
Technical Report No. 06-18

Proceedings of the
Second International Workshop on
Library-Centric Software Design
(LCSD '06)

JOSHUA BLOCH

JAAKKO JÄRVI (PROGRAM CO-CHAIRS)

ANDREAS PRIESNITZ

SIBYLLE SCHUPP (PROCEEDINGS EDITORS)

Department of Computer Science and Engineering

Division of Computing Science
CHALMERS UNIVERSITY OF TECHNOLOGY/
GÖTEBORG UNIVERSITY
Göteborg, Sweden, 2006

Technical Report in Computer Science and Engineering at
Chalmers University of Technology and Göteborg University

Technical Report No. 06-18
ISSN: 1652-926X

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden

Göteborg, Sweden, October 2006

Proceedings of the Second International Workshop on

Library-Centric Software Design

(LCSD ’06)

An OOPSLA Workshop

October 22, 2006

Portland, Oregon, USA

Joshua Bloch and Jaakko Järvi (Program Co-Chairs)

Andreas Priesnitz and Sibylle Schupp (Proceedings Editors)

Chalmers University of Technology

Computer Science and Engineering Department

Technical Report 06-18

Foreword

These proceedings contain the papers selected for presentation at the workshop Library-Centric Software
Design (LCSD), held on October 22nd, 2006 in Portland, Oregon, USA, as part of the yearly ACM
OOPSLA conference. The current workshop is the second LCSD workshop in the series. The first ever
LCSD workshop in 2005 was a success—we are thus very pleased to see that interest towards the current
workshop was even higher.

Software libraries are central to all major scientific, engineering, and business areas, yet the design,
implementation, and use of libraries are underdeveloped arts. The goal of the Library-Centric Software
Design workshop therefore is to place the various aspects of libraries on a sound technical and scientific
footing. To that end, we welcome both research into fundamental issues and the documentation of best
practices. The idea for a workshop on Library-Centric Software Design was born at the Dagstuhl meeting
Software Libraries: Design and Evaluation in March 2005. Currently LCSD has a steering committee
developing the workshop further, and coordinating the organization of future events. The committee is
currently served by Josh Bloch, Jaakko Järvi, Sibylle Schupp, Dave Musser, Alex Stepanov, and Frank
Tip. We aim to keep LCSD growing.

For the current workshop, we received 20 submissions, nine of which were accepted as technical
papers, and additional four as position papers. The topics of the papers covered a wide area of the
field of software libraries, including library evolution; abstractions for generic manipulation of complex
mathematical structures; static analysis and type systems for software libraries; extensible languages;
and libraries with run-time code generation capabilities. All papers were reviewed for soundness and
relevance by three or more reviewers. The reviews were very thorough, for which we thank the members
of the program committee. In addition to paper presentations, workshop activities included a keynote by
Sean Parent, Adobe Inc. At the time of writing this foreword, we do not yet know the exact attendance
of the workshop; the registrations received suggest close to 50 attendees.

We thank all authors, reviewers, and the organizing committee for their work in bringing about the
LCSD workshop. We are very grateful to Sibylle Schupp, David Musser, and Jeremy Siek for their efforts
in organizing the event, as well as to DongInn Kim and Andrew Lumsdaine for hosting the CyberChair
system to manage the submissions. We also thank Tim Klinger and the OOPSLA workshop organizers
for the help we received.

We hope you enjoy the papers, and that they generate new ideas leading to advances in this exciting
field of research.

Jaakko Järvi
Joshua Bloch
(Program co-chairs)

1

Organization

Workshop Organizers

- Josh Bloch, Google Inc.

- Jaakko Järvi, Texas A&M University

- David Musser, Rensselaer Polytechnic Institute

- Sibylle Schupp, Chalmers University of Technology

- Jeremy Siek, Rice University

Program Committee

- Dave Abrahams, Boost Consulting

- Olav Beckman, Imperial College London

- Hervé Brönnimann, Polytechnic University

- Cristina Gacek, University of Newcastle upon Tyne

- Douglas Gregor, Indiana University

- Paul Kelly, Imperial College London

- Doug Lea, State University of New York at Oswego

- Andrew Lumsdaine, Indiana University

- Erik Meijer, Microsoft Research

- Tim Peierls, Prior Artisans LLC

- Doug Schmidt, Vanderbilt University

- Anthony Simons, University of Sheffield

- Bjarne Stroustrup, Texas A&M University and AT&T Labs

- Todd Veldhuizen, University of Waterloo

2

Contents

Active Libraries 5

An Active Linear Algebra Library Using Delayed Evaluation and Runtime Code Gen-
eration
Francis P. Russell, Michael R. Mellor, Paul H. J. Kelly,
and Olav Beckmann 5

Efficient Run-Time Dispatching in Generic Programming with Minimal Code Bloat
Lubomir Bourdev and Jaakko Järvi 15

Generic Library Extension in a Heterogeneous Environment
Cosmin Oancea and Stephen M. Watt 25

Adding Syntax and Static Analysis to Libraries via Extensible Compilers and Lan-
guage Extensions
Eric Van Wyk, Derek Bodin, and Paul Huntington 35

Type Systems and Static Analysis 45

A Static Analysis for the Strong Exception-Safety Guarantee
Gustav Munkby and Sibylle Schupp 45

Extending Type Systems in a Library
Yuriy Solodkyy, Jaakko Järvi, and Esam Mlaih 55

Anti-Deprecation: Towards Complete Static Checking for API Evolution
S. Alexander Spoon 65

