
Parsec: Direct Style Monadic Parser Combinators

For The Real World

Daan Leijen
University of Utrecht

P.O. Box 80.089, 3508TB
Utrecht, The Netherlands

daan@cs.uu.nl

Erik Meijer
Microsoft Corp.
Redmond, WA

emeijer@microsoft.com

DRAFT

October 4, 2001

Abstract

Despite the long list of publications on parser combinators, there does not
yet exist a monadic parser combinator library that is applicable in real world
situations. In particular naive implementations of parser combinators are
likely to suffer from space leaks and are often unable to report precise error
messages in case of parse errors. The Parsec parser combinator library de-
scribed in this paper, utilizes a novel implementation technique for space and
time efficient parser combinators that in case of a parse error, report both the
position of the error as well as all grammar productions that would have been
legal at that point in the input.

1 Introduction

Parser combinators have always been a favorite topic amongst functional program-
mers. Burge (1975) already described a set of combinators in 1975 and they have
been studied extensively over the years by many others (Wadler, 1985;
Hutton, 1992; Fokker, 1995;
Hutton and Meijer, 1996). In contrast to parser generators that offer a fixed set of
combinators to express grammars, these combinators are manipulated as first class
values and can be combined to define new combinators that fit the application do-
main. Another advantage is that the programmer uses only one language, avoiding
the integration of different tools and languages (Hughes, 1989).

1

mailto:daan@cs.uu.nl
mailto:emeijer@microsoft.com

2 Parsec: Direct Style Monadic Parser Combinators For The Real World

Despite the theoretical benefits that parser combinators offer, they are hardly used
in practice. When we wrote a parser for the language XMλ (Shields and Meijer,
2001) for example, we had a set of real-world requirements on the combinators.
They had to be monadic in order to make the parse context sensitive, they had
to be efficient (ie. competitive in speed with happy (Gill and Marlow, 1995) and
without space leaks) and they had to return high quality error messages. To our
surprise, most current monadic parser libraries suffered from shortcomings that
made them unsuitable for our purposes; they are not efficient in space or time, and
they don’t allow for good error messages.

There has been quite a lot of research on the efficiency of parsers combinators
(Koopman and Plasmeijer, 1999; Partridge and Wright, 1996;
Röjemo, 1995; Meijer, 1992) but those libraries pay almost no attention to error
messages. Recently, Swierstra et al. (1996;
1999) have developed sophisticated combinators that even perform error correction
but unfortunately they use a non-monadic formulation and a separate lexer.

This paper describes the implementation of a set of monadic parser combinators
that are efficient and produce good quality error messages. Our main contribution
is the overall design of the combinators, more specifically:

• We describe a novel implementation technique for space and time efficient
parser combinators. Laziness is essential ingredient in the short and concise
implementation. We identify a space leak that contributes largely to the
inefficiency of many existing parser combinators described in literature.

• We show how the primitive combinators can be extended naturally with error
messages. The user can label grammar production with suitable names. The
messages contain not only the position of the error but also all grammar
productions that would have been legal at that point in the input – i.e. the
first-set of that production.

The combinators that are described in this paper have been used to implement
a ‘real world’ parser library in Haskell that is called parsec. This library is
available with documentation and examples from http://www.cs.uu.nl/~daan/
parsec.html and is distributed with the GHC compiler.

Throughout the rest of the paper we assume that the reader is familiar with the
basics of monadic combinator parsers. The interested reader is referred to Hutton
and Meijer (1996) for a tutorial introduction.

2 Grammars and Parsers

The following sections discuss several important restrictions and other characteris-
tics of existing parser combinator libraries that influenced the design of Parsec.

http://www.cs.uu.nl/~daan/parsec.html
http://www.cs.uu.nl/~daan/parsec.html

2 Grammars and Parsers 3

2.1 Monadic vs. Arrow style Parsers

Monadic combinator parsers consist of a monad Parser a (typically of the form
String → Result a for some functor Result) with a unit return and bind (>>=)
operation, and a number of parser specific operations, usually a choice combinator
(<|>) and a function satisfy for construction elementary parsers for terminal
symbols:

type Parser a

return :: a → Parser a
(>>=) :: Parser a → (a → Parser b) → Parser b

satisfy :: (Char → Bool) → Parser Char
(<|>) :: Parser a → Parser a → Parser a

An important practical benefit of monadic parser combinators is the fact that
Haskell has special syntax (the do-notation) that greatly simplifies writing monadic
programs. However, there are also deeper reasons why we prefer using monadic
combinators.

