Monografie

Nr 68

Nr 35

Nr 68 2004

halogenki lantanowców, halogenki litowców, termodynamika chemiczna, ciepło molowe, przemiany fazowe, entalpia przemian fazowych, entalpia mieszania, przewodnictwo elektryczne

Leszek RYCERZ*

TERMOCHEMIA HALOGENKÓW LANTANOWCÓW I ZWIĄZKÓW TWORZĄCYCH SIĘ W UKŁADACH HALOGENKI LANTANOWCÓW–HALOGENKI LITOWCÓW

Metoda kalorymetrii wysokotemperaturowej i skaningowej kalorymetrii różnicowej zbadano właściwości termodynamiczne (temperatury i entalpie przemian fazowych, ciepło molowe fazy stałej i ciekłej) osiemnastu halogenków lantanowców i trzydziestu związków pośrednich tworzących się w układach LnX₃–MX (Ln = lantanowiec, X = Cl, Br, I). Wyznaczono diagramy fazowe układów podwójnych TbBr3-MBr (M = Na, K, Rb, Cs), LaI3-RbI i NdI3-RbI. Określono związek pomiędzy właściwościami termodynamicznymi badanych halogenków lantanowców i ich strukturą krystaliczną. Wyznaczono funkcje termodynamiczne badanych halogenków lantanowców i termodynamiczne funkcje ich tworzenia. Dokonano podziału kongruentnie topiących się związków M₃LnX₆ istniejących w układach LnX₃–MX na dwie grupy: grupę związków tworzących się w podwyższonych temperaturach i grupę związków stabilnych lub metastabilnych w niskich temperaturach. Przedyskutowano specyficzną zależność ciepła molowego i przewodnictwa elektrycznego fazy stałej związków M3LnX6 od temperatury i zaproponowano jej wyjaśnienie jako efekt zaniku uporządkowania podsieci kationowej tworzonej przez kationy litowca. Wykonano pomiary entalpii mieszania w pełnym zakresie składów dla trzydziestu czterech ciekłych układów podwójnych LnX₃-MX. Wykazano zależność efektu energetycznego procesu mieszania od promienia jonowego lantanowca, promienia jonowego litowca i promienia jonowego fluorowca. W oparciu o uzyskane wyniki przedyskutowano możliwość tworzenia się kompleksów w ciekłych układach halogenki lantanowców-halogenki litowców.

^{*} Instytut Chemii Nieorganicznej i Metalurgii Pierwiastków Rzadkich Politechniki Wrocławskiej, ul. Smoluchowskiego 23, 50-370 Wrocław.

1. Wykaz ważniejszych symboli

Symbol	Wielkość fizykochemiczna	Jednostka	
(c)	stan skupienia – faza ciekła		
(s)	stan skupienia – faza stała		
(g)	stan skupienia – faza gazowa		
Cp	ciepło właściwe pod stałym ciśnieniem	$J g^{-1}K^{-1}$	
$C_{\rm p}$	ciepło molowe pod stałym ciśnieniem	$J mol^{-1}K^{-1}$	
$C_{p,298}$	ciepło molowe pod stałym ciśnieniem	$J mol^{-1}K^{-1}$	
	w temperaturze standardowej		
Ε	siła termoelektryczna	mV	
G	molowa entalpia swobodna w temperaturze T	kJ mol ⁻¹	
$\Delta_{\rm tworz}G$	molowa entalpia swobodna tworzenia	kJ mol ⁻¹	
H_{298}	entalpia molowa w temperaturze standardowej	kJ mol ⁻¹	
Н	entalpia molowa w temperaturze T	kJ mol ⁻¹	
IP	potencjał jonowy	pm^{-1}	
Δ IP	względny potencjał jonowy	pm^{-1}	
К	właściwe przewodnictwo elektryczne	$\mathrm{S} \mathrm{m}^{-1}$	
т	masa	g	
п	liczba moli		
r_i	promień jonowy	pm	
S_{298}	entropia molowa w temperaturze standardowej	$J mol^{-1}K^{-1}$	
S	entropia molowa w temperaturze T	$J mol^{-1}K^{-1}$	
Т	temperatura w skali bezwzględnej	K	
$T_{\rm top}$	temperatura topnienia	K	
$T_{\rm tworz}$	temperatura tworzenia	K	
$T_{\rm przem}$	temperatura przemiany fazowej ciało stałe – ciało stałe	Κ	
T _{rozkł}	temperatura rozkładu	Κ	
x	ułamek molowy		
Ζ	liczba atomowa lantanowca		
$\Delta_{\rm top}H$	molowa entalpia topnienia	kJ mol ⁻¹	
$\Delta_{\rm tworz} H$	molowa entalpia tworzenia	kJ mol ⁻¹	

$\Delta_{\rm tworz} H_{298}$	molowa entalpia tworzenia w temperaturze standardowej	kJ mol ⁻¹
$\Delta_{\rm przem}H$	molowa entalpia przemiany fazowej	kJ mol ⁻¹
r	ciało stałe – ciało stałe	
$\Delta_{\text{rozk}}H$	molowa entalpia rozkładu	kJ mol ⁻¹
$\Delta_{\rm miesz} H$	molowa entalpia mieszania	kJ mol ⁻¹
$\Delta_{top}S$	molowa entropia topnienia	$J mol^{-1}K^{-1}$
$\Delta_{\text{tworz}}S$	molowa entropia tworzenia	$J mol^{-1}K^{-1}$
$\Delta_{\rm przem}S$	molowa entropia przemiany fazowej	$J mol^{-1}K^{-1}$
1	ciało stałe – ciało stałe	
λ	przemiana fazowa drugiego rodzaju	
λ	parametr oddziaływania $\lambda = \frac{\Delta_{\text{miesz}}H}{x_1(1-x_1)}$	kJ mol ⁻¹

2. Wprowadzenie. Cel i zakres pracy

Halogenki lantanowców i ich mieszaniny z halogenkami metali alkalicznych odgrywaja niezwykle ważna role w wielu dziedzinach nowoczesnej technologii, miedzy innymi takich, jak przeróbka odpadów nuklearnych [1–4], recykling zużytego paliwa jądrowego [5–8], czy przemysł oświetleniowy [9–10] (nowoczesne, wysokociśnieniowe lampy halogenowe). Tak szerokie zastosowanie technologiczne wyżej wymienionych związków wymaga znajomości ich podstawowych właściwości fizykochemicznych. Okazuje sie jednak, że dane literaturowe, dotyczace zarówno czystych halogenków lantanowców, jak i ich stopów solnych z halogenkami litowców, są niezwykle skąpe i niekompletne, często ze sobą sprzeczne, bądź też są one danymi szacunkowymi. Dotyczy to nawet tak zdawałoby się elementarnych informacji jak temperatura i entalpia topnienia, ciepło właściwe czy diagramy fazowe układów dwuskładnikowych (halogenek lantanowca-halogenek litowca). I tak na przykład ciepło molowe większości chlorków lantanowców w niskich temperaturach (5–350 K) zostało wyznaczone eksperymentalnie metodą kalorymetrii adiabatycznej [11–12], natomiast dane wysokotemperaturowe albo nie istnieja [13], albo są w większości danymi szacunkowymi [14]. Jedyną istniejącą w literaturze pracą podającą eksperymentalną temperaturowa zależność entalpii chlorków (TbCl₃, GdCl₃, DyCl₃, HoCl₃), bromków (CeBr₃, NdBr₃, GdBr₃, HoBr₃) i jodków (LaI₃, NdI₃, GdI₃, TbI₃) lantanowców, z której może być wyznaczona temperaturowa zależność ciepła molowego, jest praca Dworkina i Brediga [15]. Istniejące dane literaturowe dotyczące temperatury i entalpii topnienia czystych halogenków lantanowców cechują się dużą rozbieżnościa. Przykładem tego może być entalpia topnienia NdCl₃ (50,2 kJ mol⁻¹ [16] lub 33,5 kJ mol⁻¹ [17]), entalpia topnienia CeCl₃ (53,6 kJ mol⁻¹ [18] lub 33,5 kJ mol⁻¹ [17]) czy temperatura topnienia LaCl₃ (1119 K [19] lub 1192 K [20]). Również istniejące diagramy fazowe układów podwójnych halogenek lantanowca-halogenek litowca często zawierają poważne błędy i nieścisłości. Na przykład wcześniejsze dane literaturowe [21] informuja o istnieniu w układzie LaCl₃-KCl kongruentnie topiącego się związku K₃LaCl₆, podczas gdy najnowsze badania wykazały, że w układzie tym istnieje tylko jeden związek - K2LaCl5 [22]. Nie jest to jedyny przypadek podobnych sprzeczności. Ostatnio zostały zweryfikowane i uzupełnione wszystkie diagramy fazowe układów podwójnych chlorek lantanowca–chlorek litowca [22–32]. Istniejące diagramy fazowe dla układów bromkowych i jodkowych nie zostały poparte żadnymi badaniami uzupełniającymi i jako takie wymagają weryfikacji.

Wydaje się, że przynajmniej częściowo sytuacja taka powodowana jest skomplikowaną procedurą otrzymywania halogenków lantanowców wysokiej czystości (silnie higroskopijne, łatwo tworzące oksohalogenki).

Ze wspomnianym wyżej brakiem lub rozbieżnością danych literaturowych zetknięto się w trakcie realizacji grantu KBN Nr 7 0524 91 01 "Technologia otrzymywania lantanowców lekkich i ich stopów". Już wtedy koniecznością stało się uzupełniające badanie właściwości fizykochemicznych chlorków lantanowców i ich mieszanin z chlorkami litowców. Badania te realizowano we współpracy Politechniki Wrocławskiej z Université de Provence w Marsylii. Współpraca ta zainicjowana została w końcu lat siedemdziesiątych przez prof. Aleksandra Bogacza i prof. Marcelle Gaune-Escard. Jej kontynuacja przez autora niniejszej pracy pozwoliła na ukształtowanie tematyki badawczej łączącej analizę termiczną, kalorymetrię, badania strukturalne i niektóre typy badań elektrochemicznych halogenków lantanowców i układów halogenki lantanowców–halogenki litowców. Efekty współpracy znalazły swoje odbicie w wielu materiałach naukowych, w tym w ponad 30 publikacjach w czasopismach zagranicznych oraz udziałach w wielu konferencjach i seminariach.

Wspólne badania Instytutu Chemii Nieorganicznej i Metalurgii Pierwiastków Rzadkich Politechniki Wrocławskiej oraz Institut Universitaire des Systèmes Thermiques Industriels Université de Provence, obejmujace układy chlorków lantanowców z chlorkami litowców stały się początkiem systematyzowania i uaktualniania danych termodynamicznych dla tej obszernej grupy substancji. Do współpracy przystąpiła również grupa badawcza z Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology (rezultatem są wspólne publikacje Mixing Enthalpy and Structure of the Molten NaCl-DyCl₃ System, Denki Kagaku, 62(3), (1996) 240-245 oraz High enrichment of Uranium and rare elements in ionic salt bath by countercurrent electromigration, J. Nucl. Sci., 33, (1996) 895–897), a także grupa badawcza z University of Abertay w Wielkiej Brytanii i grupa badawcza z Chiba University w Japonii (rezultatem są wspólne badania strukturalne wykonywane w Institut Laue Langevin w Grenoble: Structural determination of molten DyCl₃ and DyCl₃-NaCl systems by neutron diffraction – Experimental Report, Institut Laue Langevin (ILL), Experiment 6-03-193, 14-22 May 1996, Grenoble, France; Structural determination of phase transitions in the Rb_3CeCl_6 and Rb_3NdCl_6 compounds – Experimental Report, Institut Laue Langevin (ILL), Experiment 5-24-44, 21-23 April 1997, Grenoble, France; Structural determination of molten $EuCl_2$ and $xEuCl_2+(1-x)NaCl$ systems – Experimental Report, Institut Laue Langevin (ILL), Experiment 6-03-205, 18-24 June 1997, Grenoble, France). Powstała więc silna, międzynarodowa grupa badawcza, mająca do swojej dyspozycji szeroki wachlarz technik eksperymentalnych (analiza termiczna, kalorymetria, różnicowa kalorymetria skaningowa, dyfrakcja rentgenowska, dyfrakcja

neutronowa, spektroskopia ramanowska, pomiary gęstości i przewodnictwa elektrycznego stopionych soli) oraz możliwość rozwiązywania problemów teoretycznych (optymalizacja danych eksperymentalnych, symulacje metodą dynamiki molekularnej). Z czasem pierwotny zakres kompleksowych badań jakim były układy chlorkowe lantanowców został rozszerzony na układy bromkowe i jodkowe, dla których istniejące dane literaturowe są jeszcze bardziej fragmentaryczne i skąpe niż dla układów chlorkowych.

W ramach podziału zadań autor niniejszej pracy realizuje badania własności termodynamicznych i przewodnictwa elektrycznego zarówno czystych halogenków lantanowców (chlorki, bromki, jodki), jak i układów podwójnych halogenki lantanowców-halogenki litowców.

Sa dwa zasadnicze cele tak kompleksowych badań. Pierwszy (naturalny) to dostarczenie jak najbardziej kompletnych i wiarygodnych danych termodynamicznych. Obejmują one weryfikację i wyznaczenie danych termodynamicznych czystych halogenków lantanowców, danych termodynamicznych związków z układów MX-LnX₃ (Ln = lantanowiec; X = Cl, Br, I; M = Li, Na, K, Rb, Cs), wykresów równowag fazowych układów MX-LnX₃ oraz wyznaczenie entalpii mieszania w tych układach. W przypadku związków z układów MX–LnX₃ badania obejmują określenie entalpii i entropii przemian fazowych, ciepła molowego i przewodności elektrycznej. Dane te będą mogły być w przyszłości uzupełnione danymi strukturalnymi uzyskanymi metodami dyfrakcji neutronowej, dyfrakcji rentgenowskiej i spektroskopii. Drugim celem badań jest określenie kierunków zmian konfiguracji i trwałości kompleksów w stopach solnych w funkcji promieni jonowych i skojarzonych z nimi parametrów (np. polaryzowalności), określenie mechanizmów przewodzenia i ich relacji z ciepłem molowym oraz energetyką przemian fazowych. Końcowym celem pracy międzynarodowego zespołu badawczego jest stworzenie Banku Danych dla halogenków lantanowców i aktynowców. Bank ten jest tworzony przy wsparciu National Institute of Standards and Technology (NIST, USA) i Centre National de la Recherche Scientifique (CNRS, France). Wkład autora w jego powstanie może być traktowany również jako jeden z celów naukowych realizowanego programu badawczego.

W ramach niniejszej pracy przeprowadzono badania właściwości termodynamicznych (temperatury i entalpie przemian fazowych, ciepło molowe) 18 czystych halogenków lantanowców (LaCl₃, CeCl₃, PrCl₃, NdCl₃, SmCl₃, EuCl₃, GdCl₃, TbCl₃, DyCl₃, TmCl₃, YbCl₃, EuCl₂, YbCl₂, LaBr₃, NdBr₃, TbBr₃, LaI₃ i NdI₃) oraz wielu układów dwuskładnikowych halogenki lantanowców–halogenki litowców (entalpie mieszania, diagramy fazowe, temperatury, entalpie przemian fazowych i ciepło molowe związków tworzących się w układach dwuskładnikowych). Pelny zakres badań wykonanych dla układów halogenki lantanowców–halogenki litowców przedstawiono w tabeli 1.

LnX ₃	LiX	NaX	KX	RbX	CsX	
LaCl ₃	-	_	hpf, cp, ec	hpf, cp, ec	hpf, cp, ec	
CeCl ₃	I	_	hpf, cp, ec	hpf, cp, ec	hpf, cp, ec	
PrCl ₃	Ι	hmix	hmix, ec, hpf, cp	hpf, cp, ec	hpf, cp, ec	
NdCl ₃	Ι	hmix	hmix, ec, hpf, cp	hmix, ec, hpf, cp	hmix, ec, hpf, cp	
TbCl ₃	hmix	hmix	hmix, ec, hpf, cp	hmix, ec, hpf, cp	hmix, ec, hpf, cp	
DyCl ₃	-	hmix	hmix	-	-	
LaBr ₃	hmix	hmix	hmix	hmix, hpf,	hmix, hpf, cp,	
			ec	ec	ec	
NdBr ₃	hmix	hmix	hmix, hpf, cp, ec	hmix, hpf, cp, ec	hmix, hpf, cp, ec	
TbBr ₃	hmix	hmix, phd,	hmix, phd, hpf,	hmix, phd, hpf,	hmix, phd, hpf,	
		ec	cp, ec	cp, ec	cp, ec	
LaI ₃	_	hmix	hmix	hmix, phd, hpf, cp	hmix, hpf, cp	
NdI ₃	hmix	hmix	hmix, hpf, cp	hmix, phd, hpf, cp	hmix, hpf, cp	

Tabela 1. Badania układów MX–LnX₃ przeprowadzone w ramach niniejszej pracy: oznaczenia: hmx – entalpia mieszania stopionych soli w całym zakresie składów, ec – przewodnictwo elektryczne, hpf – entalpia przemian fazowych, cp – ciepło molowe, phd – diagram fazowy

Wybór układów dwuskładnikowych do badań pozwolił na określenie wpływu promienia jonowego lantanowca, promienia jonowego litowca jak i promienia jonowego fluorowca na właściwości termodynamiczne układów halogenki lantanowców– halogenki litowców. Na podstawie uzyskanych wyników wyznaczono funkcje termodynamiczne zarówno czystych halogenków lantanowców, jak i kongruentnie topiących się związków istniejących w układach podwójnych z halogenkami litowców (w fazie stałej i ciekłej). Wyniki pomiarów entalpii mieszania posłużyły do przedyskutowania możliwości tworzenia się kompleksów i ich formy w ciekłych układach LnX₃–MX.

3. Przygotowanie halogenków lantanowców i halogenków litowców do badań

Biorąc pod uwagę fakt, że jakość stosowanych do badań halogenków lantanowców ma decydujący wpływ na osiągnięte wyniki, przed przystąpieniem do zasadniczych pomiarów olbrzymią ilość czasu poświęcono opracowaniu metod ich syntezy, doboru odpowiednich materiałów i metod weryfikacji składu chemicznego oraz czystości przygotowanych związków. Efektem tych prac było przygotowanie do badań halogenków lantanowców wysokiej czystości (min. 99,9%) wolnych od zanieczyszczeń oksohalogenkami lantanowców.

Surowcem wyjściowym do **syntezy chlorków i bromków lantanowców** były odpowiednie tlenki o czystości minimum 99,9% (La₂O₃, CeO₂ i Pr_4O_{11} – Hydromet Co. Kowary, Polska; Nd₂O₃ – Wydział Chemii, Uniwersytet Lubelski; pozostałe tlenki – Johnson Matthey).

Opracowano eksperymentalnie dwie metody syntezy chlorków i bromków lantanowców(III), tzw. metodę mokrą i metodę spiekania chlorującego (bromującego) tlenku lantanowca z chlorkiem (bromkiem) amonu.

Główne etapy otrzymywania chlorków i bromków lantanowców(III) metodą mokrą to:

- roztwarzanie tlenku lantanowca w gorącym stężonym roztworze HX (X = Cl, Br)

- krystalizacja hydratów $LnX_3 \cdot 6H_2O$
- odwadnianie hydratów w celu otrzymania LnX3 · H2O
- otrzymywanie bezwodnych halogenków LnX₃
- przetapianie bezwodnych halogenków LnX₃ w atmosferze gazowego HX

– oczyszczanie bezwodnych halogenków metodą próżniowej destylacji (p ~ 0,1 Pa).

Metodę tę przedstawiono szczegółowo w pracy [33]. W metodzie spiekania chlorującego (bromującego) [34] tlenek lantanowca mieszano z chlorkiem (bromkiem) amonu w stosunku molowym 1:14 i otrzymaną mieszaninę ogrzewano pod zmniejszonym ciśnieniem do temperatury 570 K. Po trzech godzinach przebywania mieszaniny reakcyjnej w temperaturze 570 K i zakończeniu chlorowania (bromowania) temperaturę podnoszono do 570–600 K i poprzez sublimację usuwano nieprzereagowany chlorek (bromek) amonu. W końcowym etapie procesu temperaturę podwyższano do około 50 K powyżej temperatury topnienia otrzymywanego halogenku lantanowca w celu jego stopienia. Otrzymany halogenek oczyszczano podobnie jak w przypadku metody mokrej poprzez destylację pod zmniejszonym ciśnieniem.

Opisane powyżej metody nie mogły być zastosowane do otrzymywania SmCl₃, EuCl₃ i YbCl₃ ze względu na ich tendencję do rozkładu na chlorek lantanowca(II) i gazowy chlor w temperaturach bliskich temperaturze topnienia. W związku z tym opracowano nowy sposób ich otrzymywania. EuCl₃ i SmCl₃ syntezowano metodą chlorowania odpowiedniego tlenku, używając chlorku tionylu SOCl₂ jako czynnika chlorującego [35]. Tlenek umieszczano w kwarcowym reaktorze, ogrzewano do temperatury 790–810 K i przepuszczano przezeń argon wysokiej czystości (zawartość H₂O i O₂ poniżej 1 ppmV) nasycony parami SOCl₂ w czasie 24 godzin.

YbCl₃ otrzymywano natomiast poprzez długotrwałe odwadnianie YbCl₃ \cdot 6H₂O (około 100 godzin) w atmosferze suchego, gazowego chlorowodoru.

Jodki lantanowców(III) (LaI₃ i NdI₃) pierwotnie otrzymywano z odpowiednich tlenków metodą opracowaną przez Kutschera i Schneidera [36]. Tlenek lantanowca roztwarzano w stężonym kwasie jodowodorowym, do roztworu dodawano jodek amonu w ilości 9 moli na 1 mol lantanowca i krystalizowano mieszaninę $LnI_3 \cdot 6H_2O$ + NH₄I. Mieszanina ta była odwadniana pod zmniejszonym ciśnieniem, przy stopniowo wzrastającej temperaturze. Nadmiarowy jodek amonu usuwano poprzez sublimację w temperaturze około 520 K, a surowy jodek lantanowca(III) oczyszczano metodą próżniowej sublimacji [37].

Ze względu na uciążliwość procesu odwadniania otrzymanych hydratów i konieczność sublimacji dużych ilości jodku amonu, dopracowano inną metodę syntezy jodków lantanowców. Otrzymywano je w bezpośredniej reakcji pomiędzy metalicznym lantanowcem i parami jodu. Metaliczny lantan i neodym o czystości minimum 99,9% otrzymywano metodą metalotermicznej redukcji odpowiedniego chlorku (99,9%) za pomocą wapnia wysokiej czystości (99,999%) [38]. Jod (POCH Gliwice) oczyszczano metodą sublimacji w temperaturze 350 K.

Syntezę jodków lantanu(III) i neodymu(III) [39] z pierwiastków prowadzono zmodyfikowaną metodą Drudinga i Corbetta [40]. Kawałki metalicznego lantanowca i jod (nadmiar 10% mol. w stosunku do stechiometrii) ładowano do tantalowego tygla umieszczonego w ampule kwarcowej z bocznym ramieniem. Ampułę odpompowywano do osiągnięcia próżni rzędu 10⁻¹ Pa, przy jednoczesnym chłodzeniu jej części zawierającej jod, za pomocą ciekłego azotu. Chłodzenie to miało na celu zminimalizowanie strat jodu (sublimacja). Po osiągnięciu żądanej próżni ampułę zatapiano powyżej połączenia z bocznym ramieniem, umieszczano w pionowym piecu elektrycznym i ogrzewano do temperatury około 350 K. Jednocześnie boczne ramię ampuły, pozostające poza piecem, chłodzono ciekłym azotem. Pozwalało to na całkowite przesublimowanie jodu z zasadniczej części ampuły do jej bocznego ramienia. Po zakończeniu sublimacji jodu ogrzewano część ampuły zawierającej lantanowiec do temperatury wyższej o około 30 K od temperatury topnienia jodku lantanowca, a boczne ramię ampuły, zawierającej jod, do temperatury 450 K. Powstające pary jodu reagowały z lantanowcem znajdującym się wewnątrz ampuły. Po 20 godzinach reakcję uważano za zakończoną. Temperaturę ampuły z tyglem tantalowym zawierającym jodek lantanowca obniżano do 500 K, a boczne ramię ampuły chłodzono ciekłym azotem. Nieprzereagowany jod sublimował do bocznego ramienia ampuły. Otrzymany jodek lantanowca poddawano procesowi sublimacji próżniowej (p $\cong 10^{-2}$ Pa) w zatopionej ampule kwarcowej pokrytej od wewnątrz folią tantalową, w temperaturze około 40 K niższej od temperatury topnienia jodku. Czas sublimacji wynosił 60–70 godzin. Czysty jodek lantanowca osadzał się w chłodnej części ampuły.

Chlorki lantanowców(II), EuCl₂ i YbCl₂, otrzymano metodą redukcji odpowiednich chlorków EuCl₃ i YbCl₃ za pomocą cynku [41].

Halogenki metali alkalicznych (Merck, Suprapur reagent, min. 99,9%) suszono pod próżnią i przetapiano w atmosferze suchego halogenowodoru.

Ponieważ badane związki cechują się znaczną higroskopijnością, wszystkie operacje związane z syntezami, przygotowaniem próbek i napełnianiem naczynek pomiarowych wykonywano w komorze rękawicowej firmy Jacomex, w atmosferze oczyszczonego argonu (zawartość wody i tlenu poniżej 1 ppmV).

4. Techniki pomiarowe

Techniki kalorymetryczne stanowią potężne i użyteczne narzędzie w badaniach naukowych. Doskonale nadają się one między innymi do wyznaczania takich termodynamicznych właściwości stopionych soli, jak temperatury i entalpie przemian fazowych, entalpie mieszania, entalpie reakcji, ciepło właściwe, diagramy fazowe układów wieloskładnikowych itd.

Techniki te zostały wykorzystane w badaniach prezentowanych w niniejszej pracy. Jako podstawowe narzędzie badawcze stosowano kalorymetrię wysokotemperaturową (wysokotemperaturowy kalorymetr Calveta) i różnicową kalorymetrię skaningową (DSC). Metody te zostały wielokrotnie dokładnie opisane, między innymi w pracach [42–43]. Poniżej przedstawiono je jedynie w ogólny i skrócony sposób.

4.1. Kalorymetria wysokotemperaturowa – kalorymetr Calveta

Zasada działania kalorymetru została opracowana już w roku 1923 przez Tiana [44], ale dopiero 20 lat później, dzięki Calvetowi [45], ten isoperiboliczny kalorymetr został przystosowany do stosunkowo łatwego użycia w szerokim zakresie temperatur (aż do 1200 K). Trzy główne elementy kalorymetru to: cylindryczny piec elektryczny, detektor termiczny składający się z dwóch termostosów i system rejestracji danych eksperymentalnych.

Schematyczny przekrój kalorymetru Calveta przedstawiono na rys. 1.

Blok kalorymetryczny, składający się z trzech masywnych elementów (B, C, D) wykonanych z korundu, otoczony jest przez trzy warstwy izolacyjne (E, F, G) działające jako izolacja termiczna i elektryczna. Usytuowany jest on wewnątrz cylindrycznego pieca elektrycznego, który z kolei znajduje się wewnątrz stalowej obudowy (H). Ogrzewanie zapewniają cztery elementy oporowe wykonane z kantalu – jeden usytuowany na dnie, drugi na wierzchu i dwa umieszczone na cylindrycznych ścianach. W bloku kalorymetrycznym wykonane są dwie cylindryczne komory; w każdej z nich umieszczony jest termostos.

Rys. 1. Kalorymetr Calveta: a) – przekrój pionowy, b) – połączenia termopar,
c) – usytuowanie termopar Pt/Pt–Rh na pierścieniach korundowych [43]
Fig. 1. Calvet microcalorimeter: a) vertical section, b) thermocouple junctions,
c) Pt/Pt–Rh ribbon and hollow alumina support disk [43]

Na rysunku 1b przedstawiono cylindryczny termostos z połączeniami termopar: składa się on z 22 dysków korundowych z termoparami Pt/Pt–Rh(10%Rh). Sposób połączenia termopar przedstawiono na rys. 1c. Połączenie to tworzy wstążkę (rys. 2), która owinięta jest wokół dysków korundowych w ten sposób, aby połączenia wewnętrzne termopar były w kontakcie z komórką pomiarową (poprzez cienkościenną rurę korundową, będącą tzw. komórką kalorymetryczną), a połączenia zewnętrzne w kontakcie z korundowym blokiem kalorymetrycznym (rys. 3).

Rys. 2. Wstążka termostosu utworzona przez połączenie termopar Pt/Pt–Rh [43] Fig. 2. Thermopile ribbon formed by Pt/Pt-Rh thermocouples [43]

Komórka kalorymetryczna, służąca do umieszczenia komórki pomiarowej, ma średnicę 17 mm i wysokość 80 mm, a przepływ ciepła w każdym termostosie jest rejestrowany przez 400 termopar. W celu uzyskania wysokiej stabilności kalorymetru, termostosy połączone są różnicowo. Ta bliźniacza konstrukcja pozwala na osiągnięcie dobrej stabilności termicznej systemu nawet w wysokich temperaturach i w znacznej mierze eliminuje większość problemów wynikających z zewnętrznych zaburzeń termicznych.

Rys. 3. Przekrój poziomy bloku kalorymetrycznego [43] Fig. 3. Horizontal section of Calvet microcalorimeter [43]

Temperatura kalorymetru kontrolowana jest za pomocą termopary umieszczonej w środku bloku kalorymetrycznego. Temperatura ta i sygnał termiczny z termostosów rejestrowane są graficznie (rejestrator Sefram) i za pomocą komputera. Do regulowania temperatury kalorymetru służy programator – regulator temperatury Eurotherm i termopara Pt/Pt–Rh(10). Konstrukcja kalorymetru pozwala na użycie go zarówno w pomiarach izotermicznych (wyznaczanie entalpii tworzenia), jak i nieizotermicznych (wyznaczanie entalpii przemian fazowych).

4.1.1. Rejestracja i obróbka matematyczna danych eksperymentalnych

Zmiana siły termoelektrycznej uzyskanej z dwóch termostosów, rejestrowana w funkcji czasu (E = f(t)) tworzy tzw. termogram składający się z trzech części (rys. 4): odcinek *ab* odpowiada linii bazowej kalorymetru przed wystąpieniem efektu termicznego, powierzchnia *bmcb* jest związana z efektem termicznym zachodzącym w kalorymetrze, a odcinek *cd* linią bazową kalorymetru po zakończeniu efektu termicznego.

Rys. 4. Idealny termogram uzyskiwany w trakcie pomiarów w kalorymetrze Calveta Fig. 4. Ideal thermogram obtained from Calvet calorimeter

Całka funkcji E = f(t) (powierzchnia *S*) jest proporcjonalna do ilości ciepła Q_p wydzielonego lub pochłoniętego w komórce pomiarowej:

$$Q_{\rm p} = KS = K \int_{t_1}^{t_2} E(t) \mathrm{d}t \tag{1}$$

gdzie K jest stałą kalorymetru zależną od warunków eksperymentalnych.

W trakcie pomiaru może pojawić się tzw. dryf linii bazowej, wynikający z wielu przyczyn (np. parowanie próbki, zmiana położenia próbki w celi pomiarowej), powodujący zmianę powierzchni S uzyskiwanej w trakcie całkowania termogramu. Dryf ten powinien być uwzględniony w trakcie całkowania termogramu. Używane są dwie metody korekcji w zależności od geometrii termogramu: korekcja prostokątna i korekcja trójkątna.

Korekcja prostokątna

Ten typ korekcji jest stosowany w przypadku, kiedy linia bazowa związana z efektem termicznym (odcinek cd) jest przesunięta względem linii bazowej przed efektem termicznym (odcinek ab), ale obydwie są równoległe do osi czasu (rys. 5). Właściwa wielkość efektu cieplnego (zakreskowana powierzchnia S) jest proporcjonalna do różnicy całkowitej powierzchni termogramu, wyznaczonej przez punkty (*bmdd'c'b*) i powierzchni prostokąta (*cdd'c'*). Powierzchnia konturu (*bcc'*) jest generalnie bardzo mała i jako taka może być zaniedbana.

Korekcja trójkątna

Korekcja ta jest stosowana w przypadku stałego dryfu linii bazowej w funkcji czasu (rys. 6). Powierzchnia związana z rzeczywistym efektem cieplnym odpowiada powierzchni zawartej pomiędzy krzywą E = f(t) i prostą będącą przedłużeniem linii bazowej przed i po efekcie cieplnym, czyli powierzchni konturu (*bmdd'b*) pomniejszonej o powierzchnię trójkąta (*bdd'*).

Rys. 5. Całkowanie termogramu – korekcja prostokątna Fig. 5. Thermogram integration – rectangular correction

Rys. 6. Całkowanie termogramu – korekcja trójkątna Fig. 6. Thermogram integration – triangular correction

4.1.2. Pomiary entalpii

W zależności od sposobu programowania temperatury kalorymetr Calveta może być stosowany do pomiarów entalpii tworzenia (pomiary izotermiczne) lub pomiarów entalpii przemian fazowych (pomiary nieizotermiczne – liniowa zmiana temperatury w funkcji czasu). W ramach niniejszej pracy kalorymetru używano głównie w pomiarach izotermicznych do wyznaczania entalpii mieszania w ciekłych układach halogenki lantanowców–halogenki metali alkalicznych. Pomiary nieizotermiczne wykonywano sporadycznie w celu wyznaczania temperatur i entalpii przemian fazowych niemożliwych do wyznaczenia za pomocą różnicowego kalorymetru skaningowego.

Pomiary entalpii mieszania

Spośród wielu istniejących metod pomiaru entalpii mieszania wybrano i zastosowano do pomiarów metodę tzw. "rozbijania ampuły" [42, 43]. Metoda ta jest bardzo pracochłonna i skomplikowana technicznie, ale jej niezaprzeczalną zaletą jest wysoka precyzja uzyskiwanych wyników. W metodzie tej mierzy się bezpośrednio czysty efekt mieszania dwóch ciekłych składników w temperaturze eksperymentu. Schemat naczynia pomiarowego przedstawiono na rys. 7.

Rys. 7. Schemat układu pomiarowego do wyznaczania entalpii mieszania metodą "rozbijania ampuły":
a – rura kwarcowa, tzw. rura wrzutowa, b – przeznaczona do rozbicia ampuła kwarcowa,
c – bardziej lotny (higroskopijny) składnik układu mieszania, d – komórka pomiarowa,
e – tygiel kwarcowy, f – drugi składnik układu reakcyjnego, g – warstwa wełny mineralnej
Fig. 7. Break-off ampoule method for mixing enthalpy measurements: a – drop quartz tube,
b – break-off quartz ampoule, c – more volatile salt, d – quartz liner, e – quartz crucible,
f – less volatile salt, g – kawool plug

Związek bardziej lotny (bardziej higroskopijny) jest umieszczany w kwarcowej ampule przeznaczonej do rozbicia (b), która jest zatapiana pod próżnią i przytapiana do kwarcowej rury wrzutowej (a). Ścianki ampuły muszą być na tyle delikatne, aby łatwo uległa ona rozbiciu podczas eksperymentu i na tyle mocne, aby nie uległa ona skruszeniu w czasie odpompowywania i montowania układu pomiarowego. Ampuła ta jest przytapiana do rury kwarcowej tak, aby nie blokować jej wewnętrznego prześwitu. Drugi składnik jest umieszczany w tyglu kwarcowym (e) z dnem w formie stożka (ułatwia on rozbijanie ampuły). Przygotowanie obydwu składników odbywa się w komorze rękawicowej z atmosferą ochronną, a ich masy określane są z dokładnością 10⁻⁵ g. Tygiel kwarcowy i rura kwarcowa z przytopioną do niej ampułą umieszczane są w kwarcowej komórce eksperymentalnej, której górne zamknięcie umożliwia zarówno przepływ argonu przez układ, jak i pionowy przesuw wrzutowej rury kwarcowej. Komórka pomiarowa umieszczana jest w kalorymetrze w ten sposób, że tygiel i ampuła ze składnikami przeznaczonymi do mieszania znajdują się w komórce kalorymetrycznej. Identyczny zestaw eksperymentalny umieszczony w drugiej komórce kalorymetrycznej jest używany jako zestaw wzorcowy. Po osiągnięciu równowagi termicznej kalorymetru pionowy ruch wrzutowej rury kwarcowej powoduje rozbicie ampuły i następuje mieszanie składników. Efekt termiczny towarzyszący temu mieszaniu powoduje zmianę siły termoelektrycznej termostosu, która rejestrowana jest w postaci termogramu.

Entalpia przemian fazowych

Związek przeznaczony do badań jest zatapiany pod próżnią w ampule kwarcowej, która umieszczana jest w kwarcowej komórce eksperymentalnej. Komórka ta wprowadzana jest do celi kalorymetrycznej. W trakcie liniowej zmiany temperatury kalorymetru rejestrowane są efekty termiczne związane z przemianami fazowymi zachodzącymi w badanym związku.

4.1.3. Cechowanie kalorymetru

Cechowanie efektu termicznego

Powierzchnia termogramu (*S*) jest proporcjonalna do ilości ciepła (Q_p) wydzielanego w celi eksperymentalnej: $Q_p = K \cdot S$. Współczynnik *K* nosi nazwę stałej kalorymetru, którą wyznacza się dokonując pomiaru efektu termicznego towarzyszącego wprowadzeniu do eksperymentalnej komórki kalorymetrycznej ściśle określonej ilości substancji wzorcowej o dokładnie znanym cieple właściwym. Najczęściej używanymi substancjami wzorcowymi są: platyna, złoto i szafir (α -Al₂O₃). W niniejszej pracy jako substancję wzorcową stosowano szafir.

Wielkość stałej *K* jest ilorazem obliczonej z danych tabelarycznych entalpii (związanej z ogrzaniem substancji wzorcowej) i powierzchni termogramu uzyskanego po wrzuceniu tej substancji do komórki kalorymetrycznej.

$$\frac{Q_{\rm p}}{S} = \frac{n \int_{T_0}^{T} C_{\rm p}(T) dT}{S} = \frac{\Delta H_{(T_0 \to T)}}{S} = K$$
(2)

W równaniu tym *n* jest liczbą moli substancji wzorcowej, C_p – jej ciepłem molowym, a $\Delta H_{(T_0 \to T)}$ – zmianą entalpii substancji wzorcowej podczas jej ogrzania od T_0 do *T*.

W przypadku pomiarów entalpii mieszania cechowanie odbywa się w tym samym eksperymencie, bezpośrednio po zarejestrowaniu efektu termicznego związanego z mieszaniem składników. Średnia wartość stałej kalorymetru liczona jest z sześciu eksperymentów cechowania za pomocą α -Al₂O₃ (NIST).

Odmienna metoda stosowana jest w przypadku pomiarów entalpii przemian fazowych, kiedy to temperatura kalorymetru zmienia się w sposób liniowy. Oczywiście, również w tym przypadku właściwy pomiar i cechowanie wykonywane są w trakcie tego samego eksperymentu. Pierwszy cykl pomiarowy (ogrzewanie i chłodzenie) pozwala na ustalenie położenia efektu termicznego pochodzącego od substancji badanej jako funkcji temperatury. W następnych cyklach pomiarowych dokonuje się również cechowania, bezpośrednio przed i po efekcie termicznym związanym z przemianą fazową, tak aby termogramy uzyskane do cechowania nie nakładały się na termogram pochodzący od substancji badanej. Jako wartość stałej kalorymetru przyjmuje się średnią z cechowań wykonanych przed i po właściwym efekcie termicznym. Pozwala to na uwzględnienie wpływu zmiany temperatury na stałą kalorymetru.

Inną metodą wyznaczania entalpii przemiany fazowej może być metoda porównawcza. Ampuła z badanym związkiem i ampuła zawierająca substancję wzorcową umieszczane są razem w kantalowym pojemniku w komórce kalorymetrycznej. Substancja wzorcowa powinna być dobrana w ten sposób, aby jej przemiana następowała w temperaturze możliwie bliskiej temperatury przemiany substancji badanej, jednakże na tyle różnej aby efekty termiczne obydwu przemian nie nakładały się na siebie. Znając dokładną wartość entalpii przemiany fazowej substancji wzorcowej, powierzchnię termogramu odpowiadającą tej entalpii i powierzchnię termogramu substancji badanej wyznacza się entalpię związaną z przemianą fazową substancji badanej. Podstawowym problemem pojawiającym się w tej metodzie jest znalezienie substancji wzorcowej. Temperatura jej przemiany fazowej powinna być na tyle bliska temperaturze przemiany fazowej substancji badanej, aby wyeliminować wpływ temperatury na stałą kalorymetru, i na tyle odległa, aby uzyskane termogramy nie nakładały się na siebie.

Cechowanie termopary

Temperatura w kalorymetrze jest mierzona za pomocą termopary Pt–Pt/Rh(10) umieszczonej centralnie w bloku kalorymetrycznym pomiędzy dwoma termostosami. W celu uzyskania wysokiej precyzji pomiaru temperatury (błąd mniejszy niż 1 K), termoparę wycechowano mierząc temperaturę topnienia metali wysokiej czystości (99,999%). Jako metale wzorcowe zastosowano In, Sn, Zn, Sb i Ag o temperaturach topnienia 430, 505, 693, 804 i 1233 K [46].

4.1.4. Błąd pomiarów entalpii mieszania

Szczegółowa dyskusja błędów, jakimi obarczone są wyniki pomiarów entalpii mieszania uzyskane przy użyciu kalorymetru Calveta, dokonana została w pracy Hatema [47]. Bład jakim obarczona jest wyznaczona stała kalorymetru i jego wpływ na wynik pomiaru entalpii mieszania określają równania (3) i (4):

– błąd względny wyznaczenia stałej kalorymetru K:

$$\frac{\Delta K}{K} = \pm \left\{ \left(\frac{\Delta (S_{\rm wz}/n_{\rm wz})}{(S_{\rm wz}/n_{\rm wz})} \right)^2 + \left(\frac{\Delta (\Delta H_{\rm wz})}{\Delta H_{\rm wz}} \right)^2 \right\}^{1/2}$$
(3)

gdzie:

 $S_{\rm wz}$ - powierzchnia termogramu odpowiadającego wprowadzonej substancji wzorcowej,

- liczba moli substancji wzorcowej, $n_{\rm wz}$

 $\frac{\Delta(\Delta H_{wz})}{\Delta H_{wz}}$ – błąd względny wyznaczenia zmiany entalpii substancji wzorcowej;

- błąd względny entalpii mieszania:

$$\frac{\Delta(\Delta_{\text{miesz}}H)}{\Delta_{\text{miesz}}H} = \pm \left\{ \left(\frac{\Delta x}{x}\right)^2 + \left(\frac{\Delta K}{K}\right)^2 + \left(\frac{\Delta(S/n)}{(S/n)}\right)^2 \right\}^{1/2}$$
(4)

gdzie:

 $\frac{\Delta x}{x}$ – błąd względny składu związany z błędem ważenia składników,

S – powierzchnia termogramu odpowiadającego zmieszaniu składników,

n – liczba moli składników ulegających mieszaniu.

Dla α -Al₂O₃, $\frac{\Delta(S_{\rm wz}/n_{\rm wz})}{S_{\rm wz}/n_{\rm wz}}$ nie przekracza 2%, a błąd względny $\frac{\Delta(\Delta H_{\rm wz})}{\Delta H_{\rm wz}}$ jest mniejszy niż 0,2% [48]. Stąd błąd względny wyznaczenia stałej kalorymetru $\Delta K/K =$

$$\pm \sqrt{\left(\frac{2}{100}\right)^2 + \left(\frac{0.2}{100}\right)^2} \approx \pm 2\%$$
.

Jeśli się założy błąd ważenia każdego ze składników, które ulegaja mieszaniu, na poziomie 0,2%, to błąd względny składu wynosi $\frac{\Delta x}{x} = 2 \frac{\Delta m}{m} = \pm 2 \times 0,2\% = \pm 2$ 0,4%. Maksymalny błąd względny dla efektu termicznego powodowanego zmieszaniem składników S/n jest na poziomie 4%. Stąd błąd względny entalpii mieszania:

$$\frac{\Delta(\Delta_{\text{miesz}}H)}{\Delta_{\text{miesz}}H} = \pm\sqrt{0.4^2 + 2^2 + 4^2} \approx \pm 4.5\%$$
(5)

4.2. Różnicowa kalorymetria skaningowa

Firma SETARAM jest jedyną w świecie firmą produkującą skaningowe kalorymetry różnicowe działające na zasadzie kalorymetru Calveta. Takim kalorymetrem jest DSC 121 SETARAM stosowany do badań prezentowanych w niniejszej pracy. Przewaga DSC 121 nad tradycyjnym kalorymetrem Calveta polega głównie na jego miniaturyzacji, co pozwala osiągać duże szybkości ogrzewania i chłodzenia. Wysoka czułość aparatu pozwala na stosowanie mniejszych mas związków poddawanych badaniom.

System dwóch termopar umieszczonych w komorach kalorymetrycznych i połączonych różnicowo, stosowany powszechnie w kalorymetrach DSC, w przypadku DSC 121 SETARAM został zastąpiony dwoma termostosami również połączonymi różnicowo, mierzącymi przepływ ciepła pomiędzy komorami kalorymetrycznymi (pomiarowa i wzorcowa) i blokiem kalorymetrycznym. Gwarantuje to wyższą czułość aparatu i dużą precyzję osiąganych wyników.

Rys. 8. Schematyczny przekrój pionowy kalorymetru skaningowego DSC 121 SETARAM Fig. 8. Scheme of vertical section of DSC 121 SETARAM

Schemat różnicowego kalorymetru skaningowego DSC 121 SETARAM przedstawiono na rys. 8. Zasadnicze elementy aparatu to metaliczny blok kalorymetryczny (1) z oporowym systemem ogrzewania (2) i systemem chłodzenia wodą (3) lub gazem (7) oraz dwa cylindryczne termostosy (4) połączone różnicowo. W bloku kalorymetrycznym (wewnątrz termostosów) umieszczone są dwie rury korundowe (5) osłonięte od wewnątrz rurami ochronnymi wykonanymi z inkonelu. Ampuła z badanym związkiem (6) i ampuła wzorcowa umieszczane są wewnątrz rur inkonelowych w "sercu" bloku kalorymetrycznego. Stały przepływ argonu zabezpiecza blok kalorymetryczny i osłonowe rury inkonelowe przed utlenianiem w wysokich temperaturach. Ampuły stosowane do badań (eksperymentalna i wzorcowa) powinny być wykonane z tego samego materiału, mieć ten sam kształt i tę samą masę. W niniejszych badaniach stosowano cylindryczne ampuły kwarcowe (ze szlifowanymi ściankami bocznymi) o średnicy maksymalnie zbliżonej do średnicy ochronnej rury inkonelowej.

Odpowiedni dobór średnicy ampuły gwarantuje dobry jej kontakt z blokiem kalorymetrycznym i ułatwia wymianę ciepła. Regulator temperatury dostarcza moc niezbędną do utrzymania temperatury bloku kalorymetrycznego zgodnie z założonym programem ogrzewania (chłodzenia). Sterowanie kalorymetrem, zbieranie i obróbka danych dokonywane są przy pomocy komputera.

DSC 121 ma możliwość pracy w zakresie 120–1100 K. Może on być wykorzystany do pomiarów temperatur i entalpii przemian fazowych lub pomiarów ciepła właściwego.

4.2.1. Cechowanie kalorymetru DSC 121

Kalorymetr Calveta jest cechowany każdorazowo podczas wykonywania pomiarów. Do jego cechowania używa się substancji wzorcowych, które umieszczane są w komórce kalorymetrycznej przed lub po wykonaniu właściwego pomiaru. W związku z tym, że kalorymetr DSC 121 SETARAM pracuje zazwyczaj w szerokim zakresie temperatur, konieczna jest znajomość stałej kalorymetru jako funkcji temperatury. Zależność tę wyznacza się podczas kalibracji kalorymetru za pomocą opisanego poniżej tzw. "efektu Joule'a".

Identyczne wzorcowe elementy oporowe o oporze 100 Ω , znajdujące się w osłonowej rurce korundowej, wprowadzane są do obydwu komór bloku kalorymetrycznego. Jeden z tych elementów, podłączony do urządzenia zasilającego, wprowadza do kalorymetru impulsy cieplne odpowiadające mocy 100 lub 200 mW w czasie 200 sekund, po których następuje stabilizacja kalorymetru w czasie 600 sekund. Wielkość efektu cieplnego wprowadzonego do kalorymetru jest rejestrowana przez komputer. Dzieląc wartość efektu cieplnego Q, uzyskanego przez całkowanie uzyskanego termogramu, przez iloczyn mocy P dostarczanej przez wzorcowy element oporowy i czasu trwania impulsu t (200 s) uzyskuje się wartość stałej kalorymetru w temperaturze T.

$$K = \frac{Q}{P \times t} \tag{6}$$

Zasada powyższego cechowania przedstawiona jest na rys. 9. Zakreskowana powierzchnia Q przedstawia termogram zarejestrowany w czasie dostarczania do kalorymetru impulsu cieplnego odpowiadającego iloczynowi mocy P i czasu trwania impulsu t. Operacja cechowania prowadzona jest metoda schodkowa ($\Delta T = 5$ K) w całym zakresie temperatur pracy kalorymetru, a uzyskane wyniki tworzą tzw. krzywą cechowania kalorymetru, czyli zależność stałej kalorymetru od temperatury: $K(\mu V/mW) = f(T)$. Zależność ta wykorzystywana jest automatycznie przez program obróbki danych, będący integralną częścią układu pomiarowego. Maksymalny błąd względny wyznaczania entalpii przemian fazowych liczony tak jak dla kalorymetru Calveta (równanie 4) nie przekracza 1%. Dla pomiarów ciepła właściwego bład ten należy szacować na poziomie 1-2%. Dodatkowym czynnikiem, który wpływa na błąd w tych pomiarach mogą być niewielkie różnice masy ampuł kwarcowych i trudne do określenia ilościowego różnice w ich geometrii. Kalibrację aparatu sprawdzano metodą tradycyjną, wyznaczając temperatury i entalpie topnienia substancji wzorcowych. Uzyskano zadowalające wyniki: różnice pomiędzy literaturowymi i eksperymentalnymi temperaturami topnienia były niższe niż 1 K, błąd w wyznaczaniu entalpii topnienia nie przekraczał 0,5%. W przypadku pomiarów ciepła właściwego maksymalny bład pomiaru dla substancji wzorcowej (α -Al₂O₃) nie przekraczał 1.5%.

Rys. 9. Zasada wyznaczania stałej kalorymetru DSC 121 przy pomocy "efektu Joule'a" Fig. 9. Principle of DSC 121 calibration by "Joule effect"

4.2.2. Pomiary wykonywane za pomocą kalorymetru DSC 121

Pomiary entalpii przemian fazowych

Zasada pomiaru jest identyczna jak w przypadku kalorymetru Calveta: powierzchnia piku związanego z efektem termicznym jest całkowana przez program obróbki

24

danych zawierający w sobie stałą kalorymetru. Cechowanie kalorymetru odbywa się za pomocą "efektu Joule'a".

Pomiary ciepła właściwego

Ideę tradycyjnej metody ciągłej pomiaru ciepła właściwego za pomocą DSC [49] przedstawiono na rys. 10.

Rys. 10. Zasada pomiaru ciepła właściwego przy pomocy DSC metodą ciągłą Fig. 10. Principle of heat capacity measurements by DSC continuous method

Metoda ta polega na wykonaniu trzech eksperymentów: pierwszy z pustymi ampułami (pomiarowa i wzorcowa), drugi z ampułą pomiarową zawierającą substancję badaną i trzeci z ampułą pomiarową zawierającą substancję wzorcową (np. szafir). Ampuła wzorcowa pozostaje pusta we wszystkich pomiarach. Pomiary wykonuje się w przedziale temperaturowym 100–150 K, z szybkością ogrzewania 10 K min⁻¹. Pomiar wykonany dla pustych ampuł służy do wyznaczenia linii bazowej. Różnica w przepływie ciepła, *J*, pomiędzy drugim (substancja badana – rys. 10) i pierwszym eksperymentem (linia bazowa – rys. 10) jest porównywana z analogiczną różnicą, J_{wz} , pomiędzy trzecim (substancja wzorcowa – rys. 10) i pierwszym pomiarem. Wielkości *J* i J_{wz} wyznaczane są dla identycznej temperatury *T* (przesunięcie strzałek obrazujących J_{wz} i *J* względem osi temperatury na rys. 10 miało na celu zwiększenie wyrazistości oznaczeń). Ciepło właściwe substancji badanej w danej temperaturze *T* liczone jest z zależności

$$c_{\rm p} = c_{\rm p,wz} \times \frac{m_{\rm wz}J}{mJ_{\rm wz}} \tag{7}$$

w której:

 $c_{\rm p}$ – ciepło właściwe substancji badanej, $c_{\rm p,wz}$ – ciepło właściwe substancji wzorcowej,

- J różnica w przepływie ciepła (mW) między eksperymentem z substancją badaną i eksperymentem z pustą ampułą pomiarową,
- J_{wz} różnica w przepływie ciepła (mW) między eksperymentem z substancją wzorcową i eksperymentem z pustą ampułą pomiarową,

m i m_{wz} – masy substancji badanej i wzorcowej.

Ze względu na odmienną konstrukcję (cylindryczne termostosy otaczające ampułę z badaną substancją i ampułę wzorcową) i cechowanie przy użyciu "efektu Joule'a" kalorymetr DSC 121 SETARAM umożliwia pomiary ciepła właściwego zarówno metodą ciągłą, jak i niemożliwą do wykonania za pomocą innych kalorymetrów różnicowych, tzw. "metodą krokową". Metoda ciągła polega na wykonaniu tylko dwóch pomiarów w miejsce trzech: pomiaru dla pustej ampuły pomiarowej wobec ampuły wzorcowej ("pusty") i pomiaru dla ampuły pomiarowej z substancją badaną wobec ampuły wzorcowej ("pomiar"). Pomiar dla substancji wzorcowej jest zbędny, ponieważ dzięki cechowaniu kalorymetru za pomocą "efektu Joule'a" różnica efektów "pomiar" i "pusty" określa bezpośrednio ilość ciepła konieczną do ogrzania substancji badanej do określonej temperatury.

Wadą podstawową metody ciągłej jest fakt, że substancja badana nie osiąga równowagi termicznej w trakcie pomiaru. Wada ta wyeliminowana została w "metodzie krokowej". Zasadę pomiaru ciepła właściwego "metodą krokową" przedstawiono na rys. 11.

Rys. 11. Zasada pomiaru ciepła właściwego metodą krokową Fig. 11. Principle of heat capacity measurements by "step method"

26

W metodzie tej po niewielkich krokach wzrostu temperatury (rzędu kilku stopni) następuje izotermiczne wygrzewanie, pozwalające na osiągnięcie równowagi termicznej w badanej próbce. Podobnie jak w przypadku metody ciągłej, do wyznaczenia ciepła właściwego badanej substancji potrzebne są tylko dwa pomiary: "pomiar" (krzywa 2 na rys. 11) i "pusty" (krzywa 1 na rys. 11). Obydwa pomiary muszą być wykonywane w identycznych warunkach. Temperatura początkowa pomiarów, szybkość ogrzewania, czas izotermicznej stabilizacji i masy ampuł (eksperymentalnej i wzorcowej) muszą być takie same. Różnica efektów termicznych obydwu pomiarów jest proporcjonalna do ciepła właściwego badanej substancji. Całkowanie różnicy efektów termicznych każdego nieizotermicznego kroku określa ilość ciepła (Q_p) konieczną do podniesienia temperatury substancji badanej do kolejnej temperatury izotermicznego równoważenia. Średnie ciepło właściwe przy stałym ciśnieniu, c_p , badanej próbki dla średniej temperatury z przedziału T_1-T_2 wynosi

$$c_{\rm p} = \frac{Q_p}{m\Delta T_{\rm i}} = \frac{S_{\rm termogramu}}{mK\Delta T_{\rm i}}$$
(8)

gdzie K jest stałą kalorymetru, a m masą badanej próbki.

Stosując krok wzrostu temperatury rzędu 5 K i pełen zakres pomiarowy DSC 121 (300–1100 K) uzyskuje się około 160 wartości ciepła właściwego dla 160 różnych średnich temperatur. Jeden pomiar dla pełnego zakresu temperatur DSC 121 trwa około 30 godzin (krok wzrostu temperatury – 5 K, szybkość ogrzewania – 1,5 K min⁻¹, izotermiczna stabilizacja – 400 s). Długotrwałość pomiaru rekompensowana jest jego dokładnością.

Pomiary ciepła właściwego halogenków lantanowców i związków tworzących się w układach halogenki lantanowców-halogenki litowców wykonywano w ampułach kwarcowych.

4.3. Przewodnictwo elektryczne

Pomiary przewodnictwa elektrycznego stopionych halogenków lantanowców i ich mieszanin z halogenkami litowców traktowano jako badania uzupełniające dla wyników otrzymanych metodami kalorymetrycznymi. Schemat naczynka pomiarowego przedstawiono na rys. 12.

Kwarcowe naczynie pomiarowe ze związkiem przeznaczonym do badań umieszczano w stalowym bloku znajdującym się wewnątrz pieca elektrycznego. Pomiary wykonywano w statycznej atmosferze argonu, przy szybkości ogrzewania i chłodzenia równej 1 K min⁻¹. Temperaturę kontrolowano za pomocą termopary Pt–Pt/Rh(10), przewodnictwo mierzono konduktometrem Tacussel CD 810. Naczynie pomiarowe kalibrowano za pomocą stopionego NaCl [50].

Rys. 12. Schemat kapilarnego naczynia do pomiarów przewodnictwa elektrycznego:
1 – piec elektryczny, 2 – blok stalowy, 3 – termopara, 4 – elektrody platynowe,
5 – kwarcowe naczynie pomiarowe, 6 – kapilara, 7 – przewody platynowe
Fig. 12. Capillary quartz cell for electrical conductivity measurements: 1 – electric furnace, 2 – steel block,
3 – thermocouple, 4 – platinum electrodes, 5 – quartz cell, 6 – capillary, 7 – platinum wires

Zespolona impedancja naczynka elektrolitycznego z dwoma elektrodami stosowanego do pomiarów przewodnictwa elektrycznego stopionych soli zależy od częstości prądu. Jej część rzeczywistą, ekstrapolowaną do wysokich częstości, często przyjmuje się jako opór elektrolitu. Zależność ta może być wyrażona równaniem [51]

$$R_{\rm mierz} = R_{\infty} + \frac{C}{\sqrt{f}} \tag{9}$$

w którym:

 $R_{\rm mierz}$ – opór mierzony przy określonej częstotliwości,

 R_{∞} – opór przy częstotliwości nieskończenie wielkiej,

C – stała charakterystyczna dla badanej substancji,

f – częstotliwość prądu.

Biorąc pod uwagę powyższy fakt, przed przystąpieniem do zasadniczych pomiarów sporządzano zależność przewodnictwa od częstotliwości dla każdej z badanych soli. Sporządzając graficzną zależność $R_{\text{mierz}} = f(f^{-1/2})$ wyznaczano wartość stałej *C*. Eksperymentalnie stwierdzono, że wartość tej stałej jest praktycznie niezależna od temperatury. Wyniki pomiarów przewodnictwa ekstrapolowano następnie dla częstotliwości nieskończenie wielkiej, posługując się równaniem (9).

5. Wyniki badań przemian fazowych i właściwości termodynamicznych halogenków lantanowców i związków tworzących się w układach halogenki lantanowców–halogenki litowców

5.1. Halogenki lantanowców(III)

5.1.1. Temperatury i entalpie przemian fazowych halogenków lantanowców(III)

Jak już wspomniano wcześniej, pomiary mające na celu wyznaczenie temperatur i entalpii przemian fazowych halogenków lantanowców prowadzono używając różnicowej kalorymetrii skaningowej (DSC). Jedynie w przypadku LaCl₃, TmCl₃ i TbBr₃, których temperatury topnienia znajdują się poza zakresem pomiarowym DSC 121 SETARAM, posłużono się kalorymetrem Calveta.

Analiza krzywych ogrzewania i chłodzenia wykazała, że praktycznie wszystkie chlorki i bromki lantanowców(III) (z wyjątkiem LaCl₃) ulegają przechłodzeniu. Temperatury topnienia wyznaczone z krzywych ogrzewania są od kilku (PrCl₃ – 5 K) do kilkudziesięciu stopni (GdCl₃ – 40 K) wyższe niż temperatury wyznaczone z krzywych chłodzenia [52]. Efektu przechłodzenia nie obserwowano jedynie w przypadku badanych jodków lantanowców(III). W związku z tym, do wyznaczania zarówno temperatur jak i entalpii przemian fazowych wykorzystywano tylko krzywe ogrzewania. Uzyskane wyniki przedstawiono w tabelach 2 i 3. Ich integralną częścią są dane literaturowe dotyczące zarówno temperatur, jak i entalpii topnienia. Pozostałe dane literaturowe dla chlorków (około 100 pozycji) dotyczące wyłącznie temperatur topnienia można znaleźć w *Gmelin Handbook of Inorganic Chemistry* [53]. Cechuje je bardzo duża rozbieżność. Przykładem mogą być skrajne temperatury topnienia PrCl₃ (1038 K [54] i 1096 K [55]), SmCl₃ (938 K [56] i 1020 K [57]), GdCl₃ (875 K [15] i 943 K [58]) czy TmCl₃ (1085 K [59] i 1139 K [55].