Libraries Manipulating Complex Structures 75

A Generic Lazy Evaluation Scheme for Exact Geometric Computations
Sylvain Pion and Andreas Fabri 75

A Generic Topology Library
René Heinzl, Michael Spevak, and Philipp Schwaha 85

Position Papers 95

A Generic Discretization Library
Michael Spevak, René Heinzl, and Philipp Schwaha 95

The SAGA C++ Reference Implementation
Hartmut Kaiser, Andre Merzky, Stephan Hirmer, and Gabrielle Allen 101

3

A Parameterized Iterator Request Framework for Generic Libraries
Jacob Smith, Jaakko Järvi, and Thomas Ioerger 107

Pound Bang What?
John P. Linderman 113

4

An Active Linear Algebra Library Using Delayed Evaluation
and Runtime Code Generation

[Extended Abstract]

Francis P Russell, Michael R Mellor, Paul H J Kelly and Olav Beckmann

Department of Computing
Imperial College London

180 Queen’s Gate, London SW7 2AZ, UK

ABSTRACT
Active libraries can be defined as libraries which play an ac-
tive part in the compilation (in particular, the optimisation)
of their client code. This paper explores the idea of delay-
ing evaluation of expressions built using library calls, then
generating code at runtime for the particular compositions
that occur. We explore this idea with a dense linear algebra
library for C++. The key optimisations in this context are
loop fusion and array contraction.

Our library automatically fuses loops, identifies unnecessary
intermediate temporaries, and contracts temporary arrays
to scalars. Performance is evaluated using a benchmark
suite of linear solvers from ITL (the Iterative Template Li-
brary), and is compared with MTL (the Matrix Template Li-
brary). Excluding runtime compilation overheads (caching
means they occur only on the first iteration), for larger ma-
trix sizes, performance matches or exceeds MTL – and in
some cases is more than 60% faster.

1. INTRODUCTION
The idea of an “active library” is that, just as the library
extends the language available to the programmer for prob-
lem solving, so the library should also extend the compiler.
The term was coined by Czarnecki et al [5], who observed
that active libraries break the abstractions common in con-
ventional compilers. Active libraries are described in detail
by Veldhuizen and Gannon [8].

This paper presents a prototype linear algebra library which
we have developed in order to explore one interesting ap-
proach to building active libraries. The idea is to use a
combination of delayed evaluation and runtime code gener-
ation to:

Delay library call execution Calls made to the library
are used to build a “recipe” for the delayed computa-
tion. When execution is finally forced by the need for
a result, the recipe will commonly represent a complex
composition of primitive calls.

Generate optimised code at runtime Code is generated
at runtime to perform the operations present in the de-
layed recipe. In order to obtain improved performance
over a conventional library, it is important that the
generated code should on average, execute faster than
a statically generated counterpart in a conventional li-
brary. To achieve this, we apply optimisations that
exploit the structure, semantics and context of each
library call.

This approach has the advantages that:

• There is no need to analyse the client source code.

• The library user is not tied to a particular compiler.

• The interface of the library is not over complicated by
the concerns of achieving high performance.

• We can perform optimisations across both statement
and procedural bounds.

• The code generated for a recipe is isolated from client-
side code - it is not interwoven with non-library code.

This last point is particularly important, as we shall see:
because the structure of the code for a recipe is restricted in
form, we can introduce compilation passes specially targeted
to achieve particular effects.

The disadvantage of this approach is the overhead of run-
time compilation and the infrastructure to delay evaluation.
In order to minimise the first factor, we maintain a cache of
previously generated code along with the recipe used to gen-
erate it. This enables us to reuse previously optimised and
compiled code when the same recipe is encountered again.

5

There are also more subtle disadvantages. In contrast to
a compile-time solution, we are forced to make online de-
cisions about what to evaluate, and when. Living without
static analysis of the client code means we don’t know, for
example, which variables involved in a recipe are actually
live when the recipe is forced. We return to these issues
later in the paper.

Our exploration covers the following ground:

1. We present an implementation of a C++ library for
dense linear algebra which provides functionality suf-
ficient to operate with the majority of methods avail-
able in the Iterative Template Library [6] (ITL), a set
of templated linear iterative solvers for C++.

2. This implementation delays execution, generates code
for delayed recipes at runtime, and then invokes a ven-
dor C compiler at runtime - entirely transparently to
the library user.

3. To avoid repeated compilation of recurring recipes, we
cache compiled code fragments (see Section 4).

4. We implemented two optimisation passes which trans-
form the code prior to compilation: loop fusion, and
array contraction (see Section 5).

5. We introduce a scheme to predict, statistically, which
intermediate variables are likely to be used after recipe
execution; this is used to increase opportunities for
array contraction (see Section 6).

6. We evaluate the effectiveness of the approach using a
suite of iterative linear system solvers, taken from the
Iterative Template Library (see Section 7).

Although the exploration of these techniques has used only
dense linear algebra, we believe these techniques are more
widely applicable. Dense linear algebra provides a simple
domain in which to investigate, understand and demon-
strate these ideas. Other domains we believe may benefit
from these techniques include sparse linear algebra and im-
age processing operations.

The contributions we make with this work are as follows:

• Compared to the widely used Matrix Template Li-
brary [7], we demonstrate performance improvements
of up to 64% across our benchmark suite of dense linear
iterative solvers from the Iterative Template Library.
Performance depends on platform, but on a 3.2GHz
Pentium 4 (with 2MB cache) using the Intel C Com-
piler, average improvement across the suite was 27%,
once cached complied code was available.