Besides bind, there exists another important form of a sequential combinator (<*>)
which is described by Swierstra and Duponcheel (1996) and later identified as a
special case of an arrow-style combinator by Hughes (2000). The types of the
monadic and arrow-style combinators are closely related, but subtly different:

(<*>) :: Parser a → Parser (a → b) → Parser b
(>>=) :: Parser a → (a → Parser b) → Parser b

However, their runtime behavior differs as much as their types are similar. Due to
parametricity (Wadler, 1989), the second parser of (<*>) will never depend on the
(runtime) result of the first. In the monadic combinator, the second parser always
depends on the result of the first parser. An interesting relation between both
forms follows directly from their type signatures; arrow-style parser combinators
can at most parse languages that can be described by a context-free grammar while
the monadic combinators can also parse languages described by context-sensitive
grammars.

Since parsers described with arrow-style combinators never depend on run-time con-
structed values, it is possible to analyze the parsers before executing them. Swierstra
and Duponcheel (1996) use this characteristic when they describe combinators that
build lookup tables and perform dynamic error correction.

Monadic combinators are able to parse context sensitive grammars. This is not just
a technical nicety. It can be used in many situations that are tradionally handled as
a separate pass after parsing. For example, if plain XML documents are parsed with
a context-free parser, there is a separate analysis needed to guarantee well-formed
ness, i.e. that every start tag is closed by a matching end tag.

4 Parsec: Direct Style Monadic Parser Combinators For The Real World

A monadic parser can construct a specialized end tag parser when an open tag is
encountered. Given an openTag parser that returns the tag name of a tag and an
endTag parser that parses an end tag with the name that is passed as an argument,
an XML parser that only accepts well-formed fragments can be structured as follows:

xml = do{ name <- openTag
; content <- many xml
; endTag name

; return (Node name content)
}

<|> xmlText

2.2 Left recursion

An important restriction on most existing combinator parsers (and Parsec is no
exception) is that they are unable to deal with left-recursion. The first thing a
left-recursive parser would do is to call itself, resulting in an infinite loop.

In practice however, grammars are often left-recursive. For example, expression
grammars usually use left-recursion to describe left-associative operators.

expr ::= expr "+" factor
factor ::= number | "(" expr ")"

As it is, this grammar can not be literally translated into parser combinators. Fortu-
nately, every left-recursive grammar can be rewritten into a right-recursive one (Aho
et al., 1986). It is also possible to define a combinator chainl (Fokker, 1995) that
captures the design pattern of encoding associativety using left-recursion directly,
thereby avoiding a manual rewrite of the grammar.

2.2.1 Sharing

One could think that the combinators themselves can observe that expr is left-
recursive, and thus could prevent going into an infinite loop. In a pure language
however, it is impossible to observe sharing from within the program. It follows
that parser combinators are unable to analyze their own structure and can never
employ standard algorithms on grammars to optimize the parsing process.

All combinator libraries are forced use a predictive parsing algorithm, also known
as left-to-right, left-most derivation or LL parsing (Aho et al., 1986). (LR parsing
is still the exclusive domain of separate tools that can analyze the grammar on a
meta-level.) However, Claessen and Sands (1999) describe an interesting approach
to observable sharing in the context of hardware descriptions which might be used
in the context of parser combinators to analyze the structure of a parser at run-time.

2 Grammars and Parsers 5

2.3 Backtracking

Ambiguous grammars have more than one parse tree for a sentence in the language.
Only parser combinators that can return more than one value can handle ambiguous
grammars. Such combinators use a list as their reply type.

In practice however, you hardly ever need to deal with ambiguous grammars. In
fact it is often more a nuisance than a help. For instance, for parser combinators
that return a list of successes, it doesn’t matter whether that list contains zero, one
or many elements. They are all valid answers. This makes it hard to give good error
messages (see below). Furthermore it is non-trivial to tame the space and (worst
case exponential) time complexity of full backtracking parsers.

However, even when we restrict ourselves to non-ambiguous grammars, we still need
to backtrack because the parser might need to look arbitrary far ahead in the input.