LnCl ₃	$T_{ m top}$ / K	$\Delta_{top}H(kJ mol^{-1})$	$\Delta_{top} S (J \text{ mol}^{-1} \text{ K}^{-1})$	Literatura
	1127	55,7	49,4	[52]
	1131	54,3	48,1	[16]
LaCl	1128	54,3	48,1	[61]
LaCI3	1135	30,9	27,2	[62]
	1127	39,3	34,9	[63]
	1192	-	-	[20]
	1086	55,5	51,1	[52]
	1090	53,5	49,1	[15]
CeCl ₃	1078	33,5	31,1	[64]
	1076	41,8	38,8	[63]
	1104	-	-	[65]
	1061	52,1	49,1	[52]
	1059	50,6	47,8	[16]
PrCl ₃	1051	-	-	[65]
	1054	37,2	35,3	[63]
PrCl ₃ NdCl ₃ SmCl ₃ EuCl ₃ GdCl ₃	1043	28,8	27,6	[62]
	1032	48,1	46,6	[52]
	1032	50,2	48,6	[16]
NdCl ₃	1033	33,5	32,4	[64]
	1019	41,4	40,6	[63]
	1013	-	-	[66]
	950	47,6	50,3	[35]
SmCl ₂	950	46,0	48,4	[14]
Sincis	950	-	-	[67]
	955	-	-	[68]
	894	45,0	50,3	[69]
EuCla	897	51,0	56,9	[70]
	896	-	-	[71]
	901	-	3 $48,1$ [6] 9 $27,2$ [62] 3 $34,9$ [63] $-$ [20] 5 5 $51,1$ [52] 5 $49,1$ [15] 5 $31,1$ [64] 8 $38,8$ [63] $-$ [65] 1 $49,1$ [52] 6 $47,8$ [16] $-$ [65] 2 $35,3$ [63] 8 $27,6$ [62] 1 $46,6$ [52] 2 $35,3$ [63] 8 $27,6$ [62] 1 $46,6$ [52] 2 $48,6$ [16] 5 $32,4$ [64] 4 $40,6$ [63] $-$ [66] 6 6 $50,3$ [35] 0 $48,4$ [14] $-$ [67] 6 6 $32,6$ [52] <tr< td=""></tr<>	
GdCl ₃	873	40,6	46,5	[52]
0	875	40,5	46,3	[15]
TmCl ₃	1092	35,6	32,6	[52]
	1094	37,6	34,4	[61]
I D	1058	54,2	51,2	[72]
LaBr ₃	1061	54,4	51,3	[15]
	1062	33,5	31,5	[/3]
NJD.	956	45,5	47,0	[*]
NUB _{F3}	935	43,0	4/,/	[15]
	933	33,3	33,1	[/3]
ThBr	1103	37,4	33,9	[72]
10013	1100	37,7	34,2	[/3]
	10.07	50.2	47 0	[U] [*1
	1047	56.1	53 /	[15]
LaI ₃	1045	33.5	32.0	[73]
	1043	56.1	52,0	[46]
	1033	50.3	48 7	[*0] [*1
CeL	1033	51.9	50.2	[15]
,	1034	51.0	493	[46]
		, ~		L

Tabela 2. Temperatury oraz molowe entalpie i entropie topnienia halogenków lantanowców(III): dane autora niniejszej pracy zaznaczono pogrubioną czcionką

LnCl ₃	T _{przem} K	$\Delta_{\rm przem} H$ (kJ mol ⁻¹)	$\Delta_{\rm przem}S$ (J mol ⁻¹ K ⁻¹)	T _{top} K	$\Delta_{top}H$ (kJ mol ⁻¹)	$\Delta_{top}S$ (J mol ⁻¹ K ⁻¹)	$\Delta_{\rm przem}S + \Delta_{\rm top}S$ (J mol ⁻¹ K ⁻¹)	Litera- tura
	611	1,4	2,3	919	22,8	24,8	27,1	[*]
DyCl ₃	-	-	_	924	25,5	27,6	27,6	[15]
	-	-	-	898	_	-	-	[76]
	-	—	—	928	—	—	-	[74]
ErCl ₃	1025	5,3	5,2	1046	31,1	29,7	34,9	[52]
	-	-	_	1049	32,6	31,0	31,0	[15]
	790	13,8	17,5	854	20,8	24,4	41,9	[75]
TbCl ₃	783	14,2	18,2	855	19,4	22,7	40,9	[15]
	793	23,1	29,1	857	31,6	36,9	60,0	[76]
NdI ₃	862	13,3	15,4	1058	36,0	34,0	49,4	[*]
	847	13,8	16,3	1060	41,4	39,1	55,4	[15]

Tabela 3. Temperatury i molowe entalpie przemian fazowych TbCl₃, DyCl₃, ErCl₃ i NdI₃: dane autora niniejszej pracy zaznaczono pogrubioną czcionką

Pełny zestaw literaturowych danych dotyczących temperatur topnienia bromków i jodków lantanowców(III) znajduje się w *Gmelin Handbook of Inorganic Chemistry* [60].

Wspomniany wyżej efekt przechłodzenia wyraźnie wpływał na zaniżenie wartości temperatur topnienia chlorków otrzymanych z krzywych chłodzenia, natomiast entalpie topnienia i krystalizacji wyznaczone odpowiednio z krzywych ogrzewania i chłodzenia były niemal identyczne. Jedynym wyjątkiem był chlorek lantanu(III). Entalpia jego krystalizacji wyznaczona z krzywych chłodzenia była wyraźnie wyższa niż entalpia topnienia uzyskana z krzywych ogrzewania. Tak kontrowersyjne wyniki stały się przyczyną ponownych syntez i analiz chemicznych przygotowanego LaCl₃, które potwierdziły jego wysoką jakość. Ponowne pomiary kalorymetryczne potwierdziły uzyskane wcześniej wyniki – entalpia topnienia była wyraźnie niższa (55,7 kJ mol⁻¹) niż entalpia krystalizacji (64,2 kJ mol⁻¹). Kalibracja kalorymetru i jego testowanie również nie przyniosły wyjaśnienia. Testowy pomiar dla NdCl₃ dał wynik standartowy – entalpia topnienia równa entalpii krystalizacji (48,2 i 48,0 kJ mol⁻¹). Pozornie absurdalne wyniki uzyskane dla chlorku lantanu(III) można było wyjaśnić na podstawie danych literaturowych. Według Savina [77] topnienie LaCl₃ zwiazane jest z tworzeniem się "struktury łańcuchowej" w cieczy. Z dalszym wzrostem temperatury następuje niszczenie tej struktury, z czym wiążą się wysokie wartości ciepła molowego ciekłego LaCl₃ (około 350 J mol⁻¹K⁻¹ [77]). Istnienie "struktury łańcuchowej" umożliwia wyjaśnienie faktu, że wartość entalpii krystalizacji, uzyskana z krzywych chłodzenia, jest wyższa niż entalpia topnienia wyznaczona z krzywych ogrzewania (rys. 13).

Podczas chłodzenia ciekłego LaCl₃ nie następuje tworzenie się "struktury łańcuchowej". W jej miejsce powstaje metastabilna faza ciekła, która następnie ulega krystalizacji. Tak więc uzyskana z krzywej chłodzenia wartość entalpii krystalizacji $\Delta_{krysl}H$ jest sumą wyznaczonej z krzywej ogrzewania entalpii topnienia, $\Delta_{top}H$ i entalpii związanej z niszczeniem "struktury łańcuchowej" ciekłego LaCl₃.

Rys. 13. Entalpia topnienia i krystalizacji LaCl₃ Fig. 13. Fusion and crystallisation enthalpy of LaCl₃

Zarówno temperatury, jak i entalpie topnienia wyznaczone dla LaCl₃, CeCl₃, PrCl₃, NdCl₃ i GdCl₃ zgadzają się bardzo dobrze z wynikami uzyskanymi metodą kalorymetryczną przez Dworkina i Brediga [15, 16]. Pozostałe dane literaturowe dla wyżej wymienionych chlorków (dotyczące głównie entalpii topnienia) różnią się wyraźnie od rezultatów niniejszej pracy. Zostały one jednak uzyskane metodą porównywania krzywych DTA związków badanych z krzywymi DTA substancji wzorcowych. Metoda ta obarczona jest błędem nieporównywalnie większym niż metody kalorymetryczne. W przypadku SmCl₃ i TmCl₃ uzyskano bardzo dobrą zgodność zarówno temperatury, jak i entalpii topnienia z danymi literaturowymi [14, 61].

Wyznaczona temperatura topnienia EuCl₃, wynosząca 894 K, zgadza się dobrze z danymi Kulagina i Lapteva [70], natomiast entalpia topnienia jest około 10% niższa. Należy podkreślić, że wspomniani autorzy [70] otrzymali swoją wartość metodą porównywania krzywych DTA (EuCl₃ i wzorzec). Analiza krzywych DSC otrzymywanych dla EuCl₃ (rys. 14) prowadzi do wniosku, że związek ten ulega rozkładowi w trakcie ogrzewania. O ile na krzywej pierwszego ogrzewania (rys. 14a) występuje tylko jeden endotermiczny efekt w temperaturze 894 K (topnienie EuCl₃), to na krzywej pierwszego chłodzenia (rys. 14b) pojawiają się dwa efekty w temperaturach 857 i 796 K. Kolejne ogrzewanie, bezpośrednio po pierwszym chłodzeniu, wykazuje już istnienie dwóch endotermicznych efektów (804 i 887 K) na krzywej ogrzewania (rys. 14c). Analiza chemiczna EuCl₃ po wykonaniu jednego cyklu ogrzewanie – chłodzenie wykazała zmniejszoną zawartość chloru w badanym związku. Jego skład odpowiadał związkowi EuCl_{2,97}, co dowodzi zawartości około 1% mol. EuCl₂ w badanej próbce.

Rys. 14. Krzywe DSC dla EuCl₃: a) pierwsze ogrzewanie, b) pierwsze chłodzenie, c) drugie ogrzewanie Fig. 14. DSC curves for EuCl₃: a) primary heating, b) primary cooling, c) secondary heating

Również wizualne obserwacje potwierdziły obecność chloru w ampułach z EuCl₃ po zrobieniu badań kalorymetrycznych. Oznacza to, że chlorek europu(III) ulega rozkładowi w podwyższonych temperaturach na chlorek europu(II) i chlor. Biorąc pod uwa-

gę fakt występowania tylko jednego efektu na krzywej pierwszego ogrzewania, można przyjąć, że rozkład ten następuje głównie w temperaturach bliskich temperaturze topnienia i w fazie ciekłej. Pojedynczy efekt na krzywej DSC pierwszego ogrzewania, któremu odpowiada temperatura 894 K, jest właściwym efektem topnienia EuCl₃. Częściowy rozkład EuCl₃ prowadzi do przekształcenia się układu jednoskładnikowego w układ dwuskładnikowy EuCl₃–EuCl₂. W rezultacie na krzywej chłodzenia i krzywej powtórnego ogrzewania występują dwa efekty termiczne: pierwszy związany z krystalizacją (topnieniem) EuCl₃ w dwuskładnikowym układzie EuCl₃–EuCl₂ i drugi odpowiadający temperaturze topnienia eutektyku EuCl₃–EuCl₂. Odpowiednie temperatury wyznaczone z krzywych ogrzewania (887 K i 804 K) są w dobrej zgodności z diagramem fazowym układzie EuCl₃–EuCl₂ [78]. Zdecydowanie niższa temperatura krystalizacji EuCl₃ w układzie EuCl₃–EuCl₂ (857 K – krzywa chłodzenia) związana jest z efektem przechłodzenia, charakterystycznym dla chlorków lantanowców(III). Efekt termicznego rozkładu EuCl₃ był obserwowany również przez Kulagina i Lapteva [79].

TbCl₃ jest jednym z chlorków lantanowców ulegającym przemianie fazowej ciało stałe – ciało stałe. Dane literaturowe dotyczące struktury i polimorficznych modyfikacji TbCl₃ są dość liczne, ale niestety rozbieżne. Według Forrestera, Zalkina, Templetona i Wallmana [80] TbCl₃ ma strukturę ortorombową typu PuBr₃, podczas gdy Spedding i Daane [81] podają, że jest to struktura jednoskośna. Według Weigela i Scherera [82] jest on dimorficzny: ma strukture ortorombowa w niższych temperaturach i heksagonalna typu UCl₃ w temperaturach wyższych. Najnowsze dane literaturowe [30, 83] wyjaśniaja skomplikowana sytuacje dotyczaca struktury i przemian fazowych chlorku terbu(III). W zależności od warunków syntezy można otrzymać jego modyfikację o strukturze heksagonalnej (typu UCl₃) lub ortorombowej (typu PuBr₃). W trakcie ogrzewania, w temperaturze 640–670 K struktura heksagonalna przekształca się nieodwracalnie w strukturę ortorombową typu PuBr₃, która z kolei w temperaturze 790 K ulega odwracalnej przemianie fazowej do wysokotemperaturowej struktury ortorombowej typu trójrutylu [30]. Ponowne ochładzanie związku do temperatury poniżej 640 K nie jest w stanie przywrócić struktury heksagonalnej typu UCl₃ nawet w temperaturze pokojowej pozostaje on w postaci metastabilnej modyfikacji ortorombowej typu PuBr₃. Jedyna możliwościa otrzymania TbCl₃ o strukturze typu UCl₃ jest synteza związku w temperaturze poniżej 640 K, czyli poniżej temperatury, w której modyfikacja ta przechodzi nieodwracalnie w strukturę ortorombowa [30].

Biorąc pod uwagę najnowsze dane dotyczące struktury TbCl₃ [30,83] i fakt, że ostatnim etapem syntezy tego chlorku była jego destylacja w temperaturze około 100 K wyższej od temperatury topnienia, należy przyjąć, że badaniom prezentowanym w niniejszej pracy poddawano związek o strukturze ortorombowej typu PuBr₃. Otrzymana temperatura przemiany fazowej, wynosząca 790 K, doskonale zgadza się z temperaturą podaną przez Simona i Urlanda [83] i jest nieco wyższa niż wyznaczona przez Dworkina i Brediga [15] czy Seiferta i inych [30] (odpowiednio 783 i 784 K). Wyznaczona wartość entalpii tej przemiany dobrze zgadza się z wielkością podaną przez Dworkina i Brediga, podobnie zresztą jak temperatura topnienia i entalpia topnienia (tabela 3). Wielkości entalpii przemiany fazowej i entalpii topnienia uzyskane przez Goryushkina i pozostałych [76] są zdecydowanie wyższe, ale otrzymane zostały porównawczą metodą analizy termicznej.

Pomiary kalorymetryczne przeprowadzone dla DyCl₃ wykazały, że ulega on przemianie fazowej w temperaturze 611 K. Entalpia tej przemiany, $\Delta_{\text{przem}}H$, wynosi 1,4 kJ mol⁻¹. Literaturowe dane (tabela 3) poświęcone badaniom termochemicznym nic nie wspominają o takiej przemianie; według nich jedynym efektem występującym w DyCl₃ jest jego topnienie. Chcac znaleźć wyjaśnienie obserwowanego zjawiska dokonano przeglądu informacji dotyczących struktury chlorku dysprozu(III). Okazało się, że sytuacja jest niejednoznaczna, podobnie jak w przypadku TbCl₃. Templeton i Carter [84] przypisują mu strukturę jednoskośną typu AlCl₃, podczas gdy Bommer i Hohman [85] informują o istnieniu dwóch odmian krystalicznych: jednoskośnej typu AlCl₃ i ortorombowej typu PuBr₃. Weigel i Wishnewsky [86] udowodnili, że DyCl₃ o strukturze jednoskośnej typu AlCl₃ przechodzi w temperaturze około 790 K pod zwiększonym ciśnieniem w strukturę z ortorombową typu Pu-Br₃. Lyzlov i Nieselson [59] obserwowali efekt przemiany polimorficznej w temperaturze 632 K. Obserwowana przez autora niniejszej pracy przemiana zachodząca w temperaturze 611 K może być wiec przypisana przemianie struktury jednoskośnej typu AlCl3 w strukturę ortorombową typu PuBr3. Ze względu na niewielki efekt energetyczny, jej wykrycie było możliwe dzięki zastosowaniu skaningowej kalorymetrii różnicowej. Wyznaczona pierwotnie temperatura topnienia DyCl₃ [52], wyraźnie odbiegająca od danych literaturowych, została zweryfikowana w kolejnych pomiarach [*]. Uzyskano wartość 919 K, o 5 K niższą od temperatury topnienia podanej przez Dworkina i Brediga [15]. Entalpia topnienia, $\Delta_{top}H$, jest o około10% mniejsza niż wyznaczona przez wspomnianych autorów. Jednakże suma entropii przemiany fazowej i entropii topnienia, $\Delta_{przem}S + \Delta_{top}S$, wynosząca 27,1 J mol⁻¹K⁻¹ jest niemalże identyczna z wartościa otrzymana przez Dworkina i Brediga (27,6 $J \text{ mol}^{-1} \text{K}^{-1}$).

Efekt termiczny odpowiadający przemianie fazowej w temperaturze 1025 K wykryto w przypadku ErCl₃, podczas gdy literaturowe dane [53,85] mówią o istnieniu tylko jednej odmiany strukturalnej ErCl₃ – struktury jednoskośnej typu AlCl₃. Wyznaczona temperatura i entalpia topnienia ErCl₃ bardzo dobrze zgadzają się z danymi literaturowymi (tabela 3), ale suma $\Delta_{\text{przem}}S + \Delta_{\text{top}}S$ jest o około 10% większa w porównaniu z wielkością uzyskaną przez Dworkina i Brediga [15].

Wyniki uzyskane dla bromków, LaBr₃, NdBr₃ i TbBr₃, przedstawiono w tabeli 2. Jedynym obserwowanym efektem termicznym jest ich topnienie w temperaturach odpowiednio 1058, 955 i 1103 K. Uzyskane wartości temperatur topnienia zgadzają się bardzo dobrze z danymi literaturowymi [15, 61, 73]. Otrzymane entalpie topnienia LaBr₃ i NdBr₃ pozostają w dobrej zgodności z wartościami uzyskanymi przez Dworkina i Brediga [15] i są zdecydowanie wyższe, niż wielkości podawane przez Wicka i Blocka [73]. Entalpia topnienia TbBr₃ idealnie zgadza się z wartościami literaturowymi [61, 73].

Przeprowadzono również pomiary temperatur i entalpii przemian fazowych LaI₃, Cel₃ i NdI₃ (tabele 2 i 3). Temperatura topnienia LaI₃ (1047 K) jest nieznacznie niższa od uzyskanej przez Dworkina i Brediga [15] (1051 K) i wyraźnie niższa od temperatury podawanej przez Kubaschewskiego [46] (1062 K). Wyznaczona molowa entalpia topnienia jest o około 12% mniejsza od wartości podanych w wyżej wymienionych pracach. Dobra zgodność otrzymanych wielkości eksperymentalnych (temperatura i entalpia topnienia) z danymi literaturowymi [15, 46] uzyskano dla CeI₃. Wyraźne rozbieżności z danymi literaturowymi [15] otrzymano w przypadku NdI₃. Jest to jedyny z badanych jodków, który ulega przemianie fazowej ciało stałe – ciało stałe. Według Dworkina i Brediga [15] przemiana ta następuje w temperaturze 847 K i jest związana ze zmiana struktury typu PuBr₃ na strukturę heksagonalną [60]. W niniejszej pracy uzyskano temperaturę tej przemiany równa 862 K, a więc o 15 K wyższą, a wyznaczona entalpia (13.3 kJ mol⁻¹) pozostaje w dobrej zgodności z cytowanymi danymi literaturowymi. Przy dobrej zgodności temperatury, uzyskana wartość entalpii topnienia NdI₃ jest wyraźnie mniejsza od danych literaturowych [15] (odpowiednio: 1058 i 1060 K oraz 36,0 i 41,4 kJ mol⁻¹).

5.1.1.1. Zależność temperatury topnienia i entalpii topnienia chlorków lantanowców(III) od liczby atomowej lantanowca

Analizując otrzymane temperatury topnienia chlorków lantanowców(III) znaleziono interesującą ich zależność od liczby atomowej (a więc struktury elektronowej) lantanowca. Przedstawiono ją na rys. 15. Do jej sporządzenia oprócz własnych wyników (tabele 2 i 3) zastosowano również dostępne w literaturze temperatury topnienia HoCl₃ (973 K [31]), YbCl₃ (1148 K [87]) i LuCl₃ (1198 K [81]). Temperatury topnienia chlorków maleją od lantanu (Z = 57) do terbu (Z = 65), po czym ponownie wzrastają od terbu do lutetu (Z = 71). Korzystając z tej zależności wyznaczono temperaturę topnienia PmCl₃. Otrzymana wartość 983 K (czarny kwadrat na rys. 15) jest jednak wyraźnie niższa od wartości podanej w literaturze – 1010 K [53].

Zależność entalpii topnienia od liczby atomowej lantanowca przedstawiono na rys. 16. Również w tym przypadku wykorzystano literaturową wartość entalpii topnienia dla HoCl₃ (30,5 kJ mol⁻¹ [15]). Ze względu na wielkość entalpii topnienia chlorki dzielą się także na dwie grupy: pierwsza od LaCl₃ do GdCl₃ z liniowo malejącą entalpią topnienia i druga od TbCl₃ do LuCl₃ z entalpią topnienia rosnącą ze wzrostem liczby atomowej. O ile jednak w przypadku zależności temperatury topnienia od liczby atomowej TbCl₃ pełnił rolę łącznika pomiędzy dwoma grupami chlorków (rys. 15), to tutaj grupy te są całkowicie niezależne. Podobnie jak w przypadku temperatur topnienia, wykorzystując zależność entalpii topnienia od liczby atomowej dla grupy LaCl₃–GdCl₃, otrzymano entalpię topnienia PmCl₃, $\Delta_{top}H = 48,0$ kJ mol⁻¹.

Rys. 15. Zależność temperatury topnienia chlorków lantanowców(III) od liczby atomowej lantanowca Fig. 15. Dependence of fusion temperature of lanthanide(III) chlorides on lanthanide atomic number

Rys. 16. Zależność entalpii topnienia chlorków lantanowców(III) od liczby atomowej lantanowca Fig. 16. Dependence of molar enthalpy of lanthanide(III) chlorides fusion on lanthanide atomic number
5.1.1.2. Korelacja pomiędzy entropią topnienia chlorków lantanowców(III) i ich strukturą krystaliczną

Przedstawiony wyżej podział chlorków lantanowców(III) na dwie grupy, ze względu na charakter zależności temperatury topnienia i entalpii topnienia od liczby atomowej lantanowca, pokrywa się generalnie z ich strukturą krystaliczną. Chlorki La, Ce, Pr, Nd, Sm, Eu i Gd mają strukturę heksagonalną typu UCl₃ (znaną też jako struktura typu Y(OH)₃), natomiast chlorki Ho, Er, Tm, Yb i Lu strukturę jednoskośną typu AlCl₃ [53]. DyCl₃ w niskich temperaturach ma strukturę ortorombową typu PuBr₃. TbCl₃ w niskich temperaturach krystalizuje w strukturę ortorombowę typu PuBr₃, która w temperaturach krystalizuje w strukturę ortorombowę typu Topirutylu.

W roku 1971 Dworkin i Bredig [15] wykazali, że entropia topnienia chlorków o strukturze heksagonalnej wynosi około 50 ± 4 J mol⁻¹K⁻¹ i jest wyraźnie wyższa w porównaniu z entropią topnienia chlorków o strukturze jednoskośnej, która wynosi 31 ± 4 J mol⁻¹K⁻¹.

Tosi ze współpracownikami [88] zaproponowali podział mechanizmów topnienia chlorków metali trójwartościowych na trzy typy związane ze strukturą krystaliczną. Stwierdzili oni, że topnienie chlorków o strukturze krystalicznej typu UCl₃ (LaCl₃, CeCl₃, PrCl₃, NdCl₃ i GdCl₃) lub typu PuBr₃ (TbCl₃) związane jest ze znacznie wyższą zmianą entropii niż topnienie chlorków o strukturze krystalicznej typu AlCl₃. Obserwowane przez nich zmiany entropii wynosiły odpowiednio 50 ± 4, 40,9 i 31 ±4 J mol⁻¹K⁻¹. Uzyskane w niniejszej pracy wartości $\Delta_{top}S$, lub $\Delta_{przem}S + \Delta_{top}S$ wszystkich badanych chlorków lantanowców(III) doskonale spełniają przedstawione wyżej zależności (tabele 2 i 3). Topnieniu chlorków o strukturze heksagonalnej typu UCl₃ towarzyszy zmiana entropii, $\Delta_{top}S$, wynosząca odpowiednio 49,4; 51,1; 49,1; 46,6; 50,3; 50,3 i 46,5 J mol⁻¹K⁻¹ dla LaCl₃, CeCl₃, PrCl₃, NdCl₃, SmCl₃, EuCl₃ i GdCl₃. Dla chlorków o strukturze krystalicznej typu AlCl₃ zmiana entropii wynosi 27,1 (DyCl₃), 34,9 (ErCl₃) i 32,6 (TmCl₃) J mol⁻¹K⁻¹. W przypadku TmCl₃ jest to entropia topnienia, $\Delta_{top}S$, dla DyCl₃ i ErCl₃ jest to suma entropii przemiany fazowej ciało stałe – ciało stałe i entropii topnienia, $\Delta_{przem}S + \Delta_{top}S$.

Suma entropii, $\Delta_{\text{przem}}S + \Delta_{\text{top}}S$, dla TbCl₃, który w niskich temperaturach ma strukturę krystaliczną typu PuBr₃ wynosi 41,9 J mol⁻¹K⁻¹.

Omawianą powyżej zależność entropii topnienia od struktury krystalicznej chlorku lantanowca(III) zastosowano do weryfikacji danych literaturowych dotyczących entalpii topnienia YbCl₃. Według Brewera [89] entalpia ta wynosi 37,7 kJ mol⁻¹, według Lapteva i współpracowników [87] 63,6 kJ mol⁻¹. Wartość temperatury topnienia podawana w obu pracach jest taka sama i wynosi 1148 K. Biorąc pod uwagę fakt, że YbCl₃ ma strukturę krystaliczną typu AlCl₃ [53], należy spodziewać się zmiany entropii towarzyszącej topnieniu na poziomie 31 ± 4 J mol⁻¹K⁻¹. Wartość entropii topnienia wyznaczona z danych Lapteva i współpracowników wynosi 55,4 J mol⁻¹K⁻¹ i jest zdecydowanie za wysoka, natomiast wartość entropii topnienia uzyskana z danych Brewera, 32,8 J mol⁻¹K⁻¹, doskonale zgadza się z wartością oczekiwaną dla chlorku o strukturze krystalicznej typu AlCl₃.

5.1.1.3. Zależność temperatury topnienia i entalpii topnienia bromków lantanowców(III) od liczby atomowej lantanowca

Zaobserwowanie zależności temperatury i entalpii topnienia chlorków lantanowców(III) od liczby atomowej lantanowca skłoniło autora tej pracy do poszukiwania podobnych zależności dla bromków lantanowców(III). W ramach niniejszej pracy wykonano pomiary dla LaBr₃, NdBr₃ i TbBr₃ (tab. 2), dla pozostałych bromków posłużono się istniejącymi danymi literaturowymi [15, 61, 73, 90] zestawionymi w tabeli 4.

LnBr ₃	T _{top} K	$\Delta_{top}H$ (kJ mol ⁻¹)	$\Delta_{top}S$ (J mol ⁻¹ K ⁻¹)	Literatura
CeBr ₃	1005	54,2	53,9	[15]
PrBr ₃	966	47,3	49,0	[15]
SmBr ₃	937	33,5	35,7	[90]
EuBr ₃	978	33,5	34,2	[61]
GdBr ₃	1058	38,0	35,9	[15]
DyBr ₃	1152	46,4	40,3	[73]
HoBr ₃	1192	50,2	42,1	[15]
ErBr ₃	1223	50,6	41,4	[90]
TmBr ₃	1228	53,5	43,5	[61]
LuBr ₃	1233	60,2	48,8	[61]

Tabela 4. Temperatury, entalpie i entropie topnienia bromków lantanowców(III) - dane literaturowe

Otrzymane zależności temperatury topnienia i entalpii topnienia LnBr₃ od liczby atomowej lantanowca przedstawiono na rys. 17 i 18. Zależność temperatury topnienia bromków od liczby atomowej lantanowca ma bardziej skomplikowany charakter niż analogiczna zależność dla chlorków lantanowców(III). O ile w przypadku chlorków temperatura topnienia malała monotonicznie od lantanu do terbu, to w przypadku bromków liniowy spadek obserwowany jest jedynie od lantanu do prazeodymu. Temperatury topnienia kolejnych bromków (NdBr₃, PmBr₃ i SmBr₃) również maleją ze wzrostem liczby atomowej lantanowca, ale obserwowana dla nich zależność $T_{top} =$ f(Z) ma wyraźnie inny charakter. Począwszy od SmBr₃ temperatury topnienia bromków wzrastają ze wzrostem liczby atomowej lantanowca.

Zależność entalpii topnienia LnBr₃ od liczby atomowej lantanowca także różni się od tej uzyskanej dla chlorków. Dzieli ona co prawda bromki na dwie grupy (z malejącą i rosnącą zależnością od liczby atomowej), ale skład tych grup jest inny. Do grupy z malejącą zależnością entalpii od liczby atomowej należą tylko bromki lantanu, ceru, prazeodymu i neodymu (u chlorków grupę tę kończył chlorek gadolinu(III)). Począw-

szy od SmBr₃, ze wzrostem liczby atomowej lantanowca następuje wzrost entalpii topnienia bromków lantanowców.

Rys. 17. Zależność temperatury topnienia bromków lantanowców(III) od liczby atomowej lantanowca: kółka – wartości literaturowe, czarne kółka – wartości eksperymentalne Fig. 17. Dependence of fusion temperature of LnBr₃ on lanthanide atomic number: open circles – literature data, black circles – author's own experimental data

Rys. 18. Zależność entalpii topnienia bromków lantanowców(III) od liczby atomowej lantanowca: kółka – wartości literaturowe, czarne kółka – wartości eksperymentalne
Fig. 18. Molar enthalpy of fusion of lanthanide(III) bromides *vs* lanthanide atomic number: open circles – literature data, black circles – author's own experimental data

Szukając wyjaśnienia powyższych zależności zwrócono uwagę na strukturę krystaliczną LnBr₃. Okazało się, że bromki lantanowców(III) dzielą się na trzy grupy: bromki o strukturze heksagonalnej typu UCl₃ (LaBr₃, CeBr₃ i PrBr₃), bromki o strukturze ortorombowej typu PuBr₃ (NdBr₃, PmBr₃, SmBr₃ i EuBr₃) oraz bromki o strukturze romboedrycznej typu FeCl₃ (GdBr₃, TbBr₃, DyBr₃, HoBr₃, ErBr₃, TmBr₃, YbBr₃ i LuBr₃) [60]. Podział ten bardzo dobrze odpowiada znalezionej zależności temperatura topnienia od liczby atomowej. W grupie bromków o strukturze typu UCl₃ temperatura topnienia wyraźnie maleje ze wzrostem liczby atomowej, natomiast w grupie o strukturze typu PuBr₃ temperatura ta maleje, ale nieznacznie, a w przypadku EuBr₃ jest nawet wyższa. I wreszcie w grupie bromków o strukturze typu FeCl₃ temperatura topnienia rośnie ze wzrostem liczby atomowej lantanowca.

Zależność entalpii topnienia bromków od liczby atomowej lantanowca nie pokrywa się dokładnie z podziałem na grupy strukturalne. Do grupy bromków o strukturze typu UCl₃, których entalpia maleje ze wzrostem liczby atomowej należy także NdBr₃ o strukturze typu PuBr₃. Pozostałe bromki o strukturze typu PuBr₃ (SmBr₃ i EuBr₃) razem z bromkami o strukturze typu FeCl₃ wykazują rosnącą zależność entalpii topnienia od liczby atomowej lantanowca.

5.1.1.4. Korelacja pomiędzy entropią topnienia bromków lantanowców(III) i ich strukturą krystaliczną

Podział chlorków lantanowców(III) na trzy grupy ze względu na związek między entropią topnienia i struktura krystaliczną, dokonany przez Tosiego i współpracowników [88], nie w pełni znajduje zastosowanie w przypadku bromków lantanowców(III). Topnienie bromków o strukturze typu UCl₃ (LaBr₃, CeBr₃ i PrBr₃), podobnie jak w przypadku chlorków o analogicznej strukturze, związane jest z duża zmianą entropii wynoszącą 50 \pm 4 J mol⁻¹K⁻¹ (tab. 2). NdBr₃ o strukturze typu PuBr₃ wykazuje entropię topnienia zbliżoną do bromków typu UCl₃ (47,6 J mol⁻¹K⁻¹), odmiennie niż TbCl₃ o takiej samej strukturze, którego $\Delta_{\text{przem}}S + \Delta_{\text{top}}S$ wynosi 41.9 J mol⁻¹K⁻¹ i który należy do grupy przejściowej między chlorkami o strukturze typu UCl₃ i typu AlCl₃. Tak więc wielkość entropii topnienia NdBr₃ potwierdza wniosek Dworkina i Brediga [15], że topnienie halogenków lantanowców o strukturze typu UCl₃ i PuBr₃ związane jest ze zmianą entropii $50 \pm 4 \text{ J mol}^{-1}\text{K}^{-1}$. Ale bromki SmBr₃ i EuBr₃ też posiadają strukturę typu PuBr₃, a entropia związana z ich topnieniem wynosi tylko 34,2 i 35,9 J mol⁻¹K⁻¹ (tab. 4). Obecnie wyjaśnienie takich różnic w entropiach topnienia NdBr₃, SmBr₃ i EuBr₃ nie jest możliwe. Być może wyjaśnienia należałoby szukać w termicznej niestabilności SmBr₃ i EuBr₃. Wykazują one tendencję do rozkładu w wysokich temperaturach [60], z czym może być związany duży błąd wyznaczenia ich entalpii, a więc i entropii topnienia. Badania mające na celu weryfikację tych wielkości są planowane w najbliższym czasie.

Bromki o strukturze typu FeCl₃ topią się ze zmianą entropii $40 \pm 4 \text{ J mol}^{-1}\text{K}^{-1}$. Jest to wielkość mniejsza od wartości entropii topnienia halogenków o strukturze typu UCl₃, ale większa od entropii topnienia halogenków o strukturze typu AlCl₃. Duża wartość entropii topnienia LuBr₃ o strukturze typu FeCl₃ jest jedynym wyjątkiem w tej grupie. Jej wyjaśnienie wymaga ponownych badań zarówno temperatury, jak i entalpii topnienia tego związku.

5.1.1.5. Zależność temperatury topnienia i entalpii topnienia jodków lantanowców(III) od liczby atomowej lantanowca i struktury krystalicznej

Zależność temperatury topnienia jodków lantanowców(III) od liczby atomowej lantanowca sporządzono wykorzystując własne wyniki dla LaI₃, CeI₃ i NdI₃ (tab. 2 i 3) oraz dostępne dane literaturowe dla pozostałych jodków (tab. 5). Określenie zależności entalpii topnienia od liczby atomowej lantanowca okazało się niemożliwe ze względu na brak danych literaturowych dla wielu jodków lantanowców.

LnBr ₃	T _{top} K	$\Delta_{top}H$ (kJ mol ⁻¹)	$\Delta_{top}S$ (J mol ⁻¹ K ⁻¹)	Literatura
PrI ₃	1011	53,1	52,5	[15]
SmI ₃	1123	-	-	[81]
EuI ₃	1150	-	-	[61]
GdI ₃	1203	54,0	44,9	[15]
TbI ₃	1228	57,3	46,6	[15]
DyI ₃	1251	-	-	[81]
HoI ₃	1267	_	_	[81]
ErI ₃	1288	-	-	[81]
TmI ₃	1294	_	-	[81]
LuI ₃	1323	_	_	[81]

Tabela 5. Temperatury, entalpie i entropie topnienia jodków lantanowców(III) – dane literaturowe

Zależność temperatury topnienia od liczby atomowej lantanowca przedstawiono na rys. 19. Podobnie jak w przypadku chlorków lantanowców(III) zależność ta dzieli jodki na dwie grupy: grupę w której temperatura topnienia maleje ze wzrostem liczby atomowej lantanowca (LaI₃, CeI₃ i PrI₃) i grupę, w której temperatura ta rośnie ze wzrostem liczby atomowej (od NdI₃ do LuI₃). Jodki pierwszej grupy mają strukturę krystaliczną typu PuBr₃, drugiej (z wyjątkiem NdI₃) – strukturę typu FeCl₃ [15]. NdI₃ należy do grupy jodków o strukturze typu PuBr₃. Jego przynależność do grupy jodków, których temperatura topnienia rośnie ze wzrostem liczby atomowej lantanowca, może wynikać z zachodzącej w nim, w temperaturze 862 K, przemiany fazowej ciało stałe–ciało stałe. Zgodnie z danymi literaturowymi jest to przejście ze struktury typu PuBr₃ do struktury heksagonalnej [91].

Z badań własnych (tab. 2 i 3) oraz dostępnych danych literaturowych (tab. 5) wynika, że dla jodków o strukturze krystalicznej typu PuBr₃ (LaI₃, CeI₃,PrI₃, NdI₃) zmiana entropii $\Delta_{top}S$ lub $\Delta_{przem}S + \Delta_{top}S$ wynosi 50 ± 4 J mol⁻¹K⁻¹, podczas gdy dla jodków o strukturze typu FeCl₃ zmiana ta wynosi około 45 J mol⁻¹K⁻¹.

5.1.1.6. Związek między strukturą krystaliczną i entropią topnienia halogenków(III) lantanowców

W podrozdziałach 5.1.1.2–5.1.1.5 przedstawiono związki między liczbą atomową lantanowca, strukturą krystaliczną halogenków oraz ich temperaturą i entalpią topnienia. Okazało się, że entropia topnienia lub suma entropii topnienia i entropii przemiany fazowej chlorków, bromków i jodków związana jest dość wyraźnie z ich strukturą krystaliczną. W tabeli 6 zestawiono dane dotyczące typu struktury krystalicznej i wartości entropii topnienia dla wszystkich omawianych w niniejszej pracy halogenków. Z porównania struktury krystalicznej i entropii topnienia jednoznacznie wynika, że wszystkie halogenki można podzielić na trzy grupy. Dla halogenków o strukturze heksagonalnej typu UCl₃ i ortorombowej typu PuBr₃ zmiana entropii topnienia lub sumy entropii przemiany fazowej i entropii topnienia wynosi 50 ± 4 J mol⁻¹K⁻¹. Dla halogenków o strukturze typu FeCl₃ analogiczna zmiana entropii jest mniejsza i wynosi 40 ± 4 J mol⁻¹K⁻¹. I wreszcie trzecia grupa to halogenki o strukturze jednoskośnej typu AlCl₃, gdzie zmiana entropii jest równa 31 ± 4 J mol⁻¹K⁻¹. Dla TbCl₃ o strukturze ortorombowej typu PuBr₃ zmiana sumy entropii przemiany fazowej i entropii topnienia wynosi 41,9 J mol⁻¹K⁻¹, jest więc identyczna jak zmiana entropii topnienia halogenków o strukturze typu FeCl₃.

LnX ₃	Typ struktury krystalicznej	$\Delta_{top}S$ J mol ⁻¹ K ⁻¹	$\Delta_{\text{przem}}S + \Delta_{\text{top}}S$ J mol ⁻¹ K ⁻¹	Literatura
LaCl ₃	UCl ₃	49,4	49,4	ta praca
CeCl ₃	UCl ₃	51,1	51,1	ta praca
PrCl ₃	UCl ₃	49,1	49,1	ta praca
NdCl ₃	UCl ₃	46,6	46,6	ta praca
SmCl ₃	UCl ₃	50,3	50,3	ta praca
EuCl ₃	UCl ₃	50,3	50,3	ta praca
GdCl ₃	UCl ₃	46,5	46,5	ta praca
LaBr ₃	UCl ₃	51,2	51,2	ta praca
CeBr ₃	UCl ₃	51,9	51,9	[15]
PrBr ₃	UCl ₃	48,9	48,9	[15]
NdBr ₃	PuBr ₃	47,6	47,6	ta praca
LaI ₃	PuBr ₃	47,9	47,9	ta praca
CeI ₃	PuBr ₃	48,7	48,7	ta praca
PrI ₃	PuBr ₃	52,7	52,7	[15]
NdI ₃	PuBr ₃	36,0	49,4	ta praca
TbCl ₃	PuBr ₃	24,4	41,9	ta praca
GdBr ₃	FeCl ₃	36,0	36,0	[15]
TbBr ₃	FeCl ₃	33,9	33,9	ta praca
DyBr ₃	FeCl ₃	40,3	40,3	[73]
HoBr ₃	FeCl ₃	41,8	41,8	[15]
ErBr ₃	FeCl ₃	41,4	41,4	[90]
TmBr ₃	FeCl ₃	43,5	43,5	[61]
LuBr ₃	FeCl ₃	48,8	48,8	[61]
GdI ₃	FeCl ₃	44,8	45,2	[15]
DyCl ₃	AlCl ₃	24,8	27,1	ta praca
HoCl ₃	AlCl ₃	30,5	30,5	[15]
ErCl ₃	AlCl ₃	29,7	34,9	ta praca
TmCl ₃	AlCl ₃	32,6	32,6	ta praca
YbCl ₃	AlCl ₃	28,5	28,5	[89]

Tabela 6. Struktura krystaliczna i entropie topnienia halogenków lantanowców(III)

5.1.2. Ciepło molowe i funkcje termodynamiczne halogenków lantanowców(III)

Wykonano pomiary ciepła molowego LaCl₃, CeCl₃, PrCl₃, NdCl₃, GdCl₃ i DyCl₃ [92], SmCl₃ i TmCl₃ [35] EuCl₃ [69], TbCl₃ [75], YbCl₃, LaBr₃, NdBr₃, TbBr₃, LaI₃ i NdI₃ [*]. Do opisu zależności uzyskanych wyników ciepła molowego (J mol⁻¹K⁻¹) od temperatury zastosowano wielomian

$$C_{\rm p} = \mathbf{A} + \mathbf{B}T + \mathbf{C}T^{-2} \tag{10}$$

używany wcześniej przez Barina i innych [93] w odniesieniu do halogenków lantanowców. Wartości współczynników A, B i C w równaniu (10) wyznaczono z danych eksperymentalnych metodą najmniejszych kwadratów. Dostępne eksperymentalne, literaturowe wartości ciepła molowego, $C_{p,298}$ przedstawione w tabeli 7, zastosowano do powiązania wyników eksperymentalnych uzyskanych w niniejszej pracy metodą skaningowej kalorymetrii różnicowej z wynikami uzyskanymi metodą kalorymetrii

LnX ₃	S_{298} J mol ⁻¹ K ⁻¹	$C_{p,298}$ J mol ⁻¹ K ⁻¹	$C_{p(c)}$ $J \text{ mol}^{-1} \text{K}^{-1}$	$\Delta_{tworz}H_{298}$ k.I.mol ⁻¹
LaCl ₃	137,57 [11]	98,03 [11]	157,74 [16]	-1071,6 [95]
CeCl ₃	150,62 [14]	_	145,18 [46]	-1059,7 [95]
PrCl ₃	153,30 [11]	98,95 [11]	_	-1058,6 [95]
NdCl ₃	153,43 [11]	99,24 [11]	-	-1041,8 [95]
SmCl ₃	150,12 [12]	99,54 [12]	-	-1025,3 [95]
EuCl ₃	144,10 [96]	-	I	-935,4 [95]
GdCl ₃	151,42 [12]	97,78 [12]	I	-1018,2 [95]
TbCl ₃	153,10 [96]	-	-	-1010,6 [95]
DyCl ₃	147,7 [46]	-	-	993,1 [95]
TmCl ₃	150,6 [96]	100,00 [97]	148,53 [46]	-996,3 [95]
YbCl ₃	135,1 [46]	-	121,34 [46]	-959,5 [95]
LaBr ₃	188,28 [73]	-	-	-904,4 [95]
NdBr ₃	196,65 [73]	-	—	-864,0 [95]
TbBr ₃	194,00 [98]	_	145,00 [98]	-843,5 [95]
LaI ₃	214,6 [98]	_	_	-673,9 [95]
NdI ₃	215,1 [46]	_	_	-639,2 [95]

Tabela 7. Literaturowe dane wykorzystane do wyznaczania funkcji termodynamicznych halogenków lantanowców(III)

adiabatycznej dla niskich temperatur. W tym celu dokonano aproksymacji danych eksperymentalnych ciepła molowego za pomocą równania (10), wprowadzając założenie, że $C_{p,298}$ równe jest literaturowej wartości uzyskanej z pomiarów metodą kalorymetrii adiabatycznej (chlorki lantanu, prazeodymu, neodymu, samaru, gadolinu i tulu). W przypadku braku danych literaturowych, ciepło molowe, $C_{p,298}$, wyznaczano przez ekstrapolację danych eksperymentalnych opisanych wielomianem (10) do temperatury 298,15 K. Wartości współczynników A, B i C w równaniu (10) opisującym temperaturową zależność ciepła molowego badanych halogenków lantanowców(III) przedstawiono w tabelach 8 i 9.

Eksperymentalnych danych literaturowych, dotyczących ciepła molowego w temperaturze 298,15 K nie zastosowano jedynie dla CeCl₃ [14, 18] i EuCl₃ [12]. W obydwu przypadkach dane te są zdecydowanie wyższe od wartości eksperymentalnych otrzymanych przez autora niniejszej pracy, a także od wartości dla pozostałych chlorków lantanowców. Na rysunku 20 przedstawiono przykładowo wyniki pomiaru ciepła molowego EuCl₃ i ich porównanie z wynikami uzyskanymi metodą kalorymetrii adiabatycznej dla niskich temperatur [12] i opartymi na nich szacunkowymi wartościami w wysokich temperaturach [14].

Rys. 20. Zależność ciepła molowego EuCl₃ od temperatury: kółka – wyniki eksperymentalne, czarne kółka – rezultaty Sommersa i Westruma [12], linia ciągła – rezultaty eksperymentalne opisane wielomianem (10), linia przerywana – szacunkowe wielkości Pankratza [14], strzałka – dodatkowy efekt cieplny w temperaturze 802 K

Fig. 20. Dependence of molar heat capacity of EuCl₃ on temperature: open circles – experimental results, black circles – Sommers and Westrum results [12], solid line – polynomial fitting of experimental results, dashed line – Pankratz estimation [14], arrow – additional thermal effect at 802 K

Wartości Sommersa i Westruma [12] są około 10% wyższe niż uzyskane w tej pracy w zakresie temperatur, gdzie to porównanie jest możliwe (300–350 K). Dla 300 K otrzymano wartość ciepła molowego 98,58 J mol⁻¹K⁻¹, podczas gdy Westrum i Sommers [12] uzyskali wartość 107,58 J mol⁻¹K⁻¹. Co ciekawe, o ile dane Westruma i Sommersa zostały użyte do wyznaczenia szacunkowej zależności ciepła molowego EuCl₃ w wysokich temperaturach przez Pankratza [14], to już w najnowszej literaturze [46] podana jest wartość ciepła molowego 98,29 J mol⁻¹K⁻¹ w temperaturze 298 K.

Jest to wartość doskonale zgadzająca się z eksperymentalną wielkością uzyskaną w niniejszej pracy.

Pomiary ciepła molowego EuCl₃ potwierdziły wcześniejszy wniosek o termicznej nietrwałości tego chlorku. Obserwowany w temperaturze 802 K skokowy wzrost ciepła molowego aż do 160 J mol⁻¹K⁻¹ (rys. 20 – strzałka) niewątpliwie związany jest z rozkładem termicznym EuCl₃ do EuCl₂ i chloru i doskonale zgadza się z dodatkowym efektem termicznym obserwowanym na krzywej DSC (804 K) otrzymanej podczas powtórnego ogrzewania EuCl₃ (rys.14). Oznacza to, że rozkład termiczny związ-ku następuje już w fazie stałej w podwyższonych temperaturach – pomiary ciepła molowego wykonywano tylko jeden raz dla danej próbki związku i bez wcześniejszej obróbki termicznej.

Pomiary ciepła molowego DyCl₃ i TbCl₃ potwierdziły występowanie w tych związkach przemiany fazowej ciało stałe – ciało stałe. Jednocześnie wykazały one istnienie dodatkowych efektów, niewidocznych na krzywych DTA, których występowanie związane jest niewątpliwie ze skomplikowaną struktura krystaliczną tych dwóch związków. Temperaturową zależność ciepła molowego TbCl₃ i DyCl₃ przedstawiono na rys. 21 i 22.

Wyniki pomiarów ciepła molowego TbCl₃ potwierdziły, zgodnie z oczekiwaniami, występowanie przemiany fazowej w temperaturze 790 K i topnienia w temperaturze 854 K. Przemianą fazową jest zmiana ortorombowej struktury krystalicznej typu PuBr₃ w strukturę ortorombową typu trójrutylu [30]. Przemiana ta jest zjawiskiem odwracalnym. Jednocześnie zaobserwowano dodatkowo zmianę charakteru temperaturowej zależności

ciepła molowego w temperaturze 715 K (T? na rys. 21). Po nieznacznym, ale wyraźnym wzroście wartości ciepła molowego w tej temperaturze, następuje również wyraźna zmiana jego zależności od temperatury. Efektu tego nie obserwowano na krzywych DSC (jest zbyt mały). Interesującym zjawiskiem jest także wyraźne obniżenie wartości ciepła molowego po przemianie fazowej w temperaturze 790 K (T_{przem} na rys. 21). Wydaje się, że obydwa omawiane efekty mają związek ze skomplikowaną i nie wyjaśnioną do końca struktura krystaliczna TbCl₃. Według najnowszych doniesień literaturowych (badania strukturalne Morrisona i współpracowników [99]) przemiana fazowa TbCl₃ w temperaturze 783 K jest przejściem z odmiany ortorombowej typu PuBr₃ w tetragonalna, a nie ortorombowa typu trójrutylu [30]. Badania Morrisona i współpracowników [99] wykazały jednocześnie, że ze względów kinetycznych odmiana wysokotemperaturowa może istnieć w niskich temperaturach jako faza metastabilna. Gwałtowne ochłodzenie stopionego chlorku terbu(III) powoduje otrzymanie odmiany wysokotemperaturowej w niskich temperaturach w postaci fazy metastabilnej. Ogrzewanie takiej fazy powoduje pojawienie się przemiany fazowej metastabilna odmiana wysokotemperaturowa – odmiana ortorombowa PuBr₃, w zakresie temperatur 430–530 K. Dalsze ogrzewanie związku prowadzi do sytuacji, w której odmiana ortorombowa pozostaje obecna nawet w temperaturze 837 K, a więc zdecydowanie wyższej niż temperatura przemiany fazowej: struktura ortorombowa PuBr₃ – struktura tetragonalna (790 K). Otrzymanie czystej odmiany wysokotemperaturowej wymaga ogrzania związku powyżej temperatury topnienia, a następnie ochłodzenia go do temperatury nieznacznie niższej niż temperatura topnienia i przetrzymania go w tej temperaturze do pełnej solidifikacji. Tak otrzymana odmiana wysokotemperaturowa ulega pełnej przemianie fazowej do odmiany niskotemperaturowej w temperaturze około 583 K.

Rys. 22. Ciepło molowe DyCl₃: kółka – wyniki eksperymentalne, linie ciągłe – wyniki opisane równaniem (10) Fig. 22. Molar heat capacity of DyCl₃ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Wydaje się, że dodatkowe efekty na krzywej obrazującej zależność ciepła molowego od temperatury są związane ze wspomnianym wyżej zjawiskiem powstawania faz metastabilnych i ich przemianą w fazy stabilne. Być może planowane wysokotemperaturowe badania strukturalne i połączone z nimi badania ciepła molowego TbCl₃ w zależności od sposobu przygotowania związku do badań (celowe otrzymywanie faz metastabilnych oraz ich pełne przekształcenie w fazy równowagowe termodynamicznie) pozwolą na wyjaśnienie zjawisk obserwowanych w badaniach strukturalnych i termicznych chlorku terbu(III).

Pomiary ciepła molowego DyCl₃ (rys. 22) potwierdziły istnienie w tym związku przemiany fazowej ciało stałe – ciało stałe. Jednocześnie wykazały istnienie dodatkowych, trudno wytłumaczalnych efektów termicznych. Przemianie fazowej w temperaturze $T_{\text{przem}} = 611$ K towarzyszy nienaturalne zachowanie się ciepła molowego (kolejna przemiana fazowa w 580 K (?)) już od temperatury około 560 K. Dodatkowo, w zakresie temperatur 480-490 K, obserwowany jest egzotermiczny efekt, którego rezultatem jest spadek wartości ciepła molowego do 64 J mol⁻¹K⁻¹ w 490 K (T? na rys. 22). Zjawisko takie można by wytłumaczyć istnieniem w niskich temperaturach metastabilnej odmiany wysokotemperaturowej. Jeżeli chłodzenie odmiany wysokotemperaturowej odbywa się z dużą szybkością, to jej przejście w odmianę niskotemperaturową może zostać zablokowane ze względów kinetycznych. Kolejne ogrzewanie związku spowoduje wystąpienie egzotermicznego efektu związanego z przemianą: metastabilna odmiana wysokotemperaturowa - odmiana niskotemperaturowa, w temperaturze poniżej temperatury przemiany fazowej: odmiana niskotemperaturowa odmiana wysokotemperaturowa. Przemianę tego typu obserwowano podczas badań strukturalnych TbCl₃ [99]. Sytuacja taka jest wielce prawdopodobna, szczególnie jeśli weźmie się pod uwagę stwierdzenie Weigela i Wishnevskego [86] mówiące o tym, że warunki, które rządzą powstawaniem dwóch różnych modyfikacji DyCl₃ pod normalnym ciśnieniem, pozostają niejasne. Podobnie jak w przypadku TbCl₃, planowane jest połączenie wysokotemperaturowych badań strukturalnych z badaniami termicznymi, z uwzględnieniem wpływu sposobu przygotowania związku na możliwość powstawania faz metastabilnych.

Całkowanie równania (10) pozwoliło na wyznaczenie temperaturowej zależności entalpii $H - H_{298}$ w J mol⁻¹

$$H = H_{298} + \int C_{\rm p} \mathrm{d}T \tag{11}$$

$$H - H_{298} = AT + 0.5BT^2 - CT^{-1} + D$$
(12)

Wartość współczynnika D wyznaczano wstawiając do równania (12) T = 298,15 K.

Podobnie, korzystając z równania (10), wyznaczono temperaturową zależność entropii (J mol⁻¹K⁻¹):

$$S = S_{298} + \int \frac{C_{\rm p}}{T} \mathrm{d}T \tag{13}$$

$$S = A\ln T + BT - 0.5CT^{-2} + E$$
(14)

Znajomość wartości S_{298} pozwala wyznaczyć współczynnik *E*. Wyznaczono go wstawiając do równania (14) T = 298,15 K.

Na podstawie równań (12) i (14) wyprowadzono równanie na temperaturową zależność entalpii swobodnej (J mol⁻¹ K^{-1}):

$$-(G - H_{298})/T = A\ln T + 0.5BT + 0.5CT^{-2} - DT^{-1} + F$$
(15)

Po wstawieniu T = 298,15 K do równania (15) wyznaczono wartość współczynnika F.

Tak więc znajomość zależności ciepła molowego halogenków lantanowców od temperatury pozwala wyznaczyć ich funkcje termodynamiczne. Jeśli dodatkowo znane są temperatury i entalpie przemian fazowych, funkcje termodynamiczne mogą być wyznaczone dla różnych odmian fazowych halogenków lantanowców.

W niniejszej pracy wyznaczono temperatury, entalpie przemian fazowych i ciepło molowe w fazie stałej i ciekłej, co pozwoliło na wyznaczenie funkcji termodynamicznych zarówno stałych, jak i ciekłych halogenków lantanowców(III). Literaturowe wartości entropii S_{298} , niezbędne do wyznaczenia temperaturowej zależności funkcji termodynamicznych, zestawiono w tabeli 7. Tabela ta zawiera również dostępne eksperymentalne dane literaturowe ciepła molowego $C_{p,298}$, ciepło molowe fazy ciekłej dla tych halogenków, dla których pomiar dla fazy ciekłej był niemożliwy ze względu na ograniczony zakres temperaturowy stosowanego aparatu i entalpie tworzenia halogenków w temperaturze 298,15 K.

Otrzymane parametry A, B, C, D, E i F równań (10), (12), (14) i (15) opisujących temperaturową zależność funkcji termodynamicznych halogenków lantanowców(III) przedstawiono w tabelach 8 i 9. Wartości wyznaczonych funkcji termodynamicznych dla wybranych temperatur przedstawiono w tabelach 1-16 zamieszczonych w Aneksie.

Znając wartości funkcji termodynamicznych LnX₃ wyznaczono temperaturową zależność termodynamicznych funkcji ich tworzenia.

Tworzenie halogenków lantanowców(III), LnX₃, z pierwiastków określają równania:

$$Ln_{(s)} + 1,5 Cl_{2(g)} = LnCl_{3(s,c)}$$
 (16)

$$Ln_{(s)} + 1,5 Br_{2(c,g)} = LnBr_{3(s,c)}$$
(17)

$$Ln_{(s)} + 1,5 I_{2(s,c,g)} = LnI_{3(s,c)}$$
 (18)

Termodynamiczne funkcje tworzenia LnX₃ zależą od funkcji termodynamicznych metalicznego lantanowca Ln, chloru, bromu i jodu, które wyznaczono na podstawie literaturowych danych dotyczących entropii S_{298} i ciepła molowego, C_p , jako funkcji temperatury [46]. Entalpie tworzenia LnX₃ w temperaturze 298,15 K, $\Delta_{tworz}H_{298}$

51

(LnX_{3(s)}), wzięto z najnowszej krytycznej kompilacji danych literaturowych dokonanej przez Cordfunke i Koningsa [95]. Są one zamieszczone w tabeli 7. Wartości termodynamicznych funkcji tworzenia LnX₃ dla wybranych temperatur przedstawiono w tabelach 1–16 zamieszczonych w Aneksie. Równania opisujące temperaturową zależność termodynamicznych funkcji tworzenia znajdują się pod odpowiednimi tabelami.

Korzystając z temperaturowej zależności entropii halogenków lantanowców(III) wyznaczono różnicę $S_{1300}(\text{LnX}_{3,(c)}) - S_{298}$ (LnX_{3(s)}). Analiza uzyskanych wyników doprowadziła do interesujących wniosków przedstawionych na rys. 23. Różnica ta jest ewidentnie związana ze strukturą krystaliczną halogenków lantanowców(III). Wynosi ona $216 \pm 4 \text{ J mol}^{-1}\text{K}^{-1}$ dla halogenków o strukturze typu UCl₃ i PuBr₃, 200 ± 5 J mol⁻¹K⁻¹ dla halogenków o strukturze typu FeCl₃ i około 190 ± 4 J mol⁻¹K⁻¹ dla halogenków o strukturze typu FeCl₃. Jak widać na rys. 23, różnica entropii przybiera podobne wielkości dla chlorków, bromków i jodków o podobnej strukturze. Oznacza to, że różnice entropii wynikające z obecności anionu i efektów magnetycznych ujawniają się w niskich temperaturach, wpływając na wartość różnicy S_{298} (LnX_{3(s)}) – S_0 (LnX_{3(s)}). Potwierdzają to dane zawarte w tabeli 7. Entropia S_{298} (LnX_{3(s)}) maleje od jodków, poprzez bromki do chlorków.

Rys. 23. Zależność S₁₃₀₀(LnX_{3(c)}) – S₂₉₈ (LnX_{3(s)}) od struktury krystalicznej halogenków lantanowców(III): kółka – chlorki, kwadraty – bromki, trójkąty – jodki o strukturze UCl₃ i PuBr₃; romby – bromki, czarne romby – jodki o strukturze FeCl₃, czarne kółka – chlorki, czarne kwadraty – bromki o strukturze AlCl₃

Fig. 23. Dependence of $S_{1300}(LnX_{3(c)}) - S_{298}(LnX_{3(s)})$ on crystal structure of lanthanide(III) halides: open circles, open squares and open triangles – chlorides, bromides and iodides of UCl₃-type and PuBr₃-type crystal structure; open rhombus and black rhombus – bromides and iodides of FeCl₃-type structure, black circles and black squares – chlorides and bromides of AlCl₃-type structure

1 37	Zakres temp.	Α	$B \cdot 10^{3}$	$C \cdot 10^{-5}$	$D \cdot 10^{-3}$	Ε	F
LnX ₃	K	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-2}$	J mol ⁻¹ K	$J \text{ mol}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$
LaCl _{3(s)}	298-1127	89,37	15,00	-0,21	-28,05	-380,69	-470,06
LaCl _{3(c)}	1127-1300	157,74	-	-	-30,33	-777,90	-935,64
CeCl _{3(s)}	298-1086	90,20	16,60	-0,24	-27,71	-368,37	-458,57
CeCl _{3(c)}	1086-1300	145,18	_	_	-22,11	-683,57	-788,03
PrCl _{3(s)}	298-1061	87,72	39,41	-0,46	-28,06	-358,49	-446,21
PrCl _{3(c)}	1061-1300	155,28	—	—	-25,42	-738,25	-893,53
NdCl _{3(s)}	298-1032	87,22	41,75	-0,38	-27,99	-356,20	-443,42
NdCl _{3(c)}	1032-1300	149,53	-	-	-21,92	-698,85	-848,37
SmCl _{3(s)}	298-950	91,27	29,06	+0,35	-28,62	-378,75	-470,01
SmCl _{3(c)}	950-1300	145,26	—	—	-19,16	-671,02	-816,46
EuCl _{3(s)}	298-894	92,20	21,97	-0,20	-28,53	-387,87	-480,07
EuCl _{3(c)}	894-1300	155,96	—	—	-31,73	-751,22	-907,15
GdCl _{3(s)}	298-873	91,83	21,68	-0,46	-28,50	-378,53	-470,36
GdCl _{3(c)}	873-1300	139,89	-	-	-21,54	-638,51	-778,40
TbCl _{3(s)}	298-715	92,79	27,78	-0,66	-29,19	-348,26	-477,29
TbCl _{3(s)}	715-790	115,75	—	—	-38,34	-515,19	-631,07
TbCl _{3(s)}	790-854	111,38	-	-	-21,09	-468,54	-580,09
TbCl _{3(c)}	854-1300	139,27	-	-	-24,11	-632,40	-771,88
DyCl _{3(s)}	298-611	92,48	20,67	-0,45	-28,64	-385,63	-478,13
DyCl _{3(s)}	611–919	76,29	40,92	-0,358	-21,11	-291,83	-368,11
DyCl _{3(c)}	919-1300	159,43	-	-	-57,39	-796,69	-924,82
TmCl _{3(s)}	298-1092	97,08	10,25	-0,12	-29,44	-405,64	-502,71
TmCl _{3(c)}	1092-1300	148,53	-	-	-43,90	-721,79	-789,92
YbCl _{3(s)}	298-1148	92,16	11,21	-0,48	-28,14	-393,60	-485,76
YbCl _{3(c)}	1148-1300	121,34	_	_	-16,55	-553,51	-674,85

Tabela 8. Wartości parametrów A, B, C, D, E i F równań opisujących temperaturową zależność funkcji termodynamicznych chlorków lantanowców(III)

LnX ₃	Zakres temp. K	A J mol ⁻¹ K ⁻¹	$\frac{B \cdot 10^3}{\text{J mol}^{-1} \text{K}^{-2}}$	$\frac{C \cdot 10^{-5}}{\text{J mol}^{-1}\text{K}}$	$D \cdot 10^{-3}$ J mol ⁻¹	E J mol ⁻¹ K ⁻¹	F J mol ⁻¹ K ⁻¹
LaBr _{3(s)}	298-1058	96,66	19,94	-0,18	-29,77	-368,51	-465,18
LaBr _{3(c)}	1058-1300	151,12	-	-	-22,01	-675,47	-826,56
NdBr _{3(s)}	298–956	92,59	26,50	-0,176	-28,84	-338,90	-431,49
NdBr _{3(c)}	956-1300	138,85	—	—	-15,44	-583,42	-722,27
TbBr _{3(s)}	298-1103	95,32	7,66	-0,28	-28,85	-351,51	-446,83
TbBr _{3(c)}	1103-1300	145,00	_	_	-47,54	-662,63	-807,64
LaI _{3(s)}	298-1047	90,83	16,09	-0,384	-27,92	-307,93	-398,76
LaI _{3(c)}	1047-1300	138,95	_	_	-19,21	-577,68	-716,63
NdI _{3(s)}	298-862	91,85	36,22	0,380	-29,12	-319,24	-411,09
NdI _{3(s)}	862-1058	118,13	_	_	-24,97	-450,19	-573,14
NdI _{3(c)}	1058-1300	147,01	_	_	-19,53	-617,28	-765,19

Tabela 9. Wartości parametrów A, B, C, D, E i F równań opisujących temperaturową zależność funkcji termodynamicznych bromków i jodków lantanowców(III)

Różnica S_{1300} (LnX_{3(c)}) – S_{298} (LnX_{3(s)}) dla halogenków o strukturze typu FeCl₃ jest mniejsza w porównaniu z różnicą dla struktury typu UCl₃ i PuBr₃, ale wyraźnie większa niż odpowiadająca strukturze typu AlCl₃. Oznacza to, że stopień uporządkowania (tworzenie w powstałych cieczach jonowych struktur oktaedrycznych LnX₆³⁻ [88]) w stopionych halogenkach wzrasta od halogenków lantanowców lekkich do halogenków lantanowców ciężkich i jest największy w przypadku halogenków, które w fazie stałej mają strukturę krystaliczną typu AlCl₃.

