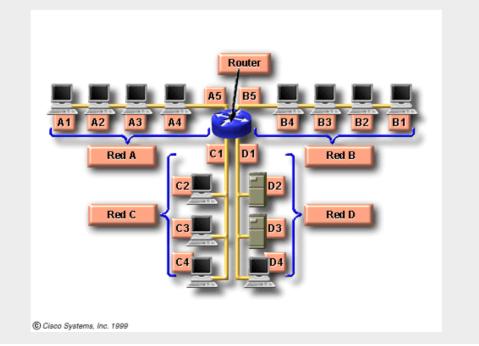
2.3. Enrutamiento Unicast

Objetivo del enrutamiento:

Enrutar los paquetes a través de la red desde el sistema origen al sistema destino

Características de diseño de un algoritmo de enrutamiento

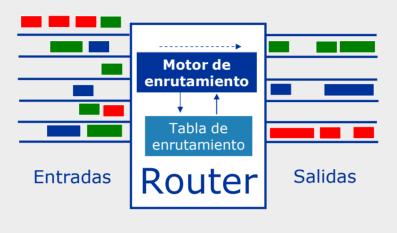
- Correcto
- Sencillo
- Robusto (caso de fallo de enlaces o nodos)
- Ecuánime (fair)
- Óptimo (la mejor ruta, sobrecarga (overhead) mínima)


Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

2. Enrutamiento –

2.3. Enrutamiento Unicast


Interconexiones de redes a través de un Router:

2.3. Enrutamiento Unicast

Router:

- Dispositivo de red que interconecta redes e implementa el algoritmo de enrutamiento
- El algoritmo de enrutamiento decide a qué enlace de salida de cada router se transfiere cada paquete entrante

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

21

2. Enrutamiento -

2.3. Enrutamiento Unicast

Clasificación de algoritmos de enrutamiento:

1. Enrutamiento estático

- No considera las condiciones actuales de la red
- Las rutas se determinan antes de la puesta en servicio de la red y no se cambian durante la operación

2. Enrutamiento adaptativo

- Decisiones se basan en la topología actual (y potencialmente la carga) de la red
- Tres subgrupos:
 - Centralizado
 - Aislado
 - Distribuido (se usa en el Internet protocolos RIP y OSPF)

2.3. Enrutamiento Unicast

Enrutamiento estático

Topología de ejemplo

	1			י
E,		= 0		н
	\		K i	
.	•			

Des.	1 st choice			2 nd choice			3 rd choice		
Α	Α	0.63		I	0.21		Н	0.16	
В	Α	0.46		Н	0.31			0.23	
С	Α	0.34		- 1	0.33		Н	0.33	
D	Н	0.50		Α	0.25			0.25	
E	Α	0.40		I	0.40		Н	0.20	
F	Α	0.34		Н	0.33		I	0.33	
G	Н	0.46		Α	0.31		K	0.23	
Н	Н	0.63		K	0.21		Α	0.16	
1	- 1	0.65		Α	0.22		Н	0.13	
-									
K	K	0.67		Н	0.22		Α	0.11	
Ĺ	K	0.42		Н	0.42		Α	0.16	

Tabla de Enrutamiento (nodo J) (enrutamiento *multipath*, decisión basada en número aleatorio z $0 \le z \le 1$

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

23

2. Enrutamiento –

2.3. Enrutamiento Unicast

Enrutamiento estático:

- Características
 - Sencillo
 - Buenos resultados para topología y tráfico de red constantes
- **Inconvenientes:**
 - No apropiado para tráfico con grandes variaciones o cambios de topología
 - No apropiado para redes grandes por falta de escalabilidad
- No se usa en Internet, pero sigue siendo usado en redes SNA.
- Las tablas de enrutamiento se pueden calcular utilizando el algoritmo de Dijkstra.