Naive implementations of backtracking parser combinators suffer from a space leak.
The problem originates in the definition of the choice combinator. It either always
tries its second alternative (because it tries to find all possible parses), or whenever
the first alternative fails (because it requires arbitrary lookahead). As a result, the
parser (p <|> q) holds on to its input until p returns, since it needs the original
input to run parser q when p has failed. The space leak leads quickly to either a
stack/heap overflow or reduction in speed on larger inputs.

2.4 Errors

Parsers should report errors when the input does not conform to the grammar. A
good parser error message contains the position of the error in the input as well as
the cause of the error. Besides the cause of an error, the message can contain all
possible productions that would have been legal at that point in the input. These
correspond to the first set of a non-terminal.

Beside error reporting the parser might try to correct the error. After detecting
an error, the input is modified by deleting or inserting tokens which might lead to
valid input again. Swierstra and Duponcheel (1996) describe how automatic error
correction can be implemented with arrow-style parser combinators.

As explained above, current (nondeterministic) parser combinators are not very
good at reporting errors. The combinators report neither the position nor the
possible causes of an error. It is hard to report an error since the the parsers can
always look arbitrarily far ahead in the input (they are LL(∞) and it becomes hard
to decide what the error message should be.

It is for the two reasons above that in Parsec we restrict ourselves to predictive
parsers with limited lookahead. The <|> combinator is left-biased and will return
the first succeeding parse tree (i.e. even if the grammar is ambiguous only one parse
tree is returned). The Parsec combinators will report all possible causes of an error.
The messages can be customized by the user – instead of giving the error message

6 Parsec: Direct Style Monadic Parser Combinators For The Real World

on the character level it contains a grammar production description.

2.5 LL Grammars

The following sections derive a space efficient and error reporting combinator parsers.
The space leak can be fixed by restricting the lookahead. As a side effect this also
improve the quality of the error messages that are implemented later in this paper.

LL grammars have the distinctive properties that they are non-ambiguous and not
left-recursive. A grammar is LL(k) if the associated predictive parser needs at
most k tokens lookahead to disambiguate a parse tree. For example, the following
grammar is LL(2):

S ::= PQ | Q
P ::= "p"
Q ::= "pq"

When a the first token is "p",F we still don’t know if we are in the PQ or Q production,
only upon seeing the second token ("p" or "q") we know what to choose.

The usual list of successes combinators have the interesting property that they have
a dynamic lookahead to an arbitrary large k; We will call this an LL(∞) parser.
The combinators will look arbitrarily far ahead due to the definition of the (<|>)
combinator. Whenever the first parser fails, the second will be tried instead, no
matter how many tokens the first parser has consumed! The previous grammar can
be translated literally into combinators:

s = do{ p; q } <|> q
p = char ’p’
q = do{ char ’p’; char ’q’ }

Unfortunately, this doesn’t hold in general. There is a specific case where we can’t
literally translate the grammar. Here is the previous grammar again written in a
slightly different way:

S ::= PQ
P ::= "p" | ε
Q ::= "pq"

When we literally translate this grammar we get:

s = do{ p; q }
p = char ’p’ <|> return ’p’
q = do{ char ’p’; char ’q’ }

3 Restricting lookahead 7

The <|> combinator is now local to the p parser. It returns a result right after the
first character is consumed. If the input was "pq" it will recognize the "p" character
as part of the p production and fail when trying q! The <|> combinator should be
used at the point where lookahead is actually needed and can not be used locally
in the production.

In general, every PQ where P ⇒∗ ε (i.e. P has an empty derivation) and where
first(P) ∪ first(Q) 6= ∅ (i.e. their first-sets overlap (Aho et al., 1986)), should
be rewritten to P′Q | Q where P′ equals production P but no longer includes an
ε derivation. If a grammar is left-factored (Aho et al., 1986) this transformation
happens automatically.

LL(∞) is a powerful grammar class. Any non-ambiguous context-free grammar can
be transformed into an LL(∞) grammar. In practice, there are many languages that
require arbitrary lookahead; for example, type signatures in Haskell or declarations
in C.

3 Restricting lookahead

The following sections will focus on implementing a set of monadic combinators
that circumvent the space leak of naive combinators and add good error messages.

To solve the space leak of the naive parser combinators, we turn to deterministic
predictive parsing with limited lookahead. An LL(1) parser has a lookahead of a
single token – it can always decide which alternative to take based on the current
input character. In practice this means that the parser (p <|> q) never tries parser
q whenever parser p has consumed any input.

