Trinity Mathematical Society

Gödel's Theorem
 How much does it matter for mathematicians?

Peter Smith, Philosophy Faculty

November 21, 2005

- The (First) Incompleteness Theorem
- Some philosophical implications and non-implications
- How the Theorem is proved
- Are Gödel sentences arithmetically interesting?
- An unprovable arithmetically interesting truth?
- The speed-up theorem

First Order Peano Arithmetic

- The language L_{A} of basic arithmetic contains ' 0 ', a symbol for the successor function, symbols for addition and multiplication, identity, and logical symbols (particularly the quantifiers for quantifying over numbers).

First Order Peano Arithmetic

- The language L_{A} of basic arithmetic contains ' 0 ', a symbol for the successor function, symbols for addition and multiplication, identity, and logical symbols (particularly the quantifiers for quantifying over numbers).
- The benchmark theory of basic arithmetic is PA, First Order Peano Arithmetic. PA knows that different natural numbers have different successors, that 0 isn't a successor; it knows the recursive definitions of addition and multiplication; it knows about instances of induction.

First Order Peano Arithmetic

- The language L_{A} of basic arithmetic contains ' 0 ', a symbol for the successor function, symbols for addition and multiplication, identity, and logical symbols (particularly the quantifiers for quantifying over numbers).
- The benchmark theory of basic arithmetic is PA, First Order Peano Arithmetic. PA knows that different natural numbers have different successors, that 0 isn't a successor; it knows the recursive definitions of addition and multiplication; it knows about instances of induction.
- PA is strong enough to capture all facts about the decidable properties of particular numbers.

First Order Peano Arithmetic

- The language L_{A} of basic arithmetic contains ' 0 ', a symbol for the successor function, symbols for addition and multiplication, identity, and logical symbols (particularly the quantifiers for quantifying over numbers).
- The benchmark theory of basic arithmetic is PA, First Order Peano Arithmetic. PA knows that different natural numbers have different successors, that 0 isn't a successor; it knows the recursive definitions of addition and multiplication; it knows about instances of induction.
- PA is strong enough to capture all facts about the decidable properties of particular numbers.
- (S) Suppose P is a decidable numerical property. Then there will be an expression $\varphi(x)$ of L_{A} such that

1. If n is P, then $\mathrm{PA} \vdash \varphi(n)$
2. If n is not P, then PA $\vdash \neg \varphi(n)$

What the incompleteness theorem says - 1

- Let's say that T is a nice theory if it is

1. consistent

What the incompleteness theorem says - 1

- Let's say that T is a nice theory if it is

1. consistent
2. properly formalized (so that it is a decidable matter whether a putative T-proof really is a proof according to the rules of the game)

What the incompleteness theorem says - 1

- Let's say that T is a nice theory if it is

1. consistent
2. properly formalized (so that it is a decidable matter whether a putative T-proof really is a proof according to the rules of the game)
3. includes 'First Order Peano Arithmetic'

What the incompleteness theorem says - 1

- Let's say that T is a nice theory if it is

1. consistent
2. properly formalized (so that it is a decidable matter whether a putative T-proof really is a proof according to the rules of the game)
3. includes 'First Order Peano Arithmetic'

- Kurt Gödel (1931) shows how to take any nice theory T and construct an arithmetic sentence G_{T}, such that,

1. If T is consistent, $T \nvdash G_{T}$ (i.e. T doesn't prove G_{T}).
2. If T is consistent, G_{T} is true.

What the Incompleteness Theorem says - 2

- It follows that any nice theory T is not only incomplete (in the sense of not proving even all arithmetical truths) but incompleteable.

What the Incompleteness Theorem says - 2

- It follows that any nice theory T is not only incomplete (in the sense of not proving even all arithmetical truths) but incompleteable.
- Suppose T is nice but incomplete: and suppose we add G_{T} and maybe other new axioms to get T^{+}.

What the Incompleteness Theorem says - 2

- It follows that any nice theory T is not only incomplete (in the sense of not proving even all arithmetical truths) but incompleteable.
- Suppose T is nice but incomplete: and suppose we add G_{T} and maybe other new axioms to get T^{+}.

1. T^{+}will still include Peano Arithmetic.

What the Incompleteness Theorem says - 2

- It follows that any nice theory T is not only incomplete (in the sense of not proving even all arithmetical truths) but incompleteable.
- Suppose T is nice but incomplete: and suppose we add G_{T} and maybe other new axioms to get T^{+}.

1. T^{+}will still include Peano Arithmetic.
2. If T^{+}stays properly axiomatized and consistent, it is still nice.

What the Incompleteness Theorem says - 2

- It follows that any nice theory T is not only incomplete (in the sense of not proving even all arithmetical truths) but incompleteable.
- Suppose T is nice but incomplete: and suppose we add G_{T} and maybe other new axioms to get T^{+}.

