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Peters in August 2006.

Two of the authors have already established a web site containing an
updated collection of links to many of the URLs mentioned in the two
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Chapter 1

A Philosophical Introduction

Christopher Koch, [150], accurately captures a great scientific distaste for
philosophizing:

Whether we scientists are inspired, bored, or infuriated by phi-
losophy, all our theorizing and experimentation depends on par-
ticular philosophical background assumptions. This hidden in-
fluence is an acute embarrassment to many researchers, and it
is therefore not often acknowledged.

That acknowledged, I am of the opinion that mathematical philosophy
matters more now than it has in nearly a century. The power of modern
computers matched with that of modern mathematical software and the
sophistication of current mathematics is changing the way we do mathe-
matics.

In my view it is now both necessary and possible to admit quasi-
empirical inductive methods fully into mathematical argument. In doing
so carefully we will enrich mathematics and yet preserve the mathematical
literature’s deserved reputation for reliability—even as the methods and
criteria change.

1 Mathematical Knowledge as I View It

Somewhat unusually, I can exactly place the day at registration that I
became a mathematician and I recall the reason why. I was about to
deposit my punch cards in the ‘honours history bin’. I remember thinking

If I do study history, in ten years I shall have forgotten how to
use the calculus properly. If I take mathematics, I shall still be
able to read competently about the War of 1812 or the Papal
schism. (Jonathan Borwein, 1968)

1
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2 Chapter 1. A Philosophical Introduction

The inescapable reality of objective mathematical knowledge is still with
me. Nonetheless, my view then of the edifice I was entering is not that close
to my view of the one I inhabit nearly forty years later.

I also know when I became a computer-assisted fallibilist. Reading Imre
Lakatos’ Proofs and Refutations, [157], a few years later while a very new
faculty member, I was suddenly absolved from the grave sin of error, as I
began to understand that missteps, mistakes and errors are the grist of all
creative work. The book, his doctorate posthumously published in 1976, is
a student conversation about the Euler characteristic. The students are of
various philosophical stripes and the discourse benefits from his early work
on Hegel with the Stalinist Lukács in Hungary and from later study with
Karl Popper at the London School of Economics. I had been prepared for
this dispensation by the opportunity to learn a variety of subjects from
Michael Dummett. Dummett was at that time completing his study reha-
bilitating Frege’s status, [101].

A decade later the appearance of the first ‘portable’ computers happily
coincided with my desire to decode Srinivasa Ramanujan’s (1887–1920)
cryptic assertions about theta functions and elliptic integrals, [47]. I re-
alized that by coding his formulae and my own in the APL programming
language1, I was able to rapidly confirm and refute identities and conjec-
tures and to travel much more rapidly and fearlessly down potential blind
alleys. I had become a computer-assisted fallibilist; at first somewhat fal-
teringly but twenty years have certainly honed my abilities.

Today, while I appreciate fine proofs and aim to produce them when
possible, I no longer view proof as the royal road to secure mathematical
knowledge.

2 Introduction

I first discuss my views, and those of others, on the nature of mathemat-
ics, and then illustrate these views in a variety of mathematical contexts.
A considerably more detailed treatment of many of these topics is to be
found in Dave Bailey and my book Mathematics by Experiment: Plausi-
ble Reasoning in the 21st Century—especially in Chapters One, Two and
Seven.

Kurt Gödel may well have overturned the mathematical apple cart en-
tirely deductively, but nonetheless he could hold quite different ideas about
legitimate forms of mathematical reasoning, [122]:

If mathematics describes an objective world just like physics,
there is no reason why inductive methods should not be applied

1Known as a ‘write only’ very high level language, APL was a fine tool; albeit with
a steep learning curve whose code is almost impossible to read later.
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3. Philosophy of Experimental Mathematics 3

in mathematics just the same as in physics. (Kurt Gödel2,
1951)

While we mathematicians have often separated ourselves from the sci-
ences, they have tended to be more ecumenical. For example, a recent
review of Models. The Third Dimension of Science, [69], chose a mathe-
matical plaster model of a Clebsch diagonal surface as its only illustration.
Similarly, authors seeking examples of the aesthetic in science often choose
iconic mathematics formulae such as E = mc2.

Let me begin by fixing a few concepts before starting work in earnest.
Above all, I hope to persuade you of the great power of mathematical
experimentation—it is also fun—and that the traditional accounting of
mathematical learning and research is largely an ahistorical caricature. I
recall three terms.
mathematics, n. a group of related subjects, including algebra, geometry,
trigonometry and calculus, concerned with the study of number, quantity,
shape, and space, and their inter-relationships, applications, generalizations
and abstractions.

This definition–taken from my Collins Dictionary [41]—makes no im-
mediate mention of proof, nor of the means of reasoning to be allowed. The
Webster’s Dictionary [1] contrasts:
induction, n. any form of reasoning in which the conclusion, though
supported by the premises, does not follow from them necessarily.; and
deduction, n. a process of reasoning in which a conclusion follows
necessarily from the premises presented, so that the conclusion cannot be
false if the premises are true.
b. a conclusion reached by this process.

Like Gödel, I suggest that both should be entertained in mathematics.
This is certainly compatible with the general view of mathematicians that
in some sense “mathematical stuff is out there” to be discovered. In this
paper, I shall talk broadly about experimental and heuristic mathematics,
giving accessible, primarily visual and symbolic, examples.

3 Philosophy of Experimental Mathematics

The computer has in turn changed the very nature of math-
ematical experience, suggesting for the first time that mathe-
matics, like physics, may yet become an empirical discipline, a
place where things are discovered because they are seen. (David
Berlinski, [27])

2Taken from a previously unpublished work, [122].
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4 Chapter 1. A Philosophical Introduction

The shift from typographic to digital culture is vexing for mathemati-
cians. For example, there is still no truly satisfactory way of displaying
mathematics on the web–and certainly not of asking mathematical ques-
tions. Also, we respect authority, [123], but value authorship deeply—
however much the two values are in conflict, [62]. For example, the more
I recast someone else’s ideas in my own words, the more I enhance my au-
thorship while undermining the original authority of the notions. Medieval
scribes had the opposite concern and so took care to attribute their ideas
to such as Aristotle or Plato.

And we care more about the reliability of our literature than does any
other science, Indeed I would argue that we have reified this notion and
often pay lip-service not real attention to our older literature. How often
does one see original sources sprinkled like holy water in papers that make
no real use of them?

The traditional central role of proof in mathematics is arguably and
perhaps appropriately under siege. Via examples, I intend to pose and
answer various questions. I shall conclude with a variety of quotations
from our progenitors and even contemporaries:
My Questions. What constitutes secure mathematical knowledge? When
is computation convincing? Are humans less fallible? What tools are
available? What methodologies? What of the ‘law of the small numbers’?
Who cares for certainty? What is the role of proof? How is mathematics
actually done? How should it be? I mean these questions both about the
apprehension (discovery) and the establishment (proving) of mathematics.
This is presumably more controversial in the formal proof phase.
My Answers. To misquote D’Arcy Thompson (1860–1948) ‘form follows
function’, [218]: rigour (proof) follows reason (discovery); indeed, excessive
focus on rigour has driven us away from our wellsprings. Many good ideas
are wrong. Not all truths are provable, and not all provable truths are
worth proving . . . . Gödel’s incompleteness results certainly showed us the
first two of these assertions while the third is the bane of editors who are
frequently presented with correct but unexceptional and unmotivated gen-
eralizations of results in the literature. Moreover, near certainty is often
as good as it gets—intellectual context (community) matters. Recent com-
plex human proofs are often very long, extraordinarily subtle and fraught
with error—consider, Fermat’s last theorem, the Poincaré conjecture, the
classification of finite simple groups, presumably any proof of the Riemann
hypothesis, [2]. So while we mathematicians publicly talk of certainty we
really settle for security.

In all these settings, modern computational tools dramatically change
the nature and scale of available evidence. Given an interesting identity
buried in a long and complicated paper on an unfamiliar subject, which
would give you more confidence in its correctness: staring at the proof, or
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3. Philosophy of Experimental Mathematics 5

confirming computationally that it is correct to 10,000 decimal places?
Here is such a formula, [13]:

24
7
√

7

∫ π/2

π/3

log

∣∣∣∣∣ tan t+
√

7
tan t−

√
7

∣∣∣∣∣ dt ?= L−7(2) = (1.1)

∞∑
n=0

[
1

(7n+ 1)2
+

1
(7n+ 2)2

− 1
(7n+ 3)2

+
1

(7n+ 4)2
− 1

(7n+ 5)2
− 1

(7n+ 6)2

]
.

This identity links a volume (the integral) to an arithmetic quantity (the
sum). Ir arose out of some studies in quantum field theory, in analysis of
the volumes of ideal tetrahedra in hyperbolic space. The question mark is
used because, while no hint of a path to a formal proof is yet known, it
has been verified numerically to 20,000 digit precision–using 45 minutes on
1024 processors at Virginia Tech.

A more inductive approach can have significant benefits. For example,
as there is still some doubt about the proof of the classification of finite
simple groups it is important to ask whether the result is true but the proof
flawed, or rather if there is still perhaps an ‘ogre’ sporadic group even larger
than the ‘monster’? What heuristic, probabilistic or computational tools
can increase our confidence that the ogre does or does not exist? Likewise,
there are experts who still believe the Riemann hypothesis3 (RH) may be
false and that the billions of zeroes found so far are much too small to
be representative.4 In any event, our understanding of the complexity of
various crypto-systems relies on (RH) and we should like secure knowledge
that any counter-example is enormous.

Peter Medawar (1915–87)—a Nobel prize winning oncologist and a great
expositor of science—writing in Advice to a Young Scientist, [177], identifies
four forms of scientific experiment:

1. The Kantian experiment: generating “the classical non-Euclidean
geometries (hyperbolic, elliptic) by replacing Euclid’s axiom of parallels (or
something equivalent to it) with alternative forms.” All mathematicians
perform such experiments while the majority of computer explorations are
of the following Baconian form.

2. The Baconian experiment is a contrived as opposed to a natural
happening, it “is the consequence of ‘trying things out’ or even of merely
messing about.” Baconian experiments are the explorations of a happy if
disorganized beachcomber and carry little predictive power.

3All non-trivial zeroes—not negative even integers—of the zeta function lie on the
line with real part 1/2.

4See [187] and various of Andrew Odlyzko’s unpublished but widely circulated works.
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6 Chapter 1. A Philosophical Introduction

3. Aristotelian demonstrations: “apply electrodes to a frog’s sciatic
nerve, and lo, the leg kicks; always precede the presentation of the dog’s
dinner with the ringing of a bell, and lo, the bell alone will soon make the
dog dribble.” Arguably our ‘Corollaries’ and ’Examples’ are Aristotelian,
they reinforce but do not predict. Medawar then says the most important
form of experiment is:

4. The Galilean: is “a critical experiment – one that discriminates
between possibilities and, in doing so, either gives us confidence in the view
we are taking or makes us think it in need of correction.” The Galilean the
only form of experiment which stands to make Experimental Mathematics
a serious enterprise. Performing careful, replicable Galilean experiments
requires work and care.

Reuben Hersh’s arguments for a humanist philosophy of mathematics,
[137, 138], as paraphrased below, become even more convincing in our
highly computational setting.

1. Mathematics is human. It is part of and fits into human culture. It
does not match Frege’s concept of an abstract, timeless, tenseless, objective
reality.5

2. Mathematical knowledge is fallible. As in science, mathematics
can advance by making mistakes and then correcting or even re-correcting
them. The “fallibilism” of mathematics is brilliantly argued in Lakatos’
Proofs and Refutations.

3. There are different versions of proof or rigor. Standards of rigor can
vary depending on time, place, and other things. The use of computers
in formal proofs, exemplified by the computer-assisted proof of the four
color theorem in 1977 6, is just one example of an emerging nontraditional
standard of rigor.

4. Empirical evidence, numerical experimentation and probabilistic
proof all can help us decide what to believe in mathematics. Aristotelian
logic isn’t necessarily always the best way of deciding.

5. Mathematical objects are a special variety of a social-cultural-historical
object. Contrary to the assertions of certain post-modern detractors, math-
ematics cannot be dismissed as merely a new form of literature or religion.
Nevertheless, many mathematical objects can be seen as shared ideas, like
Moby Dick in literature, or the Immaculate Conception in religion.

I entirely subscribe to points 2., 3., 4., and with certain caveats about

5That Frege’s view of mathematics is wrong, for Hersh as for me, does not diminish
its historical importance.

6Especially, since a new implementation by Seymour, Robertson and Thomas in 1997
which has produced a simpler, clearer and less troubling implementation.
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3. Philosophy of Experimental Mathematics 7

objective knowledge7 to points 1. and 5. In any event mathematics is and
will remain a uniquely human undertaking.

This form of humanism sits fairly comfortably with current versions of
social-constructivism:

The social constructivist thesis is that mathematics is a social
construction, a cultural product, fallible like any other branch
of knowledge. (Paul Ernest, [104])

I personally qualify this with “Yes, but much less fallible than most.”
Associated most notably with the writings of Paul Ernest—an English
Mathematician and Professor in the Philosophy of Mathematics Educa-
tion who carefully traces the intellectual pedigree for his thesis, a pedigree
that encompasses the writings of Wittgenstein, Lakatos, Davis, and Hersh
among others—social constructivism seeks to define mathematical knowl-
edge and epistemology through the social structure and interactions of the
mathematical community and society as a whole.

This interaction often takes place over very long periods. Many of the
ideas our students—and some colleagues—take for granted took a great
deal of time to gel. The Greeks suspected the impossibility of the three
classical construction problems 8 and the irrationality of the golden mean
was well known to the Pythagoreans.

While concerns about potential and completed infinities are very old,
until the advent of the calculus with Newton and Leibnitz and the need
to handle fluxions or infinitesimals, the level of need for rigour remained
modest. Certainly Euclid is in its geometric domain generally a model of
rigour, while also Archimedes’ numerical analysis was not equalled until
the 19th century.

The need for rigour arrives in full force in the time of Cauchy and
Fourier. The treacherous countably infinite processes of analysis and the
limitations of formal manipulation came to the fore. It is difficult with
a modern sensibility to understand how Cauchy’s proof of the continuity
of pointwise limits could coexist for half a century with Fourier’s clear
counter-examples originating in his theory of heat.

By the end of the 19th century Frege’s (1848-1925) attempt to base
mathematics in a linguistically based logicism had foundered on Russell
and other’s discoveries of the paradoxes of naive set theory. Within thirty

7While it is not Hersh’s intention, a superficial reading of point 5. hints at a cultural
relativism to which I certainly do not subscribe.

8Trisection, circle squaring and cube doubling were taken by the educated to be
impossible in antiquity. Already in 414 BCE, in his play The Birds, Aristophanes uses
‘circle-squarers’ as a term for those who attempt the impossible. Similarly, the French
Academy stopped accepting claimed proofs a full two centuries before the 19th century
achieved proofs of their impossibility.
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8 Chapter 1. A Philosophical Introduction

five years Gödel—and then Turing’s more algorithmic treatment9—had
similarly damaged both Russell and Whitehead’s and Hilbert’s programs.

Throughout the twentieth century, bolstered by the armour of abstrac-
tion, the great ship Mathematics has sailed on largely unperturbed. During
the last decade of the 19th and first few decades of the 20th century the
following main streams of philosophy emerged explicitly within mathemat-
ics to replace logicism, but primarily as the domain of philosophers and
logicians.

• Platonism. Everyman’s idealist philosophy—stuff exists and we must
find it. Despite being the oldest mathematical philosophy, Platonism—
still predominant among working mathematicians—was only chris-
tened in 1936.

• Formalism. Associated mostly with Hilbert—it asserts that mathe-
matics is invented and is best viewed as formal symbolic games with-
out intrinsic meaning.

• Intuitionism. Invented by Brouwer and championed by Heyting, in-
tuitionism asks for inarguable monadic components that can be fully
analyzed and has many variants; this has interesting overlaps with
recent work in cognitive psychology such as Lakoff and Nunez’ work,
[158], on ‘embodied cognition’10.

• Constructivism. Originating with Markoff and especially Kronecker
(1823–1891), and refined by Bishop it finds fault with significant parts
of classical mathematics. Its ‘I’m from Missouri, tell me how big it is’
sensibility is not to be confused with Paul Ernest’s ‘social construc-
tivism’, [104].

The last two philosophies deny the principle of the excluded middle, “A
or not A”, and resonate with computer science—as does some of formal-
ism. It is hard after all to run a deterministic program which does not
know which disjunctive gate to follow. By contrast the battle between a
Platonic idealism (a ‘deductive absolutism’) and various forms of ‘fallibil-
ism’(a quasi-empirical ‘relativism’) plays out across all four, but fallibilism
perhaps lives most easily within a restrained version of intuitionism which
looks for ‘intuitive arguments’ and is willing to accept that ‘a proof is what

9The modern treatment of incompleteness leans heavily on Turing’s analysis of the
Halting problem for so-called Turing machines.

10“The mathematical facts that are worthy of study are those that, by their analogy
with other facts are susceptible of leading us to knowledge of a mathematical law, in
the same way that physical facts lead us to a physical law.” reflects the cognate views
of Henri Poincaré (1854–1912), [194, p. 23] on the role of the subliminal. He also wrote
“It is by logic we prove, it is by intuition that we invent.”, [193].
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3. Philosophy of Experimental Mathematics 9

convinces’. As Lakatos shows, an argument convincing a hundred years
ago may well now viewed as inadequate. And one today trusted may be
challenged in the next century.

As we illustrate in the next section or two, it is only perhaps in the last
twenty five years, with the emergence of powerful mathematical platforms,
that any approach other than a largely undigested Platonism and a reliance
on proof and abstraction has had the tools11 to give it traction with working
mathematicians.

In this light, Hales’ proof of Kepler’s conjecture that the densest way
to stack spheres is in a pyramid resolves the oldest problem in discrete
geometry. It also supplies the most interesting recent example of inten-
sively computer-assisted proof, and after five years with the review process
was published in the Annals of Mathematics—with an “only 99% checked”
disclaimer.

This process has triggered very varied reactions [152] and has provoked
Thomas Hales to attempt a formal computational proof, [2]. Famous earlier
examples of fundamentally computer-assisted proof include the Four color
theorem and proof of the Non-existence of a projective plane of order 10.
The three raise and answer quite distinct questions about computer assisted
proof—both real and specious.

To make the case as to how far mathematical computation has come we
trace the changes over the past half century. The 1949 computation of π
to 2,037 places suggested by von Neumann, took 70 hours. A billion digits
may now be computed in much less time on a laptop. Strikingly, it would
have taken roughly 100,000 ENIACs to store the Smithsonian’s picture—as
is possible thanks to 40 years of Moore’s law in action . . . .
Moore’s Law is now taken to be the assertion that semiconductor tech-
nology approximately doubles in capacity and performance roughly every
18 to 24 months. This is an astounding record of sustained exponential
progress without peer in history of technology. Additionally, mathematical
tools are now being implemented on parallel platforms, providing much
greater power to the research mathematician. Amassing huge amounts of
processing power will not alone solve many mathematical problems. There
are very few mathematical ‘Grand-challenge problems’ where, as in the
physical sciences, a few more orders of computational power will resolve a
problem, [59]. There is, however, much more value in very rapid ‘Aha’s’
as can be obtained through “micro-parallelism”; that is, where we benefit
by being able to compute many simultaneous answers on a neurologically
rapid scale and so can hold many parts of a problem in our mind at one
time.

To sum up, in light of the discussion and terms above, I now describe

11That is, to broadly implement Hersh’s central points (2.-4.).
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myself a a social-constructivist, and as a computer-assisted fallabilist with
constructivist leanings. I believe that more-and-more the interesting parts
of mathematics will be less-and-less susceptible to classical deductive anal-
ysis and that Hersh’s ‘non-traditional standard of rigor’ must come to the
fore.

4 Our Experimental Mathodology

Despite Picasso’s complaint that “computers are useless, they only give
answers,” the main goal of computation in pure mathematics is arguably
to yield insight. This demands speed or, equivalently, substantial micro-
parallelism to provide answers on a cognitively relevant scale; so that we
may ask and answer more questions while they remain in our conscious-
ness. This is relevant for rapid verification; for validation; for proofs and
especially for refutations which includes what Lakatos calls “monster bar-
ring”, [157]. Most of this goes on in the daily small-scale accretive level of
mathematical discovery but insight is gained even in cases like the proof
of the Four color theorem or the Non-existence of a plane of order ten.
Such insight is not found in the case-enumeration of the proof, but rather
in the algorithmic reasons for believing that one has at hand a tractable
unavoidable set of configurations or another effective algorithmic strategy.

In this setting it is enough to equate parallelism with access to req-
uisite more space and speed of computation. Also, we should be willing
to consider all computations as ‘exact’ which provide truly reliable an-
swers.12 This now usually requires a careful hybrid of symbolic and numeric
methods, such as achieved by Maple’s liaison with the umerical Algorithms
Group (NAG) Library13, see [109, 43]. There are now excellent tools for
such purposes throughout analysis, algebra, geometry and topology, see
[44, 45, 109, 59, 60].

Along the way questions required by—or just made natural by—computing
start to force out older questions and possibilities in the way beautifully
described a century ago by Dewey regarding evolution, [98].

Old ideas give way slowly; for they are more than abstract log-
ical forms and categories. They are habits, predispositions,
deeply engrained attitudes of aversion and preference. More-
over, the conviction persists—though history shows it to be a
hallucination—that all the questions that the human mind has
asked are questions that can be answered in terms of the al-
ternatives that the questions themselves present. But in fact

12If careful interval analysis can certify that a number known to be integer is larger
that 2.5 and less than 3.5, this constitutes a exact computational proof that it is ‘3’.

13See http://www.nag.co.uk/.
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intellectual progress usually occurs through sheer abandonment
of questions together with both of the alternatives they assume;
an abandonment that results from their decreasing vitality and
a change of urgent interest. We do not solve them: we get over
them. Old questions are solved by disappearing, evaporating,
while new questions corresponding to the changed attitude of
endeavor and preference take their place. Doubtless the greatest
dissolvent in contemporary thought of old questions, the great-
est precipitant of new methods, new intentions, new problems,
is the one effected by the scientific revolution that found its cli-
max in the “Origin of Species.” (John Dewey)

Additionally, what is “easy” changes: high performance computing and
networking are blurring, merging disciplines and collaborators. This is de-
mocratizing mathematics but further challenging authentication—consider
how easy it is to find information on Wikipedia14 and how hard it is to
validate it.

Moving towards a well articulated Experimental Mathodology—both in
theory and practice—will take much effort. The need is premised on the as-
sertions that intuition is acquired—we can and must better mesh computa-
tion and mathematics, and that visualization is of growing importance—in
many settings even three is a lot of dimensions.

“Monster-barring” (Lakatos’s term, [157], for refining hypotheses to
rule out nasty counter-examples15) and “caging” (my own term for im-
posing needed restrictions in a conjecture) are often easy to enhance com-
putationally, as for example with randomized checks of equations, linear
algebra, and primality or graphic checks of equalities, inequalities, areas,
etc.

4.1 Eight Roles for Computation

I next recapitulate eight roles for computation that Bailey and I discuss in
our two recent books [44, 45]:

#1. Gaining insight and intuition or just knowledge. Working
algorithmically with mathematical objects almost inevitably adds in-
sight to the processes one is studying. At some point even just the
careful aggregation of data leads to better understanding.

#2. Discovering new facts, patterns and relationships. The num-
ber of additive partitions of a positive integer n, p(n), is generated

14Wikipedia is an open source project at http://en.wikipedia.org/wiki/Main Page;
“wiki-wiki” is Hawaian for “quickly”.

15Is, for example, a polyhedron always convex? Is a curve intended to be simple? Is
a topology assumed Hausdorff, a group commutative?
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by

1 +
∑
n≥1

p(n)qn =
1∏∞

n=1(1− qn)
. (1.2)

Thus, p(5) = 7 since

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1
= 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1. (1.3)

Developing (1.2) is a fine introduction to enumeration via generating
functions. Additive partitions are harder to handle than multiplica-
tive factorizations, but they are very interesting, [45, Chapter 4]. Ra-
manujan used Major MacMahon’s table of p(n) to intuit remarkable
deep congruences such as

p(5n+4) ≡ 0 mod 5, p(7n+5) ≡ 0 mod 7,

and
p(11n+6) ≡ 0 mod 11,

from relatively limited data like

P (q) = 1 + q + 2 q2 + 3 q3 + 5 q4 + 7 q5 + 11 q6 + 15 q7

+ 22 q8 + 30 q9 + 42 q10 + 56 q11 + 77 q12 + 101 q13 + 135 q14

+ 176 q15 + 231 q16 + 297 q17 + 385 q18 + 490 q19

+ 627 q20b+ 792 q21 + 1002 q22 + · · ·+ p(200)q200 + · · · (1.4)

Cases 5n+4 and 7n+5 are flagged in (1.4). Of course, it is markedly
easier to (heuristically) confirm than find these fine examples of Math-
ematics: the science of patterns.16 The study of such congruences—
much assisted by symbolic computation—is very active today.

#3. Graphing to expose mathematical facts, structures or prin-
ciples. Consider Nick Trefethen’s fourth challenge problem as de-
scribed in [109, 43]. It requires one to find ten good digits of:

4. What is the global minimum of the function

esin(50x) + sin(60ey) + sin(70 sinx) + (1.5)
sin(sin(80y))− sin(10(x+ y)) + (x2 + y2)/4? (1.6)

16The title of Keith Devlin’s 1996 book, [97].
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As a foretaste of future graphic tools, one can solve this problem
graphically and interactively using current adaptive 3-D plotting rou-
tines which can catch all the bumps. This does admittedly rely on
trusting a good deal of software.

#4. Rigourously testing and especially falsifying conjectures. I
hew to the Popperian scientific view that we primarily falsify; but
that as we perform more and more testing experiments without such
falsification we draw closer to firm belief in the truth of a conjecture
such as: the polynomial P (n) = n2 − n + p has prime values for all
n = 0, 1, . . . , p− 2, exactly for Euler’s lucky prime numbers, that is,
p= 2, 3, 5, 11, 17, and 41.17

#5. Exploring a possible result to see if it merits formal proof.
A conventional deductive approach to a hard multi-step problem re-
ally requires establishing all the subordinate lemmas and propositions
needed along the way. Especially if they are highly technical and un-
intuitive. Now some may be independently interesting or useful, but
many are only worth proving if the entire expedition pans out. Com-
putational experimental mathematics provides tools to survey the
landscape with little risk of error: only if the view from the summit
is worthwhile, does one lay out the route carefully. I discuss this
further at the end of the next Section.

#6. Suggesting approaches for formal proof. The proof of the cubic
theta function identity discussed on [45, pp. 210] shows how an fully
intelligible human proof can be obtained entirely by careful symbolic
computation.

#7. Computing replacing lengthy hand derivations. Who would
wish to verify the following prime factorization by hand?

6422607578676942838792549775208734746307
= (2140992015395526641)(1963506722254397)(1527791).

Surely, what we value is understanding the underlying algorithm, not
the human work?

#8. Confirming analytically derived results. This is a wonderful and
frequently accessible way of confirming results. Even if the result
itself is not computationally checkable, there is often an accessible
corollary. An assertion about bounded operators on Hilbert space
may have a useful consequence for three-by-three matrices. It is also
an excellent way to error correct, or to check calculus examples before
giving a class.

17See [228] for the answer.
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(a) (b)

Figure 1.1. #1: Graphical comparison of y−y2 and y2−y4 to −y2 ln(y)
(red)

5 Finding Things versus Proving Things

I now illuminate these eight roles with eight mathematical examples. At
the end of each I note some of the roles illustrated.

1. Pictorially comparison of y − y2 and y2 − y4 to −y2 ln(y) when
y lies in the unit interval, is a much more rapid way to divine which
function is larger than by using traditional analytic methods.

The figure shows that it is clear in the later case the functions cross,
and so it is futile to try to prove one majorizes the other. In the first
case, evidence is provided to motivate attempting a proof and often
the picture serves to guide such a proof—by showing monotonicity or
convexity or some other salient property. 2

This certainly illustrates #3 and #4, and perhaps #5.

2. A proof and a disproof. Any modern computer algebra can tell
one that

0 <
∫ 1

0

(1− x)4x4

1 + x2
dx =

22
7
− π, (1.7)

since the integral may be interpreted as the area under a positive
curve. We are however no wiser as to why! If however we ask the
same system to compute the indefinite integral, we are likely to be
told that∫ t

0

· = 1
7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t− 4 arctan (t) .

Then (1.7) is now rigourously established by differentiation and an
appeal to the Fundamental theorem of calculus. 2
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This illustrates points #1 and #6. It also falsifies the bad conjecture
that π = 22/7 and so illustrates #4 again. Finally, the computer’s proof
is easier (#7) and very nice, though probably it is not the one we would
have developed by ourselves. The fact that 22/7 is a continued fraction
approximation to π has lead to many hunts for generalizations of (1.7), see
[45, Chapter 1]. None so far are entirely successful.

3. A computer discovery and a ‘proof’ of the series for arcsin2(x).
We compute a few coefficients and observe that there is a regular
power of 4 in the numerator, and integers in the denominator; or
equivalently we look at arcsin(x/2)2. The generating function pack-
age ‘gfun’ in Maple, then predicts a recursion, r, for the denominators
and solves it, as R.

>with(gfun):
>s:=[seq(1/coeff(series(arcsin(x/2)^2,x,25),x,2*n),n=1..6)]:
>R:=unapply(rsolve(op(1, listtorec(s,r(m))),r(m)),m);
>[seq(R(m),m=0..8)];

yields, s := [4, 48, 360, 2240, 12600, 66528],

R := m 7→ 8
4m Γ(3/2 +m)(m+ 1)

π1/2Γ(1 +m)
,

where Γ is the Gamma function, and then returns the sequence of
values

[4, 48, 360, 2240, 12600, 66528, 336336, 1647360, 7876440].

We may now use Sloane’s Online Encyclopedia of Integer Sequences18

to reveal that the coefficients are R(n) = 2n2
(
2n
n

)
. More precisely,

sequence A002544 identifies

R(n+ 1)/4 =
(

2n+ 1
n

)
(n+ 1)2.

> [seq(2*n^2*binomial(2*n,n),n=1..8)];

confirms this with

[4, 48, 360, 2240, 12600, 66528, 336336, 1647360].

Next we write
18At www.research.att.com/∼njas/sequences/index.html
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> S:=Sum((2*x)^(2*n)/(2*n^2*binomial(2*n,n)),
n=1..infinity):S=values(S);

which returns
1
2

∞∑
n=1

(2x)2n

n2
(
2n
n

) = arcsin2(x).

That is, we have discovered—and proven if we trust or verify Maple’s
summation algorithm—the desired Maclaurin series.

As prefigured by Ramanujan, it transpires that there is a beautiful
closed form for arcsin2m(x) for all m = 1, 2, . . .. In [55] there is a
discussion of the use of integer relation methods, [44, Chapter 6], to
find this closed form and associated proofs are presented. 2

Here we see an admixture of all of the roles save #3, but above all #2
and #5.

4. Discovery without proof. Donald Knuth19 asked for a closed form
evaluation of:

∞∑
k=1

{
kk

k! ek
− 1√

2π k

}
− 0.084069508727655 . . . . (1.8)

Since about 2000 CE it has been easy to compute 20—or 200—digits
of this sum, and the ‘smart lookup’ facility in the Inverse Symbolic
Calculator(ISC). The ISC at
www.cecm.sfu.ca/projects/ISC/ISCmain.html uses a variety of search
algorithms and heuristics to predict what a number might actually
be. Similar ideas are now implemented as ‘identify’ in Maple and
‘Recognize’ in Mathematica, and are described in [43, 44, 60, 22]. In
this case it rapidly returns

0.084069508727655 ≈ 2
3

+
ζ (1/2)√

2π
.

We thus have a prediction which Maple 9.5 on a 2004 laptop confirms
to 100 places in under 6 seconds and to 500 in 40 seconds. Arguably
we are done. After all we were asked to evaluate the series and we now
know a closed-form answer. Notice also that the ‘divergent’ ζ(1/2)
term is formally to be expected! 2

19Posed as an MAA Problem [149].
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5. Finding Things versus Proving Things 17

We have discovered and tested the result and in so doing gained insight
and knowledge while illustrating #1, #2 and #4. Moreover, as described
in [45, pp. 15], one can also be lead by the computer to a very satisfactory
computer-assisted but very human proof, thus illustrating #6. Indeed, the
first hint is that the computer algebra system returned the value in (1.8)
very quickly even though the series is very slowly convergent. This suggests
the program is doing something intelligent—and it is!

5. A striking conjecture with no known proof strategy is: for
N = 1, 2, 3 · · ·

8N ζ
(
{2, 1}N

) ?= ζ ({2, 1}N ) . (1.9)

Explicitly, the first two cases are

8
∑

n>m>0

(−1)n

n2m
=
∑
n>0

1
n3

and 64
∑

n>m>o>p>0

(−1)n

n2mo2p
=

∑
n>m>0

1
n3m3

.

The notation should now be clear—we use the ‘overbar’ to denote
an alternation. Such alternating sums are called multi-zeta values
(MZV) and positive ones are called Euler sums after Euler who first
studied them seriously. They arise naturally in a variety of modern
fields from combinatorics to mathematical physics and knot theory.

There is abundant evidence amassed since ‘identity’ (1.9) was found
in 1996. For example, very recently Petr Lisonek checked the first
85 cases to 1000 places in about 41 HP hours with only the predicted
round-off error. And the case N=163 was checked in about ten hours.
These objects are very hard to compute naively and require substan-
tial computation as a precursor to their analysis.

Formula (1.9) is the only identification of its type of an Euler sum
with a distinct MZV and we have no idea why it is true. Any similar
MZV proof has been both highly non-trivial and illuminating. To
illustrate how far we are from proof: can just the case n = 2 be
proven symbolically as has been the case for n = 1? 2

This identity was discovered by the British quantum field theorist David
Broadhurst and me during a large hunt for such objects in the mid-nineties.
In this process we discovered and proved many lovely results (see [44, Chap-
ter 2] and [45, Chapter 4]), thereby illustrating #1,#2, #4, #5 and #7.
In the case of ‘identity’ (1.9) we have failed with #6, but we have ruled
out many sterile approaches. It is one of many examples where we can now
have (near) certainty without proof. Another was shown in (1.1).
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Figure 1.2. #6: “The price of metaphor is eternal vigilance.” (Arturo Rosenblueth

& Norbert Wiener, [168])

6. What you draw is what you see. Roots of polynomials with co-
efficients 1 or -1 up to degree 18.

As the quote suggests, pictures are highly metaphorical. The coloura-
tion is determined by a normalized sensitivity of the coefficients of the
polynomials to slight variations around the values of the zeros with
red indicating low sensitivity and violet indicating high sensitivity.
It is hard to see how the structure revealed in the pictures above20

would be seen other than through graphically data-mining. Note the
different shapes—now proven—of the holes around the various roots
of unity.

The striations are unexplained but all re-computations expose them!
And the fractal structure is provably there. Nonetheless different
ways of measuring the stability of the calculations reveal somewhat
different features. This is very much analogous to a chemist discov-
ering an unexplained but robust spectral line. 2

This certainly illustrates #2 and #7, but also #1 and #3.

20We plot all complex zeroes of polynomials with only -1 and 1 as coefficients up to a
given degree. As the degree increases some of the holes fill in—at different rates.
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Figure 1.3. #7: “Visual convergence in the complex plane”

7. Visual Dynamics. In recent continued fraction work, Crandall and
I needed to study the dynamical system t0 := t1 := 1:

tn ←↩
1
n
tn−1 + ωn−1

(
1− 1

n

)
tn−2,

where ωn = a2, b2 for n even, odd respectively, are two unit vectors.
Think of this as a black box which we wish to examine scientifically.
Numerically, all one sees is tn → 0 slowly. Pictorially, we learn
significantly more21. If the iterates are plotted with colour changing
after every few hundred iterates, it is clear that they spiral roman-
candle like in to the origin:

Scaling by
√
n, and coloring even and odd iterates, fine structure

appears. We now observe, predict and validate that the outcomes
depend on whether or not one or both of a and b are roots of unity
(that is, rational multiples of π). Input a p-th root of unity and out
comes p spirals, input a non-root of unity and we see a circle. 2

This forceably illustrates #2 but also #1, #3, #4. It took my coauthors
and me, over a year and 100 pages to convert this intuition into a rigorous
formal proof, [13]. Indeed, the results are technical and delicate enough
that I have more faith in the facts than in the finished argument. In this
sentiment, I am not entirely alone.

21. . . “Then felt I like a watcher of the skies, when a new planet swims into his ken.”
(Chapman’s Homer)



i
i

i
i

i
i

i
i

20 Chapter 1. A Philosophical Introduction

Figure 1.4. #7: The attractors for various |a| = |b| = 1

Carl Friedrich Gauss, who drew (carefully) and computed a great deal,
once noted, I have the result, but I do not yet know how to get it.22 An
excited young Gauss writes: “A new field of analysis has appeared to us,
self-evidently, in the study of functions etc.” (October 1798). It had and
the consequent proofs pried open the doors of much modern elliptic function
and number theory.

My penultimate and more comprehensive example is more sophisticated
and I beg the less-expert analyst’s indulgence. Please consider its structure
and not the details.

8. A full run. Consider the unsolved Problem 10738 from the 1999
American Mathematical Monthly, [45]:

Problem: For t > 0 let

mn(t)
∞∑
k=0

kn exp(−t) t
k

k!

be the nth moment of a Poisson distribution with parameter t. Let
cn(t)mn(t)/n!. Show

a) {mn(t)}∞n=0 is log-convex23 for all t > 0.
b) {cn(t)}∞n=0 is not log-concave for t < 1.

c∗) {cn(t)}∞n=0 is log-concave for t ≥ 1.

Solution. (a) Neglecting the factor of exp(−t) as we may, this re-
duces to

X
k,j≥0

(jk)n+1tk+j

k!j!
≤

X
k,j≥0

(jk)ntk+j

k! j!
k2 =

X
k,j≥0

(jk)ntk+j

k!j!

k2 + j2

2
,

22Likewise, the quote has so far escaped exact isolation!
23A sequence {an} is log-convex if an+1an−1 ≥ a2

n, for n ≥ 1 and log-concave when
the sign is reversed.
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and this now follows from 2jk ≤ k2 + j2.

(b) As

mn+1(t) = t

∞∑
k=0

(k + 1)n exp(−t) t
k

k!
,

on applying the binomial theorem to (k + 1)n, we see that mn(t)
satisfies the recurrence

mn+1(t) = t

n∑
k=0

(
n

k

)
mk(t), m0(t) = 1.

In particular for t = 1, we computationally obtain as many terms of
the sequence

1, 1, 2, 5, 15, 52, 203, 877, 4140 . . .

as we wish. These are the Bell numbers as was discovered again
by consulting Sloane’s Encyclopedia which can also tell us that, for
t = 2, we have the generalized Bell numbers, and gives the exponential
generating functions.24 Inter alia, an explicit computation shows that

t
1 + t

2
c0(t) c2(t) ≤ c1(t)2 = t2

exactly if t ≥ 1, which completes (b).

Also, preparatory to the next part, a simple calculation shows that∑
n≥0

cnu
n = exp (t(eu − 1)) . (1.10)

(c∗)25 We appeal to a recent theorem, [45], due to E. Rodney Can-
field which proves the lovely and quite difficult result below. A self-
contained proof would be very fine.

Theorem 5.1. If a sequence 1, b1, b2, · · · is non-negative and log-
concave then so is the sequence 1, c1, c2, · · · determined by the gener-
ating function equation

∑
n≥0

cnu
n = exp

∑
j≥1

bj
uj

j

 .

24Bell numbers were known earlier to Ramanujan—an example of Stigler’s Law of
Eponymy, [45, p. 60].

25The ‘*’ indicates this was the unsolved component.
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Using equation (1.10) above, we apply this to the sequence bj = t/(j− 1)!
which is log-concave exactly for t ≥ 1. 2

A search in 2001 on MathSciNet for “Bell numbers” since 1995 turned
up 18 items. Canfield’s paper showed up as number 10. Later, Google
found it immediately!

Quite unusually, the given solution to (c) was the only one received
by the Monthly. The reason might well be that it relied on the following
sequence of steps:

A (Question Posed) ⇒ Computer Algebra System ⇒ Interface ⇒

Search Engine ⇒ Digital Library ⇒ Hard New Paper ⇒ (Answer)

Without going into detail, we have visited most of the points elaborated in
Section 4.1. Now if only we could already automate this process!

Jacques Hadamard, describes the role of proof as well as anyone—and
most persuasively given that his 1896 proof of the Prime number theorem
is an inarguable apex of rigorous analysis.

The object of mathematical rigor is to sanction and legitimize
the conquests of intuition, and there was never any other object
for it.26 (Jacques Hadamard)

Of the eight uses of computers instanced above, let me reiterate the
central importance of heuristic methods for determining what is true and
whether it merits proof. I tentatively offer the following surprising example
which is very very likely to be true, offers no suggestion of a proof and
indeed may have no reasonable proof.

9. Conjecture. Consider

(1.11)

xn =
{

16xn−1 +
120n2 − 89n+ 16

512n4 − 1024n3 + 712n2 − 206n+ 21

}
.

The sequence βn = (b16xnc), where (xn) is the sequence of iterates
defined in equation (1.11), precisely generates the hexadecimal expan-
sion of π − 3.

(Here {·} denotes the fractional part and (b·c) denotes the integer
part.) In fact, we know from [44, Chapter 4] that the first million
iterates are correct and in consequence:

∞∑
n=1

‖xn − {16nπ}‖ ≤ 1.46× 10−8 . . . . (1.12)

26Hadamard quoted in [195]. See also [194].
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where ‖a‖ = min(a, 1 − a). By the first Borel-Cantelli lemma this
shows that the hexadecimal expansion of π only finitely differs from
(βn). Heuristically, the probability of any error is very low. 2

6 Conclusions

To summarize, I do argue that reimposing the primacy of mathematical
knowledge over proof is appropriate. So I return to the matter of what
it takes to persuade an individual to adopt new methods and drop time
honoured ones. Aptly, we may start by consulting Kuhn on the matter of
paradigm shift:

The issue of paradigm choice can never be unequivocally settled
by logic and experiment alone. · · · in these matters neither
proof nor error is at issue. The transfer of allegiance from
paradigm to paradigm is a conversion experience that cannot be
forced.27 (Thomas Kuhn)

As we have seen, the pragmatist philosopher John Dewey eloquently
agrees, while Max Planck, [192], has also famously remarked on the diffi-
culty of such paradigm shifts. This is Kuhn’s version28:

And Max Planck, surveying his own career in his Scientific Au-
tobiography, sadly remarked that “a new scientific truth does
not triumph by convincing its opponents and making them see
the light, but rather because its opponents eventually die, and
a new generation grows up that is familiar with it.” (Albert
Einstein, [156, 192])

This transition is certainly already apparent. It is certainly rarer to
find a mathematician under thirty who is unfamiliar with at least one of
Maple, Mathematica or MatLab, than it is to one over sixty five who is
really fluent. As such fluency becomes ubiquitous, I expect a re-balancing
of our community’s valuing of deductive proof over inductive knowledge.

In his ‘23’ “Mathematische Probleme” lecture to the Paris International
Congress in 1900, Hilbert writes29

27In [206], Who Got Einstein’s Office? The answer is Arne Beurling.
28Kuhn is quoting Einstein quoting Planck. There are various renderings of this

second-hand German quotation.
29See the late Ben Yandell’s fine account of the Hilbert Problems and their solvers,

[233]. The written lecture is considerably longer and further ranging that the one deliv-
ered in person.
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Moreover a mathematical problem should be difficult in order
to entice us, yet not completely inaccessible, lest it mock our
efforts. It should be to us a guidepost on the mazy path to
hidden truths, and ultimately a reminder of our pleasure in the
successful solution. (David Hilbert)

Note the primacy given by a most exacting researcher to discovery and
to truth over proof and rigor. More controversially and most of a century
later, Greg Chaitin invites us to be bolder and act more like physicists.

I believe that elementary number theory and the rest of math-
ematics should be pursued more in the spirit of experimental
science, and that you should be willing to adopt new princi-
ples... And the Riemann Hypothesis isn’t self-evident either,
but it’s very useful. A physicist would say that there is ample
experimental evidence for the Riemann Hypothesis and would go
ahead and take it as a working assumption. · · · We may want
to introduce it formally into our mathematical system (Greg
Chaitin, [44, p. 254])

Ten years later:

[Chaitin’s] ”Opinion” article proposes that the Riemann hy-
pothesis (RH) be adopted as a new axiom for mathematics. Nor-
mally one could only countenance such a suggestion if one were
assured that the RH was undecidable. However, a proof of un-
decidability is a logical impossibility in this case, since if RH is
false it is provably false. Thus, the author contends, one may
either wait for a proof, or disproof, of RH—both of which could
be impossible—or one may take the bull by the horns and accept
the RH as an axiom. He prefers this latter course as the more
positive one.(Roger Heath Brown30)

Much as I admire the challenge of Greg Chaitin’s statements, I am not
yet convinced that it is helpful to add axioms as opposed to proving condi-
tional results that start “Assuming the continuum hypothesis” or empha-
size that “without assuming the Riemann hypothesis we are able to show.”
Most important is that we lay our cards on the table. We should explicitly
and honestly indicate when we believe our tools to be heuristic, we should
carefully indicate why we have confidence in our computations—and where
our uncertainty lies— and the like.

On that note, Hardy is supposed to have commented (somewhat dismis-
sively) that Landau, a great German number theorist, would never be the

30Roger Heath-Brown’s Mathematical Review of [72], 2004.
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first to prove the Riemann Hypothesis, but that if someone else did so then
Landau would have the best possible proof shortly after. I certainly hope
that a more experimental methodology will better value independent repli-
cation and honour the first transparent proof31 of Fermat’s last theorem as
much as Andrew Wiles’ monumental proof. Hardy also commented that he
did his best work past forty. Inductive, accretive, tool-assisted mathemat-
ics certainly allows brilliance to be supplemented by experience and—as in
my case—stands to further undermine the notion that one necessarily does
ones best mathematics young.

6.1 Last Words

To reprise, I hope to have made convincing arguments that the traditional
deductive accounting of Mathematics is a largely ahistorical caricature—
Euclid’s millennial sway not withstanding.32 Above all, mathematics is
primarily about secure knowledge not proof, and that while the aesthetic
is central, we must put much more emphasis on notions of supporting
evidence and attend more closely to the reliability of witnesses.

Proofs are often out of reach—but understanding, even certainty, is
not. Clearly, computer packages can make concepts more accessible. A
short list includes linear relation algorithms, Galois theory, Groebner bases,
etc. While progress is made “one funeral at a time”33, in Thomas Wolfe’s
words “you can’t go home again” and as the co-inventor of the Fast Fourier
transform properly observed

Far better an approximate answer to the right question, which
is often vague, than the exact answer to the wrong question,
which can always be made precise. (J. W. Tuckey, 1962)

31If such should such exist and as you prefer be discovered or invented.
32Most of the cited quotations are stored at jborwein/quotations.html
33This grim version of Planck’s comment is sometimes attributed to Niels Bohr but

this seems specious. It is also spuriously attributed on the web to Michael Milken, and
I imagine many others
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Figure 1.5. Coxeter’s favourite 4D polyhedron
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Chapter 2

Algorithms for Experimental
Mathematics, Part One

Many different computational methods have been used in experimental
mathematics. Just a few of the more widely-used methods are the following:

1. Symbolic computation for algebraic and calculus manipulations.

2. Integer-relation methods, especially the “PSLQ” algorithm.

3. High-precision integer and floating-point arithmetic.

4. High-precision evaluation of integrals and infinite series summations.

5. The Wilf-Zeilberger algorithm for proving summation identities.

6. Iterative approximations to continuous functions.

7. Identification of functions based on graph characteristics.

8. Graphics and visualization methods targeted to mathematical ob-
jects.

In this chapter and in Chapter 2 we will present an overview of some
of these methods, and give examples of how they have been used in some
real-world experimental math research. We will focus on items 2, 3, 4 and
5, mainly because the essential ideas can be explained more easily than,
say, the mechanics behind symbolic computation or advanced scientific
visualization.

27
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1 High-Precision Arithmetic

We have already seen numerous examples of high-precision numerical calcu-
lations. Indeed, such computations frequently arise in experimental math-
ematics. We shall focus here on high-precision floating-point computa-
tion. High-precision integer computation is also required in some aspects
of mathematical computation, particularly in prime number computations
and symbolic manipulations, but as we shall see, many of the algorithms
described below are equally applicable to both types of arithmetic. An
excellent presentation of high-precision integer arithmetic is given in [90].

By “arbitrary precision” we mean a software facility that permits one to
adjust the level of numeric precision over a wide range, typically extending
to the equivalent of thousands or possibly even millions of decimal digits.
An extended dynamic range is almost always included as well, since such
computations often require a larger range than the 10±308 range available
with the IEEE double format.

For these levels of precision, the best approach is as follows. Define an
arbitrary precision datum to be an (n+4)-long string of words. The sign of
the first word is the sign ± of the datum, and the absolute value of the first
word is n, the number of mantissa words used. The second word contains an
exponent p. Words three through n+2 are the nmantissa wordsmi, each of
which has an integer value between 0 and 2b−1, or in other words b bits of
the mantissa. Finally, words n+3 and n+4 are reserved as “scratch” words
for various arithmetic routines. One can optionally designate an additional
word, placed at the start of the data structure, to specify the amount of
memory available for this datum, so as to avoid memory overwrite errors
during execution. The value A represented by this datum is

A = ±(2pbm1 + 2(p−1)bm2 + 2(p−2)bm3 + · · ·+ 2(p−n+1)bmn),

where it is assumed that m1 6= 0 and mn 6= 0 for nonzero A. Zero is
represented by a string consisting of a sign word and an exponent word,
both of which are zero.

There are several variations possible with this general design. One ap-
proach is to utilize 64-bit IEEE floating-point words, with b48 mantissa
bits per word. Addition operations can easily be performed by adding the
two vectors of mantissas (suitably shifted to adjust for differences in ex-
ponent), and then releasing carries beginning from the last mantissa word
back to the first. Multiplication and division can be performed by straight-
forward adaptations of the long multiplication and long division schemes
taught in grammar school, performed modulo 248 instead of modulo 10.
The multiplication of two individual 48-bit entities can be performed by
simple algorithms, or, on some systems, by using the “fused multiply-add”
hardware instruction. Up to 25 = 32 such products can be accumulated
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before needing to release carries, since 5+48 = 53, and integers as large as
253 can be accommodated exactly in a 64-bit IEEE word. This approach
was taken in the software package described in [20], and available at the
URL

http://www.experimentalmath.info

This software includes C++ and Fortran-90 translation modules, so that
these functions can be invoked from ordinary programs with only minor
modifications to the source code.

Another approach is to utilize arrays of integer data, with integer arith-
metic operations, since all values in the data structure above are whole
numbers. One disadvantage of this approach is it is hard to write programs
that are both fast and easily portable to different systems. Nonetheless,
some integer-based implementations have been very successful, notably the
GNU package, available at the URL

http://www.gnu.org/software/gmp/gmp.html

Either way, fast Fourier transforms (FFTs) can be used to accelerate arith-
metic for higher levels of precision (approximately 1000 digits or more).
The reason for the savings is that an FFT calculation scales only as n log2 n
in computation al cost, compared with the n2 for conventional methods
(where n is the precision in digits or words).

2 Integer Relation Detection

Integer relation detection methods are employed very often in experimental
math applications to recognize a mathematical constant whose numerical
value can be computed to at least moderately high precision, and also to
discover relations between a set of computed numerical values.

For a given real vector (x1, x2, · · · , xn), an integer relation algorithm
is a computational scheme that either finds the n integers (a1, a2, · · · , an),
not all zero, such that a1x1 + a2x2 + · · · anxn = 0 or else establishes that
there is no such integer vector within a ball of some radius about the origin,
where the metric is the Euclidean norm (a2

1 + a2
2 + · · ·+ a2

n)
1/2.

At the present time, the best known integer relation algorithm is the
PSLQ algorithm [113] of Helaman Ferguson. Another widely used integer
relation detection scheme involves the Lenstra-Lenstra-Lovasz (LLL) lattice
reduction algorithm. The PSLQ algorithm, together with related lattice
reduction schemes such as LLL, was recently named one of ten “algorithms
of the century” by the publication Computing in Science and Engineering
[11]. In addition to possessing good numerical stability, PSLQ is guaranteed
to find a relation in a polynomially bounded number of iterations. The
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name “PSLQ” derives from its usage of a partial sum of squares vector and
a LQ (lower-diagonal-orthogonal) matrix factorization.

A simplified formulation of the standard PSLQ algorithm, mathemat-
ically equivalent to the original formulation, is given in [19][44, pg 230–
234]. These references also describe another algorithm, called “multi-pair”
PSLQ, which is well-suited for parallel processing, and which runs faster
even on a one-CPU system than the standard PSLQ. Two-level and three-
level variants of both standard PSLQ and multi-pair PSLQ, which econo-
mize on run time by performing most iterations using ordinary 64-bit IEEE
arithmetic, are described in [19].

High-precision arithmetic must be used for almost all applications of
integer relation detection methods, using PSLQ or any other algorithm.
This stems from the fact that if one wishes to recover a relation of length
n, with coefficients of maximum size d digits, then the input vector x
must be specified to at least nd digits, and one must employ floating-point
arithmetic accurate to at least nd digits, or else the true solution will be
lost in a sea of numerical artifacts. PSLQ typically recovers relations when
the input data is specified to at least 10 or 15 percent greater precision
than this minimum value, and when a working precision of at least this
level is used to implement PSLQ.

PSLQ operates by constructing a series of matrices An, such that the
entries of the vector yn = A−1

n x steadily decrease in size. At any given it-
eration, the largest and smallest entries of yn usually normally differ by no
more than two or three orders of magnitude. When a relation is detected
by the algorithm, the smallest entry of the yn vector abruptly decreases
to roughly the “epsilon” of the working precision (i.e., 10−p, where p is
the precision level in digits), and the desired relation is given by the corre-
sponding column of A−1

n . See Figure 2.1, which shows this behavior for a
typical PSLQ computation.

The detection threshold in the termination test for PSLQ is typically
set to be a few orders of magnitude greater than the epsilon value, in order
to allow for reliable relation detection in the presence of some numerical
roundoff error. The ratio between the smallest and the largest entry of the
vector A−1x when a relation is detected can be taken as a “confidence level”
that the relation is a true relation and not an artifact of insufficient numeric
precision. Very small ratios at detection, such as 10−100, almost certainly
denote a true relation (although, of course, such results are experimental
only, and do not constitute rigorous proof).
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Figure 2.1. Smallest entry of yn = A−1
n x in a typical PSLQ run, as a function of

n.

3 Illustrations and Examples

3.1 The BBP Formula for Pi

Perhaps the best-known application of PSLQ is the 1995 discovery, by
means of a PSLQ computation, of the “BBP” formula for π:

π =
∞∑
k=0

1
16k

[
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

]
. (2.1)

This formula permits one to calculate directly binary or hexadecimal digits
beginning at the nth digit, without the need to calculate any of the first
n − 1 digits, using a simple algorithm and standard machine arithmetic
[18].

The genesis of this discovery was the realization, by Peter Borwein and
Simon Plouffe, that individual binary digits of log 2 could be calculated, by
applying this well-known classical formula:

log 2 =
∞∑
k=0

1
k2k

. (2.2)

Suppose we wish to compute a few binary digits beginning at position d+1
for some integer d > 0. This is equivalent to calculating {2d log 2}, where
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{·} denotes fractional part. Thus we can write

{2d log 2} =

{{
d∑
k=0

2d−k

k

}
+

∞∑
k=d+1

2d−k

k

}

=

{{
d∑
k=0

2d−k mod k
k

}
+

∞∑
k=d+1

2d−k

k

}
. (2.3)

We are justified in inserting “mod k” in the numerator of the first summa-
tion, because we are only interested in the fractional part of the quotient
when divided by k.

Now the key observation is this: The numerator of the first sum in (2.3),
namely 2d−k mod k, can be calculated very rapidly by means of the binary
algorithm for exponentiation, performed modulo k.

The binary algorithm for exponentiation is merely the formal name
for the observation that exponentiation can be economically performed by
means of a factorization based on the binary expansion of the exponent.
For example, we can write 317((((32)2)2)2) ·3 = 129140163, thus producing
the result in only 5 multiplications, instead of the usual 16. If we are
only interested in the result modulo 10, then we can calculate ((((32 mod
10)2 mod 10)2 mod 10)2 mod 10) · 3 mod 10)3, and we never have to store
or operate on integers larger than 81. Indeed, this particular calculation
can be done in one’s head.

Since that we can very rapidly evaluate each term of the first summation
in (2.3), and since the second summation can be truncated after just a
few terms, it is clear one can quickly calculate, say, the first 40 digits of
the binary expansion of log 2, beginning with some position d + 1, where
d < 107, using only standard IEEE 64-bit floating-point arithmetic. If one
uses 128-bit floating-point arithmetic, or “double-double” arithmetic, then
one can calculate more digits beginning at the desired position d+ 1, and
this calculation is reliable for d ≤ 1015.

After this discovery by Peter Borwein and Simon Plouffe, they immedi-
ately began to investigate whether individual digits of π could be computed
in this manner. It is clear that we can employ this technique on any con-
stant that can be written using a formula of the form

α =
∞∑
n=1

p(n)
bnq(n)

,

where b > 1 is an integer and p and q are polynomials with integer coeffi-
cients, with q having no zeroes at positive integer arguments. However, at
this time (1995), there were no known formulas for π of this form. So they
began to investigate (with the help of Bailey’s PSLQ computer program)
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Hex Digits Beginning
Position at This Position
106 26C65E52CB4593
107 17AF5863EFED8D
108 ECB840E21926EC
109 85895585A0428B
1010 921C73C6838FB2
1011 9C381872D27596
1.25× 1012 07E45733CC790B
2.5× 1014 E6216B069CB6C1

Table 2.1. Computed hexadecimal digits of π.

whether π was a linear combination of other constants that are of this form.
These computer runs were redone numerous times over the course of two
or three months, as new constants of the requisite form were found in the
literature. Eventually, the BBP formula for π was discovered.

Table 2.1 gives some results of calculations that have been done in this
manner. The last-listed result, which is tantamount to a computation of the
one-quadrillionth binary digit of π, was performed on over 1,700 computers
worldwide, using software written by Colin Percival.

The BBP formula for π has even found a practical application—it is now
used in the g95 Fortran compiler as part of the procedure for evaluating
certain transcendental functions.

3.2 Bifurcation Points in Chaos Theory

One application of integer relation detection methods is to find the minimal
polynomial of an algebraic constant. Note that if α satisfies a polynomial
a0 + a1t + · · · + an = 0, then we can discover this polynomial simply by
computing, to high precision, the values of 1, α, α2, ·, αn, and then applying
PSLQ or some other integer relation scheme to the resulting (n + 1)-long
vector.

The chaotic iteration xn+1 = rxn(1 − xn) has been studied since the
early days of chaos theory in the 1950s. It is often called the “logistic
iteration,” since it mimics the behavior of an ecological population that, if
its growth one year outstrips its food supply, often falls back in numbers
for the following year, thus continuing to vary in a highly irregular fashion.
When r is less than one iterates of the logistic iteration converge to zero.
For r in the range 1 < r < B1 = 3 iterates converge to some nonzero
limit. If B1 < r < B2 = 1 +

√
6 = 3.449489 . . ., the limiting behavior

bifurcates—every other iterate converges to a distinct limit point. For
r with B2 < r < B3 iterates hop between a set of four distinct limit
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Figure 2.2. Bifurcation in the logistic iteration.

points; when B3 < r < B4, they select between a set of eight distinct
limit points; this pattern repeats until r > B∞ = 3.569945672 . . ., when
the iteration is completely chaotic (see Figure 2.2). The limiting ratio
limn(Bn − Bn−1)/(Bn+1 − Bn) = 4.669201 . . . is known as Feigenbaum’s
delta constant.

It is fairly easy to see that all of theseB constants are algebraic numbers,
but the bounds one obtains on the degree are often rather large, and thus
not very useful. Thus one may consider using PSLQ or some other integer
relation algorithm to discover their minimal polynomials.