• We present a cache architecture that finds applicable
pre-compiled code quickly, and which supports anno-
tations for adaptive re-optimisation.

• Using our experience with this library, we discuss some
of the design issues involved in using the delayed-evaluation,
runtime code generation technique.

We discuss related work in Section 8.

Figure 1: An example DAG. The rectangular node
denotes a handle held by the library client. The
expresssion represents the matrix-vector multiply
function from Level 2 BLAS, y = αAx+ βy.

2. DELAYING EVALUATION
Delayed evaluation provides the mechanism whereby we col-
lect the sequences of operations we wish to optimise. We call
the runtime information we obtain about these operations
runtime context information.

This information may consist of values such as matrix or
vector sizes, or the various relationships between successive
library calls. Knowledge of dynamic values such as matrix
and vector sizes allows us to improve the performance of
the implementation of operations using these objects. For
example, the runtime code generation system (see 3) can
use this information to specialise the generated code. One
specialisation we do is with loop bounds. We incorporate dy-
namically known sizes of vectors and matrices as constants
in the runtime generated code.

Delayed evaluation in the library we developed works as fol-
lows:

• Delayed expressions built using library calls are repre-
sented as Directed Acyclic Graphs (DAGs).

• Nodes in the DAG represent either data values (liter-
als) or operations to be performed on them.

• Arcs in the DAG point to the values required before a
node can be evaluated.

• Handles held by the library client may also hold refer-
ences to nodes in the expression DAG.

• Evaluation of the DAG involves replacing non-literal
nodes with literals.

• When a node no longer has any nodes or handles de-
pending on it, it deletes itself.

6

An example DAG is illustrated in Figure 1. The leaves of
the DAG are literal values. The red node represents a han-
dle held by the library client, and the other nodes represent
delayed expressions. The three multiplication nodes do not
have a handle referencing them. This makes them in ef-
fect, unnamed. When the expression DAG is evaluated, it is
possible to optimise away these values entirely (their values
are not required outside the runtime generated code). For
expression DAGs involving matrix and vector operations,
this enables us to reduce memory usage and improve cache
utilisation.

Delayed evaluation also gives us the ability to optimise across
successive library calls. This Cross Component Optimisa-
tion offers the possibility of greater performance than can
be achieved by using separate hand-coded library functions.

Work by Ashby[1] has shown the effectiveness of cross com-
ponent optimisation when applied to Level 1 Basic Linear
Algebra Subprograms (BLAS) routines implemented in the
language Aldor.

Unfortunately, with each successive level of BLAS, the im-
proved performance available has been accompanied by an
increase in complexity. BLAS level 3 functions typically take
large a number of operands and perform a large number of
more primitive operations simultaneously.

The burden then falls on the the library client programmer
to structure their algorithms to make the most effective use
of the BLAS interface. Code using this interface becomes
more complex both to read and understand, than that using
a simpler interface more oriented to the domain.

Delayed evaluation allows the library we developed to per-
form cross component optimisation at runtime, and also
equip it with a simple interface, such as the one required
by the ITL set of iterative solvers.

3. RUNTIME CODE GENERATION
Runtime code generation is performed using the TaskGraph[3]
system. The TaskGraph library is a C++ library for dy-
namic code generation. A TaskGraph represents a fragment
of code which can be constructed and manipulated at run-
time, compiled, dynamically linked back into the host appli-
cation and executed. TaskGraph enables optimisation with
respect to:

Runtime Parameters This enables code to be specialised
to its parameters and other runtime contextual infor-
mation.

Platform SUIF-1, the Stanford University Intermediate For-
mat is used as an internal representation in TaskGraph,
making a large set of dependence analysis and restruc-
turing passes available for code optimisation.

Characteristics of the TaskGraph approach include:

Simple Language Design TaskGraph is implemented in
C++ enabling it to be compiled with a number of
widely available compilers.

Explicit Specification of Dynamic Code TaskGraph re-
quires the application programmer to construct the
code explicitly as a data structure, as opposed to an-
notation of code or automated analysis.

Simplified C-like Sub-language Dynamic code is spec-
ified with the TaskGraph library via a sub-language
similar to C. This language is implemented though ex-
tensive use of macros and C++ operator overloading.
The language has first-class arrays, which facilitates
dependence analysis.

An example function in C++ for generating a matrix mul-
tiply in the TaskGraph sub-language resembles a C imple-
mentation:

void TG_mm_ijk(unsigned int sz[2], TaskGraph &t)

{

taskgraph(t) {

tParameter(tArrayFromList(float, A, 2, sz));

tParameter(tArrayFromList(float, B, 2, sz));

tParameter(tArrayFromList(float, C, 2, sz));

tVar(int, i); tVar(int, j); tVar(int, k);

tFor(i, 0, sz[0]-1)

tFor(j, 0, sz[1]-1)

tFor(k, 0, sz[0] -1)

C[i][j] += A[i][k] * B[k][j];

}

}

The generated code is specialised to the matrix dimensions
stored in the array sz. The matrix parameters A, B, and C
are supplied when the code is executed.

Code generated by the library we developed is specialised
in the same way. The constant loop bounds and array sizes
make the code more amenable to the optimisations we apply
later. These are described in Section 5.

4. CODE CACHING
As the cost of compiling the runtime generated code is ex-
tremely high (compiler execution time in the order of tenths
of a second) it was important that this overhead be min-
imised.