1. T^{+}will still include Peano Arithmetic.
2. If T^{+}stays properly axiomatized and consistent, it is still nice.
3. Then Gödel's Theorem applies again.

What the Incompleteness Theorem says - 2

- It follows that any nice theory T is not only incomplete (in the sense of not proving even all arithmetical truths) but incompleteable.
- Suppose T is nice but incomplete: and suppose we add G_{T} and maybe other new axioms to get T^{+}.

1. T^{+}will still include Peano Arithmetic.
2. If T^{+}stays properly axiomatized and consistent, it is still nice.
3. Then Gödel's Theorem applies again.
4. There will be another true arithmetical sentence $G_{T^{+}}$such that $T^{+} \nvdash G_{T^{+}}$(and so $T \nvdash G_{T^{+}}$too).

What the Incompleteness Theorem says - 2

- It follows that any nice theory T is not only incomplete (in the sense of not proving even all arithmetical truths) but incompleteable.
- Suppose T is nice but incomplete: and suppose we add G_{T} and maybe other new axioms to get T^{+}.

1. T^{+}will still include Peano Arithmetic.
2. If T^{+}stays properly axiomatized and consistent, it is still nice.
3. Then Gödel's Theorem applies again.
4. There will be another true arithmetical sentence $G_{T^{+}}$such that $T^{+} \nvdash G_{T^{+}}$(and so $T \nvdash G_{T^{+}}$too).

- T's incompleteness is incurable (except at the price of inconsistency or no longer being a properly axiomatized theory).

One philosophical implication (of Trinity interest!)

- Gödel's original paper was called 'On formally undecidable propositions of Principia Mathematica.'

One philosophical implication (of Trinity interest!)

- Gödel's original paper was called 'On formally undecidable propositions of Principia Mathematica.'
- His theorem sabotages the project of Principia Mathematica which aims to make good Bertrand Russell's programmatic claim:
"All mathematics deals exclusively with concepts definable in terms of a very small number of logical concepts, and ... all its propositions are deducible from a very small number of fundamental logical principles."

Two non-implications

- (1) "There are absolutely unprovable arithmetical truths!"

Two non-implications

- (1) "There are absolutely unprovable arithmetical truths!"
- Not so. G_{T} will be unprovable in T, but will be provable from the axioms of some richer nice theory T^{+}(like $T+G_{T}$!).

Two non-implications

- (1) "There are absolutely unprovable arithmetical truths!"
- Not so. G_{T} will be unprovable in T, but will be provable from the axioms of some richer nice theory T^{+}(like $T+G_{T}$!).
- Distinguish:

1. For every nice formal theory T there is a true sentence G_{T} which is unprovable in T.
2. There is a true sentence G which, for every nice formal theory T, is unprovable in T.

Two non-implications

- (1) "There are absolutely unprovable arithmetical truths!"
- Not so. G_{T} will be unprovable in T, but will be provable from the axioms of some richer nice theory T^{+}(like $T+G_{T}$!).
- Distinguish:

1. For every nice formal theory T there is a true sentence G_{T} which is unprovable in T.
2. There is a true sentence G which, for every nice formal theory T, is unprovable in T.

- (2) "We are smarter than any arithmetically competent machine. For the output of such a machine corresponds to the output of some nice theory T, and we can always see to be true something it can't prove, namely its Gödel sentence G_{T}."

Two non-implications

- (1) "There are absolutely unprovable arithmetical truths!"
- Not so. G_{T} will be unprovable in T, but will be provable from the axioms of some richer nice theory T^{+}(like $T+G_{T}$!).
- Distinguish:

1. For every nice formal theory T there is a true sentence G_{T} which is unprovable in T.
2. There is a true sentence G which, for every nice formal theory T, is unprovable in T.

- (2) "We are smarter than any arithmetically competent machine. For the output of such a machine corresponds to the output of some nice theory T, and we can always see to be true something it can't prove, namely its Gödel sentence G_{T}."
- Not so. Gödel shows that G_{T} is true if T is consistent. To see G_{T} is true we have to be able to see that T is consistent. In general we won't be able to do that if T is complex.
- The (First) Incompleteness Theorem
- Some philosophical implications and non-implications
- How the Theorem is proved
- Are Gödel sentences arithmetically interesting?
- An unprovable arithmetically interesting truth?
- The speed-up theorem

Two basic results

- We can use numerical codes for sentences and proofs (essentially by correlating symbols with numbers).

Two basic results

- We can use numerical codes for sentences and proofs (essentially by correlating symbols with numbers).
- Fix on a system of "Gödel numbering"; write $\ulcorner S\urcorner$ for the g.n. of the sentence S.