A highly accurate numerical value of B3, for instance, can be obtained
using a relatively straightforward search scheme. Let f8(r, x) be the eight-
times iterated evaluation of rx(1−x), and let g8(r, x) = f8(r, x)−x. Imag-
ine a three-dimensional graph, where r ranges from left to right and x
ranges from bottom to top (as in Figure 2.2), and where g8(r, x) is plotted
in the vertical (out-of-plane) dimension. Given some initial r slightly less
than B3, we compute a “comb” of function values at n evenly spaced x
values (with spacing hx) near the limit of the iteration xn+1 = f8(r, xn).
In our implementation, we use n = 12, and we start with r = 3.544, x =
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0.364, hr = 10−4, and hx = 5 × 10−4. With this construction, the comb
has n/2 negative function values, followed by n/2 positive function values.
We then increment r by hr and re-evaluate the “comb,” continuing in this
fashion until two sign changes are observed among the n function values
of the “comb.” This means that a bifurcation occurred just prior to the
current value of r, so we restore r to its previous value (by subtracting
hr), reduce hr, say by a factor of four, and also reduce the hx roughly by
a factor of 2.5. We continue in this fashion, moving the value of r and
its associated “comb” back and forth near the bifurcation point with pro-
gressively smaller intervals hr. The center of the comb in the x direction
must be adjusted periodically to ensure that n/2 negative function values
are followed by n/2 positive function values, and the spacing parameter hx
must be adjusted as well to ensure that two sign changes are disclosed when
this occurs. We quit when the smallest of the n function values is within
two or three orders of magnitude of the “epsilon” of the arithmetic (e.g.,
for 2000-digit working precision, “epsilon” is 10−2000). The final value of
r is then the desired value B3, accurate to within a tolerance given by the
final value of rh. With 2000-digit working precision, our implementation
of this scheme finds B3 to 1330-digit accuracy in about five minutes on a
2004-era computer. The first hundred digits are as follows:

B3 = 3.54409035955192285361596598660480454058309984544457367545
78125303058429428588630122562585664248917999626 . . .

With even a moderately accurate value of r in hand (at least two hun-
dred digits or so), one can use a PSLQ program to check to see whether r
is an algebraic constant. When n ≥ 12, the relation

0 = r12 − 12r11 + 48r10 − 40r9 − 193r8 + 392r7 + 44r6 + 8r5 − 977r4

−604r3 + 2108r2 + 4913 (2.4)

can be recovered.
The significantly more challenging problem of computing and analyzing

the constant B4 = 3.564407266095 · · · is discussed in [19]. In this study,
conjectural reasoning suggested that B4 might satisfy a 240-degree poly-
nomial, and, in addition, that α = −B4(B4− 2) might satisfy a 120-degree
polynomial. The constant α was then computed to over 10,000-digit accu-
racy, and an advanced three-level multi-pair PSLQ program was employed,
running on a parallel computer system, to find an integer relation for the
vector (1, α, α2, · · · , α120). A numerically significant solution was obtained,
with integer coefficients descending monotonically from 25730, which is a
73-digit integer, to the final value, which is one (a striking result that is
exceedingly unlikely to be a numerical artifact). This experimentally dis-
covered polynomial was recently confirmed in a large symbolic computation
[154].
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Additional information on the Logistic Map is available at

http://mathworld.wolfram.com/LogisticMap.html

.

3.3 Sculpture

The PSLQ algorithm, which was discovered in 1993 by Helaman Ferguson.
This is certainly a signal accomplishment—for example, the PSLQ algo-
rithm (with associated lattice reduction algorithms) was recently named
one of ten “algorithms of the century” by Computing in Science and En-
gineering [11]. Nonetheless Ferguson is even more well-known for his nu-
merous mathematics-inspired sculptures, which grace numerous research
institutes in the United States. Photos and highly readable explanations
of these sculptures can be seen in a lovely book written by his wife, Claire
[112]. Together, the Fergusons recently won the 2002 Communications
Award, bestowed by the Joint Policy Board of Mathematics.

Ferguson notes that the PSLQ algorithm can be thought of as a n-
dimension extension of the Euclidean algorithm, and is, like the Euclidean
scheme, fundamentally a “subtractive” algorithm. As Ferguson explains,
“It is also true that my sculptural form of expression is subtractive: I get
my mathematical forms by direct carving of stone.” [200]

There is a remarkable, as well as entirely unanticipated, connection
between Ferguson’s PSLQ algorithm and one of Ferguson’s sculptures. It
is known that the volumes of complements of certain knot figures (which
volumes in R3 are infinite) are finite in hyperbolic space, and sometimes
are given by certain explicit formulas. This is not true of all knots. Many
of these hyperbolic complements of knots correspond to certain discrete
quotient subgroups of matrix groups.

One of Ferguson’s well-known sculptures is the “Figure-Eight Comple-
ment II” (see Figure 2.3). It has been known for some time that the
hyperbolic volume V of the figure-eight knot complement is given by the
formula

V = 2
√

3
∞∑
n=1

1
n
(
2n
n

) 2n−1∑
k=n

1
k

(2.5)

= 2.029883212819307250042405108549 . . . (2.6)

In 1998, British physicist David Broadhurst conjectured that V/
√

3 is a
rational linear combination of

Cj =
∞∑
n=0

(−1)n

27n(6n+ j)2
. (2.7)
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Figure 2.3. Ferguson’s “Figure-Eight Knot Complement” sculpture

Indeed, it is, as Broadhurst [66] found using a PSLQ program:

V =
√

3
9

∞∑
n=0

(−1)n

27n

(
18

(6n+ 1)2
− 18

(6n+ 2)2
− 24

(6n+ 3)2

− 6
(6n+ 4)2

+
2

(6n+ 5)2

)
. (2.8)

You can verify this yourself, using for example the Mathematician’s
Toolkit, available at

http://www.experimentalmath.info

Just type the following lines of code:

v = 2 * sqrt[3] * sum[1/(n * binomial[2*n,n]) * sum[1/k, \

{k, n, 2*n-1}], {n, 1, infinity}]

pslq[v/sqrt[3], table[sum[(-1)^n/(27^n*(6*n+j)^2), \

{n, 0, infinity}], {j, 1, 6}]]

When this is done you will recover the solution vector (9,−18, 18, 24, 6,
−2, 0). A proof that formula (2.8) holds, together with a number of other
identities for V , is given at the end of this chapter in [44, pg xx]. This
proof, by the way, is a classic example of experimental methodology, in
that it relies on “knowing” ahead of time that the formula holds.
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Ferguson comments that the discovery of this BBP-type expression for
V is a “major advance toward understanding the figure-eight knot com-
plement volume.” Accordingly, he has carved Broadhurst’s formula on the
figure-eight knot complement sculptures commissioned by the Clay Math-
ematics Institute, both the Inner Mongolian black granite piece and the
smaller bronzes (the Clay Math Award pieces). As he explains, “Finally the
subtractive sculpture and the subtractive algorithm have come together.”

3.4 Euler Sums

In April 1993, Enrico Au-Yeung, an undergraduate at the University of
Waterloo, brought to the attention of one of us (Borwein) the curious result

∞∑
k=1

(
1 +

1
2

+ · · ·+ 1
k

)2

k−2 = 4.59987 . . . (2.9)

≈ 17
4
ζ(4) =

17π4

360
. (2.10)

The function ζ(s) in (2.10) is the classical Riemann zeta-function:

ζ(s) =
∞∑
n=1

1
ns
.

Au-Yeung had computed the sum in (2.10) to 500,000 terms, giving an
accuracy of five or six decimal digits. Suspecting that his discovery was
merely a modest numerical coincidence, Borwein sought to compute the
sum to a higher level of precision. Using Fourier analysis and Parseval’s
equation, he obtained

1
2π

∫ π

0

(π − t)2 log2(2 sin
t

2
) dt =

∞∑
n=1

(
∑n
k=1

1
k )2

(n+ 1)2
. (2.11)

The series on the right of (2.11) permits one to evaluate (2.10), while
the integral on the left can be computed using the numerical quadrature
facility of Mathematica or Maple. When he did this, Borwein was surprised
to find that the conjectured identity holds to more than thirty digits.

The summation in (2.11) is a special case of the multivariate zeta-
function, defined as

ζ(s1, s2, · · · , sk) =
∑

n1>n2>···>nk>0

k∏
j=1

n
−|sj |
j σ

−nj

j ,

where the s1, s2, . . . , sk are nonzero integers and σjsignum(sj). A fast
method for computing such sums, based on Hölder convolution is discussed
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in [52], and is discussed further in Chapter 3. For the time being, it suffices
to note that the scheme is implemented in EZFace+, an online tool available
at the URL

http://www.cecm.sfu.ca/projects/ezface+

We will illustrate its application to one specific case, namely the analytic
identification of the sum

S2,3 =
∞∑
k=1

(
1− 1

2
+ · · ·+ (−1)k+1 1

k

)2

(k + 1)−3. (2.12)

Expanding the squared term in (2.12), we have

∑
0<i,j<k

k>0

(−1)i+j+1

ijk3 = −2 ζ(3,−1,−1) + ζ(3, 2). (2.13)

Evaluating this in EZFace+ we quickly obtain

C = 0.1561669333811769158810359096879881936857767098403038729
57529354497075037440295791455205653709358147578 . . . .

Based on our experience with other multivariate zeta constants, we con-
jectured that this constant satisfies a rational linear relation involving the
following constants: π5, π4 log(2), π3 log2(2), π2 log3(2), π log4(2), log5(2),
π2ζ(3), π log(2)ζ(3), log2(2)ζ(3), ζ(5),Li5(1/2). Note that each of these con-
stants can be seen to be have “degree” five. The result is quickly found to
be

C = 4Li5

(
1
2

)
− 1

30
log5(2)− 17

32
ζ(5)− 11

720
π4 log(2) +

7
4
ζ(3) log2(2)

+
1
18
π2 log3(2)− 1

8
π2ζ(3).

This result has been proved in various ways, both analytic and algebraic.
Indeed, all evaluations of sums of the form ζ(±a1,±a2, · · · ,±am) with
weight w =

∑
k am, (k < 8), as in (2.13) have been established.

High precision calculations of many of these sums, together with consid-
erable investigations involving heavy use of Maple’s symbolic manipulation
facilities, eventually yielded numerous new, rigorously established results
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[42]. A few examples include:

∞∑
k=1

(
1 +

1
2

+ · · ·+ 1
k

)2

(k + 1)−4 =
37

22680
π6 − ζ2(3),

∞∑
k=1

(
1 +

1
2

+ · · ·+ 1
k

)3

(k + 1)−6 =

ζ3(3) +
197
24

ζ(9) +
1
2
π2ζ(7)− 11

120
π4ζ(5)− 37

7560
π6ζ(3),

∞∑
k=1

(
1− 1

2
+ · · ·+ (−1)k+1 1

k

)2

(k + 1)−3 =

4 Li5

(
1
2

)
− 1

30
log5(2)− 17

32
ζ(5)− 11

720
π4 log(2) +

7
4
ζ(3) log2(2)

+
1
18
π2 log3(2)− 1

8
π2ζ(3), (2.14)

where Lin(x) =
∑
k>0 x

k/kn denotes the polylogarithm function.

3.5 Quantum Field Theory

In another recent development, David Broadhurst (who discovered the iden-
tity (2.8) for Ferguson’s Clay Math Award sculpture) has found, using
similar methods, that there is an intimate connection between Euler sums
and constants resulting from evaluation of Feynman diagrams in quantum
field theory [67, 68]. In particular, the renormalization procedure (which
removes infinities from the perturbation expansion) involves multiple zeta
values. He has shown [66], using PSLQ computations, that in each of ten
cases with unit or zero mass, the finite part of the scalar 3-loop tetrahe-
dral vacuum Feynman diagram reduces to four-letter “words” that rep-
resent iterated integrals in an alphabet of seven “letters” comprising the
single 1-form Ω = dx/x and the six 1-forms ωk = dx/(λ−k − x), where
λ = (1 +

√
−3)/2 is the primitive sixth root of unity, and k runs from 0 to

5. A four-letter word here is a four-dimensional iterated integral, such as

U = ζ(Ω2ω3ω0) =∫ 1

0

dx1

x1

∫ x1

0

dx2

x2

∫ x2

0

dx3

(−1− x3)

∫ x3

0

dx4

(1− x4)

∑
j>k>0

(−1)j+k

j3k
.

There are 74 such four-letter words. Only two of these are primitive terms
occurring in the 3-loop Feynman diagrams: U , above, and

V = Re[ζ(Ω2ω3ω1)] =
∑
j>k>0

(−1)j cos(2πk/3)
j3k

.
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Figure 2.4. The ten tetrahedral configurations.

The remaining terms in the diagrams reduce to products of constants found
in Feynman diagrams with fewer loops. These ten cases are shown in
Figure 2.4. In these diagrams, dots indicate particles with nonzero rest
mass. The formulas that have been found, using PSLQ, for the cor-
responding constants are given in Table 2.2. In the table the constant
C =

∑
k>0 sin(πk/3)/k2.

4 Definite Integrals and Infinite Series Summations

One particularly useful application of integer relation computations is to
evaluate definite integrals and sums of infinite series by means of numerical
calculations. We use one of various methods to obtain a numerical value
for the integral or summation, then try to identify this value by means of

V1 = 6ζ(3) + 3ζ(4)
V2A = 6ζ(3)− 5ζ(4)
V2N = 6ζ(3)− 13

2 ζ(4)− 8U
V3T = 6ζ(3)− 9ζ(4)
V3S = 6ζ(3)− 11

2 ζ(4)− 4C2

V3L = 6ζ(3)− 15
4 ζ(4)− 6C2

V4A = 6ζ(3)− 77
12ζ(4)− 6C2

V4N = 6ζ(3)− 14ζ(4)− 16U
V5 = 6ζ(3)− 469

27 ζ(4) + 8
3C

2 − 16V
V6 = 6ζ(3)− 13ζ(4)− 8U − 4C2

Table 2.2. Formulas found by PSLQ for the ten tetrahedral diagrams.
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integer relation methods.
In many cases, one can apply online tools (which employ integer relation

techniques combined with large-scale table-lookup schemes) to “blindly”
identify numerical values. One of the most popular and effective tools is
the Inverse Symbolic Computation (ISC) tool, available at

http://www.cecm.sfu.ca/projects/ISC

In other cases, these tools are unable to identify the constant, and
custom-written programs must be used, which typically take advantage of
knowledge that certain sums are likely to involve a certain class of con-
stants.

As one example, we were inspired by a recent problem in the American
Mathematical Monthly [5]. By using one of the quadrature routines to
be described in the next section, together with the ISC tool and a PSLQ
integer relation detection program, we found that if C(a) is defined by

C(a) =
∫ 1

0

arctan(
√
x2 + a2) dx√

x2 + a2(x2 + 1)
, (2.15)

then

C(0) = π log 2/8 +G/2

C(1) = π/4− π
√

2/2 + 3
√

2 arctan(
√

2)/2

C(
√

2) = 5π2/96, (2.16)

where G =
∑
k≥0(−1)k/(2k+1)2 is Catalan’s constant. The third of these

results is the result from the Monthly. These particular results then led to
the following general result, among others:∫ ∞

0

arctan(
√
x2 + a2) dx√

x2 + a2(x2 + 1)
= (2.17)

π

2
√
a2 − 1

[
2 arctan(

√
a2 − 1)− arctan(

√
a4 − 1)

]
.

We will discuss techniques for computing definite integrals and sums of
series to high precision in Chapter 3. For the time being, we simply note
that both Mathematica and Maple have incorporated some reasonably good
numerical facilities for this purpose, and it is often sufficient to rely on these
packages when numerical values are needed.
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5 Computation of Multivariate Zeta Constants

One class of mathematical constants that has been of particular interest to
experimental mathematicians in the past few years are multivariate zeta
constants. Research in this arena has been facilitated by the discovery
of methods that permit the computation of these constants to high preci-
sion. While Euler-Maclaurin-based schemes can be used (and in fact were
used) in these studies, they are limited to 2-order sums. We present here
an algorithm that permits even high-order sums to be evaluated to hun-
dreds or thousands of digit accuracy. We will limit our discussion here to
multivariate zeta constants of the form

ζ(s1, s2, · · · , sn) =
∑

n1>n2>···>nk

1
ns11 n

s2
2 · · ·n

sk

k

, (2.18)

for positive integers sk and nk, although in general the technique we de-
scribe here has somewhat broader applicability.

This scheme is as follows [52]. For 1 ≤ j ≤ m, define the numeric strings

aj = {sj + 2, {1}rj
, sj+1, {1}rj+1 , · · · , sm + 2, {1}rm

} (2.19)
bj = {rj + 2, {1}sj

, rj−1, {1}sj−1 , · · · , r1 + 2, {1}s1}, (2.20)

where by the notation {1}n, we mean n repetitions of 1. For convenience,
we will define am+1 and b0 to be the empty string.

Define

δ(s1, s2, · · · , sk) =
k∏
j=1

 ∞∑
νj1

2−νj

 k∑
i=j

νi

−sj
 . (2.21)

Then we have

ζ(am) =
m∑
j=1

[
sj+1∑
t=0

δ(sj + 2− t, {1}rj , aj+1)δ({1}t, bj−1)

+
rj∑
u=1

δ({1}u, aj+1)δ(rj + 2− v, 1sj , bj−1)

]
+ δ(bm).(2.22)

See the discussion in Chapter 3 of [45] for further details. An online tool
that implements this procedure is available at

http://www.cecm.sfu.ca/projects/ezface+

This procedure has also been implemented as part of the Experimental
Mathematician’s Toolkit, available at

http://www.experimentalmath.info
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6 Ramanujan-Type Elliptic Series

Truly new types of infinite series formulas, based on elliptic integral ap-
proximations, were discovered by Srinivasa Ramanujan (1887–1920) around
1910, but were not well known (nor fully proven) until quite recently when
his writings were widely published. They are based on elliptic functions
and are described at length in [46]. One of these is the remarkable formula

1
π

=
2
√

2
9801

∞∑
k=0

(4k)! (1103 + 26390k)
(k!)43964k

. (2.23)

Each term of this series produces an additional eight correct digits in the
result. When Gosper used this formula to compute 17 million digits of π in
1985, and it agreed to many millions of places with the prior estimates, this
concluded the first proof of (2.23), as described in [46]. Actually, Gosper first
computed the simple continued fraction for π, hoping to discover some new
things in its expansion, but found none. At about the same time, David and
Gregory Chudnovsky found the following rational variation of Ramanujan’s
formula. It exists because

√
−163 corresponds to an imaginary quadratic

field with class number one:

1
π

= 12
∞∑
k=0

(−1)k (6k)! (13591409 + 545140134k)
(3k)! (k!)3 6403203k+3/2

. (2.24)

Each term of this series produces an additional 14 correct digits. The
Chudnovskys implemented this formula using a clever scheme that enabled
them to use the results of an initial level of precision to extend the calcu-
lation to even higher precision. They used this in several large calculations
of π, culminating with a record computation (in 1994) to over four billion
decimal digits. Their remarkable story was compellingly told by Richard
Preston in a prizewinning New Yorker article “The Mountains of Pi” [199].

While these Ramanujan and Chudnovsky series are in practice consid-
erably more efficient than classical formulas, they share the property that
the number of terms needed increases linearly with the number of digits de-
sired: if you wish to compute twice as many digits of π, you must evaluate
twice as many terms of the series. Relatedly, the Ramanujan-type series

1
π

=
∞∑
n=0

((
2n
n

)
16n

)3
42n+ 5

16
(2.25)

allows one to compute the billionth binary digit of 1/π, or the like, without
computing the first half of the series, and is a foretaste of our discussion of
Borwein-Bailey-Plouffe (or BBP) formulas.
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In some recent papers, Guillera has exhibited several new Ramanujan-
style series formulas for reciprocal powers of π, including the following
[128, 129, 130]:

128
π2

=
∞∑
n=0

(−1)nr(n)5(13 + 180n+ 820n2)
(

1
32

)2n

(2.26)

32
π2

=
∞∑
n=0

(−1)nr(n)5(1 + 8n+ 20n2)
(

1
2

)2n

(2.27)

32
π3

=
∞∑
n=0

r(n)7(1 + 14n+ 76n2 + 168n3)
(

1
32

)2n

. (2.28)

where we define the function r(n) as follows:

r(n) =
(1/2)n
n!

=
1/2 · 3/2 · · · · · (2n− 1)/2

n!
=

Γ(n+ 1/2)√
π Γ(n+ 1)

.

Guillera proved (2.26) and (2.27) using Wilf-Zeilberger’s method described
in Chapter 3. He ascribes series (2.28) to Gourevich who also found it
using integer relation methods. Guillera also provides other series for 1/π2

based on other Gamma-function values as in (2.23) and (2.24) but for our
experiments we restrict ourselves to r(n).

6.1 Experiments with Ramanujan-Type Series

We have attempted to do a more thorough experimental search for identities
of this general type. In particular, we searched for formulas of either of the
two forms

c

πm
=

∞∑
n=0

r(n)2m+1(p0 + p1n+ · · ·+ pmn
m)α2n (2.29)

c

πm
=

∞∑
n=0

(−1)nr(n)2m+1(p0 + p1n+ · · ·+ pmn
m)α2n. (2.30)

Here c is some integer linear combination of the constants (di, 1 ≤ i ≤ 34):

1, 21/2, 21/3, 21/4, 21/6, 41/3, 81/4, 321/6, 31/2, 31/3, 31/4, 31/6, 91/3,

271/4, 2431/6, 51/2, 51/4, 1251/4, 71/2, 131/2, 61/2, 61/3, 61/4, 61/6,

7, 361/3, 2161/4, 77761/6, 121/4, 1081/4, 101/2, 101/4, 151/2.

The polynomial coefficients (pk, 1 ≤ k ≤ m) in (2.29) and (2.30) are each
some integer linear combination of the constants (qi, 1 ≤ i ≤ 11):

1, 21/2, 31/2, 51/2, 61/2, 71/2, 101/2, 131/2, 141/2, 151/2, 301/2.
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Note that the linear combination chosen for a given pk may be different
from that chosen for any of the others. The constant α in (2.29) and (2.30)
is chosen from

1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,
√

5− 2, (2−
√

3)2,

5
√

13− 18, (
√

5− 1)4/128, (
√

5− 2)4, (21/3 − 1)4/2, 1/(2
√

2),

(
√

2− 1)2, (
√

5− 2)2, (
√

3−
√

2)4.

This list of α constants was taken from a table on page 172 of [46].

These searches were done using a two-level PSLQ integer relation find-
ing program, with 1000-digit precision. Each selection of m and α consti-
tuted one separate integer relation search. In particular, for a fixed m and
α in (2.29), we calculated the [34 + 11(m+ 1)]-long set of real numbers

d1, d2, · · · , d34,

q0

∞∑
n=0

r(n)2m+1α2n, q1

∞∑
n=0

r(n)2m+1α2n, · · · , q11
∞∑
n=0

r(n)2m+1α2n,

q1

∞∑
n=0

r(n)2m+1nα2n, q2

∞∑
n=0

r(n)2m+1nα2n, · · · q11
∞∑
n=0

r(n)2m+1nα2n, · · ·

q1

∞∑
n=0

r(n)2m+1nmα2n, q2

∞∑
n=0

r(n)2m+1nmα2n, · · · q11
∞∑
n=0

r(n)2m+1nmα2n

and then applied a two-level PSLQ program, implemented using the ARPREC
multiple-precision software, to this vector.

After finding a relation with our program, we carefully checked to ensure
that it was not reducible to another in the list by an algebraic manipula-
tion. Also, in numerous cases, multiple relations existed. In such cases, we
eliminated these one by one, typically by replacing one of the constants in
the relation by an unrelated transcendental and re-running the program,
until no additional relations were found.

The result of this effort is the following list of relations. As it turns out,
each of these are given either implicitly or explicitly in [46] or [129]. But
just as important here is the apparent non-existence of additional relations.
In particular, if a relation is not shown below for a given α and/or sign
choice, that means (as a consequence of our calculations) that there is no
such relation with integer coefficients whose Euclidean norm is less than
1010.
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For degree m = 1, with non-alternating signs:

4
π

=
∞∑
n=0

r(n)3(1 + 6n)
(

1
2

)2n

16
π

=
∞∑
n=0

r(n)3(5 + 42n)
(

1
8

)2n

121/4

π
=

∞∑
n=0

r(n)3(−15 + 9
√

3− 36n+ 24
√

3n)
(
2−
√

3
)4n

32
π

=
∞∑
n=0

r(n)3(−1 + 5
√

5 + 30n+ 42
√

5n)

(
(
√

5− 1)4

128

)2n

51/4

π
=

∞∑
n=0

r(n)3(−525 + 235
√

5− 1200n+ 540
√

5n)
(√

5− 2
)8n

.

For degree m = 1, with alternating signs:

2
√

2
π

=
∞∑
n=0

(−1)nr(n)3(1 + 6n)
(

1
2
√

2

)2n

2
π

=
∞∑
n=0

(−1)nr(n)3(−5 + 4
√

2− 12n+ 12
√

2n)
(√

2− 1
)4n

2
π

=
∞∑
n=0

(−1)nr(n)3(23− 10
√

5 + 60n− 24
√

5n)
(√

5− 2
)4n

2
π

=
∞∑
n=0

(−1)nr(n)3(177− 72
√

6 + 420n− 168
√

6n)
(√

3−
√

2
)8n

.

For degree m = 2,

8
π2

=
∞∑
n=0

(−1)nr(n)5(1 + 8n+ 20n2)
(

1
2

)2n

128
π2

=
∞∑
n=0

(−1)nr(n)5(13 + 180n+ 820n2)
(

1
32

)2n

.

For degree m = 3,

32
π3

=
∞∑
n=0

r(n)7(1 + 14n+ 76n2 + 168n3)
(

1
8

)2n

.
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For degree m = 4, 5 we have been unable to find any similar series,
with exclusion bounds roughly 1010 as before, thereby (so far) dashing our
hope to find an infinite family of rational sums extending (2.25), (2.26),
2.27), (2.28). More study, however, will be needed to understand this
phenomenon.

6.2 Working with the Series Analytically

While (2.26), 2.27), (2.28) have no “explanation,” there are tantalizing
echoes of the elliptic theory described in [46] that explains the series for
1/π as we now partially reprise. We first define the theta functions θ3, θ4
and θ2

θ3(q) :=
∞∑

n=−∞
qn

2
, θ4(q) :=

∞∑
n=−∞

(−1)n qn
2
, θ2(q) :=

∞∑
n=−∞

q(n+1/2)2 ,

for |q| < 1. We next identify the invariant

kN =
θ22
θ23

(
e−π

√
N
)
.

We denote the complementary modulus k′ :=
√

1− k2 in terms of which it
transpires that Jacobi’s identity θ43 = θ44 + θ42 (see [46]) implies

k
′

N =
θ22
θ23

(
e−π

√
N
)
.

For reasons detailed in [46] and [45] we know that for each natural number
N , kN is algebraic.

For example, k1 = 1/
√

2 = k′1 while k210 is the singular value sent to
Hardy in Ramanujan’s famous 1913 letters of introduction—ignored by two
other famous English mathematicians.

k210 :=
(√

2− 1
)2 (√

3− 2
)(√

7− 6
)2 (

8− 3
√

7
)

×
(√

10− 3
)2 (√

15−
√

14
)(

4−
√

15
)2 (

6−
√

35,
)
.

Remarkably,

k100 :=
((

3− 2
√

2
)(

2 +
√

5
)(
−3 +

√
10
)(
−
√

2 + 4
√

5
)2
)2

arose in Bornemann’s solution to Trefethen’s 10th problem, [109]: the prob-
ability that a Brownian motion starting at the center of a 10×1 box hits the



i
i

i
i

i
i

i
i

6. Ramanujan-Type Elliptic Series 49

ends first is 2/π arcsin (k100). Ramanujan also noticed that the invariants
GN and gN defined next are often simpler

G−12
N := 2kNk′N and g−12

N := 2kN/k
′2
N .

Note that each of these two latter invariants provides a quadratic formula
for kN . We also need Ramanujan’s invariant of the second kind

αN :=
1/π − qθ′4(q)/θ4(q)

θ43(q)
q := e−π

√
N (2.31)

which is also algebraic for integer N , [46]. In the form we have given them
all the coefficients are very simple to compute numerically. Hence integer
relation methods are easy to apply.

Example 6.1. (Determining Invariants) The following Maple code pro-
duces 20 digits of each of our invariants:

Digits:=16:que:=N->exp(-Pi*sqrt(N)):

kk:=q->(JacobiTheta2(0,q)/JacobiTheta3(0,q))^2:

kc:=q->(JacobiTheta4(0,q)/JacobiTheta3(0,q))^2: k:=kk@que:

l:=kc@que: G:=1/(2*k*l): g:=2*k/l^2:

alpha:=r->(subs(q=exp(-Pi*sqrt(r)),

(1/Pi-sqrt(r)*4*(q*diff(JacobiTheta4(0,q),q)/JacobiTheta4(0,q)))/

JacobiTheta3(0,q)^4)):

a0:=N->(alpha(N)-sqrt(N)*k(N)^2): a1:=N->sqrt(N)*(1-2*k(N)^2):

b0:=N->alpha(N)/(1-k(N)^2): b1:=N->sqrt(N)*(1+k(N)^2)/(1-k(N)^2):

We first explore use of Maple’s identify function. Entering

> for n to 6 do n,identify(evalf[20](k((n)))) od;

returns
1/2
√

2, −1 +
√

2, 1/4
√

6− 1/4
√

2, 3− 2
√

2,

0.11887694580260010118, 0.085164233174742587643.

where we have used only the simplest parameter-free version of the “iden-
tify” function. Correspondingly

> for n to 8 do latex(identify(evalf[20](G((2*n-1))))) od;

returns for the first 8 odd values of G−12
N :

1, 2, 2 +
√

5, 87 + 4
√

3, 4/3
3
√

199 + 3
√

33 +
136
3

1
3
√

199 + 3
√

33
+

22
3
,

18 + 5
√

13, 28 + 12
√

5

and
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> for n to 8 do latex(identify(evalf[20](g((2*n))))) od;

returns for the first 5 even values of g−12
N :

1, 1/4
√

2, 3− 2
√

2, 1/4
√
−14 + 10

√
2, 9− 4

√
5

but fails on the next three.

0.034675177060507381314, 0.022419012334044683484, 0.014940167059400883091

This can be remedied in many ways. For example,

>_EnvExplicit:=true:
(PolynomialTools[MinimalPolynomial](g(14)^(1/3),4));
solve(%)[2]; evalf(%/g(14)^(1/3));

yields 1− 2X − 5X2− 2X3 +X4 as the polynomial potentially satisfied by
g−4
14 ; and then extracts the correct radical

1/2 +
√

2− 1/2
√

5 + 4
√

2

which is confirmed to 15 places. One may check that (g6
14+g−6

14 )/2 =
√

2+1
is an even simpler invariant. Similarly,

>_EnvExplicit:=true:(PolynomialTools[MinimalPolynomial]
(G(25)^(1/12),4));

illustrates that G25 solves x2 − x − 1 = 0 and so is the golden mean, and
also shows that the appropriate power of GN , gN varies with N . Armed
with these tools a fine challenge is to obtain all values of GN , gN or kN up
to, say, N = 50. 2

We may now record two families of series of which Ramanujan discov-
ered many cases:

Theorem 6.2. (Ramanujan-type Series, [46, p. 182])
(a) For N > 1

1
π

=
∞∑
n=0

r3n

{
(αN −

√
nk2

N ) + n
√
N(k′2N − k2

N )
} (

G−12
N

)2n
. (2.32)

(b) For N ≥ 1

1
π

=
∞∑
n=0

(−1)n r3n

{
αN k

′−2
N + n

√
N

1 + k2
N

1− k2
N

} (
g−12
N

)2n
(2.33)
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Example 6.3. (Identifying our series) We shall now try to determine
which cases of Theorem 6.2 we have recovered.

Crude code to determine the coefficients is:

A:=proc() local N; N:= args[1];

if nargs >1 then Digits :=args[2] fi;

identify(evalf(G(N))),

identify(evalf(a0(N)))+’n’*identify(evalf(a1(N))) end:

B:=proc() local N;

N:=args[1];if nargs>1 then Digits:=args[2];fi;

identify(evalf(g(N))),

identify(evalf(b0(N)))+’n’*identify(evalf(b1(N))):end:

for the non-alternating and alternating cases respectively. For example
B(1) returns

√
2, 3n+ 1/4 which means that

2
π

=
∞∑
n=0

(−1)n r(n)3(1 + 4n).

We leave it to the reader to see that we had recovered the cases N =
3, 5, 7, 15, 25 and N = 4, 6, 10, 18 of Theorem 6.2 (b). 2
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Chapter 3

Algorithms for Experimental
Mathematics, Part Two

1 The Wilf-Zeilberger Algorithm

One fascinating non-numerical algorithm is the Wilf-Zeilberger (WZ) al-
gorithm, which employs “creative telescoping” to show that a sum (with
either finitely or infinitely many terms) is zero. Below is an example of a
WZ proof of (1 + 1)n = 2n. This proof is from Doron Zeilberger’s original
Maple program, which in turn is inspired by the proof in [235].

Let F (n, k) =
(
n
k

)
2−n. We wish to show that L(n) =

∑
k F (n, k) =

1 for every n. To this end, we construct, using the WZ algorithm, the
function

G(n, k) =
−1

2(n+1)

(
n

k − 1

)(
=

−k
2(n− k + 1)

F (n, k)
)
, (3.1)

and observe that

F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k). (3.2)

By applying the obvious telescoping property of these functions, we can
write ∑

k

F (n+ 1, k)−
∑
k

F (n, k) =
∑
k

(G(n, k + 1)−G(n, k))

= 0,

which establishes that L(n+1)−L(n) = 0. The fact that L(0) = 1 follows
from the fact that F (0, 0) = 1 and 0 otherwise.
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As an example, we will briefly present here the proof of the identities

∞∑
n=0

(
4n
2n

)(
2n
n

)4
216n

(
120n2 + 34n+ 3

)
=

32
n2

∞∑
n=0

(−1)n
(
2n
n

)5
220n

(
820n2 + 180n+ 13

)
=

128
π2

,

which, as we mentioned in the previous chapter, can be discovered by a
PSLQ-based search strategy.

Guillera started by defining

G(n, k) =
(−1)k

216n24k

(
120n2 + 84nk + 34n+ 10k + 3

) (2nn )4(2kk )3(4n−2k
2n−k

)(
2n
k

)(
n+k
n

)2
(3.3)

He then used the software package EKHAD, which implements the WZ
method, obtaining the companion formula

F (n, k) =
(−1)k512
216n24k

n3

4n− 2k − 1

(
2n
n

)4(2k
k

)3(4n−2k
2n−k

)(
2n
k

)(
n+k
n

)2 (3.4)

When we define

H(n, k) = F (n+ 1, n+ k) +G(n, n+ k),

Zeilberger’s theorem gives the identity

∞∑
n=0

G(n, 0) =
∞∑
n=0

H(n, 0),

which when written out is

∞∑
n=0

(
2n
n

)4(4n
2n

)
216n

(
120n2 + 34n+ 3

)
=

∞∑
n=0

(−1)n

220n+7

(n+ 1)3

2n+ 3

(
2n+2
n+1

)4(2n
n

)3(2n+4
n+2

)(
2n+2
n

)(
2n+1
n+1

)2
+

∞∑
n=0

(−1)n

220n

(
204n2 + 44n+ 3

)(2n
n

)5

=
1
4

∞∑
n=0

(−1)n
(
2n
n

)5
220n

(
820n2 + 180n+ 13

)
after considerable algebra.
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Guillera then observes that since
∑
n≥0G(n, k) =

∑
n≥0G(n, k + 1),

then by Carlson’s theorem [23] it follows that
∑
n≥0G(n, k) = A for some

A, independent of k, even if k is not an integer. We then note that 0 <
G(n, t) ≤ 8−n, so one can interchange limit and sum to conclude that

lim
t→1/2

∞∑
n=1

Re [G(n, t)] = 0.

Thus,

A = lim
t→1/2

Re [G(0, t)] =
32
π2
,

and we have

∞∑
n=0

G(n, k) =
∞∑
n=0

H(n, k) =
32
π2
.

Guillera’s two results follow immediately.
Obviously, this proof does not provide much insight, since the difficult

part of the result is buried in the construction of (3.3). In other words, the
W-Z method provides “proofs,” but these “proofs” tend to be relatively
unenlightening. Nonetheless, the very general nature of this scheme is of
interest. It possibly presages a future in which a wide class of such identities
can be “proved” automatically in a computer algebra system. Details and
additional applications of this algorithm are given in [235].

2 Prime Number Computations

It is well known that there is a connection between prime numbers and the
Riemann zeta function [44]. Prime numbers crop up in numerous other are-
nas of mathematical research, and often even in commercial applications,
with the rise of RSA-based encryption methods on the Internet. Inasmuch
as this research topic is certain to be of great interest for the foreseeable
future, we mention here some of the techniques for counting, generating,
and testing prime numbers.

The prime counting function π(x)

π(x) = #{primes ≤ x}

is of central interest in this research. Table 1 gives π(x) for power-of-
ten arguments up to 1022. This data was obtained from Eric Weisstein’s
“World of Mathematics” web site http://mathworld.wolfram.com.
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It is clear from even a cursory glance at Table 3.1 that the researchers
who have produced these counts are not literally testing every integer up to
1022 for primality—that would require much more computation than the
combined power of all computers worldwide, even using the best known
methods to test individual primes. Indeed, some very sophisticated tech-
niques have been employed, which unfortunately are too technical to be
presented in detail here. We refer interested readers to the discussion of
this topic in the new book Prime Numbers: A Computational Perspec-
tive by Richard Crandall and Carl Pomerance [90, 140-150]. Readers who
wish to informally explore the behavior of π(x) may use a sieving algo-
rithm, which is a variant of a scheme originally presented by Eratosthenes
of Cyrene about 200 BCE [90, pg. 114].

If one does not require certainty, but only high probability that a num-
ber is prime, some very efficient probabilistic primality tests have been
discovered in the past few decades. In fact, these schemes are now rou-

x π(x)
R x

2
dt/ log t Difference

101 4 5 1

102 25 29 4

103 168 177 9

104 1229 1245 16

105 9592 9629 37

106 78498 78627 129

107 6 64579 6 64917 338

108 57 61455 57 62208 753

109 508 47534 508 49234 1700

1010 4550 52511 4550 55614 3103

1011 41180 54813 41180 66400 11587

1012 3 76079 12018 3 76079 50280 38262

1013 34 60655 36839 34 60656 45809 1 08970

1014 320 49417 50802 320 49420 65691 3 14889

1015 2984 45704 22669 2984 45714 75287 10 52618

1016 27923 83410 33925 27923 83442 48556 32 14631

1017 2 62355 71576 54233 2 62355 71656 10821 79 56588

1018 24 73995 42877 40860 24 73995 43096 90414 219 49554

1019 234 05766 72763 44607 234 05766 73762 22381 998 77774

1020 2220 81960 25609 18840 2220 81960 27836 63483 2227 44643

1021 21127 26948 60187 31928 21127 26948 66161 26181 5973 94253

1022 2 01467 28668 93159 06290 2 01467 28669 12482 61497 19323 55207

Table 3.1. The prime-counting function π(x) and Gauss’ approximation.
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tinely used to generate primes for RSA encryption in Internet commerce.
When you type in your Visa or Mastercard number in a secure web site
to purchase a book or computer accessory, somewhere in the process it is
quite likely that two large prime numbers have been generated, which were
certified as prime using one of these schemes.

The most widely used probabilistic primality test is the following, which
was originally suggested by Artjuhov in 1966, although it was not appre-
ciated until it was rediscovered and popularized by Selfridge in the 1970s
[90].

Algorithm 2.1. Strong probable prime test.
Given an integer n = 1 + 2st, for integers s and t (and t odd), select
an integer a by means of a pseudorandom number generator in the range
1 < a < n− 1.

1. Compute b := at mod n using the binary algorithm for exponentiation
(see Algorithm 3.2 in Chapter 3 of [44]). If b = 1 or b = n− 1 then exit (n
is a strong probable prime base a).

2. For j = 1 to s− 1 do: Compute b : b2 mod n; if (b = n− 1) then exit (n
is a strong probable prime base a).

3. Exit: n is composite.

This test can be repeated several times with different pseudo-randomly
chosen a. In 1980 Monier and Rabin independently showed that an integer
n that passes the test as a strong probable prime is prime with probability
at least 3/4, so that m tests increase this probability to 1−1/4m [178, 203].
In fact, for large test integers n, the probability is even closer to unity.
Damgard, Landrock and Pomerance showed in 1993 that if n has k bits,
then this probability is greater than 1− k242−

√
k, and for certain k is even

higher [91]. For instance, if n has 500 bits, then this probability is greater
than 1 − 1/428m. Thus a 500-bit integer that passes this test even once
is prime with prohibitively safe odds—the chance of a false declaration
of primality is less than one part in Avogadro’s number (6 × 1023). If it
passes the test for four pseudo-randomly chosen integers a, then the chance
of false declaration of primality is less than one part in a googol (10100).
Such probabilities are many orders of magnitude more remote than the
chance that an undetected hardware or software error has occurred in the
computation.

A number of more advanced probabilistic primality testing algorithms
are now known. The current state-of-the-art is that such tests can de-
termine the primality of integers with hundreds to thousands of digits.
Additional details of these schemes are available in [90].

For these reasons, probabilistic primality tests are considered entirely



i
i

i
i

i
i

i
i

58 Chapter 3. Algorithms for Experimental Mathematics, Part Two

satisfactory for practical use, even for applications such as large interbank
financial transactions, which have extremely high security requirements.
Nonetheless, mathematicians have long sought tests that remove this last
iota of uncertainty, yielding a mathematically rigorous certificate of pri-
mality. Indeed, the question of whether there exists a “polynomial time”
primality test has long stood as an important unsolved question in pure
mathematics.

Thus it was with considerable elation that such an algorithm was re-
cently discovered, by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena
(initials AKS) of the Indian Institute of Technology in Kanpur, India [4].
Their discovery sparked worldwide interest, including a prominent report
in the New York Times [207]. Since the initial report in August 2002,
several improvements have been made. Readers are referred to a variant
of the original algorithm due to Lenstra [165], as implemented by Richard
Crandall and Jason Papadopoulos [89][45, pg xx].

3 Roots of Polynomials

In Chapter 1, we showed how a relatively simple scheme involving Newton
iterations can be used to compute high-precision square roots and even to
perform high-precision division. This Newton iteration scheme is, in fact,
quite general and can be used to solve many kinds of equations, both alge-
braic and transcendental. One particularly useful application, frequently
encountered by experimental mathematicians, is to find roots of polyno-
mials. This is done by using a careful implementation of the well-known
version of Newton’s iteration

xk+1 = xk −
p(x)
p′(x)

, (3.5)

where p′(x) denotes the derivative of p(x). As before, this scheme is most
efficient if it employs a level of numeric precision that starts with ordinary
double precision (16-digit) or double-double precision (32-digit) arithmetic
until convergence is achieved at this level, then approximately doubles with
each iteration until the final level of precision is attained. One additional
iteration at the final or penultimate precision level may be needed to insure
full accuracy.

Note that Newton’s iteration can be performed, as written in (3.5), with
either real or complex arithmetic, so that complex roots of polynomials
(with real or complex coefficients) can be found almost as easily as real
roots. Evaluation of the polynomials p(x) and p′(x) is most efficiently
performed using Horner’s rule: For example, the polynomial p(x) = p0 +
p1x+ p2x

2 + p3x
3 + p4x

4 + p5x
5 is evaluated as p(x) = p0 + x(p1 + x(p2 +

x(p3 + x(p4 + xp5)))).



i
i

i
i

i
i

i
i

3. Roots of Polynomials 59

There are two issues that arise here that do not arise with the Newton
iteration schemes for division and square root. The first is the selection
of the starting value—if it is not close to the desired root, then successive
iterations may jump far away. If you have no idea where the roots are
(or how accurate the starting value must be), then a typical strategy is to
try numerous starting values, covering a wide range of likely values, and
then make an inventory of the approximate roots that are found. If you
are searching for complex roots, note that it is often necessary to use a
two-dimensional array of starting values. These “exploratory” iterations
can be done quite rapidly, since typically only a modest numeric precision
is required—in almost all cases, just ordinary double precision (16 digits)
or double-double precision (32 digits) arithmetic will do. Once the roots
have been located in this fashion, then the full-fledged Newton scheme can
be used to produce their precise high-precision values.

The second issue is how to handle repeated roots. The difficulty here is
that, in such cases, convergence to the root is very slow, and instabilities
may throw the search far from the root. In these instances, note that we
can write p(x) = q2(x)r(x), where r has no repeated roots (if all roots are
repeated, then r(x) = 1). Now note that p′(x) = 2q(x)r(x) + q2(x)r′(x) =
q(x)[2r(x) + q(x)r′(x)]. This means that if p(x) has repeated roots, then
these roots are also roots of p′(x), and, conversely, if p(x) and p′(x) have
a common factor, then the roots of this common factor are repeated roots
of p(x). This greatest common divisor polynomial q(x) can be found by
performing the Euclidean algorithm (in the ring of polynomials) on p(x)
and p′(x). The Newton iteration scheme can then be applied to find the
roots of both q(x) and r(x). It is possible, of course, that q(x) also has
repeated roots, but recursive application of this scheme quickly yields all
individual roots.

In the previous paragraph, we mentioned the possible need to perform
the Euclidean algorithm on two polynomials, which involves polynomial
multiplication and division. For modest-degree polynomials, a simple im-
plementation of the schemes learned in high school algebra suffices—just
represent the polynomials as strings of high-precision numbers. For high-
degree polynomials, polynomial multiplication can be accelerated by utiliz-
ing fast Fourier transforms and a convolution scheme that is almost identi-
cal to the scheme, mentioned in Chapter 1, to perform high-precision multi-
plication. High-degree polynomial division can be accelerated by a Newton
iteration scheme, similar to that mentioned above for high-precision divi-
sion. See [90] for additional details on high-speed polynomial arithmetic.

We noted above that if the starting value is not quite close to the desired
root, then successive Newton iterations may jump far from the root, and
eventually converge to a different root than the one desired. In general,
suppose we are given a degree-n polynomial p(x) with m distinct complex
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roots rk (some may be repeated roots). Define the function Qp(z) as the
limit achieved by successive Newton iterations that start at the complex
number z; if no limit is achieved, then set Qp(z)∞. Then the m sets
{z : Qp(z) = rk} for k = 1, 2 · · · ,m constitute a partition of the complex
plane, except for a filamentary set of measure zero that separates them sets.
In fact, each of these m sets is itself an infinite collection of disconnected
components.

The collection of these Newton-Julia sets and their boundaries form
pictures of striking beauty, and are actually quite useful in gaining insight
on both the root structure of the original polynomial and the behavior
of Newton iteration solutions. Some of the most interesting graphics of
this type are color-coded plots of the function Np(z), which is the number
of iterations required for convergence (to some accuracy ε) of Newton’s
iteration for p(x), beginning at z (if the Newton iteration does not converge
at z, then set Np(z) =∞). A plot for the cubic polynomial p(x) = x3 − 1
is shown in Figure 3.1.

4 Numerical Quadrature

Experimental mathematicians very frequently find it necessary to calculate
definite integrals to high precision. Recall the examples given in Chapter
2, wherein we were able to experimentally identify certain definite integrals
as analytic expressions, based only on their high-precision numerical value.

As one example, recently one of the authors (Borwein), together with
Greg Fee of Simon Fraser University in Canada, were inspired by a recent
problem in the American Mathematical Monthly [5]. They found by using
a numerical integration scheme described in Chapter 2, together with a
PSLQ integer relation detection program, that if C(a) is defined by

C(a) =
∫ 1

0

arctan(
√
x2 + a2) dx√

x2 + a2(x2 + 1)
,

then

C(0) = π log 2/8 +G/2

C(1) = π/4− π
√

2/2 + 3
√

2 arctan(
√

2)/2

C(
√

2) = 5π2/96,

where G =
∑
k≥0(−1)k/(2k + 1)2 is Catalan’s constant (the third of these

results is the result from the Monthly). These experimental results then
led to the following general result, rigorously established, among others:∫ ∞

0

arctan(
√
x2 + a2) dx√

x2 + a2(x2 + 1)
=

π

2
√
a2 − 1

[
2 arctan(

√
a2 − 1)− arctan(

√
a4 − 1)

]
.
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Figure 3.1. Newton-Julia set for p(x) = x3 − 1.

As a second example, two of the present authors (Bailey and Borwein)
empirically determined that

2√
3

∫ 1

0

log6(x) arctan[x
√

3/(x− 2)]
x+ 1

dx =
1

81648
[−229635L3(8)

+29852550L3(7) log 3− 1632960L3(6)π2 + 27760320L3(5)ζ(3)
−275184L3(4)π4 + 36288000L3(3)ζ(5)− 30008L3(2)π6

−57030120L3(1)ζ(7)] ,

where L3(s) =
∑∞
n=1 [1/(3n− 2)s − 1/(3n− 1)s]. General results have

been conjectured but not yet rigorously established.

A third result is the following, which was found by one of the present



i
i

i
i

i
i

i
i

62 Chapter 3. Algorithms for Experimental Mathematics, Part Two

authors (Borwein) and British physicist David Broadhurst [53]:

24
7
√

7

∫ π/2

π/3

log

∣∣∣∣∣ tan t+
√

7
tan t−

√
7

∣∣∣∣∣ dt ?= L−7(2) = (3.6)

∞∑
n=0

[
1

(7n+ 1)2
+

1
(7n+ 2)2

− 1
(7n+ 3)2

+
1

(7n+ 4)2
− 1

(7n+ 5)2
− 1

(7n+ 6)2

]
.

This integral arose out of some studies in quantum field theory, in analysis
of the volume of ideal tetrahedra in hyperbolic space. It is the simplest of
998 empirically determined cases where the volume of a hyperbolic knot
complement is expressible in terms of an L-series and an apparently un-
expected integral or sum [53]. The question mark is used here because
although this identity has been numerically verified to 20,000-digit preci-
sion (see Chapter 2), as of this date no proof is yet known.

PSLQ computations were also able to recover relations among integrals
of this type. Let In be the definite integral of (3.6), except with limits
nπ/24 and (n+ 1)π/24. Then the relations

− 2I2 − 2I3 − 2I4 − 2I5 + I8 + I9 − I10 − I11
?= 0,

I2 + 3I3 + 3I4 + 3I5 + 2I6 + 2I7 − 3I8 − I9
?= 0 (3.7)

have been numerically discovered, although as before no hint of a proof is
known.

In some cases, Maple or Mathematica is able to evaluate a definite in-
tegral analytically, but the resulting expressions are complicated and not
very enlightening. For example, although the integrals

I1 =
∫ 1

0

t2 log(t) dt
(t2 − 1)(t4 + 1)

I2 =
∫ π/4

0

t2 dt

sin2(t)

I3 =
∫ π

0

x sinx dx
1 + cos2 x

are successfully evaluated by Maple and Mathematica, the results are some-
what lengthy expressions involving advanced functions and complex enti-
ties. We suspect that there are considerably simpler closed-form versions
of these integrals. Indeed, we can obtain the following, based solely on the
high-precision numerical values of these integrals, combined with integer
relation computations:

I1 = π2(2−
√

2)/32
I2 = −π2/16 + π log(2)/4 +G

I3 = π2/4.
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The commercial packages Maple and Mathematica both include rather
good high-precision numerical quadrature facilities. However, these pack-
ages do have some limitations, and in many cases much faster performance
can be achieved with custom-written programs. And in general it is ben-
eficial to have some understanding of quadrature techniques, even if you
rely on software packages to perform the actual computation.

We describe here three state-of-the-art, highly efficient techniques for
numerical quadrature. Some additional refinements, not mentioned here,
are described in [21]. You can try programming these schemes your-
self, or you can refer to the C++ and Fortran-90 programs available at
http://www.experimentalmath.info.

4.1 Tanh-Sinh Quadrature

The scheme we will discuss here is known as “tanh-sinh” quadrature. While
it is not as efficient as Gaussian quadrature for continuous, bounded, well-
behaved functions on finite intervals, it often produces highly accurate re-
sults even for functions with (integrable) singularities or vertical derivatives
at one or both endpoints of the interval. In contrast, Gaussian quadrature
typically performs very poorly in such instances. Also, the cost of com-
puting abscissas and weights in tanh-sinh quadrature only scales as p2 log p
in tanh-sinh quadrature, where p is the number of correct digits in the
result (for many problems), whereas the corresponding cost for Gaussian
quadrature scales as p3 log p. For this reason, Gaussian quadrature is not
practical beyond about 1,000 digits.

The tanh-sinh function quadrature scheme is based on the Euler-Maclaurin
summation formula, which can be stated as follows [10, pg. 280]. Let
m ≥ 0 and n ≥ 1 be integers, and define h = (b− a)/n and xj = a+ jh for
0 ≤ j ≤ n. Further, assume that the function f(x) is at least (2m+2)-times
continuously differentiable on [a, b]. Then∫ b

a

f(x) dx = h

n∑
j=0

f(xj)−
h

2
(f(a) + f(b))

−
m∑
i=1

h2iB2i

(2i)!

(
f (2i−1)(b)− f (2i−1)(a)

)
+ E(h,m),

where B2i denote the Bernoulli numbers, and

E(h,m) =
h2m+2(b− a)B2m+2f

(2m+2)(ξ)
(2m+ 2)!

, (3.8)

for some ξ ∈ (a, b).
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In the circumstance where the function f(x) and all of its derivatives
are zero at the endpoints a and b, the second and third terms of the Euler-
Maclaurin formula are zero. Thus the error in a simple step-function ap-
proximation to the integral, with interval h, is simply E(h,m). But since E
is then less than a constant times h2m+2/(2m+2)!, for any m, we conclude
that the error goes to zero more rapidly than any power of h. In the case of
a function defined on (−∞,∞), the Euler-Maclaurin summation formula
still applies to the resulting doubly infinite sum approximation, provided
as before that the function and all of its derivatives tend to zero for large
positive and negative arguments.

This principle is utilized in the error function and tanh-sinh quadrature
scheme (see the next subsection) by transforming the integral of f(x) on
a finite interval, which we will take to be (−1, 1) for convenience, to an
integral on (−∞,∞) using the change of variable x = g(t). Here g(x) is
some monotonic function with the property that g(x)→ 1 as x→∞, and
g(x) → −1 as x → −∞, and also with the property that g′(x) and all
higher derivatives rapidly approach zero for large arguments. In this case
we can write, for h > 0,∫ 1

−1

f(x) dx =
∫ ∞

−∞
f(g(t))g′(t) dt ≈ h

∞∑
−∞

wjf(xj), (3.9)

where xj = g(hj) and wj = g′(hj). If the convergence of g′(t) and its
derivatives to zero is sufficiently rapid for large |t|, then even in cases
where f(x) has a vertical derivative or an integrable singularity at one or
both endpoints, the resulting integrand f(g(t))g′(t) will be a smooth bell-
shaped function for which the Euler-Maclaurin summation formula applies,
as described above. In such cases we have that the error in the above ap-
proximation decreases faster than any power of h. The summation above
is typically carried out to limits (−N,N), beyond which the terms of the
summand are less than the “epsilon” of the multiprecision arithmetic being
used.

The tanh-sinh scheme employs the transformation x = tanh(π/2·sinh t),
where sinh t = (et − e−t)/2, cosh t(et + e−t)/2, and tanh t = sinh t/ cosh t
(alternately, one can omit the π/2 in this definition). This transformation
converts an integral on (−1, 1) to an integral on the entire real line, which
can then be approximated by means of a simple step-function summation.
In this case, by differentiating the transformation, we obtain the abscissas
xk and the weights wk as

xj = tanh[π/2 · sinh(jh)]

wj =
π/2 · cosh(jh)

cosh2[π/2 · sinh(jh)]
. (3.10)



i
i

i
i

i
i

i
i

4. Numerical Quadrature 65

Note that these functions involved here are compound exponential, so,
for example, the weights wj converge very rapidly to zero. As a result,
the tanh-sinh quadrature scheme is often very effective in dealing with
singularities or infinite derivatives at endpoints.

Algorithm 2.3. tanh-sinh quadrature.

Initialize: Set h := 2−m.
For k := 0 to 20 · 2m do:
Set t := kh, xk := tanh(π/2 · sinh t) and wk := π/2 · cosh t/ cosh2(π/2 ·
sinh t);
If |xk − 1| < ε then exit do; enddo.
Set nt = k (the value of k at exit).

Perform quadrature for a function f(x) on (−1, 1):
Set S := 0 and h := 1.
For k := 1 to m (or until successive values of S are identical to within ε)
do:
h := h/2.
For i := 0 to nt step 2m−k do:
If (mod(i, 2m−k+1) 6= 0 or k = 1) then
If i = 0 then S := S + w0f(0) else S := S + wi(f(−xi) + f(xi)) endif.
endif; enddo; endo.
Result = hS.

There are several similar quadrature schemes that can be defined, also
based on the Euler-Maclaurin summation formula. For example, using
g(t)erft gives rise to “error function” or “erf” quadrature; using g(t) =
sinh(sinh t) gives rise to “sinh-sinh” quadrature, which can be used for
functions defined on the entire real line. Additional refinements are de-
scribed in [21]. An implementation of this scheme on a highly parallel
computer system is described in [14].

4.2 Practical Considerations for Quadrature

The tanh-sinh scheme have assumed a function of one variable defined and
continuous on the interval (−1, 1). Integrals on other finite intervals (a, b)
can be found by applying a linear change of variable:

∫ b

a

f(t) dt =
b− a

2

∫ 1

−1

f

(
b+ a

2
+
b− a

2
x

)
dx. (3.11)
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Note also that integrable functions on an infinite interval can, in a similar
manner, be reduced to an integral on a finite interval, for example:∫ ∞

0

f(t) dt =
∫ 1

0

[f(x) + f(1/x)/x2] dx. (3.12)

Integrals of functions with singularities (such as “corners” or step discon-
tinuities) within the integration interval (i.e., not at the endpoints) should
be broken into separate integrals.

The above algorithm statements each suggest increasing the level of
the quadrature (the value of k) until two successive levels give the same
value of S, to within some tolerance ε. While this is certainly a reli-
able termination test, it is often possible to stop the calculation earlier,
with significant savings in runtime, by means of making reasonable projec-
tions of the current error level. In this regard, the authors have found
the following scheme to be fairly reliable: Let S1, S2, and S3 be the
value of S at the current level, the previous level, and two levels back,
respectively. Then set D1 := log10 |S1 − S2|, D2 := log10 |S1 − S3|, and
D3 := log10 ε− 1. Now we can estimate the error E at level k > 2 as 10D4 ,
where D4 = min(0,max(D2

1/D2, 2D1, D3)). These estimation calculations
may be performed using ordinary double precision arithmetic.

In the case of tanh-sinh quadrature (or other schemes based on the
Euler-Maclaurin summation formula as above), the following formula pro-
vides a more accurate estimate of the error term. Let F (t) be the de-
sired integrand function, and then define f(t) = F (g(t))g′(t), where g(t) =
tanh(sinh t) (or one could use any of the other g functions mentioned
above). Then consider

E2(h,m) = h(−1)m−1

(
h

2π

)2m b/h∑
j=a/h

D2mf(jh). (3.13)

In many cases, this estimate of the error term is exceedingly accurate once h
is moderately small, for any integer m ≥ 1. In most cases, it is sufficient to
use E2(h, 1), although higher-order estimates can be used with the bound

|E(h,m)− E2(h,m)| ≤

2 [ζ(2m) + (−1)mζ(2m+ 2)]
(
h

2π

)2m

h

√∫ b

a

|D2mf(t)|2 dt,

to yield rigorous “certificates” of quadrature results. See [12] for details.
Some refinements to these schemes, and to the error estimation proce-

dure above, are described in [21, 12]. Gaussian quadrature and tanh-sinh
have been implemented in C++ and Fortran-90 programs, available at
http://www.experimentalmath.info.
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4.3 Higher-Dimensional Quadrature

The tanh-sinh quadrature scheme can be easily generalized to perform two-
dimensional (2-D) and three-dimensional (3-D) quadrature. Runtimes are
typically many times higher than with one-dimensional (1-D) integrals.
However, if one is content with, say, 32-digit or 64-digit results (by using
double-double or quad-double arithmetic, respectively), then many two-
variable functions can be integrated in reasonable run time (say, a few
minutes). One advantage that these schemes have is that they are very
well suited to parallel processing. Thus even several-hundred digit values
can be obtained for 2-D and 3-D integrals if one can utilize a highly parallel
computer, such as a “Beowulf” cluster. One can even envision harnessing
many computers on a geographically distributed grid for such a task, al-
though the authors are not aware of any such attempts yet.

One sample computation of this sort, performed by one of the present
authors, produced the following evaluation:

∫ 1

−1

∫ 1

−1

dx dy√
1 + x2 + y2

= 4 log(2 +
√

3)− 2π
3
. (3.14)

5 Infinite Series Summation

We have already seen numerous examples in previous chapters of mathe-
matical constants defined by infinite series. In experimental mathematics
work, it is usually necessary to evaluate such constants to say several hun-
dred digit accuracy. The commercial software packages Maple and Math-
ematica include quite good facilities for the numerical evaluation of series.
However, as with numerical quadrature, these packages do have limitations,
and in some cases better results can be obtained using custom-written com-
puter code. In addition, even if one relies exclusively on these commercial
packages, it is useful to have some idea of the sorts of operations that are
being performed by such software.