5.1.3. Własności termodynamiczne EuCl₂ i YbCl₂

Oprócz chlorków lantanowców(III) znane są chlorki LnCl₂, w których lantanowiec występuje na II stopniu utlenienia. Trwałe związki tego typu tworzą samar, europ i iterb. Niewątpliwie związane jest to ze strukturą elektronową lantanowca ($\text{Sm}^{2+} - 4f^6$, $\text{Eu}^{2+} - 4f^7$ i Yb²⁺ – 4f¹⁴). Pozostałe znane chlorki lantanowców(II) (Pr, Nd, Dy i prawdopodobnie Ce) są nietrwałe i łatwo ulegają dysproporcjonowaniu do metalicznego lantanowca i chlorku lantanowca(III).

Kontynuując badania poświęcone chlorkom lantanowców przystąpiono więc do badania własności termodynamicznych chlorków lantanowców(II). Dotychczas przeprowadzono pomiary dla EuCl₂ i YbCl₂. Podobnie jak w przypadku chlorków lantanowców(III) badania prowadzono za pomocą różnicowego kalorymetru skaningowego, natomiast temperaturę i entalpię topnienia EuCl₂ wyznaczono posługując się kalorymetrem Calveta. Ze względu na występujące przechłodzenie (około 15K dla EuCl₂ i około 40 K dla YbCl₂), zarówno temperatury, jak i entalpie przemian fazowych wyznaczano z krzywych ogrzewania. Wyniki pomiarów przedstawiono w tabeli 10 łącznie z istniejącymi danymi literaturowymi.

EuCl₂ ulega przemianie fazowej ciało stałe – ciało stałe w temperaturze 1014 K i topi się w temperaturze 1125 K. Zgodnie z danymi literaturowymi przemiana fazowa ciało stałe – ciało stałe jest przejściem ze struktury ortorombowej do struktury regularnej [101–103]. Dane literaturowe, dotyczące temperatury przemiany fazowej i temperatury topnienia EuCl₂, są wyjątkowo rozbieżne (tab. 10). Niektórzy autorzy negują istnienie przemiany fazowej w ciele stałym [81, 105–108]. Inni obserwowali co prawda dwa efekty termiczne towarzyszące ogrzewaniu EuCl₂, ale za temperaturę topnienia przyjmują temperaturę efektu obserwowanego w niższej temperaturze, drugi zaś efekt przypisują bliżej nieokreślonej przemianie fazowej w fazie ciekłej. W najnowszej pracy Koyamy i współautorów [100] podano temperaturę topnienia 1017 K, natomiast efekt termiczny w 1124 K przypisano przemianie fazowej w fazie ciekłej. Interpretację taką oparto na analizie widm Ramana w wysokich temperaturach. Jest ona bez wątpienia błędna, co wykazują badania rentgenowskie wykonane przez Lapteva i innych [101–103] oraz przez Finka i Seiferta [104]. Także wizualne obserwacje prowadzone przez autora niniejszej pracy potwierdzają, że EuCl₂ jest ciałem stałym w temperaturach niższych od 1125 K. Wyznaczona w tej pracy entalpia przemiany fazowej dość dobrze zgadza się z wynikiem uzyskanym w pracy [100], oczywiście przy założeniu, że efekt określany przez autorów nie jest topnieniem, ale przemianą fazową w ciele stałym. Wartość entalpii przemiany fazowej podawana przez Lapteva i innych [101–103] jest zdecydowanie wyższa, ale uzyskana została metodą porównawczą z krzywych DTA. Entalpia topnienia wyznaczona w tej pracy jest bliższa wartości podawanej w pracach [101–103], ale wyraźnie większa od uzyskanej również metodą DSC wartości podawanej przez Koyamę i innych [100]. Uważna obserwacja termogramu przedstawionego w pracy [100] wyjaśnia zaistniałą sytuację. Silne odchylenie linii bazowej występujące po przemianie fazowej wskazuje, że próbka EuCl₂ poddawana badaniom nie była czystym związkiem, ale mieszaniną EuCl₂ i EuCl₃. Dlatego też wartość wyznaczonej z tego termogramu entalpii jest mniejsza i nawet porównawcza metoda Lapteva i innych dała wyniki bardziej zgodne z uzyskanymi przez autora tej monografii.

LnCl ₂	T _{przem} / K	$\Delta_{\rm przem} H$ (kJ mol ⁻¹)	$T_{\rm top}$ / K	$\Delta_{top}H$ (kJ mol ⁻¹)	Literatura
EuCl ₂	1014	11,5	1125	18,7	[41]
	1017^{*}	10,6*	1124^{*}	11,0*	[100]
	1020	20,5	1127	23,0	[101-103]
	1015	_	1126	-	[104]
	—	-	1004	-	[81]
	—	-	1011	-	[105–106]
	—	-	1030	-	[107]
	—	-	1123	-	[108]
YbCl ₂	-	-	994	23,7	[*]
	-	-	993	20,6	[109]
	—		975	-	[81]
	—	—	1000	—	[106]

Tabela 10. Temperatury i entalpie przemian fazowych EuCl₂ i YbCl₂: pogrubioną czcionką zaznaczono dane autora tej pracy

*w oryginalnej pracy temperatura 1124 K przypisana została błędnie "przemianie fazowej w cieczy", natomiast temperaturę 1017 K uznano za temperaturę topnienia

YbCl₂ topi się w temperaturze 994 K, a towarzysząca temu efektowi entalpia wynosi 23,7 kJ mol⁻¹. Dane literaturowe dotyczące temperatury i entalpii topnienia tego chlorku są wyjątkowo skąpe. Uzyskana temperatura topnienia doskonale zgadza się z danymi Lapteva i innych [109]. Entalpia topnienia uzyskana przez autora niniejszej pracy jest o około 15% większa od jedynej dostępnej wartości uzyskanej metodą porównawczą z krzywych DTA, przedstawionej w [109].

56

Rys. 24. Ciepło molowe EuCl₂: kółka – wyniki eksperymentalne, linia ciągła – wyniki eksperymentalne opisane równaniem (10), czarne kółka – dane literaturowe [110] Fig. 24. Molar heat capacity of EuCl₂: open circles – experimental results, solid line – polynomial fitting of experimental results, black circles – low-temperature literature data [110]

Rys. 25. Ciepło molowe YbCl₂: kółka – wyniki eksperymentalne, linie ciągłe – wyniki eksperymentalne opisane równaniem (10), czarne kółka – dane literaturowe [111] Fig. 25. Molar heat capacity of YbCl₂: open circles – experimental results, solid line – polynomial fitting of experimental results, black circles – low-temperature literature data [111]

Jedynymi danymi literaturowymi dotyczącymi ciepła molowego EuCl₂ i YbCl₂ są niskotemperaturowe dane Tolmacha i innych [110–111], uzyskane metodą kalorymetrii

adiabatycznej w zakresie 8–310 K. W związku z tym przeprowadzono pomiary ciepła molowego EuCl₂ [41] i YbCl₂ [*] w zakresie temperatur 300–1100 K. Ze względu na ograniczenia temperaturowe aparatu, w przypadku EuCl₂ pomiary te wykonano jedynie dla fazy stałej. Podobnie jak w przypadku halogenków lantanowców(III), do opisu zależności ciepła molowego od temperatury zastosowano wielomian (10). Wartości współczynników *A*, *B* i *C* w równaniu (10) wyznaczono z danych eksperymentalnych metodą najmniejszych kwadratów. W przypadku EuCl₂, biorąc pod uwagę bardzo dobrą zgodność wyników uzyskanych w temperaturze 300–310 K z wynikami uzyskanymi metodą kalorymetrii adiabatycznej [110] (rys. 24), przyjęto, że ciepło molowe w temperaturze 298,15 K jest równe literaturowej wartości $C_{p,298}$, wynoszącej 75,22 J mol⁻¹K⁻¹. Wyniki uzyskane dla YbCl₂ w niskich temperaturach są wyraźnie niższe od danych literaturowych [111] (rys. 25), dlatego też ciepło molowe $C_{p,298}$ wyznaczono przez ekstrapolację danych eksperymentalnych opisanych równaniem (10) do temperatury 298,15 K.

Dysponując zależnością ciepła molowego od temperatury i literaturowymi wartościami entropii w temperaturze 298,15 K, S_{298} , wynoszącymi 121,2 J mol⁻¹K⁻¹ [110] i 122,6 J mol⁻¹K⁻¹ [46] odpowiednio dla EuCl₂ i YbCl₂, wyznaczono pozostałe funkcje termodynamiczne obydwu chlorków opisane równaniami (12), (14) i (15). Parametry *A*, *B*, *C*, *D*, *E* i *F* wymienionych równań przedstawiono w tabeli 11.

Wartości wyznaczonych funkcji termodynamicznych dla wybranych temperatur przedstawiono w tabelach 17 i 18 zamieszczonych w Aneksie.

Znając funkcje termodynamiczne LnCl₂ wyznaczono temperaturową zależność termodynamicznych funkcji ich tworzenia.

Tworzenie chlorków lantanowców(II), LnCl₂, z pierwiastków określa równanie

$$Ln_{(s)} + Cl_{2(g)} = LnCl_{2(s,c)}$$
(19)

Odpowiednie termodynamiczne funkcje tworzenia LnCl₂ zależą od funkcji termodynamicznych metalicznego lantanowca Ln i chloru. Te ostatnie wyznaczono na podstawie literaturowych danych dotyczących entropii S_{298} i ciepła molowego, C_p , jako funkcji temperatury [46]. Entalpie tworzenia EuCl₂ (-824,2 kJ mol⁻¹) i YbCl₂ (-799,1 kJ mol⁻¹) w temperaturze 298,15 K, $\Delta_{tworz}H_{298}$ (LnCl_{2(s)}), wzięto z pracy Marssa i Hauga [112] i pracy Schumma i innych [113].

Tabela 11. Wartości parametrów *A*, *B*, *C*, *D*, *E* i *F* równań opisujących temperaturową zależność funkcji termodynamicznych chlorków lantanowców(II)

LnX ₃	Zakres temp. K	$\begin{array}{c} A \\ \text{J} \text{ mol}^{-1}\text{K}^{-1} \end{array}$	$\frac{B \cdot 10^3}{\text{J mol}^{-1} \text{K}^{-2}}$	$\frac{C \cdot 10^{-5}}{\text{J mol}^{-1}\text{K}}$	$\frac{D \cdot 10^{-3}}{\mathrm{J} \mathrm{\ mol}^{-1}}$	E J mol ⁻¹ K ⁻¹	F J mol ⁻¹ K ⁻¹
EuCl _{2(s)}	298-1014	66,41	27,786	0,464	-20,88	-265,20	-331,61
EuCl _{2(s)}	1014-1125	110,71	_	-	-40,06	-532,34	-643,05
YbCl _{2(s)}	298-994	66,59	13,457	-0,32	-20,56	-260,99	-327,58
YbCl _{2(c)}	994-1300	96,17	_	_	-19,54	-427,86	-524,04

Wartości termodynamicznych funkcji tworzenia LnCl₂ dla wybranych temperatur przedstawiono w tabelach 17 i 18 znajdujących się w Aneksie, zaś równania opisujące ich temperaturową zależność zamieszczono pod odpowiednimi tabelami.

5.2. Własności termodynamiczne związków pośrednich występujących w układach halogenki lantanowców(III)–halogenki litowców

Układy dwuskładnikowe halogenki lantanowców(III)–halogenki litowców są układami niezwykle interesującymi zarówno z czysto naukowego punktu widzenia, jak i ze względu na ich szerokie wykorzystanie w wielu nowoczesnych technologiach. Jak już wspomniano we wstępie, układy te znajdują zastosowanie między innymi do otrzymywania metalicznych lantanowców i ich stopów, przeróbki odpadów nuklearnych i zużytego paliwa jądrowego (układy fluorkowe i chlorkowe), czy też do produkcji nowoczesnych, wysokociśnieniowych lamp halogenkowych (układy bromkowe i jodkowe).

Zastosowanie technologiczne wymienionych układów wymaga znajomości ich podstawowych własności fizykochemicznych. Okazuje się jednak, że dane literaturowe dotyczące zarówno czystych halogenków lantanowców, jak i ich stopów solnych z halogenkami litowców są niezwykle skąpe i niekompletne, często ze sobą sprzeczne, bądź też są one danymi szacunkowymi. Stwierdzenie to dotyczy nawet tak elementarnych informacji, jak temperatury i entalpie topnienia, ciepło właściwe czy diagramy fazowe układów dwuskładnikowych (halogenek lantanowca–halogenek litowca).

W ramach niniejszej monografii wyznaczono podstawowe właściwości termodynamiczne (temperatury i entalpie przemian fazowych, ciepło właściwe) niektórych związków podwójnych, tworzących się we wspomnianych wyżej układach dwuskładnikowych. Rozpoczęto również weryfikację znanych, bądź wyznaczanie nieznanych diagramów fazowych układów bromkowych i jodkowych.

5.2.1. Układy LnCl₃–MCl

Badania diagramów fazowych układów chlorki lantanowców(III)–chlorki litowców zostały rozpoczęte przez badaczy rosyjskich. Do końca lat osiemdziesiątych przebadano praktycznie wszystkie układy zawierające NaCl i KCl, większość układów zawierających CsCl i tylko dwa układy zawierające RbCl (NdCl₃–RbCl i SmCl₃– RbCl) [114–115]. Z powodu jednak stosunkowo małej dokładności stosowanych metod uzyskane wyniki zawierały poważne błędy, dotyczące zarówno składu tworzących się w badanych układach związków, jak i interpretacji efektów termicznych obserwowanych w fazie stałej. W roku 1984 grupa prof. Seiferta z Uniwersytetu w Kassel przystąpiła do kompleksowej weryfikacji istniejących diagramów fazowych dla układów chlorkowych. Jako metody badawcze zastosowano różnicową analizę termiczną (DTA), wysokotemperaturowe badania rentgenowskie i pomiary elektrochemiczne, mające na celu identyfikację natury reakcji, przebiegających w fazie stałej (pomiar siły elektromotorycznej ogniwa tworzenia zbudowanego ze stałych elektrolitów LnCl₃ i MCl). Owocem pracy tej grupy naukowej było wyznaczenie diagramów fazowych dla wszystkich układów LnCl₃–MCl (gdzie Ln = lantanowiec, M = Na, K, Rb, Cs) i pełna interpretacja efektów termicznych obserwowanych w fazie stałej [22–32].

Cechą charakterystyczną układów LnCl₃–MCl (M = K, Rb, Cs) jest występowanie w większości z nich związków typu M₃LnCl₆, M₂LnCl₅ i MLn₂Cl₇, przy czym M₃LnCl₆ są zawsze związkami topiącymi się kongruentnie, a M₂LnCl₅ związkami topiącymi się niekongruentnie, bądź ulegającymi rozkładowi w fazie stałej. Jedynym wyjątkiem od powyższej reguły jest układ LaCl₃–KCl, gdzie związek typu K₃LaCl₆ nie występuje, a jedyny istniejący związek K₂LaCl₅ topi się kongruentnie [22]. Związki typu MLn₂Cl₇ w zależności od układu topią się kongruentnie, bądź niekongruentnie, przy czym tendencja do tworzenia związków topiących się kongruentnie wzrasta w sekwencji K < Rb < Cs, a dla danego litowca wzrasta ze wzrostem liczby atomowej lantanowca [22–32]. Dlatego też związki CsLn₂Cl₇ topiące się kongruentnie istnieją już począwszy od układu CeCl₃–CsCl, związki RbLn₂Cl₇ w większości układów topią się niekongruentnie.

Do niedawna nie były znane żadne dane dotyczące własności termodynamicznych związków tworzących się w układach LnCl₃–MCl. Wyjątkiem były prace Blachnika i jego współpracowników, dotyczące entalpii tworzenia stałych związków M_3LnCl_6 i MLn_2Cl_7 (M = K, Cs; Ln = Ce, Pr, Nd, Sm, Gd, Dy) w temperaturze 298,15 K [116–117]. Stało się to przyczyną podjęcia przez autora niniejszej pracy badań mających na celu wyznaczenie własności termodynamicznych (temperatury i entalpie przemian fazowych oraz ciepło właściwe fazy stałej i ciekłej) kongruentnie topiących się związków z układów LnCl₃–MCl (M = K, Rb, Cs), ze szczególnym zwróceniem uwagi na związki M_3LnCl_6 . Dotychczas wyznaczono temperatury i entalpie przemian fazowych oraz ciepło molowe związków M_3LnCl_6 w układach LnCl₃–MCl, gdzie Ln = La, Ce, Pr, Nd i Tb, a M = K, Rb i Cs oraz związków MTb₂Cl₇, w których M = K, Rb i Cs.

Pomiary wykonywano metodą różnicowej kalorymetrii skaningowej. Ze względu na występujący często efekt przechłodzenia, zarówno temperatury jak i entalpie przemian fazowych wyznaczano jedynie z krzywych ogrzewania. Uzyskane wyniki przedstawiono w tabelach 12–17, łącznie z dostępnymi aktualnie danymi literaturowymi.

5.2.1.1. Związki K₃LnCl₆

Wyniki uzyskane dla związków K_3LnCl_6 , w których Ln = Ce, Pr, Nd doskonale zgadzają się z danymi Seifetra i współpracowników [23–25, 30] zarówno pod względem temperatury efektu termicznego w fazie stałej, jak i temperatury topnienia związku. Endotermiczny efekt występujący w fazie stałej związków K_3CeCl_6 , K_3PrCl_6 i K_3NdCl_6 nie jest, jak wcześniej sądzono, przemianą fazową [21], ale tworzeniem się tych związków z KCl i związków typu K_2LnCl_5 według równania

$$K_2LnCl_{5(s)} + KCl_{(s)} = K_3LnCl_{6(s)}$$

Procesowi temu towarzyszy wysoka molowa entalpia, zmieniająca się w granicach od 46,3 kJ mol⁻¹ dla K₃NdCl₆ do 55,4 kJ mol⁻¹ dla K₃CeCl₆.

Związek	T _{tworz} K	T _{przem} K	T _{top} K	$\Delta_{ m tworz} H$ kJ mol ⁻¹	$\Delta_{ m przem} H$ kJ mol ⁻¹	$\Delta_{ m top}H$ kJ mol ⁻¹	Literatura
K ₂ LaCl ₅	_	_	906	_	-	78,1	[118]
	-	—	913	—			[22]
	-	_	902	—	-	115,8	[119]
K ₃ CeCl ₆	811	_	908	55,4	-	39,1	[118]
	807	_	905	—	_	-	[23]
	-	785	901	_	-	-	[21]
K ₃ PrCl ₆	768	_	944	52,6	-	48,9	[118]
	762	_	945	_	_	-	[24]
	-	—	1048	—		106,6	[120]
	-	_	938	_	-	84,0	[119]
K ₃ NdCl ₆	724	_	973	46,3	-	48,0	[118]
	719	_	972	_	_	-	[25]
	—	618	955	_	_	-	[21]
	-	_	961	—	-	94,5	[119]
K ₃ TbCl ₆	_	641	1049	_	6,1	53,2	[121–122]
	-	640DTA	1049	—			[30]
	394EMF	642EMF	_	_	8,1	-	[30]
KTb ₂ Cl ₇	_	_	841	_	_	47,9	[121-122]
	—	_	842	_	-	_	[30]

Tabela 12. Temperatury i molowe entalpie przemian fazowych kongruentnie topiących się związków występujących w układach LnCl₃-KCl (pogrubioną czcionką zaznaczono dane autora tej pracy)

Po zanalizowaniu otrzymanych wyników (tab. 12) stwierdzono wyraźną zależność zarówno temperatury tworzenia się związku, jak i jego temperatury topnienia od liczby atomowej, a więc i promienia jonowego lantanowca. Wraz ze zmniejszaniem się promienia jonowego lantanowca obniżeniu ulega temperatura tworzenia się związku K₃LnCl₆ z KCl i K₂LnCl₅ i wzrasta temperatura jego topnienia. Wykorzystując dodatkowo uzyskane z pomiarów DTA literaturowe dane T_{tworz} i T_{top} dla K₃SmCl₆ (611 i 1008 K) [26], K₃EuCl₆ (568 i 1026 K) [27] i K₃GdCl₆ (548 i 1043 K) [27], wyznaczono zależność temperaturowej trwałości związków K_3LnCl_6 (zakres istnienia związku) od promienia jonowego Ln^{3+} [124]. Zależność tę przedstawiono na rys. 26. Otrzymano interesujące, liniowe zależności temperatury tworzenia związków K_3LnCl_6 ze związków K_2LnCl_5 i KCl oraz temperatury ich topnienia od promienia jonowego lantanowca

$$T_{\text{tworz}} = 2917, 2 \cdot r_{\text{Ln}^{3+}} - 2194 \text{ (K)}$$

 $T_{\text{top}} = -1285, 6 \cdot r_{\text{Ln}^{3+}} + 2245 \text{ (K)}$

Zależności te pozwalają na szacunkowe określenie temperatur tworzenia i temperatur topnienia analogicznych związków pozostałych lantanowców. Z zależności temperatury tworzenia od promienia jonowego lantanowca jednoznacznie wynika, że związki typu K₃LnCl₆ dla wszystkich lantanowców nie są trwałe w temperaturze 0 K. Nawet związek K₃LuCl₆, a więc związek lantanowca o najmniejszym promieniu jonowym (84,8 pm), będzie tworzył się dopiero w temperaturze około 280 K. Podobne obliczenia dla K₃DyCl₆ dają temperaturę jego tworzenia równą 455 K.

Rys. 26. Zależność zakresu termicznej trwałości związków K₃LnCl₆ od promienia jonowego lantanowca: kółka – własne eksperymentalne temperatury tworzenia, czarne kółka – literaturowe temperatury tworzenia uzyskane z krzywych DTA, czarne trójkąty – literaturowe temperatury tworzenia uzyskane z pomiarów elektrochemicznych, kwadraty – eksperymentalne temperatury topnienia, czarne kwadraty – literaturowe temperatury topnienia, linia ciągła – liniowa zależność temperatury tworzenia od promienia jonowego lantanowca, linia przerywana – liniowa zależność temperatury topnienia od promienia jonowego lantanowca

Fig. 26. Dependence of thermal stability range of the K_3LnCl_6 compounds on lanthanide ionic radius: open circles – T_{form} (this work), black circles – T_{form} (literature DTA), black triangles – T_{form} (literature emf), open squares – T_{fus} (this work), black squares – T_{fus} (literature DTA), solid line – linear dependence of formation temperature on lanthanide ionic radius, broken line – linear dependence of fusion temperature on lanthanide ionic radius

Powyższe wnioski, wynikające z pomiarów DSC i DTA, zgadzają się doskonale z wynikami pomiarów elektrochemicznych [22–25, 30, 123], z których jednoznacznie wynika, że wymienione związki nie istnieją w temperaturze 0 K i tworzą się w podwyższonych temperaturach. Temperatury tworzenia uzyskane na podstawie pomiarów elektrochemicznych maleją wraz ze zmniejszaniem się promienia jonowego lantanowca, przy czym są one niższe niż temperatury tworzenia wyznaczone z pomiarów termicznych (rys. 26 – czarne trójkąty).

Wyniki uzyskane dla K_3 TbCl₆ (tab. 12) pozornie nie zgadzają się z przedstawionymi powyżej wywodami. W trakcie pomiarów DSC tego związku obserwowano dwa efekty termiczne – jego topnienie w temperaturze 1049 K i drugi efekt w temperaturze 641 K o entalpii równej 6,1 kJ mol⁻¹, a więc zdecydowanie niższej niż dla pozostałych badanych związków. Podobne wyniki uzyskali Mitra i Seifert [30]. Na podstawie badań rentgenowskich stwierdzili oni, że obserwowany efekt jest przemianą fazową (przejście K₃TbCl₆ ze struktury jednoskośnej do struktury regularnej). Natomiast wyznaczona z pomiarów elektrochemicznych temperatura tworzenia (rozkładu) tego związku wynosi 394 K [30]. Podczas chłodzenia jego rozkład jednak nie następuje ze względów kinetycznych i otrzymuje się metastabilną odmianę K₃TbCl₆ w temperaturze pokojowej. Podobna sytuacja ma miejsce w przypadku analogicznych związków kolejnych lantanowców o coraz mniejszym promieniu jonowym.

Po wyznaczeniu temperatur i entalpii przemian fazowych omawianych wyżej związków wykonano pomiary ich ciepła molowego zarówno w fazie stałej, jak i ciekłej [122, 125]. Pomiary te wykonano po raz pierwszy. Jedynymi danymi literaturowymi istniejącymi dotychczas były wielkości ciepła molowego K_2LaCl_5 w zakresie temperatur 200– 770 K [94], będące w dobrej zgodności z uzyskanymi przez nas wynikami [125]. Do opisu zależności ciepła molowego (J mol⁻¹K⁻¹) od temperatury zastosowano wielomian

$$C_{\rm p} = A + BT + CT^2 + DT^{-2} \tag{20}$$

7	Zakres temp.	A	$B \cdot 10^3$	$C \cdot 10^{5}$	$D \cdot 10^{-5}$
Związek	Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-2}$	$J \text{ mol}^{-1} \text{K}^{-3}$	J mol ⁻¹ K
K ₂ LaCl _{5(s)}	298-906	207,98	12,553	_	-0,25
K ₂ LaCl _{5(c)}	906-945	290,00	_	_	_
"K ₃ CeCl ₆ "(s)	298-811	254,30	18,466	_	-0,24
K ₃ CeCl _{6(s)}	811-908	284,60	_	_	_
K ₃ CeCl _{6(c)}	908–970	337,40	-	_	—
"K ₃ PrCl ₆ "(s)	298-768	265,12	17,117	_	-0,32
K ₃ PrCl _{6(s)}	768–944	262,19	39,980	_	—
K ₃ PrCl _{6(c)}	944-1100	278,30	58,030	_	—
"K ₃ NdCl ₆ "(s)	298-724	233,69	49,581	_	-0,34
K ₃ NdCl _{6(s)}	724–973	1346,61	-2617,8	159,8	—
K ₃ NdCl _{6(c)}	973-1020	321,90	-	-	_
K ₃ TbCl _{6(s)}	298-641	279,42	-74,75	11,0	_
K ₃ TbCl _{6(s)}	641-1049	634,29	-909,98	57,8	_
K ₃ TbCl _{6(c)}	1049-1094	348,32	_	_	_

Tabela 13. Ciepło molowe C_p (J mol⁻¹K⁻¹) = $A + BT + CT^2 + DT^{-2}$ związków K₂LaCl₅ i K₃LnCl₆

Wyniki pomiarów przedstawiono w tabeli 13. Cudzysłowem oznaczono stechiometryczne mieszaniny $K_2LnCl_5 + KCl$ o składzie związków K_3LnCl_6 , istniejące poniżej temperatury tworzenia związków K_3LnCl_6 (Ln = lantanowiec).

Analiza wyników otrzymanych dla związków K₃LnCl₆ prowadzi do interesujących wniosków. O ile w przypadku K₃CeCl₆ i K₃PrCl₆ zależność ciepła molowego od temperatury wykazuje "normalny" przebieg (rys. 27), to w przypadku K₃NdCl₆ i K₃TbCl₆ (rys. 28 i 29) sytuacja ulega wyraźnej zmianie.

Rys. 27. Zależność ciepła molowego K₃PrCl₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem Fig. 27. Dependence of molar heat capacity of K₃PrCl₆ on temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 28. Zależność ciepła molowego K₃NdCl₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości opisane wielomianem Fig. 28. Molar heat capacity of K₃NdCl₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 29. Zależność ciepła molowego K₃TbCl₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości opisane wielomianem Fig. 29. Molar heat capacity of K₃TbCl₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Po utworzeniu związku K₃NdCl₆ w temperaturze T_{tworz} jego ciepło molowe maleje ze wzrostem temperatury aż do osiągnięcia minimum w temperaturze około 100–150 K powyżej T_{tworz} . Wyraźnie uwidacznia się też efekt przedtopnienia. W przypadku K₃TbCl₆ sytuacja jest nieco inna. Związek ten, jak już wspomniano, w temperaturze pokojowej może istnieć w postaci fazy metastabilnej, a w temperaturze 641 K ulega przemianie fazowej. Już w temperaturze niższej od temperatury przemiany fazowej następuje wyraźny wzrost ciepła molowego. Po przemianie fazowej, podobnie jak w przypadku K₃NdCl₆, ciepło molowe maleje ze wzrostem temperatury aż do osiągnięcia minimum w temperaturze około 100–150 K wyższej od temperatury przemiany fazowej (rys. 29). Wyraźny jest też efekt przedtopnienia, czyli wyraźny wzrost nadmiarowego ciepła molowego w temperaturach bliskich temperaturze topnienia.

Niewątpliwie opisane powyżej zależności temperaturowe ciepła molowego związków K₃LnCl₆ związane są z ich strukturą krystaliczną. Istniejące w układach LnCl₃– KCl (Ln = Ce, Pr, Nd) związki K₃LnCl₆ tworzą się w podwyższonych temperaturach ze związków K₂LnCl₅ i KCl. Reakcja tworzenia związana jest ze zmianą struktury krystalicznej. Związki K₂LnCl₅ o strukturze typu K₂PrCl₅ (Pnma, Z = 4) w temperaturze T_{tworz} reagują z KCl i powstają związki K₃LnCl₆ o strukturze regularnej typu elpasolitu (Fm3m, Z = 4) [123]. W przypadku K₃TbCl₆ mamy do czynienia z przemianą fazową, będącą przejściem ze struktury jednoskośnej typu Cs₃BiCl₆ istniejącej w niskich temperaturach (C2/c, Z = 8) do wspomnianej wyżej odmiany wysokotemperaturowej

o strukturze regularnej typu elpasolitu [30]. Związek pomiędzy strukturą krystaliczną a ciepłem molowym zostanie przedyskutowany po omówieniu związków tworzących

się w układach LnCl₃–RbCl i LnCl₃–CsCl.

5.2.1.2. Związki Rb₃LnCl₆

Według danych literaturowych [22-25, 123] związki Rb₃LnCl₆ również istnieją tylko w podwyższonej temperaturze i podczas chłodzenia ulegają rozkładowi do Rb₂LnCl₅ i RbCl. Temperatura tworzenia (rozkładu), wyznaczona z pomiarów elektrochemicznych (ogniwa tworzenia zbudowane ze stałych elektrolitów LnCl₃ i RbCl), wynosi 717, 636, 557 i 491 K odpowiednio dla Rb₃LaCl₆, Rb₃CeCl₆, Rb₃PrCl₆ i Rb₃NdCl₆ [123]. Temperatura tworzenia (rozkładu) wyznaczona z krzywych DTA jest nieco wyższa i wynosi odpowiednio 725, 651, 598 i 547 K, przy czym począwszy od Rb₃PrCl₆ rozkład może być osiągnięty jedynie w specjalnych warunkach (długotrwałe ogrzewanie w temperaturze około 520 K, bądź jak w przypadku Rb₃NdCl₆ długotrwałe ogrzewanie w temperaturze około 450 K w obecności śladowych ilości wody) [126]. Rozkład Rb₃LnCl₆ do Rb₂LnCl₅ i RbCl jest przemianą fazową z głeboką przebudową struktury [123]. Polega ona na znacznym przesunięciu jonów do nowych pozycji, co wiąże się z pokonaniem potencjału innych jonów. Reorganizacja taka charakteryzuje się wysoką energią aktywacji i długim czasem, który może być znacznie dłuższy od czasu pomiaru. Z sytuacją taką mamy do czynienia w pomiarach DTA i DSC, gdzie typowa szybkość ogrzewania czy chłodzenia jest rzędu 1–5 K min⁻¹. Jeżeli czas reorganizacji struktury jest zbyt długi w porównaniu z czasem pomiaru, możliwe jest ochłodzenie badanego związku do temperatury, w której reorganizacja struktury zostanie zamrożona i otrzymanie odmiany wysokotemperaturowej jako fazy metastabilnej w niskich temperaturach. Sytuację taką obserwowano podczas pomiarów DTA związków Rb₃PrCl₆ i Rb₃NdCl₆ [126].

Począwszy od Rb₃PrCl₆ omawiane związki ulegają również przemianie fazowej w temperaturach 659, 667 i 686 K odpowiednio dla Rb₃PrCl₆, Rb₃NdCl₆ i Rb₃TbCl₆ [24–25, 30].

Wyniki uzyskane przez autora niniejszej pracy oraz istniejące dane literaturowe dla badanych związków Rb₃LnCl₆ przedstawiono w tabeli 14.

W przypadku Rb₃LaCl₆ efektowi termicznemu w temperaturze 725 K towarzyszy wysoka entalpia molowa wynosząca 48,4 kJ mol⁻¹, podczas gdy dla analogicznych związków Ce, Pr, Nd i Tb entalpia towarzysząca efektowi termicznemu w fazie stałej jest wyraźnie mniejsza i wynosi jedynie 6,6–7,6 kJ mol⁻¹. Porównując te wielkości z wielkościami entalpii uzyskanymi dla analogicznych związków potasu można wyciągnąć wniosek, że efekt ten jest wynikiem tworzenia się Rb₃LaCl₆ z Rb₂LaCl₅ i RbCl i przemiany fazowej pozostałych związków Rb₃LnCl₆. Wniosek ten doskonale zgadza się z danymi literaturowymi [22–25, 30], według których Rb₃PrCl₆, Rb₃NdCl₆ i Rb₃TbCl₆ ulegają przemianie fazowej w temperaturach odpowiednio 659, 667 i 686 K. Wyniki pomiarów dla Rb₃CeCl₆ (niska entalpia efektu w temperaturze 650 K) sugerują, że również w przypadku tego związku mamy do czynienia nie z jego tworzeniem (rozkładem), a raczej z przemianą fazową. Efektu rozkładu i tworzenia związków z Rb₂LnCl₅ i RbCl nie obserwowano również w przypadku Rb₃PrCl₆ i Rb₃NdCl₆. Oznacza to, że w niskich temperaturach związki te pozostawały w postaci fazy metastabilnej. Natura dodatkowego efektu termicznego obserwowanego w temperaturach 411, 398 i 382 K odpowiednio dla Rb₃CeCl₆, Rb₃PrCl₆ i Rb₃NdCl₆ będzie tematem planowanych badań strukturalnych.

Związek	T _{tworz} K	T _{przem} K	T _{top} K	$\Delta_{tworz}H$ kJ mol ⁻¹	$\Delta_{\rm przem} H$ kJ mol ⁻¹	$\Delta_{top}H$ kJ mol ⁻¹	Literatura
Rb ₃ LaCl ₆	725	-	978	48,4	-	50,2	[118]
	725	-	989	-	-	-	[22]
Rb ₃ CeCl ₆	-	411/650	1016	-	1,5/8,5	52,4	[118]
	651	-	1012	-	-	-	[23]
Rb ₃ PrCl ₆	-	398/658	1037	-	1,0/6,6	54,0	[118]
	598	659	1040	-	-	-	[24]
Rb ₃ NdCl ₆	-	382/667	1060	-	0,9/6,7	58,8	[118]
	547	667	1060	-	-		[25]
Rb ₃ TbCl ₆	-	686	_*	-	7,6	_*	[121-122]
	-	681DTA	1049	-	-	-	[30]
	-	663EMF	-	-	8,1	-	[30]
RbTb ₂ Cl ₇	_	842	886	_	17,1	67,9	[121-122]
	-	836	883	_	_	_	[30]

Tabela 14. Temperatury i molowe entalpie przemian fazowych kongruentnie topiących się związków z układów LnCl₃–RbCl (pogrubioną czcionką zaznaczono dane autora niniejszej pracy)

*nie wyznaczono ze względu na ograniczony zakres temperaturowy DSC

Rys. 30. Zależność zakresu termicznej trwałości związków Rb₃LnCl₆ od promienia jonowego lantanowca: kółka – własne eksperymentalne temperatury topnienia, czarne kółka – literaturowe temperatury topnienia, kwadraty – literaturowe temperatury tworzenia uzyskane z pomiarów elektrochemicznych, linia ciągła – liniowa zależność temperatury tworzenia od promienia jonowego lantanowca, linia przerywana – liniowa zależność temperatury topnienia od promienia jonowego lantanowca Fig. 30. Dependence of thermal stability range of Rb₃LnCl₆ compounds on lanthanide ionic radius: open circles – *T*_{fus} (this work), black circles – *T*_{fus} (literature DTA), open squares – *T*_{form} (literature emf), solid line – linear dependence of formation temperature on lanthanide ionic radius, broken line – linear dependence of fusion temperature on lanthanide ionic radius

Pierwszym w serii lantanowców związkiem Rb₃LnCl₆ istniejącym w temperaturze 0 K jest Rb₃TbCl₆ [123]. Wyznaczona temperatura i entalpia jego przemiany fazowej: odmiana niskotemperaturowa – odmiana wysokotemperaturowa jest zgodna z danymi literaturowymi [30]. Temperatury i entalpii topnienia tego związku nie wyznaczono ze względu na ograniczony zakres temperaturowy stosowanego w badaniach aparatu DSC.

Na rysunku 30 przedstawiono zakres termicznej trwałości związków Rb₃LnCl₆ jako funkcji promienia jonowego lantanowca. Do jego konstrukcji wykorzystano temperatury tworzenia wyznaczone na podstawie pomiarów elektrochemicznych [123] oraz własne i literaturowe eksperymentalne temperatury topnienia omawianych związków. Podobnie jak w przypadku związków K₃LnCl₆ zakres termicznej trwałości związków Rb₃LnCl₆ zwiększa się, a temperatura ich tworzenia z Rb₂LnBr₅ i RbCl maleje wraz ze zmniejszaniem się promienia jonowego lantanowca.

Wyniki pomiarów ciepła molowego związków Rb_3LnCl_6 (Ln = La, Ce, Pr, Nd, Tb) [122, 127] przedstawiono na rys. 31–35 i w tab. 15. Podobnie jak w przypadku związków K₃LnCl₆, pomiary ciepła molowego wykonano po raz pierwszy. Jedynymi danymi literaturowymi istniejącymi przed przystąpieniem do pomiarów były wartości ciepła molowego Rb_3LaCl_6 w zakresie temperatur 200–530 K [94]. Ze względu na ograniczony zakres temperaturowy DSC nie wyznaczono ciepła molowego Rb_3TbCl_6 w fazie ciekłej.

Rys. 31. Zależność ciepła molowego Rb₃LaCl₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem

Rys. 32. Zależność ciepła molowego Rb₃CeCl₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem Fig. 32. Molar heat capacity of Rb₃CeCl₆ *vs* temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 33. Zależność ciepła molowego Rb₃PrCl₆ od temperatury: otwarte kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem

Fig. 33. Molar heat capacity of Rb₃PrCl₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 34. Zależność ciepła molowego Rb₃NdCl₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem
 Fig. 34. Molar heat capacity of Rb₃NdCl₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 35. Zależność ciepła molowego Rb₃TbCl₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem

	_			
Zwiazek	Zakres temp.	<i>A</i>	$B \cdot 10^3$	$C \cdot 10^5$
Związek	K	$J mol^{-1}K^{-1}$	$J \text{ mol}^{-1}\text{K}^{-2}$	$J \text{ mol}^{-1} \text{K}^{-3}$
"Rb ₃ LaCl ₆ "(s)	298-725	308,09	-167,41	1,92
Rb ₃ LaCl _{6(s)}	725–978	712,62	-1007,9	6,13
Rb ₃ LaCl _{6(c)}	978-1025	365,38	-	-
Rb ₃ CeCl _{6(s)*}	298-411	274,83	13,48	-
Rb ₃ CeCl _{6(s)*}	411-650	486,85	-740,19	6,26
Rb ₃ CeCl _{6(s)}	650-1016	693,29	-997,20	6,13
Rb ₃ CeCl _{6(c)}	1016-1074	345,73	-	-
Rb ₃ PrCl _{6(s)*}	298-398	621,75	-2125,74	33,96
Rb ₃ PrCl _{6(s)*}	398-658	472,63	-754,99	7,43
Rb ₃ PrCl _{6(s)}	658-1037	794,60	-1222,87	7,23
Rb ₃ PrCl _{6(c)}	1037-1097	329,89	-	-
Rb ₃ NdCl _{6(s)*}	298-382	360,46	-543,73	8,77
Rb ₃ NdCl _{6(s)*}	382-667	391,21	-521,22	5,53
Rb ₃ NdCl _{6(s)}	667–785	924,84	-1761,04	12,08
Rb ₃ NdCl _{6(s)}	785-1060	774,02	-1110,10	6,01
Rb ₃ NdCl _{6(c)}	1060-1093	325,77	-	-
Rb ₃ TbCl _{6(s)}	298-686	287,59	-123,52	18,0
Rb ₃ TbCl _{6(s)}	686-1100	645,26	-872,78	53,4

Fig. 35. Molar heat capacity of Rb₃TbCl₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Tabela 15. Ciepło molowe związków Rb₃LnCl₆: $C_p(J \text{ mol}^{-1}\text{K}^{-1}) = A + BT + CT^2$.

* faza metastabilna

Tworzenie Rb₃LaCl₆ (struktura regularna typu elpasolitu, Fm3m, Z = 4) w temperaturze 725 K z Rb₂LaCl₅ (struktura typu K₂PrCl₅, Pnma, Z = 4) i RbCl jest przemianą fazową z głęboką przebudową struktury. Chłodzenie otrzymanego związku do temperatury pokojowej prowadzi do jego rozkładu na związki wyjściowe. Tak więc w zakresie temperatur 298–725 K mamy do czynienia z mieszaniną Rb₂LaCl₅ i RbCl o składzie odpowiadającym związkowi Rb₃LaCl₆. Zaznaczono to w tabeli 15 w postaci "Rb₃LaCl₆". Rb₃PrCl₆ i Rb₃NdCl₆ mają odmianę wysokotemperaturową o strukturze elpasolitu (Fm3m, Z = 4) i odmianę niskotemperaturową o strukturze typu Cs₃BiCl₆ (C2/c, Z = 8), która podczas ochładzania powinna ulegać rozkładowi na Rb₂LnCl₅ i RbCl. Ze względów kinetycznych rozkład ten nie następuje i tworzy się faza metastabilna związków, istniejąca nawet w temperaturze pokojowej [123]. Rb₃CeCl₆ najprawdopodobniej zachowuje się identycznie, chociaż dane literaturowe [23] nic nie mówią o istnieniu jego niskotemperaturowej odmiany krystalicznej. W tabeli 15 fazy metastabilne związków Rb₃LnCl₆ zaznaczono gwiazdką. Dla tych związków jest charakterystyczne występowanie dodatkowego efektu termicznego widocznego również na krzywych obrazujących zależność ciepła molowego od temperatury (efekt T_1 na rys. 32–34). Jedynym związkiem trwałym nawet w temperaturze 0 K jest Rb₃TbCl₆ [123]. Cechą charakterystyczną tego związku jest brak dodatkowego efektu termicznego na krzywej obrazującej zależność jego ciepła molowego od temperatury (rys. 35). Wydaje się więc, że efekt T_1 występujący w zależnościach ciepła molowego od temperatury dla Rb₃CeCl₆, Rb₃PrCl₆ i Rb₃NdCl₆ jest najprawdopodobniej związany ze zmianami strukturalnymi następującymi w metastabilnych odmianach tych związków. Zależność ciepła molowego od temperatury wysokotemperaturowych odmian związków Rb₃LnCl₆ jest podobna jak w przypadku związków K₃NdCl₆ i K₃TbCl₆ – ciepło to maleje ze wzrostem temperatury aż do osiągnięcia minimum w temperaturze około 150–200 K wyższej od temperatury T_{tworz} lub T_{przem} .

5.2.1.3. Związki Cs₃LnCl₆

Związki Cs_3LnCl_6 , w których Ln = La, Ce i Pr podobnie jak analogiczne związki z rubidem są nietrwałe w temperaturze 0 K. Tworzą się one ze związków Cs_2LnCl_5 i CsCl w temperaturach odpowiednio 462, 283 i 143 K [123]. Ze względu na niskie temperatury tworzenia (rozkładu) podczas chłodzenia nie ulegają one jednak rozkładowi i istnieją w postaci fazy metastabilnej w niskich temperaturach. Począwszy od Cs_3NdCl_6 związki te są stabilne również w temperaturze 0 K.

Związki Cs₃LnCl₆ mają odmianę wysokotemperaturową o strukturze regularnej i odmianę niskotemperaturową o strukturze jednoskośnej. Temperatura przemiany fazowej jest praktycznie niezależna od promienia jonowego lantanowca i wynosi 670–680 K, natomiast temperatura topnienia wzrasta wraz ze zmniejszaniem się promienia jonowego lantanowca.

Wyniki uzyskane dla badanych związków Cs₃LnCl₆ przedstawiono w tabeli 16. Ze względu na ograniczenia aparaturowe nie wyznaczono temperatury i entalpii topnienia Cs₃TbCl₆.

Związek	T _{tworz} K	T _{przem} K	T _{top} K	$\Delta_{ m tworz} H$ kJ mol $^{-1}$	$\Delta_{ m przem} H$ kJ mol ⁻¹	$\Delta_{ m top} H \ m kJ \ m mol^{-1}$	Literatura
Cs ₃ LaCl ₆	Ι	670	1055	_	7,5	58,7	[118]
	_	674	1053	_	_	_	[22]
Cs ₃ CeCl ₆	-	676	1078	_	7,8	67,4	[118]
	_	674	1077	-	-	-	[23]
Cs ₃ PrCl ₆	Ι	676	1093	_	7,6	61,1	[118]
	Ι	677	1093	-	-	-	[24]
Cs ₃ NdCl ₆	-	678	1103	_	7,4	66,4	[118]
	_	678	1108	_	_		[25]

Tabela 16. Temperatury i molowe entalpie przemian fazowych kongruentnie topiących się związków z układów LnCl₃–CsCl (pogrubioną czcionką zaznaczono dane uzyskane przez autora niniejszej pracy)

Cs ₃ TbCl ₆	-	672	_*	-	7,0	_*	[121–122]
	-	673DTA	1153		_		[30]
	-	661EMF			7,2		[30]
CsTb ₂ Cl ₇	-	689/926	937	_	12,1/10,9	68,9	[121–122]
	-	688/928	945	-	—	-	[30]

*nie wyznaczono ze względu na ograniczony zakres temperaturowy DSC

Wyniki pomiarów ciepła molowego związków Cs_3LnCl_6 (Ln = La, Ce, Pr, Nd, Tb) [*] przedstawiono na rys. 36–39 i w tabeli 17. Jedynymi danymi literaturowymi istniejącymi przed przystąpieniem autora do pomiarów były wartości ciepła molowego Cs_3LaCl_6 w zakresie temperatur 200–600 K [94]. Ze względu na ograniczony zakres temperaturowy DSC nie wyznaczono ciepła molowego Cs_3CeCl_6 , Cs_3NdCl_6 i Cs_3TbCl_6 w fazie ciekłej.

Rys. 36. Zależność ciepła molowego Cs₃LaCl₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem Fig. 36. Molar heat capacity of Cs₃LaCl₆ *vs* temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 37. Zależność ciepła molowego Cs₃CeCl₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem Fig. 37. Molar heat capacity of Cs₃CeCl₆ *vs* temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 38. Zależność ciepła molowego Cs₃NdCl₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem
Fig. 38. Molar heat capacity of Cs₃NdCl₆ *vs* temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

 $C_p/J mol^{-1}K^{-1}$

Rys. 39. Zależność ciepła molowego Cs₃TbCl₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem
Fig. 39. Molar heat capacity of Cs₃TbCl₆ *vs* temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Związek	Zakres temp.	A	$B \cdot 10^3$	$C \cdot 10^5$
	K	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-2}$	J mol ⁻¹ K ⁻³
Cs ₃ LaCl _{6(s)}	298-609	265,99	19,435	-
Cs ₃ LaCl _{6(s)}	684–978	529,95	-565,18	33,4
Cs ₃ LaCl _{6(c)}	1062-1098	363,24	Ι	_
Cs ₃ CeCl _{6(s)}	298-609	279,25	22,289	-
Cs ₃ CeCl _{6(s)}	786–985	309,88	Ι	_
Cs ₃ CeCl _{6(c)}	1084-1100	382,12	Ι	_
Cs ₃ NdCl _{6(s)}	300-670	318,23	-202,94	18,953
Cs ₃ NdCl _{6(s)}	685-1053	643,45	-894,16	51,156
Cs ₃ TbCl _{6(s)}	300-648	286,58	-137,05	20,9
Cs ₃ TbCl _{6(s)}	682-1049	578,79	-724,22	43,3

Tabela 17. Ciepło molowe związków Cs₃LnCl₆: C_p (J mol⁻¹K⁻¹) = $A + BT + CT^2$

Badane związki Cs_3LnCl_6 mają odmianę wysokotemperaturową o strukturze elpasolitu (Fm3m, Z = 4) i odmianę niskotemperaturową o strukturze typu Cs_3BiCl_6 (C2/c, Z = 8) [123].

Zależność ciepła molowego od temperatury wysokotemperaturowych odmian związków Cs₃LnCl₆ jest taka jak w przypadku związków Rb₃LnCl₆ – ciepło to maleje ze wzrostem temperatury aż do osiągnięcia minimum w temperaturze około 150–200

K wyższej od temperatury T_{przem}.

5.2.1.4. Związek między przewodnictwem elektrycznym fazy stałej, ciepłem molowym i strukturą krystaliczną związków M₃LnCl₆

Specyficzna zależność ciepła molowego związków M₃LnCl₆ (M = K, Rb, Cs; Ln = La, Ce, Pr, Nd, Tb) od temperatury powinna znaleźć swoje odbicie w przewodnictwie elektrycznym. Przypuszczenie to skłoniło autora niniejszej pracy do rozpoczęcia pomiarów przewodnictwa elektrycznego fazy stałej omawianych związków. Wykonane pomiary [*] potwierdziły słuszność postawionej hipotezy i rzuciły nowe światło na zjawiska zachodzące w badanych związkach w funkcji temperatury. Typową zależność przewodnictwa fazy stałej związków K₃LnCl₆ przedstawiono na rys. 40 na przykładzie K₃NdCl₆.

Temperatury tworzenia związków K₃LnCl₆ z K₂LnCl₅ i KCl i temperatury ich topnienia wyznaczone z pomiarów przewodnictwa elektrycznego bardzo dobrze zgadzają się z temperaturami wyznaczonymi z pomiarów kalorymetrycznych (T_{tworz} i T_{top} na rys. 40). Tworzenie związków K3LnCl6 związane jest ze skokowym wzrostem przewodnictwa elektrycznego o około dwa rzędy. Kolejny, znacznie mniejszy, ale wyraźny skok przewodnictwa elektrycznego fazy stałej następuje w temperaturze 835-845 K (K₃CeCl₆ - 845K, K₃PrCl₆ - 835 K, K₃NdCl₆ - 842 K). Początkowo sądzono, że jest on spowodowany nieznacznym odchyleniem badanych związków od stechiometrii. Gdyby tak było w rzeczywistości powinien on wystąpić, w przypadku K₃NdCl₆, w temperaturze 883 K (perytektyczny rozkład K₂NdCl₅) lub 899 K (eutektyk KCl-K₃NdCl₆). Ponadto efekt odchylenia od stechiometrii byłby widoczny na krzywych DSC badanych związków. Brak dodatkowych efektów na krzywych DSC oznacza, że omawiany skok przewodnictwa nie jest wynikiem odchylenia od stechiometrii. Szukając przyczyn jego występowania, zwrócono uwagę na nietypowa zależność ciepła molowego większości badanych związków od temperatury. Porównanie ciepła molowego i przewodnictwa elektrycznego (krzywa ogrzewania) w funkcji temperatury przedstawiono na rys. 41. Jak wynika z tego rysunku, omówiony drugi skok przewodnictwa elektrycznego fazy stałej odpowiada minimum ciepła molowego K₃NdCl₆.

Rys. 40. Zależność przewodnictwa elektrycznego K₃NdCl₆ od temperatury: gruba linia – krzywa ogrzewania, cienka linia – krzywa chłodzenia, T_{eut} – temperatura eutektyku KCl–K₃NdCl₆, T_{rozkl} – temperatura rozkładu perytektycznego K₂NdCl₅

Fig. 40. Dependence of electrical conductivity of K_3NdCl_6 on temperature: thick solid line – heating, thin solid line – cooling, T_{eut} – eutectic temperature of KCl–K₃NdCl₆, T_{rozkl} – temperature of K₂NdCl₅ decomposition

Rys. 41. Zależność ciepła molowego i przewodnictwa elektrycznego (krzywa ogrzewania) K₃NdCl₆ od temperatury: kółka – ciepło molowe, czarne kółka i linia – przewodnictwo elektryczne
 Fig. 41. Heat capacity and electrical conductivity of K₃NdCl₆ vs temperature: open circles – heat capacity, black circles and line – electrical conductivity (heating curve)

Rys. 42. Zależność przewodnictwa elektrycznego Rb₃PrCl₆ od temperatury: gruba linia – krzywa ogrzewania, cienka linia – krzywa chłodzenia, T_{eut} – temperatura eutektyku RbCl–Rb₃PrCl₆ Fig. 42. Dependence of electrical conductivity of Rb₃PrCl₆ on temperature: thick solid line – heating, thin solid line – cooling, T_{eut} – eutectic temperature of RbCl–Rb₃PrCl₆

Zależność przewodnictwa elektrycznego związków Rb₃LnCl₆ i Cs₃LnCl₆ od temperatury przedstawiono na rys. 42–43 na przykładzie Rb₃PrCl₆ i Cs₃NdCl₆.

Rys. 43. Zależność przewodnictwa elektrycznego Cs₃NdCl₆ od temperatury: gruba linia – krzywa ogrzewania, cienka linia – krzywa chłodzenia, T_{eut2} – temperatura eutektyku CsCl–Cs₃NdCl₆, T_{eut1} – temperatura eutektyku Cs₃NdCl₆–CsNd₂Cl₇ Fig. 43. Dependence of electrical conductivity of Cs₃NdCl₆ on temperature: thick solid line – heating, thin solid line – cooling, T_{eut1} – eutectic temperature of Cs₃NdCl₆–CsNd₂Cl₇, T_{eut2} – eutectic temperature of CsCl–Cs₃NdCl₆

Wyznaczone z pomiarów przewodnictwa temperatury przemian fazowych i temperatury topnienia bardzo dobrze zgadzają się z wielkościami wyznaczonymi metodą skaningowej kalorymetrii różnicowej. Przemianie fazowej omawianych związków towarzyszy skokowy wzrost przewodnictwa elektrycznego, przy czym wzrost ten jest wyraźnie większy w przypadku związków rubidowych niż cezowych, a więc jest związany z wielkością promienia jonowego litowca. Podobnie jak w przypadku zwiazków K₃LnCl₆, pojawia się też dodatkowy efekt na krzywych przewodnictwa. Tym razem nie jest to skokowy wzrost, ale wyraźne załamanie na krzywej przewodnictwa. Co prawda, w przypadku Rb₃PrCl₆ temperatura tego załamania jest zbliżona do temperatury perytektycznego rozkładu związku Rb₂PrCl₅ istniejącego w układzie PrCl₃–RbCl (rys. 42), który mógłby się pojawić w badanym związku wskutek odchylenia od stechiometrii, ale pomiary DSC wykluczyły takie odchylenie – na krzywych DSC obserwowano jedynie dwa efekty termiczne zwiazane z przemianą fazową i topnieniem związku. W przypadku Cs₃NdCl₆ sytuacja jest oczywista – efekt załamania na krzywej przewodnictwa jest zdecydowanie odległy od potencjalnych efektów związanych z odchyleniami od stechiometrii (rys. 43). Porównanie temperaturowych zależności ciepła molowego i przewodnictwa elektrycznego (rys. 44-45) wykazuje, że załamanie na krzywych przewodnictwa elektrycznego odpowiada minimum na krzywych temperaturowej zależności ciepła molowego. Kontynuacja pomiarów przewodnictwa elektrycznego fazy stałej, jak również rozpoczęte badania struktury omawianych związków w funkcji temperatury powinny dać jednoznaczne wyjaśnienie obserwowanych zależności, niemniej jednak już w chwili obecnej posługując się otrzymanymi wynikami i informacjami literaturowymi można podjąć próbę ich wyjaśnienia.

Rys. 44. Zależność ciepła molowego i przewodnictwa elektrycznego (krzywa ogrzewania) Rb₃PrCl₆ od temperatury: kółka – ciepło molowe, czarne kółka i linia – przewodnictwo elektryczne
Fig. 44. Heat capacity and electrical conductivity of Rb₃PrCl₆ vs temperature: open circles – heat capacity, black circles and line – electrical conductivity (heating curve)

Rys. 45. Zależność ciepła molowego i przewodnictwa elektrycznego (krzywa ogrzewania) Cs₃NdCl₆ od temperatury: kółka – ciepło molowe, czarne kółka i linia – przewodnictwo elektryczne Fig. 45. Heat capacity and electrical conductivity of Cs₃NdCl₆ vs temperature: open circles – heat capacity, black circles and line – electrical conductivity (heating curve)

W roku 1976 ukazała się praca O'Keeffe'a i Hyde'a pod tytułem The solid Electrolyte Transition and Melting in Salts [129, 130]. Jej autorzy przedstawili prosty, ilościowy model stałego elektrolitu, przyjmując, że jego właściwości wynikają z istnienia odrębnej, nieuporządkowanej i jonowo przewodzącej fazy. W ujęciu tym związki jonowe można podzielić na trzy klasy. Klasa I obejmuje substancje, których przewodnictwo elektryczne w trakcie topnienia wzrasta przynajmniej o trzy rzędy wielkości. Są to te proste substancje jonowe, dla których zanik uporządkowania w obu podsieciach (kationowej i anionowej) pojawia się w temperaturze topnienia. Do klasy II należa zwiazki, których przewodnictwo elektryczne zmienia sie skokowo w znaczacy sposób w temperaturze przemiany fazowej, stając się porównywalne z przewodnictwem ciekłych stopów solnych. Klasa III obejmuje substancje jonowe, których przewodnictwo elektryczne mieści się w pośrednim zakresie 1-10 S m⁻¹. Ciągłym zmianom przewodnictwa odpowiadają charakterystyczne zmiany innych własności, na przykład ciepła właściwego. Wynikają one ze stopniowo przebiegającego zaniku uporzadkowania w jednej z podsieci jonowych, co powoduje sukcesywny wzrost liczby nośników ładunku elektrycznego. O'Keeffe i Hyde nazywają ten typ przemiany stopniową przemianą porządek – nieporządek. W wystarczająco wysokiej temperaturze jony te mogą być statystycznie rozproszone w całej strukturze, bez przypisanych im konkretnych lokalizacji. Stan taki może być nazwany "strukturalnym nieporządkiem", a podsieć jonowa, która uległa zanikowi uporządkowania, może być uważana za kwaziciekłą [131]. Stan taki może być osiągnięty w procesie ciągłym, przebiegającym w szerokim zakresie temperatur (przemiana fazowa II rodzaju), bądź w sposób nieciągły w określonej temperaturze (przemiana fazowa I rodzaju). Przykładem zaniku uporządkowania przebiegającego w sposób nieciągły jest AgI. W temperaturze 422 K AgI ulega przemianie fazowej $\beta \rightarrow \alpha$; podsieć anionowa uzyskuje strukturę regularną przestrzennie centrowaną, natomiast kationy srebrowe są statystycznie rozproszone w przestrzeni komórki elementarnej pomiędzy jonami jodkowymi [132–133].

Przykładem zaniku uporządkowania przebiegającego w szerokim zakresie temperatury jest CaF₂ i SrCl₂ [16, 131, 134]. Ciągłej przemianie jednej podsieci jonowej ze stanu uporządkowanego do stanu kwaziciekłego bez zmiany drugiej podsieci jonowej towarzyszy charakterystyczne zachowanie innych wielkości termodynamicznych. W zakresie temperatur, w którym zaczyna powstawać wysokie nieuporządkowanie, ciepło molowe przybiera nienaturalnie wysokie wartości. Jest to oczywiste – wzrost nieuporządkowania wymaga dostarczenia dodatkowej energii. Wyraźny wzrost ciepła molowego ze wzrostem temperatury następuje już w niskiej temperaturze, co dowodzi, że ciągła przemiana do "strukturalnego nieporządku" ma miejsce podczas wzrostu temperatury. Zależność ciepła molowego od temperatury przybiera kształt λ -efektu, który bardzo dobrze skorelowany jest ze zmianą przewodnictwa elektrycznego. Koniec przemiany λ (osiągnięcie "pełnego strukturalnego nieporządku") odpowiada wyraźnemu załamaniu na krzywej zależności przewodnictwa elektrycznego od temperatury (obniżenie energii aktywacji przewodnictwa).

Powyższe informacje literaturowe dotyczące przemiany porządek – nieporządek wykorzystano do interpretacji wyników pomiarów przewodnictwa elektrycznego i ciepła molowego związków M₃LnCl₆. W związkach tych najprawdopodobniej następuje zanik uporządkowania podsieci kationowej tworzonej przez jony litowca.

Jak już wcześniej wspomniano, istniejące w układach LnCl₃–KCl (Ln = Ce, Pr, Nd) związki K₃LnCl₆ tworzą się w podwyższonej temperaturze z K₂LnCl₅ i KCl. Tworzenie się tych związków jest przemianą fazową z głęboką przebudową struktury. Związki K₂LnCl₅ o strukturze typu K₂PrCl₅ (Pnma, Z = 4) w temperaturze T_{tworz} reagują z KCl i powstają związki K₃LnCl₆ o strukturze regularnej typu elpasolitu (Fm3m, Z = 4) [123]. Podczas chłodzenia ulegają one rozkładowi do substancji wyjściowych, przy czym temperatura rozkładu jest wyraźnie niższa od temperatury tworzenia. W przypadku K₃TbCl₆ sytuacja jest nieco inna. Związek ten ma odmianę wysokotemperaturową o strukturze elpasolitu i odmianę niskotemperaturową o strukturze jednoskośnej typu Cs₃BiCl₆ (C2/c, Z = 8), a przejście z jednej struktury do drugiej jest przemianą fazową bez głębokiej przebudowy struktury. Odmiana niskotemperaturowa nie ulega rozkładowi do K₂TbCl₅ i KCl podczas chłodzenia i w temperaturze pokojowej istnieje w postaci fazy metastabilnej.

Rb₃LaCl₆ ma tylko odmianę wysokotemperaturową o strukturze elpasolitu. Tworzy się on w temperaturze 725 K z Rb₂LaCl₅ i RbCl, a podczas ochładzania ulega rozkładowi do związków wyjściowych. Rb₃PrCl₆ i Rb₃NdCl₆ analogicznie do K₃TbCl₆ mają odmianę wysokotemperaturową o strukturze elpasolitu i odmianę niskotemperaturową o strukturze typu Cs₃BiCl₆, która w czasie dalszego ochładzania powinna ulegać rozkładowi do Rb₂LnCl₅ i RbCl. Rozkład ten nie następuje ze względów kinetycznych i związki te istnieją w postaci fazy metastabilnej nawet w temperaturze pokojowej [123]. Rb₃CeCl₆ najprawdopodobniej zachowuje się identycznie, chociaż dane literaturowe [123] nic nie mówią o istnieniu jego odmiany niskotemperaturowej.