Two basic results

- We can use numerical codes for sentences and proofs (essentially by correlating symbols with numbers).
- Fix on a system of "Gödel numbering"; write $\ulcorner S\urcorner$ for the g.n. of the sentence S.
- (D) Gödel proves the crucial fixed point theorem. Suppose $\varphi(x)$ is a predicate of T; then, assuming niceness, there is a corresponding sentence S such that

$$
T \vdash S \leftrightarrow \varphi(\ulcorner S\urcorner)
$$

Two basic results

- We can use numerical codes for sentences and proofs (essentially by correlating symbols with numbers).
- Fix on a system of "Gödel numbering"; write $\ulcorner S\urcorner$ for the g.n. of the sentence S.
- (D) Gödel proves the crucial fixed point theorem. Suppose $\varphi(x)$ is a predicate of T; then, assuming niceness, there is a corresponding sentence S such that

$$
T \vdash S \leftrightarrow \varphi(\ulcorner S\urcorner)
$$

- Gödel also proves that if T is nice, it can express the numerical property codes-for-a-provable-sentence-of-T.

Two basic results

- We can use numerical codes for sentences and proofs (essentially by correlating symbols with numbers).
- Fix on a system of "Gödel numbering"; write $\ulcorner S\urcorner$ for the g.n. of the sentence S.
- (D) Gödel proves the crucial fixed point theorem. Suppose $\varphi(x)$ is a predicate of T; then, assuming niceness, there is a corresponding sentence S such that

$$
T \vdash S \leftrightarrow \varphi(\ulcorner S\urcorner)
$$

- Gödel also proves that if T is nice, it can express the numerical property codes-for-a-provable-sentence-of- T.
- (E) In other words, there's a predicate $\operatorname{prov}_{T}(x)$ such that $\operatorname{prov}_{T}(\ulcorner S\urcorner)$ is true just if S is a T-theorem.

The undecidability of nice theories

- So take the predicate $\neg \operatorname{prov}_{T}(x)$ (which says the sentence with code number x is not provable in T). By the fixed point lemma (D) there is a sentence G_{T} such that

$$
T \vdash G_{T} \leftrightarrow \neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)
$$

The undecidability of nice theories

- So take the predicate $\neg \operatorname{prov}_{T}(x)$ (which says the sentence with code number x is not provable in T). By the fixed point lemma (D) there is a sentence G_{T} such that

$$
T \vdash G_{T} \leftrightarrow \neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)
$$

- Now suppose the property of being a theorem of the nice theory T is decidable. That is to say, given a number n we can mechanically decide whether n is code number of a provable sentence of T.

The undecidability of nice theories

- So take the predicate $\neg \operatorname{prov}_{T}(x)$ (which says the sentence with code number x is not provable in T). By the fixed point lemma (D) there is a sentence G_{T} such that

$$
T \vdash G_{T} \leftrightarrow \neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)
$$

- Now suppose the property of being a theorem of the nice theory T is decidable. That is to say, given a number n we can mechanically decide whether n is code number of a provable sentence of T.
- By result (S)

1. If G_{T} is provable in T, then $T \vdash \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)$
2. If G_{T} is not provable in T, then $T \vdash \neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)$

The undecidability of nice theories

- So take the predicate $\neg \operatorname{prov}_{T}(x)$ (which says the sentence with code number x is not provable in T). By the fixed point lemma (D) there is a sentence G_{T} such that

$$
T \vdash G_{T} \leftrightarrow \neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)
$$

- Now suppose the property of being a theorem of the nice theory T is decidable. That is to say, given a number n we can mechanically decide whether n is code number of a provable sentence of T.
- By result (S)

1. If G_{T} is provable in T, then $T \vdash \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)$
2. If G_{T} is not provable in T, then $T \vdash \neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)$

- Those three are contradictory. Hence ...

Theorem 1: there can't be a way of deciding theoremhood for a nice theory T.

Incompleteness

- To repeat: take the predicate $\neg \operatorname{prov}_{T}(x)$ (which says x is not provable in T). By (D) there is a sentence G_{T} such that

$$
T \vdash G_{T} \leftrightarrow \neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)
$$

Incompleteness

- To repeat: take the predicate $\neg \operatorname{prov}_{T}(x)$ (which says x is not provable in T). By (D) there is a sentence G_{T} such that

$$
T \vdash G_{T} \leftrightarrow \neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)
$$

- Assume for a moment T is a sound theory (i.e. is not only consistent, but has true axioms, so all its theorems are true).

Incompleteness

- To repeat: take the predicate $\neg \operatorname{prov}_{T}(x)$ (which says x is not provable in T). By (D) there is a sentence G_{T} such that

$$
T \vdash G_{T} \leftrightarrow \neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)
$$

- Assume for a moment T is a sound theory (i.e. is not only consistent, but has true axioms, so all its theorems are true).
- Now ask: can T prove G_{T} ? If so it also proves $\neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)$. So being a theorem, that will be true. But it says that the sentence G_{T} is not provable. Contradiction!