Happily, in many cases of interest to the experimental mathematician,
infinite series converge sufficiently rapidly that they can be numerically
evaluated to high precision by simply evaluating the series directly as writ-
ten, stopping the summation when the individual terms are smaller than
the “epsilon” of the multiprecision arithmetic system being used. All of
the BBP-type formulas, for instance, are of this category. But other types
of infinite series formulas present considerable difficulties for high-precision
evaluation. Two simple examples are Gregory’s series for π/4 and a similar
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series for Catalan’s constant:

π = 1− 1/3 + 1/5− 1/7 + · · ·
G = 1− 1/32 + 1/52 − 1/72 + · · · .

We describe here one technique that is useful in many such circum-
stances. In fact, we have already been introduced to it in an earlier section
of this chapter: It is the Euler-Maclaurin summation formula. The Euler-
Maclaurin formula can be written in somewhat different form than before,
as follows [10, page 282]. Let m ≥ 0 be an integer, and assume that
the function f(x) is at least (2m+ 2)-times continuously differentiable on
[a,∞), and that f(x) and all of its derivatives approach zero for large x.
Then

∞∑
j=a

f(j) =
∫ ∞

a

f(x) dx+
1
2
f(a)−

m∑
i=1

B2i

(2i)!
f (2i−1)(a) + E, (3.15)

where B2i denote the Bernoulli numbers, and

E =
B2m+2f

(2m+2)(ξ)
(2m+ 2)!

, (3.16)

for some ξ ∈ (a,∞).
This formula is not effective as written. The strategy is instead to

evaluate a series manually for several hundred or several thousand terms,
then to use the Euler-Maclaurin formula to evaluate the tail. Before giving
an example, we need to describe how to calculate the Bernoulli numbers
B2k, which are required here. The simplest way to compute them is to
recall that [3, page 807]

ζ(2k) =
(2π)2k|B2k|

2(2k)!
, (3.17)

which can be rewritten as

B2k

(2k)!
=

2(−1)k+1ζ(2k)
(2π)2k

. (3.18)

The Riemann zeta function at real arguments s can, in turn, be computed
using the formula [65]

ζ(s) =
−1

2n(1− 21−s)

2n−1∑
j=0

ej
(j + 1)s

+ En(s), (3.19)
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where

ej = (−1)j
(
j−n∑
k=0

n!
k!(n− k)!

− 2n
)

(3.20)

(the summation is zero when its index range is null), and |En(s)| < 1/(8n|1−
21−s|). This scheme is encapsulated in the following algorithm.

Algorithm 2.4. Zeta function evaluation.

Initialize: Set n = P/3, where P is the precision level in bits, and set
t1 := −2n, t2 := 0, S := 0, and I = 1.

For j := 0 to 2n− 1 do: If j < n then t2 := 0 elseif j = n then t2 := 1 else
t2 := t2 · (2n− j + 1)/(j − n) endif.
Set t1 := t1 + t2, S := S + I · t1/(j + 1)s and I := −I; enddo.
Return ζ(s) := −S/[2n · (1− 21−s)].

A more advanced method to compute the zeta function in the particular
case of interest here, where we need the zeta function evaluated at all even
integer arguments up to some level m, is described in [15].

We illustrate the above by calculating Catalan’s constant using the
Euler-Maclaurin formula. We can write

G = (1− 1/32) + (1/52 − 1/72) + (1/92 − 1/112) + · · ·

= 8
∞∑
k=0

2k + 1
(4k + 1)2(4k + 3)2

= 8
n∑
k=0

2k + 1
(4k + 1)2(4k + 3)2

+ 8
∞∑

k=n+1

2k + 1
(4k + 1)2(4k + 3)2

= 8
n∑
k=0

2k + 1
(4k + 1)2(4k + 3)2

+ 8
∫ ∞

n+1

f(x) dx+ 4f(n+ 1)

−8
m∑
i=1

B2i

(2i)!
f (2i−1)(n+ 1) + 8E,

where f(x) = (2x + 1)/[(4x + 1)2(4x + 3)2] and |E| < 3/(2π)2m+2. Using
m = 20 and n = 1000 in this formula, we obtain a value of G correct to
114 decimal digits. We presented the above scheme for Catalan’s constant
because it is illustrative of the Euler-Maclaurin method. However serious
computation of Catalan’s constant can be done more efficiently using the
recently discovered BBP-type formula (given in Table 3.5 of [44]), Ramanu-
jan’s formula (given in Item 7 of Chapter 6 in [44]), or Bradley’s formula
(also given in Item 7 of Chapter 6 in [44]).
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One less-than-ideal feature of the Euler-Maclaurin approach is that
high-order derivatives are required. In many cases of interest, successive
derivatives satisfy a fairly simple recursion and can thus be easily com-
puted with an ordinary handwritten computer program. In other cases,
these derivatives are sufficiently complicated that such calculations are
more conveniently performed in a symbolic computing environment such as
Mathematica or Maple. In a few applications of this approach, a combina-
tion of symbolic computation and custom-written numerical computation
is required to produce results in reasonable runtime[16].

6 Apery-Like Summations

Here we present a detailed case study in identifying sums of a certain class
of infinite series, by means of a multi-step approach that is broadly illustra-
tive of the experimental methodology in mathematics. This origins of this
work lay in the existence of infinite series formulas involving central bino-
mial coefficients in the denominators for the constants ζ(2), ζ(3), and ζ(4).
These formulas, as well the role of the formula for ζ(3) in Apéry’s proof
of its irrationality, have prompted considerable effort during the past few
decades to extend these results to larger integer arguments. The formulas
in question are

ζ(2) = 3
∞∑
k=1

1
k2
(
2k
k

) , (3.21)

ζ(3) =
5
2

∞∑
k=1

(−1)k+1

k3
(
2k
k

) , (3.22)

ζ(4) =
36
17

∞∑
k=1

1
k4
(
2k
k

) . (3.23)

Identity (3.21) has been known since the 19th century, while (3.22) was
variously discovered in the last century and (3.23) was noted by Comtet [87,
54, 224, p. 89].

These results led many to conjecture that the constant Q5 defined by
the ratio

Q5 := ζ(5)
/ ∞∑

k=1

(−1)k+1

k5
(
2k
k

)
is rational, or at least algebraic. However, 10,000-digit PSLQ computations
have established that if Q5 is a zero of a polynomial of degree at most 25
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with integer coefficients, then the Euclidean norm of the vector of coeffi-
cients exceeds 1.24 × 10383. Similar computations for ζ(5) have yielded a
bound of 1.98×10380. These computations lend credence to the belief that
Q5 and ζ(5) are transcendental.

Given the negative result from PSLQ computations for Q5, the authors
of [50] systematically investigated the possibility of a multi-term identity
of this general form for ζ(2n + 1). The following were recovered early in
experimental searches using computer-based integer relation tools [50, 49]:

ζ(5) = 2
∞∑
k=1

(−1)k+1

k5
(
2k
k

) − 5
2

∞∑
k=1

(−1)k+1

k3
(
2k
k

) k−1∑
j=1

1
j2
, (3.24)

ζ(7) =
5
2

∞∑
k=1

(−1)k+1

k7
(
2k
k

) +
25
2

∞∑
k=1

(−1)k+1

k3
(
2k
k

) k−1∑
j=1

1
j4

(3.25)

ζ(9) =
9
4

∞∑
k=1

(−1)k+1

k9
(
2k
k

) − 5
4

∞∑
k=1

(−1)k+1

k7
(
2k
k

) k−1∑
j=1

1
j2

+ 5
∞∑
k=1

(−1)k+1

k5
(
2k
k

) k−1∑
j=1

1
j4

+
45
4

∞∑
k=1

(−1)k+1

k3
(
2k
k

) k−1∑
j=1

1
j6
− 25

4

∞∑
k=1

(−1)k+1

k3
(
2k
k

) k−1∑
j=1

1
j4

k−1∑
j=1

1
j2
, (3.26)

ζ(11) =
5
2

∞∑
k=1

(−1)k+1

k11
(
2k
k

) +
25
2

∞∑
k=1

(−1)k+1

k7
(
2k
k

) k−1∑
j=1

1
j4

−75
4

∞∑
k=1

(−1)k+1

k3
(
2k
k

) k−1∑
j=1

1
j8

+
125
4

∞∑
k=1

(−1)k+1

k3
(
2k
k

) k−1∑
j=1

1
j4

k−1∑
i=1

1
i4
. (3.27)

The general formula

∞∑
k=1

1
k(k2 − x2)

1
2

∞∑
k=1

(−1)k+1

k3
(
2k
k

) 5k2 − x2

k2 − x2

k−1∏
m=1

(
1− x2

m2

)
(3.28)

was obtained by Koecher [151] following techniques of Knopp and Schur.
Using bootstrapping and an application of the “Pade” function (which

in both Mathematica and Maple produces Padé approximations to a ratio-
nal function satisfied by a truncated power series) the following remarkable
and unanticipated results were produced [50]:

∞∑
k=1

1
k3(1− x4/k4)

5
2

∞∑
k=1

(−1)k+1

k3
(
2k
k

)
(1− x4/k4)

k−1∏
m=1

(
1 + 4x4/m4

1− x4/m4

)
. (3.29)
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Following an analogous—but more deliberate—experimental-based pro-
cedure, as detailed below, we provide a similar general formula for ζ(2n+2)
that is pleasingly parallel to (3.29). It is:

Theorem 6.1. Let x be a complex number not equal to a non-zero integer.
Then

∞∑
k=1

1
k2 − x2

= 3
∞∑
k=1

1
k2
(
2k
k

)
(1− x2/k2)

k−1∏
m=1

(
1− 4x2/m2

1− x2/m2

)
. (3.30)

Note that the left hand side of (3.30) is trivially equal to

∞∑
n=0

ζ(2n+ 2)x2n =
1− πx cot(πx)

2x2
. (3.31)

Thus, (3.30) generates an Apéry-like formulae for ζ(2n) for every positive
integer n.

We describe this process of discovery in some detail here, as the general
technique appears to be quite fruitful and may well yield results in other
settings.

We first conjectured that ζ(2n + 2) is a rational combination of terms
of the form

σ(2r; [2a1, · · · , 2aN ]) :=
∞∑
k=1

1
k2r
(
2k
k

) N∏
i=1

k−1∑
ni=1

1
n2ai
i

, (3.32)

where r +
∑N
i=1 ai = n + 1, and the ai are listed in nonincreasing order

(note that the right-hand-side value is independent of the order of the ai).
This dramatically reduces the size of the search space, while in addition
the sums (3.32) are relatively easy to compute.

One can then write

∞∑
n=0

ζ(2n+ 2)x2n ?=
∞∑
n=0

n+1∑
r=1

∑
π∈Π(n+1−r)

α(π)σ(2r; 2π)x2n, (3.33)

where Π(m) denotes the set of all additive partitions of m if m > 0, Π(0)
is the singleton set whose sole element is the null partition [ ], and the
coefficients α(π) are complex numbers. In principle α(π) in (3.33) could
depend not only on the partition π but also on n. However, since the first
few coefficients appeared to be independent of n, we found it convenient to
assume that the generating function could be expressed in the form given
above.
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For positive integer k and partition π = (a1, a2, . . . , aN ) of the positive
integer m, let

σ̂k(π) :=
N∏
i=1

k−1∑
ni=1

1
n2ai
i

.

Then

σ(2r; 2π) =
∞∑
k=1

σ̂k(π)
k2r
(
2k
k

) ,
and from (3.33), we deduce that

∞∑
n=0

ζ(2n+ 2)x2n =
∞∑
n=0

n+1∑
r=1

∑
π∈Π(n+1−r)

α(π)σ(2r; 2π)x2n

=
∞∑
k=1

1(
2k
k

) ∞∑
r=1

x2r−2

k2r

∞∑
n=r−1

∑
π∈Π(n+1−r)

α(π) σ̂k(π)x2(n+1−r)

=
∞∑
k=1

1(
2k
k

)
(k2 − x2)

∞∑
m=0

x2m
∑

π∈Π(m)

α(π) σ̂k(π)

=
∞∑
k=1

1(
2k
k

)
(k2 − x2)

Pk(x)

where

Pk(x) :=
∞∑
m=0

x2m
∑

π∈Π(m)

α(π) σ̂k(π), (3.34)

whose closed form is yet to be determined. Our strategy, as in the case
of (3.29) [49], was to compute Pk(x) explicitly for a few small values of k
in a hope that these would suggest a closed form for general k.

Some examples we produced are shown below. At each step we “boot-
strapped” by assuming that the first few coefficients of the current result
are the coefficients of the previous result. Then we found the remaining co-
efficients (which are in each case unique) by means of PSLQ computations.
Note below that in the sigma notation, the first few coefficients of each
expression are simply the previous step’s terms, where the first argument
of σ (corresponding to r) has been increased by two. These initial terms
(with coefficients in bold) are then followed by terms with the other par-
titions as arguments, with all terms ordered lexicographically by partition
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(shorter partitions are listed before longer partitions, and, within a parti-
tion of a given length, larger entries are listed before smaller entries in the
first position where they differ; the integers in brackets are nonincreasing):

ζ(2) = 3
∞∑
k=1

1(
2k
k

)
k2

= 3σ(2, [0]), (3.35)

ζ(4) = 3
∞∑
k=1

1(
2k
k

)
k4
− 9

∞∑
k=1

∑k−1
j=1 j

−2(
2k
k

)
k2

= 3σ(4, [0])− 9σ(2, [2]) (3.36)

ζ(6) = 3
∞∑
k=1

1(
2k
k

)
k6
− 9

∞∑
k=1

∑k−1
j=1 j

−2(
2k
k

)
k4

− 45
2

∞∑
k=1

∑k−1
j=1 j

−4(
2k
k

)
k2

+
27
2

∞∑
k=1

k−1∑
j=1

∑k−1
i=1 i

−2

j2
(
2k
k

)
k2

, (3.37)

= 3σ(6, [])− 9σ(4, [2])− 45
2
σ(2, [4]) +

27
2
σ(2, [2, 2]) (3.38)

ζ(8) = 3σ(8, [])− 9σ(6, [2])− 45
2
σ(4, [4]) +

27
2
σ(4, [2, 2])− 63σ(2, [6])

+
135
2
σ(2, [4, 2])− 27

2
σ(2, [2, 2, 2]) (3.39)

ζ(10) = 3σ(10, [])− 9σ(8, [2])− 45
2
σ(6, [4]) +

27
2
σ(6, [2, 2])− 63σ(4, [6])

+
135
2
σ(4, [4, 2])− 27

2
σ(4, [2, 2, 2])− 765

4
σ(2, [8]) + 189σ(2, [6, 2])

+
675
8
σ(2, [4, 4])− 405

4
σ(2, [4, 2, 2]) +

81
8
σ(2, [2, 2, 2, 2]). (3.40)

Next from the above results, one can immediately read that α([ ]) = 3,
α([1]) = −9, α([2]) = −45/2, α([1, 1]) = 27/2, and so forth. Table 1
presents the values of α that we obtained in this manner.

Using these values, we then calculated series approximations to the
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Partition Alpha Partition Alpha Partition Alpha
[empty] 3/1 1 -9/1 2 -45/2
1,1 27/2 3 -63/1 2,1 135/2
1,1,1 -27/2 4 -765/4 3,1 189/1
2,2 675/8 2,1,1 -405/4 1,1,1,1 81/8
5 -3069/5 4,1 2295/4 3,2 945/2
3,1,1 -567/2 2,2,1 -2025/8 2,1,1,1 405/4
1,1,1,1,1 -243/40 6 -4095/2 5,1 9207/5
4,2 11475/8 4,1,1 -6885/8 3,3 1323/2
3,2,1 -2835/2 3,1,1,1 567/2 2,2,2 -3375/16
2,2,1,1 6075/16 2,1,1,1,1 -1215/16 1,1,1,1,1,1 243/80
7 -49149/7 6,1 49140/8 5,2 36828/8
5,1,1 -27621/10 4,3 32130/8 4,2,1 -34425/8
4,1,1,1 6885/8 3,3,1 -15876/8 3,2,2 -14175/8
3,2,1,1 17010/8 3,1,1,1,1 -1701/8 2,2,2,1 10125/16
2,2,1,1,1 -6075/16 2,1,1,1,1,1 729/16 1,1,1,1,1,1,1 -729/560
8 -1376235/56 7,1 1179576/56 6,2 859950/56
6,1,1 -515970/56 5,3 902286/70 5,2,1 -773388/56
5,1,1,1 193347/70 4,4 390150/64 4,3,1 -674730/56
4,2,2 -344250/64 4,2,1,1 413100/64 4,1,1,1,1 -41310/64
3,3,2 -277830/56 3,3,1,1 166698/56 3,2,2,1 297675/56
3,2,1,1,1 -119070/56 3,1,1,1,1,1 10206/80 2,2,2,2 50625/128
2,2,2,1,1 -60750/64 2,2,1,1,1,1 18225/64 2,1,1,1,1,1,1 -1458/64
1,1,1,1,1,1,1,1 2187/4480

Table 3.2. Alpha coefficients found by PSLQ computations

functions Pk(x), by using formula (3.34). We obtained:

P3(x) ≈ 3− 45
4
x2 − 45

16
x4 − 45

64
x6 − 45

256
x8 − 45

1024
x10 − 45

4096
x12 − 45

16384
x14

− 45
65536

x16

P4(x) ≈ 3− 49
4
x2 +

119
144

x4 +
3311
5184

x4 +
38759
186624

x6 +
384671
6718464

x8

+
3605399

241864704
x10 +

33022031
8707129344

x12 +
299492039

313456656384
x14

P5(x) ≈ 3− 205
16

x2 +
7115
2304

x4 +
207395
331776

x6 +
4160315
47775744

x8 +
74142995

6879707136
x10

+
1254489515

990677827584
x12 +

20685646595
142657607172096

x14 +
336494674715

20542695432781824
x16
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P6(x) ≈ 3− 5269
400

x2 +
6640139
1440000

x4 +
1635326891
5184000000

x6 − 5944880821
18662400000000

x8

− 212874252291349
67184640000000000

x10 − 141436384956907381
241864704000000000000

x12

− 70524260274859115989
870712934400000000000000

x14 − 31533457168819214655541
3134566563840000000000000000

x16

P7(x) ≈ 3− 5369
400

x2 +
8210839
1440000

x4 − 199644809
5184000000

x6 − 680040118121
18662400000000

x8

− 278500311775049
67184640000000000

x10 − 84136715217872681
241864704000000000000

x12

− 22363377813883431689
870712934400000000000000

x14 − 5560090840263911428841
3134566563840000000000000000

x16.

With these approximations in hand, we were then in a position to at-
tempt to determine closed-form expressions for Pk(x). This can be done by
using either “Pade” function in either Mathematica or Maple. We obtained
the following:

P1(x)
?= 3

P2(x)
?=

3(4x2 − 1)
(x2 − 1)

P3(x)
?=

12(4x2 − 1)
(x2 − 4)

P4(x)
?=

12(4x2 − 1)(4x2 − 9)
(x2 − 4)(x2 − 9)

P5(x)
?=

48(4x2 − 1)(4x2 − 9)
(x2 − 9)(x2 − 16)

P6(x)
?=

48(4x2 − 1)(4x2 − 9)(4x2 − 25)
(x2 − 9)(x2 − 16)(x2 − 25)

P7(x)
?=

192(4x2 − 1)(4x2 − 9)(4x2 − 25)
(x2 − 16)(x2 − 25)(x2 − 36)

These results immediately suggest that the general form of a generating
function identity is:

∞∑
n=0

ζ(2n+ 2)x2n ?= 3
∞∑
k=1

1(
2k
k

)
(k2 − x2)

k−1∏
m=1

4x2 −m2

x2 −m2
, (3.41)

which is equivalent to (3.30).
We next confirmed this result in several ways:

1. We symbolically computed the power series coefficients of the LHS
and the RHS of (3.41), and have verified that they agree up to the
term with x100.



i
i

i
i

i
i

i
i

6. Apery-Like Summations 77

2. We verified that Z(1/6), where Z(x) is the RHS of (3.41), agrees
with 18−3

√
3π, computed using (3.31), to over 2,500 digit precision;

likewise for Z(1/2) = 2, Z(1/3) = 9/2− 3π/(2
√

3), Z(1/4) = 8− 2π
and Z(1/

√
2) = 1− π/

√
2 · cot(π/

√
2).

3. We then affirmed that the formula (3.41) gives the same numerical
value as (3.31) for the 100 pseudorandom values {mπ}, for 1 ≤ m ≤
100, where {·} denotes fractional part.

Thus, we were certain that (3.30) was correct and it remained only to
find a proof of Theorem 1.
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Chapter 4

Exploration and Discovery in
Inverse Scattering

The mathematical study of physical processes is conventionally split be-
tween modeling and, once the modeling is sufficiently mature, manipula-
tion and data analysis. The modeling stage of exploration has a natural
experimental component that conforms to the usual picture conjured by
the word “experiment”, that is, a laboratory with machines that funnel
physical processes through a narrowly defined, well controlled environment
for the purpose of isolating and observing phenomena. Here mathematics
serves as a language to describe physical processes and to focus rational
exploration.

In this chapter we focus on the data analysis side of experimental math-
ematics, and, as such, we take the models for granted. Indeed, we make no
distinction between the models and the physical processes they describe.
We are interested instead in the inverse problem of determining the model
from an observation, or as we will refer to it, the solution to the forward
model .

Inverse problems are not new to applied mathematics. The inverse scat-
tering techniques we detail below, however, are still in their infancy and
point to a shifting approach to inverse problems in general which we would
like to take a moment to contrast with more conventional methodologies.
Statistical regression and estimation, for instance, have long been funda-
mental to empirical studies which seek to find the most likely model to fit
some observed data. Here the model for the data is given a priori with
undetermined parameters that are selected by an optimization procedure
which yields a best fit to the observation according to some criteria, often
depending on an assumed noise or stochastic model. Quantitative confi-
dence intervals can be obtained that provide bounds on the likelihood that
a given model assumption is true through a procedure known as hypothe-
sis testing. This process of quantitatively deducing a likely explanation for

79
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an observation fits very naturally in the mold of experimental mathemat-
ics, and, indeed, might well be considered the template for experimental
mathematics as it is applied elsewhere. What distinguishes conventional
inverse problems from the case study presented here is the amount of a pri-
ori information we shall allow ourselves and the nature of the information
we shall glean from our mathematical experiments. We assume relatively
little at the outset about the model for the data and, through a series of
qualitative feasibility tests, progressively refine our assumptions. The fea-
sibility tests are boolean in nature, very much in the spirit of a yes/no
query to an oracle that is constructed from the governing equations. As
certain possibilities are ruled out, we can then begin the process of obtain-
ing quantitative estimates for specific parameters. At the final stages of the
process our techniques will merge with conventional parameter estimation
techniques, but it is the process of getting to that stage of refinement that
is of recent vintage and a topic of current research.

Another reason for placing the spotlight on inverse scattering is to
highlight the role of computational experimentation in the development
of mathematical methodologies. As mentioned above, the techniques we
discuss are in their infancy. What is meant by this is that the settings in
which they can be mathematically proven to work are far fewer than those
in which they have been computationally demonstrated to work. At the
same time, uniqueness proofs for the solutions to boundary value problems
in partial differential equations have been the motivation for many com-
putational techniques. This interplay between computation and theory is
central to experimental mathematics.

The following is a case study of recent trends in qualitative exploration
of the mathematical structure of models for the scattering of waves and
their corresponding inverse operators. This approach has its roots in func-
tional analysis methods in partial differential equations and has merged
with engineering and numerical analysis. Applications range from acous-
tic scattering for geophysical exploration to electromagnetic scattering for
medical imaging. As the mathematical models for acoustic and electromag-
netic scattering share identical formulations in many instances, it follows
that the methods we describe below apply to both electromagnetic and
acoustic scattering . For ease, however, our case study is for acoustic scat-
tering.

1 The Physical Experiment

The experiment consists of sending a wave through a compact region D ⊂
R2 of isotropic material with a small amplitude, monochromatic, time-
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harmonic acoustic plane wave denoted

ui(x; η̂, κ) ≡ eiκbη·x, x ∈ R2 (4.1)

and parameterized by the incident direction η̂ in the set S of unit vectors in
R2 and wavenumber κ > 0 – and recording the resulting far field pattern for
the scattered field, denoted by u∞(·, η̂, κ) : ∂D→ C at points x̂ uniformly
distributed around ∂D, the boundary of D. The incident field at points
x ∈ D, a circle of radius 100 centered a the origin, and resulting far field
pattern are shown in Figure 4.1. The restriction to two-dimensional space
is a matter of computational convenience – the theory applies equally to R3.
The length scales are determined by κ which is inversely proportional to the
wavelength, ω = 2π/κ physical units. The time-dependence of the wave has
already been factored out since the time-harmonicity only contributes an
e−iωt factor to the waves. The isotropy assumption on the region D means
that there is no preferential direction of scattering. This is not the same
as assuming that there are no obstructions to the wave since, otherwise,
the far field pattern would be zero. By “far field” we mean that the radius
of D is large relative to the wavelength, and that whatever is causing the
scattering lies well inside the interior of D. Since our experiments are at a
single fixed frequency, κ = 2, we shall drop the explicit dependence of the
fields on κ. The representation of the fields as mappings onto C is also,
to some degree, a matter of convenience. For acoustic experiments it is
possible to measure the phase of the fields, that is, the real and imaginary
parts. This is not always the case for electromagnetic experiments [171]
though we avoid these complications.

The experiment is repeated at N incident directions η̂n equally dis-
tributed on the interval [−π, π]. For each incident direction η̂n, we collect
N far field measurements at points x̂n. The resulting arrays of data are
N ×N complex-valued matrices shown in Figure 4.2.

Our goal is to determine as much as possible about the scatterer(s)
that produced this data. We will be satisfied with being able to locate and
determine the size and shape of the scatterers. If we can determine some
of the physical properties of the material making up the scatterers, we will
be at the cutting edge of inverse scattering research. We begin with a
review of acoustic scattering. This theory is classical, hence our treatment
is terse. Readers interested in thorough derivations of the tools we explore
are referred to [80] from which we borrow our formalism.

2 The Model

Our a priori knowledge is limited to the incident waves ui and the sub-
strate medium – what we will henceforth call the background medium – in
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(a) (b)

Figure 4.1. (a) Real part of incident field with direction η̂ = −π/12, and

wavenumber κ = 2 on the region D. The inset is a close-up view of the field.

(b) Far field data, real and imaginary parts, corresponding to scattering due to the

passing of the incident plane wave shown in (a) through the region D.

(a) (b)

Figure 4.2. Far field data, real (a) and imaginary (b) parts, from a series of

acoustic scattering experiments differing in the direction of the incident field.

Each experiment is at the same incident wavenumber κ = 2 .

D, namely that they are small-amplitude, monochromatic plane waves trav-
eling in an isotropic medium. The waves travel in space, and as such are
represented as vector-valued functions of their position. Since the medium
is isotropic, however, the vector components of the wave fields are not
coupled, thus we can treat each of the spatial components of the wave as
independent scalar waves obeying the same governing equations. As men-
tioned above, if there were no obstruction to ui in D the far field pattern
would be zero. As this is apparently not the case, there must be some scat-
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tered field generated by ui which we denote by us. Together the scattered
field and the incident field comprise the total field, denoted u, where

u(x; η̂) = eiκbη·x + us(x, η̂). (4.2)

For slowly varying scattering media , the governing equations for acous-
tic scattering are given by the Helmholtz equation(

4+ n(x)κ2
)
u(x) = 0, x ∈ R2, (4.3)

where 4 denotes the Laplacian, and n : R2 → C is the index of refraction
of the medium . In terms of the speed of propagation through the medium,
this is given by

n(x) :=
c20

c2(x)
+ iσ(x), (4.4)

where c0 > 0 denotes the sound speed of the background medium, c :
R2 → R+ \ {0} is the sound speed inside the scatterer, and σ : R2 → R+

is a function that models the influence of absorption. The ”slowly-varying”
assumption on the medium means that derivatives of order 1 and higher
are negligible. Note that at a point x in the background medium, c20

c2(x) = 1.
We assume that the background medium is nonabsorbing, that is σ(x) = 0,
hence n(x) = 1 in the background medium.

If the domain D contains in its interior one or more sound reflectors
(c2(x) � 1) or a highly absorbing materials (σ � 1) then we restrict the
domain in Eq.(4.3) from R2 to the open exterior domain Ωo = R2 \ Ω
where the compact domain Ω contains the support of the scatterers. The
scatterers are then modeled as obstacles which behave as either sound-soft,
or sound-hard obstacles, or some mixture of these. This is modeled with
Dirichlet, Neumann or Robin boundary conditions on ∂Ω:

u = f or
∂u

∂ν
= f, or

∂u

∂ν
+ λu = f, on ∂Ω, (4.5)

where, f is continuous on ∂Ω, ν is the unit outward normal, and λ is an
impedance function .

In either case, slowly-varying media or obstacle scattering, the scattered
field us is a decaying field satisfying what is known as the Sommerfeld
radiation condition

r
1
2

( ∂
∂r
− iκ

)
us(x)→ 0, r = |x| → ∞, (4.6)

uniformly in all directions.
We prefer the formulation as slowly-varying media to obstacle scattering

since the latter can be viewed as an ideal limiting case of the former. If,
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in the course of our investigation it appears that there is some obstacle
scattering present we can always refocus our investigation to take this into
account.

For inhomogeneous media, the far field pattern – what is actually mea-
sured – is modeled by the leading term in the asymptotic expansion for us

as |x| → ∞, namely

us(x, η̂) = β
eiκ|x|

|x|1/2
u∞(x̂, η̂) + o

(
1
|x|1/2

)
, x̂ =

x

|x|
(4.7)

where

β =
(
ei

π
2

8πκ

)1/2

(4.8)

and
u∞(x̂, η̂) ≡ −κ2

∫
R2
e−iκy·bxm(y)u(y, η̂) dy. (4.9)

In an abuse of notation we have replaced points x̂ ∈ ∂D with directions
on the unit sphere x̂ ∈ S, which is tantamount to letting ∂D → ∞ in all
directions, consistent with the asymptotic expression for u∞.

Since we will be trying to reconstruct volumetric information from
boundary measurements, it shouldn’t come as a surprise that a central
tool in our analysis is Green’s theorem∫

D
(v4u+∇v · ∇u) dx =

∫
∂D
v
∂u

∂ν
ds (4.10)

for u ∈ C2(D) and v ∈ C1(D), ∂D sufficiently smooth and the unit outward
normal ν. For v ∈ C2(D) this is sometimes given as∫

D
(v4u− u4v) dx =

∫
∂D
v
∂u

∂ν
− u∂v

∂ν
ds (4.11)

We will also make use of Green’s formula

u(x) =
∫
∂D

(
Φ(x, y)

∂u

∂ν
(y)− u(y)∂Φ(x, y)

∂ν(y)

)
ds(y) (4.12)

−
∫

D

(
4u(y) + κ2u(y)

)
Φ(x, y) dy, x ∈ D,

where Φ(·, y) : R2 \ {y} → C is the free space (n(x) ≡ 1) radiating funda-
mental solution to Eq.(4.3):

Φ(x, y) :=
i

4
H

(1)
0 (κ|x− y|), x 6= y (4.13)
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with H(1)
0 denoting the zero-th order Hankel function of the first kind.

For smooth boundaries ∂Ω, Eq.(4.7), Eq.(4.12), and the asymptotic
expansion of Φ with respect to |x| yield

u∞(x̂, η̂) = β

∫
∂Ω

(
us(y, η̂)

∂e−iκbx·y
∂ν(y)

− ∂us(y, η̂)
∂ν

e−iκbx·y) , x̂, η̂ ∈ S

(4.14)
Using Eq.(4.3) for the scattered field us, Eq.(4.6) and Eq.(4.10), it can be
shown that the far field enjoys a symmetry

u∞(x̂, η̂) = u∞(−η̂,−x̂). (4.15)

This relation is the well known reciprocity relation for the far field.
A very useful tool in our analysis and algorithms are fields that can be

represented as the superposition of plane waves. Define the Herglotz Wave
Operator H : L2(−Λ)→ H1(Rm) by

(Hg)(x) ≡
∫

Λ

eiκx·(−by)g(−ŷ)ds(ŷ), x ∈ R2 (4.16)

where Λ is an open subset of S, g ∈ L2(−S), and H1 denotes the Sobolev
space of order 1 defined by

‖h‖H1(Rm) ≡
(∫

Rm

|v(x)|2 + |∇v(x)|2dx
)1/2

.

Theorem 2.1. Let us : R2 → C and u∞ : S→ C denote the scattered and
far fields, respectively, due to excitation from an incident plane wave ui at
a fixed wavenumber κ > 0 with direction −η̂, ui(x,−η̂) ≡ eiκx·(−bη), x ∈
R2, η̂ ∈ S. The solution to the scattering problem corresponding to the
incident field vig ≡ (Hg)(x) for H given by Eq.(4.16) is vg = vig +vsg, where

vsg(x) =
∫

S
us(x,−η̂)g(−η̂)ds(η̂), x ∈ R2 \ Ω. (4.17)

The incident field vig ≡ (Hg)(x) given by Eq.(4.16) is called a Herglotz
wave function. The corresponding far field pattern is given by

v∞g (x̂) =
∫

Λ

u∞(x̂,−η̂)g(−η̂)ds(η̂), x̂ ∈ S. (4.18)

Proof. The proof follows from the linearity and boundedness of the partic-
ular scattering problem. Linearity implies that scattering from an incident
field that is the superposition of incident plane waves can be represented
as the superposition of scattering from independent scattered plane waves.
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By boundedness of the scattering operator from C(Ω) into Cloc(R2 \ Ω),
the limit for the integration can be performed and we obtain the stated
results. 2

Remark 2.1. The signs in the expressions for vig, v
s
g, and v∞g above

have been chosen so that the backprojection mapping between the far field
measurements and the scattered field, which we derive later, has a natu-
ral interpretation in terms of a physical aperture in the far field. Note
that the function g is defined on −Λ, the mirror image of the interval Λ:
η̂ ∈ Λ ∈ S − η̂ ∈ −Λ. Using the far field reciprocity relation Eq.(4.15) we
see that the far field is defined on Λ with any incident wave direction −x̂.

Remark 2.2. By Eq.(4.15) we have

v∞g (x̂) =
∫

Λ

u∞(η̂,−x̂)g(−η̂)ds(η̂), x̂ ∈ S. (4.19)

It is worthwhile taking a second look at the Herglotz wave operator
Eq.(4.16). This operator, restricted to the boundary of some region Ωt ⊂
Rm with piecewise C2 boundary and connected exterior, is injective with
dense range [81]. In particular, we can construct the density g(·; z) such

that vig(·,z)(x) ≈ Φ(x, z) and
∂vi

g(·,z)

∂n (x) ≈ ∂Φ(x,z)
∂n arbitrarily closely for

x ∈ ∂Ω and z ∈ Ωo. By Eq.(4.12) and Eq.(4.18), for z ∈ Ωo and any generic
scattered field us satisfying Eq.(4.3) on Ωo and the radiation condition
Eq.(4.6), we have

us(z) =
∫
∂Ω

{
Φ(y, z)

∂us

∂ν
(y)− ∂Φ(y, z)

∂ν(y)
us(y)

}
ds(y),

≈
∫
∂Ω

{
vig(·;z)(y)

∂us

∂ν
(y)−

∂vig(·;z)(y)

∂ν(y)
us(y)

}
ds(y),

=
∫

Λ

∫
∂Ω

{
eiκy·(−bx) ∂us

∂ν
(y)− ∂eiκy·(−bx)

∂ν(y)
us(y)

}
ds(y)g(−ŷ; z)ds(ŷ)

=
∫

Λ

u∞(ŷ)g(−ŷ; z)ds(ŷ) (4.20)

We can rewrite the above relation in a more suggestive manner for the
specific case of scattering from an incident plane wave. Define the far field
operator A : L2(S)→ L2(S) corresponding to the far field data u∞ by

Af(x̂) ≡
∫

S
u∞(x̂,−η̂)f(−η̂) ds(η̂). (4.21)
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When the integral is over an open subset Λ ⊂ S we denote the far field
operator restricted to the limited aperture Λ by AΛ. Then, using the
reciprocity relation Eq.(4.15), we can rewrite Eq.(4.20) as

us(z,−x̂) ≈ (Ag(·; z))(x̂). (4.22)

If the scattering problem has a unique solution, then knowledge of the scat-
tered field us everywhere is all we need in order to determine the location,
shape and properties of the scatterer. According to Eq.(4.22), we can re-
construct us by acting on some well-chosen densities g with the far field
operator. In other words, the scattered field is in the range of the far field
operator. Before exploring the range of A, however, we should convince
ourselves that the scattering problem does indeed have a unique solution.

2.1 Weak Formulation

The scattering model is conventionally reformulated as an integral equa-
tion, which admits both existence and uniqueness theorems, as well as
numerical algorithms. To do this we make use of the volume potential

(Vϕ)(x) ≡
∫

Rm

Φ(x, y)m(y)ϕ(y) dy, x ∈ R2, (4.23)

where m is the scattering potential,

m ≡ 1− n. (4.24)

Note that from the assumptions above m(x) = 0 outside the scattering
inhomogeneity, and, from the assumption that the inhomogeneity lies in
the interior of D, m has compact support.

If u satisfies Eq.(4.2), Eq.(4.3) and Eq.(4.6), and is twice continuously
differentiable on R2, i.e. u ∈ C2(R2), then by Eq.(4.12) applied to u we
have

u(x) =
∫
∂rB

(
∂u

∂ν
Φ(x, y)− u(y)∂Φ(·, y)

∂ν(y)
(x)
)
ds(y)

−κ2

∫
rB

Φ(x, y)m(y)u(y) dy (4.25)

where rB is the ball of radius r with supp (m) ∈ int (rB) and x ∈ int (rB),
and ν is the unit outward normal to rB. Here we have used the fact that u
satisfies Eq.(4.3) and m = 1 − n. Applying Eq.(4.12) to the incident field
ui yields

ui(x) =
∫
∂rB

(
∂ui

∂ν
Φ(x, y)− ui(y)∂Φ(·, y)

∂ν(y)
(x)
)
ds(y) (4.26)
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Moreover, Eq.(4.10) applied to us together with the boundary condition
Eq.(4.6) gives

0 =
∫
∂rB

(
∂us

∂ν
Φ(x, y)− us(y)∂Φ(·, y)

∂ν(y)
(x)
)
ds(y). (4.27)

Altogether, Eq.(4.25)-(4.27) and Eq.(4.2) yield the well known Lippmann-
Schwinger integral equation

u = ui − κ2Vu. (4.28)

From Eq.(4.2) it follows immediately from Eq.(4.28) that

us(x, η̂) = −κ2(Vu)(x, η̂) (4.29)

With a little more work [80, Theorem 8.1 and 8.2] it can be shown
that if u ∈ C(R2) solves Eq.(4.28), then u satisfies Eq.(4.2)-(4.6) for n ∈
C1(R2). We summarize this discussion with the following restatement of
[80, Theorem 8.3].

Theorem 2.2 (Helmholtz-Lippmann-Schwinger equivalence). If u ∈ C2(R2)
satisfies Eq.(4.2)-(4.6) for n ∈ C1(R2), then u solves Eq.(4.28). Con-
versely, if u ∈ C2(R2) solves Eq.(4.28), then u solves Eq.(4.2)-(4.6).

The previous theorem assumed that the solutions to Eq.(4.2)-(4.6) and
equivalently Eq.(4.28) exist, which begs the question about existence and
uniqueness.

Theorem 2.3. For each κ > 0 there exists a unique u satisfying Eq.(4.2),
Eq.(4.3) and Eq.(4.6) with ui given by Eq.(4.1). Moreover, u depends
continuously on ui with respect to the max-norm.

Proof sketch. The main ideas are sketched here. Interested readers are
referred to the works of Leis [164], Reed and Simon [205] and Colton and
Kress [80]. The integral operator V has a weakly singular kernel Φ, hence
is a compact operator on C(D) where Ω ∈ int (D) for D bounded. Standard
results in integral equations [155, 208] ensure that, if the homogeneous
Lippmann-Schwinger equation

u+ κ2Vu = 0,

has only the trivial solution, then the inhomogeneous equation has a unique
solution and the inverse operator (I+κ2V)−1 exists and is bounded in C(D).
Since the inverse operator is bounded, the solution u depends continuously
on ui with respect to the max-norm on C(D). From the previous discussion,
the homogeneous Lippmann-Schwinger equation is equivalent to(

4+ n(x)κ2
)
u(x) = 0, x ∈ R2, (4.30)
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and

r
1
2

( ∂
∂r
− iκ

)
u(x)→ 0, r = |x| → ∞, (4.31)

Green’s Theorem Eq.(4.10) and the unique continuation principle [164] are
employed to show that the only solution to Eq.(4.30)-(4.31) is the trivial
solution. 2

The natural question to ask next is what about the index of refraction n
is encoded in the far field data u∞. This is the central question in inverse
scattering and one that often leads to algorithms. In the next section
we shall motivate some representative inverse scattering algorithms by the
uniqueness results at their foundation.

3 The Mathematical Experiment: Qualitative In-
verse Scattering

A long standing problem for the mathematical community has been to
determine when the scattering potential is uniquely determined by the far
field. The answer to this question is subtle and varied, depending on the
setting – whether R2 or R3, isotropic or anisotropic, multi-frequency or
single frequency, Dirichlet, Neumann, or inhomogeneous media. In three
or more dimensions for isotropic media, key results affirming the recovery
of n(x) from u∞(x̂; η̂), where u∞ is known for all x̂, η̂ ∈ S, can be found
in Nachman [182], Novikov [185], and Ramm [204]. In two dimensions, the
case we consider here, positive results are more difficult. A quick heuristic
as to why this might be the case is to look at the dimensions of the data
versus those of the unknown index of refraction n. In R3 the dimension
of n : R3 → C is 3 while the data u∞ : S × S → C is on two two-
dimensional spheres, x̂ ∈ S and η̂ ∈ S, so that the problem appears to be
overdetermined. By contrast, in R2 the unknown n : R2 → C and the data
u∞ : S × S → are both two-dimensional since, in this case, the spheres S
are one-dimensional. The same kind of data in R2 does not stretch as far
is it does in R3.

Two dimensional results for small potentials are given by Novikov [186],
for most potentials in an open dense subset of the Sobolev space W 1,∞ by
Sun and Uhlmann [216], and later by the same authors for discontinuous
potentials in L∞(D) [217], for special kinds of potentials by Nachman [183]
(though not necessarily for fixed κ > 0), and for a broad class of potentials
at almost all fixed κ ∈ R+ by Eskin [105]. In some cases [182, 183] the
proofs are constructive and yield algorithms for inversion. More generic re-
sults give practitioners courage to try inversion, but provide little specific
guidance as to exactly how much information is really required. Most of the
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results, with some exceptions that we will explore below, require a contin-
uum of far field measurements from a continuum of incident field directions.
Negative results would indeed be useful, though very few are known that
indicate when the information is not sufficient for unique recovery.

3.1 Where Is the Scatterer? How Big is It?

The first thing we might naturally want to know about the scatterer is
where it is and, approximately, how big it is. The first method we study
appeared in [172] and belongs to a class of algorithms that share similar
features. With these methods one constructs a test domain Ωt(z), parame-
terized by the reference point z ∈ R2, and an indicator function µ that is a
function of the test domain Ωt(z) and the far field pattern u∞ measured on
some open subset Λ ⊂ S for a fixed incident direction −x̂. These far field
measurements correspond to a segment of a column of the matrix shown
in Figure 4.2. The indicator function µ is “small” for all z ∈ R2 such that
Ω ⊂ int (Ωt(z)) and infinite for those z where Ωt(z)∩Ω = Ø. The size of the
test domain Ωt and the set of points

{
z ∈ R2 |µ(Ωt(z), u∞(Λ,−x̂)) <∞

}
will determine the approximate size and location of the scatterer. A cru-
cial advantage of this method and others like it [142, 198] is that they only
require one incident wave (single frequency and single incident direction)
on a limited aperture, Λ ⊂ S.

Definition 3.1 (scattering test response). Given the far field pattern u∞(η̂,−x̂)
for η̂ ∈ Λ ⊂ S due to an incident plane wave ui(·,−x̂) with fixed direction
−x̂, let vig ≡ (Hg)(x) denote the incident field defined by Eq.(4.16) and
v∞g (x̂) denote the corresponding far field pattern given by Eq.(4.19). We
define the scattering test response for the test domain Ωt by

µ(Ωt, u∞(Λ,−x̂)) := (4.32)

sup
{∣∣v∞g (x̂)

∣∣ ∣∣∣ g ∈ L2(−Λ) with ‖vig‖Ωt = 1
}
.

Theorem 3.2 (behavior of the scattering test response). Let the bounded
domain Ωt have a C2 boundary. If Ω ⊂ Ωt , then there is a constant c ∈ R
such that

µ(Ωt, u∞(Λ,−x̂)) ≤ c.

If, on the other hand, cl (Ω) ∩ cl (Ωt) = Ø, and R2 \ (cl (Ω) ∪ cl (Ωt)) is
connected, then we have

µ(Ωt, u∞(Λ,−x̂)) =∞.
Proof. This was proved in [172, Theorem 3.2]. We reproduce the proof
here. When Ω ⊂ Ωt the scattering map ui 7→ u∞ is bounded for any generic
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incident field ui that is an entire solution to the Helmholtz equation. Hence
there exists a constant c such that for all ui satisfying∥∥ui∥∥

C(Ωt)
= 1,

we have
‖u∞‖C(S) ≤ c.

This completes the proof of the first statement.
To prove the second statement, we consider two disjoint domains, Ω′

t

and Ω′, satisfying Ωt ⊂ Ω′
t, Ω ⊂ Ω′, and Ω′

t ∩ Ω′ = Ø. We further require
that the interior homogeneous Dirichlet problems for Ω′

t and Ω′ have only
the trivial solution. Then the Herglotz wave operator H : L2(−Λ) →
L2(∂(Ω′

t ∪ Ω′)), defined by

(Hg)(x) := vig(x)
∣∣∣
∂(Ω′t∪Ω′)

,

has dense range. This can be shown using the techniques of [81]. Choose
y 6∈ Ω′

t ∪ Ω′ such that the far field pattern w∞(x̂, y) for scattering of an
incident point source Φ(·, y) by Ω is not zero. This is always possible since,
by the mixed reciprocity relation [197, Theorem 2.1.4], we have

w∞(x̂, y) = γus(y,−x̂)

and us(·,−x̂) cannot vanish on an open subset of R2. Next, construct vig(x)
satisfying ∥∥vig∥∥C(Ω′t)

= 1, and
∥∥vig − βΦ(·, y)

∥∥
C(Ω′)

≤ 1. (4.33)

Then since Ωt ⊂ Ω′
t, we have

µ(Ωt, u∞(Λ,−x̂)) ≥
∣∣v∞g (x̂)

∣∣ . (4.34)

By definition Ω ⊂ Ω′; thus∣∣v∞g (x̂)− βw∞(x̂, y)
∣∣ ≤ c,

for some constant c, which, by the triangle inequality, yields∣∣v∞g (x̂)
∣∣ ≥ β |w∞(x̂, y)| − c. (4.35)

Together, Eq.(4.33)-(4.35) yield

µ(Ωt, u∞(Λ,−x̂)) ≥ β |w∞(x̂, y)| − c

for all β ∈ R. This completes the proof. 2
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Definition 3.3 (corona of Ω). Let Ωt(z) ⊂ R2 be a domain parameterized
by z ∈ R2. Define the corona of the scatterer Ω, relative to the scattering
test response µ given in Eq.(4.32) by

Mµ :=
⋃

z∈R2

s.t. µ(Ωt(z),u∞(Λ,−bx))<∞
Ωt(z). (4.36)

Corollary 3.1 (approximate size and location of scatterers). Let Ωt(z) ⊂
R2, with R2 \ cl (Ωt(z)) connected, be a bounded domain large enough that
there is some z ∈ R2 for which Ω ⊂ Ωt(z). Then we have

Mµ ⊂
⋃
z∈R2

{Ωt(z) | cl (Ωt(z)) ∩ cl (Ω) 6= Ø} (4.37)

and the scatterer Ω is a subset of its corona, Mµ.

Proof. For points z with µ(Ω0
t (z), u

∞(Λ,−x̂)) < ∞, by Theorem 3.2 we
have cl

(
Ω0
t (z)

)
∩ Ω 6= Ø, from which we immediately obtain the relation

(4.37). For Ω ⊂ Ω0
t (z) we have µ(Ω0

t (z), u
∞(Λ,−x̂)) < ∞ and thus the

support of the scatterer is a subset of its corona. 2

Before we develop the numerical algorithm based on these facts we
would like to point out some challenges in the theory above. The obser-
vant reader will notice that we didn’t mention what happens to µ when
Ω ∩ Ωt 6= Ø but Ω ∩ (R2 \ Ωt) 6= Ø. If µ(Ω0

t (z), u
∞(Λ,−x̂)) = ∞ when

Ω ∩ Ωt 6= Ø but Ω ∩ (R2 \ Ωt) 6= Ø, then the set inequality Eq.(4.37) can
be tightened considerably. Unfortunately, because the fields can be analyt-
ically continued, the answer to this question is not as sharp as we might
hope. Also note that the constant c in Theorem 3.2 is not resolved. All we
know is that c is smaller than infinity, but that isn’t saying much. Natu-
rally, we would like to know more about this constant. Finally, note that
the optimization problem embedded in Eq.(4.32) is an infinite dimensional
problem which we must solve at each point z ∈ D. Even with all these
challenges, we can get a surprising amount of information from a naive
implementation of this test, as we demonstrate below.

The algorithm we shall develop is for full aperture data, that is Λ = S.
The same basic algorithm can be adapted for the limited aperture settings.
We address first the computation of the scattering test response µ. By
Eq.(4.32), we must solve, at each point z, an optimization problem over the
densities g ∈ L2(S). We construct densities such that the incident field vig
approximates the fundamental solution to Eq.(4.3), Φ(x, y) on x ∈ ∂Ωt(z)
for y ∈ R2 \ Ωt(z), that is, at each point z ∈ D we solve the following
ill-posed equation for g:

vig(x) = Φ(x, y) for x ∈ ∂Ωt(z), y ∈ R2 \ Ωt(z) (4.38)
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where vig is given by Eq.(4.16). Denote the Herglotz wave operator Eq.(4.16)
corresponding to vig by Hz . Since Eq.(4.38) is ill-posed, we solve the
Tikhonov-regularized least-squares problem

minimize
g∈L2(S)

‖Hzg − Φ(·, y)‖2 + α‖g‖2 (4.39)

whose solution is

g(·; y, z, α) := (αI +H∗zHz)−1H∗zΦ(·, y). (4.40)

This yields
vig(·; y, z, α) ≈ Φ(·, y) on ∂Ωt(z).

We thus exchange the infinite dimensional optimization problem in Eq.(4.32)
for the parameterized, finite dimensional optimization problem

µ(Ωt(z), u∞(S,−x̂)) = sup
y∈R2

∣∣v∞g (x̂; y, z, α0)
∣∣ (4.41)

where
g∗(η̂; y, z, α0) =

(
(α0I +H∗zHz)−1H∗zΦ

)
(η̂, y) (4.42)

and
g =

g∗
‖vig∗‖

.

Next, we introduce a specific approximation domain that allows further
efficiencies due to symmetry of the fundamental solution Φ. Let Ω0

r be a
circle of radius r centered on the origin. We construct the test domain
parameterized by points z ∈ R2 by linear translations of the domain Ω0

r:
Ωt(z) ≡ Ω0

r + z. In [170, Proposition 2] it is shown that

g∗(η̂; y, z, α0) = e−iκz·bηg∗(η̂; y, 0, α0), (4.43)

where g∗ is the respective solution to Eq.(4.39). Similarly, rotations of the
point y around the origin translate to shifts in the density with respect to
S:

g∗(η̂;R bwy, z, α0) = e−iκz·bηg∗(R− bwη̂; y, 0, α0), (4.44)

where R bw is the rotation in the direction ŵ in the plane. Thus, for fixed
r > 0 with y = rŷ, where ŷ ≡ y/|y|, we have the explicit, closed-form
expressions for the densities g∗:

g∗(η̂; y, z, α0) = e−iκz·bηg∗(R−by η̂; (r, 0), α0), (4.45)

where

g∗(η̂; (r, 0), 0, α0) =
(
(α0I +H∗0H0)−1H∗0Φ

)
(η̂; (r, 0)). (4.46)
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We need only compute Eq.(4.46) along the line r > 0 and solve Eq.(4.41)
for these explicitly calculated densities.

At the time of this writing, no satisfactory algorithm exists for the
solution of Eq.(4.41). Instead, we propose the following technique in the
form of a conjecture.

Conjecture 3.2. Let Ωt(0) be a circle of radius r centered at the origin
where r is large enough that Ω ⊂ Ωt(0) + z for some z ∈ R2. For each
ŷ ∈ S, let g(η̂, rŷ, 0) solve

(Hg(η̂)) (∂Ωt(0), rŷ) = Φ(∂Ωt(0), rŷ). (4.47)

Define the partial scattering test response , δ : R2 → R+ , by

δ(z) ≡
∫

S
|(AΛgz)(ŷ)| ds(ŷ) (4.48)

where gz ≡ eiκbη·zg(η̂, rŷ, 0) and AΛ is the far field operator given by Eq.(4.21)
restricted to Λ ⊂ S. Then, for any x̂ ∈ S there exist constants 0 < M ′ < M
such that

δ(z)

{
> M ∀ z ∈ R2 where Ω ∩ Ωt(0) + z = Ø

< M ′ ∀ z ∈ R2 where Ω ⊂ int (Ωt(0) + z).
(4.49)

Using the efficient formulation Eq.(4.45), we need only solve one ill-posed
integral equation, Eq.(4.46) and calculate the integral in Eq.(4.49) at each
sample point z. The corona of the scatterer is identified by a jump in δ(z).

We can test this conjecture numerically. If Conjecture 3.2 is true, then
the scatterer lies in the region G+Ωt(0) where Ωt(0) is a circle centered on
the origin and G is the set of points z ∈ D where Eq.(4.49) is satisfied. To
generate Figure 4.3 we used a test domain radius of r = 5

√
2. In order to

cover the domain D = [−100, 100]× [−100, 100] this required us to sample
on a 20×20 grid for a pixel size of 10×10. The dark region G shown in the
figure are the points z on this grid where Eq.(4.49) is satisfied with M = 9,
indicating that there is something of interest in the region G + Ωt(0).

There are two principal advantages of this method: first, only a single
incident direction is needed, and, second, one can cast as large a net as
desired, depending on the radius of the test domain Ωt, in order to deter-
mine the approximate location and size of the scatterer without the need
to sample at many points z ∈ D. We will see in section 3.3 whether the
conjectured region does indeed contain something of interest.

3.2 Is the Scatterer Absorbing?

Recall from section 2 that the scattered field we seek lies in the range of the
far field operator A defined by Eq.(4.21). The first question that comes to
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Figure 4.3. Plotted is the value of the integral in Eq.(4.49) at the reference points

z ∈ D where D is shown in Figure 4.1(a). The test domain Ωt(0) is a circle of

radius r = 5
√

2 and with a cutoff value in Eq.(4.49) of M = 9. If conjecture 3.2

is true, then the scatterer lies in the region G+Ωt(0) where G is the set of points

in the dark region above.

mind, then, regarding the range of A is, what are it’s spectral properties,
that is, how do its eigenvalues behave. We obtain a partial answer with
the next theorem.

Theorem 3.4. The far field operator has at most a countable number of
discrete eigenvalues with zero as the only cluster point.

Proof. This follows from the fact that A is a compact operator [205, 208].
2

This is disappointing. Even if zero is not and eigenvalue, the decay
of the eigenvalues of A will cause numerical instabilities and sensitivity
to noise in the determination of the range of A. This is symptomatic of
ill-posed problems like the one we are faced with here. While the spectral
properties of the far field operator point to some of the difficulties in re-
covering scatterers from far field measurements, the next theorem due to
Colton and Kress [79, 80] shows that the spectrum of A easily provides
qualitative information about the nature of the scatterer, whether it is
absorbing or or not, from the location of the eigenvalues of A.

Theorem 3.5. Let the scattering inhomogeneity have index of refraction
defined in Eq.(4.4) mapping R2 to the upper half of the complex plane.
The scattering inhomogeneity is nonabsorbing, that is, =n(x) = 0 for
all x, if and only if the eigenvalues of A lie on the circle centered at
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1
2κ

(
=(β−1),<(β−1)

)
and passing through the origin. Otherwise, the eigen-

values of A lie on the interior of this disk.

Proof. Let vg = vig+vsg satisfy Eq.(4.3) with vsg satisfying Eq.(4.6) and vig
defined by Eq.(4.16) where Λ = S and where g ∈ L2(S) is an eigenfunction
of A, that is, Ag = λg. By Eq.(4.10) we have∫

Ω

(vg∆vg − vg∆vg) dx =
∫
∂Ω

vg
∂vg
∂ν
− vg

∂vg
∂ν

ds. (4.50)

But vg satisfies Eq.(4.3) so the left hand side of Eq.(4.50) satisfies∫
Ω

(vg∆vg − vg∆vg) dx = −2κ2
i

∫
Ω

=(n(x))|vg(x)|2 dx. (4.51)

According to Eq.(4.2), the right hand side of Eq.(4.50) can be expanded to∫
∂Ω

vg
∂vg
∂ν
− vg

∂vg
∂ν

ds =
∫
∂Ω

vsg
∂vsg
∂ν
− vsg

∂vsg
∂ν

ds

−2i=
∫
∂Ω

vsg
∂vig
∂ν
− vig

∂vsg
∂ν

ds+
∫
∂Ω

vig
∂vig
∂ν
− vig

∂vig
∂ν

ds

=
∫
∂Ω

vsg
∂vsg
∂ν
− vsg

∂vsg
∂ν

ds− 2i=
∫
∂Ω

vsg
∂vig
∂ν
− vig

∂vsg
∂ν

ds.

(4.52)

Now, Eq.(4.6) gives

vsg
∂vsg
∂ν

=
−iκ

|x|
v∞g v

∞
g +O

(
1
|x|2

)
, |x| → ∞.

So by Eq.(4.11), ∫
∂Ω

vsg
∂vsg
∂ν
− vsg

∂vsg
∂ν

ds = 2iκ

∫
S
|v∞g |2 ds. (4.53)

Expanding the expression for vig, together with a change in the order of
integration and Eq.(4.14) yields∫
∂Ω

vsg
∂vig
∂ν
− vig

∂vsg
∂ν

ds =
∫

S
g(ŷ)

∫
∂Ω

vsg
∂eiκby·x
∂ν

− eiκby·x ∂vsg
∂ν

ds(x) ds(ŷ)

= β−1

∫
S
g(ŷ)v∞g (ŷ) ds(ŷ). (4.54)
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Figure 4.4. The eigenvalues (asterisks) of the far field matrix shown in Fig-

ure 4.2 are shown to line up on the circle passing through the origin with center

1/2κ(=β,<β) for κ = 2 and β given by Eq.(4.8). This implies that the inhomo-

geneity is nonabsorbing .

In summary, Eq.(4.50)-(4.54) give

−2κ2
i

∫
Ω

=(n(x))|vg(x)|2 dx = 2iκ

∫
S
|v∞g |2 ds+ β−1

∫
S
g(ŷ)v∞g (ŷ) ds(ŷ)

−β−1

∫
S
g(ŷ)v∞g (ŷ) ds(ŷ)

= 2iκ

∫
S
|v∞g |2 ds− 2i=

(
β−1

〈
v∞g , g

〉)
.

By Eq.(4.18) we have that Ag = v∞g , and since g is an eigenfunction of A,
we have

− κ

||g||2

∫
Ω

=(n(x))|vg(x)|2 dx = |λ|2 −=
(
λ

κβ

)
. (4.55)

This completes the proof. 2

As figure Figure 4.4 shows, the eigenvalues of the sampled far field
operator corresponding to our data set lie on the circle passing through the
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origin with center

1/2κ(=β,<β) =
√
π

(
−
√

2
2
,

√
2

2

)

for κ = 2 and β given by Eq.(4.8). From the previous theorem we conclude
that the scatterer is nonabsorbing. 1

In some applications, this may be all that is needed to distinguish
whether the scatterer is of interest. For instance, the presence of leukemia
causes the bone marrow to exhibit an elevated electric permittivity and
diminished conductivity as compared to a healthy individual. This, differ-
ence can, in theory, be detected by a shift in the location of the eigenvalues
of the far field operator corresponding to electromagnetic measurements
analogous to the data shown in Figure 4.2 [84]. Whether this is a vi-
able diagnostic tool depends on a number of factors: the sensitivity of the
eigenvalues to electrical parameter shifts; whether the shift, or signal can
be distinguished from random variations, or noise; and whether the amount
of data needed to achieve a sufficient signal is practical - i.e. the required
electromagnetic radiation should not do more damage to the patient than
the disease!