Badane związki Cs_3LnCl_6 (Ln = La, Ce, Pr, Nd, Tb) mają odmianę wysokotemperaturową o strukturze elpasolitu i odmianę niskotemperaturową o strukturze typu Cs_3BiCl_6 [123]. Przejście z odmiany niskotemperaturowej do odmiany wysokotemperaturowej, podobnie jak w przypadku związków Rb_3LnCl_6 (z wyjątkiem Rb_3LaCl_6), jest przemianą fazową bez głębokiej przebudowy struktury.

Tak więc wszystkie badane związki M₃LnCl₆ można podzielić na dwie grupy: grupę związków mających wyłącznie odmianę wysokotemperaturową o strukturze elpasolitu (K₃CeCl₆, K₃PrCl₆, K₃NdCl₆ i Rb₃LaCl₆), której tworzenie z M₂LnCl₅ i MCl jest przemianą fazową z głęboką przebudową struktury, i grupę związków (K₃TbCl₆, Rb₃CeCl₆, Rb₃PrCl₆, Rb₃NdCl₆, Rb₃TbCl₆, i wszystkie związki Cs₃LnCl₆) mających zarówno odmianę wysokotemperaturową o strukturze elpasolitu, jak i odmianę niskotemperaturową o strukturze jednoskośnej typu Cs₃BiCl₆, a przejście jednej odmiany w drugą jest przemianą fazową bez głębokiej przebudowy struktury.

Struktura jednoskośna typu Cs₃BiCl₆ może być wyprowadzona ze struktury regularnej typu elpasolitu (grupa przestrzenna Fm3m) związków A₂BMX₆ [29], gdzie każdy z kationów B i M znajduje się w oktaedrycznym otoczeniu sześciu jonów X, natomiast kationy A zajmują luki tetraedryczne tworzone przez oktaedry MX₆, a więc znajdują się w otoczeniu 12 jonów X. Ta regularna struktura jest strukturą wysokotemperaturowych odmian związków M₃LnCl₆, których poprawny wzór powinien mieć postać M₂M'LnCl₆. Jony lantanowca znajdują się w otoczeniu 6 jonów chlorkowych tworząc oktaedry (LnCl₆). 1/3 jonów metalu alkalicznego (M') zajmuje luki oktaedryczne a pozostałe 2/3 jonów metalu alkalicznego (M) luki tetraedryczne utworzone przez ciasno upakowane oktaedry (LnCl₆). Tak więc każdy z jonów M' znajduje się w otoczeniu 6, a każdy z jonów M w otoczeniu 12 jonów chlorkowych. Zgodnie z danymi Seiferta i innych [29] opis taki, ze względu na nadzwyczajnie wysokie czynniki temperaturowe wszystkich atomów z wyjątkiem lantanowca, może być rozważany jedynie formalnie.

W niskich temperaturach oktaedry (LnCl₆) ulegają deformacji i wyraźnej rotacji w stosunku do pozycji idealnej. Rotacja ta powoduje zmniejszenie różnicy w liczbie koordynacji jonów M i M'. W uzyskanej strukturze jednoskośnej typu Cs₃BiCl₆ jeden z jonów metalu alkalicznego (M') jest otoczony przez 11, a pozostałe dwa (M) przez 8 jonów chlorkowych.

W grupie związków M₃LnCl₆ mających wyłącznie odmianę wysokotemperaturową o strukturze elpasolitu (K₃CeCl₆, K₃PrCl₆, K₃NdCl₆ i Rb₃LaCl₆) najprawdopodobniej mamy do czynienia z zanikiem uporządkowania podsieci kationowej, tworzonej przez jony litowca, przebiegającego w sposób nieciągły. Tworzenie się tych związków ze związków M₂LnCl₅ i MCl jest przemianą fazową z głęboką przebudową struktury.

Jest to przejście ze struktury typu K_2PrCl_5 (nakryte pryzmy trygonalne połaczone w łańcuchy przez wspólne naroża ([PrCl₃Cl_{4/2}]²⁻) do struktury typu elpasolitu. Efektem tej przemiany jest utworzenie się podsieci anionowej składającej się z oktaedrów (LnCl₆) i podsieci kationowej tworzonej przez jony M i M'. Podsieć anionowa uzyskuje strukturę regularną centrowaną na ścianach, natomiast podsieć kationowa najprawdopodobniej ulega przemianie porządek – nieporządek (kationy litowca są w dużej mierze statystycznie rozproszone w przestrzeni komórki elementarnej pomiędzy oktaedrami (LnCl₆) bez przypisania im konkretnej lokalizacji). Przemiana ta jest w doskonałej korelacji ze zmianą przewodnictwa elektrycznego (rys. 40, 41). Skokowy wzrost przewodnictwa elektrycznego w temperaturze tworzenia związków (T_{tworz}) związany jest z pojawieniem się możliwości migracji jonów metalu alkalicznego, będących nośnikami ładunku elektrycznego, w przestrzeni komórki elementarnej. Dodatkowy skokowy wzrost przewodnictwa elektrycznego odmiany wysokotemperaturowej omawianych związków, następujący w temperaturze odpowiadającej minimum na krzywej ciepła molowego (rys. 41), może być przypisany stanowi kompletnego "strukturalnego nieporządku", a podsieć kationowa, która uległa zanikowi uporzadkowania, może być uważana za kwaziciekła [131].

W grupie związków M3LnCl6 mających zarówno odmianę wysokotemperaturową o strukturze typu elpasolitu, jak i odmianę niskotemperaturową typu Cs₃BiCl₆ (K₃TbCl₆, Rb₃CeCl₆, Rb₃PrCl₆, Rb₃NdCl₆, Rb₃TbCl₆, i wszystkie związki Cs₃LnCl₆) zanik uporządkowania podsieci kationowej tworzonej przez jony metalu alkalicznego następuje w sposób ciągły. Rozpoczyna się on już w odmianie niskotemperaturowej w temperaturze znacznie niższej od temperatury przemiany fazowej, o czym świadczy nienaturalny wzrost ciepła molowego ze wzrostem temperatury (rys. 29, 33–39) i kończy w odmianie wysokotemperaturowej. Zależność ciepła molowego omawianych związków przybiera kształt λ-efektu, który pozostaje w doskonałej korelacji ze zmianą przewodnictwa elektrycznego. Koniec przemiany λ (osiągniecie pełnego "strukturalnego nieporządku" podsieci kationowej odpowiada wyraźnemu załamaniu na krzywej przewodnictwa elektrycznego (rys. 42–45). W odróżnieniu od pierwszej grupy związków (tylko odmiana wysokotemperaturowa), gdzie przemiana fazowa pierwszego rodzaju, czyli tworzenie związku, rozpoczynała przemianę porządek – nieporządek, przemiana fazowa odmiana niskotemperaturowa – odmiana wysokotemperaturowa nakłada się tutaj na przemianę typu λ.

Również dodatkowa przemiana fazowa występująca w związkach Rb₃CeCl₆, Rb₃PrCl₆ i Rb₃NdCl₆ w temperaturach odpowiednio 411, 398 i 382 K (tabela 14), ze względu na typowy kształt λ zależności ciepła molowego od temperatury (rys. 32–34) wydaje się być przemianą typu porządek – nieporządek.

Pełna weryfikacja przedstawionych powyżej rozważań dotyczących zaniku uporządkowania podsieci kationowej badanych związków M₃LnCl₆ będzie możliwa po zakończeniu rozpoczętych dokładnych badań strukturalnych w funkcji temperatury.

5.2.1.5. Weryfikacja uzyskanych danych termodynamicznych związków M₃LnCl₆

Ze względu na brak danych literaturowych dotyczących entalpii przemian fazowych i ciepła molowego badanych związków, jedyną możliwością weryfikacji uzyskanych wyników było ich zastosowanie w cyklach termodynamicznych w połączeniu z istniejącymi danymi literaturowymi dotyczącymi entalpii tworzenia stałych związków w temperaturze 298 K i ciekłych stopów solnych o składzie związku w temperaturze *T*. Przykładowy cykl termodynamiczny dla związków tworzących się w podwyższonych temperaturach ze związków M_2LnCl_5 i MCl przedstawiono na rys. 46.

 $\Delta_{tworz} H(M_{2}LnCl_{5} + MCl)_{(s),298}$ $3MCl_{(s),298} + LnCl_{3(s),298} \Rightarrow (M_{2}LnCl_{5} + MCl)_{(s),298}$ $C_{p(s)} = f(T)$ $C_{p(s)} = f(T)$ $C_{p(s)} = f(T)$ $C_{p(c)} = f(T)$

Rys. 46. Cykl termodynamiczny dla związków M₃LnCl₆ tworzących się w podwyższonych temperaturach ze związków M₂LnCl₅ i MCl Fig. 46. Thermochemical cycle of the formation of liquid M₃LnCl₆ compounds from M₂LnCl₅ and MCl at elevated temperatures

Jeżeli zmierzone wielkości termodynamiczne związków M_3LnCl_6 są poprawne wówczas entalpia tworzenia ciekłego stopu solnego o składzie związku obliczona przy ich zastosowaniu powinna być zgodna z entalpią tworzenia analogicznego stopu wyznaczoną metodą zmieszania ciekłych składników (LnCl₃ i MCl) w temperaturze *T*. W obliczeniach wykorzystano własne dane dotyczące temperatury, entalpii przemian fazowych i ciepła molowego zarówno czystych chlorków lantanowców(III) (tab. 2, 3 i 8), jak i związków M₃LnCl₆ (tab. 12–17). Dane dla halogenków metali alkalicznych zaczerpnięto z literatury [14, 135], podobnie jak molowe entalpie tworzenia stałych mieszanin M₂LnCl₅ + MCl i związków M₃LnCl₆ w temperaturze 298 K [22, 23, 25, 116, 136]. Stosowane w obliczeniach entalpie tworzenia ciekłych stopów solnych o składzie związków, wyznaczone metodą bezpośredniej kalorymetrii wysokotemperaturowej, pochodziły zarówno z badań własnych [33, 137–138], jak i z literatury [139–140].

W tabeli 18 przedstawiono porównanie wartości entalpii tworzenia ciekłych związków M₃LnCl₆ obliczonych przy zastosowaniu wyznaczonych wielkości termodynamicznych z wielkościami entalpii tworzenia wyznaczonymi eksperymentalnie metodą bezpośredniej kalorymetrii wysokotemperaturowej.

Związek	T / K	$\Delta_{tworz}H/kJ mol^{-1}$ (eksperymentalna)	$\Delta_{tworz}H/ kJ mol^{-1}$ (obliczona)
K ₃ CeCl ₆	1118	-55,7 [140]	-56,9
K ₃ PrCl ₆	1122	-55,9 [137]	-63,3
K ₃ NdCl ₆	1065	-55,2 [33]	-62,2
K ₃ TbCl ₆	1109	-73,1 [138]	-101,8
Rb ₃ LaCl ₆	1173	-65,3 [139]	-42,2
Rb ₃ CeCl ₆	1118	-68,2 [140]	-70,8
Rb ₃ NdCl ₆	1122	-68,8 [33]	-69,5

Tabela 18. Eksperymentalne i obliczone entalpie tworzenia związków M₃LnCl₆ w stanie ciekłym

Uzyskana bardzo dobra lub dobra zgodność obliczonych wartości entalpii tworzenia z wartościami eksperymentalnymi dowodzi poprawności i wzajemnej spójności wielkości termodynamicznych, wyznaczonych zarówno dla związków M₃LnCl₆, jak i czystych chlorków lantanowców.

5.2.2. Układy LnBr₃–MBr

Podobnie jak w układach chlorkowych, cechą charakterystyczną układów LnBr₃– MBr (M = K, Rb, Cs) jest występowanie kongruentnie topiących się związków M_3LnBr_6 . W układach tych mogą dodatkowo występować związki M_2LnBr_5 i MLn_2Br_7 topiące się kongruentnie bądź niekongruentnie. Jedynym wyjątkiem jest układ LaBr₃– KBr, w którym jedynym istniejącym związkiem jest topiący się kongruentnie K₂LaBr₅.

W ramach przeprowadzonych dotychczas badań wyznaczono temperatury i entalpie przemian fazowych oraz ciepło molowe kongruentnie topiących się związków M_3LnBr_6 występujących w układach bromki metali alkalicznych – bromek lantanu, bromek neodymu i bromek terbu.

Układy LaBr₃–MBr, gdzie M = K, Rb, Cs, są jedynymi układami bromkowymi przebadanymi w sposób kompleksowy i multiinstrumentalny. Istniejące w literaturze diagramy fazowe tych układów skonstruowano na podstawie badań metodą analizy

termicznej, pomiarów elektrochemicznych i strukturalnych [141]. Istniejące w tych układach związki to topiące się kongruentnie K_2LaBr_5 , Rb_2LaBr_5 , Rb_3LaBr_6 i Cs_3LaBr_6 oraz topiące się niekongruentnie Cs_2LaBr_5 i Cs_2LaBr_7 .

Diagramy fazowe układów NdBr₃–MBr skonstruowano jedynie na podstawie pomiarów metodą analizy termicznej [142, 143]. Związki istniejące w tych układach to topiące się kongruentnie K₃NdBr₆, Rb₃NdBr₆, Cs₃NdBr₆, KNd₂Br₇ i RbNd₂Br₇ oraz topiące się niekongruentnie K₂NdBr₅ i Rb₂NdBr₅ [142, 143]. Cytowane prace nie zawierają żadnych badań uzupełniających, które pozwoliłyby na wyjaśnienie charakteru przemian, jakim ulegają wspomniane wyżej związki.

W przypadku układów TbBr₃–MBr brak było jakichkolwiek informacji literaturowych dotyczących ich diagramów fazowych. Ich wyznaczenie stało się więc pierwszym etapem prowadzonych badań.

5.2.2.1. Diagramy fazowe układów TbBr₃–MBr (M = Na, K, Rb, Cs)

Konstrukcji diagramów fazowych układów TbBr₃–MBr (M = Na, K, Rb, Cs) [*, 144] dokonano na podstawie wyników pomiarów wykonanych metodą skaningowej kalorymetrii różnicowej. Pomiary te pozwoliły na wyznaczenie zarówno temperatury, jak i entalpii przemian fazowych zachodzących w badanych próbkach. Wartości entalpii otrzymane z krzywych ogrzewania i chłodzenia nie różniły się o więcej niż 2%; znaczne różnice obserwowano natomiast w przypadku wartości temperatury otrzymanych z krzywych ogrzewania i chłodzenia. W związku z występującym efektem przechłodzenia konstrukcji diagramów fazowych dokonano wyłącznie na podstawie wyników otrzymanych z krzywych ogrzewania. W celu precyzyjnego określenia składu związków topiących się niekongruentnie i składu eutektyków występujących w badanych układach konstruowano diagramy Tammana. Wyznaczone diagramy fazowe przedstawiono na rys. 47–50.

Rys. 47. Diagram fazowy układu TbBr₃–NaBr Fig. 47. Phase diagram of TbBr₃–NaBr

W układzie TbBr₃–NaBr (rys. 47) jedynym związkiem jest Na₃TbBr₆. Ulega on przemianie fazowej w temperaturze 745 K i topi się niekongruentnie w temperaturze 759 K. Eutektyk (39,5 %mol. TbBr₃) topi się w temperaturze 699 K.

Rys. 49. Diagram fazowy układu TbBr₃–RbBr Fig. 49. Phase diagram of TbBr₃–RbBr

Układ TbBr₃–KBr (rys. 48) jest pierwszym układem, w którym występuje kongruentnie topiący się związek typu M_3 TbBr₆, który ulega przemianie fazowej w temperaturze 691 K i topnieniu w temperaturze 710 K. Pozostałe istniejące w układzie związki to K₂TbBr₅ i KTb₂Br₇, które topią się niekongruentnie w temperaturze odpowiednio 725 K i 741 K. Pierwszy z nich istnieje w temperaturze pokojowej i ulega przemianie fazowej w temperaturze 658 K. Drugi tworzy się w podwyższonej temperaturze (694 K) z K₂TbBr₅ i KBr. Eutektyk KBr–K₃TbBr₆ (16,34 %mol. TbBr₃) topi się w temperaturze 885 K, natomiast eutektyk K₃TbBr₆–KTb₂Br₇ (44,02 %mol. TbBr₃) w temperaturze 697 K.

W układzie TbBr₃–RbBr (rys. 49) istnieją dwa związki: Rb₃TbBr₆ ulegający przemianie fazowej w temperaturze 728 K, topiący się kongruentnie w temperaturze 1047 K oraz RbTb₂Br₇ topiący się niekongruentnie w temperaturze 803 K. Rozpoczęte badania strukturalne powinny dać odpowiedź na pytanie czy RbTb₂Br₇ ulega przemianie fazowej w 712 K, czy jest to temperatura jego tworzenia z Rb₃TbBr₆ i RbBr. Dwa występujące w omawianym układzie eutektyki to topiący się w temperaturze 885 K eutektyk RbBr–Rb₃TbBr₆ (16,34 %mol. TbBr₃) i topiący się w temperaturze 718 K eutektyk Rb₃TbBr₆–RbTb₂Br₇ (46,58 %mol. TbBr₃).

Rys. 50. Diagram fazowy układu TbBr₃–CsBr Fig. 50. Phase diagram of TbBr₃–CsBr

W układzie TbBr₃–CsBr (rys. 50) istnieją trzy związki. Pierwszy z nich, Cs₃TbBr₆, ulega przemianie fazowej w 728 K i topi się kongruentnie w temperaturze 1083 K. Drugi, Cs₃Tb₂Br₉, ulega rozkładowi perytektycznemu w temperaturze 879 K, trzeci zaś, CsTb₂Br₇, najprawdopodobniej tworzy się w temperaturze 776 K z Cs₃Tb₂Br₉ i TbBr₃, ulega przemianie fazowej w 805 K i topi się niekongruentnie w 846 K. W układzie tym występują dwa eutektyki: CsBr–Cs₃TbBr₆ (9,50 %mol. TbBr₃) i Cs₃Tb₂Br₉–CsTb₂Br₇ (56,23 %mol. TbBr₃) topiące się odpowiednio w temperaturze 865 i 808 K.

5.2.2.2. Entalpie przemian fazowych związków M₃LnBr₆

Kongruentnie topiące się związki M_3LnBr_6 występują we wszystkich badanych układach $LnBr_3$ –MBr (M = K, Rb, Cs) z wyjątkiem układu $LaBr_3$ –KBr, w którym jedynym istniejącym związkiem jest K_2LaBr_5 [141] topiący się kongruentnie w temperaturze 875 K z towarzyszącą temu efektowi entalpią 81,5 kJ mol⁻¹ [72].

Wyznaczone temperatury i entalpie przemian fazowych badanych związków M₃LnBr₆ przedstawiono w tabeli 19.

Związek	T _{tworz}	T _{przem}	$T_{\rm top}$	$\Delta_{\text{tworz}}H$	$\Delta_{\rm przem} H$	$\Delta_{top}H$	Literatura
	Κ	ĸ	K	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹	
K ₃ NdBr ₆	684	_	918	44,0	-	41,4	[145]
	I	683	933	—		—	[143]
K ₃ TbBr ₆	-	691	983	_	8,0	48,0	[*]
Rb ₃ LaBr ₆	700	_	940	44,0	-	46,7	[72]
	701	-	942	_	_	_	[141]
Rb ₃ NdBr ₆	-	703	998	_	7,9	49,8	[145]
	-	703	1003	_	_	_	[143]
Rb ₃ TbBr ₆	_	726	1047	-	7,8	58,7	[*]
Cs ₃ LaBr ₆	_	725	1013	_	9,0	57,6	[72]
	-	721	1013	_	9,4	_	[141]
Cs ₃ NdBr ₆	-	731	1055	_	8,8	61,1	[145]
	_	723	1043	_	_	_	[143]
Cs ₃ TbBr ₆	_	728	1083	-	8,4	60,6	[*]

Tabela 19. Temperatury i molowe entalpie przemian fazowych kongruentnie topiących się związków M₃LnBr₆ (pogrubioną czcionką zaznaczono dane autora niniejszej pracy)

Wyznaczone temperatury przemian fazowych badanych związków lantanu doskonale zgadzają się z istniejącymi danymi literaturowymi. Podobnie jak w przypadku Rb₃LaCl₆, Rb₃LaBr₆ tworzy się w podwyższonej temperaturze (700 K) ze związków Rb₂LaBr₅ i RbBr. Jego ochładzanie poniżej temperatury tworzenia prowadzi do rozkładu na związki wyjściowe. Proces tworzenia tego związku (przemiana fazowa z głęboką przebudową struktury) jest związany z wysoką entalpią molową, wynoszącą 44 kJ mol⁻¹. Zgodnie z danymi literaturowymi [141], Cs₃LaBr₆ również tworzy się w podwyższonej temperaturze (408 K) ze związków Cs₂LaBr₅ i CsBr. Jednakże podczas ochładzania do temperatury poniżej temperatury tworzenia nie ulega on rozkładowi (względy kinetyczne) i istnieje w temperaturze pokojowej w postaci fazy metastabilnej. Związek ten ma dwie odmiany strukturalne: odmianę niskotemperaturową o strukturze jednoskośnej typu K₃MoCl₆ (P2₁/c) i odmianę wysokotemperaturową typu elpasolitu (Fm3m). Przejście ze struktury niskotemperaturowej do struktury wysokotemperaturowej (przemiana fazowa bez głębo-kiej przebudowy struktury), następuje w temperaturze 731 K i związane jest z niską entalpią molową, wynoszącą jedynie 8,8 kJ mol⁻¹.

Porównanie wielkości entalpii związanej z przemianami fazowymi związków M_3LnCl_6 (tabele 12, 14 i 16) i związków M_3LaBr_6 (tabela 19) prowadzi do interesujących wniosków. Przemianie fazowej z głęboką przebudową struktury (tworzenie związków M_3LnX_6 , gdzie X = Cl, Br, ze związków M_2LnX_5 i MX) towarzyszy wysoka molowa entalpia przemiany rzędu 40 kJ mol⁻¹. Entalpia przemiany fazowej bez głębokiej przebudowy struktury (przejście z odmiany niskotemperaturowej do odmiany wysokotemperaturowej związków M_3LnX_6) jest zdecydowanie niższa i wynosi jedynie 8–9 kJ mol⁻¹. Obserwację tę wykorzystano do analizy wyników uzyskanych dla związków M_3NdBr_6 i M_3TbBr_6 , dla których brak jest jakichkolwiek informacji dotyczących ich trwałości i struktury.

Biorąc pod uwagę wysoką molową entalpię związaną z efektem termicznym występującym w K₃NdBr₆ w temperaturze 684 K, można z całą pewnością przyjąć, że efekt ten związany z tworzeniem K₃NdBr₆ z K₂NdBr₅ i KBr. W przypadku pozostałych związków (K₃TbBr₆, Rb₃TbBr₆, Rb₃NdBr₆, Cs₃NdBr₆ i Cs₃TbBr₆) niska entalpia związana z efektem termicznym w niższej temperaturze niewątpliwie wskazuje na fakt, że jest to przemiana fazowa bez głębokiej przebudowy struktury, a więc przejście z odmiany niskotemperaturowej do odmiany wysokotemperaturowej związków M₃LnBr₆. Wniosek ten tłumaczy interpretację diagramów fazowych układów TbBr₃ –MBr w odniesieniu do związków M₃TbBr₆.

Identyczne zmiany strukturalne towarzyszące tworzeniu Rb₃LaBr₆ z Rb₂LaBr₅ i RbBr oraz związków M₃LnCl₆ z M₂LnCl₅ i MCl (przejście ze struktury jednoskośnej typu K₂PrCl₅ do struktury regularnej typu elpasolitu) pozwalają przypuszczać, że z analogiczną sytuacją mamy do czynienia w przypadku tworzenia K₃NdBr₆, tzn. powstający związek ma strukturę regularną typu elpasolitu.

Interesujące obserwacje poczyniono w trakcie badania wpływu szybkości ogrzewania i chłodzenia na tworzenie i rozkład K₃NdBr₆. Uzyskane wyniki przedstawiono w tabeli 20.

Szybkość ogrzewania K min ⁻¹	T _{tworz} K	$\Delta_{tworz}H$ kJ mol ⁻¹	Szybkość chłodzenia K min ⁻¹	T _{przem} K	$\Delta_{\rm przem} H$ kJ mol ⁻¹	T _{rozkł} K	$\Delta_{ m rozkl}H$ kJ mol ⁻¹
0,1	682	44,2	0,1	659	-7,0	648	-34,2
1	682	44,0	1	658	-7,0	635	-33,7
2	683	42,4	2	657	-7,0	628	-33,1
5	684	44,0	5	654	-7,0	611	-27,8
10	688	43,7	10	650	-6,8	590	-27,4
30	707	44,3	30	637	-6,0	*	*

Tabela 20. Porównanie efektów termicznych na krzywych DSC towarzyszących powstawaniu i rozkładowi K₃NdBr₆

* nie obserwowano rozkładu

Temperatura i entalpia tworzenia K₃NdBr₆ są praktycznie niezależne od szybkości ogrzewania (z wyjątkiem szybkości 30 K min⁻¹) i wynoszą odpowiednio 684 K i około 44 kJ mol⁻¹. W trakcie chłodzenia związku, w miejsce przewidywanego jednego efektu termicznego odpowiadającego rozkładowi, pojawiają się dwa efekty. Pierwszy z nich ma miejsce w temperaturze 659 K przy najniższej szybkości chłodzenia i nieznacznie przesuwa się w kierunku niższych temperatur wraz ze wzrostem szybkości chłodzenia. Jego entalpia wynosi 7 kJ mol⁻¹. Temperatura i entalpia drugiego efektu wyraźnie obniża się ze wzrostem szybkości chłodzenia. Przy szybkości chłodzenia 30 K min⁻¹ efekt ten całkowicie zanika, a na krzywej ogrzewania uzyskanej bezpośrednio po chłodzeniu obserwuje się dodatkowy, egzotermiczny efekt w temperaturze 500-520 K o entalpii około 24 kJ mol⁻¹. Podobne zjawisko obserwował Seifert [146] dla rozkładu Rb₃PrCl₆. Podczas chłodzenia z duża szybkością, "powolny" ze względów kinetycznych rozkład Rb₃PrCl₆ nie następował i otrzymywano fazę metastabilną w temperaturze pokojowej. W trakcie ogrzewania "przechłodzony" rozkład następował w podwyższonej temperaturze (egzotermiczny efekt obserwowany na krzywej DTA rejestrowanej w czasie ogrzewania). Najprawdopodobniej więc również w przypadku K₃NdBr₆ drugi efekt (w niższej temperaturze) może być przypisany rozkładowi związku do K_2NdBr_5 i KBr. Przy dużych szybkościach chłodzenia rozkład związku nie następuje i otrzymujemy jego fazę metastabilną nawet w temperaturze pokojowej. Następujące po takim chłodzeniu ogrzewanie prowadzi do gwałtownego rozkładu fazy metastabilnej (efekt egzotermiczny w temperaturze 500-520 K). Niejasna jest natomiast istota pierwszego efektu pojawiajacego się na krzywych chłodzenia w wyższej temperaturze. Jego niska entalpia (7 kJ mol⁻¹) sugeruje, że jest to przemiana fazowa bez głębokiej przebudowy struktury. Jedynym w chwili obecnej jego wyjaśnieniem może być założenie, że jest to przejście stabilnej odmiany wysokotemperaturowej w odmianę metastabilną. Możliwe jest również, $\dot{z}e$ K₃NdBr₆ ma również odmianę niskotemperaturową, ale temperaturowy zakres jej istnienia jest na tyle wąski, że nie może być obserwowany na krzywych ogrzewania.

Porównując zmiany strukturalne towarzyszące przejściu odmiany niskotemperaturowej związków M₃LnCl₆ i Cs₃LaBr₆ w odmianę wysokotemperaturową, można założyć, że podobnie jest w przypadku związków Rb₃NdBr₆,Cs₃NdBr₆ i M₃TbBr₆, czyli ich odmiana niskotemperaturowa ma strukturę jednoskośną, natomiast odmiana wysokotemperaturowa strukturę regularną typu elpasolitu.

Rozpoczęte badania strukturalne związków M₃LnX₆ powinny potwierdzić przedstawione powyżej wnioski.

5.2.2.3. Ciepło molowe związków M₃LnBr₆

Wyniki pomiarów ciepła molowego związków M₃LnBr₆ [*] przedstawiono w tabeli 21 i na rysunkach 51–57.

Związek	Zakres temp.	A	$B \cdot 10^2$	$C \cdot 10^4$
	K	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-2}$	$J \text{ mol}^{-1} \text{K}^{-3}$
K ₃ NdBr _{6(s)}	298-675	220,71	8,133	1,79
K ₃ NdBr _{6(s)}	699–854	688,70	-98,001	6,58
K ₃ NdBr _{6(c)}	928-980	356,46	_	-
K ₃ TbBr _{6(s)}	298-369	265,39	_	-
K ₃ TbBr _{6(s)}	389–683	325,20	-30,641	3,816
K ₃ TbBr _{6(s)}	698–966	281,55	2,005	-
K ₃ TbBr _{6(c)}	991-1100	349,56	_	-
Rb ₃ NdBr _{6(s)}	300-687	305,88	-7,285	1,49
Rb ₃ NdBr _{6(s)}	707–945	1253,93	-228,26	14,15
Rb ₃ NdBr _{6(c)}	1005-1100	392,32	_	-
Rb ₃ TbBr _{6(s)}	300-708	244,29	3,860	-
Rb ₃ TbBr _{6(s)}	732-1036	282,84	-	-
Rb ₃ TbBr _{6(c)}	1055-1090	350,84	-	-
Cs ₃ LaBr _{6(s)}	298-707	314,22	-30,574	4,5
Cs ₃ LaBr _{6(s)}	727–985	851,24	-128,610	7,55
Cs ₃ LaBr _{6(c)}	1015-1090	364,35	-	-
Cs ₃ NdBr _{6(s)}	298-719	339,16	-29,945	3,63
Cs ₃ NdBr _{6(s)}	739–1023	1100,64	-196,975	12,05
Cs ₃ NdBr _{6(c)}	1059-1100	381,68	-	-
Cs ₃ TbBr _{6(s)}	298-707	295,03	-12,181	1,61
Cs ₃ TbBr _{6(s)}	737–991	209,77	10,753	_

Tabela 21. Ciepło molowe związków M₃LnBr₆: C_p (J mol⁻¹K⁻¹) = $A + BT + CT^2$

Rys. 51. Zależność ciepła molowego K₃NdBr₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem
Fig. 51. Molar heat capacity of K₃NdBr₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 52. Zależność ciepła molowego K₃TbBr₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem
Fig. 52. Molar heat capacity of K₃TbBr₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 53. Zależność ciepła molowego Rb₃NdBr₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem
 Fig. 53. Molar heat capacity of Rb₃NdBr₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 54. Zależność ciepła molowego Rb₃TbBr₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem
 Fig. 54. Molar heat capacity of Rb₃TbBr₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 55. Zależność ciepła molowego Cs₃LaBr₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem
 Fig. 55. Molar heat capacity of Cs₃LaBr₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 56. Zależność ciepła molowego Cs₃NdBr₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem
 Fig. 56. Molar heat capacity of Cs₃NdBr₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 57. Zależność ciepła molowego Cs₃TbBr₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem
Fig. 57. Molar heat capacity of Cs₃TbBr₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Analogie strukturalne pomiędzy związkami M₃LaBr₆[141] i M₃LnCl₆ [22–32, 123] pozwalają przypuszczać, że podobnie jak w przypadku układów chlorkowych, badane związki M₃LnBr₆ dzielą się na dwie grupy: związki tworzące się w podwyższonych temperaturach z M₂LnBr₅ i MBr (przemiana fazowa z głęboką przebudową struktury),

majace tylko odmiane wysokotemperaturowa typu elpasolitu (K₃NdBr₆ i Rb₃LaBr₆), oraz związki stabilne bądź metastabilne w niskich temperaturach, które mają odmianę niskotemperaturową o strukturze jednoskośnej typu Cs₃BiCl₆ i odmianę wysokotemperaturową o strukturze regularnej typu elpasolitu (Cs₃LaBr₆, Rb₃NdBr₆, K₃TbBr₆, Rb₃TbBr₆ i Cs₃TbBr₆). Przejście z odmiany niskotemperaturowej do odmiany wysokotemperaturowej jest przemiana fazowa bez głębokiej przebudowy struktury. Temu podziałowi odpowiada charakterystyczna zależność ciepła molowego od temperatury. W pierwszej grupie związków mamy do czynienia z zależnością "normalną", tzn. monotonicznym wzrostem ciepła molowego ze wzrostem temperatury i skokowa zmianą ciepła w temperaturze tworzenia związku (rys. 51). Druga grupa charakteryzuje się zdecydowanie nienaturalnie wysokim wzrostem ciepła molowego odmiany niskotemperaturowej i czesto wystepowaniem minimum ciepła molowego dla odmiany wysokotemperaturowej. Charakterystyczna zależność ciepła molowego od temperatury wynika najprawdopodobniej z przemiany strukturalnej typu porządek – nieporządek [131], której ulega podsieć kationowa tworzona przez jony metalu alkalicznego. W grupie związków mających tylko odmianę wysokotemperaturową, stan "strukturalnego nieporządku" podsieci kationowej osiągany jest w sposób nieciągły w temperaturze tworzenia związku T_{tworz} .

Związki mające odmianę nisko- i wysokotemperaturową stan "strukturalnego nieporządku" podsieci kationowej osiągają w sposób ciągły. Rozpoczyna się on już w odmianie niskotemperaturowej w temperaturze znacznie niższej od temperatury przemiany fazowej, o czym świadczy nienaturalny wzrost ciepła molowego ze wzrostem temperatury (rys. 52–57) i kończy w odmianie wysokotemperaturowej. Zależność ciepła molowego omawianych związków od temperatury przybiera kształt λ -efektu. W odróżnieniu od pierwszej grupy związków (tylko odmiana wysokotemperaturowa), gdzie przemiana fazowa pierwszego rodzaju, czyli tworzenie związku, rozpoczynała przemianę porządek – nieporządek, przemiana fazowa odmiana niskotemperaturowa – odmiana wysokotemperaturowa nakłada się tutaj na przemianę typu λ .

Ze względu na brak danych literaturowych dotyczących entalpii przemian fazowych i ciepła właściwego badanych związków, jedyną możliwością weryfikacji uzyskanych wyników było ich zastosowanie w cyklach termodynamicznych w połączeniu z istniejącymi danymi literaturowymi, dotyczącymi entalpii tworzenia stałych związków w temperaturze 298 K i ciekłych stopów solnych o składzie związku w temperaturze *T*. Pełnymi danymi dysponowano jedynie dla Cs₃LaBr₆. Molowa entalpia tworzenia tego związku w temperaturze 298 K wynosi –20,5 kJ mol⁻¹ [141]. Stosując cykl termodynamiczny przedstawiony na rys. 46 obliczono molową entalpię tworzenia ciekłego stopu solnego o składzie związku w temperaturze 1081 K i porównano ją z wcześniej uzyskaną wartością eksperymentalną [72]. Dość dobra zgodność obydwu wielkości, odpowiednio –61,9 kJ mol⁻¹ i –73,0 kJ mol⁻¹, jest dowodem poprawności i wzajemnej spójności wyznaczonych wielkości termodynamicznych.

5.2.2.4. Przewodnictwo elektryczne związków M₃LnBr₆

Pomiary przewodnictwa elektrycznego związków M₃LnBr₆ miały na celu potwierdzenie postawionej w poprzednim rozdziale hipotezy o występowaniu w tych związkach przemiany strukturalnej porządek – nieporządek, której ulega podsieć jonowa tworzona przez jony metalu alkalicznego. Typową zależność przewodnictwa elektrycznego od temperatury dla grupy związków M₃LnBr₆ tworzących się w podwyższonej temperaturze i mających najprawdopodobniej tylko odmianę wysokotemperaturową typu elpasolitu przedstawiono na rysunku 58 na przykładzie K₃NdBr₆.

Tworzeniu związku K₃NdBr₆ ze związków K₂NdBr₅ i KBr w temperaturze 684 K (T_{tworz}) towarzyszy skokowy wzrost przewodnictwa elektrycznego fazy stałej o ponad dwa rzędy. Drugi skok na krzywej przewodnictwa związany jest z topnieniem związ-ku w temperaturze 918 K (T_{top}). Zależność przewodnictwa elektrycznego od temperatury zarejestrowana podczas chłodzenia potwierdza wniosek o możliwości istnienia odmiany niskotemperaturowej związku K₃NdBr₆. Efekt obserwowany w temperaturze ok. 670 K (T_{przem}) może być przypisany przemianie fazowej odmiana wysokotemperaturowa – odmiana niskotemperaturowa, natomiast efekt w temperaturze 620 K (T_{rozkl}) rozkładowi związku. Rozkład ten przy większych szybkościach chłodzenia nie następuje i związek może istnieć nawet w pokojowej temperaturze w postaci fazy metastabilnej (tabela 20).

Rys. 58. Przewodnictwo elektryczne K₃NdBr₆: pogrubiona lina – krzywa ogrzewania, cienka linia – krzywa chłodzenia Fig. 58. Electrical conductivity of K₃NdBr₆: thick solid line – heating, thin solid line – cooling

Rys. 59. Przewodnictwo elektryczne K₃TbBr₆: cienka linia – krzywa chłodzenia, linia pogrubiona – krzywa ogrzewania Fig. 59. Electrical conductivity of K₃TbBr₆: thick solid line – heating, thin solid line – cooling

Zależność przewodnictwa elektrycznego od temperatury dla związków M₃LnBr₆ mających odmianę niskotemperaturową (struktura jednoskośna typu Cs_3BiCl_6) i odmianę wysokotemperaturową (struktura regularna typu elpasolitu) przedstawiono na rysunku 59 na przykładzie K₃TbBr₆. Wyraźny wzrost przewodnictwa elektrycznego ze wzrostem temperatury nastepuje już w odmianie niskotemperaturowej (8,96·10⁻³ S m⁻¹ w 594 K i 7,27 \cdot 10⁻² S m⁻¹ w 694 K). Skokowy wzrost przewodnictwa do wartości 2,28 \cdot 10⁻¹ S m⁻¹ pojawia się w temperaturze 694 K, czyli w temperaturze przemiany fazowej (T_{przem}). Jest on jednak wyraźnie mniejszy niż w przypadku K3NdBr6. Przewodnictwo elektryczne odmiany wysokotemperaturowej związku wydaje się wzrastać monotonicznie z temperaturą aż do wartości 9,14 S m⁻¹ w 982 K. Analiza wyników uzyskanych dla temperatury w zakresie od 694 do 982 K wykazała jednak, że ten monotoniczny wzrost może być podzielony na dwa obszary temperaturowe, w których przewodnictwo elektryczne zmienia się liniowo ze wzrostem temperatury (rys. 60). Linie proste, obrazujące zależność przewodnictwa od temperatury, przecinają się w punkcie odpowiadającym temperaturze 817 K. Druga skokowa zmiana przewodnictwa związana jest z topnieniem związku w temperaturze 983 K (T_{top}).

Identyczne zależności przewodnictwa elektrycznego od temperatury uzyskano dla związków Rb₃NdBr₆, Rb₃TbBr₆ i wszystkich badanych związków Cs₃LnBr₆, które – podobnie jak K₃TbBr₆ – mają odmiany nisko- i wysokotemperaturowe. Wyraźny wzrost przewodnictwa elektrycznego tych związków następuje już w odmianie niskotemperaturowej. Wielkość skokowego wzrostu przewodnictwa towarzyszącego przejściu odmiany niskotemperaturowej w odmianę wysokotemperaturową maleje ze wzrostem promienia jonowego litowca i jest najmniejsza dla związków cezowych.

Rys. 60. Zmiana charakteru przewodnictwa elektrycznego K₃TbBr₆ w zakresie temperatury od 694 do 982 K Fig. 60. Electrical conductivity of solid K₃TbBr₆ in temperature range of 694–982 K

Analiza zależności przewodnictwa elektrycznego fazy stałej związków M₃LnBr₆ od temperatury pozwala na podzielenie tych związków na dwie grupy: grupę, w której skokowy wzrost przewodnictwa elektrycznego następuje w temperaturze pojawienia się odmiany wysokotemperaturowej (K₃NdBr₆ i Rb₃LaBr₆) i grupę, w której wyraźny wzrost przewodnictwa następuje już w odmianie niskotemperaturowej (K₃TbBr₆, Rb₃NdBr₆, Rb₃TbBr₆ i wszystkie związki cezu). Podział ten doskonale pokrywa się z zachowaniem ciepła molowego omawianych związków. W pierwszej grupie (rys. 51) mamy do czynienia z monotonicznym wzrostem ciepła molowego ze wzrostem temperatury i jego skokową zmianą w temperaturze tworzenia związku. Druga grupa (rys. 52–57) charakteryzuje się nienaturalnie wysokim wzrostem ciepła molowego odmiany niskotemperaturowej (λ -efekt). Porównanie zależności ciepła molowego i przewodnictwa elektrycznego związków M₃LnBr₆ należących do obydwu grup przedstawiono na rysunkach 61 i 62.

Tworzenie się związków M₃LnBr₆ mających wyłącznie odmianę wysokotemperaturową o strukturze elpasolitu (K₃NdBr₆ i Rb₃LaBr₆) ze związków M₂LnBr₅ i MBr jest przemianą fazową z głęboką przebudową struktury. Jest to przejście ze struktury typu K₂PrCl₅ (nakryte pryzmy trygonalne połączone w łańcuchy przez wspólne naroża ([PrCl₃Cl_{4/2}]²⁻) do struktury typu elpasolitu. Efektem tej przemiany jest utworzenie się podsieci anionowej składającej się z oktaedrów (LnBr₆) i podsieci kationowej tworzonej przez jony litowca M i M'. Podsieć anionowa uzyskuje strukturę regularną centrowaną na ścianach, kationy metalu alkalicznego są natomiast najprawdopodobniej w dużej mierze statystycznie rozproszone w przestrzeni komórki elementarnej pomiędzy oktaedrami (LnBr₆). Przemiana ta jest w doskonałej korelacji ze zmianą przewodnictwa elektrycznego (rys. 58, 61). Skokowy wzrost przewodnictwa elektrycznego w temperaturze tworzenia związków (T_{tworz}) związany jest z pojawieniem się możliwości migracji jonów metalu alkalicznego, będących nośnikami ładunku elektrycznego, w przestrzeni komórki elementarnej.

W grupie związków mających zarówno odmianę wysokotemperaturową o strukturze elpasolitu, jak i odmianę niskotemperaturową o strukturze jednoskośnej typu Cs₃BiCl₆ (K₃TbBr₆, Rb₃NdBr₆, Rb₃TbBr₆ i wszystkie związki Cs₃LnBr₆) przejście jednej odmiany w drugą jest przemianą fazową bez głębokiej przebudowy struktury.

Struktura jednoskośna typu Cs₃BiCl₆ może być wyprowadzona ze struktury regularnej typu elpasolitu (grupa przestrzenna Fm3m) związków A₂BMX₆ [29], gdzie każdy z kationów B i M znajduje się w oktaedrycznym otoczneniu sześciu jonów X, natomiast kationy A zajmują luki tetraedryczne tworzone przez oktaedry MX₆, a więc znajdują się w otoczeniu dwunastu jonów X. Ta regularna struktura jest strukturą wysokotemperaturowej odmiany związków M₃LnBr₆, których poprawny wzór powinien mieć postać M₂M' LnBr₆. Jony lantanowca znajdują się w otoczeniu sześciu jonów bromkowych tworząc oktaedry (LnBr₆). 1/3 jonów metalu alkalicznego (M') zajmuje luki oktaedryczne, pozostałe 2/3 jonów metalu alkalicznego (M) zajmują zaś luki tetraedryczne utworzone przez ciasno upakowane oktaedry (LnBr₆). Tak więc każdy z jonów M' znajduje się w otoczeniu sześciu, a każdy z jonów M w otoczeniu dwunastu jonów bromkowych. W niskich temperaturach oktaedry ($LnBr_6$) ulegaja deformacji i wyraźnej rotacji w stosunku do pozycji idealnej. Rotacja ta powoduje zmniejszenie różnicy w liczbie koordynacji jonów M i M'. W uzyskanej strukturze jednoskośnej typu Cs₃BiCl₆ jeden z jonów metalu alkalicznego (M') jest otoczony przez jedenaście, a pozostałe dwa (M) przez osiem jonów bromkowych. Zanik uporządkowania podsieci kationowej tworzonej przez jony metalu alkalicznego następuje w sposób ciągły. Rozpoczyna się on już w odmianie niskotemperaturowej w temperaturze znacznie niższej od temperatury przemiany fazowej, o czym świadczy nienaturalny wzrost ciepła molowego ze wzrostem temperatury (rys. 52-57) i kończy w odmianie wysokotemperaturowej. Zależność ciepła molowego omawianych związków od temperatury przybiera kształt λ -efektu, który pozostaje w doskonałej korelacji ze zmianą przewodnictwa elektrycznego (rys. 62). Koniec przemiany λ (osiągnięcie pełnego "strukturalnego nieporządku" podsieci kationowej odpowiada załamaniu na krzywej przewodnictwa elektrycznego (rys. 60). W odróżnieniu od pierwszej grupy związków (tylko odmiana wysokotemperaturowa) gdzie przemiana fazowa pierwszego rodzaju, czyli tworzenie związku rozpoczynała przemianę porządek – nieporządek, przemiana fazowa odmiana niskotemperaturowa – odmiana wysokotemperaturowa nakłada się tutaj na przemianę typu λ .

Przewodnictwo niskotemperaturowej odmiany K_3 TbBr₆ w pobliżu temperatury przemiany fazowej wynosi 6,76·10⁻² S m⁻¹ i jest około 2 rzędy wyższe niż przewodnictwo K_3 NdBr₆ (a własciwie mieszaniny K_2 NdBr₅ i KBr) w pobliżu temperatury

tworzenia związku (7,38 \cdot 10⁻⁴ S m⁻¹). Porównanie to potwierdza przedstawiony powyżej wywód o zaniku uporządkowania podsieci kationowej K₃TbBr₆ już w odmianie niskotemperaturowej.

Rys. 61. Ciepło molowe i przewodnictwo elektryczne K₃NdBr₆ Fig. 61. Heat capacity and electrical conductivity of K₃NdBr₆ vs temperature

Rys. 62. Ciepło molowe i przewodnictwo elektryczne K₃TbBr₆ Fig. 62. Heat capacity and electrical conductivity of K₃TbBr₆ vs temperature

Pośrednim dowodem występowania w badanych związkach M₃LnX₆ przemiany strukturalnej typu porządek – nieporządek, polegającej na zaniku uporządkowania podsieci kationowej tworzonej przez kationy litowca, jest porównanie przewodnictwa elektrycznego związków K₃TbCl₆ i K₃TbBr₆ (rys. 63).

Rys. 63. Przewodnictwo elektryczne K_3 TbCl₆ i K_3 TbBr₆ Fig. 63. Electrical conductivity of K_3 TbCl₆ and K_3 TbBr₆ compounds

Obydwa związki mają odmianę niskotemperaturową (struktura jednoskośna typu Cs₃BiCl₆) i odmianę wysokotemperaturową (struktura regularna typu elpasolitu). Przewodnictwo elektryczne odmiany niskotemperaturowej obydwu związków jest niemal identyczne (zakres temperatur 580-640 K). Wzrasta ono wyraźnie ze wzrostem temperatury, co oznacza zwiększona możliwość migracji jonów potasu, a więc wzrost nieuporządkowania podsieci kationowej. W temperaturze 641 K następuje przemiana fazowa K₃TbCl₆, co wiąże się ze skokowym wzrostem przewodnictwa. Oznacza to, że w nowej strukturze (regularna typu elpasolitu) wzrasta możliwość migracji jonów potasowych, a więc wzrasta stopień nieuporządkowania podsieci kationowej. W omawianym zakresie temperatur K₃TbBr₆ pozostaje nadal w strukturze niskotemperaturowej (aż do temperatury przemiany fazowej wynoszącej 691 K), a jego przewodnictwo elektryczne nadal wyraźnie wzrasta z temperatura. Wytłumaczeniem tego wzrostu może być dalszy wzrost nieuporządkowania podsieci kationowej. W temperaturze 691 K związek ten ulega przemianie fazowej (przejście do struktury typu elpasolitu), z czym się wiąże skokowy wzrost przewodnictwa, a wiec wzrost stopnia nieuporządkowania. Jak już wspomniano, najprawdopodobniej całkowity zanik uporządkowania podsieci kationowej (jony potasu) następuje w temperaturze 740 K w przypadku K₃TbCl₆ i w temperaturze około 817 K w przypadku K_3 TbBr₆. Interesującym zjawiskiem, widocznym na rys. 63, jest wyraźnie wyższe przewodnictwo elektryczne wysokotemperaturowej odmiany K₃TbBr₆ w porównaniu z wysokotemperaturową odmianą K₃TbCl₆. Biorąc pod uwagę jednakową strukturę obydwu związków, wytłumaczenia tego zjawiska należy szukać w rozmiarach jonów chlorowca. Luki tetraedryczne utworzone przez ciasno upakowane oktaedry (TbBr₆) mają większą średnicę niż luki tetraedryczne utworzone przez oktaedry (TbCl₆). Dlatego też możliwość migracji jonów potasu tworzących nieuporządkowaną podsieć kationową jest większa w przypadku związku bromkowego.

5.2.3. Układy LnI₃–MI

W ramach przeprowadzonych dotychczas badań wyznaczono temperaturę i entalpie przemian fazowych oraz ciepło molowe kongruentnie topiących się związków M_3LnI_6 istniejących w układach LaI₃–MI i NdI₃–MI, gdzie M = K, Rb, Cs. Związki te tworzą się we wszystkich badanych układach z wyjątkiem układu LaI₃–KI, w którym jedynym istniejącym związkiem jest topiący się kongruentnie K₂LaI₅ [147]. W literaturze nie znaleziono żadnych informacji dotyczących diagramów fazowych układów LaI₃–RbI i NdI₃–RbI. Ich wyznaczenie stało się więc pierwszym etapem prowadzonych badań.

5.2.3.1. Diagramy fazowe układów LaI₃-RbI i NdI₃-RbI

Przedstawione na rys. 64 i 65 diagramy fazowe dwuskładnikowych układów LaI₃– RbI i NdI₃–RbI skonstruowano na podstawie wyników badań przeprowadzonych metodą skaningowej kalorymetrii różnicowej. Skład związków topiących się niekongruentnie i skład występujących w badanych układach eutektyków wyznaczono za pomocą diagramów Tammana.

Rys. 64. Diagram fazowy układu LaI₃–RbI Fig. 64. Phase diagram of LaI₃–RbI

W układzie LaI₃–RbI (rys. 64) występują dwa związki: Rb₃LaI₆ i Rb₂LaI₅. Pierwszy z nich najprawdopodobniej tworzy się w temperaturze 686 K z Rb₂LaI₅ i RbI, ulega przemianie fazowej w 706 K i topi się kongruentnie w temperaturze 856 K. Drugi topi się niekongruentnie w temperaturze 809 K. Mieszaniny o składzie eutektyku topią się w temperaturze 789 K ($x_{LaI_3} = 0,184$) i 773 K ($x_{LaI_3} = 0,496$).

Rys. 65. Diagram fazowy układu NdI₃–RbI Fig. 65. Phase diagram of NdI₃–RbI

Układ NdI₃–RbI (rys. 65) charakteryzuje się występowaniem trzech związków: Rb₃NdI₆, Rb₂NdI₅ i RbNd₂I₇. Topiący się kongruentnie Rb₃NdI₆ ($T_{top} = 899$ K) ulega przemianie fazowej w temperaturze 718K. Rb₂NdI₅ i RbNd₂I₇ topią się niekongruentnie w temperaturze odpowiednio 711 i 737 K. Dodatkowy efekt termiczny (693 K), charakterystyczny dla RbNd₂I₇, jest związany z przemianą fazową tego związku lub z jego tworzeniem. Jednoznaczne jego wyjaśnienie będzie możliwe po wykonaniu wysokotemperaturowych badań strukturalnych. Dwie występujące w układzie mieszaniny eutektyczne topią się w temperaturze 810 K ($x_{NdI_3} = 0,177$) i 706 K ($x_{NdI_3} = 0,422$). Dodatkowy efekt termiczny w temperaturze 862 K dla składów bogatych w NdI₃ związany jest z przemianą fazową w ciele stałym, której ulega NdI₃.

5.2.3.2. Entalpie przemian fazowych związków M₃LnI₆

Podobnie jak w układach LaCl₃–KCl i LaBr₃–KBr, również w układzie LaI₃–KI nie istnieje związek typu K₃LnI₆. Jedynym związkiem istniejącym w tym układzie jest topiący się kongruentnie K₂LaI₅ [147]. Pozostałe z badanych układów jodkowych cechują się występowaniem topiących się kongruentnie związków M₃LnI₆ (M = K, Rb, Cs) [*, 147]. Wyznaczone temperatury i entalpie przemian fazowych kongruentnie topiących się związków M_3LnI_6 (M = K, Rb, Cs; Ln = La, Nd) przedstawiono w tabeli 22.

Związek	T _{tworz} K	T _{przem} K	T _{top} K	$\Delta_{ m tworz} H$ kJ mol ⁻¹	$\Delta_{ m przem} H$ kJ mol ⁻¹	$\Delta_{top}H$ kJ mol ⁻¹	Literatura
K ₃ NdI ₆	628	696	805	27,5	9,7	31,2	[*]
	I	629, 683	804		-	-	[147]
Rb ₃ LaI ₆	686	706	856	31,6	8,4	32,0	[*]
Rb ₃ NdI ₆	I	718	899	-	8,8	39,2	[*]
Cs ₃ LaI ₆	Ι	763	941	-	10,4	45,1	[*]
	I	744, 751	941			-	[147]
Cs ₃ NdI ₆	I	755	962	-	10,1	47,7	[*]
	-	744, 756	966	_	-	_	[147]

Tabela 22. Temperatury i molowe entalpie przemian fazowych związków M₃LnI₆ (pogrubioną czcionką zaznaczono dane autora niniejszej pracy)

Brak jakichkolwiek informacji dotyczących struktury uniemożliwia jednoznaczne powiązanie obserwowanych efektów termicznych ze zmianami strukturalnymi zachodzącymi podczas ogrzewania (chłodzenia) badanych związków. Analiza uzyskanych wyników i ich porównanie z wynikami uzyskanymi dla związków M₃LnCl₆ (tab. 12, 14 i 16) i M₃LnBr₆ (tab. 19) prowadzi jednak do interesujących wniosków. Podobnie jak w przypadku M₃LnCl₆ i M₃LnBr₆, związki M₃LnI₆ można podzielić na dwie grupy: grupe związków, w których pierwszy efekt termiczny na krzywych ogrzewania związany jest z wysoką molową entalpią rzędu 27–32 kJ mol⁻¹ (K₃NdI₆ i Rb₃LaI₆) i związki, w których pierwszy efekt jest wyraźnie niższy i wynosi tylko 8–10 kJ mol⁻¹ (Rb₃NdI₆, Cs₃LaI₆ i Cs₃NdI₆). W przypadku związków M₃LnCl₆ i M₃LnBr₆ podział ten związany jest z tworzeniem się odpowiednich związków ze związków M_2LnX_5 i MX (X = Cl, Br) w podwyższonych temperaturach, bądź jedynie przemianą fazową związków M₃LnX₆. Tworzeniu się związków M₃LnX₆ w podwyższonych temperaturach (przemiana fazowa z głęboką przebudową struktury) towarzyszy wysoka molowa entalpia przemiany rzędu 40 kJ mol⁻¹. Entalpia przemiany fazowej bez głębokiej przebudowy struktury (przejście z odmiany niskotemperaturowej do odmiany wysokotemperaturowej) jest zdecydowanie niższa i wynosi jedynie 8-9 kJ mol⁻¹.

Biorąc pod uwagę wysoką molową entalpię związaną z efektem termicznym występującym w K_3NdI_6 w temperaturze 628 K i w Rb_3LaI_6 w temperaturze 686 K można przyjąć, że jest on związany z tworzeniem się tych związków zgodnie z reakcją M_2LnI_5 + $MI = M_3LnI_6$. Drugi efekt termiczny obserwowany w omawianych związkach jest najprawdopodobniej przemianą fazową bez głębokiej przebudowy struktury, czyli przejściem z odmiany niskotemperaturowej do odmiany wysokotemperaturowej. Przemiana ta związana jest z wyraźnie niższą entalpią wynoszącą jedynie 8–10 kJ mol⁻¹.

Dowodem pośrednim na poprawność wniosku o tworzeniu się K₃NdI₆ i Rb₃LaI₆ w podwyższonych temperaturach są obserwacje poczynione w trakcie pomiarów DSC

przy różnych szybkościach ogrzewania i chłodzenia. Pomiary wykonywano bezpośrednio jeden po drugim, w kolejności przedstawionej w tabelach 23–24.

Jak wynika z tabeli 23 szybkość ogrzewania nie ma większego wpływu na temperaturę i entalpię tworzenia K₃NdI₆. Niemniej jednak przy większych szybkościach chłodzenia nie obserwuje się rozkładu związku, a na krzywych ogrzewania uzyskiwanych bezpośrednio po chłodzeniu obserwuje się dodatkowy, egzotermiczny efekt w temperaturze około 500 K, o entalpii około 24,5 kJ mol⁻¹. Najprawdopodobniej powolny ze względów kinetycznych rozkład związku (przemiana fazowa z głęboką przebudową struktury) nie następuje i związek pozostaje w postaci fazy metastabilnej w niskich temperaturach. W trakcie ogrzewania "przechłodzony" rozkład następuje w podwyższonej temperaturze, a jego rezultatem jest egzotermiczny efekt widoczny na krzywych DSC rejestrowanych podczas ogrzewania. Zmniejszenie szybkości chłodzenia do 0,1 K min⁻¹ pozwala na rozkład K₃NdI₆ w trakcie chłodzenia, w związku z czym na kolejnej krzywej ogrzewania nie obserwuje się efektu egzotermicznego związanego z "przechłodzonym" rozkładem.

Szybkość ogrzewania K min ⁻¹	T _{egzo} K	$\Delta_{ m egzo} H$ kJ mol ⁻¹	T _{tworz} K	$\Delta_{\rm tworz} H$ kJ mol ⁻¹	Szybkość chłodzenia K min ⁻¹	T _{rozkł} K	$\Delta_{ m rozkl}H$ kJ mol ⁻¹
15	504	24,3	630	27,0	15	-	_
10	502	24,5	628	27,5	10	-	_
5	502	24,5	628	27,5	5	_	_
1	502	24,6	628	27,3	1	_	_
0,1	502	24,9	628	27,7	0,1	584	27,6
5*	-	-	628	27,6			

Tabela 23. Porównanie efektów termicznych na krzywych DSC towarzyszących powstawaniu i rozkładowi K₃NdI₆

* pomiar bezpośrednio po chłodzeniu z szybkością 0,1 K min⁻¹

Szybkość ogrzewania K min ⁻¹	T _{egzo} K	$\Delta_{ m egzo}H$ kJ mol ⁻¹	T _{tworz} K	$\Delta_{tworz}H$ kJ mol ⁻¹	Szybkość chłodzenia K min ⁻¹	T _{rozkł} K	$\Delta_{ m rozkl}H$ kJ mol ⁻¹
5	408	20,5	686	31,6	10	623	10,9
5	410	20,9	686	31,7	5	626	11,3
5	410	20,0	687	31,5	2	642	32,3
5*	_	_	686	31,4			

Tabela 24. Porównanie efektów termicznych na krzywych DSC towarzyszących powstawaniu i rozkładowi Rb₃LaI₆

* pomiar bezpośrednio po chłodzeniu z szybkością 2 K min⁻¹

Szybkość ogrzewania nie ma wpływu również na temperaturę i entalpię tworzenia Rb₃LaI₆ (tab. 24). Rozkład związku jest natomiast, podobnie jak w przypadku K₃NdI₆,

zależny od szybkości chłodzenia. Przy większych szybkościach chłodzenia rozkład ten następuje tylko częściowo i na krzywych ogrzewania rejestrowanych bezpośrednio po chłodzeniu obserwuje się egzotermiczny efekt związany z rozkładem fazy metastabilnej powstałej w czasie chłodzenia. Obniżenie szybkości chłodzenia do 2 K min⁻¹ pozwala na uzyskanie pełnego rozkładu Rb₃LaI₆ w trakcie chłodzenia, w związku z czym na kolejnej krzywej ogrzewania nie obserwuje się efektu egzotermicznego związanego z rozkładem metastabilnej formy Rb₃LaI₆.

Wyniki otrzymane dla związków Cs₃LnI₆ różnią się od danych literaturowych. Obserwowano jedynie jeden efekt termiczny w fazie stałej (tab. 22). Wartości entalpii związane z pierwszym efektem termicznym na krzywych ogrzewania DSC uzyskane dla Rb₃NdI₆, Cs₃LaI₆ i Cs₃NdI₆ (8,8–10,4 kJ mol⁻¹) sugerują przynależność tych związków do grupy związków ulegających jedynie przemianie fazowej bez głębokiej przebudowy struktury, czyli stabilnych lub metastabilnych w temperaturze pokojowej. Omawiany efekt termiczny jest wynikiem przejścia ich odmiany niskotemperaturowej w odmianę wysokotemperaturową.

5.2.3.3. Ciepło molowe związków M₃LnI₆

Wyniki pomiarów ciepła molowego związków M_3LnI_6 przedstawiono w tabeli 25 i na rys. 66–70. Cudzysłowem oznaczono stechiometryczne mieszaniny M_2LnI_5 + MI o składzie związków M_3LnI_6 , istniejące poniżej temperatury tworzenia związków M_3LnI_6 .