2.3. Enrutamiento Unicast

Enrutamiento adaptativo centralizado:

- Existe un Centro de Control de Enrutamiento (RCC)
- Cada nodo periódicamente envía información de estado al RCC:
 - Lista de nodos vecinos directos
 - Longitudes de colas
 - Utilización de sus enlaces
- El RCC
 - Recibe esta información
 - Calcula la ruta óptima para cada pareja de nodos
 - Calcula las tablas de enrutamiento de cada nodo
 - Distribuye las tablas a los nodos
- **Problemas:**
 - RCC y enlaces hacia el RCC son cuello de botella
 - Cálculo inexacto: basado en información de los nodos generada en momentos diferentes

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

25

2. Enrutamiento –

2.3. Enrutamiento Unicast

Enrutamiento adaptativo aislado:

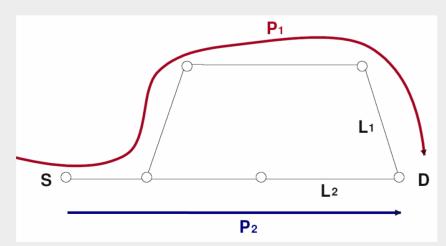
- Sin intercambio de información de enrutamiento entre los nodos
- Decisiones están basadas solo en información local
- Ejemplos de algoritmos
 - Backward Learning (aprendizaje hacia atrás)
 - Flooding (inundación)

2.3. Enrutamiento Unicast

Backward Learning:

- Se usa también en la capa 2 en bridges (puentes)
- Un nodo auto-aprende las rutas a través de los paquetes entrantes
- Cada paquete contiene la siguiente información en la cabecera:
 - S: nodo de origen
 - H: contador de saltos desde origen (hop count)
- La tabla de enrutamiento consiste en una tabla:
 - (nodo de destino, enlace de salida, H_{min})
- En cuanto se recibe un paquete por el enlace L:
 - Se sabe, por la cabecera del paquete, que hay una ruta hacia el nodo S utilizando el enlace L y con una distancia de H saltos.
 - En caso que la nueva ruta tenga un valor H menor que el valor H_{min} de la tabla de enrutamiento, se actualiza la tabla

Comunicaciones II © Robert Denda / Sergio Martín


Tema 1: Enrutamiento y Direccionamiento

27

2. Enrutamiento -

2.3. Enrutamiento Unicast

Backward Learning: ejemplo

- P1(..., S,4,...) -> añadir en tabla de enrutamiento (S, L1, 4)
- P2(..., S,3,...) -> actualizar tabla de enrutamiento: (S, L2, 3)

2.3. Enrutamiento Unicast

Backward Learning:

Problema principal:

Algoritmo no se adapta a degradaciones en las rutas (p.ej. caídas de enlaces o nodos)

Solución:

Borrar periódicamente las tablas de enrutamiento

Pero: ¿ con qué frecuencia?

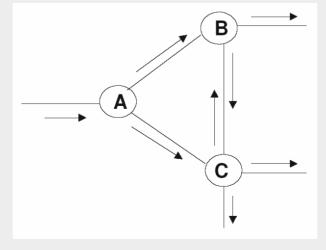
- Frecuencia demasiado alta: la red está la mayor parte del tiempo en la fase de aprendizaje
- Frecuencia demasiado baja: reacción lenta a degradaciones

Otro problema:

No se pueden enviar paquetes a nodos destino desconocidos (aquellos que desde la última actualización nunca han sido nodos origen enviando paquetes a través de este nodo intermedio).

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento


29

2. Enrutamiento -

2.3. Enrutamiento Unicast

Flooding:

Un paquete entrante se transmite a todos los enlaces de salida excepto al enlace desde donde ha sido recibido

2.3. Enrutamiento Unicast

Flooding:

Problema principal:

Creación de un número inmanejable de copias de paquetes

Solución:

- Contador de saltos H en la cabecera de los paquetes
- Inicializar H con el número de saltos de la ruta mas larga de la red
- Disminuir H en cada salto
- Si se recibe un paquete con H = 0, se descarta el paquete

Características del Flooding:

- Muy robusto
- Muy sencillo
- Carga muy alta en la red
- Solo empleado en la primera fase de otros algoritmos de enrutamiento para el conseguir el estado inicial

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

31

2. Enrutamiento -

2.3. Enrutamiento Unicast

Enrutamiento adaptativo distribuido:

Los nodos intercambian información de enrutamiento con sus vecinos

Existen dos subgrupos:

- 1) Algoritmos de vectores de distancias
- 2) Algoritmos de estado de enlaces

2.3. Enrutamiento Unicast

Algoritmos de vectores de distancias

- Cada nodo conoce la distancia a cada uno de sus vecinos:
 - Número de saltos (= 1)
 - Retraso, tiempo de retorno (round-trip time)
 - Longitud de la cola, etc.
- Cada nodo periódicamente envía a todos sus vecinos una lista con sus estimaciones de distancia respecto a todos los nodos que conoce
 - Ejemplo:
 - El nodo X conoce la distancia a su vecino Y =: e
 - Un nodo X recibe la lista E de su nodo vecino Y que incluye la indicación de distancia entre Y y otro nodo Z =: E(Z)
 - Con esto, X sabe que la distancia de X a Z a través de Y es E(Z) + e
 - La tabla con estas distancias se llama **vector de distancias**