3.3 What Is the Shape of the Scatterer?

We now use the information from the previous method to refine our search
of the domain D with the goal of determining the approximate shape of the
scatterer. The method we shall explore is the linear sampling method devel-
oped by Colton, Kirsch and others [78, 86, 9, 179, 77]. As with the method
in the previous section, this method and others like it (see [197, 147, 82, 83])
use the blow-up of some function to indicate whether a sampled point
z ∈ R2 is on the interior of the unknown scatterer. The linear sampling
method is a type of feasibility test for the solution of what is known as the
interior transmission problem. This partial differential equation is recast
as a linear integral equation parameterized by z where the kernel of integral
operator is the far field data u∞. It is shown that the interior transmission
problem almost always has at most one solution, and if z ∈ int (Ω), then a
solution does indeed exist. Moreover as z → ∂Ω from the interior of Ω then
the solution to the related linear integral equation becomes unbounded, in-
dicating the infeasibility of the interior transmission problem. We use the
blow-up of this putative solution to image the boundary of the scatterer.
This is described in more detail next.

1The reader is encouraged to reproduce this observation with the data set provided.
See notes.
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To begin, we define the interior transmission problem:

4w(x) + κ2n(x)w(x) = 0, 4v(x) + κ2v(x) = 0 for x ∈ int (Ω) (4.56)

w − v = f(·, z), ∂w

∂ν
− ∂v

∂ν
=
∂f

∂ν
on ∂Ω. (4.57)

From our first experiment, shown in Figure 4.4 we have determined that the
medium that generated the data shown in Figure 4.2 is nonabsorbing, that
is, =(n(x)) = 0 for all x. If it had been even slightly absorbing (=(n(x)) > 0
as would most likely be the case for any physical data) then we could have
been certain that there are no nontrivial solutions to the homogeneous
problem Eq.(4.56)-(4.57) with f = 0 , hence the inhomogeneous problem
will have a unique solution when a solution exists. But even in our case,
it was shown [85] that the set of values of κ for which the solution to
Eq.(4.56)-(4.57) with f = 0 has a nontrivial solution – called transmission
eigenvalues – is a discrete set. We can therefore be almost sure that, for
our data, κ is not a transmission eigenvalue.

We observe further the following fact.

Theorem 3.6. Let
f(y) = h(1)

p (κ|y|)Yp(ŷ), (4.58)

a spherical wave function of order p, and let β be given by Eq.(4.8). The
integral equation∫

S
u∞(x̂; ŷ)g(−x̂) ds(x̂) =

i
p−1

βκ
Yp(ŷ), ŷ ∈ S (4.59)

has a solution g ∈ L2(S) if and only if there exists w ∈ C2(int (Ω))∩C1(Ω)
and a function v given by

v(x) =
∫

S
eiκx·(−by)g(−ŷ) ds(ŷ) (4.60)

such that the pair (w, v) is a solution to Eq.(4.56)-(4.57)

Proof. Let wi ≡ v and ws ≡ f . Then w solves the scattering problem(
4+ κ2n(x)

)
w(x) = 0 for x ∈ R2 (4.61)

w = f + v (4.62)

r
1
2

( ∂
∂r
− iκ

)
f(x)→ 0, r = |x| → ∞. (4.63)

The solution to this problem is also the solution to the interior transmission
problem Eq.(4.56)-(4.57) (note that v given by Eq.(4.60) is an entire solu-
tion to the Helmholtz equation). Now by Theorem 2.1 and the observation
that

f(y) =
eiκ|y|

|y|1/2
i
p−1

κ
Yp(ŷ) + o

(
1
|y|1/2

)
, ŷ =

y

|y|
,
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we have that w∞(ŷ) = ip−1

βκ Yp(ŷ). Hence the solvability of Eq.(4.56)-(4.57)
is equivalent to the solvability of Eq.(4.59). 2

Finally, it can be shown [80, Theorem 10.25] that there exists a unique weak
solution to Eq.(4.56)-(4.57) with f(x; z) ≡ Φ(x, z) for every z ∈ int (Ω) with
Φ given by Eq.(4.13), that is the pair (w, v) satisfies

(I + κ2V)w = v on int (Ω) (4.64)

and
− κ2Vw = Φ(·, z) on ∂B (4.65)

where V is the volume integral defined by Eq.(4.23) and B ⊂ R2 is a ball
with int (Ω) ⊂ B.

To recap the logic thus far, we observe that Eq.(4.59) has a solution
if and only if there is a corresponding solution to Eq.(4.56)-(4.57) with f
given by Eq.(4.58); moreover, Eq.(4.56)-(4.57) with f = Φ(x, z) is solvable
for every z ∈ int (Ω). The natural thing to ask is, for z ∈ R2 \ Ω, or, just
as z → ∂Ω from int (Ω), what happens to solutions to∫

S
u∞(x̂; ŷ)g(−x̂) ds(x̂) = Φ∞(ŷ, z), ŷ ∈ S (4.66)

where Φ∞(ŷ, z) is the far field pattern of the fundamental solution Φ(y, z)?

Theorem 3.7 (linear sampling). For every ε > 0 and z ∈ Ω there exists a
g(·; z) ∈ L2(S) satisfying

‖Ag − Φ∞(·, z)‖L2(S) ≤ ε (4.67)

such that

lim
z→∂Ω

‖g‖L2(S) =∞ and lim
z→∂Ω

‖vg‖L2(S) =∞ (4.68)

where vg is given by Eq.(4.16).

Proof. Let the pair (w(·; z), v(·; z)) be the weak solution to Eq.(4.56)-
(4.57) with f = Φ(·, z), that is, w and v satisfy Eq.(4.64)-(4.65). Denote
the linear space of Herglotz wave functions by

H ≡
{
h

∣∣∣∣h(x) =
∫

S
eiκx·bηg(η̂) ds(η̂) for g ∈ L2(S)

}
.

For this space, v ∈ cl (H), thus for every ε̃ > 0 and z ∈ int (Ω) there is a
g(·; z) ∈ L2(S) such that

‖v(·, z)− vg(·)‖L2(Ω) ≤ ε̃, (4.69)
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where
vg(x) =

∫
S
eiκx·bηg(η̂; z) ds(η̂).

Next, note that the inverse operator (I+κ2V)−1 is defined and continuous
thus, for some c > 0 and

wg ≡ (I + κ2V)−1vg,

we have
‖w(·, z)− wg(·)‖L2(Ω) ≤ cε̃. (4.70)

By the continuity of V Eq.(4.70) yields the following bound on the semi-
norm ∥∥κ2Vwg − Φ(·, z)

∥∥
C(∂B)

≤ c′ε̃ (4.71)

for some c′ > 0. Denote the scattered field due to the incident field ui =
eiκ

2(−bη) by us(x,−η̂). From Theorem 2.1 we have wg = vg − κ2Vwg and

−κ2Vwg =
∫

S
us(x,−η̂)g(−η̂) ds(η̂),

hence

w∞g (x̂) ≡
∫

S
u∞(x̂,−η̂)g(−η̂) ds(η̂) = (Ag)(x̂) x̂ ∈ S. (4.72)

Note that the solution to the scattering problem on the exterior region
R2 \ B depends continuously on the boundary conditions on ∂B, thus

‖Ag − Φ∞(·, z)‖L2(S) ≤ c
′′ε̃ (4.73)

for some c′′ > 0. Letting ε = c′′ε̃ completes the first part of the proof.
The proof of Eq.(4.68) is technical. We sketch the basic idea here and

refer the reader to [77] for details. The idea is to use the continuous em-
bedding of C(∂Ω) in the Sobolev space H3/2(∂Ω) to achieve the bound

‖Φ(·, z)‖C(∂Ω) ≤ c‖κ2Vw(·, z)‖H3/2(∂Ω)

By the trace theorem and the fact that (I + κ2V)−1 and V are bounded,
one obtains the bound

‖κ2Vw(·, z)‖H3/2(∂Ω) ≤ c‖v(·, z)‖L2(Ω).

Now, combining Eq.(4.69) with the previous inequalities yields

‖Φ(·, z)‖C(∂Ω) ≤ c
(
‖vg‖L2(Ω) + ε̃

)
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whence the right limit of Eq.(4.68). Since vg with g bounded in L2(S) is
also bounded in L2(Ω), the left inequality of Eq.(4.68) follows immediately.

2

The algorithm suggested by Theorem 3.7 follows almost immediately
and shares many features of the scattering test response of section 3.1.
First note that the equation

Ag = Φ∞(·, z) (4.74)

is ill-posed, albeit linear, with respect to g. As in section 3.1 we regularize
the problem by solving the regularized least squares problem

minimize
g∈L2(S)

‖Ag − Φ∞(·, z)‖2 + α‖g‖2. (4.75)

The solution to this problem is

g(·; z, α) ≡ (αI +A∗A)−1A∗Φ∞(·, z). (4.76)

Since we already know from the scattering test response approximately
where and how big the scatterer is, we needn’t calculate Eq.(4.76) at all
points z ∈ D, but rather just on the corona Mµ, or, if we are confident of
Conjecture 3.2, then on the corona Mδ calculated using δ in Eq.(4.48). We
identify the boundary of the scatterer by those points zj on a grid where
the norm of the density g(·; zj , α) becomes large relative to the norm of the
density at neighboring points.

In Figure 4.5 we show the value of ‖g(·; zj , α)‖L2(S) at points zj ∈ G ⊂
Mδ with α = 10−8 fixed and a cutoff value of 2. The resulting image
indicates that the scatterer consists of two distinct scatterers of different
size.

For our implementations we do not take as much care with the choice
of the regularization parameter α as we could. A more precise implemen-
tation would calculate an optimal α at each sample point zj (see [86]).
Obviously, since Eq.(4.74) is regularized, ‖g(·; z, α)‖L2(S) will be bounded,
so a reasonable cutoff will have to be chosen which will affect the estimate
for the shape and extent of the boundary of the scatterer. This is clearly a
weakness of the technique, but it does not appear in practice to be signifi-
cant. The contours of Figure 4.5 indicate that the shape estimate is robust
with respect to this cutoff.

What is more problematic about linear sampling, however, is that it
only says that there exists a g that is unbounded in norm, it doesn’t tell
us how to calculate that g or even how common these densities are. The-
orem 3.7 only provides sufficient conditions for the blow-up of the density
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g(·; z, α). We cannot exclude the possibility of a phantom scatterer con-
sisting of points z ∈ R2 \ Ω satisfying

‖Ag − Φ∞(·, z)‖L2(S) ≤ ε (4.77)

such that ‖g‖L2(S) is “small”. We observe, however, that ‖g‖L2(S) remains
relatively large for all z ∈ R2 \ Ω.

Kirsch [147, 148] amended the linear sampling method to close this gap.
In particular, he showed that

(A∗A)
1
4 g = Φ∞(·, z) (4.78)

has a solution if and only if z ∈ int (Ω). Imaging using (A∗A)
1
4 has become

known as the factorization method . Arens [9] later showed that the den-
sity computed by Eq.(4.76) corresponds to a Tikhonov-regularized solution
to Eq.(4.78), thus, in this setting, the linear sampling is indistinguishable
from the more rigorous method of Kirsch. This is indeed a remarkable
coincidence since it is not at all obvious why one would use Tikhonov reg-
ularization (or others like it, including More-Penrose inversion) other than
the fact that it is easy to implement. Had a different regularization, such
as maximum entropy, been the method of choice, linear sampling might
not have worked so well, and Kirsch’s correct method never discovered.

Remark 3.3 (Open Problem). Does there exist a regularization of Eq.(4.74)
such that the linear sampling method is guaranteed to fail.

Kirsch’s factorization is limited to nonabsorbing scatterers since it relies
on the fact that A is normal, a property that is lost as soon as =(n(x)) 6= 0.
Linear sampling, on the other hand, still works in these and many more
exotic settings, so the search for a complete theory behind this successful
technique continues.

3.4 Refining the Information

To maintain some sense of mystery about the scatterer we are trying to
tease out of the data in Figure 4.2, we have purposely withheld the true
answer to each of the above queries about the nature of the scatterer.
Unfortunately, inverse scattering is not like an Arthur Conan Doyle novel –
there is never a tipping point in our investigation in which, with all the clues
in place, we can simply deduce the solution. We still need to peek at the
answer to see if we are on the right track. To close this case study, we reveal
the true answer in order to see how we did, and we discuss current trends
for refining the information. The true scatterer was a series of 6 circles,
two with radius 0.5 centered at (0, 0) and (3,−3), and four with radius 1
centered at (±1,±1). The circles centered at (0, 0), (−1,−1), (1, 1), and
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Figure 4.5. Scatterer estimated using the linear sampling method. Shown is

‖g(·; zj , α)‖L2(S) for g(·; zj , α) given by Eq.(4.76) with α = 10−8 for all grid

points zj on the domain [−6, 6] × [−6, 6] sampled at a rate of 40 points in each

direction. The cutoff is 2.

Figure 4.6. The true scatterer consisting of 6 circles of different sizes and indices

of refraction indicated by the color.

(1,−1) all had an index of refraction of n(x) = 401
400 while the circles centered

at (3,−3) and (−1, 1) had n(x) = 201 and n(x) = 401 respectively.
We correctly located the scatterer and determined its approximate size

using the partial scattering test response in section 3.1. We also correctly
determined that the scatterer is nonabsorbing. Our implementation of
linear sampling did a good job of estimating the boundary of the scatterers
with the largest index of refraction, but missed the weak scatterers. To
distinguish between weak and strong scatterers one must, to some degree,
estimate the (relative) index of refraction of the scatterers. This, however,
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comes at the cost of more data.

4 Current Research

The methods we have reviewed are not exhaustive. There are numerous
variations and alternative strategies. Current research is tending toward
meta-algorithms that use different techniques in concert in order to pro-
gressively tease more information out of the data. At the same time, these
and other methods have made it possible to do imaging in increasingly
diverse settings. Questions such as what constitutes and image, and what
features allow one to discriminate one object from another are fundamen-
tal to the science of imaging. In many cases specific knowledge about a
very special case can allow for easy discrimination, however this likely does
not generalize. The methods we illustrated here are applications of general
principles that can be applied in a wide variety of settings. Research on
extending these principles to other physical applications is ongoing. What
will not change about these methods is the constant interplay between
computational experimentation and analysis.
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Chapter 5

Exploring Strange Functions on the
Computer

Every computer algebra system has built-in routines for representation,
computation, manipulation and display of elementary and less-elementary
functions of analysis, number theory or probability. Typically, these are
smooth functions since often they are solutions of differential equations or
are otherwise defined in a similarly analytical way. It is therefore no surprise
that many of these techniques do not extend to non-smooth (“strange”)
functions without such convenient differential equations, integral represen-
tations or polynomial approximations. In this chapter we want to show
that even such strange functions can be explored on the computer and
useful theorems about them can be discovered. Sometimes it is a ques-
tion of finding the right technique for their analysis, sometimes it is the
even more basic matter of visualizing them, i.e., of getting the computer
to draw them. We will demonstrate these two points on two classes of
examples: certain nowhere differentiable functions, and certain probability
distribution functions.

1 Nowhere Differentiable Functions

The first example of a continuous, nowhere differentiable function which
became widely known is due to Karl Weierstraß. Weierstraß introduced his
example in a talk held at the Akademie der Wissenschaften in Berlin, in
1872 ([227]; the function was first published by Paul du Bois-Reymond in
1875, [100]). Weierstraß proved that the continuous function

Ca,b(x) :=
∞∑
n=0

an cos (bn · 2πx) ,

107
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Figure 5.1. Approximation to the Weierstraß function C0.9,7.

where 0 < a < 1 and b ∈ 2N + 1, nowhere has a finite or infinite derivative
if a · b > 1 + 3

2π. Figure 5.1 shows an approximation to C0.9,7 (the series
evaluated to 60 terms at the points i/(4 · 7n) for n = 4).

Until the publication of Weierstraß’s example, 19th century mathemati-
cians had been of divided opinions whether such a continuous, nowhere
differentiable (cnd) function could exist. Although that question was now
settled, analysts continued to be fascinated by the Weierstraß example and
by cnd functions in general. Other, sometimes simpler, cnd functions were
found, general constructions were given, and of course many aspects of the
Weierstraß example were investigated. One such aspect is the precise range
of the parameters for which Ca,b is nowhere differentiable. It is clear that
Ca,b is continuously differentiable when |a| b < 1. But what happens for
1 ≤ |a| b ≤ 1+ 3

2π? Or for even intergers or reals b? Despite much effort, no
real progress on this question was made in the years after Weierstraß. In
fact, it took more than forty years until finally in 1916, G.H. Hardy ([131])
proved the strongest possible result: Both Ca,b and the corresponding sine
series

Sa,b(x) :=
∞∑
n=0

an sin (bn · 2πx)

have no finite derivative anywhere whenever b is a real greater than 1, and
ab ≥ 1. (Hardy also proved that for small values of ab ≥ 1, the functions
can have infinite derivatives.) This settled the most important questions.
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However, Hardy’s methods are not easy. They use results which lie a
good deal “deeper” than the simple question: Is this function, given by a
uniformly convergent series, differentiable somewhere?

Therefore, and because of the fascination mathematicians have often
felt with such pathological but also beautiful objects, research into the
Weierstraß functions and into cnd functions in general has continued and
continues until today. Several approaches to the Weierstraß functions have
been proposed, putting them, for example, into the context of lacunary
Fourier series ([116, 145]), almost periodic functions ([136, 135]), func-
tional equations ([120, 121]), or treating them in their own right (leading
to short proofs of non-differentiability in [33, 25]). Here we will report on
the functional equations approach since it leads to a simple proof of non-
differentiability which can be applied to larger classes of functions, and since
some key discoveries can be made on the computer. This approach works
for integer values of b (a case which is usually investigated separately from
the case of arbitrary real b since it employs different, simpler methods), and
for didactic reasons we will restrict the discussion to the case b = 2 (the
inclusion of higher integer values of b would afford more formalism with-

out corresponding gain) and to the function Sa,2 =
∞∑
n=0

an sin (2n · 2πx) as

shown in Figure 5.2 for a = 1
2 and a = 3

4 . Finally, because of periodicity,
it makes sense to restrict our attention to functions defined on the interval
[0, 1].

1.1 Functional Equations

We do not need computers to find promising functional equations for the
Weierstraß functions. In fact, it has been known for a long time and is easy
to verify that Sa,2 satisfies

Sa,2

(x
2

)
= aSa,2(x) + sin(πx)

for all x ∈ [0, 1]. In words: Sa,2
(
x
2

)
(i.e., a condensed version of Sa,2 on[

0, 1
2

]
) consists of a rescaled version of itself plus a sine wave.

Unfortunately, this functional equation alone is not sufficient to char-
acterize the Weierstraß function on the interval [0, 1]. There are many
continuous functions, among them differentiable a.e. functions, which sat-
isfy the same functional equation on [0, 1]. Thus we cannot expect to infer
interesting theorems about the Weierstraß function from this functional
equation alone. We therefore attempt to add a second functional equation
such that the two equations together hopefully are characteristic of the
Weierstraß function. Many choices for this second functional equation are
possible, of course, but it will turn out that the most natural idea is to
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Figure 5.2. The Weierstraß functions S1/2,2 and S3/4,2.

replace the term x
2 in the functional equation by x+1

2 , i.e., to condense the
function not on the first half of the unit interval, but on the second half.
This leads to

Sa,2

(
x+ 1

2

)
= aSa,2(x)− sin(πx)

for all x ∈ [0, 1], also easily verified.
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Are these two functional equations together characteristic for the Weier-
straß function? To answer this question, we consider functional equations
of this type in general. For given constants −1 < a0, a1 < 1 and perturba-
tion functions g0, g1 : [0, 1] → R consider the system (F) consisting of the
two functional equations

f
(x

2

)
= a0f(x) + g0(x) (F0)

f

(
x+ 1

2

)
= a1f(x) + g1(x) (F1)

for unknown f : [0, 1] → R. (Special cases of such functional equations
have been investigated by G. de Rham in the 1950’s, see [95, 96].)

Generalizing in this way makes sense because it turns out that many
other “strange” function besides the Weierstraß sine series Sa,2 can be
found which satisfy such a system. It is for example immediate that the
Weierstraß cosine series Ca,2 solves such a system if g0, g1 are chosen as
± cos(πx). Another example is the so-called Takagi function, after the
Japanese mathematician Teiji Takagi, who introduced this function in 1903
([221]). It is defined, for |a| < 1, as the series

Ta(x) :=
∞∑
n=0

an d (2nx) ,

where d is the 1-periodic saw-tooth function d(x) := dist (x,Z). This func-
tion (see Figure 5.3 for a = 1

2 and a = 3
4 ) is sometimes considered as the

simplest cnd function possible; therefore it (or a variant) is often given
as an example in introductory texts. It is again easy to check that this
function satisfies the system (F) on [0, 1] with a0 = a1 = a, g0(x) = x

2 and
g1(x) = 1−x

2 . More examples of cnd solutions of (F) with simple (differen-
tiable) perturbation functions are given in [120, 121].

Now assume that f solves (F). Exploring, we find that if we put x = 0

into equation (F0), then we get that necessarily f(0) =
g0(0)
1− a0

. Similarly,

from (F1) with x = 1 we get that f(1) =
g1(1)
1− a1

. This can be continued.

Putting x = 1 into Equation (F0), we get

f

(
1
2

)
= a0f(1) + g0(1) = a0

g1(1)
1− a1

+ g0(1), (5.1)

and putting x = 0 into Equation (F1), we get

f

(
1
2

)
= a1f(0) + g1(0) = a1

g0(0)
1− a0

+ g1(0). (5.2)
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Figure 5.3. The Takagi functions T1/2 and T3/4.

Thus, if f solves (F), then the expressions in (5.1) and (5.2) must be equal.
Therefore the condition

a0
g1(1)
1− a1

+ g0(1) = a1
g0(0)
1− a0

+ g1(0) (∗)

must be satisfied if the system (F) has a solution.
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We can now continue to compute values of the solution f at other
points x out of already computed values. Using f

(
1
2

)
, we get f

(
1
4

)
=

a0f
(

1
2

)
+ g0

(
1
2

)
and f

(
3
4

)
= a1f

(
1
2

)
+ g1

(
1
2

)
. From this, we can then

compute f
(

1
8

)
, f
(

3
8

)
, f
(

5
8

)
, f
(

7
8

)
, then f

(
2i+1
16

)
, and so on. In this way,

we see that the functional equations fix the values of f at all the dyadic
rationals f

(
i

2n

)
. Since these are dense in [0, 1], we see that if there is a

continuous solution of (F), then it must be unique. By closer inspection of
this argument we are now led to the following theorem which says that the
condition (∗) above is not only necessary for existence of a solution, but
under natural conditions also sufficient.

Theorem 1.1. If the perturbation functions g0, g1 are continuous and con-
dition (∗) is satisfied, then the system (F) has a unique continuous solution.

Having realized that this theorem holds, it is now in fact not difficult
to prove the theorem directly, e.g. with the use of Banach’s fixed point
theorem. Just define the operator Tf by

(Tf)(x) =

{
a0f(2x) + g0(2x) for x ∈ [0, 1

2 ],
a1f(2x− 1) + g0(2x− 1) for x ∈ [ 12 , 1],

and check that it satisfies the assumptions of Banach’s theorem with a
subset of (C[0, 1], ‖·‖∞) as the Banach space.

It is interesting to visualize the recursive procedure to compute values
of the solution at the dyadic rationals, described above, on the computer:
In the first step, we compute f(0) and f(1) and connect these points by a
straight line in the x-y-plane. In the second step, we compute from these
the value f

(
1
2

)
, and again connect the three known points on the graph

of f by straight lines. We repeat this with f
(

1
4

)
and f

(
3
4

)
in the next

step, then f
(

1
8

)
, f
(

3
8

)
, f
(

5
8

)
, f
(

7
8

)
, and so on. This leads to a sequence

of piecewise affine approximations f (n) of f , where f (n) equals f on the
dyadic rationals i

2n , see Figure 5.4 (left).
So far, this may look straightforward, but it is already a big step towards

a new understanding of the Weierstraß function. The next step now is an
insight: the insight to look at the data in a different way which will in
fact turn out to be essential for the development of what follows. Thus
a general rule about experimental mathematics is confirmed once more:
Being able to compute and draw quickly is not sufficient; necessary is an
active experimenter’s mind, interacting with the results and figures and
adding ideas to the mix.

In this case, the idea is to look not only at how the approximations
approach the solution f , but to ask oneself what is added in each step.
Thus on the right-hand side of Figure 5.4, we see the differences fn :=
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Figure 5.4. Piecewise affine approximations to the Weierstraß function S1/2,2.

f (n) − f (n−1). As expected, these are sawtooth functions (remember that
f (n)

(
i

2n

)
= f (n+1)

(
i

2n

)
= f

(
i

2n

)
). What is not expected in such irregular

functions as the Weierstraß functions is the visual regularity of the fn,
apparent in Figure 5.4: each of these differences, especially in the later
figures, seems just to consist of two scaled-down copies of its predecessor.
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1

0
i

2n−1

2i+ 1
2n

i+ 1
2n−1

σi,n(x)

�
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B
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B
B
B
B
B
B
BB

Figure 5.5. An element σi,n of the Schauder basis.

Having discovered such a pattern where none was expected, its origins
and implications should now be pursued.

1.2 Schauder Bases

The mathematical tool that we need to explore these patterns is the clas-
sical Schauder basis of the space C[0, 1]. It was introduced by J. Schauder
in 1927 ([210]). Define functions σi,n : [0, 1] → R by σ0,0(x) = 1 − x,
σ1,0(x) = x, and, for n ∈ N and i = 0, . . . , 2n−1 − 1, σi,n as the piecewise
linear function connecting the points (0, 0),

(
i

2n−1 , 0
)
,
(

2i+1
2n , 1

)
,
(
i+1
2n−1 , 0

)
,

(1, 0); see Figure 5.5.
Then it is known (and not difficult to prove directly) that every f ∈

C[0, 1] has a unique, uniformly convergent expansion of the form

f(x) = γ0,0(f)σ0,0(x) + γ1,0(f)σ1,0(x) +
∞∑
n=1

2n−1−1∑
i=0

γi,n(f)σi,n(x),

where the coefficients γi,n(f) are given by

γ0,0(f) = f(0), γ1,0(f) = f(1), and

γi,n(f) = f

(
2i+ 1

2n

)
− 1

2
f

(
i

2n−1

)
− 1

2
f

(
i+ 1
2n−1

)
.
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For given f ∈ C[0, 1], let

fn(x) :=
2n−1−1∑
i=0

γi,n(f)σi,n(x)

and

f (n)(x) := γ0,0(f)σ0,0(x) + γ1,0(f)σ1,0(x) +
n∑
k=1

fk(x)

and

rn(x) := f(x)− f (n)(x) =
∞∑

k=n+1

fk(x).

Note that rn(x) = 0 for all dyadic rationals of the form x = i
2n . Remem-

ber also that Figure 5.4 shows the f (n)’s and fn’s for the Weierstraß. Thus
the pattern discovered in that figure visually translates into a (recursive)
pattern of the γi,n(f)’s which we will explore in the next subsection.

For our purposes it is important that differentiability properties of a
function can be established by looking at its Schauder coefficients. State-
ments of this type have apparently been noticed for the first time by
G. Faber in 1910 (who used the Schauder basis prior to Schauder but in
a different mathematical guise; see [110, 111]). Faber proved the following
theorem.

Theorem 1.2. Assume that f ∈ C[0, 1] has a finite derivative at some
point x0. Then

lim
n→∞

2n ·min
{
|γi,n(f)| : i = 0, . . . , 2n−1 − 1

}
= 0.

Proof. Note that if f ′(x0) exists, then

f ′(x0) = lim
n→∞

f(vn)− f(un)
vn − un

for all sequences (un), (vn) ⊆ [0, 1] with un ≤ x0 ≤ vn and un < vn and
vn − un → 0.

Now for given x0 ∈ [0, 1] and n ∈ N choose the dyadic rationals un, vn
as shown in Figure 5.6 (possibly x0 = un or x0 = vn if x0 is itself a dyadic
rational). If f ′(x0) ∈ R exists, then

f ′(x0) = lim
n→∞

f(vn)− f(un)
vn − un

= lim
n→∞

[
n∑
k=1

fk(vn)− fk(un)
vn − un

+
rn(vn)− rn(un)

vn − un

]

= lim
n→∞

[
n∑
k=1

±δik,k(f) + 0

]
,
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Figure 5.6. Definition of the points un and vn.

for some sequence ik, where δi,k(f) is the slope of the Schauder triangle
γi,k(f)σi,k(x) in the expansion of f ; thus δi,k(f) = 2kγi,k(f).

This implies that the series
∞∑
k=1

±2kγik,k(f) is convergent, hence the

summand ±2kγik,k(f) necessarily tends to 0, and therefore also

lim
k→∞

2k min
i
|γi,k(f)| = 0.

2

Note that non-differentiability of the Takagi function Ta, whose Schau-
der coefficients satisfy γi,n(Ta) = an, directly follows from this theorem.

1.3 Non-differentiability

By the results of the previous subsection, we can infer differentiability
properties of an f ∈ C[0, 1] from its Schauder coefficients. But how can
we compute the Schauder coefficients of, say, the Weierstraß functions? In
subsection 1.1 we had already discovered a pattern in these coefficients.
With the notation from subsection 1.2 we can now make this discovery
more precise and then use it.

The pattern in fact translates into a recursion formula for the γi,n(f).
Since the functional equation was instrumental in discovering the pattern,
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it is now no surprise that this recursion formula is based on the functional
equation as well. Now formulation and proof of the next theorem are
straightforward.

Theorem 1.3. Assume (∗) and let f be the continuous solution of the
system (F) with continuous g0, g1. Then
(i) γ0,0(f) = f(0) = g0(0)

1−a0
and γ1,0(f) = f(1) = g1(1)

1−a1
,

(ii) γ0,1(f) =
(
a1 − 1

2

)
f(0)− 1

2f(1) + g1(0)

=
(
a0 − 1

2

)
f(1)− 1

2f(0) + g0(1),

(iii) γi,n+1(f) = a0γi,n(f) + γi,n(g0) for i = 0, . . . , 2n−1 − 1,
γi,n+1(f) = a1γi−2n−1,n(f) + γi−2n−1,n(g1) for i = 2n−1, . . . , 2n − 1.

If we let δi,n(f) := 2nγi,n(f), then the recursion step (iii) of the theorem
becomes

δi,n+1(f) = 2a0δi,n(f) + 2δi,n(g0) for i = 0, . . . , 2n−1 − 1,
δi,n+1(f) = 2a1δi−2n−1,n(f) + 2δi−2n−1,n(g1) for i = 2n−1, . . . , 2n − 1.

Also, let δn(f) := mini |δi,n(f)|. If it can be proved that δn(f) 6→ 0, then
f must be non-differentiable by Theorem 1.2.

It is now relatively easy to check this condition for the Weierstraß func-
tion f = Sa,2 via the recursion. In Table 5.1 some of its Schauder coeffi-
cients and their minimum are listed. The numbers strongly suggest that the
minimum indeed does not tend to 0, thus numerically already confirming
the function’s non-differentiability. Our task now is to prove this strictly.

The Weierstraß function f = Sa,2 satisfies the system (F) with a0 =
a1 = a and g0(x) = −g1(x) = sin(πx), and thus

δi,n(g0) = −δi,n(g1) = 2n sin
(
π

2i+ 1
2n

)
·
(
1− cos

π

2n
)
.

Using the recursion step and estimating, we get the following recursive
estimate for the minima δn(f):

δn+1(f) ≥ 2 |a| · δn(f)− 2n+1 cos
π

2n
(
1− cos

π

2n
)
.

Iterating this and then doing a final estimate, we get

δn+k(f) ≥ (2 |a|)k
[
δn(f)− 2n

(
1− cos

π

2n−1

)]
.

This says that if we can find an index n such that δn(f) > 2n
(
1− cos π

2n−1

)
,

then it follows that δk(f) → ∞ for k → ∞. Such an index can easily be
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n δ0,n δ1,n δ2,n δ3,n δ4,n δn
1 0.000000 0.000000
2 4.000000 −4.000000 4.000000
3 5.656854 −2.343146 2.343146 −5.656854 2.343146
4 6.122935 −1.217927 3.468364 −5.190774 5.190774 1.217927
5 6.242890 −0.876323 3.979611 −4.587717 5.793830 0.876323
6 6.273097 −0.786864 4.124884 −4.392211 6.032054 0.786864
7 6.280662 −0.764241 4.162348 −4.340269 6.097976 0.764241
8 6.282555 −0.758569 4.171786 −4.327088 6.114869 0.732594
9 6.283028 −0.757150 4.174150 −4.323780 6.119118 0.704348

10 6.283146 −0.756795 4.174741 −4.322952 6.120182 0.696645
11 6.283175 −0.756707 4.174889 −4.322745 6.120448 0.694677
12 6.283183 −0.756684 4.174926 −4.322693 6.120515 0.693818

Table 5.1. Some Schauder coefficients for S1/2,2.

found by computing the δn’s for Sa,2 and comparing. We get the following
results:

δ3 (Sa,2) = 8 |a| − 4
√

2 + 4
> 8− 4

√
2 = 23

(
1− cos π

22

)
, for |a| > 1

2 ;
δ5 (Sa,2) > 25

(
1− cos π

24

)
, for a = 1

2 ;
δ4 (Sa,2) > 24

(
1− cos π

23

)
, for a = − 1

2 .

Thus the non-differentiability of the Weierstraß sine series Sa,2 is com-
pletely proved. 2

Note that this is more than a proof: it is a method. It can be used to
examine any non-differentiable function f that satisfies a system of type (F)
with simple perturbation functions (simple enough so that the recursion
for the Schauder coefficients of f is manageable). Another, rather easy
example is given by the Takagi function. Its perturbation functions g0, g1
are linear, so that their Schauder coefficients vanish. If we did not know
that the function was already defined via its Schauder expansion, then the
recursion would almost instantly show that the condition of Theorem 1.2 is
fulfilled. The Weierstraß cosine series Ca,2 can also be analyzed with this
method. Matters are slightly more complicated, however, since in this case
it turns out that δn (Ca,2)→ 0 (see Table 5.2). Thus for this example the
method has to be refined a bit, making matters slightly more complicated
(but not inherently more difficult). Full details are given in [120, 121].
With such modifications, the Weierstraß cosine series and many other non-
differentiable functions become part of this method, their treatment now
being possible in a unified (and quite algebraic, i.e., computational) way.
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n δ0,n δ1,n δ2,n δ3,n δ4,n δn
1 −4.000000 4.000000
2 −4.000000 −4.000000 4.000000
3 −2.343146 −5.656854 −5.656854 −2.343146 2.343146
4 −1.217927 −5.190774 −6.122935 −3.468364 −3.468364 1.217927
5 −0.614871 −4.679527 −5.781331 −3.348409 −3.588319 0.614871
6 −0.308177 −4.384620 −5.509543 −3.110184 −3.392814 0.308177
7 −0.154182 −4.232107 −5.359982 −2.965015 −3.253435 0.154182
8 −0.077102 −4.155213 −5.283459 −2.889048 −3.178206 0.077102
9 −0.038553 −4.116687 −5.244979 −2.850638 −3.139888 0.038553

10 −0.019277 −4.097413 −5.225712 −2.831379 −3.120641 0.019277
11 −0.009638 −4.087776 −5.216074 −2.821743 −3.111007 0.009638
12 −0.004819 −4.082956 −5.211255 −2.816924 −3.106188 0.004819

Table 5.2. Some Schauder coefficients for C1/2,2.
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2 Bernoulli Convolutions

Consider the discrete probability density on the real line with measure
1/2 at each of the two points ±1. The corresponding measure is the so-
called Bernoulli measure, denoted b(X). For every 0 < q < 1, the infinite
convolution of measures

µq(X) = b(X) ∗ b(X/q) ∗ b(X/q2) ∗ · · · (5.3)

exists as a weak limit of the finite convolutions. The most basic theorem
about these infinite Bernoulli convolutions is due to Jessen and Wintner
([144]). They proved that µq is always continuous, and that it is either ab-
solutely continuous or purely singular. This statement follows from a more
general theorem on infinite convolutions of purely discontinuous measures
(Theorem 35 in [144]); however, it is not difficult to prove the statement
directly with the use of Kolmogoroff’s 0-1-law. The problem is to decide
for which values of the parameter q the measure is singular, and for which q
it is absolutely continuous.

This question can be recast in a more real-analytic way by defining the
distribution function Fq of µq as

Fq(t) = µq(−∞, t], (5.4)

and to ask for which q this continuous, increasing function Fq is singular,
and for which it is absolutely continuous. Note that Fq satisfies Fq(t) = 0
for t < −1/(1− q) and Fq(t) = 1 for t > 1/(1− q).

Approaching this question experimentally, the first step would be to
draw these functions or their derivatives for some well-chosen values of q.
However, there is no easy way of computing (let alone graphing) the distri-
bution function or density of a probability measure. One possibility that
has been proposed is to generate random numbers which follow this distri-
bution (or an approximation thereof) and count how often these numbers
fall into each interval of a partition of R. This method, however, is rela-
tively slow and imprecise.

Thus we once more need an idea. After the success we had with func-
tional equations in the treatment of non-differentiable functions, this idea
is to use functional equations for the present problem as well.

In fact, it turns out that functional equations can be used to directly
define the distribution function Fq: It can be proved that Fq is the only
bounded solution of the functional equation

F (t) =
1
2
F

(
t− 1
q

)
+

1
2
F

(
t+ 1
q

)
(5.5)
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with the above restrictions. Moreover, if Fq is absolutely continuous and
thus has a density fq ∈ L1(R), then fq satisfies the functional equation

2q f(t) = f

(
t− 1
q

)
+ f

(
t+ 1
q

)
(5.6)

almost everywhere. This functional equation is a special case of a much
more general class of equations, namely two-scale difference equations.
Those are functional equations of the type

f(t) =
N∑
n=0

cn f(αt− βn) (t ∈ R), (5.7)

with cn ∈ C, βn ∈ R and α > 1. They were first discussed by Ingrid
Daubechies and Jeffrey C. Lagarias, who proved existence and uniqueness
theorems and derived some properties of L1-solutions [92, 93]. One of their
theorems, which we state here in part for the general equation (5.7) and in
part for the specific case (5.6), is the following:

Theorem 2.1. (a) If α−1(c0 + · · · + cN ) = 1, then the vector space of
L1(R)-solutions of (5.7) is at most one-dimensional.

(b) If, for given q ∈ (0, 1), equation (5.6) has a nontrivial L1-solution fq,
then its Fourier transform satisfies f̂q(0) 6= 0, and is given by

f̂q(x) = f̂q(0)
∞∏
n=0

cos(qn x). (5.8)

In particular, for normalization we can assume f̂q(0) = 1.

(c) On the other hand, if the right-hand side of (5.8) is the Fourier trans-
form of an L1-function fq, then fq is a solution of (5.6).

(d) Any nontrivial L1-solution of (5.7) is finitely supported. In the case
of (5.6), the support of fq is contained in [−1/(1− q), 1/(1− q)].

This implies in particular that the question of whether the infinite
Bernoulli convolution (5.3) is absolutely continuous is equivalent to the
question of whether (5.6) has a nontrivial L1-solution. Now what is known
about these questions?

It is relatively easy to see that in the case 0 < q < 1/2, the solution
of (5.5) is singular; it is in fact a Cantor function, meaning that it is
constant on a dense set of intervals. This was first proved by R. Kershner
and A. Wintner [146].
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It is also easy to see that in the case q = 1/2, there is an L1-solution
of (5.6), namely f1/2(t) = 1

4 χ[−2,2](t). Moreover, this function can be used
to construct a solution for every q = 2−1/p where p is an integer, namely

f2−1/p(t) = 2(p−1)/2 ·
[
f1/2(t) ∗ f1/2(21/pt) ∗ · · · ∗ f1/2(2(p−1)/pt)

]
. (5.9)

This was first noted by Wintner via the Fourier transform [230],

f̂(x) =
∫ ∞

−∞
f(t) e−ixt dt.

Explicitly, we have

f̂2−1/p(x) =
∞∏
n=0

cos(2−n/px) =
∞∏
m=0

p−1∏
k=0

cos(2−(m+k/p)x)

= f̂1/2(x) · f̂1/2(2−1/px) · · · f̂1/2(2−(p−1)/px),

which is equivalent to (5.9) by the convolution theorem.
Note that the regularity of these solutions f2−1/p increases when p and

thus q = 2−1/p increases: f2−1/p ∈ Cp−2(R). From the results given so
far, one might therefore surmise that (5.6) would have a nontrivial L1-
solution for every q ≥ 1/2 with increasing regularity when q increases.
This supposition, however, would be wrong, and it came as a surprise
when Erdős proved in 1939 [102] that there are some values of 1/2 < q < 1
for which (5.6) does not have an L1-solution, namely, the inverses of Pisot
numbers. A Pisot number is defined to be an algebraic integer greater
than 1 all of whose algebraic conjugates lie inside the unit disk. The best
known example of a Pisot number is the golden mean ϕ = (

√
5 + 1)/2.

The characteristic property of Pisot numbers is that their powers quickly
approach integers: If a is a Pisot number, then there exists a θ, 0 < θ < 1,
such that

dist(an,Z) ≤ θn for all n ∈ N. (5.10)

Erdős used this property to prove that if q = 1/a for a Pisot number a,
then lim supx→∞

∣∣∣f̂q(x)∣∣∣ > 0. Thus in these cases, fq cannot be in L1(R)
since that would contradict the Riemann-Lebesgue lemma. Erdős’s proof
uses the Fourier transform f̂q: Consider, for N ∈ N,

∣∣∣f̂q(q−Nπ)
∣∣∣ =

∞∏
n=1

|cos(qnπ)| ·
N−1∏
n=0

∣∣cos(q−nπ)
∣∣ =: C · pN ,



i
i

i
i

i
i

i
i

124 Chapter 5. Exploring Strange Functions on the Computer

where C > 0. Moreover, choose θ 6= 1/2 according to (5.10) and note that

pN =
N−1∏
n=0

θn≤1/2

∣∣cos(q−nπ)
∣∣ · N−1∏

n=0
θn>1/2

∣∣cos(q−nπ)
∣∣

≥
N−1∏
n=0

θn≤1/2

cos(θnπ) ·
N−1∏
n=0

θn>1/2

∣∣cos(q−nπ)
∣∣

≥
∞∏

n=0
θn≤1/2

cos(θnπ) ·
∞∏

n=0
θn>1/2

∣∣cos(q−nπ)
∣∣ = C ′ > 0,

independently of N . 2

In 1944, Raphaël Salem [209] showed that the reciprocals of Pisot num-
bers are the only values of q where f̂q(x) does not tend to 0 for x→∞. In
fact, no other q > 1/2 are known at all where Fq is singular. Moreover, the
set of explicitly given q with absolutely continuous Fq is also not very big:
The largest such set known to date was found by Adriano Garsia in 1962
[117]. It contains reciprocals of certain algebraic numbers (such as roots
of the polynomials xn+p − xn − 2 for max{p, n} ≥ 2) besides the roots of
1/2. More recently, in [94], “bad behaviour”, such as unboundedness or
non-membership to L2, of the density, if it exists, is established for certain
classes of algebraic numbers.

The most recent significant progress then was made in 1995 by Boris
Solomyak [213], who developed new methods in geometric measure theory
which he then used to prove that Fq is in fact absolutely continuous for
almost every q ∈ [1/2, 1). (See also [189] for a simplified proof and [188]
for a survey and some newer results.)

Thus the set of q ∈ [1/2, 1) with absolutely continuous Fq has measure
1/2, but does not equal the whole interval. Which numbers are in this
set, which are not? Apart from the results cited above, nothing specific
is known; in particular, membership to this set has been decided only for
some algebraic numbers.

Our goal here is to generate drawings of the functions Fq, or rather, since
more structure is visible, of their densities fq. This is helpful in obtaining
some better visual feeling for their properties. Interestingly, drawing good
approximations to these functions is not easy or immediate. It turns out
that use of the functional equations appears to be a good way to generate
pictures.

In fact, define a map Bq, mapping the set D of L1-functions f with
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support in [−1/(1− q), 1/(1− q)] and with f̂(0) = 1 into itself, by

(Bqf)(t) =
1
2q

(
f

(
t− 1
q

)
+ f

(
t+ 1
q

))
for t ∈ R.

One can picture the action of the operator Bq on some f ∈ D as putting
two rescaled copies of f into the two corners of [−1/(1− q), 1/(1− q)] and
adding them.

Now note that the fixed points of Bq are the solutions of (5.6) and that
Bq is nonexpansive. Therefore, one may have hope that by iterating the
operator, it may be possible to approximate the solution. Explicitly, we
are interested in the iteration

f (0) ∈ D :=
{
f ∈ L1(R) : supp f ⊆

[
− 1

1−q ,
1

1−q

]
, f̂(0) = 1

}
,

f (n) := Bq f
(n−1) for n ∈ N.

(5.11)

Since Bq is continuous, it is clear that if a sequence of iterates Bnq f
(0)

converges in L1(R) for some initial function f (0) ∈ D, then the limit will
be a fixed point of Bq. No general proof of convergence is known, even
under the assumption that a fixed point exists. Under this assumption, it
is, however, possible to prove a weaker result, namely convergence in the
mean: If a solution fq ∈ L1(R) with f̂q(0) = 1 of (5.6) exists, then for
every initial function f (0) ∈ D, we have

lim
n→∞

∥∥∥∥∥ 1
n

n−1∑
k=0

Bkq f
(0) − fq

∥∥∥∥∥
1

= 0.

This theorem follows from properties of Markov operators [161] and from a
result by Mauldin and Simon [175], showing that if an L1-density fq exists
then it must be positive a.e. on its support.

Thus to summarize: If the iteration (5.11) converges in L1(R) for some
f (0) ∈ D, then the limit is a solution of (5.6). If, on the other hand, (5.6)
has a solution fq ∈ D, then the iteration (5.11) converges in the mean to
fq for every f (0) ∈ D.

The iterate f (n) := Bnq f
(0) can of course be expressed explicitly: Let

Sn := {±1± q ± q2 ± · · · ± qn−1}. Then

(Bnq f
(0))(t) =

1
(2q)n

∑
s∈Sn

f (0)

(
t+ s

qn

)
.

The most natural choice for f (0) in this context seems to be f (0) :=
1−q
2 χ[−1/(1−q),1/(1−q)]. Then we get: If the limit

lim
n→∞

1− q
2 · (2q)n

∑
s∈Sn

χ[− qn

(1−q)−s,
qn

(1−q)−s]
(5.12)
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exists in L1(R), then it is the solution in D of (5.6).
Thus we now have to different methods to approximate and graph so-

lutions to (5.6): Either by iterating Bq or by directly plotting the function
in (5.12) for some n. Interestingly, a mixture of both methods seems to
work best with respect to computing time, dramatically better, in fact,
than either of the two methods alone. The trick is to first compute an
approximation by (5.12) and then to use this as a starting function for the
iteration.

In this way, Figures 5.7 and 5.8 have been computed. They show the in-
dicated iterates, where the nth iterate is defined as Bnq f

(0) with, as above,
f (0) := 1−q

2 χ[−1/(1−q),1/(1−q)]. Each function is evaluated at 213 +1 points,
equidistantly spanning the interval [−1/(1− q), 1/(1− q)]. In the left-hand
columns, the evaluated points (t, f(t)) are connected by lines (presuppos-
ing continuity); in the right-hand columns, they are just marked by dots.
The pictures show how regularity of the solutions (if they exist) generally
increases with q, but with exceptions.

For q = 1/2, q =
√

1/2 and q = 3/4, convergence of the iteration seems
relatively clear from the pictures. The picture for q = 1/2 is only there
to provide an anchor; in this case our f (0) is already the fixed point. The
picture for q =

√
1/2 shows the solution given by (5.9). Note, however, that

this solution was computed by iterating Bq with a step function a starting
point. Thus the picture clearly shows convergence of this iteration, even
without taking the mean. For q = 3/4, the iteration seems to behave in
exactly the same manner, with a continuous limit function.

For q = 0.6, q = (
√

5 − 1)/2 and q = 2/3, the situation seems more
complicated. For the golden mean, the iteration cannot converge to any
meaningful function, and the figure shows this (but compare Figure 5.1
which shows an approximation to a continuous function!). For q = 0.6, the
figure looks only marginally better, so that the situation is unclear: Does
the figure show approximation to an L1-function? Or even to a continuous
function? Finally for q = 2/3, the iterate seems to be much closer to a
definite, maybe even continuous function which would then be a solution
of (5.6).

Thus investigation of figures such as these leads to experimentally de-
rived conjectures, questions and ideas for further exploration. We close this
chapter with some of those.

Convergence of the iteration. Can convergence (pointwise or uni-
form or in L1) of the iteration (5.11) with arbitrary or specific f (0) be
proved in the case q = 2−1/p? (The picture indicates this for p = 2; for
p = 1, it is in general not true—for example, for f (0) = 1

2

(
1− |x|

2

)
every

point in [−2, 2]× [0, 1
2 ] is then a limit point of some sequence (xn, f (n)(xn).)

Can convergence be proved for other specific values of q (such as q = 3/4,
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as the picture indicates)? Can convergence of the iteration be proved under
the sole assumption that a fixed point exists?

Boundedness of the iteration. Can a value of q be identified where
the sequence of iterates remains bounded (for arbitrary or specific f (0))?
Are there values of q with unbounded iteration? What about the golden
mean or any other Pisot number, specifically?

Continuity of solutions. The figures definitely indicate existence
of a continuous solution for q = 3/4, almost certainly for q = 2/3 and
maybe for q = 0.6. Comparison with Figures 5.2 and 5.3 seems to show a
comparable small-scale behaviour of the functions shown there for a = 3/4
with the iterate shown here for q = 2/3. Can some correspondence be
established between equation (5.6) and functional equations of the type (F)
as investigated there?

Existence of a limit function for q → 1. Is it possible that the
solutions fq (so far they exist), suitably rescaled, converge to some well-
defined function for q → 1, either pointwise or in some other sense?
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Figure 5.7. 26th iterate for q = 1/2 (top), q = 0.6 (middle) and q = (
√

5− 1)/2
(bottom).
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Figure 5.8. 26th iterate for q = 2/3 (top), q = 1/
√

2 (middle) and q = 3/4
(bottom).
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Chapter 6

Random Vectors and Factoring
Integers: A Case Study

Mathematics is often presented as a fait accompli, a finished result, with
little attention being paid to the process of discovery or to the mistakes
made, wrong turns taken, etc. However, especially where experimental
mathematics is concerned, we can learn from a great deal from experience,
both our own and that of others. New directions can be suggested by
previous mistakes.

In this chapter we will consider as a case study the experiences of one of
us supervising undergraduate research, paying particular attention to the
role of experiment in introducing students to research at a much earlier
stage than is traditional.

For several years, Clemson University has hosted a National Science
Foundation supported Research Experiences for Undergraduates program
in number theory and combinatorics, supervised jointly by Neil Calkin and
Kevin James, with the assistance of two graduate students, Tim Flowers
and Shannon Purvis. Each summer nine students are brought to Clemson
University for eight weeks to learn what research in mathematics is about.
We will focus on the research of two teams, Kim Bowman and Zach Cochran
in 2004, and Katie Field, Kristina Little and Ryan Witko in 2005. At the
time of their respective research experiences, all of the undergraduates had
completed their junior year, with the exception of Katie Field, who had
completed her sophomore year.

Probably the biggest difficulty in having (extremely bright) undergrad-
uates do research is that they lack the breadth and depth of education
we traditionally expect of students in graduate studies: this is especially
true of students who are not from elite institutions such as Berkeley and
Princeton. As a consequence we spend a lot of time in the first few weeks of
the REU giving an intensive introduction to the mathematics required to
study various problems. In order for the students to be able to get started
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on research immediately, we try to choose topics having a significant ex-
perimental and computational component, and try to get the participants
involved in computing in the first few days of the program.

The students listed above chose to work on projects related to the
Quadratic Sieve algorithm for integer factorization.

Throughout this section, n will denote a (large) integer which we wish to
factor, and B = {p1, p2, . . . pk} will denote a finite set of primes, typically
the first k primes p for which n is a square (mod p) In practice, k is
usually chosen so that log k =

√
log n: this choice arises from optimizing

the running time of the sieve.

1 Integer Factorization

One of the oldest and most fundamental theorems in mathematics is the
fundamental theorem of arithmetic.

Every positive integer has a unique factorization into a product
of primes.

An existence theorem, it led to one of the earliest problems in algorithmic
mathematics (together with finding solutions to Diophantine equations):
given that an integer n can be factored, how do we actually find integers
a, b so that n = ab?

Currently the best general purpose factorization algorithms are the
General Number Field Sieve (the GNFS) and the Quadratic Sieve. Both of
these algorithms work by finding distinct square roots of a residue mod n.
The questions we discuss here apply to both, but since QS is much simpler,
we will restrict our attention to it. Our discussion of the Quadratic Sieve
will follow closely that in Pomerance’s “A Tale of Two Sieves”[196].

1.1 Fermat’s Method

The idea of factoring an integer n by finding square roots mod n can be
traced back to Fermat . He observed that if we can find integers a and b
so that

n = a2 − b2

then we immediately have the factorization

n = (a− b)(a+ b).

It is clear that provided that n is odd, the reverse is also true: a factoriza-
tion n = (2u+1)(2v+1) leads to n = (u+ v+1)2− (u− v)2, so n can also
be written as the difference of two squares.
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1.2 Kraitchik’s Improvement

The first major advance in this direction was by Maurice Kraitchik , who
observed that it wasn’t necessary that n be a difference of two squares: it
was enough that

a2 ≡ b2 (mod n)

and
a 6≡ ±b (mod n).

Indeed, if a + b and a − b are non-zero (mod n), then n|(a + b)(a − b)
implies n| gcd(a+ b, n) gcd(a− b, n), so both gcd(a+ b, n) and gcd(a− b, n)
must be non-trivial factors of n.

The question now is how to find distinct a, b so that a2 ≡ b2 (mod n).
Kraitchik’s method was to consider the values taken by f(x) = x2 − n
for values of x slightly larger than

√
n. Since these are all known to be

congruent to squares mod n, if we can find a set of these values whose
product is a square, then we might be able to use these to factor n.

It is easy to construct an example: to factor the integer n = 2449, we
observe that d

√
ne = 50: we consider the following squares (mod n):

502 − n = 3× 17
512 − n = 23 × 19
522 − n = 3× 5× 17
532 − n = 23 × 32 × 5
542 − n = 467
552 − n = 26 × 32

562 − n = 3× 229
572 − n = 25 × 52.

Rewriting these equations as congruences modulo n, we obtain

502 ≡ 3× 17 (mod n)
512 ≡ 23 × 19 (mod n)
522 ≡ 3× 5× 17 (mod n)
532 ≡ 23 × 32 × 5 (mod n)
542 ≡ 467 (mod n)
552 ≡ 26 × 32 (mod n)
562 ≡ 3× 229 (mod n)
572 ≡ 25 × 52 (mod n).

Hence we have

(50× 52× 53× 57)2 ≡ (24 × 32 × 52 × 17)2 (mod n)
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that is,
24242 ≡ 6572 (mod 2449).

We compute gcd(2424 + 657, 2449) = 79 and gcd(2424 − 657, 2449) = 31,
and we note that both 31 and 79 are non-trivial factors of n. Indeed, n =
31×79. (We should also point out that we could have used 552 ≡ (23×3)2

(mod 2449) via Fermat’s method).

Exercise 1.1. Use Kraitchik’s idea to factorize 2041.

Exercise 1.2. Construct an example in which we don’t get an easy factor-
ization via Fermat’s method.

1.3 Brillhart and Morrison

Brillhart and Morrison [181] found an easy method to systematize the
search for a subset whose product is a square: they observed that by consid-
ering the vectors of prime exponents in the prime factorizations of f(x)−n,
a subset had a product which is a square if and only if the corresponding
vectors summed to the zero vector (mod 2). In the example above, the
fact that (3× 17)(3× 5× 17)(23 × 32 × 5)(25 × 52) is a square corresponds
to the fact that the vectors of prime exponents sum to a vector all of whose
entries are even. 

0
1
0
0
0
0
1


+



0
1
1
0
0
0
1


+



3
2
1
0
0
0
0


+



5
0
2
0
0
0
0


=



8
4
4
0
0
0
2


Hence searching for products which are squares is equivalent to finding
linear dependencies among the prime exponent vectors considered over the
binary field F2.

A useful and important technical observation here is that if a prime
p divides x2 − n, then since x2 ≡ n (mod p), n must necessarily be a
quadratic residue mod p. Hence any prime for which n is not a quadratic
residue will always have exponent zero, and might as well be ignored in all
our computations. In the example above, this explains why the primes 7,
11 and 13 never appear as factors.

Brillhart and Morrison suggested setting a bound B, and restricting
attention to those x for which x2−n factored completely over the set B of
primes (for which n is a quadratic residue) less than B. Call a value x2−n
which factors completely over B B-smooth.
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1.4 Pomerance and Sieving

A naive implementation of the methods as described above would proceed
by attempting to factor x2 − n for each x, checking whether it factors
over B and creating the exponent vector or discarding it as appropriate.
Pomerance made the critical observation that this step could be improved
immensely by sieving. Rather than factoring one f(x) = x2 − n at a time,
he suggested considering the primes p in B one at a time, and using the
observation that if p|x2−n then p|(x+ p)2−n to extract factors of p from
many f(x) values at once. More precisely, find a value x0 so that p|f(x0),
and then sieve out x0, x0 + p, x0 + 2p, . . . .

The advantage here is that for each prime in B, the work of determining
whether p|x2 − n is shared over all values of x under consideration. The
disadvantage is that the method inherently needs the range of x being
considered to be fixed in advance. This leads to three questions:

1. How many x do we need to consider to obtain l B-smooth numbers?

2. How large does l have to be in order for a set of l B-smooth numbers
to have a product which is a square?

If |B| = k, then clearly if we have k+1 exponent vectors, each having k co-
ordinates, then the set must be linearly dependent. However, it is possible
that the first linear dependency could occur far earlier. Since the Quadratic
Sieve is a sieve, in order to obtain the full efficiency of the algorithm the
set of x for which we will attempt to factor x2−n has to be determined in
advance: adding just a few more x values after the fact is expensive.

2 Random Models

We can regard the Quadratic Sieve as taking a range 1, 2, . . . , R, and for
each i in the range setting x = b

√
nc + 1 and returning either FAIL (if

x2 − n doesn’t factor over the factor base B) or a vector vi, the entries of
which are the parities of the exponents of the primes in the factor base in
the factorization of x2 − n. Although the vectors vi, and the indices for
which we get FAIL are deterministic, they are hard to predict, and (in a
strong sense) look random.

Although most questions in number theory are completely determinis-
tic, it is often possible to obtain insight (and sometimes even theorems) by
considering random models which behave similarly to the integers.

Erdős and Kac [103] introduced the idea of probabilistic methods in
number theory in 1945. Building on work of Hardy and Ramanujan [134],
they showed that the number of prime factors of a randomly chosen large
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integer, suitably normalized, approximately follows a normal distribution.
This led to a host of similar theorems.

As we noted above, the Quadratic Sieve can be viewed as producing a
sequence of vectors whose entries are distributed in a quasi-random fashion.
If we choose an appropriate probabilistic model, we may be able to predict
the behaviour of the Quadratic Sieve based on the behaviour of the random
model.

Of course, this would not prove that the sieve behaves in a particular
fashion: however, it would suggest possible parameter choices which could
be tested empirically.

We will discuss two different types of models, with various different
possibilities for parameters. In each model, vectors will be chosen indepen-
dently with replacement from the same distribution.

The first model will be vectors chosen uniformly from the set of vec-
tors of weight w (and the generalization of this to vectors with a given
distribution of weights).

In the second model, vectors will have entries which are chosen inde-
pendently, but with different probabilities.

3 The Main Questions

The main questions now are the following:

• What is the right random model for vectors arising from sieves?

• Given a model for randomly generating vectors in Fk2 , how many
vectors do we need to select before we get a linear dependency?

3.1 The Constant Weight Model

Let ω(m) be the number of distinct prime factors of m: Hardy and Ra-
manujan [134] proved that if g(m)→∞, then the number ln of integers m
in {1, 2, 3, . . . , n} for which

|ω(m)− log logm| > g(m)(log logm)1/2

satisfies ln = o(n).
Less precisely, they showed that almost all numbers m have about

log logm distinct prime factors, and that the probability of differing from
this by much more than (log logm)1/2 tends to 0.

Erdős and Kac [103], in their seminal paper introducing probabilistic
number theory, showed that if m is chosen uniformly from {1, 2, 3, . . . , n},
then the distribution of

ω(m)− log logm
(log logm)1/2
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converges to the normal distribution as n tends to infinity.
This suggests the following approach to developing a random model for

the vectors arising from the sieve: the vectors vi which are produced by
the Quadratic Sieve correspond to numbers in the range (1, 2, 3, . . . n− 1),
so they ought to have about log log n distinct prime factors. Furthermore,
Canfield, Erdős and Pomerance [71] showed that given a bound B the
proportion of B-smooth numbers less than n is about e−u, where u =
log n/ logB. Hence for our first model for each i in the range we will
generate FAIL with probability 1− e−u, and with probability e−u we will
pick a vector of weight w = log log n uniformly from Fk2 . (Recall that in
the implementations of the Quadratic Sieve, k is typically chosen so that
log k '

√
log n: hence log log n ' 2 log log k.)