Related work by Beckmann[4] on the efficient placement of
data in a parallel linear algebra library cached execution
plans in order to improve performance. We adopt a similar
strategy in order to reuse previously compiled code. We
maintain a cache of previously encountered recipes along
with the compiled code required to execute them. As any
caching system would be invoked at every force point within
a program using the library, it was essential that checking
for cache hits would be as computationally inexpensive as
possible.

As previously described, delayed recipes are represented in
the form of directed acyclic graphs. In order to allow the
fast resolution of possible cache hits, all previously cached

7

recipes are associated with a hash value. If recipes already
exist in the cache with the same hash value, a full check is
then be performed to see if the recipes match.

Time and space constraints were of paramount importance
in the development of the caching strategy and certain con-
cessions were made in order that it could be performed
quickly. The primary concession was that both hash cal-
culation and isomorphism checking occur on flattened forms
of the delayed expression DAG ordered using a topological
sort.

This causes two limitations:

• It is impossible to detect the situation where the pres-
ence of commutative operations allow two differently
structured delayed expression DAGs to be used in place
of each other.

• As there can be more than one valid topological sort of
a DAG, it is possible for multiple identically structured
expression DAGs to exist in the code cache.

As we will see later, neither of these limitations significantly
affects the usefulness of the cache, but first we will briefly
describe the hashing and isomorphism algorithms.

Hashing occurs as follows:

• Each DAG node in the sorted list is assigned a value
corresponding to its position in the list.

• A hash value is calculated for each node corresponding
to its type and the other nodes in the DAG it depends
on. References to other nodes are hashed using the
numerical values previously assigned to each node.

• The hash values of all the nodes in the list are com-
bined together in list order using a non-commutative
function.

Isomorphism checking works similarly:

• Nodes in the sorted lists for each graph are assigned a
value corresponding to their location in their list.

• Both lists are checked to be the same size.

• The corresponding nodes from both lists are checked
to be the same type, and any nodes they reference are
checked to see if they have been assigned the same
numerical value.

Isomorphism checking in this manner does not require that a
mapping be found between nodes in the two DAGs involved
(this is already implied by each node’s location in the sorted
list for each graph). It only requires determining whether
the mapping is valid.

If the maximum number of nodes a node can refer to is
bounded (maximum of two for a library with only unary

and binary operators) then both hashing and isomorphism
checking between delayed expression DAGs can be performed
in linear time with respect to the number of nodes in the
DAG.

We previously stated that the limitations imposed by using
a flattened representation of an expression DAG does not
significantly effect the usefulness of the code cache. We ex-
pect the code cache to be at its most useful when the same
sequence of library calls are repeatedly encountered (as in
a loop). In this case, the generated DAGs will have identi-
cal structures, and the ability to detect non-identical DAGs
that compute the same operation provides no benefit.

The second limitation, the need for identical DAGs matched
by the caching mechanism to also have the same topological
sort is more important. To ensure this, we store the depen-
dency information held at each DAG node using lists rather
than sets. By using lists, we can guarantee that two DAGs
constructed in an identical order, will also be traversed in
the same order. Thus, when we come to perform our topo-
logical sort, the nodes from both DAGs will be sorted in the
same order.

The code caching mechanism discussed, whilst it cannot
recognise all opportunities for reuse, is well suited for de-
tecting repeatedly generated recipes from client code. For
the ITL set of iterative solvers, compilation time becomes
a constant overhead, regardless of the number of iterations
executed.

5. LOOP FUSION AND ARRAY CONTRAC-
TION

We implemented two optimisations using the TaskGraph
back-end, SUIF. A brief description of these transformations
follow.

Loop fusion[2] can lead to an improvement in performance
when the fused loops use the same data. As the data is only
loaded into the cache once, the fused loops take less time to
execute than the sequential loops. Alternatively, if the fused
loops use different data, it can lead to poorer performance,
as the data used by the fused loop displace each each other
in the cache.

A brief example involving two vector additions. Before loop
fusion:

for (int i=0; i<100; ++i)

a[i] = b[i] + c[i];

for(int i=0; i<100; ++i)

e[i] = a[i] + d[i];

After loop fusion:

for (int i=0; i<100; ++i) {

a[i] = b[i] + c[i];

e[i] = a[i] + d[i];

}

8

In this example, after fusion, the value stored in vector a
can be reused for the calculation of e.

The loop fusion pass implemented in our library requires
that the loop bounds be constant. We can afford this limi-
tation because our runtime generated code has already been
specialised with loop bound information. Our loop fuser
does not possess a model of cache locality to determine
which loop fusions are likely to lead to improved perfor-
mance. Despite this, visual inspection of the code gener-
ated during execution of the iterative solvers indicates that
the fused loops commonly use the same data. This is most
likely due to the structure of the dependencies involved in
the operations required for the iterative solvers.

Array contraction[2] is one of a number of memory access
transformations designed to optimise the memory access of
a program. It allows the dimensionality of arrays to be re-
duced, decreasing the memory taken up by compiler gener-
ated temporaries, and the number of cache lines referenced.
It is often facilitated by loop fusion.

Another example. Before array contraction:

for (int i=0; i<100; ++i) {

a[i] = b[i] + c[i];

e[i] = a[i] + d[i];

}

After array contraction:

for (int i=0; i<100; ++i) {

a = b[i] + c[i];

e[i] = a + d[i];

}

Here, the array a can be reduced to a scalar value as long as
it is not required by any code following the two fused loops.

