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Properties of Lognormal Distribution

A variable Q has a lognormal distribution if V = ln(Q) has a normal distribution.
Suppose that V is φ(m, s); that is, it has a normal distribution with mean m and standard
deviation, s. The probability density function for V is
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The probability density function for Q is therefore
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Consider the nth moment of Q
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Substituting Q = expV this is
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The integral in this expression is the integral of a normal density function with mean
m+ ns2 and standard deviation s and is therefore 1.0. It follows that

∫ +∞

0
Qnh(Q)dQ = exp(nm+ n2s2/2) (1)

The expected value of Q is given when n = 1. It is

exp(m+ s2/2)

The result in equation (13.4) follows by setting m = ln(S0) + (µ− σ2/2)T and s = σ
√
T

The variance of Q is E(Q2)− [E(Q)]2. Setting n = 2 in equation (1) we get

E(Q2) = exp(2m+ 2s2)

The variance of Q is therefore

exp(2m+ 2s2)− exp(2m+ s2) = exp(2m+ s2)[exp(s2)− 1]

The result in equation (13.5) follows by setting m = ln(S0) + (µ− σ2/2)T and s = σ
√
T .
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