Incompleteness

- To repeat: take the predicate $\neg \operatorname{prov}_{T}(x)$ (which says x is not provable in T). By (D) there is a sentence G_{T} such that

$$
T \vdash G_{T} \leftrightarrow \neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)
$$

- Assume for a moment T is a sound theory (i.e. is not only consistent, but has true axioms, so all its theorems are true).
- Now ask: can T prove G_{T} ? If so it also proves $\neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)$. So being a theorem, that will be true. But it says that the sentence G_{T} is not provable. Contradiction!
- So Theorem 2: G_{T} is unprovable. So it is true that $\neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)$, and also true that $G_{T} \leftrightarrow \neg \operatorname{prov}_{T}\left(\left\ulcorner G_{T}\right\urcorner\right)$. So G_{T} is true.

The First Incompleteness Theorem

- We've shown that, if T is nice and sound, then there is a T-sentence G_{T} which is true but but unprovable-in- T.

The First Incompleteness Theorem

- We've shown that, if T is nice and sound, then there is a T-sentence G_{T} which is true but but unprovable-in- T.
- But we can improve this result in three ways.

The First Incompleteness Theorem

- We've shown that, if T is nice and sound, then there is a T-sentence G_{T} which is true but but unprovable-in- T.
- But we can improve this result in three ways.

1. We can drop the assumption of soundness and make do with mere consistency (there's a cost: Gödel needs some extra preliminary results).

The First Incompleteness Theorem

- We've shown that, if T is nice and sound, then there is a T-sentence G_{T} which is true but but unprovable-in- T.
- But we can improve this result in three ways.

1. We can drop the assumption of soundness and make do with mere consistency (there's a cost: Gödel needs some extra preliminary results).
2. We can show that G_{T} is a Π_{1} sentence of basic arithmetic (is of 'Goldbach type'), i.e. is just a universal generalization whose instances are all mechanically decidable arithmetical statements.

The First Incompleteness Theorem

- We've shown that, if T is nice and sound, then there is a T-sentence G_{T} which is true but but unprovable-in- T.
- But we can improve this result in three ways.

1. We can drop the assumption of soundness and make do with mere consistency (there's a cost: Gödel needs some extra preliminary results).
2. We can show that G_{T} is a Π_{1} sentence of basic arithmetic (is of 'Goldbach type'), i.e. is just a universal generalization whose instances are all mechanically decidable arithmetical statements.
3. At the cost of either slightly strengthening the assumption that T is consistent, or slightly complicating the construction of G_{T}, we can show that neither G_{T} or $\neg G_{T}$ is provable. There is a 'formally undecidable' sentence of T.

- The (First) Incompleteness Theorem
- Some philosophical implications and non-implications
- How the Theorem is proved
- Are Gödel sentences arithmetically interesting?
- An unprovable arithmetically interesting truth?
- The speed-up theorem

Are Gödel sentences arithmetically interesting?

Are Gödel sentences 'paradoxical'?

- Gödel's proof gives a recipe for constructing the 'fixed point' sentence G_{T} for a given system T.

Are Gödel sentences 'paradoxical'?

- Gödel's proof gives a recipe for constructing the 'fixed point' sentence G_{T} for a given system T.
- Looked at in the light of our choice of "Gödel numbering", this G_{T} decodes as 'I am unprovable in G_{T} '. So are we tangling with self-referential paradox here?

Are Gödel sentences 'paradoxical'?

- Gödel's proof gives a recipe for constructing the 'fixed point' sentence G_{T} for a given system T.
- Looked at in the light of our choice of "Gödel numbering", this G_{T} decodes as 'I am unprovable in G_{T} '. So are we tangling with self-referential paradox here?
- No! When definitional abbreviations are unpacked G_{T} is just a long, complicated arithmetical sentence involving the successor, addition, multiplication function symbols plus logical notation. The semantics for G_{T} is entirely normal: G_{T} is a sentence about numbers (not about sentences).

Are Gödel sentences arithmetically interesting?

The theorem doesn't need self-reference

- Worth noting that there are other fixed point sentences C s.t.

$$
T \vdash C \leftrightarrow \neg \operatorname{prov}_{T}(\ulcorner C\urcorner)
$$

where C isn't 'self-referential' (even via coding).

The theorem doesn't need self-reference

- Worth noting that there are other fixed point sentences C s.t.

$$
T \vdash C \leftrightarrow \neg \operatorname{prov}_{T}(\ulcorner C\urcorner)
$$

where C isn't 'self-referential' (even via coding).