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

33

2. Enrutamiento –

2.3. Enrutamiento Unicast

Enrutamiento con vectores de distancias

Topología de ejemplo

	Α	I	Н	K	new DV
Α	0	24	20	21	8 A
В	12	36	31	28	20 A
С	25	18	19	36	28 I
D	40	27	8	24	20 H
Е	14	7	30	22	17 I
F	23	20	19	40	30 I
G	18	31	6	31	18 H
Н	17	20	0	19	12 H
ı	21	0	14	22	10 I
J	9	11	7	10	0 -
Κ	24	22	22	0	6 K
L	29	33	9	9	15 K
	JA	JI	JH	JK	
	delay=8	delay=10	delay=12	delay=6	

Tabla de Enrutamiento (nodo J)

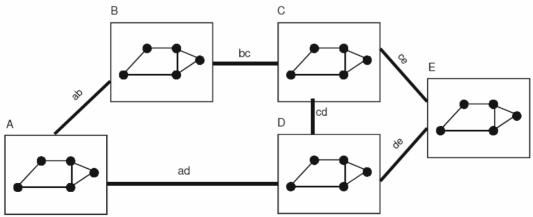
2.3. Enrutamiento Unicast

Algoritmos de estado de enlaces

- En todos los momentos, cada nodo conoce la topología entera de la
- Los nodos calculan las rutas óptimas localmente.
- Los nodos intercambian con sus vecinos mensajes de actualización de topología.
- Cada nodo mantiene una base de datos de la topología de la red (base de datos de estado de enlaces).
- Las rutas óptimas se pueden calcular con el algoritmo de Dijkstra.

Comunicaciones II © Robert Denda / Sergio Martín

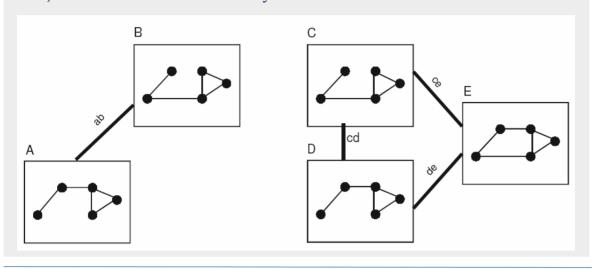
Tema 1: Enrutamiento y Direccionamiento


2. Enrutamiento -

2.3. Enrutamiento Unicast

Algoritmos de estado de enlaces

Ejemplo:


1) Situación estable

2.3. Enrutamiento Unicast

Algoritmos de estado de enlaces Ejemplo:

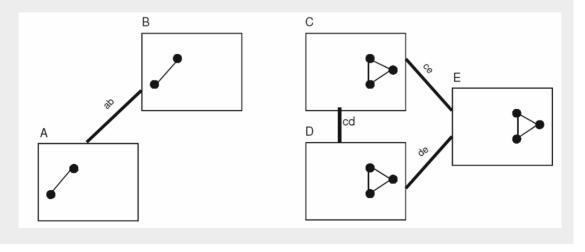
2) Caída de los enlaces bc y ad

Comunicaciones II

©Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

37


2. Enrutamiento -

2.3. Enrutamiento Unicast

Algoritmos de estado de enlaces

Ejemplo:

3) Después del intercambio de mensajes

Comunicaciones II © Robert Denda / Sergio Martín

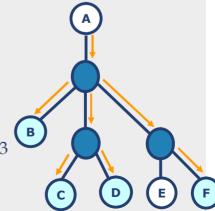
Tema 1: Enrutamiento y Direccionamiento

38

Índice: Tema 1 - Enrutamiento y Direccionamiento

- 0. Conceptos Previos
- 1. La Capa de Red
- 2. Enrutamiento
 - 2.1. Circuitos virtuales versus datagramas
 - 2.2. Unicast, Multicast, Broadcast y Anycast
 - 2.3. Enrutamiento Unicast
 - 2.4. Enrutamiento Multicast
- 3. Direccionamiento
 - 3.1. Protocolo IP
 - 3.2. Direcciones IP
 - 3.3. Clases de direcciones IP
 - 3.4. Direcciones IP reservadas
 - 3.5. IP versión 6
- 4. Subredes
 - 4.1. Conceptos básicos
 - 4.2. Creación de subredes