We use this to technique to optimise away temporary ma-
trices or vectors in the runtime generated code. This is
important because the DAG representation of the delayed
operations does not hold information on what memory can
be reused. However, we can determine whether or not each
node in the DAG is referenced by the client code, and if it
is not, it can be allocated locally to the runtime generated
code and possibly be optimised away. For details of other
memory access transformations, consult Bacon et al.[2].

6. LIVENESS ANALYSIS
When analysing the runtime generated code produced by the
iterative solvers, it became apparent that a large number of
vectors were being passed in as parameters. We realised
that by designing a system to recover runtime information,
we had lost the ability to use static information.

Consider the following code that takes two vectors, finds
their cross product, scales the result and prints it:

void printScaledCrossProduct(Vector<float> a,

Vector<float> b,

Scalar<float> scale)

{

Vector<float> product = cross(a, b);

Vector<float> scaled = mul(product, scale);

print(scaled);

}

This operation can be represented with the following DAG:

The value pointed to by the handle product is never re-
quired by the library client. From the client’s perspective
the value is dead, but the library must assume that any
value which has a handle may be required later on. Values
required by the library client cannot be allocated locally to
the runtime generated code, and therefore cannot be opti-
mised away through techniques such as array contraction.
Runtime liveness analysis permits the library to make es-
timates about the liveness of nodes in repeatedly executed
DAGs, and allow them to be allocated locally to runtime
generated code if it is believed they are dead, regardless of
whether they have a handle.

Having already developed a system for recognising repeat-
edly executed delayed expression DAGs, we developed a sim-
ilar mechanism for associating collected liveness information
with expression DAGs.

Nodes in each generated expression DAG are instrumented
and information collected on whether the values are live or
dead. The next time the same DAG is encountered, the
previously collected information is used to annotate each
node in the DAG with an estimate with regards to whether it
is live or dead. As the same DAG is repeatedly encountered,
statistical information about the liveness of each node is
built up.

If an expression DAG node is estimated to be dead, then
it can be allocated locally to the runtime generated code
and possibly optimised away. This could lead to a possible
performance improvement. Alternatively, it is also possible
that the expression DAG node is not dead, and its value is
required by the library client at a later time. As the value
was not saved the first time it was computed, the value

9

Option Description
-O3 Enables the most aggressive level of opti-

misation including loop and memory access
transformations, and prefetching.

-restrict Enables the use of the restrict keyword for
qualifying pointers. The compiler will as-
sume that data pointed to by a restrict qual-
ified pointer will only be accessed though
that pointer in that scope. As the restrict
keyword is not used anywhere in the runtime
generated code, this should have no effect.

-ansi-alias Allows icc to perform more aggressive opti-
misations if the program adheres to the ISO
C aliasing rules.

-xW Generate code specialised for Intel Pentium
4 and compatible processors.

Table 1: The options supplied to Intel C/C++ com-
pilers and their meanings.

must be computed again. This could result in a performance
decrease of the client application if such a situation occurs
repeatedly.

7. PERFORMANCE EVALUATION
We evaluated the performance of the library we developed
using solvers from the ITL set of templated iterative solvers
running on dense matrices of different sizes. The ITL pro-
vides templated classes and methods for the iterative so-
lution of linear systems, but not an implementation of the
linear algebra operations themselves. ITL is capable of util-
ising a number of numerical libraries, requiring only the use
of an appropriate header file to map the templated types and
methods ITL uses to those specific to a particular library.
ITL was modified to use our library through the addition of
a header file and other minor modifications.

We compare the performance of our library against the Ma-
trix Template Library[7]. ITL already provides support for
using MTL as its numerical library. We used version 9.0 of
the Intel C compiler for runtime code generation, and ver-
sion 9.0 of the Intel C++ compiler for compiling the MTL
benchmarks. The options passed to the Intel C and C++
compilers are described in Table 1.

We will discuss the observed effects of the different optimi-
sation methods we implemented, and we conclude with a
comparison against the same benchmarks using MTL.

We evaluated the performance of the solvers on two archi-
tectures, both running Mandrake Linux version 10.2:

1. Pentium IV processor running at 3.0GHz with Hyper-
threading, 512 KB L2 cache and 1 GB RAM.

2. Pentium IV processor running at 3.2GHz with Hyper-
threading, 2048 KB L2 cache and 1 GB RAM.

The first optimisation implemented was loop fusion. The
majority of benchmarks did not show any noticeable im-
provement with this optimisation. Visual inspection of the

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n

d
s)

Matrix Size

bicg without fusion
bicg with fusion

Figure 2: 256 iterations of the BiConjugate Gra-
dient (BiCG) solver running on architecture 1 with
and without loop fusion, including compilation over-
head.

runtime generated code showed multiple loop fusions had
occurred between vector-vector operations but not between
matrix-vector operations. As we were working with dense
matrices, we believe the lack of improvement was due to the
fact that the vector-vector operations were O(n) and the
matrix-vector multiplies present in each solver were O(n2).

The exception to this occurred with the BiConjugate Gra-
dient solver. In this case the loop fuser was able to fuse a
matrix-vector multiply and a transpose matrix-vector mul-
tiply with the result that the matrix involved was only iter-
ated over once for both operations. A graph of the speedup
obtained across matrix sizes is shown in Figure 2.