- For example, put

$$
C=\text { Con }={ }_{\text {def }} \neg \operatorname{prov}_{T}(\ulcorner 0=1\urcorner)
$$

The theorem doesn't need self-reference

- Worth noting that there are other fixed point sentences C s.t.

$$
T \vdash C \leftrightarrow \neg \operatorname{prov}_{T}(\ulcorner C\urcorner)
$$

where C isn't 'self-referential' (even via coding).

- For example, put

$$
C=\text { Con }={ }_{\text {def }} \neg \operatorname{prov}_{T}(\ulcorner 0=1\urcorner)
$$

- Then Con will also be true-but-unprovable in nice T. Which is essentially Gödel's Second Incompleteness Theorem.

The theorem doesn't need self-reference

- Worth noting that there are other fixed point sentences C s.t.

$$
T \vdash C \leftrightarrow \neg \operatorname{prov}_{T}(\ulcorner C\urcorner)
$$

where C isn't 'self-referential' (even via coding).

- For example, put

$$
C=C o n=\operatorname{def} \neg \operatorname{prov}_{T}(\ulcorner 0=1\urcorner)
$$

- Then Con will also be true-but-unprovable in nice T. Which is essentially Gödel's Second Incompleteness Theorem.
- Its significance is that, if T can't even prove that T is consistent, it can't be used to prove a stronger theory is consistent. (For example, we can't use 'safe' PA-level reasoning to prove e.g. that ZFC is consistent.)

Are there 'arithmetically interesting' undecidable sentences?

- G_{T} is an immensely long, complicated arithmetical sentence. Its fine details are dependent on entirely arbitrary choices about our Gödel numbering scheme. G_{T} is not a proposition of intrinsic arithmetical interest: we wouldn't antecedently have wondered about its truth/provability.

Are there 'arithmetically interesting' undecidable sentences?

- G_{T} is an immensely long, complicated arithmetical sentence. Its fine details are dependent on entirely arbitrary choices about our Gödel numbering scheme. G_{T} is not a proposition of intrinsic arithmetical interest: we wouldn't antecedently have wondered about its truth/provability.
- Natural question arising. If we take a standard formal theory of arithmetic like Peano Arithmetic, Gödel tells that there are there are arithmetical truths that can't be proved in PA. But are there arithmetically interesting claims - not constructed e.g. by coding logical facts about provability - which can't be decided in PA?
- The (First) Incompleteness Theorem
- Some philosophical implications and non-implications
- How the Theorem is proved

■ Are Gödel sentences arithmetically interesting?

- An unprovable arithmetically interesting truth?
- The speed-up theorem

Introducing Goodstein

- It look forty-six years after the First Theorem for anyone to find a truth expressible in the language of basic arithmetic which is independent of PA.

Introducing Goodstein

- It look forty-six years after the First Theorem for anyone to find a truth expressible in the language of basic arithmetic which is independent of PA.
- In 1977, Jeff Paris and Leo Harrington found a new combinatorial statement (a not particularly natural version of the finite Ramsey Theorem) which is true, statable in the language of basic arithmetic, but not provable in PA.

Introducing Goodstein

- It look forty-six years after the First Theorem for anyone to find a truth expressible in the language of basic arithmetic which is independent of PA.
- In 1977, Jeff Paris and Leo Harrington found a new combinatorial statement (a not particularly natural version of the finite Ramsey Theorem) which is true, statable in the language of basic arithmetic, but not provable in PA.
- But a few years later it was shown that an already-known theorem about arithmetic was independent of PA: every Goodstein sequence terminates (which is provable in ZF) isn't provable in PA. To explain ...

Hereditary base representation

- Define the hereditary base k representation of n as follows: write n as a sum of powers of k, then write the exponents as sums of powers of k, then write those exponents as sums of powers of k, and keep going

Hereditary base representation

- Define the hereditary base k representation of n as follows: write n as a sum of powers of k, then write the exponents as sums of powers of k, then write those exponents as sums of powers of k, and keep going
- Example:

$$
268=2^{8}+2^{3}+2^{2}
$$

So the pure base 2 representation of 268 is

$$
266=2^{2^{2^{2^{0}}+2^{0}}}+2^{2^{2^{0}}+2^{0}}+2^{2^{2^{0}}}
$$

Hereditary base representation

- Define the hereditary base k representation of n as follows: write n as a sum of powers of k, then write the exponents as sums of powers of k, then write those exponents as sums of powers of k, and keep going
- Example:

$$
268=2^{8}+2^{3}+2^{2}
$$

So the pure base 2 representation of 268 is

$$
266=2^{2^{2^{2^{0}}+2^{0}}}+2^{2^{2^{0}}+2^{0}}+2^{2^{2^{0}}}
$$

- Similarly:

$$
266=3^{5}+3^{2}+3^{2}+3^{1}+1+1
$$

So the pure base 3 representation is

$$
266=3^{3^{3^{0}}+3^{0}+3^{0}}+3^{3^{0}+3^{0}}+3^{3^{0}+3^{0}}+3^{3^{0}}+3^{0}+3^{0}
$$

The Goodstein bump function

- We define the Goodstein bump function $G(n, k)$ as the result of
i. taking the hereditary base k representation of n;
ii. bumping up every k to $k+1$,
iii. subtracting 1 from the resulting number.