Comunicaciones II © Robert Denda / Sergio Martín


Tema 1: Enrutamiento y Direccionamiento

2. Enrutamiento -

2.4. Enrutamiento Multicast

Multicast:

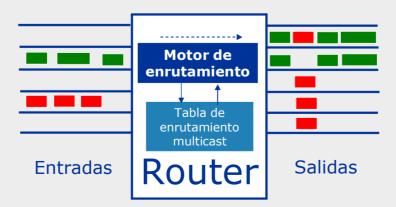
- Transmisión de un flujo de datos desde una fuente a varios destinos (comunicación 1:n).
- Particularmente importante para flujos de datos de multimedia:
 - Conferencias de vídeo
 - Tele-cooperación
 - Tele-educación
 - Radio / TV
- Multicast en redes WAN requiere:
 - Mecanismo de direccionamiento a nivel 3
 - Mas inteligencia en los routers:
 - Extensión de las tablas de enrutamiento
 - Nuevos algoritmos de enrutamiento

2.4. Enrutamiento Multicast

Enrutamiento Multicast:

- En Internet, el enrutamiento Multicast se realiza en la capa 3 (multicast IP).
- Algoritmos de enrutamiento multicast:
 - Extensiones de los algoritmos de enrutamiento unicast
 - Compatible con enrutamiento unicast
- Multicast en Internet es orientado al receptor:
 - Para una sesión multicast la fuente envía a un grupo multicast creado para este flujo de datos.
 - Todos los interesados en este flujo se tienen que unir al grupo.
 - Los routers multicast aseguran que el tráfico se envía a todos los miembros del grupo.
- Multicast en Internet es un servicio tipo datagrama:
 - Sin control de errores
 - Sin control de flujo
 - Sin control de orden de paquetes

Comunicaciones II © Robert Denda / Sergio Martín


Tema 1: Enrutamiento y Direccionamiento

2. Enrutamiento -

2.4. Enrutamiento Multicast

Funcionamiento de un router multicast:

Paquete para miembros del grupo 1 Paquete para miembros del grupo 2

2.4. Enrutamiento Multicast

Algoritmos de Enrutamiento Multicast: RPB

- Reverse Path Broadcasting (RPB):
 - Basado en *flooding*, pero con una mejora:
 - Utiliza información de la tabla de enrutamiento unicast:
 - Cada nodo conoce el camino hacia la fuente del flujo de datos: el camino reverso óptimo (reverse path)
 - En el algoritmo de flooding con RPB solo se transmiten paquetes que han llegado a través del camino reverso óptimo
 - Genera mucho menos paquetes que flooding.
- Otra mejora:
 - Todos los nodos comunican a cada uno de sus vecinos si el vecino está en el camino óptimo hacia la fuente.
- RFB es la base para el protocolo multicast DVMRP

Comunicaciones II

©Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

43

2. Enrutamiento -

2.4. Enrutamiento Multicast

Índice: Tema 1 - Enrutamiento y Direccionamiento

- 0. Conceptos Previos
- 1. La Capa de Red
- 2. Enrutamiento
 - 2.1. Circuitos virtuales versus datagramas
 - 2.2. Unicast, Multicast, Broadcast y Anycast
 - 2.3. Enrutamiento Unicast
 - 2.4. Enrutamiento Multicast
- 3. Direccionamiento
 - 3.1. Protocolo IP
 - 3.2. Direcciones IP
 - 3.3. Clases de direcciones IP
 - 3.4. Direcciones IP reservadas
 - 3.5. IP versión 6
- 4. Subredes
 - 4.1. Conceptos básicos
 - 4.2. Creación de subredes

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

45

3. Direccionamiento -

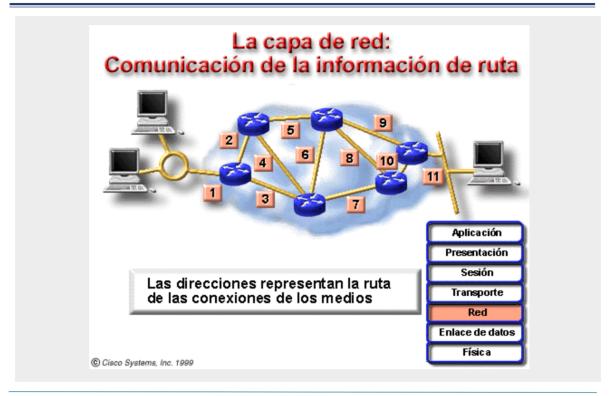
3.1 Protocolo IP

IP (Internet Protocol):