3.2 The Independent Entries Model

Fix a prime p: since a random integer chosen uniformly from a large range
is divisible by pe with probability about 1/pe, the probability that it is
divisible by an odd power of p is

1
p
− 1
p2

+
1
p3
− 1
p4

+ · · · = 1
p+ 1

.

Hence we might choose the following model: take as the factor base a set
B = {p1, p2, . . . , pk}: each component of the vector vi is chosen uniformly
and independently, and the probability that the j component of vi is 1 is

Pr(vi[j] = 1) =
1

pj + 1

As we shall see later, we will want to modify this slightly so that

Pr(vi[j] = 1) = αj

where αj will be chosen to take into account some subtle complications.

4 Bounds

It is a simple fact from elementary linear algebra that if we have l ≥ k + 1
then any set of l vectors in a vector space of dimension k is linearly depen-
dent. This fact has typically been used in implementations of the Quadratic
Sieve to determine a range to be sieved over: choose an l somewhat larger
than k, and use Canfield, Erdős and Pomerance’s estimates on the propor-
tion of smooth numbers to determine the size of range required to produce
l B-smooth numbers. If we could determine a bound L, significantly less
than k, so that with high probability any L exponent vectors are linearly
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dependent, then this would improve the running time of the sieve in the
following ways:

1. The sieving stage of the algorithm would need to return fewer B-
smooth numbers: this would decrease the running time

2. The linear algebra stage of the algorithm would involve finding a
linear dependency in a matrix with fewer rows, also decreasing the
running time

3. It is possible that stopping the algorithm earlier will allow us to use
pre-processing on the vectors which will significantly decrease the size
of the linear algebra problem.

4. The change would allow us to optimize the parameters k and B based
on the new running times: this might also improve the running time.

Of these, the sieving stage is likely to be least significant: this stage of the
algorithm is easily parallelized, and indeed, the most recent examples of
factorization records have been set by parallel implementations.

The matrix stage has more potential: this stage is now becoming the
bottleneck for factoring.

The reoptimizing would be necessary to take full advantage of speedups
especially in the linear algebra phase.
Upper bound for the constant weight model Consider the constant
weight w = w(k) model: recall that we pick l vectors uniformly from the set
of vectors of weight w in Fk2 . The probability that a given vector has a 0 in
the jth coordinate is (1−w/k). Since the vectors are chosen independently,
the probability that all of the vectors have a zero in the jth coordinate is(

1− w

k

)l
.

Hence if we pick k vectors this way, the expected number of coordinates
that are never 1 is about ke−w. Hence our vectors are contained in a sub-
space of dimension less than k(1 − e−w), and the first linear dependency
will probably occur for some l < k(1−e−w). Since we only get information
about the expected number of coordinates we need to use a sharp con-
centration result to show that the probability that we are not close to the
expected value is small: this is technical, but standard and straightforward.
Upper bound for the αj = 1/(pj + 1) model As is usually the case,
similar methods work for the αj model, but the analysis is rather more
delicate and depends on the behaviour of the αj ’s. We recall that in this
model we obtain vectors vi, which form the rows of a matrix A = (aij), so
that

Pr(aij = 1) = αj



i
i

i
i

i
i

i
i

4. Bounds 139

independently. Hence the probability that column j is empty (i.e. has no
1’s) is (1 − αj)l, and in most of the cases we’ll be considering, either this
will be very small, or (1 − αj)l ' e−lαj . Thus the expected number of
non-empty columns E(Cl) is given by

E(Cl) =
k∑
j=1

1− (1− αj)l '
k∑
j=1

1− e−lαj

In the most simplistic model of this type, we take αj = 1/(pj + 1): we
make the reasonable assumption that our factor base contains about half
of the primes up to B and that pj ∼ 2j log j. Now it is easy to see that

E(Cl) '
k∑
j=1

(
1− e−l/(pj+1)

)
(6.1)

If E(Cl) < l, then (after again applying an appropriate sharp concen-
tration result) we can conclude that with high probability the vectors
{v1, v2, . . . , vl} are linearly dependent.

The sum in equation 6.1 can be estimated by splitting it into appropriate
ranges. A suitable choice of ranges is
(I) 1 ≤ j ≤ l/(log l)2

(II) l/(log l)2 < j ≤ l
(III) l < j ≤ k.
Since the summands are all at most 1, and we are concerned with the size
of the sum relative to l, the contribution of range (I) is negligible. We
approximate the second range by an integral, replacing pj + 1 by 2j log j:

it is then easy to see that the contribution of this range is O
(
l log log l

log l

)
.

Finally, in region (III), l/(pj+1) is small, so the summand is approximately
l

pj+1 . By Merten’s theorem (and assuming that about half of the primes are
in the sum), the contribution of this region is about l(log log k− log log l)/2.
Hence if log log k − log log l < 2 we have E(Cl) < l. Writing l = kδ, this
gives − log δ < 2, that is, δ > e−2. Hence if we have many more than k1/e2

vectors in this model we expect to see linear dependence.
At this point the students investigating the model got very excited, since

this would lead to an immense speedup in the Quadratic Sieve: however af-
ter implementing the Quadratic Sieve, they discovered that the predictions
were far too optimistic: this led to a re-examination of the assumptions of
the model.
Lower Bounds Lower bounds for these models are both more difficult,
and less suggestive of suitable choices of parameters for the sieve. However,
we can obtain some results in both choices of model.
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Calkin [70] and Balakin, Kolchin and Khokhlov [24, 153] showed in-
dependently that in the case of vectors of fixed constant weight w the
following is true:

Theorem 4.1. There is a constant β = β(w) so that if b > β if l = l(k) <
kb then as k →∞, the probability that a set of l vectors chosen uniformly
from the vectors of weight w in Fk2 is linearly independent tends to 1.

Essentially this theorem says that we need about βk vectors to obtain
a linearly dependent set: careful analysis shows that

β(w) ' 1− e−w

log 2

and that if w = w(k)→∞ as k →∞ (and w < k/2) then β(w)→ 1.
How would we discover and prove such a theorem? We want to know

how likely it is that a set of vectors is dependent: can we determine the
probability that a given set of vectors sums to the zero vector? This sug-
gests trying Markov chain approach: start at the origin and add random
vectors of weight w using a transition matrix T = Tw to compute the
probability that we end up back at the origin.

Since the transition matrix will have size 2k × 2k it is natural to try
to use the symmetry of the problem to reduce the complexity. Note that
we can do this by grouping together points in Fk2 by weight: then the
probability Tij of moving from a vector of weight i to a vector of weight j
by adding a random vector of weight w is precisely

Tij =

(
i

w+i−j
2

)( k−i
w−i+j

2

)(
k
w

)
(if we have i 1’s in a vector, and we flip x of them to 0’s and flip w − x of
the other 0’s to 1’s, then we end up with j = i−x+(w−x) 1’s as a result:
hence x = (w + i − j)/2). Using this transition matrix, we can obtain an
expression for the probability of a random walk on the hypercube returning
to the origin after a given number of steps.

Experimentation in Maple now reveals the beautiful fact that the tran-
sition matrix T is diagonalizable, and that its eigenvalues and eigenvectors
have rational entries, which can be expressed in terms of sums of binomial
coefficients. 1 Hence we can write down an expression for E(2s) which is
amenable to analysis, leading to the theorem above.

1It also turns out the eigenvectors for Tw are independent of w: hence for two distinct
weights w and w′, the matrices Tw and Tw′ commute: this corresponds to the observation
that if we start with a vector of weight w and add a vector of weight w′ the effect is the
same as starting with a vector of weight w′ and adding a vector of weight w. This is
intimately related to the fact that there is an association scheme, the Hamming scheme
here.
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A key observation now is that this is exactly the probability that a set
of vectors sums to zero: if we sum this over all subsets of an l-set of vectors,
we obtain the expected number of linear combinations which sum to zero,
that is, the expectation E(2s) of the size of the left null space of the matrix
A whose rows are the vectors v1, v2, . . . , vl (that is, s is the co-rank of A).
If E(2s) is close to 1, then the set {v1, v2, . . . , vl} is likely to be linearly
independent. This method works by considering the left null-space of A.
One can perform a similar calculation, giving exactly the same results,
using the right null-space of A.

Since we now have upper and lower bounds for the constant weight
vector models, it makes sense to ask whether there is a sharp threshold for
linear dependence: that is, does there exist a threshold value bt so that
if b < bt, then limn→∞ Pr(dependent) = 0
if b > bt, then limn→∞ Pr(dependent) = 1.

This in fact was where Bowman and Cochran started their investiga-
tions, generating random binary vectors with exactly three 1’s and com-
puting when the set of vectors generated first becomes dependent.

Exercise 4.1. Fix the dimension k of the vector space, and find a way of
uniformly generating binary vectors of weight 3. For various values of k
generate random vectors until you obtain a linearly dependent set. Compare
the number of vectors required to the upper and lower bounds given above.
Do you think that there is a sharp threshold?

Exercise 4.2. Investigate the eigenstructure of other structured matrices:
for example, consider the Toeplitz matrices

Tn =



1 1 0 0 . . . 0

1 1 1 0
. . .

0 1 1 1
. . .

0 0 1 1
. . .

...
. . . . . . . . . . . .

0 1


Compute the eigenvalues for various values of n, plotting the values in
increasing order. Guess, with the help of the inverse symbolic calculator
if necessary, a formula for the jth largest eigenvalue of Tn. Compute the
corresponding eigenvectors, and guess the formula for their entries. For
more information on this and related problems, see Doust, Hirshhorn and
Ho [99]

Similar methods, both for the left and the right null space can be applied
to the αj model: in this case the bounds obtained are harder to analyze,
and of course depend on the behaviour of the parameters αj .



i
i

i
i

i
i

i
i

142 Chapter 6. Random Vectors and Factoring Integers: A Case Study

5 Which Model Is Best?

The constant weight model is easily seen to be inappropriate: the model
assumes that the probability that a large prime divides x2 − n is the same
as the probability that a small prime does. Hence the depressing fact that
the lower and upper bounds for the number of vectors required to obtain
an independent set with high probability are both asymptotic to k, the
dimension of the space, is irrelevant to the Quadratic Sieve.

The second model, where

Pr(vi[j] = 1) =
1

pj + 1

requires more thought. In this model, the upper bounds on probable linear
dependencies occur far earlier than k. Indeed, upon proving these bounds
the students immediately set to coding up the Quadratic Sieve to see if
the behaviour occurred in reality. Unfortunately, the tests that they ran
suggested that the model was far too optimistic. Indeed, although the
model seemed as if it ought to be much better than the constant weight
model, it gave results which were much further off!

This led to much head scratching, trying to figure out why a seemingly
reasonable model could give results that were so far out of touch with
reality.

The key point here is the following: first, the reason that the model is
incorrect is that it fails to take into account the fact that we are conditioning
on numbers being B-smooth. We will give a simple example in a moment
to show how drastically this can change probabilities. The reason that even
seemingly small changes can have a large impact on the sieve is that we
will end up estimating sums which behave like∑

i<x

1
i
' log x

instead of ∑
i<x

1
i log i

' log log x.

This will mean that a term which can be controlled in the inappropriate
model will never be small in the corrected model.

Why can smoothness change things drastically? Consider the following
question: what is the probability that a random integer is divisible by 2?
If the integer is chosen uniformly from a large interval, then the answer is
very close to 1/2. However, if we choose uniformly from B-smooth numbers
less than x, then we see the following.
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1. If B = {2}, then there are blog2 xc + 1 B-smooth numbers up to x,
and all but 1 is divisible by 2. Hence the probability that a random
B-smooth number is even is

1− 1
blog2 xc+ 1

2. If B = {2, 3}, then the number of B-smooth numbers up to x is equal
to the number of non-negative integer solutions to the inequality

i log 2 + j log 3 ≤ log x

For large x, this in turn is about equal to the area of the corresponding
triangle, namely

1
2

log x
log 2

log x
log 3

=
1
2

log2 x log3 x

Now the number of these which are not divisible by 2 is exactly
the number powers of 3 less than x, namely blog3 xc + 1: hence the
probability that a random B-smooth number less than x is even is
about

1− blog3 xc+ 1
1
2 log2 x log3 x

' 1− 2
log2 x

.

5.1 Refining the Model

We wish now to refine the model to compensate for conditioning on B-
smoothness. A first attempt at this will proceed by modifying αj , the
probability of divisibility by the jth prime pj in B. Naively (by which
we mean that this is what we actually did and thought correct for several
months!) we let B be the largest element of B, fix a prime p < B, and
consider the number of B-smooth numbers up to n, and the number of
B-smooth numbers divisible by p: the second quantity is exactly equal to
the number of B-smooth numbers less than n/p. Using Canfield, Erdős
and Pomerance’s estimates for the number of B-smooth numbers and esti-
mating some asymptotics, this leads to the following approximation:

Pr(p divides m | m is B-smooth and ≤ n) ' 1
p1−δ

in which δ = log u
logB and u = logn

logB . Using the parameters usually chosen for
the Quadratic Sieve, this gives logB ' log k '

√
log n, so u '

√
log n and

δ '
1
2 log log n

logB
' log log k

log k
.
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When p is small, pδ is very close to 1. However, when, say p is not o(k),
which is the case for most primes in B, then

pδ ' exp
(

log p log log k
log k

)
' log k ' log p.

Is this model now appropriate? It is rather hard to compare empirical data
from the Quadratic Sieve at this stage, because our estimates have been
a little careless with constants: however, if our model was inappropriate,
and in fact some aspect which we have ignored should be considered, and
would introduce a factor, say, of log log log n, would we be able to tell? If
we run the Quadratic Sieve on toy problems, say with n about 1015, then
log log log n is much less than 2: even log log n ' 3.5 in this range!

However, having realized that there is a problem with conditioning on
smoothness, let us now try to take it into account at every stage.

Let P denote the set of all primes for which n is a quadratic residue
(mod p). It is known that this set has relative density about 1/2 in the set
of all primes: however, we will mainly be concerned with the small primes
in the set (those less than n, say) and much less is known about the number
of small primes in the set. In the examples we have studied, P appears to
contain about half the primes in reasonably sized intervals.

Now B will be the set of primes {p1, p2, . . . , pk} less than B which are
contained in the set P. We will write ZP for the set of P-smooth numbers,
and ZB for the set of B-smooth numbers.

Now, the probability that the Quadratic Sieve returns a vector rather
than FAIL should be about the probability that an integer m chosen uni-
formly in {1, 2, . . . , n} is B-smooth given that it is P-smooth. This leads to
the following natural questions: given a set P of primes (of relative density
1/2 in the set of all primes) and a finite subset B of P

1. What is the number ZP(y) of P-smooth integers up to y?

2. What is the number ZB(y) of B-smooth integers up to y?

Then the probability that x2−n returned by the sieve is B smooth should be
about ZB(n)/ZP(n). Furthermore, the probability that x2 − n is divisible
by p, given that it is B-smooth ought to be about ZB(pn)/ZB(n).

Landau [159] and Wirsing [231] have addressed various versions of these
questions: in particular, if y is allowed to be arbitrarily large, then Wirsing
gave precise asymptotics for the behaviour of the function ZP(y). When |B|
is sufficiently small, ZB(y) is also easy to estimate. However, in the regions
relevant to the sieve, results are harder to obtain. We are interested in the
behaviour of ZP(y) when y is somewhat smaller than n, and P is the set
of primes for which n is a quadratic residue (mod p). Since P is defined
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in terms of n, it seems unlikely that asymptotic results will be possible
for values this small. However, there is some hope that the behaviour is
similar for small values, and since we are primarily interested in heuristics,
we will make this assumption.

Theorem 5.1 (Wirsing). Let P be a set of primes for which there exist
constants δ and K so that ∑

p<y,p∈P
1 ∼ δ y

log y

and ∏
p<y,p inP

(
1− 1

p− 1

)
∼ K(log y)δ.

Then

ZP(y) ∼ δKe−γδ

Γ(δ + 1)
y

(log y)1−δ

(in which γ is the Euler-Mascheroni constant, and Γ is the Gamma func-
tion).

Exercise 5.1. When P is the set of primes congruent to 1 (mod 4), what
are the values of the constants δ and K?

Exercise 5.2. Pick a moderately large value n (the product of two large
primes would be appropriate). Using Maple or Mathematica, estimate the
constants δ and K appearing in Wirsing’s theorem.

Exercise 5.3. For those who know about quadratic reciprocity: suppose
that n is the product n = q1q2 of two primes. Find a condition on p for
a prime p to be such that n is a quadratic residue (mod p). Assuming
Dirichlet’s theorem (that if a and m are relatively prime then the number
of primes congruent to a (mod m) is asymptotic to 1/φ(m)) deduce that
the relative density of P in the set of all primes should be 1/2. Compare
the value of δ from the previous exercise to 1/2.

Exercise 5.4. For small y, compare the value of ZP(y) to the value pre-
dicted (for large y) by Wirsing’s theorem. Does our assumption that ZP(y)
behaves similarly for small and for large y seem justified?

Exercise 5.5. Devise some statistical tests to determine whether the heuris-
tic that

αj = Pr(pj |x2 − n) ' c log(pj)
pj
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is a reasonable one. For example, the number x2 − n lies between
√
n and

n and so the sums
1
2

log n <
∑

pj |x2−n

log pj < log n

and
k∑
j=1

αj log pj

should be about the same. (This ignores primes dividing x2 − n to the
second or higher power, but their effect is small). Note that this heuristic
illustrates again the fact that the size of B has an impact on the probability
that a B-smooth number is divisible by p.

Following the heuristics suggested by the previous section, it seems
reasonable to assume that the probability αj that pj |x2 − n, given that
x2 − n is B-smooth should be about c log pj/pj for some constant c.

Since we also have the heuristic that about half the primes are in our
factor base, by the prime number theorem we expect that pj ' 2j log j,
and so αj ' c/j.

We now let A be an l × k binary array, entries chosen independently,
in which probability that an entry in column j is 1 is αj = c/j. We
now consider the number of empty columns, the number of columns with
exactly one 1 (which we will refer to as a solon for solo 1) and the number
of columns containing exactly two 1’s (which we will refer to as colons).
Let Xr(A) be the number of columns containing exactly r 1’s. Earlier we
considered the number of non-empty columns, k −X0. We now refine our
analysis to include solons: we will take colons into account later.

If a column is a solon, then the row containing the corresponding 1
cannot appear in a non-trivial row-dependency. Thus we can replace A by
the array with the solon and its corresponding row removed. Since two
solons can have the same row containing their solo 1, we can remove more
columns than rows. There are X1(A) solons, and for each solon every row
is equally likely to contain the solo 1. Hence the probability that a given
row is not deleted is (

1− 1
l

)X1

' e−X1/l

and so the expected number of rows left after deleting X1 solons is about

le−X1/l

Now the rows of array A are linearly dependent if

e−X1/ll > k −X0 −X1.
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Computing expected values here,

E(X0) '
k∑
j=1

e−lαj '
∫ k

1

e−cl/x dx

'
∫ k

0

e−cl/x dx = ke−cl/k − clEi(1, cl/k)

in which Ei(a, b) =
∫∞
1
e−bxx−a dx is the exponential integral (as defined

by Maple). Furthermore,

E(X1) ='
k∑
j=1

lαje
−lαj '

∫ k

1

cl

x
e−cl/x dx

'
∫ k

0

cl

x
e−cl/x dx = clEi(1, cl/k)

So we expect that the number of rows and columns remaining will be equal
after removing empty columns and solons if

l exp(−E(X1)/l) = k − E(X0)− E(X1)

is satisfied: that is,

l exp(−cEi(1, cl/k)) = k(1− exp(−cl/k))

Solving this equation numerically with Maple, we obtain the following val-
ues:

c l/k threshold
0.2 0.0008980931
0.4 0.1400018494
0.6 0.4119714260
0.8 0.6120819888
1.0 0.7394711744
1.2 0.8207464220
1.4 0.8739519006
1.6 0.9097291738
1.8 0.9343624832
2.0 0.9516659561

For the value c = 0.72 (which arises in the experimental evidence discussed
below) we obtain a threshold of .5423300259.
Reducing the size of the final linear algebra problem We include
colons in our analysis: their impact is not to reduce the number of rows
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needed to obtain the first dependency (there is a small impact, but it is
negligible, so we won’t discuss it), but rather to reduce the size of the final
linear algebra question under consideration.

Suppose that a column is a colon, that is, it contains exactly two 1’s,
and that these 1’s appear in rows r1 and r2. Then in any linear combination
of rows summing to zero, either both the rows r1 and r2 appear, or neither
appear. Hence the rows of A are linearly dependent if and only if the
rows of A′ are, where A′ is the array obtained by replacing r1 by r1 + r2,
replacing r2 by 0, and deleting the colon-column.

A good combinatorial model for this is to take a graph G having as
vertex set the set of rows of A, and as edge set the set of pairs {r1, r2}
corresponding to colons. Then replacing rows by their sum corresponds to
contracting edges in the graph, replacing connected components by a single
vertex. Components containing a vertex corresponding to a 1 appearing in
a solon get deleted completely.

This enables us to reduce the size of the array A considerably: if we
have no cycles in the graph, then the contraction of each edge reduces
the number of components by 1. Furthermore, when we contract edges or
delete components in the graph, we can create new edges (for example, if
a column in A contains four 1’s, in rows r1, r2, r3 and r4, and if we have a
colon with 1’s in rows r1 and r2, then when we replace r1 with r1 + r2 and
r2 with 0, the four 1’s will become a colon).

Exercise 5.6. Suppose that a column of A contains exactly three 1’s and
that A has X1 solons. After deleting the solons, what is the probability that
the column now contains two 1’s?

Exercise 5.7. Suppose A has X1 solons, X2 colons, and X3 columns with
exactly three 1’s. If we remove the colons and then the solons, the columns
with exactly three 1’s can remain unchanged, can become colons, solons or
empty. What is the expected number of each that will be produced.

Exercise 5.8. Suppose A has X1 solons, X2 colons, and Xr columns with
exactly r 1’s. If we remove the colons and then the solons, the columns
with exactly r 1’s can become columns with s 1’s, 0 ≤ s ≤ r. What is the
expected number of each that will be produced?

Exercise 5.9. Consider a stochastic model for the deletion of colons and
solons along the following lines: consider the random variable X(t) =
(X0(t), X1(t), X2(t), dots), where Xi(t) is the number of columns contain-
ing exactly i 1’s after t rounds of deletions of solons and colons. More
precisely, X(t − 1) is the number before the tth round of deletions: in
round t, remove all colons (by replacing colon-rows with their sum), and
then remove all solons. Now update X(t). Develop heuristics (by making
reasonable assumptions where necessary) for the dynamics of X(t).
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6 Experimental Evidence

The students involved in this project ran several different experiments, and
we have followed up on these. To begin with, Tim Flowers implemented
the quadratic sieve to produce real data: working with n around 1015 and a
factor base bound B = exp(

√
log(n) log log(n)), iterated deletions reduced

arrays of size around 500× 2000 to arrays of size around 65× 60.
In addition, the arrays produced suggest that (for n in this range) the

probabilities αj satisfy αj ' 0.72/j.

Exercise 6.1. Explain the seemingly paradoxical fact that increasing the
number of columns in A decreases the size of the final non-zero array after
iterated deletions. For example, the values in the table are typical. Each
row is the result of iterated deletions of solons and colons for a random
array A with αj = 0.72/j. The final size is the number of non-zero rows
and columns.

Initial size Final size
10000× 10000 4700× 2300
10000× 15000 2250× 1300
10000× 20000 800× 480
10000× 25000 300× 180
10000× 30000 150× 100
10000× 35000 100× 50
10000× 40000 47× 22
10000× 45000 38× 20

We fixed c = 0.72 and constructed random arrays of size l×k for various
values of l, k, and computed various statistics:

• the proportion of successful trials: trials for which iterated removal of
solons and colons left an array with more non-zero rows than columns
(implying the rows of the initial array are linearly dependent)

• the proportion of trials for which iterated removal of solons and colons
left a non-zero array with at most as many rows as columns (so that
we can’t conclude that the rows of the initial array are linearly de-
pendent)

• the maximum and minimum number of non-zero rows and columns
remaining after iterated removal of solons and colons

• the average number of rows and columns remaining after iterated
removal of solons and colons.
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We observed in almost all trials we either ended up with a zero matrix (so
the original rows were independent) or with more rows than columns (so
the original rows were dependent). This is consistent with the following
conjecture:

Conjecture 6.1. Generate vectors in GF k2 independently with αj = 0.72/j.
Then almost surely (in the sense that the probability approaches 1 as k →
∞) the first linear dependency gives a matrix which reduces to a t + 1 × t
matrix after iterated removal of solons and colons.

Essentially, this conjecture says that there are two conditions, one of
which implies the other, and that usually, the two coincide exactly. This is
a common situation in the theory of random graphs, in which for example,
if the edges of the complete graph on n vertices are placed in random order,
the edge which makes the graph connected is almost surely the edge which
makes the minimum degree equal to 1.

In studying threshold functions for the occurrence of combinatorial
structures, for example in random graphs (see for example, Bollobas [34])
it is frequently the case that the threshold behaves (suitably scaled) like
the function ee

−x

Figure 6.1 shows the proportion of successful trials with
k = 20000, for l from 1000, 1100, 1200, . . . 3000, with 100 trials each.
(Figure 6.2) shows the function ee

−x

, suitably scaled and shifted to match
this: the overlay of the two pictures in Figure 6.3 shows that the match is
close but not perfect. However, it is close enough to suggest that there is
a similar threshold behaviour going on.

We can also compare the threshold functions for finding dependence this
way for various values of k: figure 6.4 shows the proportion of successes for
k = 20000, 30000 and 40000: the horizontal axis is scaled to give l/k. This
figure is consistent with the hypothesis that there is a sharp threshold β
around 0.2.

7 Conclusions

After considering various probabilistic possible models for the Quadratic
Sieve, it appears that we have found one which is a reasonably good match.
Since almost all of our arguments were heuristic and our evidence almost
purely experimental, there are two obvious routes to follow now. First,
implement the Quadratic Sieve to take account of the ideas discussed here,
and estimate the improved running time. Second, put the heuristics on
a sounder footing, proving some of the natural assumptions that we have
made. We are currently working on both of these tasks.

One of the advantages of removing solons and colons is that it can be
done in parallel: most linear algebra algorithms are rather hard to paral-
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Figure 6.1. Probability l rows of length 20000 are dependent.

lelize, so if we can preprocess the matrix in this fashion, then it may make
the remaining linear algebra tasks much faster to perform. (In addition, if
the iterated deletions can be parallelized effectively, it is possible that this
might make the Quadratic Sieve faster in implementations than algorithms
such as the Number Field Sieve in which the linear algebra phase is hard
to parallelize).

One might ask why these techniques have not been used already: it
appears to be the case that they only become useful if l is sufficiently small
compared to k, and since most implementations aimed to get l large in
order to ensure dependency, the usefulness of iterated deletion of solons
and colons has not been noticed.

While it is clear that the ideas here will speed up the Quadratic Sieve,
we don’t expect that this will have a huge impact: currently the Quadratic
Sieve is only the second fastest general purpose factoring algorithm, and
the improvements suggested here are unlikely to lift it into first place. The
fastest algorithm, the General Number Field Sieve, is similar in nature, in
that it generates a sequence of vectors over GF2, and a linear dependency
is used to generate a factorization. However, heuristics suggest that the
vectors generated are somewhat denser than for the Quadratic Sieve: per-
haps having αj = c log j/j. If this is the case, then the expected number
of solons and colons is so small that the techniques discussed here will not
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Figure 6.2. Scaled, shifted plot of e−e
−x

.

have any effect.
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Figure 6.3. Overlay of probability, ee
−x

.

Figure 6.4. Probabilities of dependencies for various l, k = 20000, 30000, 40000.
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Chapter 7

A Selection of Integrals from a
Popular Table

1 Introduction

The evaluation of definite integrals is one of the most intriguing topics of
elementary mathematics. Every student of Calculus is exposed to a variety
of techniques that sometimes work, but they always leave the feeling of just
being a collection of tricks.

The goal of this chapter is to introduce the reader to the methods of
Experimental Mathematics in the context of definite integrals. We hope to
convey that, in spite of wonderful collections such as Tables of Integrals,
Series and Products by I.S. Gradshteyn and I. M. Rhyzik [124] and sophisti-
cated symbolic languages such as Mathematica, there is a lot of interesting
things to do. The use of Mathematica is essential in our approach to this
question.

One of the features of definite integration is that similar integrands
produce problems of different levels of complexity. The reader is already
aware of this phenomenon: the integral∫ ∞

0

e−x dx = 1, (7.1)

is elementary, the normal integral∫ ∞

0

e−x
2
dx =

√
π

2
, (7.2)

can be obtained by elementary methods, but the next examples in this
family ∫ ∞

0

e−x
3
dx = Γ

(
4
3

)
(7.3)
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requires the introduction of the gamma function

Γ(x) =
∫ ∞

0

tx−1e−tdt (7.4)

to obtain the answer. This is a remarkable function that satisfies

Γ(n+ 1) = n! (7.5)

so it provides an analytic extension of factorials. Under some mild condi-
tions this is in fact unique. The evaluation (7.2) corresponds to the special
value

Γ
(

1
2

)
=
√
π. (7.6)

At this point it is natural to ask whether Γ(4/3) in (7.3) can be expressed
in terms of more elementary functions. This is a difficult question that will
not be addressed here, but see [75] for an introduction.

The fact that definite integrals are given as specific values of special
functions is familiar to students. This is central to the question of what
constitutes an acceptable answer to a required evaluation. For instance,
every student will evaluate ∫ 1

0

dx√
2− x2

=
π

4
(7.7)

and consider it a reasonable good answer, but the similar problem∫ 1

0

dx√
9− x2

= sin−1

(
1
3

)
(7.8)

will force the issue of simplifying the answer. Even at this level, this is
related to deep interesting questions: for which integers n is the number
sin(π/n) expressable in radicals? It is surprising to the beginner that the
answer lies in the realm of Abstract Algebra. See [219] for a historical
discussion of this topic.

A remarkable feature of integration is that complicated real numbers
appear as definite integrals, in which the integrand is relatively simple. One
does not need to complicate the integrand to produce a difficult problem.
For example, in entry 4.241.11 of [124] we find∫ 1

0

lnx dx√
x(1− x2)

= −
√

2π
8

[
Γ
(

1
4

)]2
. (7.9)

The gamma function defined in (7.4) makes a new appearance. The con-
cept of complicated needs to be formalized: but it should be clear that (7.9)
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is more complicated than (7.8).

The reader will find in [39] many other interesting features involved in
the evaluation of definite integrals.

2 The Project and its Experimental Nature

The central question of our research can be described in simple terms: given
a function

f = f(x; p1, p2, · · · , pn) (7.10)

that depends on a set of parameters: p1, · · · , pn, we want to express the
definite integral

I = I(f ; p1, · · · , pn; a, b) =
∫ b

a

f(x; p1, p2, · · · , pn) dx, (7.11)

in terms of the parameter set {p1, · · · , pn, a, b}.
As such the problem is too general and simple to solve. Define g to be

a primitive of f and use the fundamental theorem of calculus to evaluate
I. The problem becomes more interesting if we fix the class of possible
primitives. For instance: given a rational function f , find the value of I in
the rational class.

Our long term plan is to develop a complete theory of definite integra-
tion. As a special part of this project, we would like to provide proofs of
the many formulas appearing in the classical table of integralsi, such as
[124]. The material presented there is enormous. This collection has as
ancestors the table compiled by Bierens de Haan [32] and the beautifully
typed tables [126] and [127]. There are some new tables that present in-
teresting evaluations, for instance A. Apelblat [8]

In these notes we present some of the methods that we use in our work.
Two aspects that appear througout this presentation are:

(1) Integral representations. Many special functions admit representa-
tions as integrals. For example,

tan−1 x =
∫ x

0

dt

1 + t2
. (7.12)

We read these representations from right to left, that is, we see the special
function as giving us evaluations of the definite integral.
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(2) Interesting numbers. The values of integrals produce real numbers
that appear in other contexts. For example,∫ ∞

0

tx−1 dt

et + 1
= (1− 21−x)Γ(x)ζ(x) (7.13)

where

ζ(x) =
∞∑
n=1

1
nx

(7.14)

is the famous Riemann zeta function. This function appeared in the
study of distribution of prime numbers and its zeros are worth some money1

See

http://www.claymath.org/millennium/Riemann_Hypothesis

specially the article by Peter Sarnak on that website. Therefore its special
values have some intrinsic interest. We think of special values of interesting
functions as the primitive blocks that form real numbers. For instance,∫ π/2

0

( x

sinx

)4

dx = − 1
12
π3 + 2π ln 2 +

1
3
π3 ln 2− 3

2
πζ(3) (7.15)

is an expression formed by the blocks ln 2, π and ζ(3). The problem of sim-
plication of these combinations is rather difficult: if the expression ζ(4)/π4

appears, then it has been known since Euler that it reduces to 1/90. On
the other hand, we do not know what to do about with ζ(3)/π3. The case
of odd values of ζ seems to be much more difficult. W. Zudilin informs
me that A general feeling is that π, ζ(3), ζ(5), ζ(7), · · · are algebraically
independent, but this seems to be problem forever.

3 Families and Individuals

Among the formulas presented in [124] some of them can be treated as
membres of a larger family. For example, in 4.224.6 we find∫ π/2

0

ln cosx dx = −π
2

ln 2 (7.16)

that is related to 4.224.8:∫ π/2

0

(ln cosx)2 dx =
π

2

[
(ln 2)2 +

π2

12

]
. (7.17)

1We believe that are much easier ways to make $1,000,000.
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This leads to the consideration of the general case

LCn :=
∫ π/2

0

(ln cosx)n dx. (7.18)

A direct symbolic computation yields

LC1 = − 1
2ac (7.19)

LC2 = 1
2a

2c+ 1
24c

3

LC3 = −
(

1
2a

3c+ 3
4b

3c+ 1
8ac

3
)

LC4 = 1
2a

4c+ 3ab3c+ 1
4a

2c3 + + 19
480c

5,

where we have employed the notation a := ln 2, b := ζ(3)1/3, c := π. The
values of ζ(2n) have been well-known since the eighteenth century. The
Bernoulli numbers defined by the series

x

ex − 1
= 1− 1

2
x+

∞∑
n=1

B2n
x2n

(2n)!
, (7.20)

are rational numbers with alternating signs. It turns out that

ζ(2n) = (−1)n−1 22n−1

(2n)!
B2n π

2n (7.21)

so that ζ(2n) is a rational multiple of π2n. The situation for the odd values
of ζ is much more difficult. The reader can find in [224] an informal report
on the reaction to the proof of irrationality of ζ(3) given by R. Apery. The
constant ζ(3) is become known as Apery’s constant. A different proof of
this result was presented by F. Beukers in [30]. His proof is based on the
representation∫ 1

0

∫ 1

0

Pn(x)Pn(y)
1− xy

lnxy dx dy = 2(an − bnζ(3)). (7.22)

Here bn are integers, an are rationals numbers such that 2LCM[1, · · · , n]an
is an integer, and

Pn(z) =
1
n!

dn

dzn
[zn(1− z)n] (7.23)

is the classical Legendre polynomial. This is one more instance of integrals
at the center of interesting Mathematics.

From the data in (7.19) we see that (−1)nLCn is a polynomial in the
variables a, b, c with positive rational coefficients. Morever, this is a ho-
mogeneous polynomial of degree n+ 1. Using a symbolic language we can
test this conjecture. Indeed, the next term in the family is

LC5 = −
(

1
2
a5c+

15
2
a2b3c+

5
12
a3c3 +

5
8
b3c3 +

19
96
ac5 +

45
4
cd5

)
, (7.24)
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where the new variable d is ζ(5)1/5. The conjecture has now been verified
for n = 5.

The next steps in the analysis of this example are:
• Prove the conjecture. The reader will find in [31] a recurrence for the
integrals LCn. This should help.
• Discover a reason for its existence.
• Find a closed form for the coefficients in LCn.

There are some other evaluations that seem to be individuals. The
formula 4.229.7 ∫ π/2

π/4

ln ln tanx dx =
π

2
ln
{

Γ(3/4)
Γ(1/4)

√
2π
}

(7.25)

that is the subject of the delightful paper by Ilan Vardi [225], is apparently
in this category. The proof of (7.25) is based on Dirichlet L-series. This
is evidence that to evaluate integrals one needs to learn Analytic Number
Theory.

The flexibility provided by changes of variables permits us to represent
Vardi’s integrals in many forms. Some of these can be found in [124]. The
new variable u = ln tanx gives 4.371.1:∫ ∞

0

lnu
coshu

du = π ln
{

Γ(3/4)
Γ(1/4)

√
2π
}
. (7.26)

One of the advantages of a table in paper form is that it allows for browsing.
A neighbor of the previous integral is 4.371.3∫ ∞

0

lnx dx
cosh2 x

= lnπ − 2 ln 2− γ. (7.27)

Here γ is Euler’s constant defined by

γ = lim
n→∞

n∑
k=1

1
k
− lnn. (7.28)

The question of whether γ is rational is still open. We are sure that defi-
nite integrals will appear in its solution. J. Sondow has many interesting
examples of integrals for γ, see

http://home.earthlink.net/~jsondow.

The two examples mentioned above are part of the family

LTn :=
∫ ∞

0

lnx dx
coshn x

. (7.29)



i
i

i
i

i
i

i
i

4. An Experimental Derivation of Wallis’ Formula 161

We encourage the reader to use a symbolic language to explore this new
series of integrals.

Browsing also allows to find interesting examples in [124]. For instance,
on page 575 we find as 4.375.1∫ ∞

0

ln cosh
x

2
dx

coshx
= G+

π

4
ln 2 (7.30)

and a symbolic evaluation reveals that there is a sign error: the correct
value of the integral is G− π

4 ln 2. Here G, known as Catalan’s constant, is
defined by

G =
∞∑
n=1

(−1)n

(2n− 1)2
. (7.31)

The value of this integral appears written correctly as formula BI(259)(11)
in [32]. It appears there in the equivalent form∫ ∞

0

ln(ex/2 + e−x/2)
ex + e−x

dx =
π

8
ln 2 +

1
2

∞∑
n=0

(−1)n

(2n+ 1)2
. (7.32)

Symbolic extensions of this example are not very succesful: my current
version of Mathematica is unable to evaluate∫ ∞

0

ln cosh
x

3
dx

coshx
. (7.33)

One of the intrinsic problems with symbolic languages is that the result in
the evaluation depends how the integrand is input. For instance, Mathe-
matica gives the value of ∫ ∞

0

ln coshx
dx

cosh 3x
(7.34)

as a complicated expression involving the polylogarithm function defined by

PolyLog[k, x] :=
∞∑
n=1

xn

nk
. (7.35)

A simpler expression seems unlikely.

4 An Experimental Derivation of Wallis’ Formula

The evaluation

J2,m :=
∫ ∞

0

dx

(x2 + 1)m+1
=

π

22m+1

(
2m
m

)
(7.36)
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is presented in some Calculus books. We present here an experimental
derivation of it.

The first step is to produce convincing evidence that the right hand side
of (7.36) is correct. This can be achieved by a symbolic evaluation of the
integral. The Mathematica command

Integrate[1/(x^2+1)^(m+1), {x,0,Infinity}]

requests the value of J2,m. The response involves the condition Rem > − 1
2

that guarantees convergence of the integral. This can be added to the
request via the command

Assumptions -> Re[m] > -1/2.

The answer provided by Mathematica is given in terms of the gamma func-
tion as

J2,m =
√
π

2
Γ( 1

2 +m)
Γ(1 +m)

. (7.37)

The expression for J2,m given in (7.36) now follows directly from the du-
plication formula for the gamma function

Γ(2x) = 22x−1Γ(x+ 1
2 )Γ(x)/Γ( 1

2 ) (7.38)

and the value Γ(n) = (n− 1)! for n ∈ N.
We now present an alternative form of obtaining (7.36) as an example of

our experimental technique. Using a symbolic language (like Mathematica)
we obtain the first few values of J2,m as{

π

4
,

3π
16
,

5π
32
,

35π
256

,
63π
512

,
231π
2048

}
. (7.39)

It is reasonable to conjecture J2,m is a rational multiple of π. We now
begin the exploration of this rational number by defining the function

f2(m) := Denominator(J2,m/π). (7.40)

Use the command

FactorInteger[Denominator[J[2,m]/Pi]]

to conclude that the denominator of f2(m) is a power of 2. Making a list
of the first few exponents we (experimentally) conclude that

f3(m) := 22mf1(m)/π (7.41)

is an integer. The first few values of this function are

{1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378}. (7.42)
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Now comes the difficult part: we want to obtain a closed form expression for
f3(m) directly from this list. For this we employ the On-Line Encyclopedia
of Integer Sequences at the site

http://www.research.att.com/~njas/sequences/.

Entering the first four values we find that

f3(m) =
(

2m+ 1
m+ 1

)
(7.43)

is reasonable. This can be checked by computing more data. The expres-
sion for f3 leads to the proposed form of J2,m.

The exploration of Sloane’s list is also a wonderful learning experience.
The reader should use it and learn about the sequence

{1, 3, 10, 35, 126, 462, 1717 } (7.44)

that we got when we made a mistake and typed 1717 instead of 1716.
We now prove that

J2,m =
∫ ∞

0

dx

(x2 + 1)m+1
=

π

22m+1

(
2m
m

)
, (7.45)

where m is a nonnegative integer. The change of variables x = tan θ
converts J2,m to its trigonometric form

J2,m =
∫ π/2

0

cos2m θ dθ =
π

22m+1

(
2m
m

)
, (7.46)

which is known as Wallis’s formula. The proof of (7.46) is elementary and
sometimes found in calculus books (see e.g. [160], page 492). It consists
of first writing cos2 θ = 1− sin2 θ and using integration by parts to obtain
the recursion

J2,m =
2m− 1

2m
J2,m−1, (7.47)

and then verifying that the right side of (7.46) satisfies the same recursion
and that both sides yield π/2 for m = 0.

We now present a new proof of Wallis’s formula. We have

J2,m =
∫ π/2

0

cos2m θ dθ =
∫ π/2

0

(
1 + cos 2θ

2

)m
dθ.

Now introduce ψ = 2θ and expand and simplify the result by observing
that the odd powers of cosine integrate to zero. The inductive proof of
(7.46) requires

J2,m = 2−m
[m/2]∑
i=0

(
m

2i

)
J2,i. (7.48)
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Note that J2,m is uniquely determined by (7.48) along with the initial value
J2,0 = π/2. Thus (7.46) now follows from the identity

f(m) :=
[m/2]∑
i=0

2−2i

(
m

2i

)(
2i
i

)
= 2−m

(
2m
m

)
(7.49)

since (7.49) can be written as

Am = 2−m
[m/2]∑
i=0

(
m

2i

)
Ai,

where

Ai =
π

22i+1

(
2i
i

)
.

It remains to verify the identity (7.49). This can be done mechanically
using the theory developed by Wilf and Zeilberger, which is explained in
[184, 190]; the sum in (7.49) is the example used in [190] (page 113) to
illustrate their method. The command

ct(binomial(m,2i) binomial(2i,i) 2^{-2i}, 1, i, m,N)

produces

f(m+ 1) =
2m+ 1
m+ 1

f(m), (7.50)

and one checks that 2−m
(
2m
m

)
satisfies the same recursion. Note that (7.47)

and (7.50) are equivalent since

J2,m =
π

2m+1
f(m).

This proof is more complicated than using (7.47), but the method be-
hind it applies to other rational integrals. This was the first step in a series
of results on rational Landen transformations. The reader will find in [38]
the details for even rational functions and [174] for recent developments.

5 A Hyperbolic Example

Section 3.511 of the table of integrals [124] contains the evaluation of several
definite integrals whose integrands are quotients of hyperbolic functions.
For instance, 3.511.2 reads∫ ∞

0

sinh(ax)
sinh(bx)

dx =
π

2b
tan

aπ

2b
(7.51)
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while the next formula 3.511.3 is∫ ∞

0

sinh(ax)
cosh(bx)

dx =
π

2b
sec

aπ

2b
− 1
b
β

(
a+ b

2b

)
. (7.52)

The reader will find in [124], formula 8.371.1, the function β given by the
integral representation

β(x) =
∫ 1

0

tx−1

1 + t
dt. (7.53)

Introduce the notation

g1(a, b) =
∫ ∞

0

sinh(ax)
cosh(bx)

dx (7.54)

and we now discuss its evaluation. Naturally the answer given in the table
is in terms of the β-function, so its integral representation suggests a pro-
cedure how to start. Checking the value of an integral is much easier than
finding it. Simply let t = e−2bx to obtain

g1(a, b) = β

(
1
2
− a

2b

)
− β

(
1
2

+
a

2b

)
. (7.55)

We now use properties of β to reduce this answer to the one given in [124].
This function is related to the classical digamma function

ψ(x) =
Γ′(x)
Γ(x)

(7.56)

via

β(x) =
1
2

(
ψ

(
x+ 1

2

)
− ψ

(x
2

))
. (7.57)

The functional equation for the gamma function

Γ(1 + x) = xΓ(x) (7.58)

yields the identity

ψ(1 + x) = ψ(x) +
1
x
. (7.59)

In turn this produces

β(x+ 1) = −β(x) +
1
x
. (7.60)

Similarly

ψ

(
1
2

+ x

)
= ψ

(
1
2
− x
)

+ π tanπx (7.61)
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produces
β(1− x) = β(x) + π cosecπx. (7.62)

Using these identities in (7.55) yields (7.52).

But suppose that the reader is not familiar with these functions. Is
there anything that one can learn from the integrals by using a symbolic
language?

A blind evaluation2 produces an answer in terms of the function

h(x) := HarmonicNumber[x] :=
∞∑
k=1

(
1
k
− 1
k + x

)
(7.63)

as

g1(a, b) =
HarmonicNumber

[
1
4 (−3 + a

b )
]

4b
−

HarmonicNumber
[
1
4 (−1 + a

b )
]

4b

+
HarmonicNumber

[
−a+b4b

]
4b

−
HarmonicNumber

[
−a+3b

4b

]
4b

.

The answer is written exactly as it appears in the Mathematica code. To
simplify it we apply the command

FunctionExpand

that produces

g1(a, b) = −
PolyGamma

[
0, 1

4 −
a
4b

]
4b

+
PolyGamma

[
0, 3

4 −
a
4b

]
4b

+
PolyGamma

[
0, 1

4 + a
4b

]
4b

−
PolyGamma

[
0, 3

4 + a
4b

]
4b

The polygamma function appearing here is simply ψ(x) and it is easy
to see that this expression for g1 is equivalent to (7.55). We also see from
here that 4bg1(a, b) is a function of the single parameter c = a

b . This is
elementary. The change of variables t = bx yields

4bg1(a, b) = 4
∫ ∞

0

sinh(ct)
cosh t

dt. (7.64)

Thus we write
g2(c) = 4bg1(a, b). (7.65)

2This is one in which we simply input the question and ask Mathematica for an
answer.
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and the previous evaluation is written as

g2(c) = −PolyGamma
[
0, 1

4 −
c
4

]
+ PolyGamma

[
0, 3

4 −
c
4

]
+PolyGamma

[
0, 1

4 + c
4

]
− PolyGamma

[
0, 3

4 + c
4

]
.

In order to obtain some information about the function g2 we can use
Mathematica to create a list of values. The command

T_{1} := Table[g_{2}[n], {n,1, 10}]

produces

T1 =
{
∞,−8, ∞, 16

3 , ∞, −
104
15 , ∞,

608
105 , ∞, −

2104
315

}
. (7.66)

This indicates the presence of singularities for the function g2 at the odd
integers and a clear pattern for the signs at the even ones. We then compute
the table of values of (−1)ng2(2n) for 1 ≤ n ≤ 9:

T2 =
{
8, 16

3 ,
104
15 ,

608
105 ,

2104
315 ,

20624
3465 ,

295832
45045 ,

271808
45045 ,

4981096
765765

}
.

From here we experimentally conclude that g2 has a singularity at the odd
integers and that rn = (−1)ng2(2n) is a positive rational number. We leave
the singularity question aside and explore the properties of the sequence
rn.

The beginning of the sequence of denominators agrees with that of the
odd semi-factorials:

(2n− 1)!! := (2n− 1) · (2n− 3) · (2n− 5) · · · 5 · 3 · 1 (7.67)

that begins as

T3 = {1, 3, 15, 105, 945, 10395, 135135, 2027025}. (7.68)

Thus it is natural to consider the function

g3(n) = (−1)n(2n− 1)!!g2(2n). (7.69)

The hope is that g3(n) is an integer valued function. The first few values
are given by

T4 = {8, 16, 104, 608, 6312, 61872, 887496, 12231360}. (7.70)

Observe that they are all even integers. To examine their divisibility in
more detail, we introduce the concept of p-adic valuation.
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Let n ∈ N and p be a prime. The p-adic valuation of n, denoted by
νp(n), is defined as the exact power of p that divides n. Now define

g4(n) = ν2(g3(n)), (7.71)

and its first few values are

T5 = {0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4}. (7.72)

From this data we conjecture that

g4(n) = 3 + ν2(n), (7.73)

so that the (conjectured) integer

g5(n) :=
g4(n)

23+ν2(n)
(7.74)

is odd.
We now continue this process and examine the number ν3(g5(n)). It

seems that g5(n) is divisible by 3 for n ≥ 5, so we consider

g6(n) = ν3(g5(n)). (7.75)

Extensive symbolic calculations show that for i ≥ 2, we have

g6(3i− 1) = g6(3i) = g6(3i+ 1) (7.76)

We pause our experiment here. The reader is invited to continue this
exploration and begin proving some of these results.

The method outlined here is referred by us as the peeling strategy: given
an expression for which we desire a closed-form, we use a symbolic language
to peel away recognizable parts. The process ends successfully if one is able
to reduce the original expression to a known one.

6 A Formula Hidden in the List

It is impossible for a table of integrals to be complete. In the process of
studying integrals of rational functions and after completing our study of
Wallis’ formula we consider the integral

N0,4(a;m) :=
∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
. (7.77)

We were surprised not to find it in [124]. The table does contain formula
3.252.11 ∫ ∞

0

(1 + 2βx+ x2)µ−
1
2x−ν−1 dx = (7.78)
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2−µ(β2 − 1)µ/2Γ(1− µ)B(ν − 2µ+ 1,−ν)Pµν−µ(β)

where B is the beta function and Pµν is the associated Legendre function.
We will not discuss here the technical details required to prove this. Using
an appropriate representation of these functions, we showed that

Pm(a) :=
1
π

2m+3/2(a+ 1)m+1/2N0,4(a;m) (7.79)

is a polynomial in a, given by

Pm(a) = 2−2m
m∑
k=0

2k
(

2m− 2k
m− k

)(
m+ k

m

)
(a+ 1)k. (7.80)

The reader will find the details in [36]. It turns out that this was not
the original approach we followed to establish (7.79). At the time we were
completely unaware of the hypergeometric world involved in (7.78). Instead
we used ∫ ∞

0

dx

bx4 + 2ax2 + 1
=

π

2
√

2
1√

a+
√
b

(7.81)

to produce in [37] the expansion√
a+
√

1 + c =
√
a+ 1 +

1
π
√

2

∞∑
k=1

(−1)k−1

k
N0,4(a; k − 1)ck. (7.82)

The expression for Pm(a) was a corollary of Ramanujan Master Theorem;
see [28] for details on this and many other results of Ramanujan. It was a
long detour, forced by ignorance of a subject. It was full of surprises.

The coefficients of the polynomial Pm(a) are given by

dl(m) = 2−2m
m∑
k=l

2k
(

2m− 2k
m− k

)(
m+ k

m

)(
k

l

)
, (7.83)

have many interesting properties. Many of which we discovered by playing
around with them in a computer.

• The sequence {dl(m) : 0 ≤ l ≤ m} is unimodal. That is, there is an index
l∗ such that di(m) ≤ di+1(m) if 0 ≤ i ≤ l∗−1 and the inequality is reversed
if l∗ ≤ i ≤ m. In our study of dl(m), we discovered a general unimodality
criteria. The details are presented in [7] and [35]. A property stronger than
unimodality is that of log-concavity: a sequence of numbers {al} is called
log-concave if it satisfies a2

l ≥ al−1al+1. We have conjectured that the coef-
ficients dl(m) are logconcave, but so far we have not been able to prove this.
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• The representation (7.83) provides an efficient way to compute dl(m)
for m fixed if l is large relative to m. Trying to produce an alternative
form, that would give an efficient way to compute them when l is small, we
established in [40] the existence of two families of polynomials αl(m) and
βl(m) such that

dl(m) =
1

l!m! 2m+l

(
αl(m)

m∏
k=1

(4k − 1)− βl(m)
m∏
k=1

(4k + 1)

)
. (7.84)

The degrees if αl and βl are l and l−1 respectively. For instance, the linear
coefficient of Pm(a) is given by

d1(m) =
1

m! 2m+1

(
(2m+ 1)

m∏
k=1

(4k − 1)−
m∏
k=1

(4k + 1)

)
, (7.85)

and the quadratic one is

d2(m) =
1

m! 2m+2

(
(2m2 + 2m+ 1)

m∏
k=1

(4k − 1)− (2m+ 1)
m∏
k=1

(4k + 1)

)
.

On an day without new ideas3, we started computing zeros of the polyno-
mials αl and βl. We were very surprised to see that all of them were on
a the vertical line Rem = − 1

2 . In the summer of 2002, while working at
SIMU (Summer Institute in Mathematics for Undergraduates), the author
had a good idea about how to solve this problem: ask John Little. The
result is true. The polynomial Al(s) := αl( s−1

2 ) satisfies the recurrence

Al+1(s) = 2sAl(s)− (s2 − (2l − 1)2)Al−1(s) (7.86)

and the location of the zeros can be deduced from here. The details will
appear in [169].

This example illustrates our working philosophy: there are many classes
of definite integrals that have very interesting Mathematics hidden in them.
The use of a Symbolic Language often helps you find the correct questions.

7 Some Experiments on Valuations

We now report on some experiments concerning the p-adic valuation of the
coefficients dl(m) defined in the previous section. The expression

dl(m) = 2−2m
m∑
k=l

2k
(

2m− 2k
m− k

)(
m+ k

m

)(
k

l

)
(7.87)

3Like most of them.
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shows that νp(dl(m)) ≥ 0 for p 6= 2.
We now describe results of symbolic calculations of the p-adic valuation

of

f(m, l) = αl(m)
m∏
k=1

(4k − 1)− βl(m)
m∏
k=1

(4k + 1). (7.88)

The coefficient dl(m) and f(m, l) are related via f(m, l) = l!m!2m+ldl(m).
These two functions are computationally equivalent because the p-adic val-
uations of factorials are easily computed via

νp(m!) =
∞∑
k=1

bm
pk
c. (7.89)

Naturally the sum is finite and we can end it at k = blogpmc. An alterna-
tive is to use a famous result of Legendre [162, 125]

νp(m!) =
m− sp(m)
p− 1

(7.90)

The command

g[m_,l_,p_]:= IntegerExponent[ f[m,l],p ]

gives directly the p-adic valuation of the coefficient f(m, l). For example,
for m = 30, l = 10 and p = 7 we have g(30, 10, 3) = 18. Indeed,

f(30, 10) = 230 · 318 · 510 · 76 · 114 · 133 · 172 · 192 · 232 ·N (7.91)

where N is the product of five primes.

We have evaluated the function g(m, l, p) for large classes of integers
m, l and primes p.

The remainder of this section describes our findings. The situation is
quite different according to whether p = 2 or odd. In the first case, g(m, l, 2)
has a well defined structure. In the latter, g(m, l, p) has a random flavor.
In this case we have been only able to predict its asymptotic behavior.

The case p = 2.

• The experiments show that, for fixed l, the function g(m, l, 2) has
blocks of length 2ν2(l)+1. For example, the values of g(m, 1, 2) for 1 ≤ m ≤
20 are

{2, 2, 3, 3, 2, 2, 4, 4, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3}.
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Similarly, g(m, 4, 2) has blocks of length 8: it begins with eight 11, followed
by eight 12, continued by eight 11, and so on.

• The graphs of the function g(m, l, 2), where we reduced the repeating
blocks to a single value are shown in the next figures.

The main experimental result is that the graph of g(m, l, p) has an
initial segment from which the rest is determined by adding a central piece
followed by a folding rule. For example, in the case l = 1, the first few
values of the reduced table for g(m, 1, 2) are

{2, 3, 2, 4, 2, 4, 2, 3, 2, 5, . . .}

The ingredients are:

initial segment: {2, 3, 2},

central piece: the value at the center of the initial segment, namely 3.

rules of formation: start with the initial segment and add 1 to the central
piece and reflect.

This produces the sequence

{2, 3, 2} → {2, 3, 2, 4} → {2, 3, 2, 4, 2, 3, 2} → {2, 3, 2, 4, 2, 3, 2, 5} →

→ {2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2}.

The details are shown in Figure 7.1.

The difficulty with this procedure is that, at the moment, we have no
form of determining the initial segment nor the central piece. Figure 7.2
shows the beginning of the function g(m, 9, 2). From here one could be
tempted to predict that this graph extends as in the case l = 1. This is not
correct as it can be seen in Figure 7.3. The new pattern described seems
to be the correct one as shown in Figure 7.4.

The initial pattern could be quite elaborate. Figure 7.5 illustrates the
case l = 53.

In [40] we have given details of the only analytic result: the 2-adic
valuation of d1(m) is given by

ν2(d1(m)) = 1−m+ ν2

((
m+ 1

2

))
− ν2(m!). (7.92)



i
i

i
i

i
i

i
i

7. Some Experiments on Valuations 173

Figure 7.1. The 2-adic valuation of d1(m)

Figure 7.2. The beginning of g(m, 9, 2).

The case of odd primes.

The p-adic valuation of dl(m) behaves quite differently for p an odd
prime. Figure 7.6 shows the values for l = 1 and p = 3. There is a clear
linear growth, of slope 1

2 and Figure 7.7 shows the deviation from this linear
function. We suspect that the error is bounded.

This behavior persists for other values of l and primes p. The p-adic
valuation of dl(m) has linear growth with slope 1/(p−1). Figures 7.8, 7.10,
7.9, 7.11 show four representative cases.
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Figure 7.3. The continuation of g(m, 9, 2).

Figure 7.4. The pattern of g(m, 9, 2) persists.

Conjecture. Let p be an odd prime. Then

νp(dl(m)) ∼ m

p− 1
. (7.93)

8 An Error in the Latest Edition

A project of the size of [124] is bound to have some errors. In the last
edition of the table, we found formula 3.248.5 as a new addition to this
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Figure 7.5. The initial pattern for l = 53.

Figure 7.6. The 3-adic valuation of d1(m).

great collection. It has a beautiful structure given by nested radicals. Let

ϕ(x) = 1 +
4x2

3(1 + x2)2
, (7.94)

then the evaluation states that∫ ∞

0

dx

(1 + x2)3/2
[
ϕ(x) + ϕ(x)1/2

]1/2 =
π

2
√

6
. (7.95)

After several failed attemps at proving it, the author decided to check it
numerically. It is incorrect4. Normally this is disappointing, but in this

4We should have checked earlier.
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Figure 7.7. The deviation from linear growth.

Figure 7.8. The error for l = 1 and p = 5.

case the structure of the evaluation leads to two interesting questions:

• The direct problem. Find the correct value of the integral. As usual there
is no method that is guaranteed to succeed and a good idea is required.

• The inverse problem. Given that π/2
√

6 is the correct answer, find a
modification of the integrand that produces that answer. This modification
is expected to be close to the integrand given in the table, perhaps a typo:
the exponent 3

2 in the term 1 + x2 perhaps is 2
3 ; or the 4 in the expression

for ϕ(x) is a 14. There is no systematic approach to solving this problem,
but it is a lot of fun to experiment with.
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Figure 7.9. The error for l = 1 and p = 11.

Figure 7.10. The error for l = 5 and p = 5.