	Zalaras tamp	4	P_{10}^{2}	C_{10}^{4}
Związek		A I mol ⁻¹ K^{-1}	D^{-10}	L^{-10}
	K	J IIIOI K	J IIIOI K	J IIIOI K
"K ₃ NdI _{6(s)} "	298-618	257,01	9,0028	_
K ₃ NdI _{6(s)}	642–682	351,92	_	-
K ₃ NdI _{6(s)}	696-752	269,58	15,821	-
K ₃ NdI _{6(c)}	816–911	450,54	-	_
"Rb ₃ LaI _{6(s)} "	298-682	274,84	-3,0748	0,2956
Rb ₃ LaI _{6(s)}	692-707	313,10	-	-
Rb ₃ LaI _{6(s)}	717-807	282,23	3,6201	_
Rb ₃ LaI _{6(c)}	871–950	350,24	-	-
Rb ₃ NdI _{6(s)}	298-712	333,80	-31,1637	3,842
Rb ₃ NdI _{6(s)}	722-812	282,03	4,517	-
Rb ₃ NdI _{6(c)}	906-1006	356,71	-	-
Cs ₃ LaI _{6(s)}	298-757	331,29	-32,789	3,557
Cs ₃ LaI _{6(s)}	772–866	24,972	50,4743	-2,213
Cs ₃ LaI _{6(c)}	951-1035	332,99	_	-
Cs ₃ NdI _{6(s)}	298-747	237,95	3,8738	_
Cs ₃ NdI _{6(c)}	967-1080	352,04	—	_

Tabela 25. Ciepło molowe związków M₃LnI₆: C_p (J mol⁻¹K⁻¹) = $A + BT + CT^2$

Rys. 66. Zależność ciepła molowego K₃NdI₆ od temperatury: kółka – wartości eksperymentalne, czarne kółka – wartości eksperymentalne dla "przechłodzonej" fazy metastabilnej, linia ciągła – wartości eksperymentalne opisane wielomianem
Fig. 66. Molar heat capacity of K₃NdI₆ vs temperature: open circles – experimental results, black circles – experimental results for supercooled metastable phase, solid line – polynomial fitting of experimental results

Rys. 67. Zależność ciepła molowego Rb₃LaI₆ od temperatury: kółka – wartości eksperymentalne, czarne kółka – wartości eksperymentalne dla "przechłodzonej" fazy metastabilnej, linia ciągła – wartości eksperymentalne opisane wielomianem Fig. 67. Molar heat capacity of Rb₃LaI₆ vs temperature: open circles – experimental results, black circles – experimental results for supercooled metastable phase, solid line – polynomial fitting of experimental results

Pomiary ciepła molowego K₃NdI₆ i Rb₃LaI₆ potwierdziły wcześniejsze wnioski o tworzeniu się tych związków w podwyższonej temperaturze i o możliwości otrzymania ich "przechłodzonej" fazy metastabilnej, która ulega rozkładowi w trakcie ogrzewania. Na rysunkach 66 i 67 przedstawiono wyniki pomiarów ciepła molowego tych związków chłodzonych z różnymi szybkościami po uprzednim ich stopieniu. Białymi kółkami oznaczono wyniki uzyskane dla związków chłodzonych z szybkością 0,1 K min⁻¹, czarnymi kółkami wyniki uzyskane dla związków chłodzonych z szybkością 10 K min⁻¹. Chłodzenie z szybkością 0,1 K min⁻¹ pozwalało na osiągnięcie całkowitego rozkładu obydwu związków na związki M₂LnI₅ i MI. Ciepło molowe tak przygotowanych związków rośnie monotonicznie wraz ze wzrostem temperatury. Gwałtowne skoki wartości ciepła molowego w fazie stałej następują w temperaturze odpowiadającej tworzeniu się związków (T_{tworz}) i ich przemianie fazowej (T_{przem}).

Chłodzenie z szybkością 10 K min⁻¹ prowadziło do całkowitego zablokowania rozkładu K₃NdI₆ i częściowego zablokowania rozkładu Rb₃LaI₆. Zablokowanie rozkładu znalazło swoje odbicie na krzywych zależności ciepła molowego od temperatury. Zarówno w przypadku K₃NdI₆ (rys. 66) jak i Rb₃LaI₆ (rys. 67) ciepło molowe w temperaturze 300 K ma wyraźnie wyższą wartość i obserwuje się wyraźny jego spadek ze wzrostem temperatury aż do osiągnięcia minimalnej wartości, po czym przybiera identyczne wartości jak ciepło molowe związków chłodzonych z szybkością 0,1 K min⁻¹. Obniżanie się wartości ciepła molowego ze wzrostem temperatury świadczy o zachodzeniu w badanym związku procesu egzotermicznego. Temperatura, w której ciepło molowe osiąga wartość minimalną odpowiada mniej więcej temperaturze piku egzotermicznego na krzywych DSC, czyli temperaturze, w której następuje gwałtowny rozkład "przechłodzonej" fazy metastabilnej związku.

kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem Fig. 68. Molar heat capacity of Rb₃NdI₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys. 69. Zależność ciepła molowego Cs₃LaI₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem Fig. 69. Molar heat capacity of Cs₃LaI₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Rys.70. Zależność ciepła molowego Cs₃NdI₆ od temperatury: kółka – wartości eksperymentalne, linia ciągła – wartości eksperymentalne opisane wielomianem Fig. 70. Molar heat capacity of Cs₃NdI₆ vs temperature: open circles – experimental results, solid line – polynomial fitting of experimental results

Opierając się na analogiach dotyczących wartości entalpii przemian fazowych ciało stałe-ciało stałe badanych związków chlorkowych, bromkowych i jodkowych możliwy jest podział związków M₃LnI₆ na dwie grupy: grupę związków tworzących się w podwyższonej temperaturze z M₂LnI₅ i MI (K₃NdI₆ i Rb₃LaI₆) w trakcie przemiany
fazowej z głęboka przebudowa struktury i grupę związków stabilnych badź metastabilnych w temperaturze pokojowej (Rb₃NdI₆, Cs₃LaI₆ i Cs₃NdI₆), które ulegają przemianie fazowej bez głębokiej przebudowy struktury (przejście z odmiany niskotemperaturowej do odmiany wysokotemperaturowej). Rozciągając analogie strukturalne związków M₃LnCl₆ i M₃LnBr₆ [123, 141] na związki M₃LnI₆, dla których brak jest jakichkolwiek danych strukturalnych, można założyć, że w przypadku przemiany fazowej bez głębokiej przebudowy struktury (Rb_3NdI_6 , Cs_3LaI_6 i Cs_3NdI_6) mamy do czynienia z przejściem z odmiany niskotemperaturowej o strukturze jednoskośnej typu Cs_3BiCl_6 do odmiany wysokotemperaturowej o strukturze regularnej typu elpasolitu. Bardziej skomplikowana sytuacja występuje w przypadku związków ulegających przemianie fazowej z głęboką przebudową struktury (K3NdI6, Rb3LaI6), w których występuje dodatkowo przemiana fazowa bez głębokiej przebudowy struktury. Wydaje się, że przemiana fazowa z głęboką przebudową struktury prowadzi do powstania odmiany niskotemperaturowej związku M₃LnI₆ o strukturze jednoskośnej typu Cs₃BiCl₆, która z kolei przechodzi w odmiane wysokotemperaturowa o strukturze regularnej typu elpasolitu (przemiana fazowa bez głębokiej przebudowy struktury). Weryfikacja powyższych rozważań możliwa będzie po wykonaniu kompleksowych badań strukturalnych związków M₃LnI₆.

Dokonanemu podziałowi związków M₃LnI₆ na dwie grupy odpowiada charakterystyczna zależność ciepła molowego od temperatury. W pierwszej grupie (przemiana fazowa z głęboką przebudową struktury) mamy do czynienia z monotonicznym wzrostem ciepła molowego ze wzrostem temperatury i skokową jego zmianą w temperaturze tworzenia się związku (rys. 66 i 67). Druga grupa (przemiana fazowa bez głębokiej przebudowy struktury) charakteryzuje się nienaturalnie wysokim wzrostem ciepła molowego odmiany niskotemperaturowej (rys. 68–70).

Biorąc pod uwagę przedstawione wyżej rozważania dotyczące struktury badanych związków, charakterystyczne zależności ciepła molowego od temperatury można wyjaśnić występowaniem dodatkowej przemiany strukturalnej typu porządek – nieporządek, której ulega podsieć kationowa tworzona przez jony metalu alkalicznego. Związki stabilne lub metastabilne w temperaturze pokojowej (Rb₃NdI₆, Cs₃LaI₆ i Cs₃NdI₆), które mają odmianę niskotemperaturową i wysokotemperaturową, stan "strukturalnego nieporządku" [131] podsieci kationowej osiągają w sposób ciągły. Rozpoczyna się on już w stosunkowo niskiej temperaturze, daleko od przemiany fazowej, o czym świadczy nienaturalnie wysoki wzrost ciepła molowego ze wzrostem temperatury (rys. 68-70) i kończy w odmianie wysokotemperaturowej. Nakłada się ona na przemianę fazową I rodzaju (odmiana niskotemperaturowa → odmiana wysokotemperaturowa) i zależność ciepła molowego od temperatury przybiera kształt λ -efektu. W związkach tworzących się w podwyższonych temperaturach (K₃NdI₆, Rb₃LaI₆) przemiana fazowa pierwszego rodzaju (tworzenie związku) rozpoczyna w sposób skokowy przemiane strukturalną typu porządek – nieporządek, a stan pełnego "strukturalnego nieporządku" osiągany jest dopiero w odmianie wysokotemperaturowej typu elpasolitu (rys. 66 i 67).

5.3. Związek pomiędzy potencjałem jonowym kationów a typem równowag fazowych w układach LnX₃–MX

Równowagi fazowe w mieszaninach soli, a więc i geometria diagramów fazowych układów podwójnych, związane są z właściwościami fizykochemicznymi poszczególnych składników. Przy całej złożoności problemu tworzenia się związków w tych układach, największą rolę odgrywają wymiary i ładunki jonów [148]. Obie te wielkości zawiera w sobie tzw. potencjał jonowy IP [149–151], będący stosunkiem ładunku (wartościowości) jonu do jego promienia

$$IP = z/r \tag{21}$$

W mieszaninie soli o wspólnym anionie, kation o większym potencjale jonowym bedzie najczęściej bardziej zdolny do koordynowania anionów wokół siebie, co w pewnych przypadkach może prowadzić nawet do utworzenia jonu kompleksowego. Na ogół jest to tym bardziej prawdopodobne, im słabiej powiązany z anionami jest drugi kation, to znaczy im niższy jest jego potencjał jonowy. Tworzenie związków zależałoby więc od konkurencyjnego oddziaływania kationów ze wspólnym anionem. Oddziaływanie to można wyrazić za pomocą różnicy, względnej różnicy lub stosunku odpowiednich wielkości, np. potencjałów jonowych [152, 153] czy, w przypadku jonów o jednakowych ładunkach, samych tylko promieni jonowych [143, 154]. Jeżeli jeden składnik pozostaje ciągle ten sam, a drugi wymieniany jest w ten sposób, że zwiększa się np. względna różnica promieni lub potencjałów jonowych kationów, to można obserwować zmianę kształtu diagramu fazowego od, niekiedy ciągłych roztworów stałych, poprzez układy eutektyczne, do układów, w których tworzą się związki - często najpierw topiące się niekongruentnie, a następnie topiące się kongruentnie [148, 155, 156]. Gaweł [156-158] wykazał istnienie ilościowego związku pomiędzy stosunkiem potencjałów jonowych kationów wchodzących w skład układu podwójnego soli i typem diagramu fazowego charakterystycznego dla tego układu. W zależności od wartości liczbowej tego stosunku układy MeCl_n–UCl₄ [156, 158] są prostymi układami eutektycznymi, układami z jednym, bądź większą liczbą związków pośrednich.

Przedstawione wyżej informacje skłoniły autora niniejszej pracy do dokonania podobnej analizy dla układów podwójnych LnX_3 –MX. W tabelach 26–28 przedstawiono związek pomiędzy stosunkiem potencjałów jonowych kationu litowca (IP_M⁺) i lantanowca (IP_{Ln}³⁺) oraz typem diagramu fazowego układów podwójnych LnCl₃–MCl, LnBr₃–MBr i LnI₃–MI. W obliczeniach posługiwano się wartościami promieni jonowych podanych przez Sharpe'a [124]. Analizowane układy uszeregowano według malejącego stosunku potencjałów jonowych kationu litowca i lantanowca.

Układ	$IP_{M^+} / IP_{Ln^{3+}}$	Typ układu	Literatura
LaCl ₃ –LiCl	0,478	eutektyk	[159]
CeCl ₃ -LiCl	0,465	eutektyk	[160]
PrCl ₃ -LiCl	0,456	eutektyk	[161]
NdCl ₃ -LiCl	0,448	eutektyk	[162]
TbCl ₃ -LiCl	0,416	LiTb ₂ Cl ₇ (rozkład w fazie stałej)	[163]
HoCl ₃ -LiCl	0,402	$Li_3HoCl_6^{a)}$	[164]
ErCl ₃ -LiCl	0,396	$Li_3ErCl_6^{a)}$	[165]
YbCl ₃ -LiCl	0,386	$Li_3YbCl_6^{a)}$	[166]
LaCl ₃ -NaCl	0,346	$Na_3LaCl_6^{a)}$	[22]
CeCl ₃ -NaCl	0,336	$Na_3CeCl_6^{a)}$	[23]
PrCl ₃ -NaCl	0,330	$Na_3PrCl_6^{a)}$	[24]
NdCl ₃ -NaCl	0,325	$Na_3NdCl_6^{a)}$	[25]
SmCl ₃ -NaCl	0,315	$Na_2SmCl_5^{a)}$, $Na_3Sm_5Cl_{18}$	[26]
EuCl ₃ -NaCl	0,310	$Na_2EuCl_5^{a}$, $Na_3EuCl_6^{a}$, $NaEuCl_4^{a}$	[27]
GdCl ₃ -NaCl	0,306	$Na_3GdCl_6^{a)}, Na_2GdCl_5^{a)}, NaGdCl_4$	[28]
TbCl ₃ -NaCl	0,301	$Na_{3}TbCl_{6}^{a}$, $Na_{2}TbCl_{5}^{a}$, $NaTbCl_{4}^{a}$, $NaTb_{2}Cl_{7}^{a}$	[167]
YbCl ₃ -NaCl	0,280	Na ₃ YbCl ₆	[166]
LaCl ₃ -KCl	0,256	K2LaCl5	[22]
CeCl ₃ -KCl	0,249	K ₃ CeCl ₆ , K ₂ CeCl ₅ , K ₂ Ce ₅ Cl ₁₈ ^{a)}	[23]
PrCl ₃ -KCl	0,244	K ₃ PrCl ₆ , K ₂ PrCl ₅ ^{a)}	[24]
NdCl ₃ -KCl	0,240	K ₃ NdCl ₆ , K ₂ NdCl ₅ ^{a)} , KNd ₂ Cl ₇ ^{a)}	[25]
LaCl ₃ -RbCl	0,237	Rb ₃ LaCl ₆ , Rb ₂ LaCl ₅ ^{a)} , RbLa ₂ Cl ₇ ^{a)}	[22]
SmCl ₃ -KCl	0,231	K ₃ SmCl ₆ , K ₂ SmCl ₅ ^{a)} , KSm ₂ Cl ₇	[26]
CeCl ₃ -RbCl	0,231	Rb ₃ CeCl ₆ , Rb ₂ CeCl ₅ ^{a)} , RbCe ₂ Cl ₇ ^{a)}	[23]
EuCl ₃ -KCl	0,229	K ₃ EuCl ₆ , K ₂ EuCl ₅ ^{a)} , KEu ₂ Cl ₇	[27]
PrCl ₃ -RbCl	0,227	Rb_3PrCl_6 , $Rb_2PrCl_5^{a}$, $RbPr_2Cl_7^{a}$	[24]
GdCl ₃ –KCl	0,226	K ₃ GdCl ₆ , K ₂ GdCl ₅ ^{a)} , KGd ₂ Cl ₇	[28]
TbCl ₃ –KCl	0,222	K ₃ TbCl ₆ , K ₂ TbCl ₅ ^{a)} , KTb ₂ Cl ₇	[30]
NdCl ₃ -RbCl	0,222	Rb_3NdCl_6 , $Rb_2NdCl_5^{a}$, $RbNd_2Cl_7^{a}$	[25]
HoCl ₃ -KCl	0,216	K ₃ HoCl ₆ , K ₂ HoCl ₅ ^{a)} , KHo ₂ Cl ₇	[31]
SmCl ₃ -RbCl	0,216	Rb ₃ SmCl ₆ , Rb ₂ SmCl ₅ ^{a)} , RbSm ₂ Cl ₇	[26]
EuCl ₃ –RbCl	0,212	Rb ₃ EuCl ₆ , Rb ₂ EuCl ₅ ^{a)} , RbEu ₂ Cl ₇	[27]
TmCl ₃ -KCl	0,209	K ₃ TmCl ₆ , K ₂ TmCl ₅ ^{a)} , KTm ₂ Cl ₇ ^{a)}	[32]
GdCl ₃ –RbCl	0,209	Rb ₃ GdCl ₆ , Rb ₂ GdCl ₅ ^{a)} , RbGd ₂ Cl ₇	[28]
LaCl ₃ –CsCl	0,208	Cs ₃ LaCl ₆ , Cs ₂ LaCl ₅ ^{a)} , CsLa ₂ Cl ₇ ^{a)}	[22]
TbCl ₃ –RbCl	0,206	Rb ₃ GdCl ₆ , RbGd ₂ Cl ₇	[30]
CeCl ₃ -CsCl	0,202	$Cs_3CeCl_6, Cs_2CeCl_5^{a}, CsCe_2Cl_7$	[23]
HoCl ₃ -RbCl	0,200	Rb ₃ HoCl ₆ , Rb ₂ HoCl ₅ ^{a)} , RbHo ₂ Cl ₇	[31]
PrCl ₃ -CsCl	0,198	Cs ₃ PrCl ₆ , Cs ₂ PrCl ₅ ^{a)} , CsPr ₂ Cl ₇	[24]
NdCl ₃ -CsCl	0,195	Cs ₃ NdCl ₆ , Cs ₂ NdCl ₅ ^{a)} , CsNd ₂ Cl ₇	[25]
TmCl ₃ –RbCl	0,194	Rb ₃ TmCl ₆ , Rb ₂ TmCl ₅ ^{a)} , RbTm ₂ Cl ₇	[32]
SmCl ₃ CsCl	0,189	Cs ₃ SmCl ₆ , Cs ₂ SmCl ₅ ^{a)} , CsSm ₂ Cl ₇	[26]
EuCl ₃ -CsCl	0,186	Cs ₃ EuCl ₆ , Cs ₂ EuCl ₅ ^{a)} , CsEu ₂ Cl ₇	[27]
GdCl ₃ -CsCl	0,183	Cs ₃ GdCl ₆ , Cs ₂ GdCl ₅ ^{a)} , CsGd ₂ Cl ₇	[28]
TbCl ₃ –CsCl	0,181	Cs ₃ TbCl ₆ , Cs ₂ TbCl ₅ ^{a)} , CsTb ₂ Cl ₇	[30]
HoCl ₃ -CsCl	0,175	Cs ₃ HoCl ₆ , Cs ₂ HoCl ₅ ^{a)} , CsHo ₂ Cl ₇ , Cs ₃ Ho ₂ Cl ₉ ^{a)}	[31]
TmCl ₂ -CsCl	0.170	Cs ₂ TmCl ₆ , Cs ₂ TmCl ₅ ^{a)} , CsTm ₂ Cl ₇ , Cs ₂ Tm ₂ Cl ₉ ^{a)}	[32]

Tabela 26. Wartości stosunku potencjałów jonowych i typ diagramu fazowego dla układów LnCl₃-MCl

^{a)} związek topiący się niekongruentnie Kursywą zaznaczono układy, w których występują jedynie związki topiące się niekongruentnie, pogrubioną czcionką zaznaczono pierwszy układ, w którym występuje związek topiący się kongruentnie.

Układ	$IP_{M^+} / IP_{Ln^{3+}}$	Typ układu	Literatura
LaBr ₃ -LiBr	0,478	eutektyk	[168]
NdBr ₃ -LiBr	0,465	eutektyk	[169]
LaBr ₃ –NaBr	0,346	eutektyk	[142]
PrBr ₃ -NaBr	0,330	eutektyk	[142]
NdBr ₃ –NaBr	0,325	eutektyk	[142]
SmBr ₃ -NaBr	0,315	$Na_7SmBr_{10}^{a)}$	[142]
GdBr ₃ NaBr	0,306	$Na_3GdBr_6^{a)}$	[142]
TbBr ₃ NaBr	0,301	$Na_{3}TbBr_{6}^{a)}$	[144]
HoBr ₃ -NaBr	0,292	$Na_{3}HoBr_{6}^{a)}$	[170]
TmBr ₃ -NaBr	0,284	$Na_3TmBr_6^{a)}$	[171]
LaBr ₃ –KBr	0,256	K ₂ LaBr ₅	[141]
PrBr ₃ –KBr	0,244	$K_3PrBr_6, K_2PrBr_5^{a}, KPr_2Br_7^{a}$	[143]
NdBr ₃ –KBr	0,240	K ₃ NdBr ₆ , K ₂ NdBr ₅ ^{a)} , KNd ₂ Br ₇	[143]
LaBr ₃ –RbBr	0,237	Rb ₃ LaBr ₆ , Rb ₂ LaBr ₅ ^{a)}	[141]
SmBr ₃ –KBr	0,231	K ₃ SmBr ₆ , K ₂ SmBr ₅ ^{a)} , KSm ₂ Br ₇	[143]
PrBr ₃ –RbBr	0,227	Rb ₃ PrBr ₆ , Rb ₂ PrBr ₅ ^{a)} , RbPr ₂ Br ₇ ^{a)}	[143]
GdBr ₃ –KBr	0,226	K ₃ GdBr ₆ , K ₂ GdBr ₅ ^{a)} , KGd ₂ Br ₇	[143]
TbBr ₃ –KBr	0,222	K_3 TbBr ₆ , K_2 TbBr ₅ ^{a)} , KTb ₂ Br ₇ ^{a)}	[*]
NdBr ₃ -RbBr	0,222	Rb ₃ NdBr ₆ , Rb ₂ NdBr ₅ ^{a)} , RbNd ₂ Br ₇	[143]
DyBr ₃ -KBr	0,219	K ₃ DyBr ₆ , K ₂ DyBr ₅ ^{a)}	[143]
SmBr ₃ –RbBr	0,216	Rb ₃ SmBr ₆ , Rb ₂ SmBr ₅ ^{a)} , RbSm ₂ Br ₇	[143]
ErBr ₃ –KBr	0,212	K_3 ErBr ₆ , K_2 ErBr ₅ ^{a)}	[143]
GdBr ₃ –RbBr	0,209	Rb ₃ GdBr ₆ , Rb ₂ GdBr ₅ ^{a)} , RbGd ₂ Br ₇	[143]
LaBr ₃ –CsBr	0,208	Cs ₃ LaBr ₆ , Cs ₂ LaBr ₅ ^{a)} , CsLa ₂ Br ₇ ^{a)}	[22]
YbBr ₃ –KBr	0,207	K ₃ YbBr ₆ , K ₂ YbBr ₅ ^{a)}	[143]
TbBr ₃ -RbBr	0,206	Rb ₃ TbBr ₆ , RbTb ₂ Br ₇ ^{a)}	[*]
DyBr ₃ -RbBr	0,203	Rb ₃ DyBr ₆ , Rb ₂ DyBr ₅ ^{a)} , RbDy ₂ Br ₇ ^{a)}	[143]
PrBr ₃ CsBr	0,198	Cs ₃ PrBr ₆ , CsPr ₂ Br ₇	[142]
ErBr ₃ –RbBr	0,197	Rb ₃ ErBr ₆ , Rb ₂ ErBr ₅ ^{a)}	[143]
NdBr ₃ CsBr	0,195	Cs ₃ NdBr ₆ , CsNd ₂ Br ₇	[142]
YbBr ₃ -RbBr	0,192	Rb ₃ YbBr ₆ , Rb ₂ YbBr ₅ ^{a)}	[143]
SmBr ₃ CsBr	0,189	Cs ₃ SmBr ₆ , Cs ₂ SmBr ₅ ^{a)} , CsSm ₂ Br ₇	[143]
GdBr ₃ CsBr	0,183	Cs ₃ GdBr ₆ , Cs ₂ GdBr ₅ ^{a)} , CsGd ₂ Br ₇	[143]
TbBr ₃ –CsBr	0,181	Cs ₃ TbBr ₆ , CsTb ₂ Br ₇ ^{a)}	[*]
DyBr ₃ CsBr	0,178	Cs_3DyBr_6 , $CsDy_2Cl_7^{a)}$, $Cs_3Dy_2Br_9^{a)}$	[172]
HoBr ₃ -CsBr	0,175	Cs ₃ HoBr ₆ , CsHo ₂ Br ₇ ^{a)}	[170]
ErBr ₃ –CsBr	0,173	$Cs_3ErBr_6, Cs_2ErCl_5^{a)}$	[143]
YbBr ₃ CsBr	0,168	Cs ₃ YbBr ₆ , Cs ₂ YbBr ₅ ^{a)}	[32]

Tabela 27. Wartości stosunku potencjałów jonowych i typ diagramu fazowego dla układów LnBr3-MBr

^{a)}związek topiący się niekongruentnie Kursywą zaznaczono układy, w których występują jedynie związki topiące się niekongruentnie, po-grubioną czcionką zaznaczono pierwszy układ, w którym występuje związek topiący się kongruentnie.

Układ	$IP_{M^+} / IP_{Ln^{3+}}$	Typ układu	Literatura
LaI ₃ -Li	0,478	eutektyk	[*]
NdI ₃ -LiI	0,465	eutektyk	[*]
LaI ₃ –NaI	0,346	eutektyk	[147]
PrI ₃ –NaI	0,330	eutektyk	[147]
NdI ₃ NaI	0,325	$Na_7 NdI_{10}^{a}$	[147]
SmI ₃ -NaI	0,315	$Na_3SmI_6^{a)}$	[147]
GdI ₃ NaI	0,306	$Na_3GdI_6^{a)}$	[147]
LaI ₃ –KI	0,256	K ₂ LaI ₅	[147]
PrI ₃ -KI	0,244	$K_3PrI_6, K_2PrI_5^{a)}$	[147]
NdI ₃ –KI	0,240	$K_3NdI_6, K_2NdI_5^{a)}$	[147]
LaI ₃ –RbI	0,237	Rb_3LaI_6 , $Rb_2LaI_5^{a)}$	[*]
SmI ₃ –KI	0,231	K ₃ SmI ₆	[147]
GdI ₃ –KI	0,226	K ₃ GdI ₆	[147]
NdI ₃ –RbI	0,222	Rb_3NdI_6 , $Rb_2NdI_5^{a}$, $RbNd_2I_7^{a}$	[*]
DyI ₃ –KI	0,219	K ₃ DyI ₆	[147]
ErI ₃ –KI	0,212	K ₃ ErI ₆	[147]
LaI ₃ –CsI	0,208	Cs_3LaI_6 , $CsLa_9I_{28}^{a)}$	[147]
PrI ₃ CsI	0,198	Cs_3PrI_6 , $Cs_3Pr_2I_9^{a)}$, $CsPr_9I_{28}^{a)}$	[147]
NdI ₃ -CsI	0,195	Cs_3NdI_6 , $Cs_3Nd_2I_9^{a}$, $CsNd_4I_{13}^{a}$	[147]
SmI ₃ –CsI	0,189	Cs_3SmI_6 , $Cs_3Sm_2I_9^{a)}$	[147]
GdI ₃ –CsI	0,183	Cs ₃ GdI ₆ , Cs ₃ Gd ₂ I ₉	[147]
TbI ₃ –CsI	0,181	Cs ₃ TbI ₆ , Cs ₃ Tb ₂ I ₉	[174]
DyI ₃ –CsI	0,178	Cs ₃ DyI ₆ , Cs ₃ Dy ₂ I ₉	[175]
HoI ₃ –CsI	0,175	Cs ₃ HoI ₆ , Cs ₃ Ho ₂ I ₉	[176–177]
ErI ₃ –CsI	0,173	Cs ₃ ErI ₆ , Cs ₃ Er ₂ I ₉	[147]
TmI ₃ –CsI	0,170	Cs_3TmI_6 , $Cs_3Tm_2I_9$	[174]

Tabela 28. Wartości stosunku potencjałów jonowych i typ diagramu fazowego dla układów LnI₃-MI

^{a)} związek topiący się niekongruentnie

Kursywą zaznaczono układy, w których występują jedynie związki topiące się niekongruentnie, pogrubioną czcionką zaznaczono pierwszy układ, w którym występuje związek topiący się kongruentnie.

Jak wynika z tabel 26–28 wszystkie układy podwójne LnX₃–MX mogą być podzielone na trzy grupy: proste układy eutektyczne, układy ze związkami topiącymi się niekongruentnie (zaznaczone kursywą w tabelach 26–28) i układy, w których występują zarówno związki topiące się niekongruentnie, jak i kongruentnie. Podział ten jest ściśle związany z wielością stosunku potencjałów jonowych kationów litowca i lantanowca.

Układy podwójne LnCl₃–MCl (tab. 26) są prostymi układami eutektycznymi, jeżeli wartość stosunku potencjałów jonowych kationów litowca i lantanowca jest bądź większa, bądź równa 0,448. W przedziale wartości 0,416 \leq IP_{M⁺} / IP_{Ln³⁺} \leq 0,280 w układach tych tworzą się związki topiące się niekongruentnie. Dalsze zmniejszanie się wartości stosunku

potencjałów jonowych (IP_{M⁺} / IP_{Ln³⁺} $\leq 0,256$) powoduje występowanie w omawianych układach związków topiących się zarówno kongruentnie, jak i niekongruentnie. Związki typu M₂LnCl₅ topiące się kongruentnie tworzą się w zakresie 0,256 \leq IP_{M⁺} / IP_{Ln³⁺} $\leq 0,249$, przy niższych wartościach stosunku potencjałów jonowych topią się one niekongruentnie. Topiące się kongruentnie związki typu M₃LnCl₆ powstają w układach, dla których wartość IP_{M⁺} / IP_{Ln³⁺} jest równa lub mniejsza niż 0,249. Związki MLn₂Cl₇ pojawiają się w omawianych układach przy wartości stosunku potencjałów jonowych równej 0,240. Początkowo topią się one niekongruentnie (0,240 \leq IP_{M⁺} / IP_{Ln³⁺} \leq 0,208), a przy wartościach IP_{M⁺} / IP_{Ln³⁺}. niższych od 0,208 są związkami topiącymi się kongruentnie. Dalsze zmniejszanie się stosunku potencjałów jonowych (IP_{M⁺} / IP_{Ln³⁺} $\leq 0,175$) powoduje pojawienie się w układach LnCl₃ –MCl topiących się niekongruentnie związków M₃Ln₂Cl₉.

Układy LnBr₃–MBr (tab. 27) są prostymi układami eutektycznymi, jeżeli wartość stosunku potencjałów jonowych kationów litowca i lantanowca jest większa lub równa 0,325. W przedziale wartości $0,315 \le IP_{M^+} / IP_{Ln^{3+}} \le 0,284$ w układach tych tworzą się związki topiące się niekongruentnie. Począwszy od wartości $IP_{M^+} / IP_{Ln^{3+}} = 0,256$ następuje tworzenie się związków topiących się kongruentnie. Podobnie jak w układach chlorkowych są to związki M₂LnBr₅, M₃LnBr₆ i MLn₂Br₇. Brak danych dotyczących układów CeBr₃–MBr nie pozwala na precyzyjne określenie zakresu występowania kongruentnie topiących się związków M₂LnBr₅ i M₃LnBr₆. K₂LaBr₅ (IP_{M⁺} / IP_{Ln³⁺} = 0,256) topi się kongruentnie, pozostałe znane związki M₂LnBr₅ (IP_{M⁺} / IP_{Ln³⁺} ≤ 0,244) topią się niekongruentnie. Topiące się kongruentnie związki M₃LnBr₆ pojawiają się w układach, dla których stosunek potencjałów jonowych kationu litowca i lantanowca jest równy lub mniejszy niż 0,244. Topiące się kongruentnie lub niekongruentnie związki MLn₂Br₇ powstają w układach bromkowych przy wartości IP_{M⁺} / IP_{Ln³⁺} ≤ 0,244.

Układy LnI₃–MI (tab. 28), podobnie jak LnBr₃–MBr są prostymi układami eutektycznymi dla wartości stosunku potencjałów jonowych równej lub większej od 0,330. W przedziale wartości 0,325 \leq IP_{M⁺} / IP_{Ln³⁺} \leq 0,306 w układach tych tworzą się związki topiące się niekongruentnie. Trzecia grupa to układy, w których tworzą się związki topiące się kongruentnie (IP_{M⁺} / IP_{Ln³⁺} \leq 0,256). W odróżnieniu od układów chlorkowych i bromkowych, związki typu M₂LnI₅ powstają w wąskim zakresie wartości IP_{M⁺} / IP_{Ln³⁺} (0,256–0,222). K₂LaI₅ topi się kongruentnie, pozostałe związki M₂LnI₅ topią się niekongruentnie. Kongruentnie topiące się związki M₃LnI₆ istnieją w układach o wartości stosunku potencjałów jonowych niższej lub równej 0,244. Dalsze zmniejszanie się tego stosunku prowadzi do pojawienia się związków M₃Ln_I9 (IP_{M⁺} / IP_{Ln³⁺} \leq 0,198), topiących się niekongruentnie (0,198 $\leq IP_{M^+} / IP_{Ln^{3+}} \leq 0,189$) lub kongruentnie ($IP_{M^+} / IP_{Ln^{3+}} < 0,189$).

Przedstawione zależności pomiędzy stosunkiem potencjałów jonowych kationów litowca i lantanowca a charakterem diagramu fazowego układów LnCl₃–MCl, LnBr₃– MBr i LnI₃–MI pozwalają na znalezienie cech wspólnych charakterystycznych dla wszystkich układów halogenki lantanowców(III)–halogenki litowców. Układy te dzielą się na trzy grupy:

proste układy eutektyczne (stosunek potencjałów jonowych większy lub równy 0,448; 0,325 i 0,330, odpowiednio dla układów chlorkowych, bromkowych i jodkowych),

 – układy, w których występują jedynie związki topiące się niekongruentnie (stosunek potencjałów jonowych w granicach 0,416–0,280; 0,315–0,284 i 0,352–0,306, odpowiednio dla układów chlorkowych, bromkowych i jodkowych),

 – układy, w których występują zarówno związki topiące się niekongruentnie, jak i związki topiące się kongruentnie (stosunek potencjałów jonowych równy lub mniejszy od 0,256).

W grupie trzeciej, czyli w układach, w których występują zarówno związki topiące się kongruentnie, jak i związki topiące się niekongruentnie, znaleźć można zarówno daleko idące podobieństwa, jak i różnice pomiędzy układami chlorkowymi, bromkowymi i jodkowymi. Do cech wspólnych należy zaliczyć:

– jednakową dla wszystkich układów wartość stosunku potencjałów jonowych, przy której pojawiają się związki topiące się kongruentnie $(IP_{M^+} / IP_{In^{3+}} = 0,256)$,

– pierwszym kongruentnie topiącym się związkiem, pojawiającym się przy $IP_{M^+}/IP_{Ln^{3+}} = 0,256$ jest związek K₂LaX₅ (X = Cl, Br, I),

– kongruentnie topiące się związki K_2LnX_5 istnieją w wąskim zakresie wartości stosunku potencjałów jonowych (0,256–0,249),

– przy niższych wartościach stosunku potencjałów jonowych $(IP_{M^+} / IP_{Ln^{3+}} < 0,249)$ związki M₂LnX₅ topią się niekongruentnie,

– kongruentnie topiące się związki M_3LnX_6 powstają przy niższych wartościach $IP_{M^+}/IP_{Ln^{3+}}$ ($\leq 0,249$).

Cechą wspólną układów chlorkowych i bromkowych jest również istnienie związków MLn₂X₇ (X = Cl, Br; M = K, Rb, Cs) topiących się kongruentnie lub niekongruentnie, a powstających w układach, w których $IP_{M^+} / IP_{Ln^{3+}} (\leq 0,244)$.

Podstawowe różnice pomiędzy układami chlorkowymi, bromkowymi i jodkowymi, to:

– występowanie związków M₂LnI₅ w wąskim zakresie wartości stosunku potencjałów jonowych (0,256–0,222), podczas gdy związki M₂LnCl₅ i M₂LnBr₅ występują we wszystkich układach chlorkowych i bromkowych spełniających warunek IP_{M⁺} / IP_{Ln³⁺} \leq 0,256, związki MLn₂X₇ występujące w układach chlorkowych i bromkowych przy wartości stosunku potencjałów jonowych mniejszej lub równej 0,244 praktycznie nie występują w układach jodkowych (z wyjątkiem RbNd₂I₇, tab. 28),

– związki M₃Ln₂X₉ występujące w układach chlorkowych (IP_{M⁺} / IP_{Ln³⁺} ($\leq 0,175$) i jodkowych (IP_{M⁺} / IP_{Ln³⁺} ($\leq 0,198$) praktycznie (z wyjątkiem Cs₃Dy₂Br₉) nie występują w układach bromkowych.

Przedstawione w tabelach 26–28 dane i znalezione na ich podstawie zależności pozwalają z dużym prawdopodobieństwem przewidywać ogólną charakterystykę niebadanych dotychczas układów podwójnych LnX₃–MX. I tak na przykład wydaje się całkowicie pewne, że układy CeBr₃–KBr i CeI₃–KI (IP_{M⁺} / IP_{Ln³⁺} = 0,249) będą należa-

ły do grupy układów, w których występują związki topiące się kongruentnie. Co więcej, można przewidywać skład związków występujących w tych układach. Będą to topiące się kongruentnie K_3CeBr_6 i K_3CeI_6 oraz najprawdopodobniej również topiące się kongruentnie K_2CeBr_5 i K_2CeI_5 .

Tendencja do tworzenia związków w układach LnX₃–MX wzrasta wraz ze zmniejszaniem się stosunku potencjałów jonowych kationów litowca i lantanowca, i diagramy fazowe tych układów stają się bardziej złożone. Wzrost tendencji do tworzenia związków jest rezultatem coraz silniejszego oddziaływania kationów lantanowca (Ln^{3+}) z anionami fluorowca (X^-) w porównaniu z oddziaływaniem pomiędzy kationami litowca (M^+) i anionami fluorowca. Siła oddziaływania pomiędzy kationem lantanowca i anionem fluorowca wzrasta wraz ze zwiększaniem się liczy atomowej Z lantanowca, czyli zmniejszaniem się promienia jonowego kationu lantanowca. Dla danego kationu lantanowca wynik "współzawodnictwa" między tym kationem a kationem litowca zależy od względnej siły przyciągającej kationu litowca. W grupie litowców siła ta maleje w sekwencji $Li^+ > Na^+ > K^+ > Rb^+ > Cs^+$, a więc ze wzrostem promienia jonowego. Tak więc tendencja do tworzenia się związków w układach podwójnych LnX_3 –MX będzie wzrastać według sekwencji LiX < NaX < KX < RbX < CsX.

5.4. Entalpia mieszania w ciekłych układach LnX₃–MX

Wybór układów dwuskładnikowych do pomiarów entalpii mieszania pozwolił na określenie wpływu promienia jonowego lantanowca, promienia jonowego litowca oraz promienia jonowego chlorowca na właściwości termodynamiczne ciekłych układów halogenki lantanowców–halogenki litowców. Uzyskane wyniki dostarczyły informacji dotyczących możliwości tworzenia się kompleksów i ich formy w ciekłych układach LnX₃–MX. Wykonano pomiary entalpii mieszania dla układów NdCl₃–MCl (M = Na, K, Rb, Cs) [33], PrCl₃–MCl (M = Na, K) [137], DyCl₃–MCl (M = Na, K) [178, 179],

TbCl₃–MCl (M = Li, Na, K, Rb, Cs) [138], LaBr₃–MBr (M = Li, Na, K, Rb, Cs) [180], NdBr₃–MBr (M = Li, Na, K, Rb, Cs) [181], TbBr₃–MBr (M = Li, Na, K, Rb, Cs) [34] i NdI₃–MI (M = Li, Na, K, Rb, Cs) [37]. Uzyskane wyniki eksperymentalne przedstawiono w tabelach 29–31. W tabelach tych zamieszczono również wartości parametru oddziaływania λ obrazującego energetyczną asymetrię badanych układów

$$\lambda = \frac{\Delta_{\text{miesz}}H}{x_1(1-x_1)} \tag{22}$$

gdzie:

 x_1 – ułamek molowy halogenku lantanowca(III), $\Delta_{\text{miesz}}H$ – molowa entalpia mieszania (kJ mol⁻¹).

Tabela 29. Molowe entalpie mieszania, $\Delta_{\text{miesz}}H/\text{ kJ mol}^{-1}$, w ciekłych układach LnCl₃–MCl

X_{LnCl_3}	$-\Delta_{\rm miesz}H/{\rm kJ}~{\rm mol}^{-1}$	$-\lambda/kJ \text{ mol}^{-1}$	x_{LnCl_3}	$-\Delta_{\rm miesz}H/{\rm kJ}~{\rm mol}^{-1}$	$-\lambda/kJ mol^{-1}$
	NdCl ₃ -NaCl	1124 K			
0,0511	1,65	34,01	0,576	6,15	25,19
0,0985	2,92	32,89	0,651	5,56	24,45
0,1481	3,79	30,01	0,702	5,40	25,84
0,200	5,79	36,20	0,751	4,24	22,71
0,275	6,06	30,38	0,800	3,52	21,99
0,350	6,32	27,77	0,849	2,99	23,39
0,424	6,46	26,43	0,899	1,65	18,29
0,499	6,74	26,94	0,950	0,94	19,89
		10/7			
	NdCl ₃ –KCl	1065 K			
0,090	5,87	71,75	0,427	16,70	68,26
0,129	8,20	73,08	0,478	16,13	64,64
0,161	9,03	66,98	0,501	16,80	67,20
0,191	10,74	69,62	0,510	16,69	66,79
0,204	10,76	66,29	0,560	15,37	62,38
0,226	13,28	76,01	0,650	13,24	58,21
0,251	13,80	73,39	0,654	13,08	57,76
0,278	15,30	76,14	0,688	13,44	62,59
0,307	16,30	76,67	0,694	10,71	50,47
0,350	16,00	70,30	0,749	9,69	51,56
0,356	16,39	71,49	0,829	6,57	46,24
0,397	17,46	72,91	0,838	6,29	46,36
0,401	15,66	65,21	0,922	3,66	50,71
0,424	14,90	61,03	0,943	2,72	50,85
	NdCl ₃ –RbCl	1122 K			
0,025	2,34	96,38	0,400	20,87	86,96

0,049	4,19	90,09	0,429	20,43	83,42
0.075	6.23	89.58	0.448	19.90	80.47
0 101	8 80	9717	0 490	18 72	74 91
0.123	9 77	90.63	0.526	17.78	71.31
0,120	11.46	80.83	0,520	17,70	68.97
0,150	14.99	02.17	0,555	16,51	68 75
0,200	14,00	95,17	0,339	10,51	08,75
0,250	17,20	91,73	0,050	15,25	07,00
0,251	17,54	93,42	0,702	12,88	61,56
0,274	18,19	91,53	0,752	11,77	63,13
0,299	19,63	93,67	0,799	9,14	56,87
0,326	20,69	94,18	0,852	8,10	64,06
0,352	20,66	90,56	0,901	5,28	59,19
0,374	20,59	87,91	0,950	2,68	56,74
	NdCl ₃ –CsCl	1122 K			
0,025	2,87	116,83	0,400	23,78	99,06
0.050	5.75	121.28	0.403	24.58	102.17
0.100	10.35	114.59	0.438	23.23	94.35
0 148	14 79	117.03	0 442	22,36	90,66
0 201	16.92	105 32	0 446	21,50	87.01
0.250	19.45	103,71	0.498	21,80	87.57
0,250	20.88	111 27	0,198	19.12	79 54
0,250	19.76	105 30	0,705	16 39	78.84
0,250	20.06	105,50	0,705	14.81	76,04
0,251	20,00	106,80	0,757	12.04	70,40
0,232	20,17	100,92	0,709	12,94	/2,80
0,299	22,09	105,48	0,820	9,80	00,83
0,300	22,40	106,73	0,804	8,08	/3,05
0,349	23,52	103,46	0,910	6,80	83,14
0,360	23,94	103,96	0,941	3,92	/0,8/
0,398	22,98	95,93			
	PrCl ₃ -NaCl	1122 K			
0,104	3,27	35,10	0,599	6,66	27,73
0,173	4,85	33,90	0,675	5,37	24,48
0,249	6,15	32,89	0,751	4,50	24,06
0,250	6,25	33,33	0,800	3,59	22,44
0.273	6,21	31,29	0,856	2,83	22,96
0.386	7.26	30.63	0,900	2.02	22.44
0,499	6,87	27,48	0,953	0,80	17,86
	PrCl ₃ –KCl	1122 K			
0.010	0.53	53.01	0 470	15 40	61.80
0.040	2,75	72.01	0 548	14 32	57 72
0.073	4 57	67 19	0,601	12.81	53 45
0.080	7,97	06.72	0,650	12,01	53, 1 5 52,75
0,009	1,09	90,72	0,039	14,13	55,15

0.150	10.30	81.14	0.711	9.74	47.41
0.194	12,40	79,00	0,748	7,43	39,48
0,250	14,00	74,56	0,801	6,49	40,82
0.273	15,50	78,22	0,850	3,79	29,74
0.350	16,31	71,52	0,897	1,23	13,28
0.400	15.92	66.35	0.947	2.01	40.05
- ,	- 3-	9		2 -	- ,
	DyCl ₃ -NaCl	1100 K			
0,050	2,32	49,21	0,501	6,21	24,80
0,099	5,39	60,42	0,550	5,62	22,71
0,102	5,83	41,70	0,596	5,04	20,93
0,148	5,83	46,13	0,651	4,45	19,61
0,153	6,26	48,44	0,703	3,48	16,72
0,194	7,51	48,02	0,748	4,18	22,20
0,252	7,65	40,61	0,801	2,92	18,30
0,298	7,80	37,31	0,851	2,47	19,54
0,353	7,21	31,62	0,899	1,91	21,03
0,421	6,96	28,50	0,950	0,73	15,42
	DyCl ₃ –KCl	1070 K			
0,025	2,74	112,11	0,394	20,81	87,02
0,050	4,43	93,31	0,432	20,05	81,33
0,075	7,05	102,14	0,496	16,84	67,11
0,101	11,61	127,05	0,546	13,91	56,12
0,125	12,30	112,41	0,595	13,06	53,80
0,150	13,73	107,12	0,676	10,41	47,41
0,174	15,94	111,32	0,698	8,83	41,93
0,202	16,21	100,04	0,752	7,50	40,20
0,226	18,13	104,15	0,792	5,26	33,84
0,249	20,11	107,21	0,875	3,82	34,91
0,276	19,30	96,44	0,946	1,89	37,05
0,303	21,02	99,25			
	TbCl ₃ -LiCl	1109 K			
0,0286	0,38	13,53	0,3985	2,38	9,95
0,0557	0,88	16,75	0,5010	1,26	5,06
0,0589	0,81	14,61	0,5035	1,49	5,98
0,1312	2,03	17,83	0,6016	0,89	3,70
0,1792	2,35	15,97	0,7074	0,60	2,91
0,2428	2,35	12,79	0,8021	0,27	1,69
0,3040	2,31	10,93	0,9017	0,08	0,91
0,3521	2,31	10,14			- 3
	TbCl ₃ –NaCl	1109 K			
0,0472	2,37	52,65	0,5301	8,65	34,74

0.1011	5.34	58.77	0.5767	7.50	30.73
0.1471	6.57	52.25	0.5960	6.42	26.68
0.2020	8.01	49.66	0.6498	6.40	28.11
0,2528	9.21	48 74	0 7118	5.12	24 94
0.2826	9.42	46 47	0 7552	4 17	22,53
0.3509	9.71	42 64	0,7952	3 26	20.04
0 3912	9.92	41.65	0.8534	2 58	20,01
0.4368	9.24	37 55	0,0007	1 71	19.14
0.4691	9.27	37,33	0,9007	1,71	17,14
0,4071),21	57,25			
	TbCl ₃ –KCl	1109 K			
0,0240	2,40	100,82	0,4232	19,30	79,06
0,0474	4,85	107,37	0,4704	17,83	71,57
0,0983	8,47	95,56	0,4981	16,97	67,88
0,1239	9,70	89,37	0,5489	15,72	63,45
0,1676	13,02	93,34	0,6036	13,60	56,85
0,1741	14,10	98,06	0,6501	12,40	54,52
0,1976	16,75	105,63	0,6508	12,26	53,93
0,2237	18,59	107,08	0,6518	12,47	54,97
0,2523	19,76	104,73	0,7147	11,01	54,01
0,2755	19,82	99,31	0,7641	8,22	45,62
0,3032	19,87	94,07	0,8275	7,33	51,35
0,3243	20,60	93,99	0,8480	6,46	51,14
0,3436	20,63	91,48	0,9069	4,44	52,56
0,3686	20,44	87,85	0,9532	2,11	47,23
	TbCl ₃ –RbCl	1175 K			
a a a (a	• • • •			66 (6)	~~~~~
0,0240	2,00	85,53	0,5004	22,43	89,77
0,0498	5,54	117,05	0,5390	19,70	79,30
0,1011	11,86	130,52	0,5693	19,11	77,94
0,1365	13,59	115,36	0,6437	16,34	71,27
0,1711	17,09	120,53	0,7035	14,38	68,96
0,1998	19,38	121,23	0,7441	12,12	63,64
0,2490	22,32	119,35	0,7951	9,98	61,29
0,2989	23,89	113,99	0,8497	7,53	58,98
0,3553	25,77	112,50	0,8997	5,19	57,50
0,3954	25,99	108,75	0,9490	2,44	50,43
0,4441	24,38	98,74			
	TbCl ₃ –CsCl	1175 K			
0,0239	2,83	121,44	0,1728	19,03	133,15
0,0494	6,19	131,77	0,2224	23,66	136,80
0,1026	9,86	107.04	0,2546	25,78	135.84
0,1250	14,23	130.07	0,2612	24,87	128.88
0,1717	19,93	140,13	0,3002	27,67	131.73
0,3476	28,00	123,47	0,7049	16,18	77,77

0,4176	28,77	118,30	0,7498	12,58	67,08
0,4484	28,00	113,22	0,8005	10,64	66,62
0,4995	26,50	106,00	0,8478	9,27	71,87
0,5675	23,57	96,04	0,8996	6,37	70,48
0,5939	19,60	81,26	0,9528	2,77	61,57
0,6448	17,60	76,85			

Tabela 30. Molowe entalpie mieszania, $\Delta_{miesz}H/kJ \text{ mol}^{-1}$, w ciekłych układach LnBr₃–MBr

X _{LnBr₃}	$-\Delta_{\rm miesz} H/{\rm kJ}~{\rm mol}^{-1}$	$-\lambda/kJ \text{ mol}^{-1}$	x_{LnBr_3}	$-\Delta_{\rm miesz}H/{\rm kJ}~{\rm mol}^{-1}$	$-\lambda/kJ \text{ mol}^{-1}$
	LaBr ₃ –LiBr	1081 K			
0,1203	0,33	3,14	0,6061	0,70	2,92
0,2010	0,59	3,68	0,6962	0,48	2,27
0,2979	0,69	3,30	0,8020	0,24	1,50
0,4141	0,96	3,97	0,9031	0,12	1,37
0,4999	0,70	2,82	0,9511	0,04	0,86
	LaBr ₃ –NaBr	1081 K			
0,0497	1,09	23,16	0,4816	4,67	18,72
0,0999	2,20	24,47	0,5475	4,53	18,30
0,1204	2,73	25,81	0,6014	4,06	16,95
0,1469	3,29	26,31	0,6523	3,85	16,97
0,2314	4,14	23,27	0,7567	2,79	15,15
0,2540	4,38	23,12	0,7900	2,48	14,92
0,3055	4,80	22,64	0,8594	1,86	15,37
0,3478	4,90	21,60	0,8950	1,22	13,00
0,4111	4,71	19,46			
	LaBr ₃ –KBr	1081 K			
0,0241	1,34	56,97	0,4921	11,27	45,11
0,0497	2,74	57,99	0,5495	12,39	50,07
0,0992	5,28	59,13	0,5863	11,52	47,48
0,1497	7,83	61,55	0,6495	9,45	41,49
0,2037	9,27	57,17	0,7035	9,57	45,88
0,2485	11,30	60,51	0,7542	6,30	34,00
0,3005	11,85	56,39	0,8022	6,34	39,96
0,3418	12,41	55,14	0,8484	5,28	41,03
0,3471	12,03	53,07	0,8997	3,79	41,96
0,4005	12,33	51,35	0,9010	2,28	25,53
0,4521	12,64	51,04	0,9492	1,82	37,85
		1001 17			
	LaBr ₃ –KbBr	1081 K			
0.0490	2.26	72.22	0.4514	17.02	60.56
0,0489	3,30 5.02	12,22	0,4514	17,23	09,30
0,0749	5,03	/2,04	0,3017	15,/5	02,94

0.0980	7.51	84.95	0.5378	15.00	60.34
0.1467	11.09	88.58	0.5925	14.36	59.49
0.2004	11.96	74.67	0.6501	13.07	57.48
0 2496	15.32	81.82	0 7391	9.87	51 17
0,2517	16.99	90.21	0.8012	7 09	44 53
0,3009	17 38	82.60	0.8449	4 93	37 59
0.3513	17,50	76 57	0.8952	3.16	33,70
0,5515	17,15	10,51	0,0952	5,10	55,10
	LaBr ₃ –CsBr	1081 K			
0,0249	2,23	91,76	0,4609	19,60	78,91
0,0495	3,91	83,19	0,5028	18,64	74,56
0,0778	6,02	83,95	0,5445	17,89	72,12
0,1176	9,74	93,88	0,5634	16,24	66,01
0,1257	10,86	98,86	0,6016	16,67	69,57
0,1495	13,05	102,65	0,6558	15,18	67,25
0,1965	15,28	96,76	0,7001	13,93	66,33
0,2233	16,42	94,66	0,7225	12,20	60,85
0,2357	14,87	82,54	0,7861	10,45	62,16
0,2514	17,99	95,57	0,8129	8,23	54,12
0,2996	18,19	86,67	0,8594	7,03	58,21
0,3254	19,07	86,85	0,9047	4,73	54,81
0,3416	19,61	87,19	0,9499	2,62	54,97
0,3983	19,53	81,51		,	,
	NdBr ₃ -LiBr	1063K			
0.095	0.26	3 1 1	0 604	0.33	1 30
0,0205	0,20	4 05	0,604	0,33	0.93
0,299	0,69	3 30	0,801	0.01	0,09
0,299	0,69	2 91	0,899	-0.04	-0.48
0,499	0.43	1 70	0,077	-0,04	-0,40
0,199	NdDr NoDr	1062 V	0,720	0,00	0,20
	INUDI3-INADI	1003 K			
0,022	0,90	42,30	0,503	4,87	19,50
0,048	1,76	38,81	0,556	4,50	18,21
0,062	2,02	34,60	0,601	4,61	19,20
0,102	2,55	27,92	0,647	3,99	17,42
0,151	3,23	25,20	0,706	3,37	16,23
0,200	4,23	26,52	0,749	2,66	14,10
0,251	5,02	26,74	0,804	2,24	14,22
0,294	5,07	24,43	0,850	1,67	13,11
0,347	5,60	24,71	0,901	1,23	13,83
0,400	5,41	22,50	0,949	0,61	12,62
0,453	5,39	21,80			-
	NdBr ₃ –KBr	1063 K			
0,025	0,99	40,10	0,451	11,97	48,40

0.049	3.71	79.02	0.501	11.49	46.02
0.071	5.06	76.75	0.550	11.31	45.70
0.100	6.20	69.13	0.601	10.59	44.11
0.125	7.43	67.80	0.653	9.40	41.52
0 149	9 46	74 72	0,707	9.06	43 70
0 198	9.06	57.03	0,752	7.66	41 10
0,170	10.73	57,05	0,801	6.46	40.61
0,247	11.42	54.20	0.854	1 98	40,01
0,302	11,42	51.32	0,854	4,90	40,02
0,332	12.44	51,52	0,900	5,51	20,80
0,401	12,44	51,81	0,933	1,/1	38,32
	NdBr ₃ -RbBr	1063 K			
0.024	2.01	86 10	0 474	16 55	66 41
0.050	4 22	89.42	0 501	15 34	61 42
0.075	6.11	88 51	0,552	14.81	59.93
0,075	8.05	89.01	0,601	13.26	55 30
0.123	10.63	98.80	0,627	12.00	51 33
0,120	12 58	98 70	0,650	10.58	46 51
0,175	14.40	90,70	0,000	0 32	40,51
0,175	16.08	100.2	0,707	7.21	38.07
0,201	16.94	80.41	0,734	/,21	21.02
0,232	10,04	89,41	0,799	4,97	31,03 42,51
0,303	17,47	82,80 76.40	0,851	5,40 2,75	42,51
0,331	17,41	70,40	0,900	2,73	50,05
0,399	17,85	/4,52	0,955	1,89	41,94
0,455	10,87	08,11			
	NdBr ₃ -CsBr	1063 K			
0,039	2,93	77,40	0,500	18,81	75,20
0,051	5,08	105,62	0,552	20,07	81,12
0,097	11,95	136,31	0,601	17,15	71,53
0,153	14,30	110,60	0,650	15,78	69,31
0,199	16,83	105,62	0,701	14,70	70,12
0,257	17,98	94,10	0,759	12,43	67,81
0.297	19.16	91.82	0.804	10.59	67.14
0.354	20.08	87.83	0.847	7.31	56,40
0.400	19.66	81.94	0.903	5.63	64.51
0,450	19,79	80,04	0,951	3,22	69,13
	TbBr ₃ –LiBr	1113 K			
0 0899	0.54	6 62	0 5458	0.14	0.56
0 1434	0.44	3 57	0,5458	0.54	2 25
0.20/3	1 48	9.12	0,5750	-0.55	-2,25
0,2045	1,70	5,12 6 10	0,0972	-0,33	-2,39
0.3550	1,20	4 01	0,8077	-0,44	-2,04
0,3333	1,12	4,71	0,0972	-0,45	-4,00
0,4124	1,04	4,31	0,0704	-0,33	-0,04

	TbBr ₃ –NaBr	1113 K			
0.0512	1.77	36.44	0.3928	7.77	32.57
0.1011	4.12	45.36	0.5056	6.89	27.57
0.1465	5.31	42,43	0.5921	5.35	22.15
0.2008	7.23	45.05	0.6526	3.99	17.59
0.2257	8.01	45.83	0.6955	3.02	14.25
0.2960	8.18	39.25	0.7989	1.87	11.65
0,3465	8,30	36,65	0,8960	0,79	8,45
	TbBr ₃ –KBr	1113 K			
0,0462	2,99	67,97	0,5565	12,71	51,52
0,0996	6,86	76,52	0,5770	13,53	55,42
0,1521	10,65	82,62	0,6025	10,83	45,22
0,1993	13,61	85,29	0,6072	10,90	45,69
0,2218	14,25	82,59	0,6369	10,20	44,12
0,2273	16,41	93,45	0,6579	8,43	37,45
0,2449	15,92	86,09	0,6923	8,60	40,37
0,2694	17,13	87,02	0,7460	7,34	38,76
0,3008	17,24	81,99	0,7810	7,45	43,54
0,3483	17,16	75,58	0,7986	5,91	36,72
0,4059	15,93	66,05	0,8499	4,59	35,95
0,4448	16,23	65,73	0,9004	3,00	33,46
0,5027	13,59	54,34	0,9384	2,18	37,68
0,5369	13,94	56,08	0,9585	1,29	32,45
	TbBr ₃ –RbBr	1113 K			
0,0463	3,33	75,48	0,4482	18,93	76,56
0,0720	6,42	96,10	0,5087	17,30	69,20
0,1023	7,86	85,54	0,5462	16,41	66,22
0,1486	11,99	94,75	0,6094	14,28	59,98
0,1752	13,73	95,03	0,6668	11,38	51,23
0,2425	17,23	93,80	0,6778	11,82	54,11
0,2497	17,60	93,92	0,7513	8,59	45,98
0,2516	18,86	100,14	0,7645	10,38	57,66
0,2974	19,01	90,97	0,8098	6,19	40,21
0,3202	19,43	89,25	0,8473	5,13	39,62
0,3565	19,78	86,23	0,8974	3,32	36,05
0,3989	18,43	76,88	0,9237	1,97	27,92
0,4009	18,24	75,93	0,9552	1,69	39,54
	TbBr ₃ –CsBr	1113 K			
0,0503	5,10	106,87	0,5015	19,81	79,24
0,0926	8,47	100,86	0,5436	16,98	68,46
0,1045	9,24	98,79	0,6011	15,71	65,50

0,1523	14,46	111,98	0,6400	14,07	61,08
0,1983	17,62	110,82	0,7015	11,81	56,40
0,2500	19,39	103,42	0,7420	9,68	50,58
0,3029	22,02	104,30	0,8053	7,85	50,05
0,3523	24,09	105,58	0,8514	5,92	46,80
0,3956	23,50	98,28	0,9044	3,75	43,42
0,4451	21,92	88,75	0,9557	2,01	47,50

Tabela 31. Molowe entalpie mieszania, $\Delta_{\text{miesz}}H/kJ \text{ mol}^{-1}$, w ciekłych układach LnI₃–MI

XI nIa	$-\Delta_{\rm minu}H/kJ {\rm mol}^{-1}$	$-\lambda/kJ \text{ mol}^{-1}$	$x_{I n I_2}$	$-\Delta_{\rm minor}H/\rm kJ~mol^{-1}$	$-\lambda/kJ \text{ mol}^{-1}$
··· Ling	-mesz - mon		·· Ling	-imesza i i ino intoi	
	NdI ₃ -LiI	1068 K			
	2				
0,0501	0,21	4,52	0,4461	0,47	1,91
0,1050	0,40	4,23	0,5014	0,00	0,00
0,1527	0,81	6,28	0,5044	0,63	2,52
0,1993	1,27	7,95	0,5539	-0,20	-0,80
0,2507	1,24	6,62	0,6564	-0,67	-2,95
0,2959	1,08	5,20	0,6976	-1,06	-5,03
0,3570	0,70	3,07	0,8291	-0,85	-5,98
0,3919	0,64	2,69			
	NdL NoL	1069 V			
	Indi ₃ —Indi	1008 K			
0,0474	1,16	25,69	0,5046	4,82	19,28
0,1015	3,05	33,42	0,5405	4,56	18,36
0,1546	3,22	24,64	0,6457	4,15	18,15
0,2428	4,46	24,27	0,7137	3,71	18,14
0,2585	4,27	22,28	0,7985	2,92	18,12
0,2924	4,51	21,80	0,8734	1,87	16,96
0,4231	4,74	19,41			
	NdI ₃ –KI	1068 K			
0.0255	1.49	59.92	0.4434	9,98	40.45
0.0472	2.25	49.99	0.4848	9.04	36.19
0,1242	7,19	66,08	0,5512	8,85	35,78
0,1502	8,50	66,59	0,6033	8,45	35,31
0,2023	8,44	52,32	0,6799	6,88	31,61
0,2488	9,74	52,13	0,7765	5,43	31,28
0,2563	9,95	52,18	0,8515	3,85	30,45
0,2973	8,83	42,28	0,8862	3,36	33,31
0,3447	10,37	45,91	0,9023	2,35	26,67
0,3952	10,19	42,64	0,9551	1,33	30,97
	NdI ₃ –RbI	1068 K			
0,050	3,84	83,30	0,3962	15,76	67,17

0,1015	8,43	84,88	0,4973	14,42	57,32
0,1223	8,98	84,95	0,5531	13,03	52,16
0,1476	9,83	84,63	0,6139	11,19	47,06
0,1771	12,82	83,77	0,6530	9,95	44,15
0,1938	13,20	83,08	0,7105	7,85	40,49
0,2495	14,69	79,86	0,7461	7,74	38,61
0,3070	15,32	75,41	0,8092	5,77	36,06
0,3198	15,37	74,30	0,8572	4,02	34,76
0,3565	17,80	70,97	0,9193	2,50	33,85
	NdI ₃ –CsI	1068 K			
0,051	4,92	103,62	0,4020	19,69	81,90
0,051 0,1002	4,92 8,25	103,62 91,53	0,4020 0,4533	19,69 16,29	81,90 65,74
0,051 0,1002 0,1492	4,92 8,25 13,13	103,62 91,53 103,47	0,4020 0,4533 0,5546	19,69 16,29 14,24	81,90 65,74 57,66
0,051 0,1002 0,1492 0,1945	4,92 8,25 13,13 16,38	103,62 91,53 103,47 104,58	0,4020 0,4533 0,5546 0,5887	19,69 16,29 14,24 12,50	81,90 65,74 57,66 51,64
0,051 0,1002 0,1492 0,1945 0,2515	4,92 8,25 13,13 16,38 19,15	103,62 91,53 103,47 104,58 101,73	0,4020 0,4533 0,5546 0,5887 0,6908	19,69 16,29 14,24 12,50 9,47	81,90 65,74 57,66 51,64 44,33
0,051 0,1002 0,1492 0,1945 0,2515 0,3005	4,92 8,25 13,13 16,38 19,15 21,26	103,62 91,53 103,47 104,58 101,73 101,16	0,4020 0,4533 0,5546 0,5887 0,6908 0,7996	19,69 16,29 14,24 12,50 9,47 6,81	81,90 65,74 57,66 51,64 44,33 42,51
0,051 0,1002 0,1492 0,1945 0,2515 0,3005 0,3011	4,92 8,25 13,13 16,38 19,15 21,26 20,80	103,62 91,53 103,47 104,58 101,73 101,16 98,86	0,4020 0,4533 0,5546 0,5887 0,6908 0,7996 0,8920	19,69 16,29 14,24 12,50 9,47 6,81 3,62	81,90 65,74 57,66 51,64 44,33 42,51 37,59
0,051 0,1002 0,1492 0,1945 0,2515 0,3005 0,3011 0,3479	4,92 8,25 13,13 16,38 19,15 21,26 20,80 19,21	103,62 91,53 103,47 104,58 101,73 101,16 98,86 84,70	0,4020 0,4533 0,5546 0,5887 0,6908 0,7996 0,8920 0,9501	19,69 16,29 14,24 12,50 9,47 6,81 3,62 1,84	81,90 65,74 57,66 51,64 44,33 42,51 37,59 38,84

Proces mieszania ciekłych składników układów podwójnych LnX₃–MX jest procesem egzotermicznym w całym zakresie stężeń. Typową zależność molowej entalpii mieszania od stężenia halogenku lantanowca(III) przedstawiono na rys. 71 na przykładzie układów TbCl₃–MCl. Minimum molowej entalpii mieszania przesunięte jest w kierunku mieszanin bogatszych w halogenek litowca. Jest ono osiągane dla ułamka molowego halogenku lantanowca, x_{LnX_3} , wynoszącego 0,3–0,4. Ze wzrostem promienia jonowego litowca zmienia się zarówno wartość entalpii mieszania, jak i położenie minimum. Im mniejszy jest promień jonowy litowca, tym mniejsza jest bezwzględna wartość entalpii mieszania, a minimum przesuwa się w kierunku składów bogatszych w halogenek litowca.