- EL protocolo de la capa 3 en Internet:
 - Protocolo basado en datagrama
 - Implementa enrutamiento en Internet
 - Poca funcionalidad:
 - Asignar direcciones a los paquetes
 - Identificar tipo de contenido y tipo de servicio
 - Fragmentación de paquetes grandes
 - Poco mas
- Cuando se dice "IP", en general se refiere a la versión 4 del protocolo IP.

Campos del datagrama IP							
0	4 8		16	19	24 31		
VERS	HLEN	Tipo de servicio	Longitud				
	Identifica	ción	Flags	Desplazamiento			
Tiempo	de vida	Protocolo	Suma de comprobación de encabezado				
Dirección IP origen							
Dirección IP destino							
Opciones IP (si existen) Relleno							
Datos							

Comunicaciones II © Robert Denda / Sergio Martín


Tema 1: Enrutamiento y Direccionamiento

47

Índice: Tema 1 - Enrutamiento y Direccionamiento

- 0. Conceptos Previos
- 1. La Capa de Red
- 2. Enrutamiento
 - 2.1. Circuitos virtuales versus datagramas
 - 2.2. Unicast, Multicast, Broadcast y Anycast
 - 2.3. Enrutamiento Unicast
 - 2.4. Enrutamiento Multicast
- 3. Direccionamiento
 - 3.1. Protocolo IP
 - 3.2. Direcciones IP
 - 3.3. Clases de direcciones IP
 - 3.4. Direcciones IP reservadas
 - 3.5. IP versión 6
- 4. Subredes
 - 4.1. Conceptos básicos
 - 4.2. Creación de subredes

3.2 Direccionamiento IP

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

3. Direccionamiento – 3.2 Direccionamiento IP

3.2 Direccionamiento IP

Índice: Tema 1 - Enrutamiento y Direccionamiento

- 0. Conceptos Previos
- 1. La Capa de Red
- 2. Enrutamiento
 - 2.1. Circuitos virtuales versus datagramas
 - 2.2. Unicast, Multicast, Broadcast y Anycast
 - 2.3. Enrutamiento Unicast
 - 2.4. Enrutamiento Multicast
- 3. Direccionamiento
 - 3.1. Protocolo IP
 - 3.2. Direcciones IP
 - 3.3. Clases de direcciones IP
 - 3.4. Direcciones IP reservadas
 - 3.5. IP versión 6
- 4. Subredes
 - 4.1. Conceptos básicos
 - 4.2. Creación de subredes

3.3 Clases de direcciones IP

Una dirección IP es una dirección jerárquica que consiste de un número de identificación de red (NetID) y un número de identificación del host (HostID).

Existen tres formatos para subredes unicast de distintos tamaños, y adicionalmente un formato para multicast:

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

53

3. Direccionamiento – 3.3 Clases de direcciones IP

Patrones de bit de la dirección IP 24 Cantidad de bits 14 16 Cantidad de bits Clase B: Cantidad de bits 21

Índice: Tema 1 - Enrutamiento y Direccionamiento

- 0. Conceptos Previos
- 1. La Capa de Red
- 2. Enrutamiento
 - 2.1. Circuitos virtuales versus datagramas
 - 2.2. Unicast, Multicast, Broadcast y Anycast
 - 2.3. Enrutamiento Unicast
 - 2.4. Enrutamiento Multicast
- 3. Direccionamiento
 - 3.1. Protocolo IP
 - 3.2. Direcciones IP
 - 3.3. Clases de direcciones IP
 - 3.4. Direcciones IP reservadas
 - 3.5. IP versión 6
- 4. Subredes
 - 4.1. Conceptos básicos
 - 4.2. Creación de subredes

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

55

- 3. Direccionamiento -
- 3.4 Direcciones IP reservadas

3.4 Direcciones IP reservadas

Espacio de dirección privada (private address)