We have not explore this example in detail but it seems to have many
beautiful alternative representations. For instance, let

a[x, p] :=
√
x4 + 2px2 + 1. (7.96)

Then the integral is I( 5
3 , 1) where

I(p, q) =
∫ ∞

0

dx

a[x, p]1/2 a[x, q]1/2(a[x, p] + a[x, q])1/2
. (7.97)

It is interesting to observe that if

b[x, p] :=
√
x2 + 2px+ 1 (7.98)
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Figure 7.11. The error for l = 5 and p = 11.

then the integral is J( 5
3 , 1) where

J(p, q) =
1
2

∫ ∞

0

dx

b[x, p]1/2 b[x, q]1/2(b[x, p] + b[x, q])1/2
. (7.99)

9 Some Examples Involving the Hurwitz Zeta Func-
tion

There are many evaluations in [124] where the Hurwitz zeta function

ζ(z, q) =
∞∑
k=0

1
(k + q)z

(7.100)

appears as part of the value of the integral. For example, 3.524.1 states
that∫ ∞

0

xµ−1 sinhβx
sinh γx

dx =
Γ(µ)
(2γ)µ

{
ζ

[
µ,

1
2

(
1− β

γ

)]
− ζ

[
µ,

1
2

(
1 +

β

γ

)]}
valid for Re γ > |Reβ|, Reµ > −1. The identity (7.101) can be written
in the typographically simpler form∫ ∞

0

xµ−1 sinh bx
sinhx

dx =
Γ(µ)
2µ

{
ζ

[
µ,

1
2
(1− b)

]
− ζ

[
µ,

1
2
(1 + b)

]}
,

that illustrates the fact that 3.524.1 has only two independent parameters.
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The table [124] contains no examples in which ζ(z, q) appears in the
integrand. A search of the 3-volume compendium [202] produces∫

ζ(z, q)dq =
1

1− z
ζ(z − 1, q), (7.101)

which is an elementary consequence of

∂

∂q
ζ(z − 1, q) = (1− z)ζ(z, q), (7.102)

and in Section 2.3.1 we find the moments∫ ∞

0

qα−1ζ(z, a+ bq)dq = b−αB(α, z − α)ζ(z − α, a). (7.103)

Motivated mostly by the lack of explicit evaluations, we initiated in [106,
107] a systematic study of these type of integrals. Our results are based
mostly on the expressions for the Fourier coefficients of ζ(z, q) given in
Section 2.3.1 of [202] as∫ 1

0

sin(2πq)ζ(z, q)dq =
(2π)z

4Γ(z)
csc

(zπ
2

)
. (7.104)

Some interesting evaluations are obtained from Lerch’s identity

d

dz
ζ(z, q)|z=0 = ln Γ(q)− ln

√
2π. (7.105)

For instance, the reader will find in [106]) the elementary value∫ 1

0

ln Γ(q)dq = ln
√

2π, (7.106)

and the surprising one

∫ 1

0

(ln Γ(q))2 dq =
γ2

12
+
π2

48
+

1
3
γ ln
√

2π +
4
3

(
ln
√

2π
)2

− (γ + 2 ln
√

2π)
ζ ′(2)
π2

+
ζ ′′(2)
2π2

. (7.107)

An elementary proof of (7.106), due to T. Amdeberham, uses only the
elementary properties of the gamma function. The first step is to partition
the interval [0, 1] to obtain∫ 1

0

ln Γ(x) dx = lim
n→∞

1
n

∞∑
k=1

ln Γ(k/n). (7.108)



i
i

i
i

i
i

i
i

180 Chapter 7. A Selection of Integrals from a Popular Table

The Riemann sum can be written as

1
n

n∑
k=1

ln Γ(k/n) =
1
n

ln

(
n∏
k=1

Γ
(
k
n

))

=
1
n

ln

n/2∏
k=1

Γ
(
k
n

)
Γ
(
1− k

n

)
and using the reflection formula

Γ(z)Γ(1− z) =
π

sinπz
(7.109)

we obtain

1
n

n∑
k=1

ln Γ(k/n) = ln
√
π − ln

n/2∏
k=1

sin(πk/n)

1/n

. (7.110)

The identity
n−1∏
k=1

sin
(
πk

n

)
=

n

2n−1
(7.111)

written as n/2∏
k=1

sin
(
πk

n

)1/n

=
(2n)1/2n√

2
(7.112)

yields the evaluation.

We now observe that, for n = 1 and n = 2, the integral

LGn :=
∫ 1

0

(ln Γ(q))n dq (7.113)

is a homogeneous polynomial of degree n in the variables γ, π, ln
√

2π, ζ(2), ζ ′(2)
and ζ ′′(2). This is similar to (7.19). In this problem the weights are as-
signed experimentally as follows:
• The weight of a rational number is 0,
• The constants π, γ have weight 1 and so does ln

√
2π, that is,

w(π) = w(γ) = w(ln
√

2π = 1, (7.114)

• The weight is extended as w(ab) = w(a) + w(b).
• The value ζ(j) has weight j, so that w(ζ(2)) = 2 is consistent with
ζ(2) = π2/6.
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• Differentiation increases the weight by one, so that ζ ′′(2) has weight 4.

We have been unable to evaluate the next example

LG3 :=
∫ 1

0

(ln Γ(q))3 dq, (7.115)

but in our (failed) attempts we have established in [108] a connection be-
tween LGn and the Tornheim-Zagier sums

T (a, b; c) =
∞∑
n=0

∞∑
m=0

1
namb(n+m)c

. (7.116)

These sums will reappear in Chapter 8. An extensive bibliography on these
multiple zeta series has been compiled by M. Hoffman and it can be found in

http://www.usna.edu/Users/math/meh/biblio.html

In our current work, we have been able to express the sums T (a, b; c) in
terms of integrals of triple products of the Bernoulli polynomials and the
function

Ak(q) = kζ ′(1− k, q). (7.117)

The classical identity
Bk(q) = −kζ(1− k, q) (7.118)

shows the similarity between Ak and Bk.

This is just one more example of the beautiful Mathematics that one is
able to find by experimenting with integrals.
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Chapter 8

Experimental Mathematics: a
Computational Conclusion

We have now seen experimental computationally-assisted mathematics in
action in areas pure and applied, discrete and continuous. In each case
perhaps Goethe said it best:

“Mathematicians are a kind of Frenchmen: whatever you say to
them they translate into their own language, and right away it is
something entirely different.”(Johann Wolfgang von Goethe1)

Goethe was right and we do it to wonderful effect. Returning however
to views bout the nature of mathematics Greg Chaitin takes things much
further than Gödel did.

Over the past few decades, Gregory Chaitin, a mathematician
at IBM’s T.J. Watson Research Center in Yorktown Heights,
N.Y., has been uncovering the distressing reality that much of
higher math may be riddled with unprovable truths–that it’s re-
ally a collection of random facts that are true for no particular
reason. And rather than deducing those facts from simple prin-
ciples, “ I’m making the suggestion that mathematics is done
more like physics in that you come about things experimen-
tally,” he says. “This will still be controversial when I’m dead.
It’s a major change in how you do mathematics.” (Time Mag-
azine, Sept 4, 2005)

Chaitin was featured in a brief article, the Omega Man, which is the name
of his new book on computational complexity.

1 Maximen und Reflexionen, no. 1279

183



i
i

i
i

i
i

i
i

184 Chapter 8. Experimental Mathematics: a Computational Conclusion

This ‘Ω’ refers to Chaitin’s seminal halting probability constant2

Ω :=
∑
π

2−#(π)

where π ranges over halting Turing machines and #(π) is its length . While
intrinsically non-computable and algorithmically irreducible, the first 64
bits are provably known

Ω := 0.000000100000010000100000100001110111001100100111100010010011100 . . .

“Most of mathematics is true for no particular reason,” Chaitin says.
“Maths is true by accident.”

1 A Little More History

In his ‘23’ “Mathematische Probleme”3 lecture to the Paris International
Congress in 1900, David Hilbert wrote

“”Moreover a mathematical problem should be difficult in order
to entice us, yet not completely inaccessible, lest it mock our
efforts. It should be to us a guidepost on the mazy path to
hidden truths, and ultimately a reminder of our pleasure in the
successful solution.”

Here, I’ll also add some of the missing references about the History of
Computer Experiments in Math [Shallit] and in Science from Lehmer
to Simons.

Ask Dr. Edward Witten of the Institute for Advanced Study in
Princeton, New Jersey what he does all day, and it’s difficult to
get a straight answer. “There isn’t a clear task,” Witten told
CNN. “If you are a researcher you are trying to figure out what
the question is as well as what the answer is.

“You want to find the question that is sufficiently easy that you
might be able to answer it, and sufficiently hard that the answer
is interesting. You spend a lot of time thinking and you spend
a lot of time floundering around.”(Ed Witten4)

2http://www.umcs.maine.edu/ chaitin/
3See the late Ben Yandell’s fine account of the Hilbert Problems and their solvers in

The Honors Class, AK Peters, 2002.
4Witten was interviewed on CNN June 27, 2005
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2 Putting Lessons in Action

In “Proof and beauty”, the Economist of March 31, 2005 wrote

“ Just what does it mean to prove something? Although the An-
nals will publish Dr Hales’s paper, Peter Annals, an editor of
the Annals, whose own work does not involve the use of com-
puters, says that the paper will be accompanied by an unusual
disclaimer, stating that the computer programs accompanying
the paper have not undergone peer review. There is a simple
reason for that, Dr Sarnak says-it is impossible to find peers
who are willing to review the computer code. However, there
is a flip-side to the disclaimer as well-Dr Sarnak says that the
editors of the Annals expect to receive, and publish, more pa-
pers of this type-for things, he believes, will change over the
next 20-50 years. Dr Sarnak points out that maths may become
“a bit like experimental physics” where certain results are taken
on trust, and independent duplication of experiments replaces
examination of a colleague’s paper.

“Why should the non-mathematician care about things of this
nature? The foremost reason is that mathematics is beautiful,
even if it is, sadly, more inaccessible than other forms of art.
The second is that it is useful, and that its utility depends in
part on its certainty, and that that certainty cannot come with-
out a notion of proof. Dr Gonthier, for instance, and his spon-
sors at Microsoft, hope that the techniques he and his colleagues
have developed to formally prove mathematical theorems can be
used to ”prove” that a computer program is free of bugs-and
that would certainly be a useful proposition in today’s software
society if it does, indeed, turn out to be true.”

3 Visual Computing

In a similar light Visual Computing is in its infancy and we can only imagine
its future, but already there are many interesting harbingers both theoret-
ical and applied . . .

3.1 The Perko Pair

In many knot compendia produced since the 19th century, the first two
knots in Figure 8.1 below have been listed as distinct ten crossing knots.
They were however shown to be the same by Ken Perko in 1974. This is
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Figure 8.1. The Perko Pair of Knots

best illustrated dynamically in a program like Knotplot which will diffeo-
morphically adjust both into the third knot.

3.2 Fractal Cards and Chaos Games

Deterministic Constructions Not all impressive discoveries require a com-
puter. Elaine Simmt and Brent Davis describe lovely constructions made
by repeated regular paper folding and cutting—but no removal of paper—
that result in beautiful fractal, self-similar, “pop-up” cards5.

Nonetheless, in Figures 8.2 and 8.3 we choose to show various iterates
of a pop-up Sierpinski triangle built in software, on turning those paper
cutting and folding rules into an algorithm given in [44, pp 94–95]. This
should be enough to let one start folding.

5“Fractal Cards: A Space for Exploration in Geometry and Discrete Maths,”,Math
Teacher, 91 (1998), 102–108.



i
i

i
i

i
i

i
i

3. Visual Computing 187

Figure 8.2. The 1st and 2nd iterates of a Sierpinski card

Figure 8.3. The 3rd and 7th iterates of a Sierpinski card

Note the similarity to the Pascal triangles given in Figure 8.4. This is
clarified when we note the pattern modulo two:

1
1 1

1 2 1

Figure 8.4. Pascal’s Triangle modulo two above a Sierpinski construction



i
i

i
i

i
i

i
i

188 Chapter 8. Experimental Mathematics: a Computational Conclusion

Figure 8.5. Self-similarity in Granada and Chartres

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1
16 15 20 15 6 1

1 7 21 35 35 21 7 1

· · ·

with the even numbers emboldened.
One may consider more complex modular patterns as discussed in An-

drew Granville’s online paper on binomial coefficients at
www.cecm.sfu.ca/organics/papers/granville/support/pascalform.html. Like-
wise, we draw the reader’s attention to the recursive structures elucidated
in our chapter on strange functions. And always art can be an additional
source of mathematical inspiration and stimulation as in the rose window
from Chartres and the view of the Alhambra shown in Figure 8.5.

Random Constructions These prior constructions are all deterministic, and
so relate closely to the ideas about cellular automata discussed at length in
Stephen Wolfram’s A New Kind of Science. But, as we shall see random
constructions lead naturally to similar self-replicative structures.

In [44, §2.4] we described how to experimentally establish that we do in-
deed obtain a Sierpinski triangle from Pascal’s triangle and noted also that
simple random constructions led to the Sierpinski triangle or gasket : con-
struct an “arbitrary” triangle, with vertices (x1, y1), (x2, y2) and (x3, y3).
Specify a point (x, y) within the triangle. Then iterate indefinitely the fol-
lowing construction: First select a random integer r in the set (1, 2, 3), and
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then construct a new point (x′, y′) as follows:

(x′, y′) =
(

1
2
(x+ xr),

1
2
(y + yr)

)
. (8.1)

The corresponding graph will yield a Sierpinski gasket asymptotically, as we
see below. Even more intriguing is the following link with genetic processes.

4 A Preliminary Example: Visualizing DNA Strands

Suppose that we have a strand of DNA, that is, a string whose elements may
be any of four symbols (bases): A (adenosine), C (cytosine), G (guanine),
or T (thymine).

ATGGACTTCCAG (8.2)

Each DNA sequence can be identified with a unique sub-square in the unit
square [0, 1] × [0, 1] as follows. Identify each base, A, C, G, and T, with
a vertex of the square (see Figure 8.6). Let xn denote the sub-square
corresponding to the subsequence of length n, and let ωn be the nth base.
With each iteration, we will subdivide the square into four smaller squares.
The initial region x0 is the entire unit square. Given xn−1, calculate the
next region xn as follows.

1. Find the nth base ωn in the sequence.

2. Subdivide the square xn−1 into four smaller squares. Set xn to be
the sub-square of xn−1 closest to the vertex ωn. That is, if ωn = A,
then xn is the upper left sub-square of xn−1; if ωn = G, then xn is
the lower right sub-square of xn−1.

3. Plot xn as follows. Replace xn−1 with the square xn−1 subdivided
into four smaller squares, and shade in the sub-square xn.

The first few sub-squares xn, corresponding to the subsequences of length
n of the sequence in (8.2), are shown in Figure 8.6. Note that differ-
ent sequences yield distinct sub-squares in [0, 1]× [0, 1], with a one-to-one
correspondence between dyadic sub-squares of the unit square and finite
sequences of DNA.

Here we iterate a simple algorithm that calculates a new xn from the
previous xn−1, plus an additional piece of information (ωn), and displays
the xn graphically. As we describe below, this is the main idea behind the
chaos game.
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Figure 8.6. Visualizing DNA sequences of length n

5 What Is a Chaos Game?

A chaos game is a probabilistic algorithm for visualizing the attractor of
an iterated function system. Chaos games can be used to generate fractals,
since in many cases the attractor of an iterated function system is a fractal.

What does this mean? Suppose that we are working in a metric
space X, say X = R2, and we have a finite collection {wi}Ni=1 of contrac-
tive maps (possibly composed with translations). The pair (X, {wi}Ni=1) is
called an iterated function system (IFS). A basic proposition in the study
of dynamical systems states that there exists a unique compact set A ⊂ X
such that

A =
N⋃
i=1

wi(A),

and for every nonempty compact set S ⊂ X, the Hausdorff distance

h(
N⋃
i=1

wni (S), A)→ 0

as n → ∞ (that is, ∪Ni=1w
n
i (S) converges to A or to a subset of A). The

set A is called the attractor of the iterated function system (X, {wi}Ni=1).
If X = R or X = R2, we can choose some compact set S and graph the
sets ∪Ni=1w

n
i (S) for successively larger and larger n to visualize successively

better approximations to the attractor A. The chaos game algorithm gives
a different method for visualizing the attractor.

To set up a chaos game, we first must associate a probability pi with
each of the contractive mappings wi in our iterated function system. That
is, 0 ≤ pi ≤ 1 for each i and

∑N
i=1 pi = 1. In each iteration of the chaos
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game algorithm, we will select one of the maps wi randomly, with pi being
the probability of selecting map wi. The triple (X, {wi}Ni=1, {pi}Ni=1) is
called an iterated function system with probabilities (IFSP). We initialize
the chaos game by selecting a point x0 ∈ X to be a fixed point of one of
the maps, say w1. We begin by plotting x0. We then iterate the following
steps:

1. Select a map win at random according to the probabilities pi.

2. Set xn = win(xn−1).

3. Plot xn.

When using this algorithm to visualize an attractor of an IFSP, we will
stop after a pre-set maximum number of iterations. For example, a pixel
on a computer screen is a fixed width, `. Since the maps wi are contractive,
eventually the distance between successive points xk and xk+1 will be less
than `, and we will not be able to plot any new points on our image of
the attractor. We can calculate or estimate the number of iterations M
such that, no matter what trajectory we have taken (that is, no matter
which maps wi were chosen in each iteration), the distance between xM
and xM+1 will be less than `, and stop after M iterations.

Since the point x0 is initialized to be in the attractor, all subsequent
points xn will also be in the attractor. Running the chaos game algorithm
for a small number of iterations will give only the barest outline of the
shape of the attractor. Eventually we fill in more detail, however. We
can also start over after a finite number of iterations, re-initialize the chaos
game, and plot additional points x′n along a (probably) different trajectory,
to add more detail to our plot of points in the attractor.

More information about chaos games and iterated function systems can
be found in the papers by Mendivil and Silver [?] and by Ashlock and
Golden [?], discussed further below.

5.1 Examples of Chaos Games

Sierpinski Triangle The Sierpinski Triangle can be generated from an it-
erated function system with three maps:

w1 : x 7→ x+ v1
2

w2 : x 7→ x+ v2
2

w3 : x 7→ x+ v3
2

where x is a point in R2, v1 is the point (0, 1), v2 is the point (−1, 0), and
v3 is the point (0,

√
3) (these are three vertices of an equilateral triangle in
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Figure 8.7. Chaos game for the Sierpinski Triangle after 10 and 1000 iterations

R2). Each map wi maps the current point x to a point halfway in between
x and the vertex vi. We will choose the maps wi according to a uniform
probability distribution, with pi = 1

3 for each i, to make an IFSP out of
this iterated function system.

For each i, the point vi is a fixed point of the map wi (eg. w1(v1) =
v1+v1

2 = v1), so we may initialize the chaos game by setting x0 := v1 and
plotting x0. Several iterations of the chaos game are shown in Figure 8.7.

Twin Dragon Let d0 = (0, 0) and d1 = (1, 0) be points in R2. Let M be
the twin dragon matrix

M =
[

1 1
−1 1

]
.

Then the maps

w1 : x 7→M−1(x+ d0)

w2 : x 7→M−1(x+ d1)

form an iterated function system. We can assign the probabilities p1 = p2 =
1
2 to the maps w1 and w2 to make an IFSP. Note that the origin d0 = (0, 0)
is a fixed point of the map w1, thus we can initialize x0 := d0 = (0, 0) in
the chaos game, and plot x0. Several iterations are shown in Figure 8.8.

Scaling Functions and Wavelets We follow the notation of Mendivil and
Silver [?] in this section, and present a simpler chaos game algorithm here
than is given in [?]. While Mendivil and Silver’s algorithm can additionally
be used in wavelet analysis and synthesis, our simplified algorithm suffices
to visualize the scaling function and wavelet. A scaling function φ(x) for a
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Figure 8.8. Chaos game for the Twin Dragon after 10 and 1000 iterations

multiresolution analysis satisfies a scaling equation

φ(x) =
∑
n∈Z

hnφ(2x− n),

where the coefficients hn are real or complex numbers. Suppose that the
scaling function φ(x) is compactly supported. Then only finitely many
of the coefficients, say h0, h1, . . . , hN , are nonzero, and φ(x) is supported
on the interval [0, N ]. In this case, a wavelet ψ(x) associated with the
multiresolution analysis can be generated by the formula

ψ(x) =
∑
k∈Z

(−1)khN−kφ(2x− k). (8.3)

The wavelet ψ(x) is also supported on the interval [0, N ]. Both φ(x) and
ψ(x) depend only on the sequence of coefficients h0, h1, . . . , hN . Compactly
supported scaling functions and wavelets can thus be generated by starting
from a suitable sequence of coefficients. In fact, the first example of a
compactly supported wavelet was constructed by Daubechies in just this
manner. See [?] for more information about this construction, or about
wavelets and multiresolution analysis in general.

These scaling functions and wavelets may not have a closed form rep-
resentation. In practice, this is not a problem, since it is the sequence of
coefficients that are used in applications, rather than the scaling function
or wavelet themselves. Indeed, the Fourier transform of the sequence of
coefficients

m(ξ) =
∑
n

hne
−2πinxi
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is called the low-pass filter for the scaling function φ(x), and is an important
tool in studying multiresolution analyses and wavelets.We may wish to
visualize the scaling function φ(x) or wavelet ψ(x), however. This can be
done as follows using a chaos game.

We first vectorize the scaling equation, as follows. Define Vφ : [0, 1]→ R
by

Vφ(x) =


φ(x)

φ(x+ 1)
...

φ(x+N − 1)

 .
Define matrices T0 and T1 by

(T0)i,j = h2i−j−1

(T1)i,j = h2i−j .

Let τ : [0, 1]→ [0, 1] be the mapping τ(x) = 2x (mod 1). Then the scaling
equation can be written

Vφ(x) = TωVφ(τx), (8.4)

where ω is the first digit of the binary expansion of x. That is, 2x = ω+τx.
The chaos game in this example will update the values of both x and

Vφ(x) in each iteration. To update x, we will use the mappings w0, w1 :
[0, 1]→ [0, 1] defined by

w0(x) =
x

2

w1(x) =
x

2
+

1
2
.

To update Vφ(x), we will use the mappings T0 and T1 defined above. To
initialize the chaos game, we set x0 = 0, and set Vφ,0 to be a fixed point of
the map T0 (that is, Vφ,0 is a specific vector

Vφ,0 =


v0,0
v1,0
...

vN,0

 ,
where we will set φ(x0) := v0,0, φ(x0 + 1) := v1,0, and so on up to φ(x0 +
N − 1) := vN,0).
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For each iteration of the chaos game, we choose αn = 0, 1 uniformly,
and update

xn = wαn
(xn−1)

Vφ,n =


v0,n
v1,n

...
vN,n

 = TαnVφ,n−1.

We set Vφ(xn) to be equal to Vφ,n, so that φ(xn) = v0,n, φ(xn + 1) = v1,n,
and so on to φ(xn +N − 1) = vN,n. Then we plot the points (xn, φ(xn)),
(xn + 1, φ(xn + 1)), through (xn +N − 1, φ(xn +N − 1)).

The wavelet ψ(x) can be visualized similarly. We may vectorize the
equation 8.3 by forming the vector

Vψ(x) =


ψ(x)

ψ(x+ 1)
...

ψ(x+N − 1)


and defining mappings H0 and H1 by

(H0)i,j = (−1)khN−k, k = 2i− j − 1

(H1)i,j = (−1)k
′
hN−k′ , k

′ = 2i− j.

We then use Vψ, H0, and H1 in place of Vφ, T0, and T1, respectively, in the
chaos game described above.

Several iterations of this algorithm for the Daubechies’ D3 wavelet, one
of the first examples of a compactly supported wavelet, are shown in Figure
8.9. The Daubechies’ D3 wavelet is supported on the interval [0, 3], and
has coefficients h0 = 1+

√
3

4 , h1 = 3+
√

3
4 , h2 = 3−

√
3

4 , and h3 = 1−
√

3
4 [?].

5.2 More on Visualizing DNA

In the opening example, we used a deterministic sequence of DNA bases to
update a point xn in the attractor of an iterated function system, rather
than randomly choosing which of the four vertices of the square to average
the previous point xn−1 with. If we instead choose the base ωn randomly,
then we have a true chaos game.

Let pβ,k(seq) be the probability that base β (β = A, C, G, or T) follows
the subsequence seq of length k. Thus pA,1(T) is the probability that
xn = A given that xn−1 = T, while pA,2(GG) is the probability that
xn = A given that xn−1 = G and that xn−2 = G. If the nth base is selected
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Figure 8.9. Chaos game for the Daubechies’ D3 wavelet (L) and scaling function

(R) after 1000 iterations

Figure 8.10. Chaos games for two different bacteria

uniformly at random, with no dependence on the preceding sequence, then
we do not get a very interesting picture out of the chaos game. However, in
most organisms, these probabilities are not uniformly distributed. As well,
the probabilities pβ,k(seq) vary by organism. Ashlock and Golden [?] have
shown that different organisms yield distinct chaos games (see Figure 8.10).

6 Hilbert’s Inequality and Witten’s Zeta-function

We next explore a variety of pleasing connections between analysis, number
theory and operator theory, while exposing a number of beautiful inequal-
ities originating with Hilbert. We shall first establish the afore-mentioned
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inequality [133, 215] and then apply it to various multiple zeta values. In
consequence we obtain the norm of Hilbert’s matrix.

6.1 Hilbert’s (easier) Inequality

A useful preparatory lemma is

Lemma 6.1. For 0 < a < 1 and n = 1, 2, . . .
∞∑
m=1

1
(n+m)(m/n)a

<

∫ ∞

0

1
(1 + x)xa

dx <
(1/n)1−a

1− a
+

∞∑
m=1

1
(n+m)(m/n)a

,

and ∫ ∞

0

1
(1 + x)xa

dx = π csc (a π) .

Proof. The inequalities comes from using standard rectangular approxi-
mations to a monotonic integrand and overestimating the integral from 0
to 1/n.

The evaluation of the integral is in various tables and is known to Maple
or Mathematica. We offer two other proofs: (i) write∫ ∞

0

1
(1 + x)xa

dx =
∫ 1

0

x−a + xa−1

1 + x
dx

=
∞∑
n=0

(−1)n
{

1
n+ 1− a

+
1

n+ a

}

=
∞∑
n=1

(−1)n
{

1
n+ a

− 1
n− a

}
+

1
a

=
1
a

+
∞∑
n=1

(−1)n 2a
a2 − n2

= π csc (a π) ,

since the last equality is the classical partial fraction identity for π csc (a π).
(ii) Alternatively, we begin by letting 1 + x = 1/y,∫ ∞

0

x−a

1 + x
dx =

∫ 1

0

ya−1 (1− y)−a dy

= B(a, 1− a)Γ(a) Γ(1− a) =
π

sin (a π)
.

2

Combining the arguments in (i) and (ii) above actually derives the iden-
tity

Γ(a) Γ(1− a) =
π

sin (a π)
,
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from the partial fraction for cosec or vice versa—especially if we appeal to
the Bohr-Mollerup theorem to establish B(a, 1− a) = Γ(a) Γ(1− a).

Theorem 6.2. (Hilbert Inequality.) For non-negative sequences (an)
and (bn), not both zero, and for 1 ≤ p, q ≤ ∞ with 1/p+ 1/q = 1 one has

∞∑
n=1

∞∑
m=1

an bm
n+m

< π csc
(
π

p

)
‖an‖p ‖bn‖q. (8.5)

Proof. Fix λ > 0. We apply Hölder’s inequality with ‘compensating
difficulties’ to obtain

∞∑
n=1

∞∑
m=1

an bm
n+m

=
∞∑
n=1

∞∑
m=1

an
(n+m)1/p(m/n)λ/p

bm
(n+m)1/q(n/m)λ/p

(8.6)

≤

( ∞∑
n=1

|an|p
∞∑
m=1

1
(n+m)(m/n)λ

)1/p( ∞∑
m=1

|bm|q
∞∑
n=1

1
(n+m)(n/m)λq/p

)1/q

< π |csc (π λ)|1/p |csc ((q − 1)π λ)|1/q ‖an‖p ‖bm‖q,

so that the left hand side of (8.5) is no greater than π csc
(
π
p

)
‖an‖p ‖bn‖q

on setting λ = 1/q and appealing to symmetry in p, q. 2

The integral analogue of (6.2) may likewise be established. There are
numerous extensions. One of interest for us later is

∞∑
n=1

∞∑
m=1

an bm
(n+m)τ

<

{
π csc

(
π(q − 1)
τq

)}τ
‖an‖p ‖bn‖q, (8.7)

valid for p, q > 1, τ > 0, 1/p + 1/q ≥ 1 and τ + 1/p + 1/q = 2. The best
constant C(p, q, τ) ≤ {π csc (π(q − 1)/(τq))}τ is called the Hilbert constant
[114, §3.4].

For p = 2, (6.2) becomes Hilbert’s original inequality:

∞∑
n=1

∞∑
m=1

an bm
n+m

≤ π

√√√√ ∞∑
n=1

|an|2

√√√√ ∞∑
n=1

|bn|2, (8.8)

though Hilbert only obtained the constant 2π, [132].
A fine direct Fourier analytic proof starts from the observation that

1
2π i

∫ 2π

0

(π − t) eint dt =
1
n
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for n = 1, 2 . . ., and deduces

N∑
n=1

N∑
m=1

an am
n+m

1
2π i

∫ 2π

0

(π − t)
N∑
k=1

ak e
ikt

N∑
k=1

bk e
ikt dt. (8.9)

We recover (8.8) by applying the integral form of the Cauchy-Schwarz in-
equality to the integral side of the representation (8.9).

Exercise 6.1. Likewise

N∑
n=1

N∑
m=1

an am
(n+m)2

1
2π

∫ 2π

0

(
ζ(2)− πt

2
+

1
4

) N∑
k=1

ak e
ikt

N∑
k=1

bk e
ikt dt,

and more generally

N∑
n=1

N∑
m=1

an am
(n+m)σ

1
2π iσ

∫ 2π

0

ψσ

(
t

2π

) N∑
k=1

ak e
ikt

N∑
k=1

bk e
ikt dt

since

ψ2n(x) =
∞∑
k=1

cos(2kπx)
k2n

, ψ2n+1(x) =
∞∑
k=1

sin(2kπx)
k2n+1

where ψσ(x) are related to the Bernoulli polynomials by

ψσ(x) = (−1)b(1+σ)/2cBσ(x)
(2π)σ

2σ!
,

for 0 < x < 1. It follows that

∞∑
n=1

∞∑
m=1

an am
(n+m)σ

≤ ‖ψσ‖[0,1] ‖a‖2 ‖b‖2,

where for n > 0 we compute

‖ψ2n‖[0,1] = ψ2n(0) = ζ(2n) and ‖ψ2n+1‖[0,1] = ψ2n+1(1/4) = β(2n+1).

This and much more of the early 20th century history—and philosophy—
of the “ ‘bright’ and amusing” subject of inequalities charmingly discussed
in Hardy’s retirement lecture as London Mathematical Society Secretary,
[132]. He comments [132, p. 474] that Harald Bohr is reported to have re-
marked “Most analysts spend half their time hunting through the literature
for inequalities they want to use, but cannot prove.”



i
i

i
i

i
i

i
i

200 Chapter 8. Experimental Mathematics: a Computational Conclusion

This remains true, though more recent inequalities often involve less
linear objects such as entropies, divergences, and log-barrier functions [44,
63] such as the divergence estimate [61, p. 63]:

N∑
n−1

pi log
(
pi
qi

)
≥ 1

2

(
N∑
n=1

|pi − qi|

)2

,

valid for any two strictly positive sequences with
∑N
i=1 pi =

∑N
i=1 qi = 1.

Two other high-spots in Hardy’s essay are Carleman’s inequality

∞∑
n=1

(a1 a2 + . . .+ an)
1/n ≤ e

∞∑
n=1

an,

see also [?, p. 284], and Hardy’s own

∞∑
n=1

(
a1 + a2 + · · ·+ an

n

)p
≤
(

p

p− 1

)p ∞∑
n=1

apn, (8.10)

for p > 1. Hardy comments [132, p. 485] that his “own theorem was
discovered as a by-product of my own attempt to find a really simple and
elementary proof of Hilbert’s.” For p = 2, Hardy reproduces Elliott’s proof
of (8.10), writing “it can hardly be possible to find a proof more concise or
elegant”. It is as follows. Set An := a1 + a2 + · · ·+ an and write

2anAn
n

−
(
An
n

)2

=
A2
n

n
−
A2
n−1

n− 1
+ (n− 1)

(
An
n
− An−1

n− 1

)2

≥ A2
n

n
−
A2
n−1

n− 1

something easy to check symbolically, and sum to obtain

∑
n

(
An
n

)2

≤ 2
∑
n

anAn
n
≤ 2
√∑

n

a2
n

√√√√∑
n

(
An
n

)2

,

which proves (8.10) for p = 2; and this easily adapts to the general case.
Finally we record the (harder) Hilbert inequality is∣∣∣∣∣∣

∑
n 6=m∈Z

an bm
n−m

∣∣∣∣∣∣ < π

√√√√ ∞∑
n=1

|an|2

√√√√ ∞∑
n=1

|bn|2, (8.11)

the best constant π being due to Schur in (1911), [180]. There are many
extensions—with applications to prime number theory, [180].
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6.2 Witten ζ-functions

Let us recall that initially for r, s > 1/2:

W(r, s, t) :=
∞∑
n=1

∞∑
m=1

1
nrms (n+m)t

is a Witten ζ-function, [234, ?, 88]. We refer to [234] for a description of the
uses of more general Witten ζ-functions. Ours are also—more accurately—
called Tornheim double sums, [?]. Correspondingly

ζ(t, s) :=
∞∑
n=1

∞∑
m=1

1
ms (n+m)t

=
∑

n>m>0

1
ntms

is an Euler double sum of the sort met in Chapters 1 and 2.
There is a simple algebraic relation

W(r, s, t) =W(r − 1, s, t+ 1) +W(r, s− 1, t+ 1). (8.12)

This is based on writing

m+ n

(m+ n)t+1
=

m

(m+ n)t+1
+

n

(m+ n)t+1
.

Also

W(r, s, t)W(s, r, t), (8.13)

and

W(r, s, 0) = ζ(r) ζ(s) while W(r, 0, t) = ζ(r, t). (8.14)

Hence, W(s, s, t) = 2W(s, s− 1, t+ 1) and so

W(1, 1, 1) = 2W(1, 0, 2) = 2 ζ(2, 1) = 2 ζ(3).

In particular, (8.15) implies that ζ(3) ≤ π3/3, on appealing to (9.9) below.
For many proofs of this basic identity ζ(2, 1) = ζ(3) we refer to [?]. We note
that the analogue to (8.12), ζ(s, t)+ζ(t, s) = ζ(s) ζ(t)−ζ(s+t), shows that
W(s, 0, s) = 2 ζ(s, s) = ζ2(s)− ζ(2s). In particular, W(2, 0, 2) = 2 ζ(2, 2) =
π4/36− π4/90 = π4/72.

Exercise 6.2. Let an := 1/nr, bn := 1/ns. Then the inequality (8.8)
becomes

W(r, s, 1) ≤ π
√
ζ(2r)

√
ζ(2s). (8.15)
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Similarly, the inequality (8.5) becomes

W(r, s, 1) ≤ π csc
(
π

p

)
p
√
ζ(pr) q

√
ζ(qs). (8.16)

Indeed, (8.7) can be used to estimateW(r, s, τ) for somewhat broader τ 6= 1.

More generally, recursive use of (8.12) and (8.13), along with initial
conditions (8.14) shows that all integer W(s, r, t) values are expressible
in terms of double (and single) Euler sums. As we shall see in (8.21) the
representations are necessarily homogeneous polynomials of weight r+s+t.
All double sums of weight less than 8 and all those of odd weight reduce to
sums of products of single variable zeta values, [?]. The first impediments
are because ζ(6, 2), ζ(5, 3) are not reducible.

We also observe that in terms of the polylogarithm Lis(t) :=
∑
n>0 t

n/ns

for real s, the representation (8.9) yields

W(r, s, 1)
1

2π i

∫ π

−π
σ Lir(−eiσ) Lis(−eiσ) dσ. (8.17)

This representation is not numerically effective. It is better to start
with Γ(s)/(m+ n)t =

∫ 1

0
(− log σ)t−1 σm+n−1 dσ and so to obtain

W(r, s, t)
1

Γ(t)

∫ 1

0

Lir(σ) Lis(σ)
(− log σ)t−1

σ
dσ. (8.18)

This real variable analogue of (8.17) is much more satisfactory compu-
tationally. For example, we recover an analytic proof of

2 ζ(2, 1) =W(1, 1, 1)
∫ 1

0

ln2(1− σ)
σ

dσ = 2 ζ(3). (8.19)

Moreover, we may now discover analytic as opposed to algebraic relations.
Integration by parts yields

W(r, s+ 1, 1) +W(r + 1, s, 1) = Lir+1(1) Lis+1(1) = ζ(r + 1) ζ(s+ 1),(8.20)

So, in particular, W(s+ 1, s, 1) = ζ2(s+ 1)/2.
Symbolically, Maple immediately evaluates W(2, 1, 1) = π4/72, and

while it fails directly withW(1, 1, 2), we know it must be a multiple of π4 or
equivalently ζ(4); and numerically obtainW(1, 1, 2)/ζ(4) = .49999999999999999998 . . ..

Continuing, for r+s+t = 5 the only terms to consider are ζ(5), ζ(2)ζ(3),
and PSLQ yields the weight five relations:

W(2, 2, 1) =
∫ 1

0

Li2 (x)2

x
dx = 2 ζ (3) ζ(2)− 3 ζ (5) ,



i
i

i
i

i
i

i
i

6. Hilbert’s Inequality and Witten’s Zeta-function 203

W(2, 1, 2) =
∫ 1

0

Li2 (x) log(1− x) log(x)
x

dx = ζ (3) ζ(2)− 3
2
ζ (5) ,

W(1, 1, 3) =
∫ 1

0

log2(x) log2(1− x)
2x

dx = −2 ζ (3) ζ(2) + 4 ζ (5) ,

W(3, 1, 1) =
∫ 1

0

Li3 (x) log(1− x)
x

dx− ζ (3) ζ(2) + 3 ζ (5) ,

as predicted.
Likewise, for r + s + t = 6 the only terms we need to consider are

ζ(6), ζ2(3) since ζ(6), ζ(4) ζ(2) and ζ3(2) are all rational multiples of π6.
We recover identities like

W(3, 2, 1) =
∫ 1

0

Li3 (x) Li2 (x)
x

dx =
1
2
ζ2 (3) ,

consistent with the equation below (8.20).

The general form of the reduction, for integer r, s and t, is due to
Tornheim and expresses W(r, s, t) in terms of ζ(a, b) with weight a + b =
N := r + s+ t, [?]:

W(r, s, t) =
r∨s∑
i=1

{(
r + s− i− 1

s− 1

)
+
(
r + s− i− 1

r − 1

)}
ζ (i,N − i) . (8.21)

Various other general formulas are given in [?] for classes of sums such as
W(2n+ 1, 2n+ 1, 2n+ 1) and W(2n, 2n, 2n).

6.3 The Best Constant

It transpires that the constant π used in Theorem 6.2 is best possible, [133].

Exercise 6.3. Let us numerically explore the ratio

R(s) :=
W(s, s, 1)
π ζ(2s)

as s→ 1/2+. Note that R(1) = 12 ζ(3)/π3 ∼ 0.4652181552 . . . .
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Initially, we may directly sum as follows:

W(s, s, 1) =
∞∑
n=1

∞∑
m=1

m−sn−s

m+ n
= 2

∞∑
n=1

1
n2s

n−1∑
m=1

1/n
(m/n)s(m/n+ 1)

+
ζ(2s+ 1)

2

≤ 2 ζ(2s)
∫ 1

0

x−s

1 + x
dx+

ζ(2s+ 1)
2

≤ 2
∞∑
n=1

1
n2s

n∑
m=1

1/n
(m/n)s(m/n+ 1)

+
ζ(2s+ 1)

2

= 2
∞∑
n=1

1
n2s

n−1∑
m=1

1/n
(m/n)s(m/n+ 1)

+
3ζ(2s+ 1)

2

=
∞∑
n=1

∞∑
m=1

m−sn−s

m+ n
+ ζ(2s+ 1).

We deduce that R(s) ∼ I(s) := 2/π
∫ 1

0
x−s/(1 + x) dx as s→ 1/2.

Further numerical explorations seem in order. For 1/2 < s < 1, (8.18)
is hard to use numerically and led us to look for a more sophisticated attack
along the line of the Hurwitz zeta and Bernoulli polynomial integrals used
in [?], or more probably the expansions in [88]. Viz,

W(r, s, t) =
∫ 1

0

E(r, x)E(s, x)E(t, x) dx (8.22)

where E(s, x) :=
∑∞
n=1 e

2πinx n−s = Lis
(
e2πix

)
, using the formulae

E(s, x) =
∞∑
m=0

ζ(s−m)
(2πi x)m

m!
+ Γ(1− s) (−2πi x)s−1

,

for |x| < 1 and

E(s, x) = −
∞∑
m=0

η(s−m)
(2x− 1)m (πi)m

m!
,

with η(s) := (1− 21−s) ζ(s), for 0 < x < 1 as given in [88, (2.6) and (2.9)].
Indeed, carefully expanding (8.22) with a free parameter θ ∈ (0, 1),
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leads to the following efficient formula when neither r nor s is an integer:

Γ(t)W(r, s, t) =
∑
m,n≥1

Γ(t, (m+ n)θ)
mrns(m+ n)t

+
∑
u,v≥0

(−1)u+v ζ(r − u)ζ(s− v)θu+v+t

u!v!(u+ v + t)

+ Γ(1− r)
∑
v≥0

(−1)v
ζ(s− v)θr+v+t−1

v!(r + v + t− 1)

+ Γ(1− s)
∑
u≥0

(−1)u
ζ(r − u)θs+u+t−1

u!(s+ u+ t− 1)

+ Γ(1− r)Γ(1− s) θr+s+t−2

r + s+ t− 2
. (8.23)

When one or both of r, s is an integer, a limit formula with a few more
terms results. We can now accurately plot R and I on [1/3, 2/3], as shown
in Figure 8.11, and so are lead to:

Conjecture. lims→1/2R(s) = 1.

Proof. To establish this, we denote σn(s) :=
∑∞
m=1 n

sm−s/(n+m) and
appeal to Lemma 6.1 to write

L : = lim
s→1/2

(2s− 1)
∞∑
n=1

∞∑
m=1

n−sm−s

n+m
= lim
s→1/2

(2s− 1)
∞∑
n=1

1
n2s

σn(s)

= lim
s→1/2

(2s− 1)
∞∑
n=1

{σn(s)− π csc (π s)}
n2s

+ lim
s→1/2

π (2s− 1)ζ(2s) csc (π s)

= 0 + π,

since, by another appeal to Lemma 6.1, the parenthetic term is O(ns−1)
while in the second ζ(2s) ∼ 1/(2s− 1) as s→ 1/2+.

In consequence, we see that L = lims→1/2R(s) = 1, and—at least to
first-order—inequality (8.8) is best possible, see also [143]. 2

Likewise, the constant in (6.2) is best possible. Motivated by above
argument we consider

Rp(s) :=
W((p− 1)s, s, 1)

π ζ(ps)
,

and observe that with σpn(s) :=
∑∞
m=1(n/m)−(p−1)s/(n+m)→ π csc

(
π
q

)
,
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Figure 8.11. R(left) and and I (right) on [1/3, 2/3]

we have

Lp : = lim
s→1/p

(ps− 1)
∞∑
n=1

∞∑
m=1

n−sm−(p−1)s

n+m
= lim
s→1/p

(ps− 1)
∞∑
n=1

1
nps

σpn(s)

= lim
s→1/p

(ps− 1)
∞∑
n=1

{σpn(s)− π csc (π/q))}
nps

+ lim
s→1/p

(2s− 1)ζ(ps)π csc
(
π

q

)
= 0 + π csc

(
π

q

)
.

Setting r := (p− 1)s, s→ 1/p+ we check that ζ(ps)1/p ζ(qr)1/q = ζ(ps)
and hence the best constant in (8.16) is the one given. To recapitulate in
terms of the celebrated infinite Hilbert matrices, H0 := {1/(m+ n)}∞m,n=1,
and H1 := {1/(m+ n− 1)}∞m,n=1, [?, pp. 250–252], we have actually
proven:

Theorem 6.3. Let 1 < p, q <∞ be given with 1/p+ 1/q = 1. The Hilbert
matrices H0 and H1 determine bounded linear mappings from the sequence
space `p to itself such that

‖H1‖p,p = ‖H0‖p,p = lim
s→1/p

W(s, (p− 1)s, 1)
ζ(ps)

= π csc
(
π

p

)
.

Proof. Appealing to the isometry between (`p)∗ and `q, and given the
evaluation Lp above, we directly compute the operator norm of H0 as

‖H0‖p,p = sup
‖x‖p=1

‖H0x‖p = sup
‖y‖q=1

sup
‖x‖p=1

〈H0x, y〉 = π csc
(
π

p

)
.
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Now clearly ‖H0‖p,p ≤ ‖H1‖p,p. For n ≥ 2 we have

∞∑
m=1

1
(n+m− 1)(m/n)a

≤
∞∑
m=1

1
(n− 1 +m)(m/(n− 1))a

≤ π csc (πa) ,

an appeal to Lemma 6.1 and Theorem 6.2 shows ‖H0‖p,p ≥ ‖H1‖p,p. 2

A delightful operator-theoretic introduction to the Hilbert matrix H0

is given by Choi in his Chauvenet prize winning article [74] while a recent
set of notes by G.J. O. Jameson, see [143], is also well worth accessing.

In the case of (8.7), Finch [114, §4.3] comments that the issue of best
constants is unclear in the literature. He remarks that even the case p = q =
4/3, τ = 1/2 appears to be open. It seems improbable that the techniques of
this note can be used to resolve the question. Indeed, consider R1/2(s, α) :
W(s, s, 1/2)/ζ(4s/3)α, with the critical point in this case being s = 3/4.

Numerically, using (8.23) we discover that log(W(s, s, 1/2))/ log(ζ(4s/3))→
0. Hence, for any α > 0, the requisite limit, lims→3/4R1/2(s, α) = 0, which
is certainly not the desired norm. What we are exhibiting is that the subset
of sequences (an) = (n−s) for s > 0 is norming in `p for τ = 1 but not
apparently for general τ > 0.

One may also study the corresponding behaviour of Hardy’s inequality
(8.10). For example, setting an := 1/n and denoting Hn :=

∑n
k=1 1/k in

(8.10) yields
∞∑
n=1

(
Hn

n

)p
≤
(

p

p− 1

)p
ζ(p).

Application of the integral test and the evaluation∫ ∞

1

(
log x
x

)p
dx =

Γ (1 + p)
(p− 1)p+1 ,

for p > 1 easily shows the constant is again best possible.

7 Computational Challenge Problems

In [44] we gave ten “challenge problems” and indicated that the solutions
could be found scattered through [44] and [45]. Subsequently and annotated
and much enhanced version of the promised solutions has been published
in the American Mathematical Monthly [17] and is reproduced in full as
Chapter 9. Our set was triggered by Nick Trefethen’s SIAM 100 Digit
Challenge, wonderfully described in [109] and reviewed in [43].

We conclude this lecture with a visit some to two the high spots of our
problem set.
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7.1 Finding ζ(3, 1, 3, 1)

Problem 9. Calculate ∑
i>j>k>l>0

1
i3jk3l

.

Extra credit: Express this constant as a single-term expression involving a
well-known mathematical constant.

History and context. In the notation introduced before, we ask for
the value of ζ(3, 1, 3, 1). The study of such sums in two variables, as we
noted, originates with Euler. These investigations were apparently due to
a serendipitous mistake. Goldbach wrote to Euler [44, pp. 99–100]:

When I recently considered further the indicated sums of the
last two series in my previous letter, I realized immediately that
the same series arose due to a mere writing error, from which
indeed the saying goes, “Had one not erred, one would have
achieved less. [Si non errasset, fecerat ille minus].”

Euler’s reduction formula is

ζ(s, 1) =
s

2
ζ(s+ 1)− 1

2

s−2∑
k=1

ζ(k + 1)ζ(s+ 1− k),

which reduces the given double Euler sums to a sum of products of classical
ζ-values. Euler also noted the first reflection formulas

ζ(a, b) + ζ(b, a) = ζ(a)ζ(b)− ζ(a+ b),

certainly valid when a > 1 and b > 1. This is an easy algebraic consequence
of adding the double sums. Another marvelous fact is the sum formula∑

Σai=n,ai≥0

ζ (a1 + 2, a2 + 1, · · · , ar + 1) = ζ(n+ r + 1) (8.24)

for nonnegative integers n and r. This, as David Bradley observes, is
equivalent to the generating function identity

∑
n>0

1
nr(n− x)

=
∑

k1>k2>···kr>0

r∏
j=1

1
kj − x

.

The first three nontrivial cases of (8.24) are ζ(3) = ζ(2, 1), ζ(4) = ζ(3, 1) +
ζ(2, 2), and ζ(2, 1, 1) = ζ(4).
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Solution. We notice that such a function is a generalization of the zeta-
function. As before, we define

ζ(s1, s2, · · · , sk;x)
∑

n1>n2>···>nk>0

xn1
ns11 n

s2
2 · · ·nsr

r

, (8.25)

for s1, s2, . . . , sk nonnegative integers. We see that we are asked to compute
ζ(3, 1, 3, 1; 1). Such a sum can be evaluated directly using the EZFace+ in-
terface at
http://www.cecm.sfu.ca/projects/ezface+, which employs the Hölder con-
volution, giving us the numerical value

0.005229569563530960100930652283899231589890420784634635522547448
97214886954466015007497545432485610401627 . . . . (8.26)

Alternatively, we may proceed using differential equations. It is fairly easy
to see [45, sec. 3.7] that

d

dx
ζ(n1, n2, · · · , nr;x) =

1
x
ζ(n1 − 1, n2, · · · , nr;x), (n1 > 1),(8.27)

d

dx
ζ(n1, n2, · · · , nr;x) =

1
1− x

ζ(n2, · · · , nr;x), (n1 = 1),(8.28)

with initial conditions ζ(n1; 0) = ζ(n1, n2; 0) = · · · ζ(n1, · · · , nr; 0) = 0,
and ζ(·;x) ≡ 1. Solving

> dsys1 > diff(y3131(x),x) = y2131(x)/x,
> diff(y2131(x),x) = y1131(x)/x,
> diff(y1131(x),x) = 1/(1-x)*y131(x),
> diff(y131(x),x) = 1/(1-x)*y31(x),
> diff(y31(x),x) = y21(x)/x,
> diff(y21(x),x) = y11(x)/x,
> diff(y11(x),x) = y1(x)/(1-x),
> diff(y1(x),x) = 1/(1-x);
> init1 = y3131(0) = 0,y2131(0) = 0, y1131(0) = 0,
> y131(0)=0,y31(0)=0,y21(0)=0,y11(0)=0,y1(0)=0;

in Maple, we obtain 0.005229569563518039612830536519667669502942 (this
is valid to thirteen decimal places). Maple’s identify command is unable
to identify portions of this number, and the inverse symbolic calculator
does not return a result. It should be mentioned that both Maple and
the ISC identified the constant ζ(3, 1) (see the remark under the “his-
tory and context” heading). From the hint for this question, we know
this is a single-term expression. Suspecting a form similar to ζ(3, 1), we
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search for a constants c and d such that ζ(3, 1, 3, 1) = cπd. This leads to
c = 1/81440 = 2/10! and d = 8.

Further history and context. We start with the simpler value, ζ(3, 1).
Notice that

− log(1− x) = x+
1
2
x2 +

1
3
x3 + · · · ,

so

f(x) = − log(1− x)/(1− x) = x+ (1 +
1
2
)x2 + (1 +

1
2

+
1
3
)x3 + · · ·

=
∑

n≥m>0

xn

m
.

As noted in the section on double Euler sums,

(−1)m+1

Γ(m)

∫ 1

0

xn logm−1 x dx
1

(n+ 1)m
,

so integrating f using this transform for m = 3, we obtain

ζ(3, 1) =
(−1)

2

∫ 1

0

f(x) log2 x dx

= 0.270580808427784547879000924 . . . .

The corresponding generating function is∑
n≥0

ζ ({3, 1}n)) x4n =
cosh(πx)− cos(πx)

π2 x2
,

equivalent to Zagier’s conjectured identity

ζ({3, 1}n) =
2π4n

(4n+ 2)
.

Here {3, 1}n denotes n-fold concatenation of {3, 1}.
The proof of this identity (see [45, p. 160]) derives from a remark-

able factorization of the generating function in terms of hypergeometric
functions:∑
n≥0

ζ({3, 1}n)x4n = 2F1

(
x

(1 + i)
2

,−x (1 + i)
2

; 1; 1
)

2F1

(
x

(1− i)
2

,−x (1− i)
2

; 1; 1
)
.

Finally, it can be shown in various ways that

ζ({3}n) = ζ({2, 1}n)
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for all n, while a proof of the numerically-confirmed conjecture

ζ({2, 1}n)
?= 23n ζ({−2, 1}n) (8.29)

remains elusive. Only the first case of (8.29), namely,

∞∑
n=1

1
n2

n−1∑
m=1

1
m

= 8
∞∑
n=1

(−1)n

n2

n−1∑
m=1

1
m

(= ζ(3))

has a self-contained proof [45]. Indeed, the only other established case is

∞∑
n=1

1
n2

n−1∑
m=1

1
m

m−1∑
p=1

1
p2

p−1∑
q=1

1
q

= 64
∞∑
n=1

(−1)n

n2

n−1∑
m=1

1
m

m−1∑
p=1

(−1)p

p2

p−1∑
q=1

1
q

(= ζ(3, 3)).

This is an outcome of a complete set of equations for multivariate zeta
functions of depth four.

As we discussed in Chapter 1, there has been abundant evidence amassed
to support identity (8.29) since it was found in 1996. This is the only
identification of its type of an Euler sum with a distinct multivariate zeta-
function.

7.2 π/8 or not?

Problem 8. Calculate

π2 =
∫ ∞

0

cos(2x)
∞∏
n=1

cos
(x
n

)
dx.

History and context. The challenge of showing that π2 < π/8 was posed
by Bernard Mares, Jr., along with the problem of demonstrating that

π1 =
∫ ∞

0

∞∏
n=1

cos
(x
n

)
dx <

π

4
.

This is indeed true, although the error is remarkably small, as we shall see.

Solution. The computation of a high-precision numerical value for this
integral is rather challenging, owing in part to the oscillatory behavior of∏
n≥1 cos(x/n), see Figure 8.12, but mostly because of the difficulty of

computing high-precision evaluations of the integrand. Note that evaluat-
ing thousands of terms of the infinite product would produce only a few
correct digits. Thus it is necessary to rewrite the integrand in a form more
suitable for computation as discussed in Chapter 3.
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Figure 8.12. Approximations to
∏
n≥1 cos(x/n).

Let f(x) signify the integrand. We can express f(x) as

f(x) = cos(2x)

[
m∏
1

cos(x/k)

]
exp(fm(x)), (8.30)

where we choose m greater than x and where

fm(x) =
∞∑

k=m+1

log cos
(x
k

)
. (8.31)

The kth summand can be expanded in a Taylor series [3, p. 75], as follows:

log cos
(x
k

)
=

∞∑
j=1

(−1)j22j−1(22j − 1)B2j

j(2j)!

(x
k

)2j

,

in which B2j are again Bernoulli numbers. Observe that since k > m > x
in (8.31), this series converges. We can then write

fm(x) =
∞∑

k=m+1

∞∑
j=1

(−1)j22j−1(22j − 1)B2j

j(2j)!

(x
k

)2j

. (8.32)

After applying the classical identity, [3, p. 807], that

B2j =
(−1)j+12(2j)!ζ(2j)

(2π)2j

and interchanging the sums, we obtain

fm(x) = −
∞∑
j=1

(22j − 1)ζ(2j)
jπ2j

[ ∞∑
k=m+1

1
k2j

]
x2j .
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Note that the inner sum can also be written in terms of the zeta-function,
as follows:

fm(x) = −
∞∑
j=1

(22j − 1)ζ(2j)
jπ2j

[
ζ(2j)−

m∑
k=1

1
k2j

]
x2j .

This can now be reduced to a compact form for purposes of computation
as

fm(x) = −
∞∑
j=1

ajbj,mx
2j , (8.33)

where

aj =
(22j − 1)ζ(2j)

jπ2j
, (8.34)

bj,m = ζ(2j)−
m∑
k=1

1/k2j . (8.35)

We remark that ζ(2j), aj , and bj,m can all be precomputed, say for
j up to some specified limit and for a variety of m. In our program,
which computes this integral to 120-digit accuracy, we precompute bj,m
for m = 1, 2, 4, 8, 16, ..., 256 and for j up to 300. During the quadrature
computation, the function evaluation program picks m to be the first power
of two greater than the argument x, and then applies formulas (8.30) and
(8.33). It is not necessary to compute f(x) for x larger than 200, since for
these large arguments |f(x)| < 10−120 and thus may be presumed to be
zero.

The computation of values of the Riemann zeta-function can be done
in various ways but, since what we really require is the entire set of values
{ζ(2j) : 1 ≤ j ≤ n} for some n, by a convolution scheme described in [15].
It is important to note that the computation of both the zeta values and the
bj,m must be done with a much higher working precision (in our program,
we use 1600-digit precision) than the 120-digit precision required for the
quadrature results, since the two terms being subtracted in formula (8.35)
are very nearly equal. These values need to be calculated to a relative
precision of 120 digits.

With this evaluation scheme for f(x) in hand, the integral (8.30) can be
computed using, for instance, the tanh-sinh quadrature algorithm, which
can be implemented fairly easily on a personal computer or workstation and
is also well suited to highly parallel processing [21, 14] and [45, p. 312].
This algorithm approximates an integral f(x) on [−1, 1] by transforming
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it to an integral on (−∞,∞) via the change of variable x = g(t), where
g(t) = tanh(π/2 · sinh t):∫ 1

−1

f(x) dx =
∫ ∞

−∞
f(g(t))g′(t) dt = h

∞∑
j=−∞

wjf(xj) + E(h).(8.36)

Here xj = g(hj) and wj = g′(hj) are abscissas and weights for the tanh-
sinh quadrature scheme (which can be precomputed), and E(h) is the error
in this approximation.

The function g′(t) = π/2 · cosh t · sech2(π/2 · sinh t) and its derivatives
tend to zero very rapidly for large |t|. Thus, even if the function f(t) has
an infinite derivative, a blow-up discontinuity, or oscillatory behavior at
an endpoint, the product function f(g(t))g′(t) is in many cases quite well
behaved, going rapidly to zero (together with all of its derivatives) for large
|t|. In such cases, the Euler-Maclaurin summation formula can be invoked
to conclude that the error E(h) in the approximation (8.36) decreases very
rapidly—faster than any power of h. In many applications, the tanh-sinh
algorithm achieves quadratic convergence (i.e., reducing the size h of the
interval in half produces twice as many correct digits in the result).

The tanh-sinh quadrature algorithm is designed for a finite integration
interval. In this problem, where the interval of integration is [0,∞), it is
necessary to convert the integral to a problem on a finite interval. This
can be done with the simple substitution s = 1/(x + 1), which yields an
integral from 0 to 1.

In spite of the substantial computation required to construct the zeta-
and b-arrays, as well as the abscissas xj and weights wj needed for tanh-
sinh quadrature, the entire calculation requires only about one minute on a
2004-era computer, using the ARPREC arbitrary precision software pack-
age available at http://crd.lbl.gov/~dhbailey/mpdist. The first hundred
digits of the result are the following:

0.392699081698724154807830422909937860524645434187231595926812285162
093247139938546179016512747455366777....

A Mathematica program capable of producing 100 digits of this constant
is available on Michael Trott’s website:
http://www.mathematicaguidebooks.org/downloads/N 2 01 Evaluated.nb.

Using the Inverse Symbolic Calculator, for instance, one finds that this
constant is likely to be π/8. But a careful comparison with a high-precision
value of π/8, namely,

0.392699081698724154807830422909937860524646174921888227621868074038
477050785776124828504353167764633497...,
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reveals that they are not equal—the two values differ by approximately
7.407× 10−43. Indeed, these two values are provably distinct. This follows
from the fact that

55∑
n=1

1/(2n+ 1) > 2 >

54∑
n=1

1/(2n+ 1).

See [45, chap. 2] for additional details. We do not know a concise closed-
form expression for this constant.

Further history and context. Recall the sinc function

sincx =
sinx
x

,

and consider, the seven highly oscillatory integrals:

I1 =
∫ ∞

0

sincx dx =
π

2
,

I2 =
∫ ∞

0

sincx sinc
(x

3

)
dx =

π

2
,

I3 =
∫ ∞

0

sincx sinc
(x

3

)
sinc

(x
5

)
dx =

π

2
,

. . .

I6 =
∫ ∞

0

sincx sinc
(x

3

)
· · · sinc

( x
11

)
dx =

π

2
,

I7 =
∫ ∞

0

sincx sinc
(x

3

)
· · · sinc

( x
13

)
dx =

π

2
.

It comes as something of a surprise, therefore, that

I8 =
∫ ∞

0

sincx sinc
(x

3

)
· · · sinc

( x
15

)
dx

=
467807924713440738696537864469
935615849440640907310521750000

π ≈ 0.499999999992646π.