The second optimisation implemented was array contrac-
tion. We only evaluated this in the presence of loop fusion
as the former is often facilitated by the latter. The array
contraction pass did not show any noticeable improvement
on any of the benchmarks applications. On visual inspection
of the runtime generated code we found that the array con-
tractions had occurred on vectors, and these only affected
the vector-vector operations. This is not surprising seeing
that only one matrix was used during the execution of the
linear solvers and as it was required for all iterations, could
not be optimised away in any way. We believe that were we
to extend the library to handle sparse matrices, we would
be able to see greater benefits from both the loop fusion and
array contraction passes.

The last technique we implemented was runtime liveness
analysis. This was used to try to recognise which expression
DAG nodes were dead to allow them to be allocated locally
to runtime generated code.

The runtime liveness analysis mechanism was able to find
vectors in three of the five iterative solvers that could be
allocated locally to the runtime generated code. The three
solvers had an average of two vectors that could be opti-
mised away, located in repeatedly executed code. Unfortu-
nately, usage of the liveness analysis mechanism resulted in
an overall decrease in performance. We discovered this to be
because the liveness mechanism resulted in extra constant

10

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n

d
s)

Matrix Size

tfqmr with fusion, contraction
tfqmr w. fusion, contraction, liveness

Figure 3: 256 iterations of the Transpose Free Quasi-
Minimal Residual (TFQMR) solver running on ar-
chitecture 1 with and without the liveness analysis
enabled, including compilation overhead.

overhead due to more compiler invocations at the start of
the iterative solver. This was due to the statistical nature
of the liveness prediction, and the fact that as it changed its
estimates with regard to whether a value was live or dead, a
greater number of runtime generated code fragments had to
be produced. Figure 3 shows the constant overhead of the
runtime liveness mechanism running on the Transpose Free
Quasi-Minimal Residual solver.

We also compared the library we developed against the Ma-
trix Template Library, running the same benchmarks. We
enabled the loop fusion and array contraction optimisations,
but did not enable the runtime liveness analysis mechanism
because of the overhead already discussed. We found the
performance increase we obtained to be architecture spe-
cific.

On architecture 1 (excluding compilation overhead) we only
obtained an average of 2% speedup across the solver and
matrix sizes we tested. The best speedup we obtained on
this architecture (excluding compilation) was on the Bi-
Conjugate Gradient solver, which had a 38% speedup on a
5005x5005 matrix. It should be noted that the BiConjugate
Gradient solver was the one for which loop fusion provided
a significant benefit.

On architecture 2 (excluding compilation overhead) we ob-
tained an average 27% speedup across all iterative solvers
and matrix sizes. The best speedup we obtained was again
on the BiConjugate Gradient solver, which obtained a 64%
speedup on a 5005x5005 matrix. A comparison of the Bi-
Conjugate Gradient solver against MTL running on archi-
tecture 2 is shown in Figure 4.

In the figures just quoted, we excluded the runtime com-
pilation overhead, leaving just the performance increase in
the numerical operations. As the iterative solvers use code
caching, the runtime compilation overhead is independent of
the number of iterations executed. Depending on the num-
ber of iterations executed, the performance results including
compilation overhead would vary. Furthermore, mechanisms
such as a persistent code cache could allow the compilation

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n

d
s)

Matrix Size

bicg w. fusion, contractn. inc. compile
bicg w. fusion, contractn. exc. compile

bicg with MTL

Figure 4: 256 iterations of the BiConjugate Gradi-
ent (BiCG) solver using our library and MTL, run-
ning on architecture 2. Execution time for our li-
brary is shown with and without runtime compila-
tion overhead.

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n

d
s)

Matrix Size

tfqmr w. fusion, contractn. inc. compile
tfqmr w. fusion, contractn. exc. compile

tfqmr with MTL

Figure 5: 256 iterations of the Transpose Free Quasi-
Minimal Residual (TFQMR) solver using our library
and MTL, running on architecture 1. Execution
time for our library is shown with and without run-
time compilation overhead.

overheads to be significantly reduced. These overheads will
be discussed in Section 9.

Figure 5 shows the execution time of Transpose Free Quasi-
Minimal Residual solver running on architecture 1 with MTL
and the library we developed. Figure 6 shows the execution
time of the same benchmark running on architecture 2. For
our library, we show the execution time including and ex-
cluding the runtime compilation overhead.

Our results appear to show that cache size is extremely im-
portant with respect to the performance we can obtain from
our runtime code generation technique. On our first archi-
tecture, we were unable to achieve any significant perfor-
mance increase over MTL but on architecture 2, which had
a 4x larger L2 cache, the increases were much greater. We
believe this is due to the Intel C Compiler being better able
to utilise the larger cache sizes, although we have not yet
managed to determine what characteristics of the runtime

11

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

T
im

e(
se

co
n

d
s)

Matrix Size

tfqmr w. fusion, contractn. inc. compile
tfqmr w. fusion, contractn. exc. compile

tfqmr with MTL

Figure 6: 256 iterations of the Transpose Free Quasi-
Minimal Residual (TFQMR) solver using our library
and MTL, running on architecture 2. Execution
time for our library is shown with and without run-
time compilation overhead.

generated code allowed it to be optimised more effectively
than the same benchmark using MTL.

8. RELATED WORK
Delayed evaluation has been used previously to assist in
improving the performance of numerical operations. Work
done by Beckmann[4] has used delayed evaluation to opti-
mise data placement in a numerical library for a distributed
memory multicomputer. The developed library also has a
mechanism for recognising repeated computation and reusing
previously generated execution plans. Our library works
similarly, except both our optimisations and searches for
reusable execution plans target the runtime generated code.