Los siguientes intervalos están disponibles para el direccionamiento privado

10.0.0.0 - 10.255.255.255

172.16.0.0 - 172.31.255.255

192.168.0.0 - 192.168.255.255

Adicionalmente: 169.254.0.0 - 169.254.255.255

© Cisco Systems, Inc. 1999

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

Índice: Tema 1 - Enrutamiento y Direccionamiento

- 0. Conceptos Previos
- 1. La Capa de Red
- 2. Enrutamiento
 - 2.1. Circuitos virtuales versus datagramas
 - 2.2. Unicast, Multicast, Broadcast y Anycast
 - 2.3. Enrutamiento Unicast
 - 2.4. Enrutamiento Multicast
- 3. Direccionamiento
 - 3.1. Protocolo IP
 - 3.2. Direcciones IP
 - 3.3. Clases de direcciones IP
 - 3.4. Direcciones IP reservadas
 - 3.5. IP versión 6
- 4. Subredes
 - 4.1. Conceptos básicos
 - 4.2. Creación de subredes

3. Direccionamiento 3.5. IP versión 6

Problema con IP(v4):

- Direcciones IP escasas.
- Direcciones de clase B casi ya no disponibles.
- Dispositivos (móviles) IP en coches, casas, etc.
- 10.000.000.000 personas en 2020 y 100 direcciones IP por persona?
- Soluciones actuales:
 - CIDR (Classless Inter-Domain Routing)
 - NAT (Network Address Translation)

Solución IP

Nueva versión de protocolo IP protocol version 6 (IPv6) con un rango de direcciones IP mas grande

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

3. Direccionamiento 3.5. IP versión 6

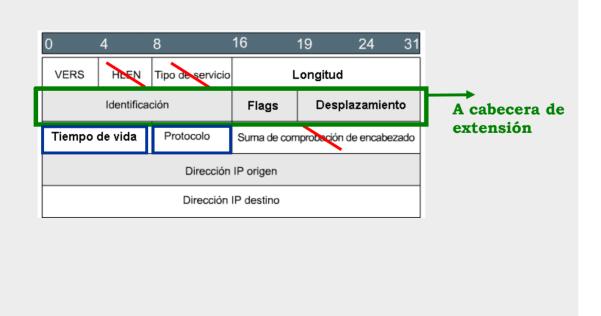
Características IPv6:

- Direcciones extendidas:
 - 128 bit (1023 direcciones por m2 de la superficie de la tierra)
- Jerarquías de direccionamiento
- Configuración automática de direcciones (incorporado en el protocólo - similar a DHCP)
- Nuevo formato de cabecera IP:
 - Cabecera IP simplificada
 - Soporte para extensiones
 - Fragmentación y reensamblaje solo en origen y destino

3. Direccionamiento 3.5. IP versión 6

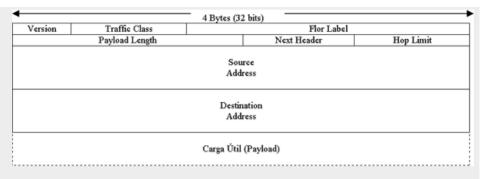
Características IPv6:

- Soporte de calidad de servicio:
 - Etiquetas de flujo (Flow Labels) permiten marcar flujos a nivel IP
 - Clases de tráfico para Differentiated Services
- Integración de Multicast
 - Grupos pre-definidos de multicast para funciones de control
 - Protocolo IGMP (Internet Group Management Protocol) integrado en ICMP (Internet Control Message Protocol)
 - Formato especial de direcciones multicast
 - Todos los routers implementan multicast
- Seguridad IP (IP Security)
 - Autentificación y encriptación integradas.


Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

61


3. Direccionamiento 3.5. IP versión 6

Cabecera IPv4 (20 bytes, 13 campos):

3. Direccionamiento 3.5. IP versión 6

Cabecera IPv6 (40 bytes, 8 campos):

- Version: Número de versión del Protocolo de Internet de 4 bits = 6.
- Traffic Class: Campo clase de tráfico de 8 bits.
- Flow Label: Etiqueta de flujo de 20 bits.
- Payload Length: entero sin signo de 16 bits, longitud de la carga útil en octetos.
- Next Header: Selector de 8 bits. Identifica el tipo de cabecera que sigue inmediatamente a la cabecera IPv6. Utiliza los mismos valores que el campo "Protocolo" del IPv4 [RFC-1700 et seq].
- Hop Limit: análogo al campo tiempo de vida (time-to-live) del IPv4.
- Source Address: dirección de 128 bits, dirección de origen del paquete.
- Destination Address: dirección de 128 bits, dirección del recipiente deseado, si existe cabecera de enrutamiento posiblemente no sea el recipiente final.