When this was first discovered by a researcher, using a well-known com-
puter algebra package, both he and the software vendor concluded there
was a “bug” in the software. Not so! It is fairly easy to see that the limit of
the sequence of such integrals is 2π1. Our analysis, via Parseval’s theorem,
links the integral

IN =
∫ ∞

0

sinc(a1x) sinc (a2x) · · · sinc (aNx) dx
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Figure 8.13. The ‘Bite’ in Three Dimensions

with the volume of the polyhedron PN described by

PN = {x : |
N∑
k=2

akxk| ≤ a1, |xk| ≤ 1, 2 ≤ k ≤ N},

for x = (x2, x3, · · · , xN ). If we let

CN = {(x2, x3, · · · , xN ) : −1 ≤ xk ≤ 1, 2 ≤ k ≤ N},

then

IN =
π

2a1

Vol(PN )
Vol(CN )

.

Thus, the value drops precisely when the constraint
∑N
k=2 akxk ≤ a1

becomes active and bites the hypercube CN , as in Figure 8.13. That occurs
when

∑N
k=2 ak > a1. In the foregoing,

1
3

+
1
5

+ · · ·+ 1
13

< 1,

but on addition of the term 1/15, the sum exceeds 1, the volume drops,
and IN = π/2 no longer holds. A similar analysis applies to π2. Moreover,
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it is fortunate that we began with π1 or the falsehood of π2 = 1/8 would
have been much harder to see.

Additional information on this problem is available at
http://mathworld.wolfram.com/InfiniteCosineProductIntegral.html and
http://mathworld.wolfram.com/BorweinIntegrals.html.
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Chapter 9

Exercises

In this chapter we collect a series of exercises.

1 Exercises for Chapter 1

1. Nick Trefethen’s fourth digit-challenge problem was given as (1.5)
in Subsection 4.1. Find a numerical or graphical method to obtain
ten good digits of the solution which occurs near (−0.15, 0.29,−.028)
with value −3.32834.

2. Prove that

0 <
1

3164

∫ 1

0

x8 (1− x)8
(
25 + 816x2

)
1 + x2

dx =
355
113
− π

and derive the estimate that
355
113
− 911

2630555928
< π <

355
113
− 911

5261111856

3. Powers of arcsin. The formula for arcsin2(x) discovered in the text
is the first example of a family of formulas that can be experimentally
discovered as is described in [55].

(a) Show that

arcsin4
(x

2

)
=

3
2

∞∑
k=1

{
k−1∑
m=1

1
m2

}
x2 k(
2 k
k

)
k2
.

More generally, show that for |x| ≤ 2 and N = 1, 2, . . .

arcsin2N
(
x
2

)
(2N)!

=
∞∑
k=1

HN (k)(
2 k
k

)
k2

x2 k, (9.1)

219
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where H1(k) = 1/4 and

HN+1(k) :=
k−1∑
n1=1

1
(2n1)2

n1−1∑
n2=1

1
(2n2)2

· · ·
nN−1−1∑
nN=1

1
(2nN )2

.

(b) Show that for |x| ≤ 2 and N = 0, 1, 2, . . .

arcsin2N+1
(
x
2

)
(2N + 1)!

=
∞∑
k=0

GN (k)
(
2 k
k

)
2(2k + 1)42k

x2k+1, (9.2)

where G0(k) = 1 and

GN (k) :=
k−1∑
n1=0

1
(2n1 + 1)2

n1−1∑
n2=0

1
(2n2 + 1)2

· · ·
nN−1−1∑
nN=0

1
(2nN + 1)2

.

Proof. The formulae for arcsink(x) with 1 ≤ k ≤ 4 are given on pages
262–63 of [28]. Berndt’s proof implicitly gives the desired result since
it establishes that for all a

ea arcsin(x) =
∞∑
n=0

cn
xn

n!
(9.3)

where

c2n+1 = a

n∏
k=1

(
a2 + (2k − 1)2

)
, c2n =

n∏
k=1

(
a2 + (2k − 2)2

)
.

Now expanding the power of an on each side of (9.3) provides the
asserted formula.

Another proof can be obtained from the hypergeometric identity

sin(ax)
a sin(x)

= 2F1

(
1 + a

2
,
1− a

2
;
3
2
; sin2(x)

)
given in [46, Exercise 16, p. 189]. 2

Maple can prove identities such as (9.3) as the following code shows.

> ce:=n->product(a^2+(2*k)^2,k=0..n-1):
> co:=n->a*product(a^2+(2*k+1)^2,k=0..n-1):
> sum(ce(n)*x^(2*n)/(2*n)!,n=0..infinity) assuming x>0;

cosh(a arcsin(x))
> simplify(expand(sum(co(n)*x^(2*n+1)/(2*n+1)!,n=0..infinity)))
assuming x>0;

sinh(a arcsin(x))
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4. A proof of Knuth’s problem. Why should such an identity hold?
One clue was provided by the surprising speed with which Maple
was able to calculate a high-precision value of this slowly convergent
infinite sum. Evidently, the Maple software knew something that we
did not. Looking under the hood, we found Maple was using the
Lambert W function, which is the functional inverse of w(z) = zez.

Another clue was the appearance of ζ(1/2) in the experimental iden-
tity, together with an obvious allusion to Stirling’s formula in the
original problem. This led us to conjecture the identity

∞∑
k=1

(
1√
2πk

− (1/2)k−1

(k − 1)!
√

2

)
=

1√
2π
ζ

(
1
2

)
, (9.4)

where (x)n denotes the rising factorial or Pochhammer function
x(x + 1) · · · (x + n − 1), and where the binomial coefficients in (9.4)
are the same as those of the function 1/

√
2− 2x. Maple successfully

evaluated this summation, as shown on the RHS. We now needed to
establish that

∞∑
k=1

(
kk

k!ek
− (1/2)k−1

(k − 1)!
√

2

)
= −2

3
.

Guided by the presence of the Lambert W function

W (z) =
∞∑
k=1

(−k)k−1zk

k!
,

an appeal to Abel’s limit theorem suggested the conjectured identity

lim
z→1

(
dW (−z/e)

dz
+

1
2− 2z

)
= 2/3.

Here again, Maple was able to evaluate this summation and establish
the identity. 2

Such instrumental use of the computer is one of the most exciting fea-
tures of experimental mathematics. The next three exercises explore
the partition function and follow material in [46], see also [45].

5. Euler’s pentagonal number theorem is

Q(q) :=
∏
n≥1

(1− qn) =
∞∑

n=−∞
(−1)nq(3n+1)n/2. (9.5)
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One would be less prone to look at Q on the way to the partition func-
tion today when computation is very snappy. Determine empirically
the series for Q3(q).

6. Jacobi’s triple product in general form is

∏
n≥1

(1 + xq2n−1)(1 + x−1q2n−1)(1− q2n) =
∞∑

n=−∞
xnqn

2
.(9.6)

(a) Deduce from (9.6) the pentagonal number theorem of the pre-
vious exercise and that( ∞∑
n=−∞

(−1)nq(3n+1)n/2

)3

=
∞∑
m=0

(2m+ 1)(−1)m qm(m+1)/2.

(9.7)

7. Modular properties of the partition function.

(a) Prove that the partition function of 5n+4 is divisible by 5.
Proof Sketch. With Q as in (9.5), we obtain

qQ4(q) = q Q(q)Q3(q) (9.8)

=
∑
m≥0

∞∑
n=−∞

(−1)n+m(2m+ 1)q1+(3n+1)n/2+m(m+1)/2,

from the triple product and pentagonal number theorems above.
Now consider when k is a multiple of 5, and discover this can
only happen if 2m + 1 is divisible by 5 as is the coefficient of
q5m+5 in qQ4(q). Then by the binomial theorem,

(1− q)−5 ≡ (1− q5)−1 mod 5.

Consequently, the coefficient of the corresponding term in qQ(q5)/Q(q)
is divisible by 5. Finally,

q +
∑
n>1

p(n− 1)qn = qQ−1(q) =
qQ(q5)
Q(q)

∞∏
m=1

∞∑
n=0

q5mn,

as claimed. 2

(b) Try to adapt extend this argument to show p(7n+6) is divisible
by 7.
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The next three exercises are taken from [48] where many other such
results may be found. We wish to show:

ζ(2, 1) :=
∞∑
n=1

1
n2

n−1∑
m=1

1
m

=
∞∑
n=1

1
n3

= ζ(3) (9.9)

∞∑
n=1

1
n2

n−1∑
m=1

1
m

=
∞∑
n=1

1
n3

= 8
∞∑
n=1

(−1)n

n2

n−1∑
m=1

1
m

:= 8 ζ(2, 1).

(9.10)

8. Two proofs that ζ(2, 1) = ζ(3).

(a) A really quick proof of (9.9) considers

S :=
∑
n,k>0

1
nk(n+ k)

=
∑
n,k>0

1
n2

(
1
k
− 1
n+ k

)
=

∞∑
n=1

1
n2

n∑
k=1

1
k

= ζ(3) + ζ(2, 1). (9.11)

On the other hand,

S =
∑
n,k>0

(
1
n

+
1
k

)
1

(n+ k)2
=
∑
n,k>0

1
n(n+ k)2

+
∑
n,k>0

1
k(n+ k)2

= 2ζ(2, 1),

by symmetry.

(b) Show that

ζ(3) =
∫ 1

0

(log x) log(1− x)dx
x
. (9.12)

Hint. Let ε > 0. Expand the integrand to get

∞∑
n=1

1
(n+ ε)2

=
∫ 1

0

∫ 1

0

(xy)ε

1− xy
dx dy.

Differentiate with respect to ε and let ε = 0 to obtain

ζ(3) = −1
2

∫ 1

0

∫ 1

0

log(xy)
1− xy

dx dy = −1
2

∫ 1

0

∫ 1

0

log x+ log y
1− xy

dx dy

= −
∫ 1

0

∫ 1

0

log x
1− xy

dx

by symmetry. Now integrate with respect to y to get (9.12).
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(c) Hence

2ζ(3) =
∫ 1

0

log2 x

1− x
dx =

∫ 1

0

log2(1− x)dx
x

=
∑
n,k>0

∫ 1

0

xn+k−1

nk
dx

=
∑
n,k>0

1
nk(n+ k)

= ζ(2, 1) + ζ(3)

on appealing to the first half of the first proof. 2

9. A proof that 8 ζ(2, 1) = ζ(2, 1). Let

J(x) :=
∑

n>k>0

xn

n2k
, 0 ≤ x ≤ 1.

(a) Show that

J(−x) = −J(x)+
1
4
J(x2)+J

(
2x
x+ 1

)
−1

8
J

(
4x

(x+ 1)2

)
. (9.13)

Hint. Differentiate.

(b) Putting x = 1 gives 8 J(−1) = J(1) immediately, which is (9.10).

Further proofs may be found in the Exercises for Chapter 8.

10. AMM Problem 11103, October 2004. Show that for positive
integer n

21−n
n∑
k=1

(
n

2 k−1

)
2 k − 1

=
n∑
k=1

1
k
(
n
k

) .
Solution. We show that the ordinary generating function of each
side is the same. Indeed, applying the binomial theorem while inter-
changing sum and integral, allows one to write

2
∞∑
n=1

n∑
k=1

(
n

2k−1

)
2k − 1

(y
2

)n
=

∫ 1

0

∑∞
n=1

(
y(1+t)

2

)n
−
(
y(1−t)

2

)n
t

dt

=
∫ 1

0

4 y
(y + yt− 2) (y − yt− 2)

dt

=
− ln(1− y)

1− y/2
. (9.14)
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Also, using the beta function to write 1/(k
(
n
k

)
) as

∫ 1

0
tk−1(1−t)n−k dt,

produces
∞∑
n=1

n∑
k=1

1
k
(
n
k

) yn =
∫ 1

0

∑∞
n=1 {tn − (1− t)n}

2t− 1
yn dt

=
∫ 1

0

y

(1 + yt− y)(1− yt)
dt

=
− ln(1− y)

1− y/2
. (9.15)

2 Exercises for Chapter 2

1. Find rational coefficients ai such that the identity

π = a1 arctan
1

390112
+ a2 arctan

1
485298

+a3 arctan
1

683982
+ a4 arctan

1
1984933

+a5 arctan
1

2478328
+ a6 arctan

1
3449051

+a7 arctan
1

18975991
+ a8 arctan

1
22709274

+a9 arctan
1

24208144
+ a10 arctan

1
201229582

+a11 arctan
1

2189376182
holds. Also show that an identity with even simpler coefficients exists
if arctan 1/239 is included as one of the terms on the RHS.

2. The constant ζ(3) can be written as the BBP series

ζ(3) =
1
a0

∞∑
k=0

1
212k

23∑
j=1

aj
24k + j

for certain integers ai. Find the integers ai, in lowest terms.

3. The constant arctan(4/5) can be written as the BBP series

arctan
(

4
5

)
=

1
a0

∞∑
k=0

1
220k

39∑
j=1

aj
40k + j

for certain integers ai. Find the integers ai, in lowest terms.
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4. Calculate π,
√

2, e, log 2 and log 10 to 100,000 digits, and then tab-
ulate the ten single-digit frequencies, and the 100 double-digit fre-
quencies. One statistical procedure for testing the hypothesis that
the empirical frequencies of n-long strings of digits are random is
the χ2 test. The χ2 statistic of the k observations X1, X2, · · · , Xk is
defined as

χ2 =
k∑
i=1

(Xi − Ei)2

Ei

where Ei is the expected value of the random variable Xi. In this case
k = 10 for single-digit frequencies (100 for double-digit frequencies),
Ei = 10−nd for all i (here d100, 000), and (Xi) are the observed digit
counts (or double-digit counts). The mean of the χ2 statistic is k−1,
and its standard deviation is

√
2(k − 1).

5. Calculate the BBP sequences associated with log 2, up to say 1000
terms, and then tabulate the frequency of appearance in the sixteen
subintervals [0, 1/16), [1/16, 2/16), · · · , [15/16, 1]. Use the chi-square
test mentioned in the previous exercise to test the hypothesis that
the iterates of the BBP sequence are uniformly distributed in the unit
interval. Do the same for the BBP sequence associated with π. Note
that high precision arithmetic software must be used in calculations
of the iterates.

3 Exercises for Chapter 3

1. The integral

2√
3

∫ 1

0

log8(x) arctan[x
√

3/(x− 2)]
x+ 1

dx

satisfies a linear relation involving the constants L3(10), L3(9) log 3,
L3(8)π2, L3(7)ζ(3), L3(6)π4, L3(5)ζ(5), L3(4)π4, L3(3)ζ(7), L3(2)π8

and L3(1)ζ(9), where L3(s) =
∑∞
n=1 [1/(3n− 2)s − 1/(3n− 1)s]. Find

the integer coefficients of this relation.

2. Check if the relation given in the previous problem extends to an
analogous relation for the integral with log10 x in the numerator. How
about for log12 x?
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3. Evaluate the following integrals, by numerically computing them and
then trying to recognize the answers, either by using the Inverse Sym-
bolic Calculator at http://www.cecm.sfu.ca/projects/ISC, or by us-
ing a PSLQ facility, such as that built into the Experimental Math-
ematician’s Toolkit, available at http://www.experimentalmath.info.
All of the answers are simple expressions involving familiar mathe-
matical constants such as π, e,

√
2,
√

3, log 2, ζ(3), G (Catalan’s con-
stant), and γ (Euler’s constant). Many of these can be evaluated an-
alytically using symbolic computing software. The intent here is to
provide exercises for numerical quadrature and constant recognition
facilities.

(a)
∫ 1

0

x2 dx

(1 + x4)
√

1− x4

(b)
∫ ∞

0

xe−x
√

1− e−2x dx

(c)
∫ ∞

0

x2 dx√
ex − 1

(d)
∫ π/4

0

x tanx dx

(e)
∫ π/2

0

x2 dx

1− cosx

(f)
∫ π/4

0

(π/4− x tanx) tanx dx

(g)
∫ π/2

0

x2 dx

sin2 x

(h)
∫ π/2

0

log2(cosx) dx

(i)
∫ 1

0

log2 x dx

x2 + x+ 1

(j)
∫ 1

0

log(1 + x2) dx
x2

(k)
∫ ∞

0

log(1 + x3) dx
1− x+ x2

(l)
∫ ∞

0

log x dx
cosh2 x
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(m)
∫ 1

0

arctanx
x
√

1− x2

(n)
∫ π/2

0

√
tan t dt

Answers: (a) π/8, (b) π(1 + 2 log 2)/8, (c) 4π(log2 2 + π2/12), (d)
(π log 2)/8 + G/2, (e) −π2/4 + π log 2 + 4G, (f) (log 2)/2 + π2/32 −
π/4+(π log 2)/8, (g) π log 2, (h) π/2(log2 2+π2/12), (i) 8π3/(81

√
3),

(j) π/2− log 2, (k) 2(π log 3)/
√

3, (l) log π−2 log 2−γ, (m) [π log(1+√
2)]/2, (n) π

√
2/2.

4. Evaluation of infinite series. Evaluate the following infinite series,
by numerically computing them and then trying to recognize the
answers, either by using the Inverse Symbolic Calculator at

http://www.cecm.sfu.ca/projects/ISC,

or else by using a PSLQ facility, such as that built into the Experi-
mental Mathematician’s Toolkit, available at

http://www.experimentalmath.info

All of the answers are simple expressions involving familiar mathe-
matical constants such as π, e,

√
2,
√

3, log 2, ζ(3), G (Catalan’s con-
stant), and γ (Euler’s constant).

(a)
∞∑
0

50n− 6
2n
(
3n
n

)
(b)

∞∑
0

2n+1(
2n
n

)
(c)

∞∑
0

12n22n(
4n
2n

)
(d)

∞∑
0

(4n)!(1 + 8n)
44nn!4

(e)
∞∑
0

(4n)!(19 + 280n)
44nn!4992n+1

(f)
∞∑
0

(2n)!(3n)!4n(4 + 33n)
n!5108n125n
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(g)
∞∑
0

(−27)n(90n+ 177)
16n
(
3n
n

)
(h)

∞∑
0

275n− 158
2n
(
3n
n

)
(i)

∞∑
0

8n(520 + 6240n− 430n2)(
4n
n

)
(j)

∞∑
0

(
2n
n

)
n24n

(k)
∞∑
0

(−1)n

n32n
(
2n
n

)
(l)

∞∑
0

8n(338− 245n)
3n
(
3n
n

)
(m)

∞∑
1

(−9)n
(
2n
n

)
6n264n

−
∞∑
1

3n
(
2n
n

)
n216n

Answers: (a) π, (b) π + 4, (c) 3π + 8, (d) 2/(π
√

3), (e) 2/(π
√

11),
(f) 15

√
3/(2π), (g) 120− 64 log 2, (h) 6 log 2− 135, (i) 45π− 1164, (j)

π2/6− 2 log2 2, (k) log3 2/6− ζ(3)/4, (l) 162− 6π
√

3− 18 log 3, (m)
π2/18 + log2 2− log3 3/6.

These examples are due to Gregory and David Chudnovsky.

4 Exercises for Chapter 4

1. Huygens’ principle. Huygens’ Principle for the propagation of
optical waves through some aperture states that

“‘light falling on the aperture propagates as if every [sur-
face] element [ds] emitted a spherical wave the amplitude
and phase of which are given by that of the incident wave
[ui]” [214].

An analogous statement holds for scattering from obstacles, which
we derive precisely here. Let Ω have C2 boundary. We illuminate
Ω with a plane wave ui(x, η̂) = eiκbη·x. Suppose that the obstacle is
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sound soft, that is, the total field u(x, η̂) = ui(x, η̂) + us(x, η̂) = 0 for
x ∈ ∂Ω. Show that

us(x, η̂) = −
∫
∂Ω

∂u(y, η̂)
∂ν(y)

Φ(x, y)ds(y), x ∈ Ωo. (9.16)

Interpret this in terms of Huygens’ principle above.

Guide. Apply Green’s formula Eq.(4.12) to the scattered field us

(with justification for why you can do this), Green’s theorem Eq.(4.11)
to the incident field ui, and use the boundary condition. Note that
this argument does not make use of the explicit designation of the
incident field, thus the statement Eq.(9.16) can be more broadly ap-
plied to any entire incident field vi.

2. Far field reciprocity. Suppose that the scatterer Ω generates a
total field u satisfying Dirichlet boundary conditions: u = 0 on ∂Ω.
Prove the reciprocity relation for the far field given by Eq.(4.15).

Guide. Following the elegant argument of Colton and Kress [80], use
Green’s Theorem Eq.(4.11), the Helmholtz equation for the incident
and scattered waves Eq.(4.3), the radiation condition Eq.(4.6) for the
scattered wave, and the boundary integral equation for the far field
pattern Eq.(4.14) to show that

β (u∞(x̂, η̂)− u∞(−η̂,−x̂)) =
∫
∂Ω

(
u(·, η̂)∂u(·,−x̂)

∂ν
− u(·,−x̂)∂u(·, η̂)

∂ν

)
,

where β, in the two-dimensional setting, is given by Eq.(4.8).

Show that this implies Eq.(4.15) when u satisfies the boundary con-
dition u(·, η̂) = 0 on ∂Ω for all η̂ ∈ S.

3. Resolvent kernel for the Dirichlet Laplacian. In the proof of
Theorem 3.2 we made use of the resolvent kernel for the Dirichlet
Laplacian. This is the total field for scattering due to an incident
point source:

wi(x, z) ≡ Φ(x, z), x, z ∈ R2, x 6= z (9.17)

where Φ is defined by Eq.(4.13). The total field satisfies the boundary
value problem

(4+ κ2)w(x, z) = −δ(x− z), x, z ∈ Ωo; (9.18)
w(x, z) = 0, x ∈ ∂Ω.
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Problem Eq.(9.18) is uniquely solvable [80] with w = wi +ws for the
scattered field ws satisfying Eq.(4.6).

Show that

ws(x, z) = −
∫
∂Ω

∂w(y, z)
∂ν(y)

Φ(x, y) ds(y), x, z ∈ Ωo, (9.19)

analogous to Eq.(9.16).

4. Symmetry of the resolvent kernel. Continuing with the previous
problem, show that the incident field wi is spatially symmetric,

wi(x, z) = wi(z, x), (9.20)

thus ws and w also have this property.

5. Asymptotic behavior. Let w satisfy Eq.(9.18) in Ωo and w =
wi + ws with the incident point source wi(x, z) = Φ(x, z). Let
u(z,−x̂) be the total field from scattering due to the incident plane
wave ui(z,−x̂) = e−iκbx·z with u(z,−x̂) = 0 on ∂Ω. For β given by
Eq.(4.8), show that the following relation holds as |x| → ∞:

w(x, z) =
eiκ|x|

|x|1/2
{
βu(z,−x̂) +O

(
|x|−1

)}
. (9.21)

6. Mixed reciprocity. Use Eq.(9.21), together with the asymptotic
behavior of a radiating solution to the Helmholtz equation given by
Eq.(4.7) to show the mixed reciprocity relation:

w∞(x̂, z) = βus(z,−x̂), x̂ ∈ S, z ∈ Ωo (9.22)

for β given by Eq.(4.8).

7. Potential theory. In this exercise we use potential theoretic tech-
niques to calculate the solution to the exterior Dirichlet problem, that
is, us satisfying Eq.(4.3) on Ωo with the boundary condition us = f
on ∂Ω and the radiation condition Eq.(4.6). To do this, we introduce
the acoustic single- and double-layer operators given respectively as

(Sϕ)(x) ≡ 2
∫
∂Ω

ϕ(y)Φ(x, y) ds(y), x ∈ ∂Ω

(Kϕ)(x) ≡ 2
∫
∂Ω

ϕ(y)
∂Φ(x, y)
∂ν(y)

ds(y), x ∈ ∂Ω, (9.23)
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where Φ is the two-dimensional fundamental solution given by Eq.(4.13).
It can be shown [80] that, if the potential ϕ satisfies the integral equa-
tion

(I +K − iγS)ϕ = f (γ 6= 0), (9.24)

then us satisfies the exterior Dirichlet problem where u is given ex-
plicitly by

u(x) =
∫
∂Ω

(
∂Φ(x, y)
∂ν(y)

− iγΦ(x, y)
)
ϕ(y) ds(y), x ∈ R2 \ ∂Ω.

(9.25)
Show that the far field pattern due to scattering from a sound-soft
obstacle with an incident plane wave of direction η̂ is given by

u∞(x̂, η̂) = β

∫
∂Ω

(
∂e−iκbx·y
∂ν(y)

− ie−iκbx·y)ϕ(y) ds(y), x̂ ∈ S, (9.26)

where ϕ satisfies
(I +K − iS)ϕ = −eiκx·bη. (9.27)

8. Compute the far field pattern. In this exercise, you will write a
computer program to generate the far field data for scattering from
the sound soft, kite-shaped obstacle shown in Figure 9.1 whose bound-
ary is given parametrically by

∂Ω(θ) ≡ (cos θ + 0.65 cos(2θ)− 0.65, 1.5 sin θ) (9.28)

(a) (b)

Figure 9.1. (a) Kite-shaped obstacle given by Eq.(9.28) and generated by the

MATLAB code in Figure 9.2 (b) Real part of far field data for Exercise 8.
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function [bdy_mat,dbdy_mat]=...
Make_phantom(theta_res)

% Parameters:
theta_res=240;
objrot=0;

%---------------------------------------------
% Parametric grid generation:
%---------------------------------------------
h=2*pi/(theta_res-1);
t_vec=[0:h:2*pi];
rot_mat = [cos(objrot) -sin(objrot); sin(objrot) cos(objrot)];
bdy_mat=zeros(2,theta_res);
bdy2_mat=zeros(2,theta_res);
dbdy_mat = bdy_mat;

%------------------
% kite
%------------------
% boundary:
bdy_mat(1,:) = -(cos(t_vec) + 0.65 * cos(2*t_vec) - 0.65);
bdy_mat(2,:) = 1.5 * sin(t_vec);

% Normal derivative:
% In order to get the correct unit outward normal to the kite
% shaped obstacle we have to multiply the derivative by -1. The
% peculiarity is due to the way it is parameterized.
dbdy_mat(1,:) = -(sin(t_vec) + 2*.65*sin(2*t_vec));
dbdy_mat(2,:) = -1.5*cos(t_vec);

Figure 9.2. MATLAB/OCTAVE code for constructing kite shaped object shown

in Figure 9.1

We give the MATLABTMcode (also runs with OCTAVE) to generate
the obstacle and its normal derivative in Figure 9.2.

Use Eq.(9.26)-(9.27) to calculate the far field data at 128 points
equally distributed on [−π, π] (full aperture) for a wavelength κ = 3
and 128 incident field directions η̂ coincident with the far field “mea-
surement” points. Your answer should have real part resembling Fig-
ure 9.1(b). As a guide, we show below a a partial MATLABTMcode
(also runs in OCTAVE).
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% PARAMETERS:
kappa=10; % wavenumber
nff=128; % number of far field measurements
n_inc = 128; % number of incident fields
apang = pi; % aperture angle: pi=full aperture.

% r*_mat are matrices that keep track of the distances between
% the source points, y=(y1,y2), and the integration points, x=(x1,x2),
% on the boundary of the
% scatterer. Note that these are parameterized by theta_res points on -pi
% to pi. dx*_mat are the matrices of normal derivatives to the boundary.
% The following involves a ‘‘regularization" of the
% point source, which has a singularity at x=y.
% A more sophisticated numerical quadrature would
% be appropriate for applications that require high accuracy,
% but for the purposes of this exercise, our rough approach is
% very effective.

% matrix of differences for the kernel
tmp_vec = ones(theta_res,1);
x1_mat=tmp_vec*bdy_mat(1,:);
x2_mat=tmp_vec*bdy_mat(2,:);
dx1_mat=tmp_vec*dbdy_mat(1,:);
dx2_mat=tmp_vec*dbdy_mat(2,:);

min_mat=eps*ones(size(x1_mat));
r1_mat=x1_mat.’-(x1_mat);
r2_mat=x2_mat.’-(x2_mat);
r_mat=max(sqrt(r1_mat.^2 + r2_mat.^2),min_mat);
dr_mat=sqrt(dx1_mat.^2 + dx2_mat.^2);

% Discrete kernel of the integral operators:
S_mat=2*(i/4*besselh(0,1,kappa*r_mat).*dr_mat); % Hankel function
K_mat=2*(1i*kappa/4*(-dx2_mat.*r1_mat+dx1_mat.*r2_mat).*(-besselh(1,1,kappa*r_mat))./r_mat);
% the derivative of the Hankel function changes the order of the function
% in K_mat

A_mat=eye(theta_res)+(2*pi/theta_res)*(K_mat-i*S_mat);

% incident field at the boundary of the scatterer:
% incident field has direction d_mat in Cartesian coordinates
% the incident directions are not perfectly symmetric across the the aperture
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h_inc=2*apang/n_inc;
t_inc_vec=[-apang+h_inc/2:h_inc:apang-h_inc/2];

% incident directions - Cartesian
d_mat(1,:)=cos(t_inc_vec);
d_mat(2,:)=sin(t_inc_vec);

% normal to the boundary
d1_mat=bdy_mat(1,:)’*(d_mat(1,:));
d2_mat=bdy_mat(2,:)’*(d_mat(2,:));

b_mat=-exp(i*kappa*(d1_mat+d2_mat));

% density
phi_mat=A_mat\b_mat;

% Now the far field.
% the measurements are not perfectly symmetric across the the aperture
hff=2*apang/nff;
tff_vec=[-apang+hff/2:hff:apang-hff/2];

% far field points
ffgrid_mat(1,:)=cos(tff_vec);
ffgrid_mat(2,:)=sin(tff_vec);

% matrix of differences for the far field kernel
tmp_vec = ones(theta_res,1);
ffx1_mat = (tmp_vec * ffgrid_mat(1,:)).’;
ffx2_mat = (tmp_vec * ffgrid_mat(2,:)).’;
tmp_vec = ones(nff,1);

x1_mat = tmp_vec * bdy_mat(1,:);
x2_mat = tmp_vec * bdy_mat(2,:);
dx1_mat = tmp_vec * dbdy_mat(1,:);
dx2_mat = tmp_vec * dbdy_mat(2,:);

r1_mat=ffx1_mat.*x1_mat;
r2_mat=ffx2_mat.*x2_mat;
r_mat=r1_mat+r2_mat;
dr_mat=sqrt(dx1_mat.^2 + dx2_mat.^2);

ffM_mat=exp(-i*kappa*r_mat).*dr_mat;
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ffL_mat=kappa*(dx2_mat.*ffx1_mat-dx1_mat.*ffx2_mat).*exp(-i*kappa*r_mat);
beta=exp(i*pi/4)/sqrt(8*pi*kappa);
ff_mat=beta*(2*pi/theta_res)*(ffL_mat+ffM_mat)*phi_mat;

9. Is the scatterer absorbing? Show either numerically or an-
alytically that the singular values of the far field operator A cor-
responding to the data in Exercise 8 lie on the circle centered at
1
2κ

(
=(β−1),<(β−1)

)
and passing through the origin, hence, the scat-

terer, as we already know, is nonabsorbing.

10. Linear sampling. At each point zj corresponding to a sample point
on a rectangular grid in the computational domain [−5, 5] × [−5, 5],
compute the density gzj that satisfies the unconstrained, Tikhonov-
regularized optimization problem

minimize
g∈Cn

‖Ag − Φ∞(zj , ·)‖2 + α‖g‖2

where A is the discrete far field operator generated from the data
computed in Exercise 8 and the regularization parameter α ≈ 1e− 7.
Generate a surface plot of the value ‖gj‖ versus zj . If you choose the
dynamic range of your surface plot correctly you should see something
with a hole resembling the kite shown in Figure 9.1(a). Hint. The
solution to the optimization problem can be written in closed form
via the normal equations.

5 Exercises for Chapter 5

1. The Takagi function for 0 < a < 1
2 . Discuss and prove the differ-

entiability properties of the Takagi function Ta,2 for 0 < a < 1
2 .

Hint: It is relatively easy to conjecture that for a < 1
2 , Ta,2 does

not have a derivative at any dyadic rational, but is differentiable
everywhere else. This conjecture, however, is only “almost” true:
There is precisely one exceptional value of a strictly between 0 and
1
2 for which the conjecture is wrong. What is this value?

2. Differentiability of the Weierstraß cosine series. Prove that
the Weierstraß cosine series Ca,2 for 1/2 ≤ a < 1 is nowhere differen-
tiable.

3. Singular functions. Choose 0 < a < 1. Discuss and prove the
differentiability properties of the unique continuous solution of the
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system

f
(x

2

)
= a f(x)

f

(
x+ 1

2

)
= (1− a) f(x) + a

on [0, 1]. Hint: Except for a = 1
2 , the function is singular (i.e., strictly

monotone, with f ′(x) = 0 a.e.). This example is from [95].

4. The Cantor function. Show that the system of functional equa-
tions

f
(x

3

)
=

1
2
f(x)

f

(
x+ 1

3

)
=

1
2

f

(
x+ 2

3

)
=

1
2
f(x) +

1
2

on [0, 1] has a unique continuous solution, and discuss its differentia-
bility properties.
Hint: The solution is a (the) Cantor function. In general, we call an
f : [0, 1]→ [0, 1] a Cantor function if it is surjective, but constant on
each of a collection of intervals which together have full measure (such
as the complement of the Cantor set). This example is from [211].

5. One-sided differentiability. Prove the following sharper version of
Theorem 1.2: Assume that f ∈ C[0, 1] has a finite one-sided deriva-
tive at some point in [0, 1]. Then

lim
n→∞

2n ·min
{
|γi,n(f)| : i = 0, . . . , 2n−1 − 1

}
= 0.

6. The Minkowski function. Minkowski’s ?-function is defined as fol-
lows. Let x ∈ [0, 1) with simple continued fraction [0; a1, a2, a3, . . . ].
Then

?(x) :=
∞∑
k=1

(−1)k−1

2a1+···+ak−1
.

This function maps the rational numbers onto the dyadic rationals
and the quadratic irrationals onto the rationals.

Find a system of functional equations which characterizes the Min-
kowski function and then use the functional equations to derive its
differentiability properties.
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7. The Riemann function. The function

R(x) :=
∞∑
n=1

sin(n2πx)
n2

was apparently communicated by Riemann to his pupils as an exam-
ple of a function which does not have a finite derivative at a dense set
of points (see [100, 131]). While this statement is true, it was proved
only much later that this function has, in fact, finite derivatives at
certain rational values (see [118, 119]).

Find a basis suitable for analyzing this function.

8. A binary recursion.

(a) Let x ≥ 0. Set

a0 = x and an+1 =
2an

1− a2
n

(with an+1 = −∞ if an = ±1).

Prove that ∑
an<0
n≥0

1
2n+1

=
arctanx

π
.

(b) In general (see also [58]), let an interval I ⊆ R and subsets
D0, D1 ⊆ I with D0 ∪ D1 = I and D0 ∩ D1 = ∅ be given, as
well as functions r0 : D0 → I, r1 : D1 → I. Then consider
the system (S) of the following two functional equations for an
unknown function f : I → [0, 1].

2f(x) = f(r0(x)) if x ∈ D0, (S0)
2f(x)− 1 = f(r1(x)) if x ∈ D1. (S1)

Such a system always leads to an iteration:

a0 = x and an+1 =

{
r0(an), an ∈ D0,

r1(an), an ∈ D1.

Prove that
f(a0) = f(x) =

∑
an∈D1

n≥0

1
2n+1

.

(c) Find parameters such that the following functions can be written
as solutions of the system (S) and thus can be computed via their
binary expansion: ln(x)/ ln(2) on [1, 2], arccos(x)/π on [−1, 1],

and

{
arctan(x)/π, x ∈ [0,∞),
1 + arctan(x)/π, x ∈ (−∞, 0)

}
.
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(d) Find parameters such that a singular function or a Cantor func-
tion is a solution of (S).

(e) Experiment by plotting the solution for arbitrary (or intelligent)
choices of the parameters.

9. The Schilling equation. The Schilling equation is the functional
equation

4q f(qt) = f(t+ 1) + 2f(t) + f(t− 1) for t ∈ R

with a parameter q ∈ (0, 1). It has its origin in physics, and although
it has been studied intensively in recent years, there are still many
open questions connected with it. The main question is to find values
of q for which the Schilling equation has a nontrivial L1-solution.
Discuss this question!

Hint: If an L1-function f satisfies (5.6), then a rescaled version of
f ∗ f satisfies the Schilling equation.

10. Unboundedness of the iteration. Is the sequence of iterates
Bnq f

(0) unbounded for q = (
√

5−1)/2 (or any other Pisot or non-Pisot
q) and for, say, f (0) = 1−q

2 χ[−1/(1−q),1/(1−q)]?

11. Plotting fq. Find a good algorithm for computing and plotting the
iterates Bnq f

(0) or any other approximation to fq, for arbitrary q.

In fact, let’s make this a contest. If you have a good (= fast) al-
gorithm, then send it to girgencecm.sfu.ca. If possible, include
an implementation of your algorithm in Maple. If your algorithm is
faster than mine (on my laptop), then you will receive an honorable
mention on our web page or in subsequent editions of this book!

6 Exercises for Chapter 6

Some of the following exercises are relatively straightforward: others are
open-ended and could be used as the starting point for an experimental
research project.

1. Use Kraitchik’s method to factorize 2041.

2. Find an n for which Kraitchik’s method works, but we don’t get an
easy factorization via Fermat’s method.

3. Rediscover the diagonalization of the (k + 1)× (k + 1) matrix T

Tij =

(
i

w+i−j
2

)( k−i
w−i+j

2

)(
k
w

)



i
i

i
i

i
i

i
i

240 Chapter 9. Exercises

by computing explicit examples in Maple or Mathematica: use Sloane’s
database to help identify sequences.

4. Investigate the eigenstructure of other structured matrices: for ex-
ample, consider the Toeplitz matrices

Tn =



1 1 0 0 . . . 0
1 1 1 0 . . . 0
0 1 1 1 . . . 0
0 0 1 1 . . . 0
...

...
...

... . . .
...

0 1


Compute the eigenvalues for various values of n, plotting the values
in increasing order. Guess, with the help of the inverse symbolic
calculator if necessary, a formula for the jth largest eigenvalue of Tn.
Compute the corresponding eigenvectors, and guess the formula for
their entries. For more information on this and related problems, see
Doust, Hirshhorn and Ho [99]

5. Fix the dimension k of the vector space, and find a way of uniformly
generating binary vectors of weight 3. For various values of k generate
random vectors until you obtain a linearly dependent set. Compare
the number of vectors required to the upper and lower bounds given
above. Do you think that there is a sharp threshold?

6. When P is the set of primes congruent to 1 (mod 4), what are the
values of the constants δ and K appearing in Wirsing’s theorem?

7. Pick a moderately large value n (the product of two large primes
would be appropriate). Using Maple or Mathematica, estimate the
constants δ and K appearing in Wirsing’s theorem.

8. For those who know about quadratic reciprocity: suppose that n is
the product n = q1q2 of two primes. Find a condition on p for a
prime p to be such that n is a quadratic residue (mod p). Assuming
Dirichlet’s theorem (that if a and m are relatively prime then the
number of primes congruent to a (mod m) is asymptotic to 1/φ(m))
deduce that the relative density of P in the set of all primes should
be 1/2. Compare the value of δ from the previous exercise to 1/2.

9. For small y, compare the value of ZP(y) to the value predicted (for
large y) by Wirsing’s theorem. Does our assumption that ZP(y)
behaves similarly for small and for large y seem justified?
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10. Devise some statistical tests to determine whether the heuristic that

αj = Pr(pj |x2 − n) ' c log(pj)
pj

is a reasonable one. For example, the number x2−n lies between
√
n

and n and so the sums

1
2

log n <
∑

pj |x2−n

log pj < log n

and
k∑
j=1

αj log pj

should be about the same. (This ignores primes dividing x2 − n to
the second or higher power, but their effect is small). Note that this
heuristic illustrates again the fact that the size of B has an impact
on the probability that a B-smooth number is divisible by p.

11. Generate l × k random matrices with αj = c/j for various values
of c. Iteratively remove colons and solons from the array until all
columns are either empty or have at least three 1’s in. If there are
more non-zero rows than columns, then the rows of the original array
are linearly dependent.

• What is the running time of the algorithm to delete all colons
and solons?

• How large should l be as a function of k so that the rows of the
initial array are linearly dependent?

• How large should l be as a function of k so that the final array
has more non-zero rows than columns? Suggested values to try:
l = 0.5k, l = 0.6k, l = 0.9k, l = k + 1

• How many non-zero rows and columns does the final array have?

12. Suppose that a column of A contains exactly three 1’s and that A
has X1 solons. After deleting the solons, what is the probability that
the column now contains two 1’s?

13. Suppose A has X1 solons, X2 colons, and X3 columns with exactly
three 1’s. If we remove the colons and then the solons, the columns
with exactly three 1’s can remain unchanged, can become colons,
solons or empty. What is the expected number of each that will be
produced?
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14. Suppose A has X1 solons, X2 colons, and Xr columns with exactly
r 1’s. If we remove the colons and then the solons, the columns with
exactly r 1’s can become columns with s 1’s, 0 ≤ s ≤ r. What is the
expected number of each that will be produced?

15. Consider a stochastic model for the deletion of colons and solons along
the following lines: consider the random variable

X(t) = (X0(t), X1(t), X2(t), . . . ),

where Xi(t) is the number of columns containing exactly i 1’s after t
rounds of deletions of solons and colons. More precisely, X(t− 1) is
the number before the tth round of deletions: in round t, remove all
colons (by replacing colon-rows with their sum), and then remove all
solons. Now update X(t). Develop heuristics (by making reasonable
assumptions where necessary) for the dynamics of X(t).

16. Explain the seemingly paradoxical fact that increasing the number
of columns in A decreases the size of the final non-zero array after
iterated deletions. For example, the values in the table are typical.
Each row is the result of iterated deletions of solons and colons for
a random array A with αj = 0.72/j. The final size is the number of
non-zero rows and columns.

Initial size Final size
10000× 10000 4700× 2300
10000× 15000 2250× 1300
10000× 20000 800× 480
10000× 25000 300× 180
10000× 30000 150× 100
10000× 35000 100× 50
10000× 40000 47× 22
10000× 45000 38× 20

7 Exercises for Chapter 7

1. Give a direct proof of the Wallis’ formula∫ ∞

0

dx

(x2 + 1)m+1
=

π

22m+1

(
2m
m

)
. (9.29)

Hint. Convert the integral into a value of the beta function

B(x, y) =
∫ 1

0

tx−1(1− t)y−1 dt. (9.30)
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The value Γ(1/2) =
√
π can be obtained directly from Mathematica

or you can reduce it to a well-known evaluation.

Generalize the previous argument to obtain the value∫ ∞

0

dx

(x4 + 1)m+1
=

π

m! 22m+3/2

∞∏
k=1

(4k − 1). (9.31)

2. In the evaluation of the quartic integral N0,4(0;m) one can prove by
completely elementary means that the polynomial Pm in (7.80) is also
given by

Pm(a) =
m∑
j=0

(
2m+ 1

2j

)
(a+ 1)j (9.32)

×
m−j∑
k=0

(
m− j
k

)(
2(m− k)
m− k

)
2−3(m−k)(a− 1)m−k−j .

Prove that these two forms coincide.

Compute the value of Pm(1) using both forms of Pm to produce

m∑
k=0

2−2k

(
2k
k

)(
2m− k
m

)
=

m∑
k=0

2−2k

(
2k
k

)(
2m+ 1

2k

)
.(9.33)

Mathematica converts this identity into

− 22m+1
√
π

Γ(−1/2− 2m) Γ(2m+ 2)
=

22m+1 Γ(3/2 + 2m)√
π Γ(2m+ 2)

. (9.34)

Use elementary properties of the gamma function to check this di-
rectly.

Use the WZ-method to prove (9.33). Check that both sides satisfy
the recursion

(2m+ 3)(2m+ 2)f(m+ 1) = (4m+ 5)(4m+ 3)f(m).(9.35)

It would be interesting to provide a direct proof of (9.33).

3. The study of 2-adic properties of the coefficients appearing in the
quartic integral requires an elementary fact of binomial coefficients:
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Fact. The central binomial coefficient

Cm :=
(

2m
m

)
(9.36)

is even. Moreover 1
2Cm is odd if and only if m is a power of 2. This

exercise outlines a new proof. The exact power of 2 that divides m
is denoted by ν2(m).

a) Prove that m ≥ ν2(m!). Hint. Use (7.89).

b) Check that ν2((2n)!) = 2n − 1. Now let a be the largest integer
such that m = 2a + b, then

ν2(m!) = ν2((2a)!) + ν2(b!). (9.37)

c) To conclude, check that

ν2(Cm) = 2a + b− ν2((2a + b)!) > 1. (9.38)

4. The polynomial 22mPm(a) has positive integer coefficients. It seems
to have many interesting properties when considered modulo a prime
p. Use a symbolic language to explore them. You can report your
results to vhm@math.tulane.edu

5. The integers

bl,m =
m∑
k=l

2k
(

2m− 2k
m− k

)(
m+ k

m

)(
k

l

)
(9.39)

appear in the polynomial Pm as

Pm(a) = 2−2m
m∑
l=0

bl,ma
l. (9.40)

The sequence {bl,m : 0 ≤ l ≤ m} is known to be unimodal. See [35]
for a proof. We have conjectured that this sequence is logconcave.
Use the WZ-method to check that bl,m satisfies

bl+1,m =
2m+ 1
l + 1

bl,m −
(m+ l)(m+ 1− l)

l(l + 1)
bl−1,m. (9.41)

Therefore the sequence is logconcave provided

(m+l)(m+1−l)b2l−1,m+l(l+1)b2l,m−l(2m+1)bl−1,mbl,m ≥ 0. (9.42)
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Prove that the left-hand side attains its minimum at l = m with value
22mm(m+ 1)

(
2m
m

)2
. We cannot do this part.

A generalization. The coefficients {bl,m} seem to have a property
much stronger than logconcavity. Introduce the operator L on the
space of sequences, via

L (al) := a2
l − al−1al+1. (9.43)

Therefore {al} is logconcave if L(al) is nonnegative. We say that {al}
is r-logconcave if L(k) (al) ≥ 0 for 0 ≤ k ≤ r. The sequence {al} is
∞-logconcave if it is r-logconcave for every r ∈ N.

Conjecture 7.1. For each m ∈ N, the sequence {bl,m : 0 ≤ l ≤ m}
is ∞-logconcave.

The binomial coefficients is the canonical sequence on which these
issues are tested. The solution of the next conjecture should provide
guiding principles on how to approach Conjecture 7.1.

Conjecture 7.2. For m ∈ N fixed, the sequence of binomial coeffi-
cients {

(
m
l

)
} is ∞-logconcave.

A direct calculation proves the existence of rational functions Rr(m, l)
such that

L(r)

(
m

l

)
=
(
m

l

)2r

Rr(m, l). (9.44)

Moreover Rr satisfy the recurrence

Rr+1(m, l) = R2
r(m, l)−

[
l(m− l)

(l + 1)(m− l + 1)

]2r

×Rr(m, l−1)Rr(m, l+1).

Therefore we only need to prove that Rr(m, l) ≥ 0. This could be
difficult.

6. The integral N0,4(a;m) appeared in a most intriguing edxpansion.
The main result of [37] is that√

a+
√

1 + c =
√
a+ 1 +

1
π
√

2

∞∑
k=1

(−1)k−1

k
N0,4(a; k − 1)ck.

The proof employ Ramanujan’s Master Theorem:
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Theorem 7.3. Suppose F has a Taylor expansion around c = 0 of
the form

F (c) =
∞∑
k=0

(−1)k

k!
ϕ(k)ck. (9.45)

Then, the moments of F , defined by

Mn =
∫ ∞

0

cm−1F (c) dc, (9.46)

can be computed via Mn = Γ(m)ϕ(−m).

Our expansion comes from the value∫ ∞

0

dx

bx4 + 2ax2 + 1
=

π

2
√

2
1√

a+
√
b
. (9.47)

This explains the appearance of the double square root.

It would be interesting to provide a different type of proof. The reader
should first use a symbolic language to find a closed-form expression
for the coefficients in√

b+
√
a+
√

1 + c =
∞∑
k=0

ρk(a, b)ck. (9.48)

The polynomials
P ∗k (a, b) = bkPk

(a
b

)
(9.49)

will play a role in this expression. The polynomials P ∗k (a, b) are the
homogenization of Pk(a).

7. Define the function

el(m) =
(m− l)!l!m!
(m+ l)!2m

bl,m (9.50)

where bl,m are the integers defined in Exercise 5. Use the recurrence
for bl,m to check that

Qm−j(m) = em−j

(m
2

)
, (9.51)

for j indepedent of m, is a polynomial in m. Confirm that Qm−j is
of degree j. For example Qm−3(m) = m3 + 2m + 3. Compute the
value of Qm−j(−1) and check that m+1 divides Qm−j(m) for j odd.
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8. The function

jumpi(j) = ν2(i+ j)− ν2(i), i, j ∈ N, (9.52)

seems to appear in the description of the 2-adic values of the integers
bl,m in Exercise 5. The index i is fixed and the word seems is to
be taken as ’we have a conjecture, that we are not ready to make
public’. Use a symbolic language to generate interesting conjectures
about jumpi.

9. The integral 4.351 of Gradshteyn and Rhyzik [124] states that∫ 1

0

(1− x)e−x lnx dx =
1− e
e

. (9.53)

Define the function

qn =
∫ 1

0

xne−x lnx dx+ n! (γ + Γ(0, 1)) , (9.54)

where

Γ(a, z) =
∫ ∞

z

ta−1e−t dt (9.55)

is the incomplete gamma function and γ is the Euler’s constant

γ = lim
n→∞

1 +
1
2

+
1
3

+ · · · 1
n
− lnn. (9.56)

Explore the sequences of positive integers an, bn defined by

qn = an − bne−1. (9.57)

Mathematica yields the first few values

a1 = 1 b1 = 1
a2 = 3 b2 = 4
a3 = 11 b3 = 17
a4 = 50 b4 = 84
a5 = 274 b4 = 485

In particular develop recurrences, explore divisibility properties, ex-
amine their growth, and so on.



i
i

i
i

i
i

i
i

248 Chapter 9. Exercises

10. Study the integral

In =
∫ 1

0

(1− x)n dx
(1 + x2) lnx

. (9.58)

Use a symbolic language to check that

In = ln an + bn lnπ + cn ln Γ( 1
4 ) + dn ln Γ( 3

4 ), (9.59)

for an ∈ Q and integers bn, cn, dn. Observe that cn = −dn and that
c4n+2 = d4n+2 = 0. Explain this.

11. Changes of variables are a powerful tool for the evaluation of definite
integral. Sometimes they produce unexpected results. One of them
is illustrated in this exercise.

a) Let R be a rational function with real coefficients. Assume that
the integral

I =
∫ ∞

−∞
R(x) dx (9.60)

is convergent. Introduce the change of variables

y =
x2 − 1

2x
(9.61)

to obtain

I =
∫ ∞

−∞
R1(y)dy (9.62)

where

R1(y) = R(y−
√
y2 − 1)

(
1− y√

y2 + 1

)
+R(y+

√
y2 − 1)

(
1 +

y√
y2 + 1

)
.

(9.63)
Check that R1 is again a rational function. The degree of R1 is at
most the degree of R.

b) Discuss the result of part a) in the special case

R(x) =
1

ax2 + bx+ c
. (9.64)

The convergence of the integral requires that the discriminant

D(a, b, c) := b2 − 4ac (9.65)



i
i

i
i

i
i

i
i

7. Exercises for Chapter 7 249

be negative. Conclude that∫ ∞

−∞

dx

ax2 + bx+ c
=

∫ ∞

−∞

dx

a1x2 + b1x+ c1
(9.66)

where

a1 =
2ac
a+ c

(9.67)

b1 = −b(a− c)
a+ c

c1 =
(a+ c)2 − b2

a+ c
.

This is the rational version of the classical elliptic Landen transfor-
mation: the elliptic integral

G(a, b) =
∫ π/2

0

dθ√
a2 cos2 θ + b2 sin2 θ

(9.68)

is invariant under the transformation

a1 =
a+ b

2
and b1 =

√
ab. (9.69)

c) Check that the discriminant D is preserved by (9.67), that is,
D(a1, b1, c1) = D(a, b, c).

d) Iterate (9.67) to produce a sequence (an, bn, cn) such that the
quadratic integral is preserved. Prove, or convince yourself that, there
exists a number L such that

an → L, L, bn → 0, cn → L. (9.70)

Use the invariance of the integral to conclude that

I =
π

L
. (9.71)

This allows you to evaluate the integral I by computing the iterates
of (9.67).

e) Use a symbolic language to develop transformations for the integral

U6 :=
∫ ∞

0

cx4 + dx2 + e

x6 + ax4 + bx2 + 1
. (9.72)
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The denominator of the integrand has been normalized to be monic
and have constant term 1. This was the original integral discussed in
[38]. The iteration of this transformation appears in [73].

The classical elliptic Landen transformation is at the center of the
arithmetic geometric mean (AGM). Many good things have come
from here. We expect the same to happen with these rational ver-
sions.

The rational Landen transformations were developed originally in [38]
and the details of the example discussed in this exercise appear in
[173, 174]. The reader will find in [46] and [176] general information
about the AGM.

8 Exercises for Chapter 8

1. Computing values of W(a, b, c).

(a) For r+s+t = 6 the only terms we need to consider are ζ(6), ζ2(3)
since ζ(6), ζ(4) ζ(2) and ζ3(2) are all rational multiples of π6. We
recovered

W(3, 2, 1) =
∫ 1

0

Li3 (x) Li2 (x)
x

dx =
1
2
ζ2 (3) ,

consistent with the equation below (8.20). Find all weight six
and weight seven evaluations.

(b) At weight eight one irreducible must be introduced, say ζ(6, 2).

2. Prove the inequalities given in the preparatory Lemma 6.1 used for
Hilbert’s inequality of Theorem 6.2.

3. Show, as outlined in the text, that the constant in Hardy’s inequality
given in Theorem 8.10 is best possible.

4. Show that σn := 2
π

∫∞
0

sincn is strictly decreasing. Aliev [6] uses this
among other tools to show that for any nonzero a in Zn, there exist
linearly independent vectors (xk) in Zn with 〈a, xk〉 = 0 such that

‖x1‖‖x2‖ · · · ‖xn‖ <
‖a‖
σn

.
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5. Ramanujan’s AGM continued fraction is the object

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + ...

,

certainly valid for a, b, η > 0.

Our discussion ofRη follows [56, 57, 45]. It enjoys attractive algebraic
properties such as a striking arithmetic-geometric mean relation

Rη
(
a+ b

2
,
√
ab

)
=
Rη(a, b) +Rη(b, a)

2
(9.73)

and has elegant links with elliptic-function theory [45]. We may re-
strict attention to η = 1, since Rη(a, b) = R1(a/η, b/η). Now R1 is
far from easy to compute naively.

(a) Indeed, inspection of R1 yields the reduced continued fraction
form:

R1(a, b) =
a

[c0; c1, c2, c3, . . . ]

:=
c

c0 +
1

c1 +
1

c2 +
1

c3 + ...

where the qi are all positive real numbers.

(b) Show that cn satisfies:

cn =
n!2

(n/2)!4
4−n

bn

an
∼ 2

π n
bn

an
.

for even n, while for odd n

cn =
((n− 1)/2!)4

n!2
4n−1 a

n−1

bn+1
∼ π

2 abn
an

bn
.

This representation leads immediately to a proof that for any
positive real pair a, b the fraction R1(a, b) converges. Indeed, by
the Seidel-Stern theorem, [56, 57], a reduced continued fraction



i
i

i
i

i
i

i
i

252 Chapter 9. Exercises

converges iff
∑
ci diverges. In our case, such divergence is evi-

dent for every choice of real a, b > 0. Note for a = b, divergence
of
∑
ci is only logarithmic hence and somewhat surprisingly this

is the hardest case to compute.

(c) There are, however, beautiful numerical series involving the com-
plete elliptic integral

K(k) =
∫ π/2

0

1√
1− k2 sin2 θ

dθ.

Below we write K := K(k), K′ := K(k′) with k′ :=
√

1− k2.
For 0 < b < a and k := b/a we have

R1(a, b) =
πaK

2

∑
n∈Z

sech
(
nπK′

K

)
K2 + π2a2n2

. (9.74)

Correspondingly, for 0 < a < b and k := a/b we have

R1(a, b) = 2πbK
∑

n∈Z,odd

sech
(
nπ K′

2K

)
4K2 + π2b2n2

. (9.75)

Since K is fast computable—and well implemented in Maple and
Mathematica—for a and b not too close these formulae are very
effective. Moreover, Poisson transformation, for 0 < b < a,
yields

R1(a, b) = R1

( πa
2K′ ,

πa

2K′

)
+

π

cos K′

a

1
e2K/a − 1

+ 8πaK′
∑

0<d∈Z,odd

(−1)(d−1)/2

4K′2 − π2d2a2

1
eπdK/K′ − 1

Thus, once we obtain an effective formula for R(a) := R1(a, a)
we can compute R1 for all a, b > 0 since Ramanujan’s identity
(9.73) allows us to compute only with a > b > 0.
This is the gist of the next exercise:

6. Closed forms for R. By viewing (9.74) as a Riemann sum as
b→ a−, prove that for all a > 0

R(a) =
∫ ∞

0

sech
(
π x
2 a

)
1 + x2

dx



i
i

i
i

i
i

i
i

8. Exercises for Chapter 8 253

(a) Derive that

R(a) = 2 a
∞∑
k=1

(−1)k+1

1 + (2 k − 1) a

=
1
2

(
ψ

(
3
4

+
1
4a

)
− ψ

(
1
4

+
1
4a

))

=
2a

1 + a
2F1

(
1
2a

+
1
2
, 1;

1
2a

+
3
2
;−1

)

= 2
∫ 1

0

t1/a

1 + t2
dt.

(b) Conclude that

R(a) =
∫ ∞

0

e−x/a sech(x) dx.

(c) Show that

R(a) =
2a

1 + a
−R

(
a

1 + 2a

)
.

(d) Determine the value of R(n) for n = 1, 2, 3, . . . or even for n
rational. For example, R(1) = log 2, R(3) = π/

√
3 − log 2 and

R(3/2) = π +
√

3 log(2 −
√

3) . No closed form is known for
R∞(a, b) when a 6= b.

7. The values of ζ(2, 1), ζ(2, 1), ζ(2, 1), and ζ(2, 1) all reduce to sums of
products of one dimensional (alternating) zeta functions. Thus, the
only possible basis elements are ζ(3) and ζ(2) log(2). Hence, recover

ζ(2, 1) = ζ(3) ζ(2, 1) =
1
8
ζ(3)

ζ(2, 1) = ζ(3)− 3
2
ζ(2) log(2),

ζ(2, 1) =
3
2
ζ(2) log(2)− 13

8
ζ(3).

8. Uses of the Dilogarithm and Trilogarithm. We describe mate-
rial taken from [48].

(a) Consider the power series

J(x) := ζx(2, 1) =
∑

n>k>0

xn

n2k
, 0 ≤ x ≤ 1.
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and show that

J(x) =
∫ x

0

dt

t

∫ t

0

du

1− u

∫ v

0

dv

1− v
=
∫ x

0

log2(1− t)
2t

dt.

(b) Maple readily evaluates∫ x

0

log2(1− t)
2t

dt = ζ(3) +
1
2

log2(1− x) log(x) (9.76)

+ log(1− x)Li2(1− x)− Li3(1− x)

where Lis(x) :=
∑∞
n=1 x

n/ns is the classical polylogarithm.
(c) Verify (9.76) by differentiating both sides by hand, and checking

that (9.76) holds as x→ 0+. Thus, deduce

J(x) = ζ(3) +
1
2

log2(1− x) log(x) + log(1− x)Li2(1− x)− Li3(1− x).

Let x→ 1− to prove (??).
(d) In Ramanujan’s Notebooks, we also find that

J(−z) + J(−1/z) = −1
6

log3 z − Li2(−z) log z + (9.77)

Li3(−z) + ζ(3)

and

J(1− z) =
1
2

log2 z log(z − 1)− 1
3

log3 z (9.78)

−Li2(1/z) log z − Li3(1/z) + ζ(3).

(e) Put z = 1 in (9.77) and employ the well-known dilogarithm
evaluation

Li2(−1) =
∞∑
n=1

(−1)n

n2
= −π

2

12

to obtain (9.10).
(f) Put z = 2 in (9.78) and employ Euler’s dilogarithm evaluation

Li2

(
1
2

)
=

∞∑
n=1

1
n2 2n

=
π2

12
− 1

2
log2 2

along with Landen’s trilogarithm evaluation (see Lewin)

Li3

(
1
2

)
=

∞∑
n=1

1
n3 2n

=
7
8
ζ(3)− π2

12
log 2 +

1
6

log3 2

to obtain (9.10) yet again.
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(g) These evaluations follow respectively from the functional equa-
tions

Li2(x) + Li2(1− x) = ζ(2) + log(x) log(1− x) (9.79)

and

Li3(x) + Li3(1− x) + Li3(x/(x− 1)) (9.80)

= ζ(3)− 1
2

log(x) log2(1− x) + ζ(2) log(1− x) +
1
6

log3(1− x)

and prove both of these by symbolically determining that they
have equal derivatives on both sides.