To use an LL(1) strategy, each parser is keeps track of its input consumption. We
call this the consumer -based approach. A parser has either Consumed input or
returned a value without consuming input, Empty. The return value is either a
single result and the remaining input, Ok a String, or a parse error, Error:

type Parser a = String → Consumed a

data Consumed a = Consumed (Reply a)
| Empty (Reply a)

data Reply a = Ok a String | Error

Note that the real Parsec library is parameterized with the type of the input and a
user definable state.

8 Parsec: Direct Style Monadic Parser Combinators For The Real World

p q (p >>= q)

Empty Empty Empty
Empty Consumed Consumed

Consumed Empty Consumed
Consumed Consumed Consumed

Figure 1: Input consumption of (>>=)

3.1 Basic combinators

Given the concrete definition of our Parser type, we can now turn to the imple-
mentation of the basic parser combinators.

The return combinator succeeds immediately without consuming any input, hence
it returns the Empty alternative:

return x
= \input -> Empty (Ok x input)

The satisfy combinator consumes a single character when the test succeeds but
returns Empty when the test fails, or when it encounters the end of the input:

satisfy :: (Char → Bool) → Parser Char
satisfy test
= \input -> case (input) of

[] -> Empty Error
(c:cs) | test c -> Consumed (Ok c cs)

| otherwise -> Empty Error

With the satisfy combinator we can already define some useful parsers:

char c = satisfy (==c)
letter = satisfy isAlpha
digit = satisfy isDigit

The implementation of the (>>=) combinator is the first one where we take consumer
information into account. Figure 1 summarizes the input consumption of a parser
(p >>= f). If p succeeds without consuming input, the result is determined by the
second parser. However, if p succeeds while consuming input, the sequence starting
with p surely consumes input Thanks to lazy evaluation, it is therefore possible to
immediately build a reply with a Consumed constructor even though the final reply
value is unknown.

(>>=) :: Parser a → (a → Parser b) → Parser b
p >>= f

3 Restricting lookahead 9

= \input -> case (p input) of
Empty reply1

-> case (reply1) of
Ok x rest -> ((f x) rest)
Error -> Empty Error

Consumed reply1
-> Consumed

(case (reply1) of
Ok x rest

-> case ((f x) rest) of
Consumed reply2 -> reply2
Empty reply2 -> reply2

error -> error
)

Due to laziness, a parser (p >>= f) directly returns with a Consumed constructor if
p consumes input. The computation of the final reply value is delayed. This ‘early’
returning is essential for the efficient behavior of the choice combinator.

An LL(1) choice combinator only looks at its second alternative if the first hasn’t
consumed any input – regardless of the final reply value! Now that the (>>=)
combinator immediately returns a Consumed constructor as soon as some input has
been consumed, the choice combinator can choose an alternative as soon as some
input has been consumed. It no longer holds on to the original input, fixing the
space leak of the previous combinators.

(<|>) :: Parser a → Parser a → Parser a
p <|> q

= \input -> case (p input) of
Empty Error -> (q input)
Empty ok -> case (q input) of

Empty _ -> Empty ok
consumed -> consumed

consumed -> consumed

Note that if p succeeds without consuming input the second alternative is favored
if it consumes input. This implements the “longest match” rule.

With the bind and choice combinator we can define almost any parser. Here are a
few useful examples:

string :: String -> Parser ()
string "" = return ()
string (c:cs) = do{ char c; string cs }

many1 :: Parser a -> Parser [a]
many1 p

= do{ x <- p;
; xs <- (many1 p <|> return [])

10 Parsec: Direct Style Monadic Parser Combinators For The Real World

; return (x:xs)
}

identifier
= many1 (letter <|> digit <|> char ’_’)

Note that the formulation of the many1 parser works because the choice combinator
doesn’t backtrack anymore.

3.2 Related work

It is interesting to compare this approach with previous work on efficient parser
combinators. Röjemo (1995) uses a continuation based approach in combination
with a cut combinator. The cut combinator is used to implement an LL(1) variant
of the choice combinator. A variant of Röjemo’s solution is given by Koopman
and Plasmeijer (1999). In his thesis (1992), Meijer describes several alternative
implementations of the cut combinator using continuation based parsers.

The main contribution of this paper is the simplicity of the consumer based approach
when compared to an implementation based on continuations. Due to laziness,
the algorithm can be specified declaratively, while getting the same operational
‘interleaved’ behavior as with continuations. It is also easier to constructively add
error messages to the combinators, which is done later in this paper.