Drugim czynnikiem wpływającym na wielkość entalpii mieszania jest promień jonowy lantanowca. Jak wynika z rys. 72, zmniejszanie się promienia jonowego lantanowca, następujące ze wzrostem liczby atomowej Z, powoduje zarówno wzrost bezwzględnej wartości entalpii mieszania jak i przesunięcie się minimum entalpii w kierunku składów bogatszych w halogenek litowca.

Również promień jonowy chlorowca wpływa zdecydowanie na wielkość entalpii mieszania. Ze wzrostem tego promienia (od chlorków do jodków) wartość bezwzględna molowej entalpii mieszania ulega wyraźnemu zmniejszeniu. Na przykład dla układów NdX₃–CsX, minimum molowej entalpii mieszania wynosi –23,4; –20,1 i –19,7 kJ mol⁻¹, odpowiednio dla układu chlorkowego, bromkowego i jodkowego.

Rys. 71. Molowa entalpia mieszania w ciekłych układach TbCl₃–MCl Fig. 71. Molar mixing enthalpy in liquid TbCl₃–MCl systems

Entalpia mieszania w układach zawierających kationy o różnych ładunkach i wspólny anion zależy głównie od rozmiaru i ładunków kationów. Wpływ wspólnego

anionu na entalpię mieszania ma znaczenie drugorzędne. Hong i Kleppa [182] wykazali, że zależność ta jest związana ze "względnym potencjałem jonowym", Δ IP, kationów występujących w układzie

$$\Delta IP = z_1 / r_1 - z_2 / r_2 \tag{23}$$

gdzie: z_1 , z_2 , r_1 i r_2 oznaczają odpowiednio wartościowość i promienie jonowe kationów 1 i 2.

Potencjał ten odzwierciedla zmianę oddziaływań kulombowskich będących efektem mieszania i polaryzację wspólnego anionu przez sąsiadujące z nim kationy. Im większy jest "względny potencjał jonowy", tym bardziej egzotermiczny jest proces mieszania i większa bezwzględna wartość entalpii mieszania. Wspomniani wyżej autorzy wykazali również, że dla wielu układów stopionych soli zawierających jony o różnych ładunkach, istnieje liniowa zależność między "względnym potencjałem jonowym" i wartością graniczną parametru oddziaływania $\lambda_{(x\to 0)}$.

Rys. 73. Zależność granicznej wartości parametru oddziaływania λ od "względnego potencjału jonowego" w układach TbX₃–MX
Fig. 73. Dependence of the limiting interaction parameter on "relative ionic potential" in TbX₃–MX liquid mixtures

Zależność ta spełniona jest również w badanych układach LnX₃–MX. Na rysunku 73 przedstawiono zależność granicznej wartości parametru oddziaływania $\lambda_{(x\to 0)}$ dla układów TbCl₃–MCl i TbBr₃–MBr od wielkości "względnego potencjału jonowego" Δ IP obliczonego według równania (23), gdzie z_1 i r_1 – wartościowość i promień jonowy jonu lantanowca Ln³⁺ a z_2 i r_2 – wartościowość i promień jonowy kationu litowca M⁺. Ze zwiększeniem promienia jonowego kationu litowca wzrasta wartość "względnego potencjału jonowego" Δ IP, co powoduje wzrost bezwzględnej wartości parametru oddziaływania $\lambda_{(x\to 0)}$. Jednakże przy tej samej wartości "względnego potencjału jonowego" wyniki uzyskane dla układów chlorkowych (rys. 73 – linia przerywana) różnią się od wyników uzyskanych dla układów bromkowych (rys. 73 – linia ciągła). Bezwzględna wartość parametru oddziaływania $\lambda_{(x\to 0)}$ w układach chlorkowych jest większa niż w analogicznych układach bromkowych. Zależność ta powodowana jest wzrostem promienia jonowego chlorowca podczas przejścia z układów chlorkowych do układów bromkowych. Promień ten nie jest uwzględniany we "względnym potencjale jonowym" Δ IP. Jego zmiana powoduje zmianę oddziaływań kulombowskich w roztworze, rezultatem czego są różne wartości parametru oddziaływania λ .

Według Kleppy [183] dodatni człon α , w wyrażeniu opisującym zależność parametru oddziaływania $\lambda_{(x\to 0)}$ od "względnego potencjału jonowego", jest wynikiem dyspersyjnego oddziaływania Londona–van der Waalsa pomiędzy kationami znajdującymi się w drugiej sferze koordynacyjnej i efektu sferycznego związanego z mieszaniem dwu kationów o różnych rozmiarach i ładunkach. Ujemna wartość członu $\beta\Delta$ IP wynika głównie z oddziaływań kulombowskich i polaryzacji wspólnego anionu. W układach o małych wartościach Δ IP, wartość dodatniego członu α może być większa od ujemnego członu $\beta\Delta$ IP, efektem czego jest dodatnia wartość entalpii mieszania (proces endotermiczny). Zjawisko takie występuje w układzie DyCl₃–PrCl₃ [178]. W układzie tym entalpia mieszania przyjmuje dodatnie wartości w całym zakresie składów ciekłej mieszaniny. We wszystkich badanych układach LnX₃–MX dominującym zjawiskiem są oddziaływania kulombowskie i polaryzacyjne, efektem czego jest ujemna wartość molowej entalpii mieszania.

Typową zależność parametru oddziaływania λ , $\lambda = \Delta_{mix}H/(x_{LnX_3}(1 - x_{LnX_3}))$, obrazującego energetyczną asymetrię badanych układów, przedstawiono na rys. 74. Wartości współczynników wielomianu opisującego zależność parametru oddziaływania λ od składu mieszaniny (dla badanych układów) zestawiono w tabeli 32. We wszystkich układach LnX₃–MX parametr oddziaływania jest wielkością ujemną. Jego bezwzględna wartość wzrasta zdecydowanie wraz ze wzrostem promienia jonowego kationu litowca, przy czym niezależnie od układu jest ona większa w obszarze bogatszym w halogenek litowca.

Charakter zależności parametru oddziaływania od składu zależy od halogenku litowca i jest praktycznie niezależny od halogenku lantanowca. W układach z halogenkami litu zależność ta jest praktycznie linią prostą, w układach z halogenkami sodu występuje szerokie rozmyte minimum, a począwszy od halogenków potasu pojawia się wyraźne minimum usytuowane przy ułamku molowym halogenku lantanowca, x_{LnX_3} , wynoszącym 0,2–0,3.

Układ	A/ kJ mol ⁻¹	B/ kJ mol ⁻¹	$C/ \text{ kJ mol}^{-1}$	$D/ \text{ kJ mol}^{-1}$	$E/ \text{ kJ mol}^{-1}$
NdCl ₃ –NaCl	-35,34	22,48	-16,43	10,88	-
NdCl ₃ –KCl	-61,84	-100,30	265,03	-152,96	-
NdCl ₃ –RbCl	-88,88	-78,84	303,96	-198,68	
NdCl ₃ –CsCl	-118,29	3,28	188,70	-153,14	-
PrCl ₃ -NaCl	-37,14	17,86	_	_	_
PrCl ₂ –KCl	-65.99	-119.21	333.26	-172.00	_
			,	_,_,	
DyCl ₃ -NaCl	-56,69	64,87	16,19	-46,32	_
DyCl ₃ –KCl	-103,18	-116,39	566,48	-392,28	-
	15 120	10 520	07.000	74.244	
TbCl ₃ -LiCl	-15,139	-12,539	97,286	-/4,266	—
TbCl ₃ –NaCl	-55,697	3,929	119,561	-8/,980	_
TbCl ₃ –KCl	-96,084	-101,605	464,656	-326,083	—
TbCl ₃ –RbCl	-97,957	-237,982	723,731	-451,923	-
TbCl ₃ –CsCl	-113,442	-225,381	711,444	-445,870	-
LaBr ₃ –LiBr	-3.07	-3.05	5.74	_	_
LaBr ₃ –NaBr	-24.60	-5.50	51.93	-36.77	_
LaBr ₃ –KBr	-57.44	-27.25	127.02	-78.63	_
LaBr ₃ -RbBr	-63.66	-211.52	715.75	-729.74	251.83
LaBr ₃ –CsBr	83.19	-158.59	699.12	-874.34	367.34
)	,		
NdBr ₃ -LiBr	-2,70	-8,85	27,10	-14,67	_
NdBr ₃ –NaBr	-40,32	86,29	-123,01	67,84	_
NdBr ₃ –KBr	-66,64	2,95	116,50	-95,34	_
NdBr ₃ –RbBr	-80,98	-210,90	891,02	949,71	311,40
NdBr ₃ -CsBr	-88,67	-317,81	1504,02	-2102,20	948,91
ThDr. LiDr	2.07	27 49	82 10	11 75	
ThDr NoDr	-5,97	-27,48	82,10 268 56	-44,75	-
ThDr VDr	-40,32	-38,80	208,30	-217,27	59,50
ThDr. DhDr	-39,32	-526,27	1227,90	-1391,78	255.16
TbBr ₃ –KbBr	-/2,54	-258,21	889,70	-855,64	255,16
1bBr ₃ –CsBr	-80,34	-334,48	1153,79	-1138,92	352,46
NdI ₃ –LiI	-2,43	-43,09	137,07	-87,86	_
NdI ₃ –NaI	-31,76	43,14	-41,18	11,67	_
NdI ₃ –KI	-60,57	-24,28	342,29	-505,56	217,16
NdI ₃ –RbI	-79,50	-101,21	530,23	-568,91	185,62
NdI ₃ –CsI	-90,07	-236,47	1071,31	-1216,10	432,49

Tabela 32. Współczynniki wielomianu opisującego zależność parametru oddziaływania λ od składu mieszaniny w układach LnX₃–MX: λ (kJ mol⁻¹) = $A + Bx + Cx^2 + Dx^3 + Ex^4$ (x = ułamek molowy LnX₃)

Rys. 74. Zależność parametru oddziaływania λ od ułamka molowego TbBr₃ w układach TbBr₃–MBr Fig. 74. Dependence of interaction parameter λ on mole fraction of TbBr₃ in TbBr₃–MBr liquid systems

Opierając się na danych literaturowych dotyczących możliwości tworzenia się w stopionych solach kompleksów i ich struktury [139, 140, 184–187], minimum to można przypisać tworzeniu się w badanych układach jonów kompleksowych LnX_6^{3-} . Jony te są formą dominującą w obszarze składów bogatych w halogenek litowca. Wzrost stężenia halogenku lantanowca prowadzi do zmiany struktury stopionej soli; czyste formy oktaedryczne ulegają zastąpieniu przez formy polimeryczne, w których oktaedry LnX_6^{3-} łączą się ze sobą poprzez jony chlorowca.

Biorąc pod uwagę fakt tworzenia się jonów kompleksowych LnX_6^{3-} obliczono molowe entalpie tworzenia ciekłych mieszanin o ułamku molowym halogenku lantanowca, x_{LnX_3} , równym 0,25. Tworzenie tych mieszanin ze stopionych halogenków zachodzi według reakcji

$$3 MX_{(c)} + LnX_{3(c)} = (3 MX, LnX_3)_{(c)}$$

Przykładowe wyniki uzyskane dla układów NdCl₃–MCl, NdBr₃–MBr i NdI₃–MI przedstawiono w tabeli 33.

Zmieszanie ciekłego halogenku lantanowca z ciekłym halogenkiem litowca prowadzi do powstania oktaedrycznych kompleksów LnX_6^{3-} . Powstawanie takich form związane jest z wprowadzeniem dodatkowych jonów chlorowca w sferę koordynacyjną jonu Ln^{3+} . Potencjalnym źródłem tych jonów jest halogenek litowca. Niemniej jednak obecne w układzie kationy litowca również wykazują tendencję do tworzenia sfery koordynacyjnej składającej się z jonów chlorowca. Rezultat tego "współzawodnictwa" zależy od względnej siły przyciągającej kationu litowca. W grupie litowców siła ta maleje w sekwencji $Li^+ > Na^+ > K^+ > Rb^+ > Cs^+$, a więc ze wzrostem promienia jonowego. Tak więc możliwość tworzenia się oktaedrycznych kompleksów lantanowca i ich stabilność będzie wzrastać według sekwencji LiX < NaX < KX < RbX < CsX. Wzrost stabilności tych kompleksów powoduje wzrost molowej entalpii tworzenia ciekłych mieszanin (3 MX, LnX₃) (tabela 33). Stabilność omawianych kompleksów zależy również od promienia jonowego chlorowca. Wzrost promienia jonowego (Cl⁻ < Br⁻ < Γ) powoduje zmniejszenie stabilności kompleksów LnX₆³⁻, a więc i zmniejszenie molowej entalpii tworzenia ciekłych mieszanin (3 MX, LnX₃).

Tabela 33. Molowa entalpia tworzenia, $\Delta_{tworz}H$, stopów solnych o składzie (3MX, NdX₃)_{(c),T}

MX	$\Delta_{\text{tworz}} H (M_3 \text{NdCl}_6)_{(c),1122}$	$\Delta_{\text{tworz}} H (M_3 \text{NdBr}_6)_{(c),1122}$	$\Delta_{\text{tworz}} H (M_3 \text{NdI}_6)_{(c),1068}$	r_{M^+}
	kJ mol $^{-1}$	$kJ mol^{-1}$	$kJ mol^{-1}$	pm [32] ^a
LiX	-6,9 (1065 K)	-2,6	-4,5	74
NaX	-24,8	-19,4	-17,5	102
KX	-55,2 (1065 K)	-43,9	-39,2	138
RbX	-68,8	-65,7	-59,9	149
CsX	-80,8	-73,2	-74,6	170

^a $r_{\rm CI}$ = 181 pm, $r_{\rm Br}$ = 196 pm , $r_{\rm I}$ = 216 pm, $r_{\rm Nd^{3+}}$ = 99,5 pm [124]

6. Podsumowanie

Prezentowana praca jest wkładem autora do międzynarodowego programu naukowego poświeconego badaniom właściwości termodynamicznych, struktury i przewodnictwa elektrycznego halogenków lantanowców i aktynowców oraz układów podwójnych halogenki lantanowców (aktynowców)-halogenki litowców. Program ten został zainicjowany na początku lat 90. współpracą pomiędzy Instytutem Chemii Nieorganicznej i Metalurgii Pierwiastków Rzadkich Politechniki Wrocławskiej i Institut Universitaire des Systemes Thermiques Industriels Université de Provence w Marsylii. Z czasem do jego realizacji włączyły się grupy badawcze z Japonii (Research Laboratory for Nuclear Reactors – Tokyo Institute of Technology oraz Chiba University) i Wielkiej Brytanii (University of Abertay – Dundee). Powstał więc miedzynarodowy zespół badawczy, mający do swojej dyspozycji szeroki wachlarz technik eksperymentalnych (analiza termiczna, kalorymetria, różnicowa kalorymetria skaningowa, dyfrakcja rentgenowska, dyfrakcja neutronowa, spektroskopia ramanowska, pomiary gęstości i przewodnictwa elektrycznego stopionych soli) oraz możliwość rozwiązywania problemów teoretycznych (optymalizacja danych eksperymentalnych, symulacje metodą dynamiki molekularnej). Końcowym celem pracy tego zespołu jest stworzenie kompletnej Bazy Danych dla halogenków lantanowców i aktynowców. Baza ta tworzona jest sukcesywnie wraz z postępem prowadzonych badań, przy wsparciu National Institute of Standards and Technology (NIST, USA) i Centre National de la Recherche Scientifique (CNRS, France).

W ramach podziału zadań przewidzianych we wspomnianym wyżej międzynarodowym programie naukowym autor prezentowanej pracy realizuje badania właściwości termodynamicznych i przewodnictwa elektrycznego zarówno czystych halogenków lantanowców (chlorki, bromki, jodki), jak i układów podwójnych halogenki lantanowców–halogenki litowców. Dotychczas osiągnięte przez niego wyniki przedstawione zostały w niniejszej pracy.

Rozpoczęcie badań poprzedzono wnikliwą analizą istniejących danych literaturowych. Okazało się, że były one niezwykle skąpe i niekompletne, a dość często ze sobą sprzeczne. Nawet tak podstawowe wielkości jak temperatura i entalpia topnienia czystych halogenków lantanowców cechowały się dużą rozbieżnością, w zależności od źródła pochodzenia informacji. Przyczyną tych rozbieżności nie mogły być jedynie stosowane metody pomiarowe. Biorąc pod uwagę fakt, że taka sama metoda badawcza dawała różne wyniki (np. różnice temperatury topnienia dochodzące do kilkudziesięciu stopni), przyjęto, że decydującym czynnikiem wpływającym na jakość osiąganych wyników jest czystość stosowanych do badań halogenków lantanowców. W związku z tym, przed przystąpieniem do badań, olbrzymią ilość czasu poświęcono opracowaniu metod syntezy, doboru odpowiednich materiałów i metod weryfikacji składu chemicznego oraz czystości otrzymywanych halogenków lantanowców. Efektem tych prac było opracowanie metod syntezy halogenków lantanowców (chlorki, bromki, jodki) wysokiej czystości (min. 99,9%), wolnych od zanieczyszczeń oksohalogenkami. Związki te wykorzystano do badań mających na celu wyznaczenie właściwości termodynamicznych zarówno czystych halogenków lantanowców, jak i układów podwójnych halogenki lantanowców–halogenki litowców.

Wyznaczono właściwości termodynamicze (temperatury i entalpie przemian fazowych, ciepło właściwe fazy stałej i ciekłej) osiemnastu halogenków lantanowców (LaCl₃, CeCl₃, PrCl₃, NdCl₃, SmCl₃, EuCl₃, GdCl₃, TbCl₃, DyCl₃ TmCl₃, YbCl₃, La-Br₃, NdBr₃, TbBr₃, LaI₃, NdI₃, EuCl₂ i YbCl₂). Dokonano podziału halogenków lantanowców(III) na grupy ze względu na zależność temperatury i entalpii ich topnienia od liczby atomowej lantanowca. Podział ten znajduje swoje odbicie w strukturze krystalicznej badanych halogenków.

Analizując wspomniane wyżej zależności, znaleziono związek między strukturą krystaliczną halogenków lantanowców(III) a ich entropią topnienia lub sumą entropii topnienia i entropii przemiany fazowej ciało stałe–ciało stałe. Topnienie halogenków o strukturze heksagonalnej typu UCl₃ i strukturze ortorombowej typu PuBr₃ związane jest ze zmianą entropii topnienia (lub sumy entropii przemiany fazowej i entropii topnienia), wynoszącą 50 ± 4 J mol⁻¹K⁻¹. W grupie halogenków o strukturze romboedrycznej typu FeCl₃ analogiczna zmiana entropii jest mniejsza i wynosi 40 ± 4 J mol⁻¹K⁻¹. Trzecią grupę stanowią halogenki o strukturze jednoskośnej typu AlCl₃. Ich topnienie związane jest ze znacznie mniejszą zmianą entropii, wynoszącą jedynie 31 ± 4 Jmol⁻¹K⁻¹.

Wykonano pomiary ciepła molowego fazy stałej i ciekłej wymienionych wcześniej halogenków lantanowców. Dla jedenastu spośród nich są to jedyne wyniki eksperymentalne (dostępne w literaturze dane były wielkościami szacunkowymi). Pomiary ciepła molowego DyCl₃ i TbCl₃ potwierdziły występowanie w tych związkach przemiany fazowej ciało stałe–ciało stałe. Jednocześnie wykazały one istnienie dodatkowych efektów termicznych, niewidocznych na krzywych DTA, których istnienie związane jest ze skomplikowaną strukturą krystaliczną tych związków (możliwość powstawania faz metastabilnych w niższych temperaturach).

Uzyskane dane termodynamiczne (temperatura i entalpia przemian fazowych oraz temperaturowa zależność ciepła molowego) wykorzystane zostały do wyznaczenia funkcji termodynamicznych zarówno stałych, jak i ciekłych halogenków lantanowców a także termodynamicznych funkcji tworzenia tych halogenków. Korzystając z temperaturowej zależności entropii halogenków lantanowców(III), wyznaczono różnicę $S_{1300}(\text{LnX}_{3(c)}) - S_{298}(\text{LnX}_{3(s)})$. Różnica ta jest ewidentnie związana ze strukturą krystaliczną halogenków lantanowców(III). Wynosi ona 216 ± 4 J mol⁻¹K⁻¹ dla halogenków o strukturze typu UCl₃ i PuBr₃, 200 ± 5 J mol⁻¹K⁻¹ dla halogenków o strukturze typu FeCl₃ i 190 ± 4 J mol⁻¹K⁻¹ dla halogenków o strukturze typu AlCl₃. Jednakowe wielkości tej różnicy dla chlorków, bromków i jodków o podobnej strukturze oznaczają, że różnice entropii wynikające z obecności anionu i efektów magnetycznych ujawniają się dopiero w niskich temperaturach, wpływając na wartość różnicy $S_{298}(\text{LnX}_{3(s)}) - S_0(\text{LnX}_{3(s)})$. Rzeczywiście, entropia $S_{298}(\text{LnX}_{3(s)})$ maleje od jodków, poprzez bromki do chlorków. Różnica $S_{1300}(\text{LnX}_{3(c)}) - S_{298}(\text{LnX}_{3(s)})$ dla halogenków o strukturze typu FeCl₃ jest mniejsza w porównaniu z różnicą dla struktury typu UCl₃ i PuBr₃, ale wyraźnie większa niż odpowiadająca strukturze typu AlCl₃. Oznacza to, że stopień uporządkowania w stopionych halogenkach wzrasta od halogenków lantanowców lekkich do halogenków lantanowców ciężkich i jest największy w przypadku halogenków, które w fazie stałej mają strukturę krystaliczną typu AlCl₃.

Wyznaczono właściwości termodynamiczne (temperaturę i entalpię przemian fazowych, ciepło molowe) związków M₃LnX₆, które tworzą się w układach podwójnych LnX₃-MX (Ln = La, Ce, Pr, Nd, Tb; M = K, Rb, Cs; X = Cl, Br, I). Związki te można podzielić na dwie grupy. Pierwsza z nich (K₃CeCl₆, K₃PrCl₆, K₃NdCl₆, Rb₃LaCl₆, K₃NdBr₆, Rb₃LaBr₆) to związki mające wyłącznie odmianę wysokotemperaturową o strukturze regularnej typu elpasolitu (Fm3m, Z = 4). Tworzą się one w podwyższonych temperaturach, a ich tworzenie sie jest przemiana fazowa z głeboka przebudowa struktury. Związki K_2LnX_5 o strukturze typu K_2PrCl_5 (Pnma, Z = 4) w temperaturze $T_{\rm form}$ reagują z KX i powstają związki K₃LnX₆ o strukturze regularnej typu elpasolitu (Fm3m, Z = 4). Procesowi temu towarzyszy wysoka molowa entalpia, wahająca się w granicach 44–55 kJ mol⁻¹. Podczas chłodzenia otrzymane związki ulegają rozkładowi do substancji wyjściowych, przy czym temperatura rozkładu jest wyraźnie niższa od temperatury tworzenia. Związki należące do drugiej grupy (K₃TbCl₆, Rb₃CeCl₆, Rb₃PrCl₆, Rb₃NdCl₆, Rb₃TbCl₆, K₃TbBr₆, Rb₃TbBr₆, Rb₃NdBr₆, Rb₃NdI₆ i wszystkie związki Cs₃LnX₆) mają zarówno odmianę wysokotemperaturową o strukturze elpasolitu, jak i odmianę niskotemperaturową o strukturze jednoskośnej typu Cs₃BiCl₆, a przejście jednej odmiany w drugą jest przemianą fazową bez głębokiej przebudowy struktury. Molowa entalpia związana z tą przemianą jest zdecydowanie mniejsza od entalpii tworzenia związków pierwszej grupy i wynosi 6–10 kJ mol⁻¹. Związki tej grupy są stabilne lub metastabilne w temperaturze pokojowej.

Dwa spośród badanych związków jodkowych, tj. K₃NdI₆ i Rb₃LaI₆ mają cechy zarówno związków grupy pierwszej (tworzenie się w podwyższonych temperaturach), jak i grupy drugiej (mają odmianę nisko- i wysokotemperaturową).

Przedstawiony powyżej podział związków M₃LnX₆ na dwie grupy znajduje swoje odbicie w temperaturowej zależności ciepła molowego tych związków. W grupie pierwszej (związki mające tylko odmianę wysokotemperaturową) ciepło molowe stechiometrycznej mieszaniny o składzie związku M₃LnX₆ rośnie monotonicznie ze wzrostem temperatury, aż do osiągnięcia temperatury tworzenia (T_{form}) związku $M_3 \text{Ln}X_6$. Po utworzeniu związku, jego ciepło molowe maleje ze wzrostem temperatury, aż do osiągnięcia minimum w temperaturze około 100–150 K powyżej T_{form} .

W drugiej grupie (związki mające odmianę nisko- i wysokotemperaturową) wyraźny wzrost ciepła molowego (efekt typu λ) ze wzrostem temperatury rozpoczyna się już w odmianie niskotemperaturowej. Na wzrost ten nakłada się przemiana fazowa pierwszego rodzaju (odmiana niskotemperaturowa – odmiana wysokotemperaturowa). Ciepło molowe odmiany wysokotemperaturowej maleje ze wzrostem temperatury, aż do osiągnięcia minimum w temperaturze około 100–150 K wyższej od temperatury przemiany fazowej (T_{przem}), a więc identycznie jak w przypadku odmiany wysokotemperaturowej pierwszej grupy związków.

Specyficzna zależność ciepła molowego związków M₃LnX₆ od temperatury znajduje swoje odbicie w przewodnictwie elektrycznym ich fazy stałej (pomiary wykonano dla związków M₃LnCl₆ i M₃LnBr₆). Tworzenie związków grupy pierwszej w podwyższonych temperaturach (T_{tworz}) związane jest ze skokowym wzrostem przewodnictwa elektrycznego. Kolejny, znacznie mniejszy, ale wyraźny skok przewodnictwa elektrycznego fazy stałej (lub załamanie na krzywej temperaturowej zależności przewodnictwa elektrycznego związane ze zmianą energii aktywacji przewodnictwa) tej grupy związków następuje w temperaturze odpowiadającej minimum ciepła molowego odmiany wysokotemperaturowej. Przemiana fazowa odmiana niskotemperaturowa odmiana wysokotemperaturowa charakterystyczna dla drugiej grupy związków M_3LnX_6 również związana jest ze skokowym wzrostem przewodnictwa elektrycznego fazy stałej, przy czym wzrost ten zależy od promienia jonowego litowca (większy dla związków rubidowych niż cezowych). Dodatkowy efekt na krzywych obrazujących temperaturową zależność przewodnictwa fazy stałej (wyrażne załamanie) pojawia się w temperaturze odpowiadającej minimum na krzywych temperaturowej zależności ciepła molowego.

Charakterystyczne zachowanie się temperaturowej zależności zarówno ciepła molowego, jak i przewodnictwa elektrycznego fazy stałej omawianych związków jest najprawdopodobniej związane z zanikiem uporządkowania podsieci kationowej, tworzonej przez jony litowca. Wysokotemperaturowa odmiana związków M_3LnX_6 ma strukturę regularną typu elpasolitu (grupa przestrzenna Fm3m). Ze względu na usytuowanie jonów metalu alkalicznego w komórce elementarnej poprawny wzór tych związków powinien mieć postać $M_2M'LnX_6$. Jony lantanowca znajdują się w otoczeniu sześciu jonów chlorowca tworząc oktaedry (LnX_6). 1/3 jonów metalu alkalicznego (M') zajmuje luki oktaedryczne a pozostałe 2/3 jonów metalu alkalicznego (M) zajmują zaś luki tetraedryczne utworzone przez ciasno upakowane oktaedry (LnX_6). Tak więc każdy z jonów M' znajduje się w otoczeniu sześciu, a każdy z jonów M w otoczeniu dwunastu jonów chlorowca.

W niskich temperaturach oktaedry (LnX₆) ulegają deformacji i wyraźnej rotacji w stosunku do pozycji idealnej. Rotacja ta powoduje zmniejszenie różnicy w liczbie

koordynacji jonów M i M'. W uzyskanej strukturze jednoskośnej typu Cs₃BiCl₆ jeden z jonów metalu alkalicznego (M') jest otoczony przez jedenaście, a pozostałe dwa (M) przez osiem jonów chlorowca.

Zanik uporządkowania podsieci kationowej w grupie związków M₃LnX₆ mających jedynie odmianę wysokotemperaturową o strukturze regularnej typu elpasolitu następuje najprawdopodobniej w sposób nieciagły. Tworzenie się tych związków ze związków M_2LnX_5 i MX jest przejściem ze struktury typu K_2PrCl_5 , charakterystycznej dla związków M_2LnX_5 , (nakryte pryzmy trygonalne połączone w łańcuchy przez wspólne naroża ([PrCl₃Cl_{4/2}]²⁻) do struktury typu elpasolitu. Efektem tej przemiany jest utworzenie się podsieci anionowej składającej się z oktaedrów (LnX₆) i podsieci kationowej tworzonej przez jony M i M'. Podsieć anionowa uzyskuje strukture regularną centrowaną na ścianach, natomiast kationy metalu alkalicznego najprawdopodobniej są w dużej mierze statystycznie rozproszone w przestrzeni komórki elementarnej pomiędzy oktaedrami (LnX_6) . Przemiana ta jest w doskonałej korelacji ze zmiana przewodnictwa elektrycznego. Skokowy wzrost przewodnictwa elektrycznego w temperaturze tworzenia związków (T_{tworz}) związany jest z pojawieniem się możliwości migracji metalu alkalicznego, bedacych nośnikami ładunku ionów elektrycznego, w przestrzeni komórki elementarnej. Dodatkowy skokowy wzrost przewodnictwa elektrycznego (lub załamanie na krzywej temperaturowej zależności przewodnictwa, związane ze zmianą energii aktywacji) odmiany wysokotemperaturowej omawianych związków, następujący w temperaturze odpowiadającej minimum na krzywej ciepła właściwego może być przypisany stanowi kompletnego "strukturalnego nieporzadku". a podsieć kationowa, która uległa zanikowi uporządkowania, może być uważana za kwaziciekłą.

W grupie związków M₃LnX₆ mających zarówno odmianę wysokotemperaturową o strukturze typu elpasolitu, jak i niskotemperaturową typu Cs3BiCl6 (K3TbCl6, Rb₃CeCl₆, Rb₃PrCl₆, Rb₃NdCl₆, Rb₃TbCl₆, K₃TbBr₆, Rb₃TbBr₆, Rb₃NdBr₆, Rb₃NdI₆ i wszystkie związki Cs₃LnX₆) zanik uporządkowania podsieci kationowej tworzonej przez jony metalu alkalicznego następuje w sposób ciągły. Rozpoczyna się on już w odmianie niskotemperaturowej w temperaturze znacznie niższej od temperatury przemiany fazowej, o czym świadczy nienaturalny wzrost ciepła molowego ze wzrostem temperatury, i kończy w odmianie wysokotemperaturowej. Zależność ciepła molowego omawianych związków od temperatury przybiera kształt λ -efektu, który pozostaje w doskonałej korelacji ze zmianą przewodnictwa elektrycznego. Koniec przemiany λ (osiągnięcie pełnego "strukturalnego nieporządku" podsieci kationowej) odpowiada wyraźnemu załamaniu na krzywej przewodnictwa elektrycznego. W odróżnieniu od pierwszej grupy związków (tylko odmiana wysokotemperaturowa), gdzie przemiana fazowa pierwszego rodzaju, czyli tworzenie związku, rozpoczynała przemianę porządek – nieporządek, przemiana fazowa odmiana niskotemperaturowa – odmiana wysokotemperaturowa nakłada się tutaj na przemianę typu λ .

Wyznaczono nieznane wcześniej diagramy fazowe układów podwójnych TbBr₃– MBr (M = Na, K, Rb, Cs), LaI₃–RbI i NdI₃–RbI. Cechą charakterystyczna tych układów, podobnie jak innych układów LnX₃–MX jest występowanie kongruentnie topiących się związków M₃LnX₆ (M = K, Rb, Cs), których temperatura topnienia wzrasta ze wzrostem promienia jonowego litowca.

Określono związek pomiędzy stosunkiem potencjałów jonowych kationów litowca i lantanowca a kształtem diagramu fazowego układów LnCl₃–MCl, LnBr₃–MBr i LnI₃–MI. Układy te dzielą się na trzy grupy:

proste układy eutektyczne (stosunek potencjałów jonowych większy lub równy 0,448; 0,325 i 0,330, odpowiednio dla układów chlorkowych, bromkowych i jodkowych),

– układy, w których występują jedynie związki topiące się niekongruentnie (stosunek potencjałów jonowych w granicach 0,416–0,280; 0,315–0,284 i 0,352–0,306, odpowiednio dla układów chlorkowych, bromkowych i jodkowych),

 – układy, w których występują zarówno związki topiące się niekongruentnie, jak i związki topiące się kongruentnie (stosunek potencjałów jonowych równy lub mniejszy od 0,256).

W grupie trzeciej, czyli w układach, w których występują zarówno związki topiące się kongruentnie, jak i związki topiące się niekongruentnie, znaleźć można zarówno daleko idące podobieństwa, jak i różnice pomiędzy układami chlorkowymi, jodkowymi i bromkowymi. Do cech wspólnych należy zaliczyć:

– jednakową dla wszystkich układów wartość stosunku potencjałów jonowych, przy której pojawiają się związki topiące się kongruentnie $(IP_{M^+} / IP_{In^{3+}} = 0,256)$,

– pierwszym kongruentnie topiącym się związkiem, pojawiającym się przy $IP_{M^+} / IP_{Ln^{3+}} = 0,256$ jest związek K₂LnX₅ (X = Cl, Br, I),

– kongruentnie topiące się związki K_2LnX_5 istnieją w wąskim zakresie wartości stosunku potencjałów jonowych (0,256–0,249),

– przy niższych wartościach stosunku potencjałów jonowych $(IP_{M^+} / IP_{Ln^{3+}} < 0,249)$ związki M₂LnX₅ topią się niekongruentnie,

– kongruentnie topiące się związki M_3LnX_6 powstają przy niższych warościach $IP_{M^+}/IP_{Ln^{3+}}$ ($\leq 0,249$).

Cechą wspólną układów chlorkowych i bromkowych jest również istnienie związków MLn₂X₇ (X = Cl, Br; M = K, Rb, Cs) topiących się kongruentnie lub niekongruentnie, a powstających w układach, w których $IP_{M^+} / IP_{Ln^{3+}} (\leq 0,244)$.

Podstawowe różnice pomiędzy układami chlorkowymi, bromkowymi i jodkowymi to:

– występowanie związków M₂LnI₅ w wąskim zakresie wartości stosunku potencjałów jonowych (0,256–0,222), podczas gdy związki M₂LnCl₅ i M₂LnBr₅ występują we wszystkich układach chlorkowych i bromkowych spełniających warunek IP_{M⁺} / IP_{Ln³⁺} \leq 0,256, związki MLn₂X₇ występujące w układach chlorkowych i bromkowych przy wartości stosunku potencjałów jonowych mniejszej lub równej 0,244 praktycznie nie występują w układach jodkowych (z wyjątkiem RbNd₂I₇),

– związki M₃Ln₂X₉ występujące w układach chlorkowych (IP_{M⁺} / IP_{Ln³⁺} ($\leq 0,175$) i jodkowych (IP_{M⁺} / IP_{Ln³⁺} ($\leq 0,198$) praktycznie (z wyjątkiem Cs₃Dy₂Br₉) nie występują w układach bromkowych.

Wykonano pomiary entalpii mieszania w ciekłych układach NdCl₃-MCl, PrCl₃-MCl, DyCl₃-MCl, TbCl₃-MCl, LaBr₃-MBr, NdBr₃-MBr, TbBr₃-MBr i NdI₃-MI. Wybór układów dwuskładnikowych do pomiarów entalpii mieszania pozwolił na określenie wpływu promienia jonowego lantanowca, promienia jonowego litowca i promienia jonowego chlorowca na właściwości termodynamiczne ciekłych układów halogenki lantanowców-halogenki litowców. Proces mieszania ciekłych składników układów podwójnych LnX₃–MX jest procesem egzotermicznym w całym zakresie składów. Minimum molowej entalpii mieszania przesunięte jest w kierunku mieszanin bogatszych w halogenek litowca. Jest ono osiągane dla ułamka molowego halogenku lantanowca, x_{LnX_3} , wynoszącego 0,3–0,4. Ze wzrostem promienia jonowego litowca zmienia się zarówno wartość entalpii mieszania, jak i położenie minimum. Im mniejszy jest promień jonowy litowca, tym mniejsza jest bezwzględna wartość entalpii mieszania, a minimum przesuwa się w kierunku składów bogatszych w halogenek litowca. Drugim czynnikiem wpływającym na wielkość entalpii mieszania jest promień jonowy lantanowca. Jego zmniejszanie się, następujące ze wzrostem liczby atomowej Z, powoduje zarówno wzrost bezwzględnej wartości entalpii mieszania, jak i przesuniecie sie minimum entalpii w kierunku składów bogatszych w halogenek litowca. Również promień jonowy chlorowca wpływa zdecydowanie na wielkość entalpii mieszania. Wraz z jego wzrostem (od chlorków do jodków) wartość bezwzględna molowej entalpii mieszania ulega wyraźnemu zmniejszeniu.

We wszystkich układach LnX₃–MX parametr oddziaływania λ jest wielkością ujemną. Jego bezwzględna wartość wzrasta zdecydowanie wraz ze wzrostem promienia jonowego kationu litowca, przy czym niezależnie od układu jest ona większa w obszarze bogatszym w halogenek litowca. Charakter zależności parametru oddziaływania od składu zależy od halogenku litowca i jest praktycznie niezależny od halogenku lantanowca. W układach z halogenkami litu zależność ta jest praktycznie linią prostą, w układach z halogenkami sodu występuje szerokie rozmyte minimum, a począwszy od halogenkú potasu pojawia się wyraźne minimum usytuowane przy ułamku molowym halogenku lantanowca, x_{LnX_3} , wynoszącym 0,2–0,3.

Minimum to niewątpliwie można przypisać tworzeniu się w badanych układach jonów kompleksowych LnX_6^{3-} . Jony te są formą dominującą w obszarze składów bogatych w halogenek litowca. Wzrost stężenia halogenku lantanowca prowadzi do zmiany struktury stopionej soli; czyste formy oktaedryczne ulegają zastąpieniu przez formy polimeryczne, w których oktaedry LnX_6^{3-} łączą się ze sobą poprzez jony chlorowca.

140

Zmieszanie ciekłego halogenku lantanowca z ciekłym halogenkiem litowca prowadzi do powstania oktaedrycznych kompleksów LnX_6^{3-} . Powstawanie takich form związane jest z wprowadzeniem dodatkowych jonów chlorowca w sferę koordynacyjną jonu Ln^{3+} . Potencjalnym źródłem tych jonów jest halogenek litowca. Niemniej jednak obecne w układzie kationy litowca również wykazują tendencję do tworzenia sfery koordynacyjnej, składającej się z jonów chlorowca. Rezultat tego "współzawodnictwa" zależy od względnej siły przyciągającej kationu litowca. W grupie litowców siła ta maleje w sekwencji $Li^+ > Na^+ > K^+ > Rb^+ > Cs^+$, a więc ze wzrostem promienia jonowego. Tak więc możliwość tworzenia się oktaedrycznych kompleksów lantanowca i ich stabilność będzie wzrastać według sekwencji LiX < NaX < KX < RbX < CsX. Wzrost stabilności tych kompleksów powoduje wzrost molowej entalpii tworzenia ciekłych mieszanin (3 MX, LnX_3). Stabilność omawianych kompleksów zależy również od promienia jonowego chlorowca. Wzrost promienia jonowego ($Cl^- < Br^- < I^-$) powoduje zmniejszenie stabilności kompleksów LnX_6^{3-} , a więc i zmniejszenie molowej entalpii tworzenia ciekłych mieszanin (3 MX, LnX_3).

Wyznaczone z pomiarów entalpii mieszania molowe entalpie tworzenia ciekłych stopów solnych o składzie odpowiadającym związkom M₃LnX₆ wykorzystano do weryfikacji poprawności i wzajemnej spójności wyznaczonych właściwości termodynamicznych (temperatury i entalpie przemian fazowych, ciepło molowe) czystych halogenków lantanowców i związków M₃LnX₆. 7. Aneks – funkcje termodynamiczne halogenków lantanowców

Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\rm tworz} H$	$\Delta_{\rm tworz}G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J mol^{-1}K^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	98,03	137,57	137,57	0,00	-1071,6	-995,9
300	98,09	138,18	137,57	0,18	-1071,6	-995,4
400	101,18	166,84	141,46	10,15	-1069,5	-970,4
500	104,21	189,75	148,90	20,43	-1067,3	-945,9
583	106,71	205,96	155,89	29,19	-1065,4	-925,8
583	106,71	205,96	155,89	29,19	-1065,8	-925,8
600	107,22	209,04	157,36	31,01	-1065,3	-921,8
700	110,22	225,80	165,96	41,89	-1062,7	-898,0
800	113,21	240,73	174,39	53,07	-1060,0	-874,7
900	116,20	254,26	182,52	64,56	-1057,1	-851,7
1000	119,19	266,67	190,33	76,34	-1054,1	-829,0
1100	122,18	278,19	197,80	88,43	-1050,9	-806,7
1127	122,99	281,16	199,76	91,74	-1050,0	-800,7
1107	157.74	220.56	100.7(1 477 4 4	004.2	000 7
112/	157,74	330,56	199,76	147,44	-994,3	-800,7
1138	157,74	332,09	201,03	149,18	-993,6	-/98,8
1138	157.74	332.09	201.03	149.18	-996.7	-798.8
1191	157,74	339,27	207,02	157,54	-993,4	-789,6
1191	157,74	339,27	207,02	157,54	-999,6	-789,6
1200	157,74	340,46	208,02	158,96	-999,0	-788,1
1300	157,74	353,09	218,70	174,73	-992,2	-770,7

Tabela 1. Funkcje termodynamiczne LaCl₃ w zakresie temperatur 298,15-1300 K

Przemiany fazowe: topnienie LaCl₃ w temperaturze 1127 K, przemiany fazowe $hex \rightarrow fcc$ ($T_{przem} = 583 \text{ K}, \Delta_{przem}H = 0.4 \text{ kJ mol}^{-1}$), $fcc \rightarrow bcc$ ($T_{przem} = 1138 \text{ K}, \Delta_{przem}H = 3.1 \text{ kJ mol}^{-1}$) stałego La i jego topnienie w temperaturze 1191 K z towarzyszącą mu entalpią 6,2 kJ mol⁻¹ [46].

$$\begin{split} \underline{\text{LaCl}_{3(\text{s})}} & \underline{298,15 \text{ K}} < T < \underline{583 \text{ K}}; \\ \Delta_{\text{tworz}} H = 7,576 \cdot 10^{-3} T + 13,647 \cdot 10^{-6} T^2 - 4,058 \cdot 10^2 T^{-1} - 1073,7 \\ \Delta_{\text{tworz}} G = 310,436 \cdot 10^{-3} T - 13,643 \cdot 10^{-6} T^2 - 2,029 \cdot 10^2 T^{-1} - 7,576 \cdot 10^{-3} T \ln T - 1073,7 \\ \underline{\text{LaCl}_{3(\text{s})}} \underline{583 \text{ K}} < T < \underline{1127 \text{ K}}; \\ \Delta_{\text{tworz}} H = 16,356 \cdot 10^{-3} T + 7,302 \cdot 10^{-6} T^2 - 0,168 \cdot 10^2 T^{-1} - 1077,7 \\ \Delta_{\text{tworz}} G = 369,038 \cdot 10^{-3} T - 7,302 \cdot 10^{-6} T^2 - 0,252 \cdot 10^2 T^{-1} - 16,356 \cdot 10^{-3} T \ln T - 1077,7 \\ \underline{\text{LaCl}_{3(\text{c})}} \underline{1127 \text{ K}} < T < \underline{1138 \text{ K}}; \\ \Delta_{\text{tworz}} H = 84,723 \cdot 10^{-3} T - 7,698 \cdot 10^{-6} T^2 - 0,378 \cdot 10^2 T^{-1} - 1089,0 \\ \Delta_{\text{tworz}} G = 834,611 \cdot 10^{-3} T + 7,698 \cdot 10^{-6} T^2 - 0,189 \cdot 10^2 T^{-1} - 84,723 \cdot 10^{-3} T \ln T - 1080,0 \\ \underline{\text{LaCl}_{3(\text{c})}} \underline{1138 \text{ K}} < T < \underline{1300 \text{ K}}; \\ \Delta_{\text{tworz}} H = 62,843 \cdot 10^{-3} T - 0,188 \cdot 10^{-6} T^2 - 2,134 \cdot 10^2 T^{-1} - 62,843 \cdot 10^{-3} T \ln T - 1067,6 \\ \Delta_{\text{tworz}} G = 678,427 \cdot 10^{-3} T + 0,188 \cdot 10^{-6} T^2 - 2,134 \cdot 10^2 T^{-1} - 62,843 \cdot 10^{-3} T \ln T - 1067,6 \\ \end{bmatrix}$$

Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\text{tworz}} H$	$\Delta_{\rm tworz} G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J mol^{-1}K^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	94,88	150,62	150,62	0,00	-1059,7	-987,9
300	94,91	151,21	150,63	0,18	-1059,7	-987,5
400	96,69	178,76	154,37	9,76	-1058,0	-963,6
500	98,40	200,52	161,50	19,51	-1056,5	-940,2
600	100,09	218,61	169,55	29,44	-1055,1	-917,1
700	101,77	234,17	177,70	39,53	-1053,7	-894,2
800	103,44	247,87	185,63	49,79	-1052,3	-871,5
900	105,11	260,15	193,24	60,22	-1050,9	-849,0
998	106,74	271,09	200,35	70,60	-1049,5	-827,1
998	106,74	271,09	200,35	70,60	-1052,5	-827,1
1000	106,77	271,31	200,49	70,81	-1052,5	-826,6
1071	107,96	278,67	205,43	78,43	-1051,5	-810,6
1071	107,96	278,67	205,43	78,43	-1056,7	-810,6
1086	108,21	280,17	206,46	80,06	-1056,4	-807,2
1086	145,18	331,27	206,46	135,56	-1000,9	-807,2
1100	145,18	333,13	208,58	137,59	-1000,2	-804,7
1200	145,18	345,76	222,88	152,11	-995,0	-787,2
1300	145,18	357,38	235,92	166,62	-989,8	-770,1

Tabela 2. Funkcje termodynamiczne CeCl₃ w zakresie temperatur 298,15–1300 K

Przemiany fazowe: topnienie CeCl₃ w temperaturze 1086 K, przemiana fazowa $fcc \rightarrow bcc$ ($T_{przem} = 998$ K, $\Delta_{przem}H = 3,0$ kJ mol⁻¹) stałego Ce i jego topnienie w temperaturze 1071 K z towarzyszącą mu entalpią 5,2 kJ mol⁻¹ [46].

 $\begin{array}{l} \underline{\operatorname{CeCl}_{3(\underline{s})},298,15\ \mathrm{K}<\mathrm{T}<998\ \mathrm{K}:} \\ \overline{\Delta_{\mathrm{tworz}}H}=12,464\cdot10^{-3}T+0,582\cdot10^{-6}T^2-4,028\cdot10^2T^{-1}-1062,11} \\ \overline{\Delta_{\mathrm{tworz}}G}=322,346\cdot10^{-3}T-0,582\cdot10^{-6}T^2-2,014\cdot10^2T^{-1}-12,464\cdot10^{-3}T\ln T-1062,11} \\ \underline{\operatorname{CeCl}_{3(\underline{s})},998\ \mathrm{K}<\mathrm{T}<1071\ \mathrm{K}:} \\ \overline{\Delta_{\mathrm{tworz}}H}=-2,816\cdot10^{-3}T+8,112\cdot10^{-6}T^2-4,028\cdot10^2T^{-1}-1057,4} \\ \overline{\Delta_{\mathrm{tworz}}G}=219,581\cdot10^{-3}T-8,112\cdot10^{-6}T^2-2,014\cdot10^2T^{-1}+2,816\cdot10^{-3}T\ln T-1057,4} \\ \underline{\operatorname{CeCl}_{3(\underline{s})},1071\ \mathrm{K}<\mathrm{T}<1086\ \mathrm{K}:} \\ \overline{\Delta_{\mathrm{tworz}}H}=-2,816\cdot10^{-3}T+8,112\cdot10^{-6}T^2-4,028\cdot10^2T^{-1}-1062,6} \\ \overline{\Delta_{\mathrm{tworz}}G}=224,436\cdot10^{-3}T-8,112\cdot10^{-6}T^2-2,014\cdot10^2T^{-1}+2,816\cdot10^{-3}T\ln T-1062,6} \\ \underline{\operatorname{CeCl}_{3(\underline{c})},1086\ \mathrm{K}<\mathrm{T}<1300\ \mathrm{K}:} \\ \overline{\Delta_{\mathrm{tworz}}H}=52,166\cdot10^{-3}T-0,18\cdot10^{-6}T^2-4,268\cdot10^2T^{-1}-1057,0} \\ \overline{\Delta_{\mathrm{tworz}}G}=594,619\cdot10^{-3}T+0,188\cdot10^{-6}T^2-2,134\cdot10^2T^{-1}-52,166\cdot10^{-3}T\ln T-1057,0} \end{array}$

Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\rm tworz} H$	$\Delta_{\rm tworz} G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J mol^{-1}K^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	98,95	153,30	153,30	0,00	-1058,6	-982,6
300	99,03	153,91	153,30	0,18	-1058,6	-982,1
400	103,20	182,98	157,24	10,30	-1056,4	-957,0
500	107,24	206,44	164,81	20,82	-1054,1	-932,4
600	111,24	226,35	173,44	31,74	-1051,7	-908,3
700	115,21	243,79	182,27	43,06	-1049,0	-884,6
800	119,17	259,44	190,96	54,78	-1046,2	-861,3
900	123,13	273,70	199,37	66,90	-1043,3	-838,4
1000	127,08	286,88	207,47	79,41	-1040,2	-815,8
1061	129,49	294,48	212,26	87,24	-1038,2	-802,1
1061	155,30	343,58	212,26	139,34	-986,1	-802,1
1065	155,30	344,16	212,75	139,96	-985,9	-801,4
1065	155,30	344,16	212,75	139,96	-989,1	-801,4
1100	155,30	349,18	217,01	145,39	-987,0	-795,3
1191	155,30	361,52	227,59	159,52	-981,4	-779,7
1191	155,30	361,52	227,59	159,52	-988,3	-779,7
1200	155,30	362,69	228,60	160,92	-987,8	-778,1
1300	155,30	375,12	239,40	176,45	-982,1	-760,9

Tabela 3. Funkc	ie termodvn	namiczne PrCl ₃	w zakresie tem	peratur 298.15–130	0 K

Przemiany fazowe: topnienie PrCl₃ w temperaturze 1061 K, przemiana fazowa $fcp \rightarrow bcc (T_{przem} = 1065 \text{ K}, \Delta_{przem}H = 3,2 \text{ kJ mol}^{-1})$ stałego Pr i jego topnienie w temperaturze 1191 K z towarzyszącą mu entalpią 6,9 kJ mol⁻¹ [46].

 $\begin{array}{l} \frac{\Pr Cl_{3(s)}}{\Delta_{tworz}} H = 13,535\cdot10^{-3}T + 10,982\cdot10^{-6}T^2 - 0,758\cdot10^2T^{-1} - 1,323\cdot10^{-9}T^3 - 1063,3\\ \Delta_{tworz}G = 351,405\cdot10^{-3}T - 10,982\cdot10^{-6}T^2 - 0,379\cdot10^2T^{-1} + 0,622\cdot10^{-9}T^3 - 13,535\cdot10^{-3}T\ln T - 1063,3\\ \frac{\Pr Cl_{3(c)}}{\Delta_{tworz}} H = 81,096\cdot10^{-3}T - 8,723\cdot10^{-6}T^2 - 1,218\cdot10^2T^{-1} - 1,323\cdot10^{-9}T^3 - 1060,7\\ \Delta_{tworz}G = 798,729\cdot10^{-3}T + 8,723\cdot10^{-6}T^2 - 0,609\cdot10^2T^{-1} + 0,662\cdot10^{-9}T^3 - 81,09\cdot10^{-3}T\ln T - 1060,7\\ \frac{\Pr Cl_{3(c)}}{\Delta_{tworz}} H = 61,436\cdot10^{-3}T - 0,188\cdot10^{-6}T^2 - 4,268\cdot10^2T^{-1} - 1053,9\\ \Delta_{tworz}G = 665,324\cdot10^{-3}T + 0,188\cdot10^{-6}T^2 - 2,134\cdot10^2T^{-1} - 61,436\cdot10^{-3}T\ln T - 1053,9\\ \frac{\Pr Cl_{3(c)}}{\Delta_{tworz}} H = 56,956\cdot10^{-3}T - 0,188\cdot10^{-6}T^2 - 4,268\cdot10^2T^{-1} - 1055,5\\ \Delta_{tworz}G = 634,907\cdot10^{-3}T + 0,188\cdot10^{-6}T^2 - 2,134\cdot10^2T^{-1} - 56,956\cdot10^{-3}T\ln T - 1055,5\\ \end{array}$
Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\text{tworz}} H$	$\Delta_{\rm tworz} G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	99,24	153,43	153,43	0,00	-1041,8	-966,6
300	99,03	154,04	153,43	0,18	-1041,8	-966,1
400	103,20	183,22	157,38	10,34	-1039,6	-941,3
500	107,24	206,81	164,98	20,92	-1037,3	-916,9
600	111,24	226,87	173,66	31,92	-1034,8	-893,1
700	115,21	244,47	182,54	43,35	-1032,1	-869,7
800	119,18	260,29	191,29	55,20	-1029,3	-846,7
900	123,13	274,73	199,77	67,46	-1026,4	-824,1
1000	127,08	288,09	207,94	80,15	-1023,3	-801,7
1032	128,35	292,17	210,49	84,30	-1022,3	-794,7
1032	149,53	338,77	210,49	132,40	-974,2	-794,7
1100	149,53	348,32	218,72	142,57	-970,7	-782,9
1128	149,53	352,07	221,98	146,75	-969,4	-778,2
1128	149,53	352,07	221,98	146,75	-972,4	-778,2
1200	149,53	361,33	230,07	157,52	-968,8	-765,9
1289	149,53	372,02	239,51	170,83	-964,4	-751,0
1289	149,53	372,02	239,51	170,83	-971,5	-751,0
1300	149,53	373,29	240,63	172,47	-971,0	-749,1

Tabela 4. Funkcje termodynamiczne NdCl3 w zakresie temperatur 298,15-1300 K

Przemiany fazowe: topnienie NdCl₃ w temperaturze 1032 K, przemiana fazowa $hcp \rightarrow bcc$ ($T_{przem} = 1128$ K, $\Delta_{przem}H = 3,0$ kJ mol⁻¹) stałego Nd i jego topnienie w temperaturze 1289 K z towarzyszącą mu entalpią 7,1 kJ mol⁻¹ [46].

$$\begin{split} & \underline{\mathrm{NdCl}_{(\mathrm{s})_{*}}} \ 298,15 \ \mathrm{K} < T < 1032 \ \mathrm{K}; \\ & \Delta_{\mathrm{tworz}} H = 17,213\cdot10^{-3}T + 7,229\cdot10^{-6}T^{2} + 0,593\cdot10^{2}T^{-1} - 1047,8 \\ & \Delta_{\mathrm{tworz}} G = 372,201\cdot10^{-3}T - 7,278\cdot10^{-6}T^{2} + 0,297\cdot10^{2}T^{-1} - 17,213\cdot10^{-3}T\ln T - 1047,8 \\ & \underline{\mathrm{NdCl}_{3(\mathrm{c})_{*}}} \ 1032 \ \mathrm{K} < T < 1128 \ \mathrm{K}; \\ & \Delta_{\mathrm{tworz}} H = 79,520\cdot10^{-3}T - 13,648\cdot10^{-6}T^{2} + 0,214\cdot10^{2}T^{-1} - 1041,7 \\ & \Delta_{\mathrm{tworz}} G = 777,164\cdot10^{-3}T + 13,648\cdot10^{-6}T^{2} + 0,108\cdot10^{2}T^{-1} - 79,520\cdot10^{-3}T\ln T - 1041,8 \\ & \underline{\mathrm{NdCl}_{3(\mathrm{c})_{*}}} \ 1128 \ \mathrm{K} < T < 1289 \ \mathrm{K}; \\ & \Delta_{\mathrm{tworz}} H = 49,60\cdot10^{-3}T - 0,188\cdot10^{-6}T^{2} - 4,268\cdot10^{2}T^{-1} - 1027,7 \\ & \Delta_{\mathrm{tworz}} G = 569,782\cdot10^{-3}T + 0,188\cdot10^{-6}T^{2} - 2,134\cdot10^{2}T^{-1} - 49,602\cdot10^{-3}T\ln T - 1027,7 \\ & \underline{\mathrm{NdCl}_{3(\mathrm{c})_{*}}} \ 1289 \ \mathrm{K} < T < 1300 \ \mathrm{K}; \\ & \Delta_{\mathrm{tworz}} H = 45,416\cdot10^{-3}T - 0,188\cdot10^{-6}T^{2} - 2,234\cdot10^{2}T^{-1} - 1029,4 \\ & \Delta_{\mathrm{tworz}} G = 541,110\cdot10^{-3}T + 0,188\cdot10^{-6}T^{2} - 2,134\cdot10^{2}T^{-1} - 45,416\cdot10^{-3}T\ln T - 1029,4 \\ & \Delta_{\mathrm{tworz}} G = 541,110\cdot10^{-3}T + 0,188\cdot10^{-6}T^{2} - 2,134\cdot10^{2}T^{-1} - 45,416\cdot10^{-3}T\ln T - 1029,4 \\ & \Delta_{\mathrm{tworz}} G = 541,110\cdot10^{-3}T + 0,188\cdot10^{-6}T^{2} - 2,134\cdot10^{2}T^{-1} - 45,416\cdot10^{-3}T\ln T - 1029,4 \\ & \Delta_{\mathrm{tworz}} G = 541,110\cdot10^{-3}T + 0,188\cdot10^{-6}T^{2} - 2,134\cdot10^{2}T^{-1} - 45,416\cdot10^{-3}T\ln T - 1029,4 \\ & \Delta_{\mathrm{tworz}} G = 541,110\cdot10^{-3}T + 0,188\cdot10^{-6}T^{2} - 2,134\cdot10^{2}T^{-1} - 45,416\cdot10^{-3}T\ln T - 1029,4 \\ & \Delta_{\mathrm{tworz}} G = 541,110\cdot10^{-3}T + 0,188\cdot10^{-6}T^{2} - 2,134\cdot10^{2}T^{-1} - 45,416\cdot10^{-3}T\ln T - 1029,4 \\ & \Delta_{\mathrm{tworz}} G = 541,110\cdot10^{-3}T + 0,188\cdot10^{-6}T^{2} - 2,134\cdot10^{2}T^{-1} - 45,416\cdot10^{-3}T\ln T - 1029,4 \\ & \Delta_{\mathrm{tworz}} G = 541,110\cdot10^{-3}T + 0,188\cdot10^{-6}T^{2} - 2,134\cdot10^{2}T^{-1} - 45,416\cdot10^{-3}T\ln T - 1029,4 \\ & \Delta_{\mathrm{tworz}} G = 541,110\cdot10^{-3}T + 0,188\cdot10^{-6}T^{2} - 2,134\cdot10^{2}T^{-1} - 45,416\cdot10^{-3}T + 0,128\cdot10^{-6}T^{-1} - 2,134\cdot10^{-1}T^{-1} - 45,416\cdot10^{-3}T + 0,128\cdot10^{-6}T^{-1} - 1029,4 \\ & \Delta_{\mathrm{tworz}} G = 541,110\cdot10^{-3}T + 0$$

Т	$C_{\rm p}$	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\text{tworz}}H$	$\Delta_{\text{tworz}}G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	99,54	150,12	150,12	0,00	-1025,3	-949,6
300	99,60	150,74	150,12	0,18	-1025,3	-949,1
400	102,68	179,82	154,07	10,30	-1023,5	-924,0
500	105,66	203,05	161,62	20,72	-1022,0	-899,3
600	108,61	222,57	170,19	31,43	-1020,6	-874,9
700	111,54	239,54	178,91	42,44	-1019,2	-850,7
800	114,47	254,62	187,45	53,74	-1017,6	-826,8
900	117,39	268,27	195,68	65,33	-1016,0	-803,0
950	118,84	274,66	199,67	71,24	-1015,1	-791,2
950	145,26	324,96	199,67	118,84	-967,5	-791,2
1000	145,26	332,41	206,12	126,10	-965,3	-782,0
1100	145,26	346,25	218,22	140,63	-961,0	-763,9
1190	145,26	357,68	228,33	153,70	-957,1	-747,9
1190	145,26	357,68	228,33	153,70	-960,2	-747,9
1200	145,26	358,89	229,41	155,15	-959,8	-746,1
1300	145,26	370,52	239,81	169,68	-955,5	-728,5

Tabela 5. Funkcje termodynamiczne SmCl₃ w zakresie temperatur 298,15–1300 K

Przemiany fazowe: topnienie SmCl₃ w temperaturze 950 K, przemiana fazowa $hcp \rightarrow bcc \ (T_{przem} = 1190 \text{ K}, \Delta_{przem} H = 3,1 \text{ kJ mol}^{-1})$ stałego Sm [46].

$$\begin{split} & \underline{\mathrm{SmCl}_{3(\mathrm{s})_*} 298,15 \ \mathrm{K} < T < 950 \ \mathrm{K} :} \\ & \Delta_{\mathrm{tworz}} H = 8,366 \cdot 10^{-3} T - 0,444 \cdot 10^{-6} T^2 - 9,527 \cdot 10^2 T^{-1} + 3,487 \cdot 10^{-9} T^3 - 1024,6 \\ & \Delta_{\mathrm{tworz}} G = 304,636 \cdot 10^{-3} T + 0,444 \cdot 10^{-6} T^2 - 4,763 \cdot 10^2 T^{-1} - 1,743 \cdot 10^{-9} T^3 - 8,344 \cdot 10^{-3} T \ln T - 1024,6 \\ & \underline{\mathrm{SmCl}_{3(\mathrm{c})_*} 950 \ \mathrm{K} < T < 1190 \ \mathrm{K} : \\ & \Delta_{\mathrm{tworz}} H = 62,366 \cdot 10^{-3} T - 14,978 \cdot 10^{-6} T^2 - 9,878 \cdot 10^2 T^{-1} + 3,487 \cdot 10^{-9} T^3 - 1015,2 \\ & \Delta_{\mathrm{tworz}} G = 651,101 \cdot 10^{-3} T + 14,978 \cdot 10^{-6} T^2 - 4,939 \cdot 10^2 T^{-1} - 1,743 \cdot 10^{-9} T^3 - 62,366 \cdot 10^{-3} T \ln T - 1015,0 \\ & \underline{\mathrm{SmCl}_{3(\mathrm{c})_*} 1190 \ \mathrm{K} < T < 1300 \ \mathrm{K} : \\ & \Delta_{\mathrm{tworz}} H = 42,966 \cdot 10^{-3} T - 0,188 \cdot 10^{-6} T^2 - 4,268 \cdot 10^2 T^{-1} - 1010,7 \\ & \Delta_{\mathrm{tworz}} G = 524,911 \cdot 10^{-3} T + 0,188 \cdot 10^{-6} T^2 - 2,134 \cdot 10^2 T^{-1} - 42,966 \cdot 10^{-3} T \ln T - 1009,6 \end{split}$$

Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\text{tworz}} H$	$\Delta_{\mathrm{tworz}}G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} K^{-1}$	$J \text{ mol}^{-1} K^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	98,52	144,10	144,10	0,00	-935,4	-855,4
300	98,57	144,71	144,10	0,18	-935,4	-854,9
400	100,86	173,38	148,00	10,15	-933,4	-828,4
500	103,10	196,13	155,42	20,35	-931,4	-802,4
600	105,32	215,12	163,83	30,77	-929,4	-776,8
700	107,54	231,53	172,36	41,42	-927,3	-751,5
765	108,97	241,14	177,80	48,45	-925,9	-735,3
765	108,97	241,14	177,80	48,45	-926,1	-735,3
800	109,74	246,03	180,68	52,28	-925,3	-726,6
894	111,81	258,33	188,20	62,69	-923,3	-703,4
894	155,96	308,63	188,21	107,69	-878,3	-703,4
900	155,96	309,68	189,01	108,63	-877,9	-702,2
1000	155,96	326,11	201,92	124,23	-871,5	-683,0
1096	155,96	340,40	213,43	139,20	-865,7	-665,2
1096	155,96	340,40	213,43	139,20	-874,9	-665,2
1100	155,96	340,97	213,90	139,82	-874,6	-664,4
1200	155,96	354,54	225,06	155,42	-868,4	-645,6
1300	155,96	367,03	235,51	171,01	-862,1	-627,2

Tabela 6. Funkcje termodynamiczne EuCl₃ w zakresie temperatur 298,15-1300 K

Przemiany fazowe: topnienie EuCl₃ w temperaturze 894 K, przemiana fazowa $\alpha \rightarrow \beta (T_{przem} = 765 \text{ K}, \Delta_{przem} H = 0,2 \text{ kJ mol}^{-1})$ stałego Eu i jego topnienie w temperaturze 1096 K z towarzyszącą mu entalpią 9,2 kJ mol⁻¹ [46].

$$\begin{split} & \underline{\operatorname{EuCl}_3(s)}, 298.15 \text{ K} < T < 765 \text{ K}; \\ & \Delta_{\operatorname{tworz}}H = 3,035 \cdot 10^{-3}T + 20,460 \cdot 10^{-6}T^2 - 6,288 \cdot 10^2 T^{-1} - 7,950 \cdot 10^{-9}T^3 - 935,8 \\ & \Delta_{\operatorname{tworz}}G = 296,141 \cdot 10^{-3}T - 20,460 \cdot 10^{-6}T^2 - 3,144 \cdot 10^2 T^{-1} + 3,975 \cdot 10^{-9}T^3 - 3,035 \cdot 10^{-3}T \ln T - 935,8 \\ & \underline{\operatorname{EuCl}_3(s)}, 765 \text{ K} < T < 894 \text{ K}; \\ & \Delta_{\operatorname{tworz}}H = 3,035 \cdot 10^{-3}T + 20,460 \cdot 10^{-6}T^2 - 6,288 \cdot 10^2 T^{-1} - 7,950 \cdot 10^{-9}T^3 - 936,0 \\ & \Delta_{\operatorname{tworz}}G = 296,141 \cdot 10^{-3}T - 20,460 \cdot 10^{-6}T^2 - 3,144 \cdot 10^2 T^{-1} + 3,975 \cdot 10^{-9}T^3 - 3,035 \cdot 10^{-3}T \ln T - 935,8 \\ & \underline{\operatorname{EuCl}_{3(c)}}, 894 \text{ K} < T < 1096 \text{ K}; \\ & \Delta_{\operatorname{tworz}}H = 66,796 \cdot 10^{-3}T + 9,477 \cdot 10^{-6}T^2 - 6,488 \cdot 10^2 T^{-1} - 7,950 \cdot 10^{-9}T^3 - 939,2 \\ & \Delta_{\operatorname{tworz}}G = 723,514 \cdot 10^{-3}T - 9,477 \cdot 10^{-6}T^2 - 3,244 \cdot 10^2 T^{-1} + 3,975 \cdot 10^{-9}T^3 - 66,796 \cdot 10^{-3}T \ln T - 939,3 \\ & \underline{\operatorname{EuCl}_{3(c)}}, 1096 \text{ K} < T < 1300 \text{ K}; \\ & \Delta_{\operatorname{tworz}}H = 62,536 \cdot 10^{-3}T - 0,188 \cdot 10^{-6}T^2 - 4,268 \cdot 10^2 T^{-1} - 942,8 \\ & \Delta_{\operatorname{tworz}}G = 691,061 \cdot 10^{-3}T + 0,188 \cdot 10^{-6}T^2 - 2,134 \cdot 10^2 T^{-1} - 62,536 \cdot 10^{-3}T \ln T - 942,9 \end{split}$$

Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\text{tworz}} H$	$\Delta_{\text{tworz}}G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	97,78	151,42	151,42	0,00	-1018,2	-943,4
300	97,83	152,02	151,42	0,18	-1018,2	-942,9
400	100,22	180,50	155,29	10,08	-1016,7	-918,0
500	102,49	203,11	162,67	20,22	-1014,8	-893,6
600	104,71	221,99	171,02	30,58	-1012,7	-869,5
700	106,92	238,30	179,49	41,16	-1010,4	-845,8
800	109,11	252,72	187,76	51,96	-1008,1	-822,5
873	110,70	262,31	193,60	59,99	-1006,3	-805,6
873	139,89	308,81	193,60	100,59	-965,7	-805,6
900	139,89	313,07	197,12	104,36	-964,3	-800,7
1000	139,89	327,81	209,47	118,35	-959,1	-782,8
1100	139,89	341,15	220,84	132,34	-953,9	-765,4
1200	139,89	353,32	231,38	146,33	-949,0	-748,5
1300	139,89	364,52	241,20	160,32	-944,1	-732,0

Tabela 7. Funkcje termodynamiczne GdCl₃ w zakresie temperatur 298,15–1300 K

Przemiany fazowe: topnienie GdCl₃ w temperaturze 873 K.