(h) Once the component functions in (9.79), (9.80), or (9.13) are
known, the coefficients can be deduced by computing each term
to high precision with a common transcendental value of x and
employing a linear relations finding algorithm. This is also an
excellent way to ‘error-correct’

9. AMM Problem 11115, November 2004. Evaluate the limit of

Em :=

(
m∑
k=1

1
k

)2

−
m∑
k=1

∑max(k,m−k)
j=1 1/j

k
,

as m goes to ∞.

(a) First, show the limit exists.
Hint. Exhibit Em as a double Riemann sum for the integral
following:

Em =
1
m

m∑
k=1

1
m

∑m
1+max(k,m−k)

1
j/m

k/m

which converges to∫ 1

0

1
x

∫ 1

(1−x)∨x

1
y
dy dx = −

∫ 1/2

0

ln (1− x)
(1− x)

dx

x
= 0.8224670336 . . . .

We note that the ‘identify’ function in Maple will identify the
constant from the numeric value of the integral: 0.8224670336 . . ..
This is much more difficult from the original sum where 10, 000
terms only provides 0.82236685 . . . .
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(b)

−
∫ 1/2

0

ln (1− x)
(1− x)

dx

x
=
π2

12
,

as is known to both Maple and Mathematica and can be ob-
tained from the value of dilogarithm at 1/2, or otherwise. In-
deed, with the assumption that 0 < t < 1, Maple returns

−
∫ t

0

ln (1− x)
(1− x)

dx

x
=

1
2

ln2 (1− t) + dilog (1− t) ,

as differentiation yet again confirms. (Note Maple uses dilog(x) =
Li2(x).) Now use (f) of the previous exercise.

(c) Evaluate
∞∑
n=1

Hn

n 2n
and

∞∑
n=1

Hn−1

n 2n
,

with Hn := 1 + 1/2 + · · · 1/n.

10. Some Ising Integrals. Define

In :=
∫ ∞

0

(∏
n≥k>j≥1

uk−uj

uk+uj

)2

(
∑n
j=1 uj + 1/uj)2

du1

u1
. . .

dun
un

.

(a) Use the symmetry of the In integrands to reduce to the simplex
where uk > uk+1 and then use the change of variables uk :=∏k
i=1 ti to represent the integral as

In = 2
∫ 1

0

ιn dt2 dt3 · · · dtn

with

ιn(t2, t3 . . . , tn) := n!

 ∏
n≥k>j≥1

uk/uj − 1
uk/uj + 1

2

1
(1 +

∑n
k=2 wk)(1 +

∑n
k=2 vk)

where

wk :=
k∏
i=2

ti, vk :=
n∏
i=k

ti,

since the integral in t1 = u1 is now easy to obtain.
(b) Determine that ι1 = 1 and ι2 = 2! (t2 − 1)2 / (t2 + 1)4 while

ι3 = 3!
(t2 − 1)2 (t2t3 − 1)2 (t3 − 1)2

(t2 + 1)2 (t2t3 + 1)2 (t3 + 1)2 (t2 + t2t3 + 1) (t2t3 + t3 + 1)
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(c) Hence,

I2 = 4
∫ 1

0

(x− 1)2

(x+ 1)4
dx =

1
6

I3 = 24
∫ 1

0

∫ x

0

ι3(x, y) dx dy,

which integral Maple can reduce to

1 + ζ(2)− 27
8
L−3(2),

(most easily from the same integral over the positive orthant
which is 6 times the integral on the square!) The code:

> p:=(x-1)^2*(x-y)^2*(y-1)^2/(x+1)^2/(x+y)^2/(y+1)^2/(1+y+x)/(y+x+x*y):
> Int(Int(p, x = 0 .. infinity),y = 0 .. infinity): evalc(value(%)));

returns
18 idilog

(
1/2− 1/2 i

√
3
)√

3− 18 idilog
(
1/2 + 1/2 i

√
3
)√

3 + 24 + 4π2.

The value of I4 is known to be −1/6+4π2/9+7/2 ζ(3) but the status
of higher values is open, [220].

11. Levy Constants. [114] Let pn/qn be the n-th convergent of a num-
ber α > 0. Levy showed in 1929 that λ(α) := limn→∞

log qn

n exists
and is a constant, λ, for almost all irrationals. It is also known that
λ(β) exists for all quadratic irrationals β, and is dense in [logG,∞]
where G is the golden mean [232].

(a) Numerically explore the constant and attempt to identify λ nu-
merically and then symbolically.

(b) Explore whether either π or e appears to behave ‘normally’.

(c) For a quadratic β with purely-periodic part fraction [b1, b2, . . . bN ]
show that

λ(β) =
log σ(BN )

N

where σ denotes the spectral radius and BN is the matrix

N∏
k=1

[
bk 1

1 0

]
.

Hint. λ ≈ 1.1865691104156.
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9 Additional Exercises

We collect various additional examples and exercises. We first solve some
recent Monthly Problems. In each case a few lines of computer algebra code
either provides the solution or at least confirms it.

1. AMM Problem 11148, April 2005. Show that∫ ∞

0

(x8 − 4x6 + 9x4 − 5x2 + 1) dx
x12 − 10x10 + 37x8 − 42x6 + 26x4 − 8x2 + 1

=
π

2
.

Solution.

(a) For convenience, first prove the following lemma.

Lemma 9.1. Let C be a positively-oriented simple closed curve
containing n distinct complex numbers a1, a2, . . . , an.
Let Q(z) :=

∏n
k=1(z − ak). Then∫

C

zm

Q(z)
dz =

{
0, m = 0, 1, . . . , n− 2

2πi, m = n− 1

(b) Let I denote the integral. A partial fraction decomposition
yields

I =
∫ ∞

0

[
(1 + x)2 dx

2(x6 + 4x5 + 3x4 + 4x3 − 2x2 − 2x+ 1)
(9.81)

+
(1− x)2 dx

2(x6 − 4x5 + 3x4 − 4x3 − 2x2 + 2x+ 1)

]
=

∫ ∞

−∞

(1− x)2 dx
2(x6 − 4x5 + 3x4 − 4x3 − 2x2 + 2x+ 1)

=
∫ ∞

−∞

y2 dy

2(y6 + 2y5 − 2y4 − 4y3 + 3y2 + 4y + 1)

=
∫ ∞

−∞

[
(−i− u+ iu2) du

4(u3 + u2 + iu2 − 2u+ iu− 1)
+

(i− u− iu2) du
4(u3 + u2 − iu2 − 2u− iu− 1)

]
.

(c) Check that the roots of u3 + u2 + iu2 − 2u + iu − 1 are in the
lower half-plane, while those of u3 + u2 − iu2 − 2u− iu− 1 (its
complex conjugate) are in the upper half-plane. Denote these
latter roots as {αk}, k = 1, . . . , 3. Apply the lemma to (9.81)
over a standard half-circle contour integral to get

I = 2πi
(
− i

4

)
=
π

2
.
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All of this can be done entirely symbolically in a computer algebra
system such as Maple—indeed this is how we discovered the basis for
this proof. A generalization is straightforward.

2. Prove that

Theorem 9.2. Let q(x) = xn+ cn−1x
n−1 + · · ·+ c1x+ c0, ck ∈ C, be

a polynomial whose roots all lie in the upper half-plane, and p(x) =
−i xn−1 + dn−2x

n−2 + · · ·+ d1x+ d0, dk ∈ C. Then∫ ∞

−∞
Re
(
p(x)
q(x)

)
= π.

There are other like generalizations.

3. AMM Problem 11113, November 2004. Evaluate

Ik(a, b) :=
∫ ∞

0

∫ ∞

0

e−k
√
x2+y2 sin (ax) sin (by)√

x2 + y2 xy
dx dy

in closed form for a, b, k > 0. Solution. Since Ik(a, b) = k I1(a/k, b/k),
as a simple change of variables shows, we study only I(a, b) := I1(a, b).
The desired formula is

I(a, b) =
π b

4
ln
(
b2 + 1

)
+
π a

4
ln
(
a2 + 1

)
− π b

2
ln
(√

a2 + 1 + b2 − a
)
− π a

2
ln
(√

a2 + 1 + b2 − b
)

− π

2
arctan

(
ab√

a2 + 1 + b2

)
.

To prove this let

K(a, b) :=
d2I(a, b)
da db

.

Then a change to polar variables produces

K(a, b) =
π

2
√

1 + a2 + b2
.

Finally a careful integration produces the formula in (9.82). Having
found (9.82) it is easier to confirm it by (symbolic) differentiation on
observing that each term on the right vanishes when a = 0 or b = 0.

4. Solution to AMM Problem 11152, May 2005 Evaluate∫ 1

0

log (cos(πx/2))
x(1 + x)

dx.
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Solution. The answer is C := log2 2/2 − log(2) log(π). This value
may be obtained immediately by placing a Maple-induced 50-digit
approximation of the integral into the “Smart-Lookup” option of the
Inverse Symbolic Calculator.

Let I denote the integral. We again use the dilogarithm function
Li2(x) := −

∫ x
0

log(1 − z)/z dz, though only its simplest property
will be needed. Using the infinite product expansions for sin(x) and
cos(x), we have

I =
∫ 1

0

log(cos(πx/2))/x dx−
∫ 2

1

log(sin(πx/2))/x dx

= −
∫ 2

1

log(πx/2)/x dx

+
∞∑
k=1

[∫ 1

0

1
x

log
(

1− x2

(2k − 1)2

)
dx−

∫ 2

1

1
x

log
(

1− x2

4k2

)
dx

]

= C +
∞∑
k=1

∫ 1

0

log
(
1− x

2k−1

)
x

dx+
∫ 1

0

log
(
1 + x

2k−1

)
x

dx

−
∫ 2

1

log
(
1− x

2k

)
x

dx−
∫ 2

1

log
(
1 + x

2k

)
x

dx

]

= C +
∞∑
k=1

[
−Li2

(
1

2k − 1

)
− Li2

(
− 1

2k − 1

)
+Li2

(
1
k

)
− Li2

(
1
2k

)
+ Li2

(
−1
k

)
− Li2

(
− 1

2k

)]
= C.

The last equality, a telescoping collapse, is justified since Li2(x) =
x+O(x2) implies the sum is absolutely convergent.

Alternatively, one may rewrite the telescoping argument as a change
of variables of the form∫ 2

1

log(cos(πx/2N ))/x dx =
∫ 21−N

2−N

log(cos(πt))/t dt.

5. AMM Problem 11001, August-September 2004. Evaluate∫ ∞

0

a arctan
(

b√
a2 + x2

)
1√

a2 + x2
dx (9.82)

for a, b > 0.
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Solution. An answer is∫ ∞

0

a arctan
(

b√
a2 + x2

)
1√

a2 + x2
dx =

aπ

2

{
ln
(
b+

√
a2 + b2

)
− ln (a)

}
.

Indeed, making the two substitutions x → k t → k tan(s), where
k := a/b, in (9.82) shows it suffices to establish that∫ 1/2π

0

sec (s) arctan
(

k

sec (s)

)
ds =

π

2
ln
(
k +

√
k2 + 1

)
. (9.83)

In turn, differentiation of (9.83) with respect to k, yields

π√
1 + k2

=
π√

1 + k2
.

Since both sides of (9.83) are zero when k = 0, an appeal to the
fundamental theorem of calculus ends the argument.

6. AMM Problem 11159, May 2005. For |a| < π/2, evaluate in
closed form

I(a) :=
∫ π/2

0

∫ π/2

0

cos s ds dt
cos(a cos s cos t)

.

Hint. The series

secx =
∞∑
n=0

(−1)nE2n

(2n)!
x2n,

wherein E2n are the even Euler numbers, converges for |x| < π/2.

[The answer is π/(2a) log(sec a+ tan a).]

Solution. (Due to David Bradley) Expand secant as a Maclaurin
series in even powers of a:

sec(a cosψ cosϕ) =
∞∑
n=0

(−1)nE2n

(2n)!
a2n cos2n ψ cos2n ϕ. (9.84)

Let 0 < r < 1. We temporarily strengthen the restriction on a to
|a| ≤ rπ/2. The coefficients E2n in (9.84) are the Euler numbers
1,−1, 5,−61, . . . and satisfy an inequality of the form

|E2n|
(2n)!

< C

(
2
π

)2n+1

, n ≥ 0,

for C a constant independent of n ( one can take C = 2) Thus, the
series in (9.84) converges absolutely and uniformly in [−rπ/2, rπ/2].
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Substitute into the integral and interchange summation and integra-
tion (as justified by uniform convergence) to get

I(a) =
∞∑
n=0

(−1)nE2n

(2n)!
a2n

∫ π/2

0

cos2n+1 ψ dψ

∫ π/2

0

cos2n ϕdϕ.

In light of the known evaluations [124, 3.621]∫ π/2

0

cos2n+1 ψ dψ =
2 · 4 · · · (2n)

1 · 3 · · · (2n+ 1)

and ∫ π/2

0

cos2n ϕdϕ =
1 · 3 · · · (2n− 1)

2 · 4 · · · (2n)
π

2
,

we have

I(a) =
π

2

∞∑
n=0

(−1)nE2n

(2n)!
a2n

2n+ 1
.

Clearly I(0) = π/2. If 0 < |a| ≤ rπ/2, then interchange sum and
integral again:

I(a) =
π

2a

∞∑
n=0

(−1)nE2n

(2n)!

∫ a

0

t2n dt =
π

2a

∫ a

0

sec t dt =
π

2a
log(sec a+tan a).

(9.85)
Since 0 < r < 1 is arbitrary, (9.85) is actually valid for 0 < |a| < π/2.

2

What is perplexing here is that we need to know secant has a power
series on (−π/2, π/2) but nothing else!

7. AMM Problem 11164, May 2005. Evaluate

n∑
k=1

(−1)k+1

(
n

k

) k∑
i=1

∑i
j=1 1/j
i

for n = 1, 2, . . ..

Hint. Sum the first few terms.

8. Evaluate AnBn for n = 1, 2, . . . when

An :=
∫ ∞

−∞

sin (π x)
π x

n∏
k=1

(
1− x2

k2

)−1

dx
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Bn :=
∫ ∞

−∞

cos (π x)
π

n∏
k=1

(
1− x2

(k − 1/2)2

)−1

dx

Hint. Evaluate the first few terms.

9. Szegő curves. While the exponential has no zeroes, its partial Tay-
lor series at zero do. We wish to explore the zeroes of such partial
sums of the exponential: {sn(z)} where sn(z) :=

∑n
k=0 z

k/k! .

(a) Begin by computing and plotting the zeroes of sn for various
values of n as in Figure 9.3. Remarkably, the shape of the curves
appears very stable and regular. Indeed, doing the same for the
normalized curves as in Figure 9.4 strongly suggests there is a
limit curve.

Figure 9.3. The zeroes of sn for n = 50, 100, 200

Maple code to draw such zeros is simple:
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Figure 9.4. The zeroes of the normalized sn for n = 30, 60, 120

> draw:=(l,N)->complexplot([fsolve(l(N),x,complex)],
style=point,color=black):

> sn:=N->sum((N*x)^n/n!,n=1..N):draw(sn(50));

Figure 9.5. The Szegő curve for exp(z)

(b) In 1924, Szegő showed (with no such tools) that the zeros of the
normalized partial sums, sn(nz), of ez tended to the curve, now
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called the Szegő curve S, shown in Figure 9.5, where

S :=
{
z ∈ C : |ze1−z| = 1 and |z| ≤ 1

}
.

Via modern weighted potential theory, Pritzger and Varga [201]
recover these zero distribution results of Szegő, along with an
asymptotic formula for the weighted partial sums {e−nzsn(nz)}∞n=0.
They go on to show that G := Int S is the largest universal
domain such that the weighted polynomials e−nzPn(z) are dense
in the set of functions analytic in G. More generally, they show
that if f(z) is analytic in G and continuous on G with f(1) =
0, then there is a sequence of polynomials {Pn(z)}∞n=0, with
degPn ≤ n, such that

lim
n→∞

‖e−nzPn(z)− f(z)‖G = 0,

where ‖ ·‖G denotes the supremum norm on G. The reader may
wish to follow up by consulting Zemyan‘s recent article [?].

10. Clausen’s function and the figure-eight knot complement
volume. As discussed in [44], the volume of the figure-eight knot
complement, which we take to be defined by the log sine integral

V = −2
∫ π/3

0

log
(

2 sin
(
t

2

))
dt, (9.86)

is also given by ternary BBP formula

3
√

3
2

V =
∞∑
k=0

(
−1
27

)k ( 9
(6k + 1)2

− 9
(6k + 2)2

− 12
(6k + 3)2

− 3
(6k + 4)2

+
1

(6k + 5)2

)
. (9.87)

Recall that the Clausen function is

Cl2(θ) =
∑
n>0

sin(nθ)
n2

, (9.88)

which satisfies Cl2(π/2) = G. Requisite details about Clausen’s func-
tion are to be found in Lewin [167].

(a) Show that integration of (9.86) gives

V = i
{

Li2
(
e−iπ/3

)
− Li2

(
eiπ/3

)}
= 2 ImLi2

(
1 + i

√
3

2

)
= 2Cl2

(π
3

)
= 3Cl2

(
2π
3

)
.
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(b) Show that a hypergeometric equivalent formulation of (9.87) is

V√
3

?= 2F
(

1
6
,
1
6
, 1;

7
6
,
7
6
;
−1
27

)
− 1

2

(
1
3
,
1
3
, 1;

4
3
,
4
3
;
−1
27

)
− 8

27
F

(
1
2
,
1
2
, 1;

3
2

3
2
;
−1
27

)
− 1

24
F

(
2
3
,
2
3
, 1;

5
3
,
5
3
;
−1
27

)
+

2
225

F

(
5
6
,
5
6
, 1;

11
6
,
11
6

;
−1
27

)
.

With some effort this is expressible in dilogarithms leading to

V
?= Im

{
4 Li2

(
i
√

3
3

)
− 8

3
Li2

(
i
√

3
9

)

+Li2

(
1
2
− i
√

3
6

)
+ 8 Li2

(
−1

2
+
i
√

3
6

)}
.

(c) Now, Lewin in Equation (5.5) of [167] gives

Im Li2
(
reiθ

)
= ω log(r)+

1
2
Cl2 (2ω)−1

2
Cl2 (2ω + 2θ)+

1
2
Cl2 (2θ) ,

where ω = arctan(r sin θ/(1− r cos θ)). Using this, a proof that
(9.87) holds is reduced to showing that, with α = arctan(

√
3/9),

4 Cl2
(π

3

)
= 2Cl2 (2α) + Cl2 (π + 2α)− 3 Cl2

(
5
3
π + 2α

)
,

which is true by applying the two variable identities for Clausen’s
function given in Equations (4.61) and (4.63) of [167], with θ =
π/3.

11. The origin of formula (1.1). A much harder unproven identity is

7
√

7
4

L−7 (2) = 3 Cl2 (α)− 3 Cl2 (2α) + Cl2 (3α) (9.89)

with α = 2 arctan
(√

7
)
.

Show that (9.89) is equivalent to (1.1), indeed it is the form in which
the identity was originally found using PSLQ.

12. An extremal problem. For t > 0, a > 1, let

fa(t) := a−t + a−1/t,
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and set fa(0) := 1 (the limiting value). Show that

sup
t≥1

fa(t) = max
(

2
a
, 1
)
.

Hint. Since fa(t) = fa(1/t), and fa(t) is continuous on [0,∞) and
differentiable on (0,∞), it suffices to show that fa(t) has a unique
critical point (necessarily a minimum) in (0, 1). (See Figure 9.6.) For,
in that case fa(t) must assume its maximum value at the larger of
fa(0) = 1 and fa(1) = 2/a. Now the condition for a critical point
becomes a(t2−1)/2t = t and taking logs this is

(t2 − 1) log(a) = 2t log(t).

Substituting t =
√
u we see that it suffices to show that there is a

unique u ∈ (0, 1) satisfying

ga(u) := (u− 1) log(a) =
√
u log(u) =: h(u).

Figure 9.6. The function fa on [0, 1] for 1 < a < 2, a = 2, and a > 2.
Since ga(u) is affine, while h(u) is convex on [0, 1], and − log(a) =
ga(0) < h(0) = 0 = h(1) = ga(1), it follows that there is a unique
u ∈ (0, 1) such that ga(u) = h(u), as illustrated in Figure 9.7. 2
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Figure 9.7. The functions h and ga on [0, 1] for 1 < a < 2, a = 2, and a > 2.

13. Centrally symmetric polytopes, [26, p. 276]. No example is
known of a d-dimensional centrally symmetric polytope with fewer
than 3d faces. Can one exist?

14. Minkowski’s convex body theorem, [26, p. 295]. One of the most
beautiful and potent results relating geometry and number theory is
Minkowski’s theorem which asserts that in Rd a (compact) convex
body A must meet an integer lattice Λ as soon as volA > 2d det Λ.
(That volA ≥ 2d det Λ suffices in the compact case.)

(a) Establish Siegel’s result that

2d = volA+
4d

volA

∑
u∈Zd

∣∣∣∣∣
∫
A/2

exp {−2π i〈u, x〉}

∣∣∣∣∣
2

Hint. Again Fourier techniques are suggested. Use Parseval’s
formula applied to the function∑

u∈Zd

χu+A/2

(b) Deduce Minkowski’s theorem.
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(c) Show this fails for non-symmetric bodies and that it is bwst
possible (in 2 dimensions).

15. Inequalities for sinc integrals. Suppose that {an} is a sequence
of positive numbers. Let sn :=

∑n
k=1 ak and set

τn :=
∫ ∞

0

n∏
k=0

sinc(akx) dx.

Show that

(a)
0 < τn ≤

π

2 a0
,

with equality if n = 0, or if a0 ≥ sn when n ≥ 1.

(b) If an+1 ≤ a0 < sn with n ≥ 1, then

0 < τn+1 ≤ τn <
1
a0

π

2
.

(c) If a0 < sn0 with n0 ≥ 1, and
∑∞
k=0 a

2
k < ∞, then there is an

integer n1 ≥ n0 such that

τn ≥
∫ ∞

0

∞∏
k=0

sinc(akx) dx ≥
∫ ∞

0

∞∏
k=0

sinc2(akx) dx > 0

for all n ≥ n1.

Observe that applying the result to different permutations of the
parameters will in general yield different inequalities.

Proof (a). That τ0 = π/(2a0) is a standard result (proven e.g., by
contour integration or Fourier analysis with the integral in question
being improper). Assume therefore that n ≥ 1, and define the fol-
lowing convolutions

F0 :=
1
a0

√
π

2
χa0 , Fn := (

√
2π)1−nf1 ∗ f2 ∗ · · · ∗ fn,

where fn := 1
an

√
π
2χan

.

By induction, for n ≥ 1, Fn(x) is even, vanishes on (−∞,−sn) ∪
(sn,∞), and is positive on (−sn, sn).Moreover, Fn+1 = 1√

2π
Fn∗fn+1,

so that

Fn+1(x) =
1√
2π

∫ ∞

−∞
Fn(x−t)fn+1(t) dt =

1
2an+1

∫ x+an+1

x−an+1

Fn(u) du.
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Hence Fn+1(x) is absolutely continuous on (−∞,∞) and, for almost
all x ∈ (−∞,∞),

2an+1F
′
n+1(x) = Fn(x+ an+1)− Fn(x− an+1)

= Fn(x+ an+1)− Fn(an+1 − x).

Since (x + an+1) ≥ max{(x − an+1), (an+1 − x)} ≥ 0 when x > 0,
it follows that if Fn(x) is monotone non-increasing on (0,∞), then
F ′n+1(x) ≤ 0 for a.a. x ∈ (0,∞), and so Fn+1(x) is monotone non-
increasing on (0,∞). This monotonicity property of Fn on (0,∞) is
therefore established by induction for all n ≥ 1. Also Fn is the cosine
transform (FCT) of σn(x) :=

∏n
k=1 sinc(akx), and σn is the FCT

of Fn. Thus, all our functions and transforms are even and are in
L1(0,∞) ∩ L2(0,∞).

Hence, by Parseval’s theorem,

τn =
∫ ∞

0

Fn(x)F0(x) dx =
1
a0

√
π

2

∫ min(sn,a0)

0

Fn(x) dx. (9.90)

When a0 ≥ sn, the final term is equal to

1
a0

√
π

2

√
π

2
σn(0) =

1
a0

π

2

since σn(x) is continuous on (−∞,∞); and when a0 < sn, the term is
positive and less than π/(2a0) since Fn(x) is positive and continuous
for 0 < x < sn.

(b). Note again that Fn+1 = 1√
2π
Fn ∗ fn+1, and hence, for y > 0,

∫ y

0

Fn+1(x) dx =
1√
2π

∫ y

0

dx

∫ ∞

−∞
Fn(x− t)fn+1(t) dt

=
1

2an+1

∫ y

0

dx

∫ an+1

−an+1

Fn(x− t) dt

=
1

2an+1

∫ an+1

−an+1

dt

∫ y

0

Fn(x− t) dx

=
∫ y

0

Fn(u) du+
1

2an+1
(I1 + I2),

where

I1 :=
∫ an+1

−an+1

dt

∫ 0

−t
Fn(u) du and I2 :=

∫ an+1

−an+1

dt

∫ y−t

y

Fn(u) du.
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Now I1 = 0 since t 7→
∫ 0

−t Fn(u) du is odd, and for y ≥ an+1,

I2 =
∫ an+1

0

dt

∫ y−t

y

Fn(u) du+
∫ 0

−an+1

dt

∫ y−t

y

Fn(u) du

= −
∫ an+1

0

dt

∫ y

y−t
Fn(u) du+

∫ an+1

0

dt

∫ y+t

y

Fn(u) du

=
∫ an+1

0

dt

∫ y

y−t

(
Fn(u+ t)− Fn(u)

)
du ≤ 0

since Fn(u) is non-increasing for u ≥ y − t ≥ y − an+1 ≥ 0. Hence∫ y

0

Fn+1(x) dx ≤
∫ y

0

Fn(x) dx when an+1 ≤ y < sn. (9.91)

It follows from (9.90), and (9.91) with y = a0, that 0 < τn+1 ≤ τn if
an+1 ≤ a0 < sn.

(c). Let ρ(x) := limn→∞ σ2
n(x) =

∏∞
k=1 sinc2(akx) for x > 0. The

limit exists since 0 ≤ sinc2(akx) < 1, and there is a set A differing
from (0,∞) by a countable set such that 0 < sinc2(akx) < 1 whenever
x ∈ A and k = 1, 2, . . . . Now

sinc(akx) = 1− δk, where 0 ≤ δk
a2
k

→ x2

3
as k →∞,

so that
∑∞
k=1 δk < ∞, and hence, by standard theory of infinite

products, σ(x) := limn→∞ σn(x) exists and σ2(x) = ρ(x) > 0 for
x ∈ A. It follows, by part (b), that

τn ≥
∫ ∞

0

σ2
n(x) dx ≥

∫ ∞

0

ρ(x) dx > 0

for all n ≥ n1, where n1 ≥ n0 is an integer such that an+1 ≤ a0 for
all n ≥ n1. In addition, by dominated convergence,

lim
n→∞

τn =
∫ ∞

0

σ(x) dx ≥
∫ ∞

0

ρ(x) dx,

and we are done. 2

16. A discrete dynamical system. One of the advantages of a sym-
bolic computer package is how accessible it makes initial study of
discrete dynamical systems. Recall that a map is chaotic if (i) it
has a dense set of periodic orbits, (ii) exhibits sensitive dependence
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on initial conditions and (iii) is topologically transitive meaning that
orbits mix completely.

It is well known that ”period three implies chaos” for one dimensional
systems. In particular, Sharkovsky’s theorem given in [44, p. 79]
implies that a continuous self-map ϕ of the reals with a period-three
point will have periodic points of all orders.

The following example due to Marc Chamberland shows how com-
pletely this fails in R2. Consider the dynamics zn+1 := ϕ(zn) of the
map

(u, v) = ϕ(y, x2 − y2).

Show that

(a) all points in the open unit square are attracted to zero;

(b) there is a 3-cycle but no 2-cycle;

(c) there are divergent orbits.

It is instructive to plot the points for which the system appears to
converge as in Figure 9.8.

Figure 9.8. The region of convergence for ϕ
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17. Volume, surface area and ζ. Recall that the volume and surface
area of the ball in d-dimensional space are given by

V (d) :=
πd/2

Γ (d/2 + 1)
S(d) :=

2πd/2

Γ (d/2)
.

(a) Plot Vζ := V/ζ and Sζ := S/ζ.

(b) We observe, as Douglas S. Robertson did, that Sζ appears sym-
metric about z = 1/2. This is illustrated in Figure 9.9.

(c) Show that the symmetry

S(z)
ζ(z)

=
S(1− z)
ζ(1− z)

is equivalent to Riemann’s functional equation for ζ, namely

π−(1−z)/2Γ
(

1− z
2

)
ζ(1− z) = π−z/2Γ

(z
2

)
ζ(z)

(d) Use the duplication formula for Γ to derive a formula originally
conjectured by Euler

ζ(1− z) = 21−zπ−z cos
(z

2

)
Γ(z)ζ(z).

Figure 9.9. The symmetry of S/ζ

18. Evaluate
∞∑
k=1

∞∑
j=1

Hj (Hk+1 − 1)
kj (k + 1) (j + k)

,
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where as before Hk :=
∑k
i=1 1/i.

Hint. The answer is a combination of ζ(2), ζ(3), ζ(5), and ζ(2)ζ(3).

19. A multi-dimensional binomial series. We consider, following
Benoist Cloitre, the series

BN :=
∑

ni,n2,...,nN≥0

1(2 PN
i=1 niPN

i=1 ni

) .
By computing the first two values exactly

B1 :=
4
3

+
2
9
π√
3
, B2 := 2 +

4
9
π√
3

and the next two via PSLQ

B3 = 3 +
20
27

π√
3
, B4 =

40
9

+
280
243

π√
3

we discover that the values all appear to be of the form BN =
aN + bN π/

√
3 with well structured rational positive coordinates.

Given the binomial coefficients, it is reasonable to look for a two-term
recurrence. Again integer relation methods apply and we quickly
identify the first few terms of the recursion

3(n+ 1)Bn+2 − (7n+ 6)Bn+1 + 2(2n+ 1)Bn = 0. (9.92)

[It is advisable to limit the number of terms one must sum to obtain
sufficient digits of Bn.]

(a) Prove that (9.92) holds and so BN is of the conjectured form.

(b) Determine a closed form for BN .

(c) Explore

BN (r, s) :=

′∑
ni,n2,...,nN≥0

1

(
∑N
i=1 ni)r

(2 PN
i=1 niPN

i=1 ni

)s .
for r, s = 1, 2 . . . .

20. A Gaussian integer zeta function. Evaluate in closed form

ζG(N) :=

′∑
Z(i)

1
zN

=

′∑
m,n

1
(m+ i n)N



i
i

i
i

i
i

i
i

9. Additional Exercises 275

for positive, even integer N > 1. Here as always the ‘′’ denotes that
summation avoids the pole at 0.

Hint. This is implicitly covered in [45, pp. 167–170] and relies on
analysis of the Weierstrass ℘ function, see [3, Ch. 18]. We recall
that

℘(x) :=

′∑ 1
(2in+ 2im− x)2

− 1
(2in+ 2im)2

.

We then differentiate twice and extract the coefficients of ζG(2n).
For N divisible by four, the sum is actually is a rational multiple of
powers of the invariants

g2 = K

(
1√
2

)4

=
(

1
4
β

(
1
4

))4

,

and g3 = 0. This is the so called lemniscate case of ℘. Here β(x) :=
β(x, x) a central Beta-function.

(a) Show that the general formula for N ≥ 1 is

ζG(4N) = pN

{
2K

(
1/
√

2
)}4N

(4N − 1)
,

where p1 = 1/20 and

pN =
3
∑N−1
m=1 pm pN−m

(4N + 1)(2N − 3)
,

for N > 1. The next three values are p2 = 1/1200, p3 =
1/156000 and p4 = 1/21216000. The corresponding values of
qN := 16N pN are

4
5
,
16
75
,

128
4875

,
256

82875
.

Finally note that qN satisfies the same recursion. This leads to
the simple expression

ζG(4N) =
qN

4N − 1
K

(
1√
2

)4N

,

where q1 = 16/5, and for n > 1

qN =
3
∑N−1
m=1 qm qN−m

(4N + 1)(2N − 3)
.
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(b) Show that for N congruent to two mod four, the sum is

ζG(4N + 2) =

′∑
Z(i)

1
z4N+2

= 4 ζ(4N + 2),

since

2

′∑
m,n>0

1
z4N+2

=
∑
m,n>0

(m+ in)4n+2

(m2 + n2)4N+2
+
∑
m,n>0

(n+ im)4n+2

(m2 + n2)4N+2

∑
m,n>0

Re
(
(m+ in)4n+2 + (n+ im)4n+2

)
(m2 + n2)4N+2

= 0

as the terms cancel pairwise. If we observe that π2 = β(1/2)2

we may more uniformly write

ζG(4N) =
qN

(4N − 1)44N
β(1/4)4N ,

ζG(4N + 2) =
b4N+2 24N+1

(4N − 1)(4N + 2)!
β(1/2)4N+2,

where bN is the N−th Bernoulli number. By contrast, it is easily
seen that

ζG(2N + 1) = 0.

21. The generalized quantum sum is defined by

Y(a, b, c) :=
∑
′

1
(z − a)(z − b)(z − c)

with a,b,c fixed, not on the lattice. Show that Y has a formal power
series development in ζG(n) for even n, just by writing the summand
as

1/z3 (1+ a/z+ a2/z2 + ...)(1+ b/z+ b2/z2 + ...)(1+ c/z+ c2/z2 + ...)

This leads for |a|, |b|, |c| < 1 to

Y(a, b, c) =
∞∑
n=1

πn(a, b, c) ζG(2n+ 2)

where
πn(a, b, c) :=

∑
k1+k2+k3=n

ak1bk2ck3 .

In particular, πn(a, a, a) =
(
n
2

)
a3. There is a corresponding expan-

sion for more than three linear terms.
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22. A golden example. Evaluate the following sum:

(9.93)

Φ :=
∞∑
k=0

{
G2

(5k + 1)2
− G

(5k + 2)2
− G2

(5k + 3)2
+

G5

(5k + 4)2
+

2G5

(5k + 5)2

}
g5k

where g := (
√

5−1)/2 is the golden ration andG := (
√

5+1)/2 = g−1.

Hint. The answer, Φ = π2/50, was discovered empirically by Benoit
Cloitre using integer relation methods. In the irrational base g, the
constant Φ has digits independently computable since (9.93) gives an
identity of BBP type. (See [44, Chapter 4].)

(a) With computer algebra assistance, work backwards to needing
to show

Φ = Re Li2
(
2 cos(θ) eπ i θ

)
for θ := 2π/5, where again Li2(x) :=

∑∞
n=1 x

n/n2 is the diloga-
rithm.

(b) Show that or all real θ

∞∑
n=1

cos (nθ) (2 cos (θ))n

n2
=
(π

2
− θ
)2

.

This is equation (5.17) in Lewin [166] and is relatively easy to
obtain.

(c) Show that θ = 2π/5 makes 2 cos(θ) = (
√

5−1)/2 = g. Moreover
2 cos(nθ) takes the values 2, g,−1/g,−1/g, g modulo 5. Thus,
obtain (9.93).

(d) Any other rational multiple of π has a like form—nicest when
2 cos(nθ) is rational or quadratic. Thus,with θ := π/3, 2π/3 we
obtain, inter alia, an evaluation of ζ(2). With θ := 3π/8, 5π/12
obtain nice convergent identities.

23. The following evaluation is given in [141] and used in several inter-
esting applications.

Theorem 9.3. For 0 < a < b, if f is defined by the requirement that
f(x)a − f(x)b = xa − xb and f is decreasing, then

−
∫ 1

0

log f(x)
x

dx =
π2

3ab
, (9.94)
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Figure 9.10. The construction of f

The picture in Figure 9.10 shows how f is defined.

The proof is quite elaborate and relies on (i) a reduction to the case
b = 1, and (ii) application of the following identity after splitting the
integral in 9.94 at 1/(a+ 1).

(a) Prove that for 0 < x < 1/(a+ 1)

Ga(1− x) :=
∞∑
n=1

Γ((a+ 1)n)
Γ(an)

(x(1− x)a)n

(na)n!
= − log(1− x).

(b) We request a geometric proof of (9.94). We do not know one.

(c) The function f can be determined explicitly in some cases:

i. (b = 2a) f(x) = 3(1− xa)1/a.
ii. (b = 3a) f(x) = 3(−xa/2 +

√
4− 3x2a)1/a.

iii. (2b = 3a) f(x) = 3(−xa/2 + +
√
−3x2a + 2xa + 1)1/a.

24. Determine the limit of γn := n
∫ 1

0
tn−1 ((1 + t)/2)n dt, as n goes to

infinity.

Hint. It may help to show that the value γn = 2F1 (1,−n;n+ 1; 1/2) .

25. AMM Problem 11103, October 2004: a second proof. In the
Exercises for Chapter 1 we explored this problem. Show that for
positive integer n

21−n
n∑
k=1

(
n

2 k−1

)
2 k − 1

=
n∑
k=1

1
k
(
n
k

) .



i
i

i
i

i
i

i
i

9. Additional Exercises 279

(a) Use integer relation methods to predict the following recursion

(n+ 1)un − (2n+ 4)un+1 + (3n+ 4)un+2 = 0 (9.95)

for the hypergeometric sum on the right-hand side of the re-
quested identity.

(b) Use the Wilf-Zeilberger method to prove this.

(c) Prove that the left-hand series satisfies the same recursion (9.95)
and initial conditions and hence coincides with the right,

26. A difficult limit. This originates with Mike Hirschorn’s treatment
in [139] of a solution to AMM problem 10886.

Prove that

γn :=
1

2n
(
2n
n

) ∑n
k=0

(n
k)

n+k∑n
k=0 (−1)k (n

k)
n+k

converges as n goes to ∞ and determine the limit as follows:

(a) Compute enough terms to make plausible that the limit is 2/3—
with error roughly 2/(27n).

(b) Verify that also

γn = n 2−n
∫ 1

0

tn−1(1 + t)n dt.

(c) Show that

∞∑
n=0

γnx
n =

∫ 1

0

2(1 + t)x
(2− (t+ t2)x)2

dt ≥ x(3− x)
(1− x)(4− x)

. (9.96)

(d) Hence, show that γn ≥ 2/3 + 4−n/3.

(e) Use Wilf-Zeilberger methods to verify a third representation:

γn =
1(
2n
n

) ∑
k≥0

2−k
(

2n− 1− k
n− 1

)
.

(f) Finally, estimate that

γn ≤
1
2

+
2n

2n− 1

∑
k≥1

2−(2k+1) ≤ 2
3

+
6

2n− 1
.
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27. The number 1729 revisited. Famously, G.H. Hardy while visiting
Ramanujan in hospital remarked that his cab number 1729 was very
uninteresting. To which Ramanujan replied that it was very interest-
ing being the smallest number expressible as the sum of two integer
cubes in two distinct ways:

1729 = 103 + 93 = 123 + 1.

(a) Determine the second smallest number with this property, that
is, with r3(n) = 2.

(b) As Hirschorn [140] observes 1729 is also special in being a solu-
tion to n = x3 ± 1. Indeed, in the Lost Notebook Ramanujan
states that the recursion for un = (xn, yn, zn)

un+3 := 82un+2 + 82un+1 − un (9.97)

with initial conditions u1 := (9, 10, 12), u2 := (791, 812, 1010),
and u3 := (65601, 67402, 83802) solves

x3
n + y3

n − z3
n = (−1)n+1,

for all (positive and negative) integer n. Thus, we have infinitely
many near misses to Fermat’s equation. For example, u−1 =
(−2, 2, 1) and

x12 = 12247547739697622322431,

y12 = 12583657892407702716002,

and
z12 = 15645544827332108296610.

(c) There is a 3× 3 matrix M , with minimal polynomial 1− 82 t−
82 t2+t3 and determinant −1, such that un = M un−1. We have

M :=


63 68 −104

−80 −85 131

−64 −67 104

 with M−1 =


63 104 −68

64 104 −67

80 131 −85


(d) Try to prove that if a3+b3−c3 = ±1 then M(a, b, c) = (a′, b′, c′)

satisfies a′3 + b′3 − c′3 = ∓1.

(e) Failing that, begin with(
x2 + 9x− 1

)3
+
(
2x2 + 10

)3
=
(
x2 − 7x− 9

)3
+
(
2x2 + 4x+ 12

)3
.
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Now replace x by v/u, multiply by u6, and obtain the resulting
homogeneous identity(

10u2 + 2 v2
)3

+
(
9u2 + 7uv − v2

)3
=
(
12u2 + 4uv + 2 v2

)3
+
(
u2 − 9uv − v2

)3
.

(f) Check that the sequence s0 := 0, s1 := 1 and sn+1 := 9sn+sn−1

for all n > 1 satisfies s2n − 9snsn−1 − s2n−1 = (−1)n−1. Hence,

(9s2n + 7snsn−1 − s2n−1, 10s2n + 2s3n−1, 12s2n + 4snsn−1 + 2s2n−1)

parameterizes the sequence (un).

28. Integer relations as integer knapsack problems. An integer
knapsack problem is an integer programming problem with one con-
straint, such as

min
N∑
k=1

ωk subject to
N∑
k=1

ωkαk = β, ω1 ≥ 0, ω2 ≥ 0, . . . , ωN ≥ 0,

(9.98)

where the nonnegative weights ωk are required to be integers. If we
view β as a quantity we wish to express in terms of real (or vector)
quantities A := {α1, α2 . . . , αN}, then 9.98 will solve a positive inte-
ger relation problem. Since there are excellent integer programming
algorithms, it makes sense to investigate this as a tool in various
settings:

(a) When all signs are known as when one is checking a known
formula but has forgotten the exact constants, e.g., in Machin’s
formula

arctan (1) = ω1 arctan
(

1
5

)
− ω2 arctan

(
1

239

)
,

or Euler’s formula

arctan (1) = ω1 arctan
(

1
2

)
+ω2 arctan

(
1
5

)
+ω3 arctan

(
1
8

)
.

(b) When all signs are anticipated. This can also be something prov-
able. Indeed, for ζ(4N + 1), very pretty three term representa-
tions arise from a couple of PSLQ observations by Simon Plouffe.
For N = 1, 2, 3 . . .{

2− (−4)−N
} ∞∑
k=1

coth(kπ)
k4N+1

− (−4)−2N
∞∑
k=1

tanh(kπ)
k4N+1

= QN × π4N+1,
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where the quantity QN in (9.99) is an explicit rational:

QN :=
2N+1∑
k=0

B4N+2−2kB2k

(4N + 2− 2k)!(2k)!

{
(−1)(

k
2) (−4)N2k + (−4)k

}
.

On substituting

tanh(x) = 1− 2
exp(2x) + 1

and coth(x) = 1 +
2

exp(2x)− 1

one may solve for ζ(4N + 1). We list two examples:

ζ(5) =
1

294
π5 − 2

35

∞∑
k=1

1
(1 + e2kπ)k5

+
72
35

∞∑
k=1

1
(1− e2kπ)k5

.

and

ζ(9) =
125

3704778
π9 − 2

495

∞∑
k=1

1
(1 + e2kπ)k9

+
992
495

∞∑
k=1

1
(1− e2kπ)k9

.

This sign pattern sustains for all ζ(4N+1) and allows one to de-
termine sufficient coefficients to validate or discover the general
formula.

(c) The well known series for arcsin2(x) generalizes fully, as we saw
in the Exercises for Chapter 1. The seed identity is well known:

arcsin2
(x

2

)
=

1
2

∞∑
k=1

x2 k(
2 k
k

)
k2
. (9.99)

The second, slightly rewritten is less well known:

arcsin4
(x

2

)
=

3
2

∞∑
k=1

{
k−1∑
m=1

1
m2

}
x2 k(
2 k
k

)
k2
,

and when compared, they suggest the third and fourth—subsequently
confirmed numerically—are suggested by the prior if flimsy pat-
tern:

arcsin6
(x

2

)
=

45
4

∞∑
k=1

{
k−1∑
m=1

1
m2

m−1∑
n=1

1
n2

}
x2 k(
2 k
k

)
k2
.

arcsin8
(x

2

)
=

315
2

∞∑
k=1

{
k−1∑
m=1

1
m2

m−1∑
n=1

1
n2

n−1∑
p=1

1
p2

}
x2 k(
2 k
k

)
k2
.

In this case all signs are positive and positive integer relation
methods again apply. These relations were found by hunting
over larger sets of multidimensional sums.
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(d) In particular, for N = 1, 2, . . .

∞∑
k=1

HN (k)(
2 k
k

)
k2

=
π2N

62N (2N)!
,

with the HN (k) multi-dimensional harmonic numbers. The first
few righthand side values are

1
72
π2,

1
31104

π4,
1

33592320
π6 and

1
67722117120

π8.

(e) Let

Z(s, t) :=
∑

n>m>0

(−1)n−1

ns
χ3(m)
mt

,

where χ3 is the character modulo 3 (which is ±1 when n ≡ ±1
modulo 3 and is zero otherwise). Then

Z(2N + 1, 1) =
L−3 (2N + 2)

4 1+N
− 1 + 4−N

2
L−3 (2N + 1) log (3)

+
N∑
k=1

1− 3−2N+2 k

2
L−3 (2N − 2 k + 2)α (2 k) (9.100)

−
N∑
k=1

1− 9−k

1− 4−k
1 + 4−N+k

2
L−3 (2N − 2 k + 1)α (2 k + 1)

− 2L−3 (1)α (2N + 1) ,

where α is the alternating zeta-function, and L−3 is the primitive
L-series modulo 3. One first numerically evaluates such Z sums
as integrals via

Z(s, 1) =
∫ 1

0

L−3(s : −x)
1 + x

dx,

where

L3(s : x) =
∞∑
m=1

χ3(m)xm

ms
= xxx,

and χ3(n) repeats 1,−1, 0 modulo three. Notice also that the
sign pattern will become obvious well before the exact form of
the coefficients—especially those in the third line of (9.100).
This sort of evaluation, and much more about character Euler
sums, may be pursued in [64].
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(f) For small A, say N < 6, one may try all 2N sign permutations.
For example, one may remember that

Γ(2x) = πα(x)2βx+γΓ(x)Γ(x+ 1/2),

but not remember the rational constants. Taking logarithms
and using PSLQ at a few rational values of x will recreate the
formula. Likewise, for medium sized A, where one knows or
anticipates many of the signs on may fix those signs and search
over all remaining combinations.
Finally, one may well have under-determined systems (with too
many relations) and wish to select a relation with a predeter-
mined sign configuration.

29. Cheating God somehow. Consider that

∞∑
n=1

bn tanh(π)c
10n

?=
1
81

is valid to 268 places, while
∞∑
n=1

⌊
n tanh

(
π
2

)⌋
10n

?=
1
81

is valid to just 12 places. Both are actually transcendental num-
bers. Correspondingly the simple continued fractions for tanh(π) and
tanh

(
π
2

)
are respectively

[0, 1,267, 4, 14, 1, 2, 1, 2, 2, 1, 2, 3, 8, 3, 1]

and

[0, 1,11, 14, 4, 1, 1, 1, 3, 1, 295, 4, 4, 1, 5, 17, 7].

Bill Gosper describes how continued fractions let you “see” what a
number is. “[I]t’s completely astounding ... it looks like you are
cheating God somehow.’

30. A sincing feeling. Let

IN :=
∫ ∞

0

N∏
n=0

sinc
(

t

2n+ 1

)
dt. (9.101)

(a) Confirm both numerically and symbolically that each IN = π/2
for N < 7, but I7 = .49999999999264685932π/2. This occurs
because

∑6
n=1 1/(2n+ 1) < 1 <

∑7
n=1 1/(2n+ 1). (See [45].)
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(b) Now consider

J1
N :=

∫ ∞

0

N∏
n=0

sinc
(

t

3n+ 1

)
dt,

and

J2
N :=

∫ ∞

0

N∏
n=0

sinc
(

t

3n+ 2

)
dt.

Verify that J2(N) = π for N < 5 but not for N = 5, and relate
this to the behaviour of

∑N
n=1 1/(3n+ 2).

(c) Attempt the same tasks for J1
N .

31. Coincidences do occur. The approximations

π ≈ 3√
163

log(640320) and π ≈
√

2
9801
4412

occur for deep number theoretic reasons—the first good to 15 places,
the second to eight. By contrast

eπ − π = 19.999099979189475768 . . .

most probably for no good reason. This seemed more bizarre on an
eight digit calculator. Likewise, as spotted by Pierre Lanchon recently

e = 10.10110111111000010101000101100 . . .

while
π = 11.0010010000111111011010101000 . . . .

have 19 bits agreeing in base two, with one read right to left and the
other right to left!

More extended coincidences are almost always contrived such as in
Exercise 29 and in Exercise 30 (c), and strong heuristics exist for
believing results like the empirical ζ-function evaluation of (9.100).
But recall our discussion of the cosine integrals in Chapter 8, and the
famous Skewes number∫ x

2

dt

log t
≥ π(x) with first known failure around 10360

and the Merten Conjecture∣∣∣∣∣
n∑
k=1

µ(k)

∣∣∣∣∣ ≤ √n with first known failure around 10110

counter-examples. Here µ is theMöbius function.
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32. Roman numeration. Consider the following Roman ’fraction’.

I I =
X X I I
V I I I

A Hungarian school contest asked for a movement of one symbol to
make a ’true’ identity.

Answer. The proposers thought

I I =
X X I I
V I I

.

33. For general integer N , determine the inverse of M1 := A+B−C and
M2 := A+B + 2C when A,B,C are N ×N matrices with entries

A:=N->Matrix(N,N,(j,k)->(-1)^(k+1)*binomial(2*N-j,2*N-k));
B:=N->Matrix(N,N,(j,k)->(-1)^(k+1)*binomial(2*N-j,k-1));
C:=N->Matrix(N,N,(j,k)->(-1)^(k+1)*binomial(j-1,k-1));

Hint. A2 = C2 = I and B = CA.

34. Some convexity properties [191]. Examine the convexity and log-
convexity properties of

sk(x) :=
N∑
k=0

xk

k!
and tk(x) := ex −

N∑
k=0

xk

k!
,

as a function of x > 0, for k = 1, 2, . . ..

35. Two trigonometric inequalities [191].

(a) Show that
4
π

x

x2 − 1
≤ tan

(π
2

)
≤ π

2
x

x2 − 1
,

for 0 < x < 1.

(b) Show that (
sinx
x

)3

> cosx,

for 0 < x < π/2.

(c) In what sense are these best possible?
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36. Dyson’s conjecture [212] For non-negative integers a1, a2, · · · , an,
determine the constant term of∏

1≤i 6=j≤n

(
1− xi

xj

)aj

.

Hint. The coefficient is

(a1 + a2 + . . .+ an)!
a1!a2! . . . an!

.

37. Other chaos games. Determine how to adjust the random fractal
triangle of Chapter 8 to generate the hexagon in Figure 9.11, and like
shapes. Hint : consult
http://math.bu.edu/DYSYS/applets/fractalina.html

Figure 9.11. A random Sierpinski hexagon

38. Fourteen proofs of a result about tiling a rectangle [226, 229].
Prove that whenever a rectangle is tiled by rectangles each of which
has at least one integer side, then the ambient rectangle has at least
one integer side.

39. “But, My Lord, being by you found out, I wonder nobody
else found it out before, when, now known, it is so easy.” Dis-
coveries often have this feature. They may be rapidly transformative
as this account by Garry J. Tee (Auckland) makes clear. Immediately
after the publication of Napier’s Miraculous Canon of Logarithms
(Edinburgh 1614), Briggs began teaching logarithms at Gresham Col-
lege. He convinced the Honorable East India Company that they
needed logarithms, to enable their captains to navigate ships to India
and return. The Honorable Company paid Edward Wright (Savilian
Professor of Geometry at Oxford) to translate Napier’s Latin text
into English, and in 1615 Henry Briggs undertook the laborious jour-
ney from London to Edinburgh, taking the manuscript translation
for checking by Napier. Briggs was acquainted with John Marr (or
Mair), who was compass-maker and dial-maker to the kings James
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6th and Charles 1st. Marr witnessed that meeting, and he reported
it to the prominent astrologist William Lilly (1602-1681), who was
consulted by the Commonwealth Government about an auspicious
date on which to execute King Charles 1st. Auckland City Library
has a copy of “Mr Lilly’s History of His Life and Times” (published
1715), with Marr’s report of that meeting: “I will acquaint you with
one memorable story related unto me by Mr John Marr, an excel-
lent mathematician and Geometer whom I conceive you remember.
He was servant to King James and Charles. At first, when the Lord
Napier of Merchiston made public his logarithms, Mr Briggs, then
Reader of the Astronomy lecture at Gresham College in London, was
so surprised with admiration of them, that he could have no quietness
in himself, until he had seen that noble person, the Lord Merchiston,
whose only invention they were. He acquaints Mr Marr herewith,
who went into Scotland before Mr Briggs, purposely to be there when
these so learned persons should meet. Mr Briggs appoints a certain
day, when to meet in Edinburgh, but failing thereof, the Lord Napier
was doubtful he would not come. It happened one day as John Marr
and the Lord Napier were speaking of Mr Briggs; ”Ah, John,” says
Merchiston, ”Mr Briggs will not come now”. At the very instant one
knocks on his gate. John Marr hasted down, and it proved Mr Briggs
to his great contentment. He brings Mr Briggs up into my Lord’s
chamber, where almost one quarter of an hour was spent, each be-
holding other almost with admiration, before one word was spoke. At
last Mr Briggs began; “My Lord, I have undertaken this long jour-
ney purposely to see your person, and to know by what engine of wit
or ingenuity you came first to think of this most excellent help unto
Astronomy, namely logarithms. But, My Lord, being by you found
out (i.e. discovered), I wonder nobody else found it out before, when,
now known, it is so easy”. He was nobly entertained by the Lord
Napier, and every summer after that, during the Lord’s being alive,
this venerable man Mr Briggs went into Scotland purposely to visit
him. These two persons were worthy men in their time, and yet the
one, namely Lord Merchiston, was a great lover of Astrology; but
Briggs the most satyrical man against it that was ever known. But
the reason hereof I conceive was that Briggs was a severe Presbyte-
rian, and wholly conversant with persons of that judgement; whereas
the Lord Merchiston was a general scholar, and deeply read in all
divine and human histories. This is the same Merchiston who made
the most serious and learned exposition upon the Revelation of St.
John, which is the best that ever yet appeared in the world.” Briggs
and Napier independently invented decimal logarithms, and in 1615
Briggs agreed to compute tables of the new form of logarithms. He
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visited Napier again in 1616 and prepared to visit him again in 1617,
but Napier died on 1617 April 4.

40. Which sequence grows faster? For b > a > 0 and n ≥ 0 which
sequence is ultimately larger: a(bn) or b(a

n) and when?

41. What is eerie about this limit? Define the sequence en by e1 =
0, e2 = 1, and en = en−1 + en−2/(n − 2). What is the limit of n/en
as n approaches infinity? What is the rate of convergence?

42. Jeff Tupper’s self-referent fact. (What is it?) Graph the set of
points (x, y) such that

1
2
<
⌊
mod

(⌊ y
17

⌋
2−17bxc−mod(byc,17), 2

)⌋
in the region 0 < x < 107 and N < y < N + 17, where N is the
following 541-digit integer:

960939379918958884971672962127852754715004339660129306651505

519271702802395266424689642842174350718121267153782770623355

993237280874144307891325963941337723487857735749823926629715

517173716995165232890538221612403238855866184013235585136048

828693337902491454229288667081096184496091705183454067827731

551705405381627380967602565625016981482083418783163849115590

225610003652351370343874461848378737238198224849863465033159

410054974700593138339226497249461751545728366702369745461014

6559979337985374831437868418065934222278983887229800007484047

The picture in Figure 9.12 shows what transpires.

Figure 9.12. The answer is . . .

43. For general integer N , determine the inverse of M1 := A+B−C and
M2 := A+B + 2C when A,B,C are N ×N matrices with entries

A:=N->Matrix(N,N,(j,k)->(-1)^(k+1)*binomial(2*N-j,2*N-k));
B:=N->Matrix(N,N,(j,k)->(-1)^(k+1)*binomial(2*N-j,k-1));
C:=N->Matrix(N,N,(j,k)->(-1)^(k+1)*binomial(j-1,k-1));
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Hint. A2 = C2 = I and B = CA.

44. Some convexity properties [191]. Examine the convexity and log-
convexity properties of

sk(x) :=
N∑
k=0

xk

k!
and tk(x) := ex −

N∑
k=0

xk

k!
,

as a function of x > 0, for k = 1, 2, . . ..

45. Two trigonometric inequalities [191].

(a) Show that
4
π

x

x2 − 1
≤ tan

(π
2

)
≤ π

2
x

x2 − 1
,

for 0 < x < 1.

(b) Show that (
sinx
x

)3

> cosx,

for 0 < x < π/2.

(c) In what sense are these best possible?

46. Dyson’s conjecture [212] For non-negative integers a1, a2, · · · , an,
determine the constant term cn(a1, a2, . . . , an) of

Fn(a1, a2, . . . , an) :=
∏

1≤i 6=j≤n

(
1− xi

xj

)aj

.

Hint. First show that c2(a1, a2) =
(
a1+a2
a1

)
. Now show inductively

that the coefficient is

dn(a1, a2, . . . , an) :=
(a1 + a2 + . . .+ an)!

a1!a2! . . . an!
.

To prove this, observe that

Fn(a1, a2, . . . , an) =
n∑
i=1

Fn(a1, . . . , ai−1, ai − 1, ai+1, . . . , an),

(9.102)

while

Fn(a1, . . . , ai−1, 0, ai+1, . . . , an) = Fn−1(a1, . . . , ai−1, ai+1, . . . , an)
(9.103)
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and hence cn satisfies the same recursion. Finally show that dn also
satisfies (9.102) and (9.103). In [212] this idea is extended neatly
to other coefficients of Fn. One empirically determines dn and then
corroborates as above.

47. Show that for n = 1, 2, 3 . . .

2
π

∫ ∞

0

(
sinx
x

)n
dx =

n

2n−1

dn/2e−1∑
r=0

(−1)r
(n− 2 r)n−1

(n− r)! r!
.

48. Putnam Problem A6, 1999 Suppose u1 = 1, u2 = 2, u3 = 24, and

un =
6u2

n−1un−3 − 8un−1u
2
n−2

un−2un−3
.

Show that un is always a multiple of n. Hint. Determine the recursion
for un/un−1.

49. Confirm the following Bernoulli number congruences for prime p > 3,
[76].

(a)
p−1∑
k=1

1
k
≡ −p

2

3
Bp−3 mod p3

(b)
p−1∑
k=1

∑k−1
j=1 1/j
k

≡ −p
3
Bp−3 mod p2

(c)
p−1∑
k=1

1
k2
≡ 2p

3
Bp−3 mod p2

(d) ∑
i+j+k=p

1
ijk
≡ −2Bp−3 mod p
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[102] P. Erdős. On a Family of Symmetric Bernoulli Convolutions.
Transactions of the American Mathematical Society, 61:974–976, 1939.

[103] P. Erdös and M. Kac. The Gaussian law of errors in the theory of
additive number theoretic functions. Amer. J. Math., 62:738–742, 1940.

[104] P. Ernest. Social Constructivism As a Philosophy of Mathematics. State
University of New York Press, 1998.

[105] G. Eskin. The inverse scattering problem in two dimensions at fixed
frequency. Comm. in Part. Diff. Eq., 26(5&6):1055–1090, 2001.

[106] O. Espinosa and V. Moll. On some definite integrals involving the hurwitz
zeta function. part 1. The Ramanujan Journal, 6:159–188, 2002.

[107] O. Espinosa and V. Moll. On some definite integrals involving the hurwitz
zeta function. part 2. The Ramanujan Journal, 6:449–468, 2002.

[108] O. Espinosa and V. Moll. The evaluation of Tornheim double sums. Part
1. Journal of Number Theory, 2005. In press.

[109] S. Wagon F. Bornemann, D. Laurie and J. Waldvogel. The SIAM 100
Digit Challenge: A Study in High-Accuracy Numerical Computing. SIAM,
Philadelphia, 2004.
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irrationality of ζ(3). Mathematical Intelligencer, 1(4):195–203, 1978/79.

[225] I. Vardi. Integrals, an introduction to analytic number theory. Amer.
Math. Mon., 95:308–315, 1988.

[226] S. Wagon. Fourteen proofs of a result about tiling a rectangle. American
Mathematical Monthly, 94(7):601–617, 1987.
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[231] E. Wirsing. Über die Zahlen, deren Primteiler einer gegebenen Menge
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