The consumer based design is perhaps most closely related to the work of Partridge
and Wright (1996). They implement a predictive LL(1) parser using four return
values in their parser reply:

data Reply a = Ok a String
| Epsn a String
| Err
| Fail

The Epsn (epsilon) and Fail alternatives are used when the parser hasn’t consumed
any input. The correspondence with a consumer based design is clear:

Partridge & Wright Consumer based design
Ok x input ≡ Consumed (Ok x input)
Epsn x input ≡ Empty (Ok x input)
Err ≡ Consumed (Error)
Fail ≡ Empty (Error)

Unfortunately, the approach of Partridge and Wright still suffers from the space
leak. The information about input consumption is tupled with the information
about the success of the parser. The choice operator now holds on the input since
information about both the success and the consumption of a parser is returned,
which can only be done after a reply is completely evaluated.

3 Restricting lookahead 11

Library chars/second allocated/char resident/char
parsec + scanner 115,000 409 13
parsec 88,000 896 6
parselib 78,000 730 23
uuparsing + scanner 61,000 928 58

Figure 2: Comparison of libraries

3.3 Measurements

We have done some prelimary measurements on the effectiveness of the consumer
based design. We took four different libraries and let them parse the standard
libraries of the Zurich Oberon system (Wirth, 1988). To make the test as honest as
possible, we wrote the Oberon parser using standard arrow-style combinators and
mapped the basic combinators of each library to these combinators. This enables
each library to use the exactly the same parser sources.

The libraries tested are:

• parsec. The full Parsec library, including the error message mechanism that is
developed later in this paper. The library can parse context-sensitive gram-
mars with infinite lookahead. There are two variants tested, “parsec” is a
version where the entire grammar, including the lexical part, is described us-
ing parser combinators and “parsec+scanner” is a version where a seperate
hand-written scanner is used.

• uuparsing. A sophisticated arrow-style library developed at the University of
Utrecht (Swierstra and Azero Alcocer, 1999). A prominent feature is that the
library automatically corrects the input on errors and (thus) always succeeds.
The library parses context-free with infinite lookahead. The parser in our test
uses a seperate hand-written scanner for Oberon.

• parselib. The ‘standard’ monadic parser library that is distributed with the
Hugs interpreter. This is a monadic parser library developed by Graham
Hutton and Erik Meijer (Hutton and Meijer, 1996). The library parses context
sensitive with infinite lookahead and can even deal with ambigious grammars
but gives no error messages at all. The entire grammar is described using
parser combinators.

Each library was compiled with GHC 5.02 with the -O2 flag and tested against all
102 standard library files of the Zurich Oberon system. The largest of these files
consists of 115,000 characters and 3302 lines, and the total line count is 87,000. The
libraries were run with a 64 Mb heap on a 550 MHz Pentium running FreeBSD.
Detailed results can be found at http://www.cs.uu.nl/~daan/pbench.html.

Figure 2 summarizes the results. It shows the average number of characters parsed
per second, the number of bytes allocated per character and the number of bytes
resident per character. The residency gives the maximal portion of the heap that
was live during the execution of the program.

http://www.cs.uu.nl/~daan/pbench.html

12 Parsec: Direct Style Monadic Parser Combinators For The Real World

The measurements should be interpreted with care since each library uses different
parsing strategies and has different features. For example, in contrast to the other
libraries, the ParseLib library can deal with ambigious grammars. The bottom line
however is that each library uses exactly the same parser source to parse the same
Oberon sources and it seems that the consumer based design pays off in practice.

3.4 Infinite lookahead, again

With all these optimization efforts, the parser combinators are now restricted to
LL(1) grammars. Unfortunately, most (programming language) grammars are not
LL(1) and even require arbitrary lookahead.

Dually to the approach sketched in (Röjemo, 1995;
Hutton and Meijer, 1996; Koopman and Plasmeijer, 1999;
Meijer, 1992) where a special combinator is introduced to mark explicitly when no
lookahead is needed, we add a special combinator to mark explicitly where arbitrary
lookahead is allowed.

The (try p) parser behaves exactly like parser p but pretends it hasn’t consumed
any input when p fails:

try :: Parser a → Parser a
try p
= \input -> case (p input) of

Consumed Error -> Empty Error
other -> other

Consider the parser (try p <|> q). Even when parser p fails while consuming
input (Consumed Error), the choice operator will try the alternative q since the
try combinator has changed the Consumed constructor into Empty. Indeed, if you
put try around all parsers you will have an LL(∞) parser again!