<u>GdCl_{3(s)}, 298,15 K < T< 873 K</u>:

$$\begin{split} & \underbrace{\Delta_{\text{tworz}}H = 29,789 \cdot 10^{-3}T - 5,668 \cdot 10^{-6}T^2 + 14,602 \cdot 10^2 T^{-1} + 2,790 \cdot 10^{-9}T^3 - 1031,5}{\Delta_{\text{tworz}}G = 455,711 \cdot 10^{-3}T + 5,668 \cdot 10^{-6}T^2 + 7,301 \cdot 10^2 T^{-1} - 1,394 \cdot 10^{-9}T^3 - 29,789 \cdot 10^{-3}T \ln T - 1031,5} \\ & \underbrace{\text{GdCl}_{3(c)}}{\Delta_{\text{tworz}}H = 77,846 \cdot 10^{-3}T - 16,508 \cdot 10^{-6}T^2 + 14,142 \cdot 10^2 T^{-1} + 2,790 \cdot 10^{-9}T^3 - 1024,6} \\ & \Delta_{\text{tworz}}G = 763,75 \cdot 10^{-3}T + 16,508 \cdot 10^{-6}T^2 + 7,071 \cdot 10^2 T^{-1} - 1,395 \cdot 10^{-9}T^3 - 77,846 \cdot 10^{-3}T \ln T - 1024,6 \end{split}$$

Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\text{tworz}} H$	$\Delta_{\text{tworz}}G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	100,34	153,10	153,10	0,00	-1010,6	-934,7
300	100,40	153,72	153,10	0,19	-1010,6	-934,2
400	103,50	183,03	157,02	10,38	-1008,4	-909,1
500	106,42	206,44	164,59	20,88	-1006, 1	-884,5
600	109,28	226,10	173,21	31,66	-1003,6	-860,4
700	112,11	243,16	181,98	42,73	-1001,0	-836,7
715	112,53	245,54	183,28	44,42	-1000,6	-833,2
715	115.75	245.54	183.28	44.42	-1000.6	-833.2
790	115,75	257,09	189,73	53,10	-998,4	-815,8
790	111.38	274.59	189.73	66.90	-984.6	-815.8
800	111.38	275.99	190.80	68.01	-984.4	-813.6
854	111,38	283,26	196,41	74,03	-983,2	-802,2
854	139,27	307,66	196,41	94,83	-962,4	-802,2
900	139,27	314,97	202,27	101,24	-960,0	-793,6
1000	139,27	329,64	214,27	115,16	-955,2	-775,4
1100	139,27	342,92	225,35	129,09	-950,5	-757,6
1200	139,27	355,03	235,64	143,02	-946,0	-740,3
1300	139,27	366,18	245,25	156,94	-941,6	-723,3

Tabela 8. Funkcje termodynamiczne TbCl3 w zakresie temperatur 298,15-1300 K

Przemiany fazowe: przemiany fazowe w 715 i 790 K oraz topnienie TbCl₃ w temperaturze 854 K.

<u>TbCl_{3(s)}, 298,15 K < T<715 K</u>:

 $\overline{\Delta_{\text{tworz}}H} = 20,660 \cdot 10^{-3}T + 4,354 \cdot 10^{-6}T^2 + 2,412 \cdot 10^{2}T^{-1} - 1017,9$

 $\Delta_{\text{tworz}}G = 397,035 \cdot 10^{-3}T - 4,354 \cdot 10^{-6}T^2 + 1,206 \cdot 10^2 T^{-1} - 20,66 \cdot 10^{-3}T \ln T - 1017,9$

<u>TbCl_{3(s)}, 715 K < *T*< 790 K</u>:

 $\overline{\Delta_{\text{tworz}}H} = 43,614 \cdot 10^{-3}T - 9,538 \cdot 10^{-6}T^2 + 1,752 \cdot 10^2T^{-1} - 1027,2$

 $\Delta_{\text{tworz}}G = 550,918 \cdot 10^{-3}T + 9,538 \cdot 10^{-6}T^2 + 0,876 \cdot 10^2T^{-1} - 43,614 \cdot 10^{-3}T \ln T - 1027,2$ <u>TbCl_{3(s)}, 790 K < *T* < 854 K</u>:

 $\Delta_{\text{tworz}} \vec{H} = 39,246 \cdot 10^{-3} T - 9,538 \cdot 10^{-6} T^2 + 1,752 \cdot 10^2 T^{-1} - 1009,9$

 $\Delta_{\text{tworz}}G = 499,908 \cdot 10^{-3}T + 9,538 \cdot 10^{-6}T^2 + 0,876 \cdot 10^2T^{-1} - 39,246 \cdot 10^{-3}T \ln T - 1009,98 \cdot 10^{-6}T^2 + 0,876 \cdot 10^{-2}T^{-1} - 39,246 \cdot 10^{-3}T \ln T - 1009,98 \cdot 10^{-6}T^2 + 0,876 \cdot 10^{-2}T^{-1} - 39,246 \cdot 10^{-3}T \ln T - 1009,98 \cdot 10^{-6}T^2 + 0,876 \cdot 10^{-2}T^{-1} - 39,246 \cdot 10^{-3}T \ln T - 1009,98 \cdot 10^{-6}T^2 + 0,876 \cdot 10^{-2}T^{-1} - 39,246 \cdot 10^{-3}T \ln T - 1009,98 \cdot 10^{-6}T^2 + 0,876 \cdot 10^{-2}T^{-1} - 39,246 \cdot 10^{-3}T \ln T - 1009,98 \cdot 10^{-6}T^2 + 0,876 \cdot 10^{-2}T^{-1} - 39,246 \cdot 10^{-3}T \ln T - 1009,98 \cdot 10^{-6}T^2 + 0,876 \cdot 10^{-2}T^{-1} - 39,246 \cdot 10^{-3}T \ln T - 1009,98 \cdot 10^{-6}T^2 + 0,876 \cdot 10^{-2}T^{-1} - 39,246 \cdot 10^{-3}T \ln T - 1009,98 \cdot 10^{-6}T^2 + 0,876 \cdot 10^{-2}T^{-1} - 39,246 \cdot 10^{-3}T \ln T - 1009,98 \cdot 10^{-6}T^2 + 0,876 \cdot 10^{-2}T^{-1} - 39,246 \cdot 10^{-3}T \ln T - 1009,98 \cdot 10^{-6}T^2 + 0,876 \cdot 10^{-2}T^{-1} - 39,246 \cdot 10^{-3}T \ln T - 1009,98 \cdot 10^{-6}T^2 + 0,876 \cdot 10^{-2}T^{-1} - 39,246 \cdot 10^{-3}T \ln T - 1009,98 \cdot 10^{-6}T^2 + 0,876 \cdot 10^{-2}T^2 + 0,876 \cdot 10^{-2}T$ <u>TbCl_{3(c)}</u> 854 K < *T*<1300 K:

$$\begin{split} &\overline{\Delta_{\text{tworz}}}H = 67,136\cdot10^{-3}T - 9,538\cdot10^{-6}T^2 + 1,752\cdot10^2T^{-1} - 1012,9\\ &\Delta_{\text{tworz}}G = 691,654\cdot10^{-3}T + 9,538\cdot10^{-6}T^2 + 0,876\cdot10^2T^{-1} - 67,136\cdot10^{-3}T\ln T - 1012,9 \end{split}$$

C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\rm tworz} H$	$\Delta_{\text{tworz}}G$
$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
98,73	147,70	147,70	0,00	-993,1	-915,1
98,78	148,31	147,70	0,18	-993,1	-914,6
101,27	176,87	151,58	10,12	-991,1	-888,7
103,64	199,52	158,98	20,28	-989,1	-863,3
105,96	218,42	167,36	30,65	-987,0	-838,3
106,21	220,33	168,30	31,80	-986,8	-835,6
101,20	222,63	168,30	33,20	-985,4	-835,6
104,86	236,63	176,11	42,37	-983,6	-813,9
108,97	250,90	184,58	53,06	-981,3	-789,8
113,07	263,98	192,69	64,17	-978,7	-766,0
113,85	266,35	194,19	66,32	-978,2	-761,6
159,43	291,15	194,19	89,12	-955,4	-761,6
159,43	304,61	205,13	102,04	-949,5	-744,7
159,43	319,81	217,72	117,98	-942,4	-724,6
159,43	333,68	229,42	133,92	-935,4	-705,1
159,43	346,44	240,35	149,87	-928,8	-686,2
	$\begin{array}{c} C_{\rm p} \\ J {\rm mol}^{-1} {\rm K}^{-1} \\ 98,73 \\ 98,78 \\ 101,27 \\ 103,64 \\ 105,96 \\ 106,21 \\ 101,20 \\ 104,86 \\ 108,97 \\ 113,07 \\ 113,85 \\ 159,43 \\ 159$	$\begin{array}{cccc} C_{\rm p} & S \\ {\rm Jmol}^{-1}{\rm K}^{-1} & {\rm Jmol}^{-1}{\rm K}^{-1} \\ 98,73 & 147,70 \\ 98,78 & 148,31 \\ 101,27 & 176,87 \\ 103,64 & 199,52 \\ 105,96 & 218,42 \\ 106,21 & 220,33 \\ \end{array}$ $\begin{array}{cccc} 101,20 & 222,63 \\ 104,86 & 236,63 \\ 104,86 & 236,63 \\ 108,97 & 250,90 \\ 113,07 & 263,98 \\ 113,85 & 266,35 \\ \end{array}$ $\begin{array}{cccc} 159,43 & 291,15 \\ 159,43 & 304,61 \\ 159,43 & 319,81 \\ 159,43 & 346,44 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Tabela 9. Funkcje termodynamiczne DyCl3 w zakresie temperatur 298,15-1300 K

Przemiany fazowe: przemiana fazowa ciało stałe–ciało stałe w temperaturze 611 K i topnienie DyCl₃ w temperaturze 919 K.

 $\begin{array}{l} \underline{\mathrm{DyCl}_{3(\underline{s})}}, \ \underline{298,15}\ \mathrm{K} < T < 611\ \mathrm{K}; \\ \Delta_{\mathrm{tworz}}H = 1,766\cdot10^{-3}T + 21,118\cdot10^{-6}T^{\,2} - 5,948\cdot10^{2}T^{-1} - 6,23\cdot10^{-9}T^{\,3} - 993,3 \\ \Delta_{\mathrm{tworz}}G = 281,992\cdot10^{-3}T - 21,058\cdot10^{-6}T^{\,2} - 2,974\cdot10^{2}T^{-1} + 3,12\cdot10^{-9}T^{\,3} - 1,766\cdot10^{-3}T\ln T - 993,3 \\ \underline{\mathrm{DyCl}_{3(\underline{s})}}, \ \underline{611}\ \mathrm{K} < T < 919\ \mathrm{K}; \\ \Delta_{\mathrm{tworz}}H = -14,414\cdot10^{-3}T + 31,211\cdot10^{-6}T^{\,2} - 6,04\cdot10^{2}T^{-1} - 6,23\cdot10^{-9}T^{\,3} - 985,8 \\ \Delta_{\mathrm{tworz}}G = 172,074\cdot10^{-3}T - 31,211\cdot10^{-6}T^{\,2} - 3,02\cdot10^{2}T^{-1} + 3,12\cdot10^{-9}T^{\,3} + 14,414\cdot10^{-3}T\ln T - 985,8 \\ \underline{\mathrm{DyCl}_{3(\underline{c})}}, \ \underline{919}\ \mathrm{K} < T < 1300\ \mathrm{K}; \\ \Delta_{\mathrm{tworz}}H = 68,726\cdot10^{-3}T + 10,752\cdot10^{-6}T^{\,2} - 6,398\cdot10^{2}T^{-1} - 6,23\cdot10^{-9}T^{\,3} - 1022,1 \\ \Delta_{\mathrm{tworz}}G = 760,076\cdot10^{-3}T - 10,752\cdot10^{-6}T^{\,2} - 3,199\cdot10^{2}T^{-1} + 3,12\cdot10^{-9}T^{\,3} - 68,726\cdot10^{-3}T\ln T - 1022,1 \\ \end{array}$

Т	$C_{\rm p}$	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\text{tworz}}H$	$\Delta_{\mathrm{tworz}}G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	100,00	150,60	150,60	0,00	-996,3	-919,4
300	100,02	151,22	150,60	0,18	-996,3	-918,9
400	101,10	180,14	154,54	10,24	-994,1	-893,5
500	102,16	202,82	162,01	20,40	-991,9	-868,6
600	103,20	221,53	170,41	30,67	-989,8	-844,1
700	104,23	237,52	178,88	41,04	-987,8	-820,0
800	105,26	251,51	187,11	51,52	-985,7	-796,2
900	106,29	263,96	194,97	62,10	-983,6	-772,6
1000	107,32	275,22	202,44	72,78	-981,5	-749,3
1092	108,27	284,70	208,97	82,69	-979,6	-728,0
1092	148,53	317,30	208,97	118,29	-944,0	-728,0
1100	148,53	318,39	209,76	119,48	-943,5	-726,4
1200	148,53	331,31	219,36	134,34	-937,5	-707,0
1300	148,53	343,20	228,43	149,19	-931,5	-688,0

Tabela 10. Funkcje termodynamiczne TmCl₃ w zakresie temperatur 298,15–1300 K

Przemiany fazowe: topnienie TmCl₃ w temperaturze 1092 K.

 $\frac{\text{TmCl}_{3(5)} 298,15 \text{ K} < T < 1092 \text{ K}}{\Delta_{\text{tworz}} H = 21,894 \cdot 10^{-3} T - 1,566 \cdot 10^{-6} T^2 - 0,928 \cdot 10^2 T^{-1} + 0,627 \cdot 10^{-9} T^3 - 1002,4}$ $\Delta_{\text{tworz}} G = 403,179 \cdot 10^{-3} T + 1,566 \cdot 10^{-6} T^2 - 0,464 \cdot 10^2 T^{-1} - 0,363 \cdot 10^{-9} T^3 - 21,894 \cdot 10^{-3} T \ln T - 1002,4$ $\frac{\text{Tm}\text{Cl}_{3(c)}}{\text{Tm}\text{Cl}_{3(c)}} \frac{1092 \text{ K} < T < 1300 \text{ K}}{1300 \text{ K}}$ $\frac{\text{Tm}\text{Cl}_{3(c)}}{\text{A}_{\text{tworz}}H} = 73,348 \cdot 10^{-3}T - 6,693 \cdot 10^{-6}T^2 - 1,048 \cdot 10^2T^{-1} + 0,627 \cdot 10^{-9}T^3 - 1016,8$ $\Delta_{\text{tworz}}G = 770,791 \cdot 10^{-3}T + 6,693 \cdot 10^{-6}T^2 - 0,524 \cdot 10^2T^{-1} - 0,363 \cdot 10^{-9}T^3 - 73,348 \cdot 10^{-3}T \ln T - 1016,8$

Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\rm tworz} H$	$\Delta_{\rm tworz} G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	94,96	135,10	135,10	0,00	-959,5	-882,2
300	94,99	135,69	135,10	0,18	-959,5	-881,7
400	96,34	163,20	138,84	9,74	-957,8	-856,1
500	97,57	184,84	145,95	19,44	-956,3	-830,8
600	98,75	202,73	153,97	29,26	-954,8	-805,9
700	99,91	218,04	162,05	39,19	-953,3	-781,2
800	101,05	231,46	169,91	49,24	-951,8	-756,7
900	102,19	243,42	177,42	59,40	-950,3	-732,4
1000	103,32	254,25	184,57	69,68	-948,7	-708,3
1068	104,09	261,07	189,23	76,73	-947,6	-692,0
1068	104,09	261,07	189,23	76,73	-949,4	-692,0
1092	104,36	263,39	190,83	79,23	-949,1	-686,2
1092	104,36	263,39	190,83	79,23	-956,8	-686,2
1100	104,45	264,15	191,36	80,06	-956,7	-684,2
1148	104,99	268,62	194,50	85,09	-956,1	-672,3
1148	121,34	301,42	194,50	122,75	-918,4	-672,3
1200	121,34	306,80	199,25	129,06	-916,9	-661,2
1300	121,34	316,51	207,90	141,20	-914,0	-640,0

Tabela 11. Funkcje termodynamiczne YbCl₃ w zakresie temperatur 298,15–1300 K

Przemiany fazowe: topnienie YbCl₃ w temperaturze 1148 K, przemiana fazowa $\beta \rightarrow \gamma (T_{\text{przem}} = 1068 \text{ K}, \Delta_{\text{przem}} H = 1,8 \text{ kJ mol}^{-1})$ stałego Yb oraz jego topnienie w 1092 K z towarzyszącą mu entalpią 7,7 kJ mol⁻¹ [46].

 $\begin{array}{l} \underline{YbCl}_{3(\underline{s})\underline{k}} & 298.15 \ K < T < 1068 \ K \\ \vdots \\ \Delta_{tworz}H = 13,970 \cdot 10^{-3}T - 1,842 \cdot 10^{-6}T^2 - 3,787 \cdot 10^2T^{-1} + 1,813 \cdot 10^{-9}T^3 - 962,3 \\ \Delta_{tworz}G = 349,765 \cdot 10^{-3}T + 1,842 \cdot 10^{-6}T^2 - 1,894 \cdot 10^2T^{-1} - 0,907 \cdot 10^{-9}T^3 - 13,97 \cdot 10^{-3}T \ln T - 962,3 \\ \underline{YbCl}_{3(\underline{s})\underline{k}} & 1068 \ K < T < 1092 \ K \\ \vdots \\ \Delta_{tworz}H = 0,696 \cdot 10^{-3}T + 5,418 \cdot 10^{-6}T^2 - 3,787 \cdot 10^2T^{-1} - 956,0 \\ \Delta_{tworz}G = 258,014 \cdot 10^{-3}T - 5,418 \cdot 10^{-6}T^2 - 1,894 \cdot 10^2T^{-1} - 0,696 \cdot 10^{-3}T \ln T - 956,0 \\ \underline{YbCl}_{3(\underline{s})\underline{k}} & 1092 \ K < T < 1148 \ K \\ \vdots \\ \Delta_{tworz}H = 5,418 \cdot 10^{-6}T^2 - 3,787 \cdot 10^2T^{-1} - 962,9 \\ \Delta_{tworz}G = 259,50 \cdot 10^{-3}T - 5,418 \cdot 10^{-6}T^2 - 1,894 \cdot 10^2T^{-1} - 962,9 \\ \underline{YbCl}_{3(\underline{c})\underline{k}} & 1148 \ K < T < 1300 \ K \\ \Delta_{tworz}H = 29,17 \cdot 10^{-3}T - 0,187 \cdot 10^{-6}T^2 - 2,134 \cdot 10^2T^{-1} - 951,3 \\ \Delta_{tworz}G = 448,52 \cdot 10^{-3}T + 0,187 \cdot 10^{-6}T^2 - 2,134 \cdot 10^2T^{-1} - 29,17 \cdot 10^{-3}T \ln T - 951,3 \end{array}$

Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\rm tworz} H$	$\Delta_{\rm tworz}G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J mol^{-1}K^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	102,41	188,28	188,28	0,00	-904,4	-875,5
300	102,45	188,91	188,28	0,19	-904,5	-875,3
331	103,10	199,02	188,82	3,38	-905,6	-872,3
331	103,10	199,02	188,82	3,38	-935,2	-872,3
400	104,53	218,67	192,33	10,54	-928,6	-859,3
500	106,56	242,22	200,03	21,09	-926,4	-840,9
583	108,24	258,71	207,24	30,01	-924,4	-826,1
583	108,24	258,71	207,24	30,01	-924,8	-826,1
600	108,58	261,82	208,74	31,85	-924,3	-823,0
700	110,58	278,71	217,55	42,81	-921,8	-805,5
800	112,59	293,61	226,15	53,97	-919,2	-788,3
900	114,59	306,98	234,40	65,33	-916,6	-771,5
1000	116,59	319,16	242,28	76,88	-913,9	-754,9
1058	117,74	325,77	246,67	83,68	-912,4	-745,5
1058	151,12	376,97	246,67	137,88	-858,2	-745,5
1100	151,12	382,85	251,76	144,23	-855,6	-740,8
1138	151,12	387,98	256,23	149,97	-853,4	-736,7
1138	151,12	387,98	256,23	149,97	-856,5	-736,7
1200	151,12	396,00	263,24	159,34	-853,1	-730,0
1300	151,12	408,09	273,93	174,45	-847,6	-719,6

Tabela 12. Funkcje termodynamiczne LaBr₃ w zakresie temperatur 298,15–1300 K

Przemiany fazowe: topnienie LaBr₃ w temperaturze 1058 K, przemiany fazowe $hex \rightarrow fcc$ ($T_{przem} = 583 \text{ K}, \Delta_{przem}H = 0,4 \text{ kJ mol}^{-1}$). $fcc \rightarrow bcc$ ($T_{przem} = 1138 \text{ K}, \Delta_{przem}H = 3,1 \text{ kJ mol}^{-1}$) stałego La i jego topnienie w temperaturze 1191 K z towarzyszącą mu entalpią 6,2 kJ mol⁻¹ [46], wrzenie bromu w 331 K (29,56 kJmol⁻¹) [46].

$$\begin{split} \underline{\text{LaBr}_{3(\text{s}).}} & 298, 15 \text{ K} < T < 331 \text{ K}: \\ \Delta_{\text{tworz}} H = -43, 372 \cdot 10^{-3} T + 8,805 \cdot 10^{-6} T^{2} + 0, 18 \cdot 10^{2} T^{-1} - 892, 3 \\ \Delta_{\text{tworz}} G = -188, 216 \cdot 10^{-3} T - 8,805 \cdot 10^{-6} T^{2} + 0,09 \cdot 10^{2} T^{-1} + 43, 372 \cdot 10^{-3} T \ln T - 892, 3 \\ \underline{\text{LaBr}_{3(\text{s}).}} & 331 \text{ K} < T < 583 \text{ K}: \\ \Delta_{\text{tworz}} H = 14, 183 \cdot 10^{-3} T + 8,460 \cdot 10^{-6} T^{2} - 1,77 \cdot 10^{2} T^{-1} - 940, 3 \\ \Delta_{\text{tworz}} G = 291,467 \cdot 10^{-3} T - 8,460 \cdot 10^{-6} T^{2} - 0,885 \cdot 10^{2} T^{-1} - 14,183 \cdot 10^{-3} T \ln T - 940, 3 \\ \underline{\text{LaBr}_{3(\text{s}).}} & 583 \text{ K} < T < 1058 \text{ K}: \\ \Delta_{\text{tworz}} H = 22,963 \cdot 10^{-3} T + 2,115 \cdot 10^{-6} T^{2} + 2,12 \cdot 10^{2} T^{-1} - 939, 2 \\ \Delta_{\text{tworz}} G = 350, 02 \cdot 10^{-3} T - 2,115 \cdot 10^{-6} T^{2} + 1,96 \cdot 10^{2} T^{-1} - 22,963 \cdot 10^{-3} T \ln T - 944, 3 \\ \underline{\text{LaBr}_{3(\text{c}).}} & 1058 \text{ K} < T < 1138 \text{ K}: \\ \Delta_{\text{tworz}} H = 77,422 \cdot 10^{-3} T - 7,855 \cdot 10^{-6} T^{2} + 1,94 \cdot 10^{2} T^{-1} - 931, 5 \\ \Delta_{\text{tworz}} G = 711,434 \cdot 10^{-3} T + 7,855 \cdot 10^{-6} T^{2} + 0,97 \cdot 10^{2} T^{-1} - 77,422 \cdot 10^{-3} T \ln T - 936, 6 \\ \underline{\text{LaBr}_{3(\text{c}).}} & 1138 \text{ K} < T < 1300 \text{ K}: \\ \Delta_{\text{tworz}} H = 55,542 \cdot 10^{-3} T - 0,345 \cdot 10^{-6} T^{2} - 0,975 \cdot 10^{2} T^{-1} - 55,542 \cdot 10^{-3} T \ln T - 924, 2 \\ \end{array}$$

Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\text{tworz}} H$	$\Delta_{\mathrm{tworz}}G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	100,29	196,65	196,65	0,00	-864,0	-833,4
300	100,35	197,27	196,65	0,19	-864,1	-833,2
331	101,20	207,18	197,18	3,31	-865,3	-829,9
331	101,20	207,18	197,18	3,31	-894,9	-829,9
400	103,08	226,51	200,62	10,36	-893,5	-816,5
500	105,77	249,80	208,20	20,80	-891,5	-797,5
600	108,44	269,32	216,81	31,51	-889,5	-778,8
700	111,11	286,24	225,54	42,49	-887,5	-760,5
800	113,76	301,25	234,09	53,73	-885,4	-742,5
900	116,42	314,80	242,31	65,24	-883,3	-724,8
956	117,91	321,88	246,77	71,80	-882,2	-715,0
956	138,85	369,48	246,77	117,30	-836,7	-715,0
1000	138,85	375,72	252,31	123,41	-834,9	-709,4
1100	138,85	388,96	264,14	137,30	-831,0	-697,1
1128	138,85	392,45	267,28	141,18	-830,0	-693,7
1128	138,85	392,45	267,28	141,18	-832,9	-693,7
1200	138,85	401,04	275,05	151,18	-830,2	-684,9
1289	138,85	410,97	284,09	163,54	-826,9	-674,2
1289	138,85	410,97	284,09	163,54	-834,0	-674,2
1300	138,85	412,15	285,17	165,07	-833,7	-672,8

Tabela 13. Funkcje termodynamiczne NdBr3 w zakresie temperatur 298,15-1300 K

Przemiany fazowe: topnienie NdBr₃ w temperaturze 956 K, przemiana fazowa $hcp \rightarrow bcc \ (T_{przem} = 1128 \text{ K}, \Delta_{przem}H = 3,0 \text{ kJ mol}^{-1})$ stałego Nd i jego topnienie w temperaturze 1289 K z towarzyszącą mu entalpią 7,1 kJ mol⁻¹ [46], wrzenie bromu w 331 K (29,56 kJmol⁻¹) [46].

 $\begin{array}{l} \underline{\mathrm{NdBr}}_{3(\mathrm{s})}, \underline{298, 15 \ \mathrm{K} < T < 331 \ \mathrm{K}}; \\ \Delta_{\mathrm{tworz}}H = -35, 659 \cdot 10^{-3}T - 0, 21 \cdot 10^{-6}T^{2} + 4, 657 \cdot 10^{2}T^{-1} - 854, 9 \\ \Delta_{\mathrm{tworz}}G = -133, 494 \cdot 10^{-3}T + 0, 21 \cdot 10^{-6}T^{2} + 2, 328 \cdot 10^{2}T^{-1} + 35, 659 \cdot 10^{-3}T \ \mathrm{ln}T - 854, 9 \\ \underline{\mathrm{NdBr}}_{3(\mathrm{s})}, \underline{331 \ \mathrm{K} < T < 956 \ \mathrm{K};} \\ \Delta_{\mathrm{tworz}}H = 21, 896 \cdot 10^{-3}T - 0, 555 \cdot 10^{-6}T^{2} + 2, 707 \cdot 10^{2}T^{-1} - 902, 9 \\ \Delta_{\mathrm{tworz}}G = 346, 188 \cdot 10^{-3}T + 0, 555 \cdot 10^{-6}T^{2} + 1, 353 \cdot 10^{2}T^{-1} - 21, 896 \cdot 10^{-3}T \ \mathrm{ln}T - 902, 9 \\ \underline{\mathrm{NdBr}}_{3(\mathrm{c})}, \underline{956 \ \mathrm{K} < T < 1128 \ \mathrm{K};} \\ \Delta_{\mathrm{tworz}}H = 68, 154 \cdot 10^{-3}T - 13, 805 \cdot 10^{-6}T^{2} + 2, 531 \cdot 10^{2}T^{-1} - 889, 5 \\ \Delta_{\mathrm{tworz}}G = 636, 96 \cdot 10^{-3}T + 13, 805 \cdot 10^{-6}T^{2} + 1, 265 \cdot 10^{2}T^{-1} - 68, 154 \cdot 10^{-3}T \ \mathrm{ln}T - 889, 5 \\ \underline{\mathrm{NdBr}}_{3(\mathrm{c})}, \underline{1128 \ \mathrm{K} < T < 1289 \ \mathrm{K};} \\ \Delta_{\mathrm{tworz}}H = 38, 234 \cdot 10^{-3}T - 0, 345 \cdot 10^{-6}T^{2} - 0, 975 \cdot 10^{2}T^{-1} - 875, 4 \\ \Delta_{\mathrm{tworz}}G = 429, 573 \cdot 10^{-3}T + 0, 345 \cdot 10^{-6}T^{2} - 0, 975 \cdot 10^{2}T^{-1} - 38, 234 \cdot 10^{-3}T \ \mathrm{ln}T - 875, 4 \\ \underline{\mathrm{NdBr}}_{3(\mathrm{c})}, \underline{1289 \ \mathrm{K} < T < 1300 \ \mathrm{K};} \\ \Delta_{\mathrm{tworz}}H = 34, 056 \cdot 10^{-3}T - 0, 345 \cdot 10^{-6}T^{2} - 1, 95 \cdot 10^{2}T^{-1} - 877, 2 \\ \Delta_{\mathrm{tworz}}G = 400, 927 \cdot 10^{-3}T + 0, 345 \cdot 10^{-6}T^{2} - 0, 975 \cdot 10^{2}T^{-1} - 34, 05 \cdot 10^{-3}T \ \mathrm{ln}T - 877, 2 \\ \end{array}$

Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\rm tworz} H$	$\Delta_{\rm tworz} G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	97,28	194,00	194,00	0,00	-843,5	-811,4
300	97,30	194,60	194,00	0,18	-843,6	-811,2
331	97,60	204,18	194,51	3,20	-845,0	-807,8
331	97,60	204,18	194,51	3,20	-889,3	-807,8
400	98,20	222,72	197,83	9,96	-888,3	-791,5
500	99,03	244,72	205,09	19,82	-886,8	-768,1
600	99,83	262,85	213,25	29,76	-885,3	-745,0
700	100,62	278,30	221,46	39,78	-883,9	-722,2
800	101,40	291,79	229,43	49,89	-882,6	-699,6
900	102,17	303,77	237,03	60,06	-881,5	-677,1
1000	102,95	314,58	244,26	70,32	-880,4	-654,7
1100	103,72	324,43	251,10	80,65	-879,4	-632,5
1103	103,74	324,71	251,30	80,96	-879,4	-631,8
1103	145,00	358,61	251,30	118,36	-847,9	-631,8
1200	145,00	370,83	260,04	132,43	-843,1	-613,8
1300	145,00	382,44	268,60	146,93	-838,4	-595,6

Tabela 14. Funkcje termodynamiczne TbBr3 w zakresie temperatur 298,15–1300 K

Przemiany fazowe: topnienie TbBr₃ w temperaturze 1103 K, wrzenie bromu w 331 K (29,56 kJmol⁻¹) [46].

 $\begin{array}{l} \underline{\text{TbBr}}_{3(\text{s})\text{-}} & 298.15 \text{ K} < T < 331 \text{ K}: \\ \overline{\Delta_{\text{tworz}}} H = -35,059 \cdot 10^{-3}T - 5,521 \cdot 10^{-6}T^2 + 6,30 \cdot 10^2 T^{-1} - 834,7 \\ \overline{\Delta_{\text{tworz}}} G = -126,959 \cdot 10^{-3}T + 5,521 \cdot 10^{-6}T^2 + 3,15 \cdot 10^2 T^{-1} + 35,059 \cdot 10^{-3}T \ln T - 834,7 \\ \underline{\text{TbBr}}_{3(\text{s})\text{-}} & 331 \text{ K} < T < 1103 \text{ K}: \\ \overline{\Delta_{\text{tworz}}} H = 22,496 \cdot 10^{-3}T - 5,866 \cdot 10^{-6}T^2 + 4,35 \cdot 10^2 T^{-1} - 897,4 \\ \overline{\Delta_{\text{tworz}}} G = 389,376 \cdot 10^{-3}T + 5,866 \cdot 10^{-6}T^2 + 2,175 \cdot 10^2 T^{-1} - 22,496 \cdot 10^{-3}T \ln T - 897,4 \\ \underline{\text{TbBr}}_{3(\text{c})\text{-}} & 1103 \text{ K} < T < 1300 \text{ K}: \\ \overline{\Delta_{\text{tworz}}} H = 72,18 \cdot 10^{-3}T - 9,695 \cdot 10^{-6}T^2 + 4,07 \cdot 10^2 T^{-1} - 916,1 \\ \overline{\Delta_{\text{tworz}}} G = 744,777 \cdot 10^{-3}T + 9,695 \cdot 10^{-6}T^2 + 2,035 \cdot 10^2 T^{-1} - 72,18 \cdot 10^{-3}T \ln T - 907,5 \\ \end{array}$

Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\rm tworz} H$	$\Delta_{\rm tworz} G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	95,20	214,60	214,60	0,00	-673,9	-669,0
300	95,23	215,19	214,60	0,18	-673,9	-669,0
387	96,80	239,63	217,59	8,53	-675,5	-667,3
207	0.6.00	220 (2	017.50	0.50	(00.0	((=)
387	96,80	239,63	217,59	8,53	-699,2	-667,3
400	97,03	242,84	218,36	9,79	-699,9	-666,3
458	98,02	256,04	222,31	15,45	-702,9	-661,2
458	98,02	256,04	222,31	15,45	-765.8	-661,2
500	98,72	264,67	225,51	19,58	-765,1	-651,6
583	100,10	279,94	232,20	27,83	-763,9	-632,9
507	100.10	270.04	222.20	27.02	764.2	(22.0
282	100,10	279,94	252,20	27,65	-/04,5	-032,9
700	100,58	202,02	255,59	29,33	-/04,0	-629,0
/00	102,02	298,41	241,76	39,65	-/62,3	-606,7
800	103,65	312,14	249,72	49,94	-/60,/	-584,5
900	105,27	324,44	257,35	60,38	-/59,0	-562,6
1000	106,89	335,62	264,63	70,99	-/5/,3	-540,9
1047	107,65	340,55	267,93	76,03	-756,5	-530,8
1047	138,95	388,53	267,93	126,27	-706,3	-530,8
1100	138,95	395,39	273,90	133,64	-703,7	-521,9
1138	138,95	400,11	278,04	138,92	-701,9	-515,7
1120	128.05	400.11	278.04	138.02	705.0	5157
1101	130,95	400,11	270,04	136,92	-703,0	-515,7
1191	130,93	400,44	265,01	140,28	-/02,8	-300,9
1191	138,95	406,44	283,61	146,28	-709,0	-506,9
1200	138,95	407,48	284,54	147,53	-708,6	-505,4
1300	138,95	418,61	294,43	161,43	-703,8	-488,7

Tabela 15. Funkcje termodynamiczne LaI3 w zakresie temperatur 298,15-1300 K

Przemiany fazowe: topnienie LaI₃ w temperaturze 1047 K, przemiany fazowe $hex \rightarrow fcc$ ($T_{przem} = 583 \text{ K}, \Delta_{przem}H = 0.4 \text{ kJ mol}^{-1}$), $fcc \rightarrow bcc$ ($T_{przem} = 1138 \text{ K}, \Delta_{przem}H = 3.1 \text{ kJ mol}^{-1}$) stałego La i jego topnienie w temperaturze 1191 K z towarzyszącą mu entalpią 6,2 kJ mol⁻¹ [46], topnienie jodu w temperaturze 387 K, wrzenie jodu w temperaturze 458 K, z entalpiami odpowiednio 15,5 i 41,9 kJ mol⁻¹ [46].

 $\begin{array}{l} \underline{LaI_{3(s)}}, & \underline{298, 15 \text{ K}} < T < 387 \text{ K}: \\ \Delta_{\text{tworz}} H = 140, 356 \cdot 10^{-3} T - 178, 30 \cdot 10^{-6} T^{-2} + 42, 339 \cdot 10^{2} T^{-1} - 714, 1 \\ \Delta_{\text{tworz}} G = 874, 051 \cdot 10^{-3} T + 178, 30 \cdot 10^{-6} T^{-2} + 21, 169 \cdot 10^{2} T^{-1} - 140, 365 \cdot 10^{-3} T \ln T - 714, 1 \\ \underline{LaI_{3(s)}}, & 387 \text{ K} < T < 458 \text{ K}: \\ \Delta_{\text{tworz}} H = -56, 615 \cdot 10^{-3} T + 6, 882 \cdot 10^{-6} T^{-2} + 0, 384 \cdot 10^{2} T^{-1} - 678, 5 \\ \Delta_{\text{tworz}} G = -306, 054 \cdot 10^{-3} T - 6, 882 \cdot 10^{-6} T^{-2} + 0, 192 \cdot 10^{2} T^{-1} + 56, 615 \cdot 10^{-3} T \ln T - 678, 5 \\ \underline{LaI_{3(s)}}, & 458 \text{ K} < T < 583 \text{ K}: \\ \Delta_{\text{tworz}} H = 8, 290 \cdot 10^{-3} T + 6, 455 \cdot 10^{-6} T^{-2} - 0, 546 \cdot 10^{2} T^{-1} - 770, 8 \\ \Delta_{\text{tworz}} G = 293, 221 \cdot 10^{-3} T - 6, 455 \cdot 10^{-6} T^{-2} - 0, 273 \cdot 10^{2} T^{-1} - 8, 29 \cdot 10^{-3} T \ln T - 770, 8 \\ \underline{LaI_{3(s)}}, & 583 \text{ K} < T < 1047 \text{ K}: \end{array}$

$$\begin{split} &\Delta_{\text{tworz}} H = 17,07\cdot10^{-3}T + 0,11\cdot10^{-6}T^2 + 3,344\cdot10^2T^{-1} - 774,8 \\ &\Delta_{\text{tworz}} G = 351,774\cdot10^{-3}T - 0,11\cdot10^{-6}T^2 + 1,672\cdot10^2T^{-1} - 17,070\cdot10^{-3}T\ln T - 774,8 \\ &\underline{\text{LaI}_{3(\text{c}).}} \quad 1047 \text{ K} < T < 1138 \text{ K}: \\ &\Delta_{\text{tworz}} H = 65,190\cdot10^{-3}T - 7,937\cdot10^{-6}T^2 + 2,960\cdot10^2T^{-1} - 766,1 \\ &\Delta_{\text{tworz}} G = 669,648\cdot10^{-3}T + 7,937\cdot10^{-6}T^2 + 1,48\cdot10^2T^{-1} - 65,19\cdot10^{-3}T\ln T - 766,1 \\ &\underline{\text{LaI}_{3(\text{c}).}} \quad 1138 \text{ K} < T < 1191 \text{ K}: \\ &\Delta_{\text{tworz}} H = 43,31\cdot10^{-3}T - 0,427\cdot10^{-6}T^2 - 0,93\cdot10^2T^{-1} - 753,7 \\ &\Delta_{\text{tworz}} G = 513,464\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,465\cdot10^2T^{-1} - 43,31\cdot10^{-3}T\ln T - 753,7 \\ &\underline{\text{LaI}_{3(\text{c}).}} \quad 1191 \text{ K} < T < 1300 \text{ K}: \\ &\Delta_{\text{tworz}} H = 48,54\cdot10^{-3}T - 0,427\cdot10^{-6}T^2 - 0,93\cdot10^2T^{-1} - 766,1 \\ &\Delta_{\text{tworz}} G = 560,942\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,93\cdot10^2T^{-1} - 766,1 \\ &\Delta_{\text{tworz}} G = 560,942\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,93\cdot10^2T^{-1} - 766,1 \\ &\Delta_{\text{tworz}} G = 560,942\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,93\cdot10^2T^{-1} - 766,1 \\ &\Delta_{\text{tworz}} G = 560,942\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,93\cdot10^2T^{-1} - 766,1 \\ &\Delta_{\text{tworz}} G = 560,942\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,93\cdot10^2T^{-1} - 766,1 \\ &\Delta_{\text{tworz}} G = 560,942\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,93\cdot10^2T^{-1} - 766,1 \\ &\Delta_{\text{tworz}} G = 560,942\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,93\cdot10^2T^{-1} - 766,1 \\ &\Delta_{\text{tworz}} G = 560,942\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,93\cdot10^2T^{-1} - 766,1 \\ &\Delta_{\text{tworz}} G = 560,942\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,93\cdot10^2T^{-1} - 766,1 \\ &\Delta_{\text{tworz}} G = 560,942\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,93\cdot10^2T^{-1} - 766,1 \\ &\Delta_{\text{tworz}} G = 560,942\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,465\cdot10^2T^{-1} - 48,54\cdot10^{-3}T \ln T - 766,1 \\ &\Delta_{\text{tworz}} G = 560,942\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,465\cdot10^2T^{-1} - 48,54\cdot10^{-3}T + 0,427\cdot10^{-6}T^2 - 0,465\cdot10^{-2}T^{-1} - 48,54\cdot10^{-3}T +$$

160

Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\text{tworz}} H$	$\Delta_{\rm tworz} G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	102,22	215,10	215,10	0,00	-30,4	-630,1
300	102,29	215,73	215,10	0,19	-30,4	-630,1
387	105,61	242,19	218,33	9,23	-33,2	-627,3
207	105 61	242 10	210.22	0.22	04.5	6772
307 400	105,01	242,19	210,55	9,23	-94,5	-027,5
400	100,10	243,09	219,10	10,01	-93,9	-023,9
438	108,20	260,20	223,43	10,85	-101,0	-019,4
458	108,26	260,20	223,45	16,83	-239,0	-619,4
500	109,81	269,76	226,95	21,41	-236,9	-609,4
600	113,48	290,11	235,82	32,57	-232,4	-586,0
700	117,13	307,87	244,87	44,10	-228,5	-562,9
800	120,77	323,75	253,75	55,99	-224,9	-540,3
862	123,02	332,85	259,12	63,55	-222,9	-526,4
862	118 13	348 28	259 12	76.85	-207.4	-526.4
900	118,13	353 38	262.79	81 34	-206.5	-518.5
1000	118,13	365.82	272.00	93.16	-204.3	-498.0
1058	118,13	372,48	277,06	100,01	-203,3	-486,2
1050	147.01	406 51	277.07	126.01	1(0.2	496 2
1058	147,01	406,51	277,06	136,01	-169,2	-486,2
1100	147,01	412,24	282,08	142,18	-16/,4	-4/9,1
1128	147,01	415,93	285,34	146,30	-166,3	-4/4,4
1128	147,01	415,93	285,34	146,30	-168,9	-474,4
1200	147,01	425,03	293,39	156,88	-166,1	-462,4
1289	147,01	435,55	302,79	169,97	-162,9	-447,7
1289	147,01	435,55	302,79	169,97	-168,4	-447.7
1300	147,01	436,79	303,91	171,58	-168,0	-445,9

Tabela 16. Funkcje termodynamiczne NdI3 w zakresie temperatur 298,15-1300 K

Przemiany fazowe: przemiana fazowa NdI₃ w temperaturze 862 K, topnienie NdI₃ w temperaturze 1058 K, przemiana fazowa $hcp \rightarrow bcc$ ($T_{przem} = 1128$ K, $\Delta_{przem}H = 3,0$ kJ mol⁻¹) stałego Nd i jego topnienie w temperaturze 1289 K z towarzyszącą mu entalpią 7,1 kJ mol⁻¹ [46], topnienie jodu w temperaturze 387 K, wrzenie jodu w temperaturze 458 K, z entalpiami odpowiednio 15,5 i 41,9 kJ mol⁻¹ [46].

 $\begin{array}{l} \underline{\mathrm{NdI}_{3(\mathrm{s})_{*}}} & \underline{298,15} \ \mathrm{K} < T < 387 \ \mathrm{K} : \\ \overline{\mathrm{A}_{\mathrm{tworz}}} H = 153,169\cdot10^{-3}T - 180,53\cdot10^{-6}T^{\,2} + 46,816\cdot10^{2}T^{-1} - 684,5 \\ \overline{\mathrm{A}_{\mathrm{tworz}}} G = 974,781\cdot10^{-3}T + 180,53\cdot10^{-6}T^{\,2} + 23,409\cdot10^{2}T^{-1} - 153,144\cdot10^{-3}T \ \mathrm{ln}T - 684,5 \\ \underline{\mathrm{NdI}_{3(\mathrm{s})_{*}}} & \underline{387} \ \mathrm{K} < T < 458 \ \mathrm{K} : \\ \overline{\mathrm{A}_{\mathrm{tworz}}} H = -43,811\cdot10^{-3}T + 4,652\cdot10^{-6}T^{\,2} + 4,861\cdot10^{2}T^{-1} - 648,9 \\ \overline{\mathrm{A}_{\mathrm{tworz}}} G = -205,176\cdot10^{-3}T + 13,957\cdot10^{-6}T^{\,2} + 7,291\cdot10^{2}T^{-1} + 43,811\cdot10^{-3}T \ \mathrm{ln}T - 652,9 \\ \underline{\mathrm{NdI}_{3(\mathrm{s})_{*}}} & \underline{458} \ \mathrm{K} < T < 862 \ \mathrm{K} : \\ \overline{\mathrm{A}_{\mathrm{tworz}}} H = 21,094\cdot10^{-3}T + 4,225\cdot10^{-6}T^{\,2} + 3,931\cdot10^{2}T^{-1} - 741,3 \\ \overline{\mathrm{A}_{\mathrm{tworz}}} G = 394,099\cdot10^{-3}T - 4,225\cdot10^{-6}T^{\,2} + 1,966\cdot10^{2}T^{-1} - 21,094\cdot10^{-3}T \ \mathrm{ln}T - 740,3 \\ \underline{\mathrm{NdI}_{3(\mathrm{s})_{*}}} & \underline{862} \ \mathrm{K} < T < 1058 \ \mathrm{K} : \end{array}$

$$\begin{split} &\Delta_{\text{tworz}} H = 47,374 \cdot 10^{-3} T - 13,887 \cdot 10^{-6} T^2 + 3,551 \cdot 10^2 T^{-1} - 737,1 \\ &\Delta_{\text{tworz}} G = 551,331 \cdot 10^{-3} T + 13,828 \cdot 10^{-6} T^2 + 1,776 \cdot 10^2 T^{-1} - 47,374 \cdot 10^{-3} T \ln T - 737,1 \\ \hline \text{NdI}_{3(\text{c}),} & 1058 \text{ K} < T < 1128 \text{ K}: \\ &\Delta_{\text{tworz}} H = 76,254 \cdot 10^{-3} T - 13,947 \cdot 10^{-6} T^2 + 3,551 \cdot 10^2 T^{-1} - 731,6 \\ &\Delta_{\text{tworz}} G = 747,305 \cdot 10^{-3} T + 13,828 \cdot 10^{-6} T^2 + 1,776 \cdot 10^2 T^{-1} - 76,254 \cdot 10^{-3} T \ln T - 730,7 \\ \hline \text{NdI}_{3(\text{c}),} & 1128 \text{ K} < T < 1289 \text{ K}: \\ &\Delta_{\text{tworz}} H = 46,334 \cdot 10^{-3} T - 0,427 \cdot 10^{-6} T^2 - 0,93 \cdot 10^2 T^{-1} - 717,7 \\ &\Delta_{\text{tworz}} G = 539,918 \cdot 10^{-3} T + 0,428 \cdot 10^{-6} T^2 - 0,465 \cdot 10^2 T^{-1} - 46,334 \cdot 10^{-3} T \ln T - 716,6 \\ \hline \text{NdI}_{3(\text{c}),} & 1289 \text{ K} < T < 1300 \text{ K}: \\ &\Delta_{\text{tworz}} H = 42,15 \cdot 10^{-3} T - 0,427 \cdot 10^{-6} T^2 - 0,93 \cdot 10^2 T^{-1} - 719,4 \\ &\Delta_{\text{tworz}} G = 511,27 \cdot 10^{-3} T + 0,428 \cdot 10^{-6} T^2 - 0,465 \cdot 10^2 T^{-1} - 42,15 \cdot 10^{-3} T \ln T - 718,3 \\ \end{split}$$

162

Т	$C_{\rm p}$	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\rm tworz} H$	$\Delta_{\text{tworz}}G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	75,22	121,20	121,20	0,00	-824,2	-770,6
300	75,26	121,67	121,20	0,14	-824,2	-770,3
400	77,81	143,66	124,18	7,79	-822,8	-752,6
500	80,49	161,31	129,90	15,71	-821,3	-735,2
600	83,21	176,23	136,41	23,89	-819,7	-718,1
700	85,95	189,26	143,05	32,35	-818,0	-701,3
765	87,75	196,97	147,30	37,99	-816,8	-690,5
765	87,75	196,97	147,30	37,99	-817,0	-690,5
800	88,71	200,92	149,56	41,08	-816,3	-684,7
900	91,47	211,52	155,87	50,09	-814,4	-668,4
1000	94,24	221,31	161,93	59,38	-812,5	-652,3
1014	94,63	222,62	162,76	60,70	-812,2	-650,0
1014	110,71	233,96	162,76	72,20	-800,7	-650,0
1096	110,71	242,57	168,41	81,28	-797,9	-638,0
1096	110,71	242,57	168,41	81,28	-807,1	-638,0
1100	110,71	242,97	168,68	81,72	-807,0	-637,4
1125	110,71	245,46	170,36	84,49	-806,1	-633,5

Tabela 17. Funkcje termodynamiczne EuCl₂ w zakresie temperatur 298,15–1125K

Przemiany fazowe: przemiana fazowa EuCl₂ w temperaturze 1014 K, topnienie EuCl₂ w temperaturze 1125 K, przemiana fazowa $\alpha \rightarrow \beta (T_{przem} = 765 \text{ K}, \Delta_{przem} H = 0.2 \text{ kJ mol}^{-1})$ stałego Eu i jego topnienie w temperaturze 1096 K z towarzyszącą mu entalpią 9,2 kJ mol⁻¹ [46].

$$\begin{split} & \underline{\operatorname{EuCl}_{2(\mathrm{s})}}, \ 298,15 \ \mathrm{K} < T < 765 \ \mathrm{K} : \\ & \Delta_{\operatorname{tworz}} H = -4,30 \cdot 10^{-3} T + 23,433 \cdot 10^{-6} T^2 - 5,529 \cdot 10^2 T^{-1} - 7,950 \cdot 10^{-9} T^3 - 822,9 \\ & \Delta_{\operatorname{tworz}} G = 160,595 \cdot 10^{-3} T - 23,432 \cdot 10^{-6} T^2 - 2,764 \cdot 10^2 T^{-1} + 3,975 \cdot 10^{-9} T^3 + 4,303 \cdot 10^{-3} T \ln T - 822,9 \\ & \underline{\operatorname{EuCl}_{2(\mathrm{s})}}, \ 765 \ \mathrm{K} < T < 1014 \ \mathrm{K} : \\ & \Delta_{\operatorname{tworz}} H = -4,303 \cdot 10^{-3} T + 23,433 \cdot 10^{-6} T^2 - 5,529 \cdot 10^2 T^{-1} - 7,950 \cdot 10^{-9} T^3 - 823,1 \\ & \Delta_{\operatorname{tworz}} G = 160,853 \cdot 10^{-3} T - 23,432 \cdot 10^{-6} T^2 - 2,764 \cdot 10^2 T^{-1} + 3,975 \cdot 10^{-9} T^3 + 4,303 \cdot 10^{-3} T \ln T - 823,1 \\ & \underline{\operatorname{EuCl}_{2(\mathrm{s})}}, \ 1014 \ \mathrm{K} < T < 1096 \ \mathrm{K} : \\ & \Delta_{\operatorname{tworz}} H = 39,997 \cdot 10^{-3} T + 9,54 \cdot 10^{-6} T^2 - 5,065 \cdot 10^2 T^{-1} - 7,950 \cdot 10^{-9} T^3 - 842,3 \\ & \Delta_{\operatorname{tworz}} G = 472,29 \cdot 10^{-3} T - 9,539 \cdot 10^{-6} T^2 - 2,532 \cdot 10^2 T^{-1} + 3,975 \cdot 10^{-9} T^3 - 33,997 \cdot 10^{-3} T \ln T - 842,3 \\ & \underline{\operatorname{EuCl}_{2(\mathrm{s})}}, \ 1096 \ \mathrm{K} < T < 1125 \ \mathrm{K} : \\ & \Delta_{\operatorname{tworz}} H = 35,737 \cdot 10^{-3} T - 0,125 \cdot 10^{-6} T^2 - 2,845 \cdot 10^2 T^{-1} - 845,9 \\ & \Delta_{\operatorname{tworz}} G = 439,839 \cdot 10^{-3} T + 0,126 \cdot 10^{-6} T^2 - 1,422 \cdot 10^2 T^{-1} - 35,737 \cdot 10^{-3} T \ln T - 845,9 \end{split}$$

Т	C_{p}	S	$-(G - H_{298})/T$	$H - H_{298}$	$\Delta_{\rm tworz} H$	$\Delta_{\rm tworz}G$
Κ	$J \text{ mol}^{-1} \text{K}^{-1}$	$J \text{ mol}^{-1} \text{K}^{-1}$	$J mol^{-1}K^{-1}$	kJ mol ⁻¹	kJ mol ⁻¹	kJ mol ⁻¹
298,15	70,24	122,60	122,60	0,00	-799,1	-751,3
300	70,27	123,03	122,60	0,13	-799,1	-751,0
400	71,77	143,46	125,38	7,23	-798,2	-735,2
500	73,19	159,63	130,66	14,48	-797,3	-719,5
600	74,57	173,10	136,64	21,87	-796,4	-704,0
700	75,94	184,69	142,70	29,40	-795,6	-688,7
800	77,30	194,92	148,60	37,06	-794,6	-673,5
900	78,66	204,11	154,27	44,86	-793,6	-658,4
994	79,93	211,98	159,36	52,31	-792,6	-644,4
994	96,17	235,88	159,36	76,05	-768,9	-644,4
1000	96,17	236,45	159,82	76,63	-768,7	-643,6
1068	96,17	242,78	164,90	83,17	-766,8	-635,2
1068	96,17	242,78	164,90	83,17	-768,6	-635,2
1092	96,17	244,92	166,64	85,48	-768,1	-632,2
1092	96,17	244,92	166,64	85,48	-775,8	-632,2
1100	96,17	245,62	167,21	86,25	-775,6	-631,1
1200	96,17	253,99	174,10	95,87	-773,4	-618,1
1300	96,17	261,69	180,54	105,48	-771,1	-605,3

Tabela 18. Funkcje termodynamiczne YbCl₂ w zakresie temperatur 298,15–1300K

Przemiany fazowe: topnienie YbCl₂ w temperaturze 994 K, przemiana fazowa $\beta \rightarrow \gamma (T_{\text{przem}} = 1068 \text{ K}, \Delta_{\text{przem}} H = 1,8 \text{ kJ mol}^{-1})$ stałego Yb oraz jego topnienie w 1092 K z towarzyszącą mu entalpią 7,7 kJ mol⁻¹ [46].