The Goodstein bump function

- We define the Goodstein bump function $G(n, k)$ as the result of
i. taking the hereditary base k representation of n;
ii. bumping up every k to $k+1$,
iii. subtracting 1 from the resulting number.
- Example: we'll calculate $G(19,2)$.
i. $19=2^{2^{2^{2^{0}}}}+2^{2^{0}}+2^{0}$
ii. bump up the base: $3^{3^{3^{3^{0}}}}+3^{3^{0}}+3^{0}$
iii. subtract 1 to get

$$
G(19,2)=3^{3^{3^{3^{0}}}}+3^{3^{0}}=7625597484990
$$

The Goodstein sequence

The bump function G : bump up the base by one, then subtract one.

The Goodstein sequence starting at n is got by repeatedly applying the bump function:

$$
\begin{aligned}
& g_{1}=n \\
& g_{2}=G\left(g_{1}, 2\right) \\
& g_{3}=G\left(g_{2}, 3\right) \\
& g_{4}=G\left(g_{3}, 4\right) \\
& g_{5}=G\left(g_{4}, 5\right)
\end{aligned}
$$

The Goodstein sequence

The bump function G : bump up the base by one, then subtract one.

The Goodstein sequence starting at n is got by repeatedly applying the bump function:

$$
\begin{aligned}
g_{1} & =n & g_{1}=3=2^{2^{0}}+2^{0} \\
g_{2} & =G\left(g_{1}, 2\right) & g_{2}=3^{3^{0}}+3^{0}-1=3^{3^{0}} \\
g_{3} & =G\left(g_{2}, 3\right) & g_{3}=4^{4^{0}}-1=4^{0}+4^{0}+4^{0} \\
g_{4} & =G\left(g_{3}, 4\right) & g_{4}=5^{0}+5^{0} \\
g_{5} & =G\left(g_{4}, 5\right) & g_{5}=6^{0} \\
& \vdots & g_{6}=0
\end{aligned}
$$

The Goodstein sequence

The bump function G : bump up the base by one, then subtract one.
The Goodstein sequence starting at n is got by repeatedly applying the bump function:

$$
\begin{array}{rll}
g_{1} & =n & g_{1}=19=2^{2^{2^{2^{0}}}}+2^{2^{0}}+2^{0} \\
g_{2}=G\left(g_{1}, 2\right) & g_{2}=3^{3^{3^{3^{0}}}}+3^{3^{0}} \approx 7 \cdot 10^{13} \\
g_{3}=G\left(g_{2}, 3\right) & g_{3}=4^{4^{4^{4^{0}}}}+4^{4^{0}}-1 \\
g_{4}=G\left(g_{3}, 4\right) & & =4^{4^{4^{4^{0}}}}+4^{0}+4^{0}+4^{0} \approx 7 \cdot 10^{154} \\
g_{5}=G\left(g_{4}, 5\right) & g_{4}=5^{5^{5^{5^{0}}}}+5^{0}+5^{0} \quad(\text { which is enormous! })
\end{array}
$$

An unprovable arithmetically interesting truth?

Goodstein's Theorem

For every n, the Goodstein sequence starting with n terminates at zero!!!

An unprovable arithmetically interesting truth?

Goodstein's Theorem

For every n, the Goodstein sequence starting with n terminates at zero!!!

Proved by mapping the Goodstein sequence for n to a sequence of ordinals: at each step, replace k with ω.

Goodstein's Theorem

For every n, the Goodstein sequence starting with n terminates at zero!!!

Proved by mapping the Goodstein sequence for n to a sequence of ordinals: at each step, replace k with ω.
 Goodstein sequence for 19 again:

$$
\begin{array}{ll}
g_{1}=2^{2^{2^{2^{0}}}}+2^{2^{0}}+2^{0} & g_{1}=2^{2^{2}}+2+1 \\
g_{2}=3^{3^{3^{3^{0}}}}+3^{3^{0}} & g_{2}=3^{3^{3}}+3 \\
g_{3}=4^{4^{4^{4^{0}}}}+4^{0}+4^{0}+4^{0} & g_{3}=4^{4^{4}}+1+1+1 \\
g_{4}=5^{5^{5^{5^{0}}}}+5^{0}+5^{0} & g_{4}=5^{5^{5}}+1+1
\end{array}
$$

Goodstein's Theorem

For every n, the Goodstein sequence starting with n terminates at zero!!!