Although not discussed in their paper, the try combinator could just as easily
be applied with the four reply value approach of Partridge and Wright (1996),
changing Err replies into Fail replies. The approach sketched here is dual to the
three reply values of Hutton (1992). Hutton introduces a noFail combinator that
turns empty errors into consumed errors! It effectively prevents backtracking by
manual intervention.

3.5 Lexing

The try combinator can for example be used to specify both a lexer and parser
together. Take for example the following parser:

expr = do{ string "let"; whiteSpace; letExpr }

4 Error Messages 13

<|> identifier

As it stands, this parser doesn’t work as expected. On the input letter for example,
it fails with an error message.

>run expr "letter"

parse error at (line 1,column 4):
unexpected "t"
expecting white space

The try combinator should be used to backtrack on the let keyword. The following
parser correctly recognises the input letter as an identifier.

expr = do{ try (string "let"); whiteSpace; letExpr }
<|> identifier

In contrast with other libraries, the try combinator is not built into a special choice
combinator. This improves modularity and allows the construction of lexer libraries
that use try on each lexical token. The Parsec library is distributed with such a
library and in practice, try is only needed for grammar constructions that require
lookahead.

4 Error Messages

The restriction to LL(1) makes it much easier for us to generate good error messages.
First of all, the error message should include the position of an error. The parser
input is tupled with the current position – the parser state.

type Parser a = State -> Consumed a

data State = State String Pos

Beside the position, it is very helpful for the user to return the grammar productions
that would have led to correct input at that position. This corresponds to the first
set of that production. During the parsing process, we will dynamically compute
first sets for use in error messages. This may seem expensive but laziness ensures
that this only happens when an actual error occurs.

An error message contains a position, the unexpected input and a list of expected
productions – the first set.

data Message = Message Pos String [String]

14 Parsec: Direct Style Monadic Parser Combinators For The Real World

To dynamically compute the first set, not only Error replies but also Ok replies
should carry an error message. Within the Ok reply, the message represents the
error that would have occurred if this successful alternative wasn’t taken.

data Reply a = Ok a State Message
| Error Message

4.1 Basic parsers

The return parser attaches an empty message to the parser reply.

return :: a -> Parser a
return x
= \state ->

Empty (Ok x state (Message pos [] []))

The implementation of the satisfy parser changes more. It updates the parse
position if it succeeds and returns an error message with the current position and
input if it fails.

satisfy :: (Char -> Bool) -> Parser Char
satisfy test
= \(State input pos) ->

case (input) of
(c:cs) | test c

-> let newPos = nextPos pos c
newState = State cs newPos

in seq newPos
(Consumed

(Ok c newState
(Msg pos [] [])))

(c:cs) -> Empty (Error
(Msg pos [c] []))

[] -> Empty (Error
(Msg pos "end of input" []))

Note the use of seq to strictly evaluate the new position. If this is done lazily, we
would introduce a new space leak – the original input is retained since it is needed
to compute the new position at some later time.

The (<|>) combinator computes the dynamic first set by merging the error mes-
sages of two Empty alternatives – regardless of their reply value. Whenever both
alternatives do not consume input, both of them contribute to the possible causes
of failure. Even when the second succeeds, the first alternative should propagate
its error messages into the Ok reply.

4 Error Messages 15

(<|>) :: Parser a → Parser a → Parser a
p <|> q

= \state ->
case (p state) of

Empty (Error msg1)
-> case (q state) of

Empty (Error msg2)
-> mergeError msg1 msg2

Empty (Ok x inp msg2)
-> mergeOk x inp msg1 msg2

consumed
-> consumed

Empty (Ok x inp msg1)
-> case (q state) of

Empty (Error msg2)
-> mergeOk x inp msg1 msg2

Empty (Ok _ _ msg2)
-> mergeOk x inp msg1 msg2

consumed
-> consumed

consumed -> consumed

mergeOk x inp msg1 msg2
= Empty (Ok x inp (merge inp1 inp2))

mergeError msg1 msg2
= Empty (Error (merge msg1 msg2))

merge (Msg pos inp exp1) (Msg _ _ exp2)
= Msg pos inp (exp1 ++ exp2)

Notice that the positions of the error message passed to merge should always be the
same. Since the choice combinator only calls merge when both alternatives have
not consumed input, both positions are guaranteed to be equal.

