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Properties of Lognormal Distribution

A variable @ has a lognormal distribution if V' = In(Q) has a normal distribution.
Suppose that V' is ¢(m, s); that is, it has a normal distribution with mean m and standard
deviation, s. The probability density function for V is
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The probability density function for @) is therefore
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Consider the nth moment of @
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Substituting () = exp V' this is
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The integral in this expression is the integral of a normal density function with mean
m + ns? and standard deviation s and is therefore 1.0. It follows that
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The expected value of () is given when n = 1. It is
exp(m + s%/2)

The result in equation (13.4) follows by setting m = In(Sp) + (4 — 02/2)T and s = o/T
The variance of @ is E(Q?) — [E(Q)]?. Setting n = 2 in equation (1) we get

E(Q?) = exp(2m + 25%)
The variance of () is therefore
exp(2m + 25?) — exp(2m + %) = exp(2m + s%)[exp(s?) — 1]
The result in equation (13.5) follows by setting m = In(Sp) + (4 — 02/2)T and s = ov/T.
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