Proved by mapping the Goodstein sequence for n to a sequence of ordinals: at each step, replace k with ω.

Now we substitute ω for each base:

$$
\begin{array}{rlrl}
g_{1} & =2^{2^{2}}+2+1 & g_{1}=\omega^{\omega^{\omega}}+\omega+1 \\
g_{2} & =3^{3^{3}}+3 & g_{2}=\omega^{\omega^{\omega}}+\omega \\
g_{3} & =4^{4^{4}}+1+1+1 & g_{2}=\omega^{\omega^{\omega}}+1+1+1 \\
g_{4} & =5^{5^{5}}+1+1 & g_{4}=\omega^{\omega^{\omega}}+1+1 \\
& \vdots & & \vdots
\end{array}
$$

Goodstein's Theorem

For every n, the Goodstein sequence starting with n terminates at zero!!!
Proved by mapping the Goodstein sequence for n to a sequence of ordinals: at each step, replace k with ω.

Now we substitute ω for each base:

$$
\begin{array}{ll}
g_{1}=2^{2^{2}}+2+1 & g_{1}=\omega^{\omega^{\omega}}+\omega+1 \\
g_{2}=3^{3^{3}}+3 & g_{2}=\omega^{\omega^{\omega}}+\omega \\
g_{3}=4^{4^{4}}+1+1+1 & g_{2}=\omega^{\omega^{\omega}}+1+1+1 \\
g_{4}=5^{5^{5}}+1+1 & g_{4}=\omega^{\omega^{\omega}}+1+1
\end{array}
$$

On r.h.s. we get strictly decreasing sequence of ordinals. By ZF, must bottom out at zero. So I.h.s. must bottom out too.

But how 'arithmetic' is Goodstein's Theorem?

- Goodstein's Theorem can be expressed in language of arithmetic but can't be proved in PA.

But how 'arithmetic' is Goodstein's Theorem?

- Goodstein's Theorem can be expressed in language of arithmetic but can't be proved in PA.
- However, to prove it seems essentially to involve 'higher order' ideas about infinite ordinals, rather than adding more purely arithmetical ideas to PA. (Goodstein was exploring induction over ordinals up to ϵ_{0}).

But how 'arithmetic' is Goodstein's Theorem?

- Goodstein's Theorem can be expressed in language of arithmetic but can't be proved in PA.
- However, to prove it seems essentially to involve 'higher order' ideas about infinite ordinals, rather than adding more purely arithmetical ideas to PA. (Goodstein was exploring induction over ordinals up to ϵ_{0}).
- ??? Perhaps the unprovability of Goodstein's Theorem in PA is too much like the unprovability of GPA in PA - both concern the unprovability of sentences which are arithmetically expressible but whose interest is that they are related, by some coding device, to non-arithmetical facts (about proofs, about ordinals).

But how 'arithmetic' is Goodstein's Theorem?

- Goodstein's Theorem can be expressed in language of arithmetic but can't be proved in PA.
- However, to prove it seems essentially to involve 'higher order' ideas about infinite ordinals, rather than adding more purely arithmetical ideas to PA. (Goodstein was exploring induction over ordinals up to ϵ_{0}).
- ??? Perhaps the unprovability of Goodstein's Theorem in PA is too much like the unprovability of GPA in PA - both concern the unprovability of sentences which are arithmetically expressible but whose interest is that they are related, by some coding device, to non-arithmetical facts (about proofs, about ordinals).
- (An aside about Fermat's Last Theorem.)
- The (First) Incompleteness Theorem
- Some philosophical implications and non-implications
- How the Theorem is proved
- Are Gödel sentences arithmetically interesting?
- An unprovable arithmetically interesting truth?
- The speed-up theorem

Speeding up proofs

- Let's turn from the question of whether there are arithmetically interesting sentences which are not provable in PA to question about sentences that are provable in PA.

Speeding up proofs

- Let's turn from the question of whether there are arithmetically interesting sentences which are not provable in PA to question about sentences that are provable in PA.
- The same fixed point lemma that quickly yields the Incompleteness Theorem also gets us to the following speed-up theorem (quick and dirty version):

Speeding up proofs

- Let's turn from the question of whether there are arithmetically interesting sentences which are not provable in PA to question about sentences that are provable in PA.
- The same fixed point lemma that quickly yields the Incompleteness Theorem also gets us to the following speed-up theorem (quick and dirty version):
- For any T which extends PA, there will be sentences φ which are provable in PA but whose shortest PA-proof is vastly longer than their shortest T-proofs.