The sequence combinator computes the first set by merging error messages whenever
one of the parsers doesn’t consume input. In those cases, both of the parsers
contribute to the error messages.

4.2 Labels

Although error messages are nicely merged, there is still no way of adding names
to productions. The new combinator (<?>) labels a parser with a name.

The parser (p <?> msg) behaves like parser p but when it fails without consuming
input, it sets the expected productions to msg. It is important that it only does
so when no input is consumed since otherwise it wouldn’t be something that is
expected after all:

16 Parsec: Direct Style Monadic Parser Combinators For The Real World

(<?>) :: Parser a -> String -> Parser a
p <?> exp
= \state ->

case (p state) of
Empty (Error msg)

-> Empty (Error (expect msg exp))
Empty (Ok x st msg)

-> Empy (Ok x st (expect msg exp))
other -> other

expect (Msg pos inp _) exp
= Msg pos inp [exp]

The label combinator is used to return error messages in terms of high-level grammar
productions rather than at the character level. For example, the elementary parsers
are redefined with labels:

digit = satisfy isDigit <?> "digit"
letter = satisfy isAlpha <?> "letter"
char c = satisfy (==c) <?> (show c)

identifier = many1 (letter <|> digit <|> char ’_’)

4.3 Labels in practice

Error messages are quite improved with these labels, even when compared to widely
used parser generators like YACC. Here is an example of applying the identifier
parser to the empty input.

>run identifier ""

parse error at (line 1,column 1):
unexpected end of input
expecting letter, digit or ’_’

Normally all important grammar productions get a label attached. The previous
error message is even better when the identifier parser is also labeled. Note that
this label overrides the others.

>run identifier "@"

parse error at (line 1,column 1):
unexpected "@"
expecting identifier

The following example illustrates why Ok replies need to carry error messages with
them.

5 Conclusions 17

test = do{ (digit <|> return ’0’)
; letter
}

The first set of this parser consists of both a digit and a letter. On illegal input
both these production should be included in the error message. Operationally,
the digit parser will fail and the return ’0’ alternative is taken. The Ok reply
however still holds the expecting digit message. When the letter parser fails,
both productions are shown:

>run test "*"

parse error at (line 1,column 1):
unexpected "*"
expecting digit or letter

4.4 Related work

Error reporting is first described by Hutton (1992). However, the solution proposed
is quite subtle to apply in practice, involving deep knowledge about the underly-
ing implementation. The position of the error is not reported as the combinators
backtrack by default – this makes it hard to generate good quality error messages.
Röjemo (1995) adds error messages with source positions using a predictive parsing
strategy.

Error correcting parsers are parsers that always continue parsing. Swierstra et al.
(1996; 1999) describe sophisticated implementations of error correction. These
parser probably lend themselves well to customizable error messages as described
in this paper.

5 Conclusions

We hope to have showed to parser combinators can be an acceptable alternative
to parser generators in practice. Moreover, the efficient implementation of the
combinators is surprisingly concise – laziness is essential for this implementation
technique.

At the same time, we have identified weaknesses of the parser combinators approach,
most notably the left-recursion limitation and the inability to analyse the grammar
at run-time.

18 Parsec: Direct Style Monadic Parser Combinators For The Real World

6 Acknowledgements

Doaitse Swierstra has been a source of inspiration with his intimate knowledge of
error-correcting parser strategies. We would also like to thank Mark Shields for his
help on the operational semantics of these combinators. Johan Jeuring has provided
many suggestions that improved the initial draft of this paper.

References

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers – Principles, Tech-
niques and Tools. Addison-Wesley, 1986. ISBN 0-201-10194-7.

W.H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975. ISBN
0-201-14450-6.

Koen Claessen and David Sands. Observable sharing for functional circuit descrip-
tion. In ASIAN’99, 5th Asian Computing Science Conference, LNCS, 1742:62–73,
Phuket, Thailand, 1999. Springer-Verlag.
http://www.cs.chalmers.se/~dave/papers/observable-sharing.ps.

Jeroen Fokker. Functional parsers. In Advanced Functional Programming, First
International Spring School, LNCS, 925:1–23, B̊astad, Sweden, May 1995. Springer-
Verlag. http://www.cs.uu.nl/~jeroen/article/parsers/parsers.ps.