Other work by Beckmann uses the TaskGraph library[3] to
demonstrate the effectiveness of specialisation and runtime
code generation as a mechanism for improving the perfor-
mance of various applications. The TaskGraph library is
used to generate specialised code for the application of a
convolution filter to an image. As the size and the values of
the convolution matrix are known at the runtime code gen-
eration stage, the two inner loops of the convolution can be
unrolled and specialised with the values of the matrix ele-
ments. Another example shows how a runtime search can be
performed to find an optimal tile size for a matrix multiply.
TaskGraph is also used as the code generation mechanism
for our library.

Work by Ashby[1] investigates the effectiveness of cross com-
ponent optimisation when applied to Level 1 BLAS routines.
BLAS routines written in Aldor are compiled to an interme-
diate representation called FOAM. During the linking stage,
the compiler is able to perform extensive levels of cross com-
ponent optimisation. It is these form of optimisations that
we attempt to exploit to allow us to develop a technique for
generating high performance code without sacrificing inter-
face simplicity.

9. CONCLUSIONS AND FURTHER WORK

One conclusion that can be made from this work is the im-
portance of cross component optimisation. Numerical li-
braries such as BLAS have had to adopt a complex interface
to obtain the performance they provide. Libraries such as
MTL have used unconventional techniques to work around
the limitations of conventional libraries to provide both sim-
plicity and performance. The library we developed also uses
unconventional techniques, namely delayed evaluation and
runtime code generation, to work around these limitations.
The effectiveness of this approach provides more compelling
evidence towards the benefits of Active Libraries[5].

We have shown how a framework based on delayed evalua-
tion and runtime code generation can achieve high perfor-
mance on certain sets of applications. We have also shown
that this framework permits optimisations such as loop fu-
sion and array contraction to be performed on numerical
code where it would not be possible otherwise, due to ei-
ther compiler limitations (we do not believe GCC or ICC
will perform array contraction or loop fusion) or the diffi-
culty of performing these optimisations across interprocedu-
ral bounds.

Whilst we have concentrated on the benefits such a frame-
work can provide, we have paid less attention to the situa-
tions in which it can perform poorly. The overhead of the
delayed evaluation framework, expression DAG caching and
matching and runtime compiler invocation will be particu-
larly significant for programs which have a large number of
force points, and/or use small sized matrices and vectors.
A number of these overheads can be minimised. Two tech-
niques to reduce these overheads are:

Persistent code caching This would allow cached code
fragments to persist across multiple executions of the
same program and avoid compilation overheads on fu-
ture runs.

Evaluation using BLAS or static code Evaluation of the
delayed expression DAG using BLAS or statically com-
piled code would allow the overhead of runtime code
generation to be avoided when it is believed that run-
time code generation would provide no benefit.

Investigation of other applications using numerical linear al-
gebra would be required before the effectiveness of these
techniques can be evaluated.

Other future work for this research includes:

Sparse Matrices Linear iterative solvers using sparse ma-
trices have many more applications than those using
dense ones, and would allow the benefits of loop fusion
and array contraction to be further investigated.

Client Level Algorithms Currently, all delayed operations
correspond to nodes of specific types in the delayed ex-
pression DAG. Any library client needing to perform
an operation not present in the library would either
need to extend it (difficult), or implement it using el-
ement level access to the matrices or vectors involved
(poor performance). The ability of the client to specify

12

algorithms to be delayed would significantly improve
the usefulness of this approach.

Improved Optimisations We implemented limited meth-
ods of loop fusion and array contraction. Other optimi-
sations could improve the code’s performance further,
and/or reduce the effect the quality of the vendor com-
piler used to compile the runtime generated code has
on the performance of the resulting runtime generated
object code.

10. REFERENCES
[1] T. J. Ashby, A. D. Kennedy, and M. F. P. O’Boyle.

Cross component optimisation in a high level
category-based language. In Euro-Par, pages 654–661,
2004.

[2] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler
transformations for high-performance computing. ACM
Computing Surveys, 26(4):345–420, 1994.

[3] O. Beckmann, A. Houghton, M. Mellor, and P. H. J.
Kelly. Runtime code generation in C++ as a foundation
for domain-specific optimisation. In Domain-Specific
Program Generation, pages 291–306, 2003.

[4] O. Beckmann and P. H. J. Kelly. Efficient
interprocedural data placement optimisation in a
parallel library. In LCR98: Languages, Compilers and
Run-time Systems for Scalable Computers, number 1511
in LNCS, pages 123–138. Springer-Verlag, May 1998.

[5] K. Czarnecki, U. Eisenecker, R. Glück, D. Vandevoorde,
and T. Veldhuizen. Generative programming and active
libraries. In Generic Programming. Proceedings,
number 1766 in LNCS, pages 25–39, 2000.

[6] L.-Q. Lee, A. Lumsdaine, and J. Siek. Iterative
Template Library. http://www.osl.iu.edu/download/
research/itl/slides.ps.

[7] J. G. Siek and A. Lumsdaine. The matrix template
library: A generic programming approach to high
performance numerical linear algebra. In ISCOPE,
pages 59–70, 1998.

[8] T. L. Veldhuizen and D. Gannon. Active libraries:
Rethinking the roles of compilers and libraries. In
Proceedings of the SIAM Workshop on Object Oriented
Methods for Inter-operable Scientific and Engineering
Computing (OO’98). SIAM Press, 1998.