Comunicaciones II

©Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

63

3. Direccionamiento 3.5. IP versión 6

Cabeceras de extensión en IPv6

Varias alternativas:

- Opciones salto a salto (hop-by-hop) [RFC2460]
- Enrutamiento (routing) [RFC2460]
- Fragmento [RFC2460]
- Opciones de destino [RFC2460]
- Autenticación [RFC-2402]
- Seguridad del Encapsulado de la Carga Útil [RFC-2406]

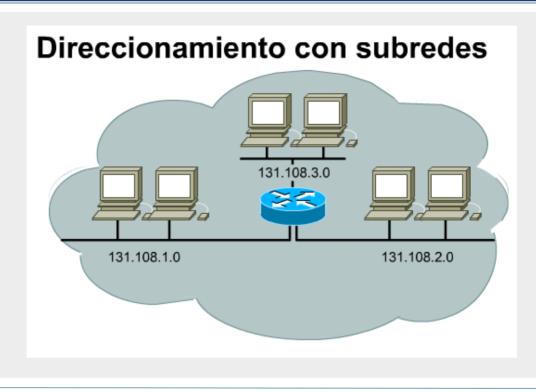
Ejemplos:

Савесета IPv6 Next Header = TCP	Cabesesa TCP + Dates		
Cabecera IPv6 Next Header = Routing	Cabecera Routing Next Header = TCP	Cabceera TCP + Dates	
Cabecera IPv6 Next Header = Routing	Cabecera Routing Next Header = Fragment	Cabecera Fragment Next Header = TCP	Fragmento de Cabecera TCE + Datos

Índice: Tema 1 - Enrutamiento y Direccionamiento

- 0. Conceptos Previos
- 1. La Capa de Red
- 2. Enrutamiento
 - 2.1. Circuitos virtuales versus datagramas
 - 2.2. Unicast, Multicast, Broadcast y Anycast
 - 2.3. Enrutamiento Unicast
 - 2.4. Enrutamiento Multicast
- 3. Direccionamiento
 - 3.1. Protocolo IP
 - 3.2. Direcciones IP
 - 3.3. Clases de direcciones IP
 - 3.4. Direcciones IP reservadas
 - 3.5. IP versión 6
- 4. Subredes
 - 4.1. Conceptos básicos
 - 4.2. Creación de subredes

Comunicaciones II © Robert Denda / Sergio Martín


Tema 1: Enrutamiento y Direccionamiento

4. Subredes

4.1. Conceptos básicos

Direccionamiento sin subredes 131.108.0.0

4.1. Conceptos básicos

Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

4. Subredes 4.1. Conceptos básicos

Subredes y máscara de subred

Crear otra sección en la dirección SOLUCIÓN: IP denominada subred.

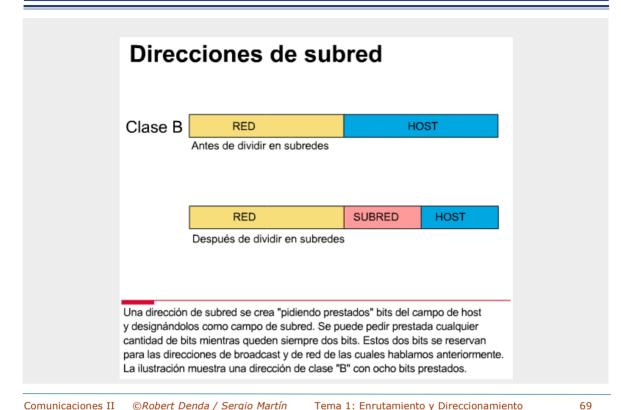
RED

SUBRED

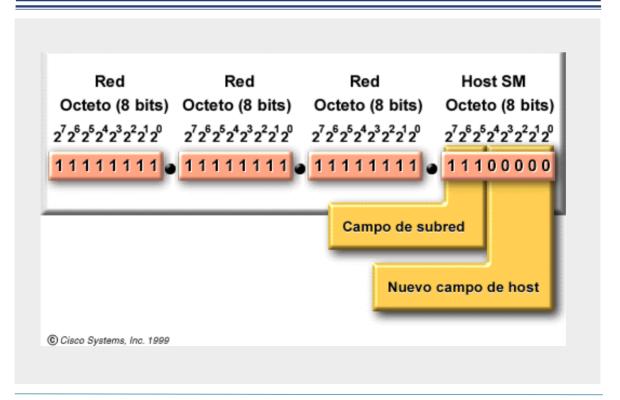
HOST

¿¿¿CÓMO???