Andy Gill and Simon Marlow. Happy – The Parser Generator for Haskell, 1995.
University of Glasgow. http://www.haskell.org/happy.

Steve Hill. Combinators for parsing expressions. Journal of Functional Program-
ming, 6(3):445–463, May 1996.

John Hughes. Why Functional Programming Matters. Computer Journal, 32(2):98–
107, 1989.

John Hughes. Generalising monads to arrows. Science of Computer Programming,
37:67–111, 2000. http://www.cs.chalmers.se/~rjmh/Papers/arrows.ps.

Graham Hutton and Erik Meijer. Monadic parser combinators. Technical Report
NOTTCS-TR-96-4, Department of Computer Science, University of Nottingham,
1996. http://www.cs.nott.ac.uk/Department/Staff/gmh/monparsing.ps.

Graham Hutton. Higher-order functions for parsing. Journal of Functional Pro-
gramming, 2(3):232–343, July 1992.
http://www.cs.nott.ac.uk/Department/Staff/gmh/parsing.ps.

Pieter Koopman and Rinus Plasmeijer. Efficient combinator parsers. In Implemen-
tation of Functional Languages, LNCS, 1595:122–138. Springer-Verlag, 1999.

Erik Meijer. Calculating Compilers. PhD thesis, Nijmegen University, 1992.

Andrew Partridge and David Wright. Predictive parser combinators need four values
to report errors. Journal of Functional Programming, 6(2):355–364, March 1996.

Niklas Röjemo. Garbage collection and memory efficiency in lazy functional lan-
guages. PhD thesis, Chalmers University of Technology, 1995.

http://www.cs.chalmers.se/~dave/papers/observable-sharing.ps
http://www.cs.uu.nl/~jeroen/article/parsers/parsers.ps
http://www.haskell.org/happy
http://www.cs.chalmers.se/~rjmh/Papers/arrows.ps
http://www.cs.nott.ac.uk/Department/Staff/gmh/monparsing.ps
http://www.cs.nott.ac.uk/Department/Staff/gmh/parsing.ps

6 Acknowledgements 19

Mark Shields and Erik Meijer. Type-indexed rows. In Proceedings of the 28th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), London, England, pages 261–275. ACM press, January 2001.
http://www.cse.ogi.edu/~mbs/pub/type_indexed_rows.

Doaitse Swierstra and Pablo Azero Alcocer. Fast, error correcting parser com-
binators: A short tutorial. In SOFSEM’99, Theory and Practice of Informatics,
26th Seminar on Current Trends in Theory and Practice of Informatics, LNCS,
1725:111–129. Springer-Verlag, November 1999.
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing.

Doaitse Swierstra and Luc Duponcheel. Deterministic, error correcting combinator
parsers. In Advanced Functional Programming, Second International Spring School,
LNCS, 1129:184–207. Springer-Verlag, 1996.
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/AFP2.ps.

Philip Wadler. How to replace failure with a list of successes. In Functional Program-
ming Languages and Computer Architecture, LNCS, 201:113–128. Springer-Verlag,
1985.

Philip Wadler. Theorems for free. In Mac Queen, editor, 4’th International Con-
ference on Functional Programming and Computer Architecture, pages 347–359,
London, September 1989. Addison-Wesley.

Philip Wadler. The essence of functional programming. In 19’th Symposium on Prin-
ciples of Programming Languages, pages 1–14, Albuquerque, New Mexico, January
1992. ACM press.
http://cm.bell-labs.com/cm/cs/who/wadler/topics/monads.html.

Niklaus Wirth. The programming language Oberon. Software Practice and Experi-
ence, 19(9), 1988. The Oberon language report.
http://www.oberon.ethz.ch.

http://www.cse.ogi.edu/~mbs/pub/type_indexed_rows
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/AFP2.ps
http://cm.bell-labs.com/cm/cs/who/wadler/topics/monads.html
http://www.oberon.ethz.ch

	Introduction
	Grammars and Parsers
	Monadic vs. Arrow style Parsers
	Left recursion
	Sharing

	Backtracking
	Errors
	LL Grammars

	Restricting lookahead
	Basic combinators
	Related work
	Measurements
	Infinite lookahead, again
	Lexing

	Error Messages
	Basic parsers
	Labels
	Labels in practice
	Related work

	Conclusions
	Acknowledgements
	References