 $\begin{array}{l} \underline{YbCl_{2(s),}} \ 298.15 \ K < T < 994 \ K : \\ \hline \Delta_{tworz}H = 6,85\cdot10^{-3}T - 0,657\cdot10^{-6}T^2 - 2,525\cdot10^2T^{-1} + 1,813\cdot10^{-9}T^3 - 800,3 \\ \hline \Delta_{tworz}G = 204,50\cdot10^{-3}T + 0,657\cdot10^{-6}T^2 - 1,263\cdot10^2T^{-1} - 0,907\cdot10^{-9}T^3 - 6,85\cdot10^{-3}T \ln T - 800,3 \\ \underline{YbCl_{2(c),}} \ 994 \ K < T < 1068 \ K : \\ \hline \Delta_{tworz}H = 36,43\cdot10^{-3}T - 7,385\cdot10^{-6}T^2 - 2,845\cdot10^2T^{-1} + 1,813\cdot10^{-9}T^3 - 799,3 \\ \hline \Delta_{tworz}G = 400,956\cdot10^{-3}T + 7,385\cdot10^{-6}T^2 - 1,423\cdot10^2T^{-1} - 0,907\cdot10^{-9}T^3 - 36,43\cdot10^{-3}T \ln T - 799,3 \\ \underline{YbCl_{2(c),}} \ 1068 \ K < T < 1092 \ K : \\ \hline \Delta_{tworz}H = 23,16\cdot10^{-3}T - 0,125\cdot10^{-6}T^2 - 2,845\cdot10^2T^{-1} - 793,0 \\ \hline \Delta_{tworz}G = 309,236\cdot10^{-3}T + 0,125\cdot10^{-6}T^2 - 1,423\cdot10^2T^{-1} - 23,16\cdot10^{-3}T \ln T - 793,0 \\ \hline \underline{YbCl_{2(c),}} \ 1092 \ K < T < 1300 \ K : \\ \hline \Delta_{tworz}H = 22,45\cdot10^{-3}T - 0,125\cdot10^{-6}T^2 - 2,845\cdot10^2T^{-1} - 799,9 \\ \hline \Delta_{tworz}G = 310,61\cdot10^{-3}T + 0,125\cdot10^{-6}T^2 - 1,423\cdot10^2T^{-1} - 22,45\cdot10^{-3}T \ln T - 799,9 \\ \hline \Delta_{tworz}G = 310,61\cdot10^{-3}T + 0,125\cdot10^{-6}T^2 - 1,423\cdot10^2T^{-1} - 22,45\cdot10^{-3}T \ln T - 799,9 \\ \hline \Delta_{tworz}G = 310,61\cdot10^{-3}T + 0,125\cdot10^{-6}T^2 - 1,423\cdot10^2T^{-1} - 22,45\cdot10^{-3}T \ln T - 799,9 \\ \hline \Delta_{tworz}G = 310,61\cdot10^{-3}T + 0,125\cdot10^{-6}T^2 - 1,423\cdot10^2T^{-1} - 22,45\cdot10^{-3}T \ln T - 799,9 \\ \hline \Delta_{tworz}G = 310,61\cdot10^{-3}T + 0,125\cdot10^{-6}T^2 - 1,423\cdot10^2T^{-1} - 22,45\cdot10^{-3}T \ln T - 799,9 \\ \hline \Delta_{tworz}G = 310,61\cdot10^{-3}T + 0,125\cdot10^{-6}T^2 - 1,423\cdot10^2T^{-1} - 22,45\cdot10^{-3}T \ln T - 799,9 \\ \hline \Delta_{tworz}G = 310,61\cdot10^{-3}T + 0,125\cdot10^{-6}T^2 - 1,423\cdot10^2T^{-1} - 22,45\cdot10^{-3}T \ln T - 799,9 \\ \hline \Delta_{tworz}G = 310,61\cdot10^{-3}T + 0,125\cdot10^{-6}T^2 - 1,423\cdot10^2T^{-1} - 22,45\cdot10^{-3}T \ln T - 799,9 \\ \hline \Delta_{tworz}G = 310,61\cdot10^{-3}T + 0,125\cdot10^{-6}T^2 - 1,423\cdot10^2T^{-1} - 22,45\cdot10^{-3}T \ln T - 799,9 \\ \hline \Delta_{tworz}G = 310,61\cdot10^{-3}T + 0,125\cdot10^{-6}T^2 - 1,423\cdot10^2T^{-1} - 22,45\cdot10^{-3}T \ln T - 799,9 \\ \hline \Delta_{tworz}G = 310,61\cdot10^{-3}T + 0,125\cdot10^{-6}T^2 - 1,423\cdot10^2T^{-1} - 22,45\cdot10^{-3}T \ln T - 799,9 \\ \hline \Delta_{tworz}G = 310,61\cdot10^{-3}T + 0,125\cdot10^{-6}T^2 - 1,423\cdot10^2T$

8. Literatura

- [*] niepublikowane dane autora.
- [1] Sharma R.A., Roge R.A., J. Am.Ceram. Soc., 75(9) (1992) 2484.
- [2] Dewing E.W., Haarberg G.M., Rolseth S., Ronne L., Thonstad J., Aalberg N.A., Metal. and Mat. Trans., B, 26B (1995) 81.
- [3] Adamson M.G., Hsu P.C., Hipple D.L., Squire D.V., Eur. Res. Conf. Molten Salts, June 27–July 3, 1998, Porquerolles, France.
- [4] Lacquement J., Adnet J.M., Brossard P., Lemort F., Piccinato R., Boen R., Eur. Res. Conf. Molten Salts, June 27–July3, 1998, Porquerolles, France.
- [5] Chang Y.I., Walters L.C., Battles J.E., Pedersen D.R., Wade D.C., Lineberry M.J., ANL-IFR-125 (1990).
- [6] Ogawa T., Yamagushi S.Y., Itoh A., Mukayama T., Hanada M., Haire R.G., Proc. Int. Conference on Evaluation of Emerging Nuclear Fuel Dense Systemes, France, September 11–14, (1995).
- [7] Ogawa T., Igarashi M., High Temp. Material Processes, 2 (1999) 587.
- [8] Naumov V.S., Bychkov A.V., Lebedev V.A., Eur. Res. Conf. Molten Salts, June 27–July 3,1998, Porquerolles, France.
- [9] Muklejohn S.A., Devonshire R., Trindel D.L., Proc. 3rd Int. Symp. High Temp. Lamp Chemistry, J.M. Ranish, C.W. Struck Ed., (1993) 191.
- [10] Bogoshian S., Papatheodorou G.N., in *Handbook on the Physics and Chemistry of Rare Earths*, by K.A. Gschneider Jr., L.Eyring Ed., Elsevier Science BV, Vol. 23, Chapter 157, (1996), 435–496.
- [11] Sommers J.A., Westrum E.F. Jr, J. Chem. Thermodynamics, 8 (1976) 1115.
- [12] Sommers J.A., Westrum E.F. Jr, J. Chem. Thermodynamics, 9 (1977) 1.
- [13] JANAF Thermochemical Tables, 2nd Edition, NSRDS-NBS 37 (1971).
- [14] Pankratz L.B., Thermodynamic properties of halides, Bull. 674, US Bureau of Mines, 3 (1971) 81.
- [15] Dworkin A.S., Bredig M.A., High Temp. Sci., 3(1) (1971) 81.
- [16] Dworkin A.S., Bredig M.A., J. Phys. Chem., 67 (1963) 697.
- [17] Vickery R.C., Chemistry of the lanthanons, Butterworths, London, 1958.
- [18] Walden G.E., Smith D.F., Rep. RI 5859, 1962 (US Bureau of Mines).
- [19] Vogel G., Schneider A., Inorg. Nucl. Chem. Lett., 8 (1972) 513.
- [20] Harrison E.R., J. Appl.Chem., 2 (1956) 601.
- [21] Sun I.C., Morozov I.S., Zh. Neorg. Khim., 3 (1958) 1914.
- [22] Seifert H. J., Fink H., Thiel G., J. Less-Common Metals, 110 (1985) 139.
- [23] Seifert H.J., Sandrock J., Thiel G., J. Therm. Anal., 31 (1986) 1309.
- [24] Seifert H.J., Sandrock J., Uebach J., Z. Anorg. Allg. Chem., 555 (1987) 143.
- [25] Seifert H.J., Fink H., Uebach J., J. Therm. Anal., 33 (1988) 625.
- [26] Thiel G., Seifert H.J., Thermochim. Acta, 133 (1988) 275.
- [27] Seifert H.J., Sandrock J., Z. Anorg. Allg. Chem., 587 (1990) 110.
- [28] Seifert H.J., Sandrock J., Thiel G., Z. Anorg. Allg. Chem., 598/599 (1991) 307.

- [29] Seifert H.J., Fink H., Baumgartner B., J. Solid State Chem., 107 (1993) 19.
- [30] Mitra S., Seifert H.J., J. Solid State Chem., 115 (1995) 484.
- [31] Roffe M., Uebach J., Seifert H.J., J. Alloys Comp., 257 (1997) 128.
- [32] Zheng Ch., Seifert H.J., J. Solid State Chem., 135 (1998) 127.
- [33] Gaune-Escard M., Bogacz A., Rycerz L., Szczepaniak W., Thermochim. Acta, 236 (1994) 67.
- [34] Rycerz L., Gaune-Escard M., Z. Naturforsch., 56a (2001) 859.
- [35] Rycerz L., Gaune-Escard M., Z. Naturforsch., 57a (2002) 79.
- [36] Kutscher J., Schneider A., Inorg. Nucl. Chem. Letters, 7, (1971) 815.
- [37] Rycerz L., Gaune-Escard M., Z. Naturforsch., 57a (2002) 136.
- [38] Bogacz A., Rycerz L., Rumianowski S., Szymanski W., Szklarski W., High Temp. Material Processes, <u>3</u>, (1999) 461.
- [39] Rycerz L., Gaune-Escard M., Z. Naturforsch., in preparation.
- [40] Druding L.F., Corbett J.D., J. Am. Chem. Soc., 83 (1961) 2462.
- [41] Da Silva F., Rycerz L., Gaune-Escard M., Z. Naturforsch., 56a (2001) 647.
- [42] Gaune-Escard M., [in:] R. Gale and D.G. Lovering (eds.) *Molten Salt Techniques*, Plenum Press, New York, London, 1991, Chapt. 5.
- [43] Gaune-Escard M., [in:] Gaune-Escard M. (ed.), *Molten Salts: From Fundamentals to Applications*, Proceedings of the NATO Advanced Study Institute (Kaas, Turkey, May 4–14, 2001), Vol. 52, Kluwer Academic Publishers, NATO Science Series, 375.
- [44] Tian A., J. Chim. Phys., 20 (1923) 132.
- [45] Calvet E., Prat H., Microcalorimetrie, Masson, Paris, 1955; E. Calvet, H. Prat, Recents progres en microcalorimetrie, Dunod, Paris, 1958.
- [46] Kubaschewski O., Alcock C.B., Spencer P.J., *Materials Thermochemistry*, 6-th Edition, Pergamon Press Ltd, New York 1993.
- [47] Hatem G., J. Chem. Phys., 3 (1986) 197.
- [48] Office of Standard Reference Materials, Washington, 1970, DC 20234.
- [49] McNaughton J.L., Mortimer C.T., Differential Scanning Calorimetry, [in:] H.A. Skinner (ed.), Physical Chemistry Series 2, Vol. 10, Thermochemistry and Thermodynamics, Butterworths, London, 1975.
- [50] Janz G.I., Mater. Sci. Forum, 73-75 (1991) 707.
- [51] Tomkins R.P.T., Janz G.I., Andalaft E., J. Electrochem. Soc. Electrochem. Sci. Technol., 117 (1970) 906.
- [52] Gaune-Escard M., Rycerz L., Szczepaniak W., Bogacz A., J. Alloys Comp., 204 (1994) 193.
- [53] Gmelin Handbook of Inorganic Chemistry, C4a, (1982) 108.
- [54] Shestova Z.N., Korzina E.N., Korshunov B.G., Zh. Neorg. Khim., 7 (1962) 2596.
- [55] Kleinheksel J.H., Kremers H.C., J. Am. Chem. Soc., 50 (1928) 959.
- [56] Korshunov B.G., Drobot D.V., Durinina L.V., Zh. Neorg. Khim., 10 (1965)2120.
- [57] Myers C.E., Graves D.T., J. Chem. Eng. Data, 22 (1977) 440.
- [58] Mroczkowski S., J. Cryst. Growth, 6 (1970) 147.
- [59] Lyzlov Yu.N., Nieselson L.A., Zh. Neorg. Khim., 22 (1977) 2245.
- [60] Gmelin Handbook of Inorganic Chemistry, C6, (1978) 22.
- [61] Thoma R.E., The Rare Earh Halides, [in:] L. Eyring (ed.), Progress in the Science and Technology of the Rare Earhs, Pergamon Press, New York, 1996, p. 90.
- [62] Savin V.D., Mikhailova N.P., Morozova V.A., Zh. Fiz. Khim., 53 (1979) 1410.
- [63] Novikov G.I., Bayev A.K., Polyachenok O.G., Khim. Redk. Elem. Leningr. Gos. Univ., (1964) 63.
- [64] Savin V.D., Mikhailova N.P., Zh. Fiz. Khim., 55 (1981) 2237.
- [65] Nieselson L.A., Lyzlov Yu.N., Zh. Neorg. Khim., 21 (1976) 3344.
- [66] Cho K., Kuroda T., Denki Kagaku, 40 (1972) 837.
- [67] Polyachenok O.G., Novikov G.I., Russ. J. Inorg. Chem., 9(4) (1964) 429.

166

- [68] Gibson J.A., Miller J.F., Kennedy P.S., Prengstorff G.W., *The properties of the rare earth metals and compounds*, compiled for The Rare Earth Reseach Group (1959).
- [69] Rycerz L., Gaune-Escard M., Z. Naturforsch., 57a (2002) 215.
- [70] Kulagin N.M., Laptev D.M., Russ. J. Phys. Chem., 50 (1976) 483.
- [71] Moriarty J.L., J. Chem. Eng. Data, 8(3) (1963) 422.
- [72] Rycerz L., Gaune-Escard M., J. Therm. Anal. Cal., 56 (1999) 355.
- [73] Wicks C.E., Block F.E., U.S. Bur. Mines Bull., Nr 605 (1963) 1/146.
- [74] Igarashi K., Mochinaga J., Z. Naturforsch., 42a (1987) 777.
- [75] Rycerz L., Gaune-Escard M., J. Therm. Anal. Cal., 68 (2002) 973.
- [76] Goryushkin V.F., Zalymova S.A., Poshevneva A.I., Zh. Neorg. Khim., 35 (1990) 3081.
- [77] Savin V.D., Zh. Fiz. Khim., 60(3) (1986) 554.
- [78] Laptev D.M., Kulagin N.M., Astakhova I.S., Tolstoguzov N.V., Zh. Neorg. Khim., 26 (1981) 1023.
- [79] Kulagin N.M., Laptev D.M., Zh. Fiz. Khim., 50 (1976) 810.
- [80] Forrester J.D., Zalkin A., Templeton D.H., Wallman J.C., Inorg. Chem., 3 (1964) 185.
- [81] Spedding F.H., Daane A.H., Met. Rev., 5 (1960) 297.
- [82] Weigel F., Scherer V., Radiochim. Acta, 7 (1967) 40.
- [83] Gunsilius H., Borrman H., Simon A., Urland W., Z. Naturforsch., 43b, (1988) 1023.
- [84] Templeton D.H., Carter G.F., J. Phys. Chem., 58 (1954) 940.
- [85] Bommer H., Hohman E., Z. Anorg. Allg. Chem., 248 (1941) 373.
- [86] Weigel F., Wishnewsky V., Chem. Ber., 102 (1969) 5.
- [87] Laptev D.M., Poshevneva A.I., Astakhova I.S., Kulagin N.M., Zh. Neorg. Khim., 21 (1976) 2317.
- [88] Tosi M.P., Pastore G., Saboungi M.L., Price D.L., Phys. Scripta, T39 (1991) 367.
- [89] Brewer L., The Chemistry and Metallurgy of Miscellaneous Materials, Thermodynamics, ed. by L.L. Qill, McGraw-Hill Book Company Inc., 1950.
- [90] Jantsch G., Wein K., Monatsh. Chem., 69 (1939) 161.
- [91] Gruen D.M., de Kock C.W., J. Chem. Phys., 45 (1966) 455.
- [92] Gaune-Escard M., Bogacz A., Rycerz L., Szczepaniak W., J. Alloys Comp., 235 (1996) 176.
- [93] Barin I., Knacke O., Kubaschewski O., Thermochemical Properties of Inorganic Substances, supplement, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
- [94] Reuter G., Seifert H.J., Thermochim. Acta, 237 (1994) 219.
- [95] Cordfunke E.H.P., Konings R.J.M., Thermochim. Acta 375, (2001) 17.
- [96] Laptev D.M., Fizikochimičeskie Svojstva Chloridov Lantanidov i ich Vzaimodejstvie v Sistemach LnCl₃-LnCl₂, Dissertacija na sočinenie učenoj stepeni doktora chimičeskich nauk, Novokuzneck 1996.
- [97] Tolmakh P.I., Gorbunov V.E., Gavrichev K.S., Tortova G.A., Zh. Fiz. Khim., 64 (1970) 1096.
- [98] Mucklejohn S.A., Trindell D.L., Devonshire R., An Assessment of the Vapor Pressure and Thermochemical Parameters for the Rare Earths Tribromides, 6th Int. Symposium Science & Tech. Light Sources, Budapest, Hungary, 1992.
- [99] Morrison H.G., Assefa Z., Haire R.G., Peterson J.R., J. Alloys Comp., 303, 304 (2000) 44.
- [100] Koyama Y., Takagi R., Iwadate Y., Fukushima K., J. Alloys Comp., 260, (1997) 75.
- [101] Laptev D.M., Kulagin N.M., Astakhova I.S., Zh. Neorg. Khim., 20, (1975) 1987.
- [102] Laptev D.M., Kulagin N.M., Astakhova I.S., Russ. J. Inorg. Chem., 20, (1975) 1108.
- [103] Kulagin N.M., Laptev D.M., Russ. J. Phys. Chem., 50, 483 (1975) 483.
- [104] Fink H., Seifert H.J., Z. Anorg. Allg. Chem., 49, (1980) 87.
- [105] Polyachenok O.G., Novikov G.I., Russ. J. Inorg. Chem., 8, (1963) 2631.
- [106] Polyachenok O.G., Novikov G.I., Russ. J. Inorg. Chem., 8, (1963) 1378.
- [107] Brixner L.H., Bierlein J.D., Mater. Res. Bull., 9, (1974) 99.
- [108] Kapfenberger W., Z. Anorg. Allg. Chem., 238, (1938) 273.

- [109] Laptev D.M, Poshevneva A.I., Goryushkin W.F., Zh. Neorg. Khim., 27(9) (1982) 2179.
- [110] Tolmach P.I., Gorbunov V.E., Gavrichev K.S., Goryushkin V.F., Zh. Fiz. Khim., 60 (1986) 1556.
- [111] Tolmach P.I., Gavrichev K.S., Gorbunov V.E., Goryushkin V.F., Zh. Fiz. Khim., 61 (1987) 826.
- [112] Morss L.R., Fahey J.A., Proceedings of the Twlth Rare Earth Research Conference, Vail, Colorado, 1976, 443.
- [113] Schumm R.D., Wagman D.D., Bailey S., Evans W.H., Parker V.B., Selected Values of Chemical Thermodynamic Properties, National Bureau of Standards Technical Note 270–7, 1973.
- [114] Gmelin Handbook of Inorganic Chemistry, C5 (1977).
- [115] Posypaiko V.I., Alekejeva E.A., Phase Equilibria in Binary Halides, Ed. H.B. Bell, IFI/Plenum, New York 1987.
- [116] Blachnik R., Selle D., Z. Anorg. Chem., 454 (1979) 90.
- [117] Blachnik R., Selle D., Z. Anorg. Allg. Chem., 454 (1979) 82.
- [118] Gaune-Escard M., Rycerz L., Szczepaniak W., Bogacz A., J. Alloys Comp., 204 (1994) 189.
- [119] Hattori T., Igarashi K., Mochinaga J., Bull. Chem. Soc. Jpn., 54 (1981) 1883.
- [120] Blachnik R., Schneider A., Monatsh. Chem., 102 (1971) 1337.
- [121] Rycerz L., Gaune-Escard M., The International George Papatheodorou Symposium, Patras, September 17–18, 1991 Proceedings, 95.
- [122] Rycerz L., Gaune-Escard M., J. Therm. Anal. Cal., 68 (2002) 973.
- [123] Seifert H.J., J. Therm. Anal. Cal., 67 (2002) 789.
- [124] Sharpe A.G., Inorganic Chemistry, Longman, New York 1986.
- [125] Gaune-Escard M., Rycerz L., Z. Naturforsch., 54a (1999) 229.
- [126] Seifert H.J., J. Therm. Anal. Cal., 49 (1997) 1207.
- [127] Rycerz L., Gaune-Escard M., Z. Naturforsch., 54a (1999) 397.
- [128] Benachenou F., Mairesse G., Novogrodsky G., Thomas D., J. Solid-state Chem., 65 (1986) 13.
- [129] O'Keffee M., Hyde B.G., Phil. Mag., 33 (1976) 219.
- [130] Szczepaniak W., Heksabromo- i heksajodouraniany(IV) litowców jako stałe elektrolity, Prace Naukowe Instytutu Chemii Nieorganicznej i Metalurgii Pierwiastków Rzadkich Politechniki Wrocławskiej, Seria Monografie 62 (30), Wrocław 1990.
- [131] Rickert H., *Electrochemistry of Solids*, An Introduction, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
- [132] Jost W., Funke K., Z. Naturforsch., A 25 (1970) 983.
- [133] Funke K., Kalus J., Lechner R., Solid-State Commun., 14 (1974) 1021.
- [134] Dworkin A.S., Bredig M.A., J. Phys. Chem., 72 (1968) 1277.
- [135] Sternberg S., Adorian I., Rev. Roum. Chem., 18(6) (1973) 945.
- [136] Blachnik R., Schneider A., Monatsh. Chem., (1971) 1337.
- [137] Gaune-Escard M., Rycerz L., Szczepaniak W., Bogacz A., Thermochim. Acta, 236 (1994) 59.
- [138] Rycerz L., Gaune-Escard M., High Temp. Mat. Processes, 2(4) (1998) 483.
- [139] Papatheodorou G.N., Ostwold T., J. Phys. Chem., 78 (1974) 181.
- [140] Papatheodorou G.N., Kleppa O.J., J. Phys. Chem., 78 (1974) 178.
- [141] Seifert H.J., Yuan Y., J. Less-Common Metals, 170 (1991)135.
- [142] Vogel G., Z. Anorg. Allg. Chem., 388(1) (1972) 43.
- [143] Blachnik R., Jaeger-Kasper A., Z. Anorg. Allg. Chem., 461 (1980) 74.
- [144] Rycerz L., Ingier-Stocka E., Cieślak-Golonka M., Gaune-Escard M., J. Therm. Anal. Cal., 72 (2003) 231.
- [145] Rycerz L., Gaune-Escard M., Progress in Molten Salt Chemistry, 1 (2000) 461.
- [146] Seifert H.J., informacja prywatna.

- [147] Kutscher J., Schneider A., Z. Anorg. Allg. Chem., 386 (1971) 38.
- [148] Wojakowska A., Diagramy równowag fazowych i przewodnictwo elektryczne w układach dwuhalogenków cyny, Wyd. Akademii Medycznej 62/1993, Wrocław 1993.
- [149] Catrledge G.H., J. Am. Chem. Soc., 50 (1928) 2855.
- [150] Catrledge G.H., J. Am. Chem. Soc., 50 (1928) 2863.
- [151] Catrledge G.H., J. Am. Chem. Soc., 52 (1930) 3076.
- [152] Klokman V.R., Radiokhimiya, 3 (1961) 302.
- [153] Drobot D.V., Korshunov B.G., Bordulenko G.P., Zh. Neorg. Khim., 13 (1968) 1635.
- [154] Thoma R.E., Inorg. Chem., 1 (1962) 220.
- [155] Görlich E., Bull. Acad. Pol. Sci. Ser. Sci. Chim., 888 (1960) 231.
- [156] Gaweł W., Roczniki Chem., 49 (1975) 699.
- [157] Gaweł W., Josiak J., Bull. Pol. Acad.: Chem., 42 (1994) 211.
- [158] Gaweł W., J. Nucl. Materials, 247 (1997) 301.
- [159] Zhiyu Q., Mingsheng W., Chaoqui Z., Shuzhen D., J. Univ. Sci. Technol. Beijing, 11(6) (1989) 601.
- [160] Chai L., Zheng C., Zhongguo Xitu Xuebao, 8(1) (1990) 93.
- [161] Kim I., Okamoto Y., Ogawa T., Proc. Seventh China-Japan Bilateral Conference on Molten Salt Chemistry and Technology, Xian, China, October 26–30, 1998.
- [162] Igarashi K., Kosaka M., Iwadate Y., Denki Kagaku, 58(5) (1990) 469.
- [163] Chaogui Z., Zhongdong Z., Siqiang W., Transactions NF Soc., 3(2) (1993) 33.
- [164] Chaogui Z., Shoulin H., Siqiang W., Acta Chimica Sinica, 52 (1994) 736.
- [165] Chaogui Z., Shoulin H., Siqiang W., Chemical Journal of Chinese Universities, 14(7) (1993) 993.
- [166] Chaogui Z., Shoulin H., Siqiang W., Acta Physico-Chimica Sinica, 10(4) (1994) 342.
- [167] Seifert H.J., Sandrock J., Uebach J., Acta Chim. Scand., 49 (1995) 653.
- [168] Rycerz L., Ingier-Stocka E., Ziółek B., Gadzuric S., Gaune-Escard M., Proceedings of International Symposium on Ionic Liquids, Carry le Rouet, France, June 26–28, 2003, s. 83.
- [169] Rycerz L., Ingier-Stocka E., Cieślak-Golonka M., J. Therm. Anal. Cal., 72 (2003) 241.
- [170] Dudareva A.G., Polanskaja O.W., Tenanko N.W., Ezhov A.I., Strekachinskii A.B., Zh. Neorg. Khim., 29(10) (1984) 2646.
- [171] Molodkin A.K., Strekachinskii A.B., Dudareva A.G., Ezhov A.I., Krokhina A.G., Zh. Neorg. Khim., 27(1) (1982) 219.
- [172] Gather B., Blachnik R., Experentia, Suppl., 37 (1979) 81.
- [173] Krokhina A.G., Andrachnikova A.P., Strekachinskii A.B., Krokhin V.A., Zh. Neorg. Khim., 25(6) (1980) 624.
- [174] Dudareva A.G., Nechitailov S.B., Babuszkina A.T., Volgin K.Yu., Boguslavskii A.A., Zh. Neorg. Khim., 34(12) (1989) 3164.
- [175] A Molodkin.K., Dudarieva A.G., Zh. Neorg. Khim., 31(11) (1986) 2784.
- [176] Korzina A.G., Andrachnikova A.P., Strekachinskii A.B., Krochin V.A., Zh. Neorg. Khim., 25(6) (1980) 1624.
- [177] Molodkin A.K., Karagodina A.M., Nechitailov S.B., Dudarieva A.G., Krochina A.G., Zh. Neorg. Khim., 31(3) (1986) 789.
- [178] Gaune-Escard M., Rycerz L., Bogacz A., J. Alloys Comp., 204 (1994) 185.
- [179] Takagi R., Rycerz L., Denki Kagaku, 62(3) (1994) 240.
- [180] Gaune-Escard M., Bogacz A., Rycerz L., Szczepaniak W., Thermochim. Acta, 279 (1996) 1.
- [181] Gaune-Escard M., Bogacz A., Rycerz L., Szczepaniak W., Thermochim. Acta, 279 (1996) 11.
- [182] Hong K.C., Kleppa O.J., J. Phys. Chem., 82 (1978) 1596.
- [183] Kleppa O.J., Adv. Phys. Geochem., 1 (1981) 181.

- [184] Papatheodorou G.N., J. Phys. Chem., 78 (1974) 1135.
- [185] Papatheodorou G.N., Ostvold T., J. Phys. Chem., 66 (1977) 2893.
- [186] Photiadis G.M., Voyiatzis G.A., Kipuros G.J., Papatheodorou G.N., Proc. Int. Harald A. Øye Symp., Trondheim, Norway, February 2–3 1995, 313.
- [187] Photiadis G.M., Borrensen B., Papatheodorou G.N., J. Chem. Soc. Faraday Trans., 94 (1998) 2605.
- 170

9. Spis prac stanowiących podstawę rozprawy habilitacyjnej

- Gaune-Escard M., Bogacz A., Rycerz L., Szczepaniak W., Calorimetric investigation of NdCl₃– MCl liquid mixtures, Thermochim. Acta, 236 (1994), 67–80.
- [2] Takagi R., Rycerz L., Gaune-Escard M., Mixing enthalpy and structure of the molten NaCl-DyCl₃ system, Denki Kagaku, 62(3) (1994) 240–245.
- [3] Gaune-Escard M., Rycerz L., Bogacz A., Enthalpies of mixing in the DyCl₃-NaCl, DyCl₃-KCl and DyCl₃-PrCl₃ liquid systems, J. Alloys Comp., 204 (1994) 185–188.
- [4] Gaune-Escard M., Rycerz L., Szczepaniak W., Bogacz A., Entropies of phase transitions in the M₃LnCl₆ compounds (M = K, Rb, Cs; Ln = La, Ce, Pr, Nd) ad K₂LaCl₅, J. Alloys Comp., 204 (1994) 189–192.
- [5] Gaune-Escard M., Rycerz L., Szczepaniak W., Bogacz A., Enthalpies of phase transition in the lanthanide chlorides LaCl₃, CeCl₃, PrCl₃, NdCl₃, GdCl₃, DyCl₃, ErCl₃ and TmCl₃, J. Alloys Comp., 204 (1994) 193–196.
- [6] Gaune-Escard M., Rycerz L., Szczepaniak W., Bogacz A., Calorimetric investigation of PrCl₃-NaCl and PrCl₃-KCl liquid mixtures, Thermochim. Acta, 236 (1994) 59–66.
- [7] Gaune-Escard M., Rycerz L., Szczepaniak W., Bogacz A., Enthalpies of mixing in PrCl₃-CaCl₂ and NdCl₃-CaCl₂ liquid systems, Thermochim. Acta, 236 (1994) 51–58.
- [8] Gaune-Escard M., Bogacz A., Rycerz L., Szczepaniak W., Calorimetric investigations of the MBr-NdBr₃ melts (M = Li, Na, K, Cs), J. Therm. Anal., 45 (1995) 1117–1124.
- [9] Gaune-Escard M., Bogacz A., Rycerz L., Szczepaniak W., Heat capacity of LaCl₃, CeCl₃, PrCl₃, NdCl₃, GdCl₃, DyCl₃, J. Alloys Comp., 235 (1996) 176–181.
- [10] Gaune-Escard M., Bogacz A., Rycerz L., Szczepaniak W., Formation enthalpies of the MBr-LaBr₃ liquid mixtures (M = Li, Na, K, Rb, Cs), Thermochim. Acta, 279 (1996) 1–10.
- [11] Gaune-Escard M., Bogacz A., Rycerz L., Szczepaniak W., Formation enthalpies of the MBr–NdBr₃ liquid mixtures (M = Li, Na, K, Rb, Cs), Thermochim. Acta, 279 (1996) 11–25.
- [12] Gaune-Escard M., Rycerz L., Calorimetric investigations of NdI₃–MI liquid systems (M = Li, Na, K, Cs), Molten Salts Forum, V. 5–6 (1998) 217–222.
- [13] Rycerz L., Gaune-Escard M., Mixing Enthalpy of TbCl₃–MCl Liquid Mixtures (M = Li, Na, K, Rb, Cs), High Temp. Material Processes, 2(4) (1998) 483–497.
- [14] Rycerz L., Gaune-Escard M., Enthalpy of phase transitions and heat capacity of stoichiometric compounds in LaBr₃-MBr systems (M = K, Rb, Cs), J. Therm. Anal. Cal., 56 (1999) 355–363.
- [15] Gaune-Escard M., Rycerz L., Heat capacity of K_3LnCl_6 compounds with Ln = La, Ce, Pr, Nd, Z. Naturforsch., 54a (1999) 229–235.
- [16] Rycerz L., Gaune-Escard M., Heat capacity of the Rb₃LnCl₆ compounds with Ln = La, Ce, Pr, Nd, Z. Naturforsch., 54a (1999) 397–403.
- [17] Rycerz L., Gaune-Escard M., Enthalpy of phase transitions and heat capacity of compounds formed in the NdBr₃–MBr systems (M = K, Rb, Cs), [in:] "Progress in Molten Salt Chemistry 1, Prof. N.J. Bjerrum Special Volume", R.W. Berg, H.A. Hjuler Editors, Elsevier (2000), 461–465.

- [18] Da Silva F., Rycerz L., Gaune-Escard M., Thermodynamic properties of EuCl₂ and NaCl-EuCl₂ systems, Z Naturforsch., 56a (2001) 647–652.
- [19] Rycerz L., Gaune-Escard M., Mixing enthalpies of TbBr₃-MBr liquid mixtures (M = Li,Na, K, Rb, Cs), Z. Naturforsch., 56a (2001) 859–864.
- [20] Rycerz L., Gaune-Escard M., Thermodynamics of SmCl₃ and TmCl₃: Experimental enthalpy of fusion and heat capacity. Estimation of thermodynamic functions up to 1300K, Z. Naturforsch., 57a (2002) 79–84.
- [21] **Rycerz L.**, Gaune-Escard M., *Calorimetric investigation of NdI₃–MI liquid systems (M = Li, Na, K, Rb, Cs)*, Z. Naturforsch., 57a (2002) 136–142.
- [22] Rycerz L., Gaune-Escard M., Thermodynamics of EuCl₃: Experimental enthalpy of fusion and heat capacity and estimation of thermodynamic functions up to 1300 K, Z. Naturforsch., 57a (2002) 215– 220.
- [23] Rycerz L., Gaune-Escard M., Enthalpies of phase transitions and heat capacity of TbCl₃ and compounds formed in TbCl₃-MCl systems (M = K, Rb, Cs), J. Therm. Anal. Cal., 68 (2002) 973–981.
- [24] Rycerz L., Ingier-Stocka E., Golonka-Cieślak M., Gaune-Escard M., Thermal and conductometric studies of NdBr₃ and NdBr₃-LiBr binary system, J. Therm. Anal. Cal., 72 (2003) 241–251.
- [25] Rycerz L., Cieślak-Golonka M., Ingier-Stocka E., Gaune-Escard M., Phase diagram and electrical conductivity of TbBr₃-NaBr binary system, J. Therm. Anal. Cal., 72 (2003) 231–239.
- [26] Gaune-Escard M., Rycerz L., Solubility of lanthanide chlorides (LnCl₃) in alkali metal chlorides (MCl): thermodynamics and electrical conductivity of the M₃LnCl₆ compounds, Monatsh. Chem., 134 (2003) 777–786.
- [*] Prace dotychczas niepublikowane.

172

Thermochemistry of lanthanide halides and compounds formed in lanthanide halide –alkali metal halide systems

The present paper is the author's contribution to international scientific project devoted to investigations on thermodynamic properties, structure and electrical conductivity of lanthanide and actinide halides and binary systems: lanthanide (actinide) halides-alkali metal halides. The project was initiated in the early 90s with a cooperation between the Institute of Inorganic Chemistry and Metallurgy of Rare Elements at the Technical University of Wrocław and the Institut Universitaire des Systems Thermiques Industriels Universite de Provence in Marseille. As the years went by, research groups from Japan (Research Laboratory for Nuclear Reactors - Tokyo Institute of Technology and Chiba University) and Great Britain (University of Abertay - Dundee) joined to realize the above project. And so an international research team was formed. It has at its disposal a wide range of experimental methods (thermal analysis, calorimetry, differential scanning calorimetry, X-ray diffraction, neutron diffraction, Raman spectroscopy, density and electrical conductivity measurements in fused salts) and is capable of solving theoretic problems (optimization of experimental data, molecular dynamic simulation). The ultimate goal pursued by the team has been to create a complete database for lanthanide and actinide halides. The database is created step by step as the investigations continue, with the support of the National Institute of Standards and Technology (NIST, USA) and Centre National de la Recherche Scientifique (CNRS, France).

Following the division of tasks scheduled in the international scientific project mentioned above, the author of this work investigates thermodynamic properties and electrical conductivity of both the pure lanthanide halides (chlorides, bromides, iodides) and the binary systems, i.e., lanthanide (actinide) halides–alkali metal halides. The results obtained by the author so far have been presented in this work.

The investigations were not commenced until a thorough analysis of the existing literature data had been performed. It turned out that the available data were often extremely scant and incomplete, pretty often inconsistent with one another. Depending on source of information, great discrepancies were noted even for such basic quantities as fusion temperature and enthalpy for pure lanthanide halides. The reason of those discrepancies could not lie only in the measurement methods applied. Considering the fact that different results were obtained while using the same research method (e.g. differences in fusion temperatures would come up to several dozen degrees), it was accepted that the purity of lanthanide halides used in investigations would be a decisive factor for the quality of results. In this connection, prior to starting any investigation, enormous amount of time was spent on developing synthesis methods, selecting suitable materials and methods of verifying the chemical composition and purity of the lanthanide halides obtained. As a result the synthesis methods were developed that would yield in high purity (min. 99,9%), oxyhalide contamination-free lanthanide halides (chlorides, bromides, iodides). Those compounds were used in examinations aimed at determination of thermodynamic properties of both the pure lanthanide halides and the binary systems of lanthanide halides–alkali metal halides.

Thermodynamic properties (phase transition temperatures and enthalpies, heat capacity of solid phase and liquid phase) for eighteen lanthanide halides (LaCl₃, CeCl₃, PrCl₃, NdCl₃, SmCl₃, EuCl₃, GdCl₃, TbCl₃, DyCl₃, TmCl₃, YbCl₃, LaBr₃, NdBr₃, TbBr₃, LaI₃, NdI₃, EuCl₂, and YbCl₂) were determined. The lanthanide(III) halides were divided into groups taking into account the relationships between fusion temperature plus enthalpy and atomic number of the respective lanthanide. Such a division was reflected in crystal structure of the halides under investigation.

A correlation between the crystal structure of lanthanide(III) halides and their respective entropy of fusion or the sum of the entropy of fusion and the entropy of the solid–solid phase transition was found from consideration of the above-mentioned relationships. Fusion of halides having the hexagonal, UCl₃-type, and the orthorhombic, PuBr₃-type, structures entails a change in the entropy of fusion (or the sum of the entropy of phase transition and the entropy of fusion) by $50 \pm 4 \text{ J mol}^{-1}\text{K}^{-1}$. Analogical entropy change within the group of halides having the rhomboedric, FeCl₃-type structure is lower and equal to $40 \pm 4 \text{ J mol}^{-1}\text{K}^{-1}$. Halides of monoclinic, AlCl₃-type, crystal structure belong to the third group. Their entropy change during fusion is considerably lower, only $31 \pm 4 \text{ J mol}^{-1}\text{K}^{-1}$.

Molar heat capacities of the solid as well as of the liquid phase of the lanthanide halides mentioned earlier were measured. Those are the only experimental results for eleven of the halides (respective literature data were only estimated values). The molar heat capacity measurements for DyCl₃ and TbCl₃ have confirmed the occurrence of a solid–solid phase transition for those compounds. At the same time additional thermal effects, invisible on the DTA curves, have been found for DyCl₃ and TbCl₃. Their occurrence is probably connected with a complicated crystal structure of those compounds (possible formation of metastable phases at lower temperatures).

Thermodynamic data obtained (temperature and enthalpy of phase transitions as well as molar heat capacity dependence on temperature) were used to determine the thermodynamic functions of both solid and liquid lanthanide halides, and also thermodynamic functions of formation of those halides. The temperature dependence of lanthanide(III) halides entropy was used to determine a $S_{1300}(LnX_{3(c)}) - S_{298}(LnX_{3(s)})$ difference. This difference is evidently connected with the crystal structure of lanthanide(III) halides. It is equal to $216 \pm 4 \text{ J mol}^{-1}\text{K}^{-1}$ for halides having the UCl₃- or PuBr₃-type crystal structure, $200 \pm 5 \text{ J mol}^{-1}\text{K}^{-1}$ for halides having the FeCl₃-type structure, and $190 \pm 4 \text{ J mol}^{-1}\text{K}^{-1}$ for halides having the AlCl₃-type structure. The same value of the difference for chlorides, bromides and iodides of similar structure indicates that the entropy differences, resulting from the anion presence and magnetic effects, reveal at low temperatures and affect the value of the $S_{298}(LnX_{3(s)}) - S_0(LnX_{3(s)})$ difference. Indeed, the entropy of $S_{298}(LnX_{3(s)})$ decreases, starting from iodides, through bromides, to chlorides. The $S_{1300}(LnX_{3(c)}) - S_{298}(LnX_{3(s)})$ difference for the UCl₃- and PuBr₃-type structure, although clearly greater than the one corresponding to the AlCl₃-type structure. This means that the degree of order in fused halides increases from light lanthanide halides to heavy lanthanide halides, and reaches the maximum for halides having the AlCl₃-type crystal structure in solid phase.

Thermodynamic properties (temperature and enthalpy of phase transitions, molar heat capacity) have been determined for M3LnX6 compounds that are formed in LnX₃-MX binary systems (Ln = La, Ce, Pr, Nd, Tb; M = K, Rb, Cs; X = Cl, Br, I). These compounds can be divided into two groups. Compounds having only a hightemperature modification, cubic, elpasolite-type (Fm3m, Z = 4) crystal structure, belong to the first group (K₃CeCl₆, K₃PrCl₆, K₃NdCl₆, Rb₃LaCl₆, K₃NdBr₆, Rb₃LaBr₆). They are form at elevated temperatures, and their formation is a reconstructive phase transition. The K_2LnX_5 compounds of the K_2PrCl_5 -type structure (Pnma, Z = 4) react at temperature T_{form} with KX to form the K₃LnX₆ compounds of cubic, elpasolite-type (Fm3m, Z = 4) crystal structure. The process proceeds with a high molar enthalpy, ranging from 44 to 55 kJ mol⁻¹. When being cooled, they decompose to initial substances at temperature being clearly lower than the temperature of formation. The compounds of the second group (K₃TbCl₆, Rb₃CeCl₆, Rb₃PrCl₆, Rb₃NdCl₆, Rb₃TbCl₆, K₃TbBr₆, Rb₃TbBr₆, Rb₃NdBr₆, Rb₃NdI₆, and all Cs₃LnX₆ compounds) have both the high-temperature, cubic, elpasolite-type, and the low-temperature, monoclinic, Cs_3BiCl_6 -type structures. Transition from the low- to high-temperature modification is a non-reconstructive phase transition. The molar enthalpy corresponding to this transition is considerably smaller than the formation enthalpy of the compounds of the first group and ranges from 6 to 10 kJ mol⁻¹. The compounds of the second group are stable or metastable at room temperature.

The above-presented classification of M_3LnX_6 compounds into two groups manifests itself in the dependence of their molar heat capacity on temperature. In the first group (compounds with high-temperature modification only), the molar heat capacity of stoichiometric mixture, corresponding to a composition of this compound, increases monotonically as the temperature rises until the formation temperature of the M_3LnX_6 compound (T_{form}) is reached. Once the compound is formed, its molar heat capacity decreases as the temperature rises further, and attains a minimum at the temperature range of 100–150 K, above the T_{form} .

In the second group (compounds having both the high- and low-temperature modifications), a distinct increase in the molar heat capacity is observed as early as during low-temperature modification. This increase coincides with the first-order phase transition (low-temperature modification – high-temperature modification). The molar heat capacity of the high-temperature modification decreases as the temperature rises, and attains a minimum at the temperature range of 100–150 K, above the temperature of phase transition (T_{trans}), i.e. in the same way as in the case of a high-temperature modification of the first group of compounds.

The specific dependence of the molar heat capacity of M_3LnX_6 compounds on temperature correlates well with electrical conductivity of their solid phase (measurements were made for M_3LnCl_6 and M_3LnBr_6 compounds). Formation of compounds of the first group at elevated temperatures (T_{form}) results in abrupt increase of electrical conductivity. Second, much lower but a distinct jump in the electrical conductivity (or a kink on a curve of electrical conductivity versus temperature related to a change in activation energy of conductivity) takes place at the temperature corresponding well to the minimum of the molar heat capacity of the high-temperature modification. The phase transition from low- to high-temperature modification, which is specific to the second group of M_3LnX_6 compounds, is also connected with a jump in electrical conductivity. The magnitude of this jump depends on the ionic radius of alkali metal (bigger jump for rubidium compounds than for cesium compounds). An additional effect appears on the curves representing the electrical conductivity versus temperature of solid phase (a noticeable kink) at the temperature corresponding to the minimum on the curves of molar heat capacity versus temperature.

The specific behaviour of the relationships: molar heat capacity – temperature, and electrical conductivity of a solid phase – temperature for the compounds under consideration is most likely connected with a disordering of cationic sublattice formed by alkali metal ions. The high-temperature modification of M_3LnX_6 compounds has a cubic, elpasolite-type crystal structure (Fm3m). Taking into account the location of alkali metal ions within a unit cell, the correct formula of those compounds should be $M_2M'LnX_6$. The lanthanide ions are surrounded by six halogen ions to form regular octahedra (LnX₆). One-third of alkali metal ions (M') occupy octahedral holes while the remaining two-thirds of alkali metal ions (M) occupy the tetrahedral holes formed by closely packed octahedra (LnX₆). And so, each of M' ions is surrounded by six ions, and each of M ions – by twelve halogen ions.

At low temperatures the (LnX_6) octahedra are slightly deformed and have been markedly rotated out of their ideal positions. These rotations result in a decrease of difference in the coordination number between the M and M' ions. In the monoclinic, Cs_3BiCl_6 -type structure obtained, one of the (M') alkali metal ions is surrounded by eleven ions, while the other two (M) ions – by eight halogen ions.

A disordering of cationic sublattice within the group of M₃LnX₆ compounds that have only a high-temperature modification (cubic, elpasolite-type structure) most likely takes place in a discontinuous way. Their formation from the M_2LnX_5 and MX compounds is a transition from the K₂PrCl₅-type structure, specific to M₂LnX₅ compounds (monocapped trigonal prisms linked to chains via common edges $([PrCl_3Cl_{4/2}]^{2-})$, to the elpasolite-type structure. This transition results in formation of anionic sublattice composed of (LnX_6) octahedra and cationic sublattice formed by the M and M' ions. The anionic sublattice is a cubic, face-centered structure, while the alkali metal cations are most probably in great part randomly distributed over a unit cell between the (LnX₆) octahedra. The transition perfectly correlates with a change in electrical conductivity. A jump in the electrical conductivity at the temperature of compound formation (T_{form}) is linked to emerging migration possibilities for alkali metal ions, as the carriers of electrical charge, within the unit cell space. Additional jump in the electrical conductivity (or kink on the curve of the conductivitytemperature dependence, resulting from change of the activation energy) in the hightemperature modification of the compounds under discussion, that occurs at the temperature corresponding to a minimum on the molar heat capacity curve, may be attributed to the state of complete "structural disorder". Completely disordered cationic sublattice can be considered as a quasi-liquid.

In the group of M_3LnX_6 compounds having both: the high-temperature elpasolitetype and the low-temperature modifications of Cs_3BiCl_6 -type (K_3TbCl_6 , Rb_3CeCl_6 , Rb_3PrCl_6 , Rb_3NdCl_6 , Rb_3TbCl_6 , K_3TbBr_6 , Rb_3TbBr_6 , Rb_3NdBr_6 , Rb_3NdI_6 and all Cs_3LnX_6 compounds), the disordering of cationic sublattice formed by alkali metal ions proceeds in a continuous way. It starts already in the low-temperature modification, at temperature significantly lower than the phase transition temperature. As a result an unusual increase of the molar heat capacity is observed. The dependence of molar heat capacity on temperature assumes a λ shape and is in a good correlation with the change in electrical conductivity. The end of the λ transition (complete "structural disorder" of cationic sublattice) corresponds to a visible kink on the electrical conductivity curve. As opposed to compounds from the first group (the hightemperature modification only), where the first-order phase transition, i.e. the compound formation, initiated the order–disorder transition, here the first-order phase transition (low-temperature–high-temperature modification) superimposes on the order–disorder (λ) transition.

Unknown earlier the phase diagrams of TbBr₃–MBr (M = Na, K, Rb, Cs), LaI₃– RbI and NdI₃–RbI binary systems have been determined. The characteristic feature of these systems, similarly as that of other LnX₃–MX systems, is the occurrence of congruently melting M_3LnX_6 compounds (M = K, Rb, Cs). Their fusion temperature increases with an increase in the ionic radius of alkali metal.

The dependence of the ratio of ionic potential of the alkali metal cation to ionic potential of the lanthanide cation on the shape of the phase diagram of LnCl₃–MCl, LnBr₃–MBr and LnI₃–MI binary systems has been found. All these systems can be divided into three groups:

- simple eutectic systems (ionic potential ratio higher or equal to 0.448, 0.325 and 0.330 for chloride, bromide and iodide systems, respectively),

- systems including only incongruently melting compounds (ionic potential ratio within the range of 0.416–0.280, 0.315–0,284 and 0.352–0,306 for chloride, bromide and iodide systems, respectively),

- systems including both incongruently and congruently melting compounds (ionic potential ratio equal to or less than 0.256).

In the third group, i.e. in the systems including both the congruently and incongruently melting compounds, one can find close similarities as well as noticeable differences between chloride, iodide and bromide systems. The common features are as follows:

– in all systems, the identical value of the ionic potential ratio at which the congruently melting compounds occur ($IP_{M^+}/IP_{Ln^{3+}} = 0.256$),

- the first congruently melting compound that occurs at $IP_{M^+}/IP_{Ln^{3+}} = 0.256$ is K_2LnX_5 (X = Cl, Br, I),

- congruently melting M₂LnX₅ compounds exist within a narrow range of the ionic potential ratio values (0.256–0.249),

– at smaller values of the ionic potential ratio $(IP_{M^+}/IP_{Ln^{3+}} < 0.249)$ the M₂LnX₅ compounds melt incongruently,

– congruently melting compounds M_3LnX_6 form at smaller $IP_{M^+}/IP_{Ln^{3+}}$ values (0.249).

The common characteristic of chloride and bromide systems is also the occurrence of MLn_2X_7 compounds (X = Cl, Br; M = K, Rb, Cs) that melt congruently or incongruently, and form in the systems where $IP_{M^+}/IP_{Ln^{3+}} \le 0.244$.

Essential differences between chloride, bromide and iodide systems are as follow:

 $-M_2LnI_5$ compounds occur within a narrow range of ionic potential ratio values (0.256–0.222), while the M₂LnCl₅ and M₂LnBr₅ occur in all chloride and bromide systems whose IP_{M⁺}/IP_{Ln³⁺} ratio is 0.256,

- MLn₂X₇ compounds that occur in chloride and bromide systems at the value of the ionic potential ratio equal to or less than 0.244 practically are not found in iodide systems (with exception of RbNd₂I₇),

 $-M_3Ln_2X_9$ compounds that occur in chloride ($IP_{M^+}/IP_{Ln^{3+}} \le 0.175$) and in iodide ($IP_{M^+}/IP_{Ln^{3+}} \le 0.198$) systems practically are not present in bromide systems (except for $Cs_3Dy_2Br_9$).

Mixing enthalpy measurements were performed over the whole composition range for NdCl₃–MCl, PrCl₃–MCl, DyCl₃–MCl, TbCl₃–MCl, LaBr₃–MBr, NdBr₃–MBr, TbBr₃–MBr and NdI₃–MI liquid systems. Selection of the binary systems for the mixing enthalpy measurements gave possibility to determine the influence of lanthanide ionic radius, alkali metal ionic radius and halide ionic radius on thermodynamic prop-

erties of lanthanide halide –alkali metal halide liquid systems All the systems under investigation are characterised by negative enthalpies of mixing. The minimum of the molar mixing enthalpy is shifted towards the alkali halide-rich composition and located in the vicinity of $x_{LnX_3} \sim 0.3-0.4$. It is evident that the ionic radius of the alkali metal influences the magnitude of mixing enthalpy as well as the minimum position. The smaller the alkali metal ionic radius, the smaller the absolute value of mixing enthalpy, and the minimum is more shifted towards the alkali metal halide-rich composition. The other factor that shows the influence on the mixing enthalpy value is the lanthanide ionic radius. Its decrease (with an increase of lanthanide atomic number Z) results in an increase of absolute value of the mixing enthalpy and in a shift of the enthalpy minimum towards the alkali halide-rich composition. Ionic radius of halide also influences considerably the value of mixing enthalpy. Absolute value of mixing enthalpy decreases with an increase of halide ionic radius (from chloride to iodide). In all LnX₃–MX systems, the value of the interaction parameter λ is negative. Its absolute value increases significantly with an increase of ionic radius of alkali metal cation. All the systems show more negative values of interaction parameter at the alkali halide-rich compared to the lanthanide halide-rich compositions. The nature of the relationship between the interaction parameter and the composition depends on alkali metal halide, and practically is independent of the lanthanide halide. In the systems containing lithium halides, this relation is practically linear; in the systems containing sodium halides, a broad and blurred minimum is observed; and starting from potassium halides, a clear minimum appears to exist at a molar fraction of lanthanide halide (x_{LnX_2}) of about 0.2–0.3. This minimum can be undoubtedly ascribed to the formation of LnX_6^{3-} octahedral complexes in the systems under investigation. These complexes dominate in the mixtures rich in alkali metal halide. An increase of LnX_3 concentration changes the structure of the melt. Pure LnX_6^{3-} octahedra are replaced by polymeric forms, where the octahedra are linked across the halogen ions.

Mixing the liquid lanthanide halide and liquid alkali metal halide leads to formation of $LnX_6^{3^-}$ octahedral complexes. So additional halogen ions need to be entered into a coordination shell of the Ln^{3^+} ion. Possible source of those ions can be the alkali metal halide. Nevertheless, the alkali metal cations that are present in the system also tend to create a coordination shell consisting of halogen ions. The result of such "competition" depends on the relative attractive power of alkali metal cation. Within the group of alkali metals this force decreases following the sequence: $Li^+ > Na^+ > K^+$ $> Rb^+ > Cs^+$, i.e. with an increase of ionic radius. Thus the possibility of forming octahedral lanthanide complexes as well as their stability will increase according to the sequence: LiX < NaX < KX < RbX < CsX. An increase in the stability of those complexes results in a higher absolute value of molar enthalpy of liquid mixtures (3 MX, LnX_3) formation. The stability of complexes under consideration depends also on the halide ionic radius. The increase of ionic radius ($Cl^- < Br^- < I^-$) results in a lower stability of LnX_6^{3-} complexes, and also in a lower absolute value of molar enthalpy of liquid mixtures (3 MX, LnX_3) formation.

Molar enthalpies of liquid mixtures (3 MX, LnX_3) formation determined from mixing enthalpy measurements were used for verifying the correctness and consistence of thermodynamic properties (temperatures and enthalpies of phase transitions, molar heat capacity) determined for pure lanthanide halides and M_3LnX_6 compounds.

180

Spis treści

1.	Wyk	az ważniejszych symboli 4						
2.	Wpre	owadzer	vadzenie. Cel i zakres pracy					
3.	Przy	gotowar	owanie halogenków lantanowców i halogenków litowców do badań 10					
4.	Techniki pomiarowe							
	4.1. Kalorymetria wysokotemperaturowa – kalorymetr Calveta							
		4.1.1.	Rejestrac	zja i obróbka matematyczna danych eksperymentalnych 1				
		4.1.2.	Pomiary	entalpii 1				
		4.1.3.	Cechowa	nie kalorymetru 1				
		4.1.4.	Błąd pomiarów entalpii mieszania					
	4.2.	Różnic	owa kalor	ymetria skaningowa 2				
		4.2.1.	Cechowa	nie kalorymetru DSC 121 2				
		4.2.2.	Pomiary	wykonywane przy pomocy kalorymetru DSC 121 2				
	4.3.	Przewo	odnictwo e	elektryczne 2				
5.	Wyniki badań przemian fazowych i właściwości termodynamicznych halogenków lantanow-							
	cóv	w i zwią	zków two	rzących się w układach halogenki lantanowców-halogenki litowców 3				
	5.1.	Haloge	enki lantar	nowców(III)				
		5.1.1.	Tempera	tury i entalpie przemian fazowych halogenków lantanowców(III)				
			5.1.1.1.	Zależność temperatury topnienia i entalpii topnienia chlorków lan-				
				tanowców(III) od liczby atomowej lantanowca 3				
			5.1.1.2.	Korelacja między entropią topnienia chlorków lantanowców(III) i				
				ich strukturą krystaliczną 3				
			5.1.1.3.	Zależność temperatury topnienia i entalpii topnienia bromków lan-				
				tanowców(III) od liczby atomowej lantanowca 4				
			5.1.1.4.	Korelacja pomiędzy entropią topnienia bromków lantanowców(III) i				
				ich strukturą krystaliczną 4				
			5.1.1.5.	Zależność temperatury topnienia i entalpii topnienia jodków lanta-				
				nowców(III) od liczby atomowej lantanowca i struktury krystalicz-				
				nej 4				
			5.1.1.6.	Związek pomiędzy strukturą krystaliczną i entropią topnienia halo-				
				genków(III) lantanowców 4				
		5.1.2.	Ciepło m	olowe i funkcje termodynamiczne halogenków lantanowców(III) 4				
		5.1.3.	Własnoś	ci termodynamiczne EuCl ₂ i YbCl ₂ 5				
	5.2. Własności termodynamiczne związków pośrednich występujących w układach halogen							
	lantanowców(III)-halogenki litowców							
		5.2.1.	Układy I	_nCl ₃ -MCl				
			5.2.1.1.	Związki K ₃ LnCl ₆				
			5.2.1.2.	Związki Rb ₃ LnCl ₆				
			5.2.1.3.	Związki Cs ₃ LnCl ₆ 7				

5.2.1.4. Związek między przewodnictwem elektrycznym fazy stałej, ciepłem molowym i struktura krystaliczna związków M.I.n.Cl.	75
5.2.1.5 Wervfikacia uzyskanych danych termodynamicznych związków	15
M ₂ LnCl ₆	83
5.2.2. Układy LnBr ₃ –MBr	84
5.2.2.1. Diagramy fazowe układów TbBr ₃ –MBr (M = Na, K, Rb, Cs)	85
5.2.2.2. Entalpie przemian fazowych związków M ₃ LnBr ₆	88
5.2.2.3. Ciepło molowe związków M ₃ LnBr ₆	90
5.2.2.4. Przewodnictwo elektryczne związków M ₃ LnBr ₆	96
5.2.3. Układy LnI ₃ -MI 10	02
5.2.3.1. Diagramy fazowe układów LaI ₃ -RbI i NdI ₃ -RbI 10	02
5.2.3.2. Entalpie przemian fazowych związków M_3LnI_6 10	03
5.2.3.3. Ciepło molowe związków M ₃ LnI ₆ 10	06
5.3. Związek między potencjałem jonowym kationów a typem równowag fazowych w ukła-	
dach LnX ₃ -MX 1	11
5.4. Entalpia mieszania w ciekłych układach LnX ₃ –MX 1	17
Podsumowanie 12	34
Aneks – funkcje termodynamiczne halogenków lantanowców 14	43
Literatura	65
Spis prac stanowiących podstawę rozprawy habilitacyjnej 1'	71

6. 7. 8. 9.

Contents

1.	List of symbols and units					
2.	Introduction. Aim and scope of the work					
3.	Preparation of lanthanide halides and alkali metal halides					
4.	Experimental techniques 13					
	4.1. High-temperature calorimetry – Calvet microcalorimeter					
	4.1.1. Recording and processing of experimental data					
	4.1.2. Enthalpy measurements					
	4.1.3. Calorimeter calibration					
	4.1.4. Error of mixing enthalpy measurements					
	4.2. Differential scanning calorimetry					
	4.2.1. DSC 121 calibration					
	4.2.2. Measurements performed by DSC 121 SETARAM					
	4.3. Electrical conductivity					
5.	Results of investigation of phase transitions and thermodynamic properties of lanthanide hal-					
	ides and compounds formed in lanthanide halide–alkali metal halide systems					
	5.1. Lanthanide(III) halides					
	5.1.1. Temperatures and enthalpies of phase transitions of lanthanide(III) halides					
	5.1.1.1. Dependence of fusion temperature and enthalpy of lanthanide(III) chlo-					
	rides on lanthanide atomic number					
	5.1.1.2. Correlation between fusion entropy of lanthanide(III) chlorides and their					
	crystal structure					
	5.1.1.3. Dependence of fusion temperature and enthalpy of lanthanide(III) bro-					
	mides on lanthanide atomic number					
	5.1.1.4. Correlation between fusion entropy of lanthanide(III)bromides and their					
	crystal structure					
	5.1.1.5. Dependence of fusion temperature and enthalpy of lanthanide(III) iodides					
	on lanthanide atomic number					
	5.1.1.6. Correlation between crystal structure and fusion entropy of lanthanide(III)					
	halides					
	5.1.2. Heat capacity and thermodynamic functions of lanthanide(III) halides					
	5.1.3. Thermodynamic properties of EuCl ₂ and YbCl ₂					
	5.2. Thermodynamic properties of intermediate compounds present in lanthanide(III) halide-					
	alkali metal halide systems					
	5.2.1. LnCl ₃ –MCl systems					
	5.2.1.1. K_3LnCl_6 compounds					
	5.2.1.2. Rb ₃ LnCl ₆ compounds					
	5.2.1.3. Cs ₃ LnCl ₆ compounds					
	5.2.1.4. Correlation between electrical conductivity of solid phase, heat capacity and crystal structure of M-LnClc compounds	75				
----	---	-----				
	5.2.1.5. Verification of thermodynamic data obtained for M_3LnCl_6 compounds	83				
	5.2.2. LnBr ₃ –MBr systems	84				
	5.2.2.1. Phase diagrams of $TbBr_3$ –MBr systems (M = Na, K, Rb, Cs)	85				
	5.2.2.2. Phase transition enthalpies of M ₃ LnBr ₆ compounds	88				
	5.2.2.3. Molar heat capacity of M ₃ LnBr ₆ compounds	90				
	5.2.2.4. Electrical conductivity of M ₃ LnBr ₆ compounds	96				
	5.2.3. LnI ₃ -MI systems	102				
	5.2.3.1. Phase diagrams of LaI ₃ –RbI and NdI ₃ –RbI systems	102				
	5.2.3.2. Phase transition enthalpies of M ₃ LnI ₆ compounds	103				
	5.2.3.3. Molar heat capacity of M ₃ LnI ₆ compounds	106				
	5.3. Correlation between ionic potential of cations and type of phase equilibria in LnX_3 -MX					
	systems	111				
	5.4. Mixing enthalpy in LnX ₃ -MX liquid systems	117				
6.	Summary	134				
7.	Appendix. Thermodynamic functions of lanthanide halides	143				
8.	References	165				
9.	List of author's basic papers	171				

184