Speed-up more carefully

- Let's say that a theory T_{1} exhibits ultra speed-up over T_{2} if for any computable function f, there is some corresponding wff φ such that

1. both $T_{1} \vdash \varphi$ and $T_{2} \vdash \varphi$
2. while there is a T_{1}-proof of φ with g.n. p, there is no T_{2}-proof with g.n. less than or equal to $f(p)$.

- In other words, there are indefinitely many wffs for which T_{1} gives 'much shorter' proofs than T_{2}.
- Theorem 3: If T is nice theory, and γ is some sentence such that neither $T \vdash \gamma$ nor $T \vdash \neg \gamma$. Then the theory $T+\gamma$ got by adding γ as a new axiom exhibits ultra speed-up over T.

The moral

- Number theorists have long been familiar with cases where arithmetical theorems provable in e.g. complex analysis seem only to have very long and messy proofs in 'pure' arithmetic. The speed-up theorem shows is that there is an inevitability about this kind of situation.

The moral

- Number theorists have long been familiar with cases where arithmetical theorems provable in e.g. complex analysis seem only to have very long and messy proofs in 'pure' arithmetic. The speed-up theorem shows is that there is an inevitability about this kind of situation.
- The moral: even if PA in principle implies all the 'arithmetically interesting' claims expressible in the language of basic arithmetic, there will never be a shortage of work for mathematicians to make new truths accessible by developing richer theories which extend PA.

Proving ultra speed-up - 1

- Suppose, for reductio, that there is a sentence γ which is undecided by T, and there is also a computer function f such that for every wff φ, if φ has a proof in $T+\gamma$ with g.n. p, then it has a proof in the original T with g.n. number no greater than $f(p)$.

Proving ultra speed-up - 1

- Suppose, for reductio, that there is a sentence γ which is undecided by T, and there is also a computer function f such that for every wff φ, if φ has a proof in $T+\gamma$ with g.n. p, then it has a proof in the original T with g.n. number no greater than $f(p)$.
- For any wff $\varphi,(\gamma \vee \varphi)$ is trivially provable in $T+\gamma$. And there will be a very simple computation, with no open-ended searching, that takes us from the g.n. of φ to the g.n. of the trivial proof of $(\gamma \vee \varphi)$. In other words, the g.n. of the proof will $h(\ulcorner\varphi\urcorner)$, for some computable function h.

The speed-up theorem

Proving ultra speed-up - 1

- Suppose, for reductio, that there is a sentence γ which is undecided by T, and there is also a computer function f such that for every wff φ, if φ has a proof in $T+\gamma$ with g.n. p, then it has a proof in the original T with g.n. number no greater than $f(p)$.
- For any wff $\varphi,(\gamma \vee \varphi)$ is trivially provable in $T+\gamma$. And there will be a very simple computation, with no open-ended searching, that takes us from the g.n. of φ to the g.n. of the trivial proof of $(\gamma \vee \varphi)$. In other words, the g.n. of the proof will $h(\ulcorner\varphi\urcorner)$, for some computable function h.
- So, by our supposition, $(\gamma \vee \varphi)$ must have a proof in T with g.n. no greater than $f(h(\ulcorner\varphi\urcorner))$.

Proving ultra speed-up - 2

- Next consider the theory $T+\neg \gamma$. Trivially again, for any φ, $T+\neg \gamma \vdash \varphi$ iff $T \vdash(\gamma \vee \varphi)$.

Proving ultra speed-up - 2

- Next consider the theory $T+\neg \gamma$. Trivially again, for any φ, $T+\neg \gamma \vdash \varphi$ iff $T \vdash(\gamma \vee \varphi)$.
- So we have a decision procedure for telling whether an arbitrary φ is a theorem of $T+\neg \gamma$. Just run a 'for' loop examining in turn all the T-proofs with g.n. up to $f(h(\ulcorner\varphi\urcorner))$ and see if a proof of $(\gamma \vee \varphi)$ turns up.

Proving ultra speed-up - 2

- Next consider the theory $T+\neg \gamma$. Trivially again, for any φ, $T+\neg \gamma \vdash \varphi$ iff $T \vdash(\gamma \vee \varphi)$.
- So we have a decision procedure for telling whether an arbitrary φ is a theorem of $T+\neg \gamma$. Just run a 'for' loop examining in turn all the T-proofs with g.n. up to $f(h(\ulcorner\varphi\urcorner))$ and see if a proof of $(\gamma \vee \varphi)$ turns up.
- But $T+\neg \gamma$ is still a nice theory: it is consistent (else we'd have $T \vdash \gamma$, contrary to hypothesis), it is properly axiomatized, and it contains PA since T does. So our earlier theorem applies, and there can't be a computational procedure for testing theoremhood in $T+\neg \gamma$. Contradiction.