Mediante una MÁSCARA DE SUBRED


Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento


68

4. Subredes

4.1. Conceptos básicos

4. Subredes 4.1. Conceptos básicos

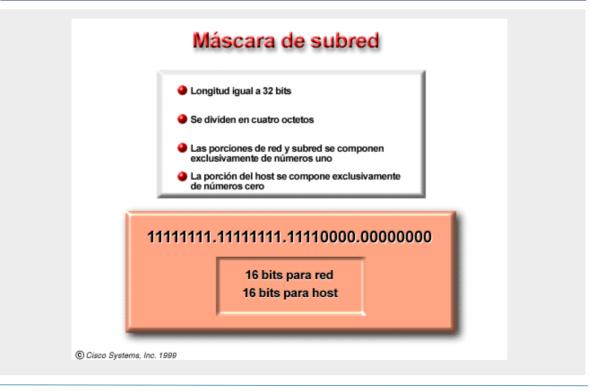
Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

70

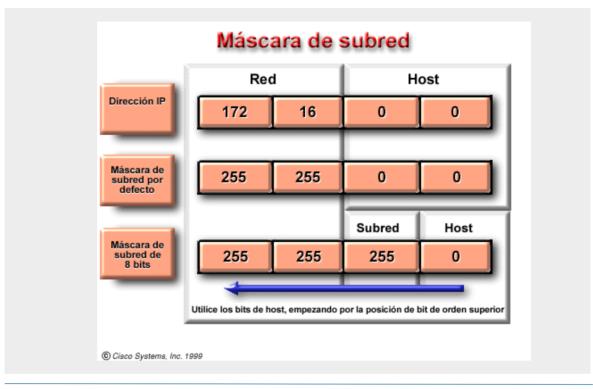
Índice: Tema 1 - Enrutamiento y Direccionamiento

- 0. Conceptos Previos
- 1. La Capa de Red
- 2. Enrutamiento
 - 2.1. Circuitos virtuales versus datagramas
 - 2.2. Unicast, Multicast, Broadcast y Anycast
 - 2.3. Enrutamiento Unicast
 - 2.4. Enrutamiento Multicast
- 3. Direccionamiento
 - 3.1. Protocolo IP
 - 3.2. Direcciones IP
 - 3.3. Clases de direcciones IP
 - 3.4. Direcciones IP reservadas
 - 3.5. IP versión 6
- 4. Subredes
 - 4.1. Conceptos básicos
 - 4.2. Creación de subredes


Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

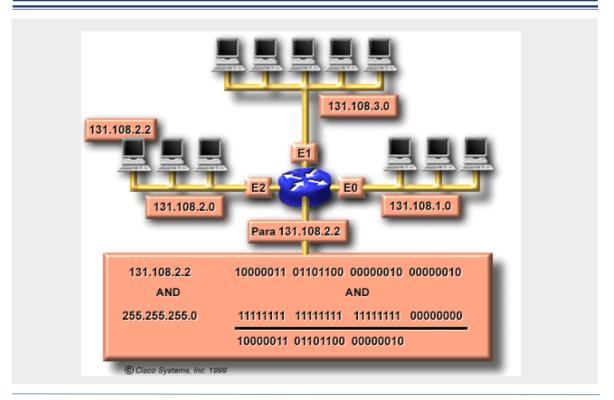
71


4. Subredes

4.2. Creación de subredes

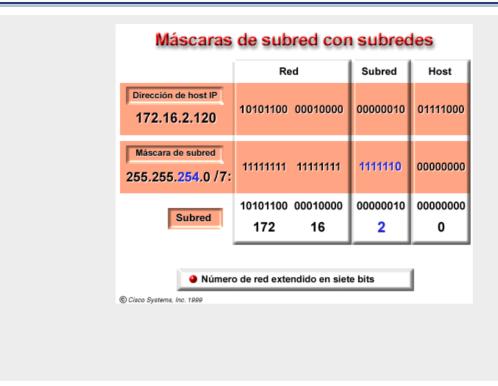
4. Subredes

4.2. Creación de subredes


Comunicaciones II © Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

73


4. Subredes

4.2. Creación de subredes

4. Subredes

4.2. Creación de subredes

Comunicaciones II

©Robert Denda / Sergio Martín

Tema 1: Enrutamiento y Direccionamiento

75

4. Subredes 4.2. Creación de subredes