13

14

Efficient Run-Time Dispatching in Generic Programming with
Minimal Code Bloat

Lubomir Bourdev
Adobe Systems Inc.

lbourdev@adobe.com

Jaakko Järvi
Texas A&M University

jarvi@cs.tamu.edu

Abstract
Generic programming using C++ results in code that is efficient but
inflexible. The inflexibility arises, because the exact types of inputs
to generic functions must be known at compile time. We show how
to achieve run-time polymorphism without compromising perfor-
mance by instantiating the generic algorithm with a comprehensive
set of possible parameter types, and choosing the appropriate in-
stantiation at run time. The major drawback of this approach is ex-
cessive template bloat, generating a large number of instantiations,
many of which are identical at the assembly level. We show prac-
tical examples in which this approach quickly reaches the limits of
the compiler. Consequently, we combine the method of run-time
polymorphism for generic programming with a strategy for reduc-
ing the amount of necessary template instantiations. We report on
using our approach in GIL, Adobe’s open source Generic Image
Library. We observed notable reduction, up to 70% at times, in ex-
ecutable sizes of our test programs. Even with compilers that per-
form aggressive template hoisting at the compiler level, we achieve
notable code size reduction, due to significantly smaller dispatching
code. The framework draws from both the generic programming
and generative programming paradigm, using static metaprogram-
ming to fine tune the compilation of a generic library. Our test bed,
GIL, is deployed in a real world industrial setting, where code size
is often an important factor.

Categories and Subject Descriptors D.3.3 [Programming Tech-
niques]: Language Constructs and Features—Abstract data types;
D.3.3 [Programming Techniques]: Language Constructs and Feat-
ures—Polymorphism; D.2.13 [Software Engineering]: Reusable
Software—Reusable libraries

General Terms Design, Performance, Languages

Keywords generic programming, C++ templates, template bloat,
template metaprogramming

1. Introduction
Generic programming, pioneered by Musser and Stepanov [19],
and introduced to C++ with the STL [24], aims at expressing al-
gorithms at an abstract level, such that the algorithms apply to
as broad class of data types as possible. A key idea of generic

Copyright is held by the author/owner(s).
LCSD ’06 October 22nd, Portland, Oregon.
ACM [to be supplied].

programming is that this abstraction should incur no performance
degradation: once a generic algorithm is specialized for some con-
crete data types, its performance should not differ from a similar
algorithm written directly for those data types. This principle is of-
ten referred to as zero abstraction penalty. The paradigm of generic
programming has been successfully applied in C++, evidenced, e.g.,
by the STL, the Boost Graph Library (BGL) [21], and many other
generic libraries [3,5,11,20,22,23]. One factor contributing to this
success is the compilation model of templates, where specialized
code is generated for every different instance of a template. We re-
fer to this compilation model as the instantiation model.

We note that the instantiation model is not the only mechanism
for compiling generic definitions. For example, in Java [13] and
Eiffel [10] a generic definition is compiled to a single piece of byte
or native code, used by all instantiations of the generic definition.
C# [9, 18] and the ECMA .NET framework delay the instantiation
of generics until run time. Such alternative compilation models
address the code bloat issue, but may be less efficient or may
require run-time compilation. They are not discussed in this paper.

With the instantiation model, zero abstraction penalty is an
attainable goal: later phases of the compilation process make no
distinction between code generated from a template instantiation
and non-template code written directly by the programmer. Thus,
function calls can be resolved statically, which enables inlining
and other optimizations for generic code. The instantiation model,
however, has other less desirable characteristics, which we focus
on in this paper.

In many applications the exact types of objects to be passed
to generic algorithms are not known at compile time. In C++ all
template instantiations and code generation that they trigger occur
at compile time—dynamic dispatching to templated functions is
not (directly) supported. For efficiency, however, it may be crucial
to use an algorithm instantiated for particular concrete types.

In this paper, we describe how to instantiate a generic algorithm
with all possible types it may be called with, and generate code that
dispatches at run time to the right instantiation. With this approach,
we can combine the flexibility of dynamic dispatching and perfor-
mance typical for the instantiation model: the dispatching occurs
only once per call to a generic algorithm, and has thus a negligi-
ble cost, whereas the individual instantiations of the algorithms are
compiled and fully optimized knowing their concrete input types.
This solution, however, leads easily to excessive number of tem-
plate instantiations, a problem known as code bloat or template
bloat. In the instantiation model, the combined size of the instan-
tiations grows with the number of instantiations: there is typically
no code sharing between instantiations of the same templates with
different types, regardless of how similar the generated code is.1

1 At least one compiler, Visual Studio 8, has advanced heuristics that can
optimize for code bloat by reusing the body of assembly-level identical

15

This paper reports on experiences of using the generic program-
ming paradigm in the development of the Generic Image Library
(GIL) [5] in the Adobe Source Libraries [1]. GIL supports several
image formats, each represented internally with a distinct type. The
static type of an image manipulated by an application using GIL is
often not known; the type assigned to an image may, e.g., depend on
the format it was stored on the disk. Thus, the case described above
manifests in GIL: an application using GIL must instantiate the rel-
evant generic functions for all possible image types and arrange that
the correct instantiations are selected based on the arguments’ dy-
namic types when calling these functions. Following this strategy
blindly may lead to unmanageable code bloat. In particular, the set
of instantiations increases exponentially with the number of image
type parameters that can be varied independently in an algorithm.
Our experience shows that the number of template instantiations is
an important design criterion in developing generic libraries.

We describe the techniques and the design we use in GIL to
ensure that specialized code for all performance critical program
parts is generated, but still keep the number of template instantia-
tions low. Our solution is based on the realization that even though
a generic function is instantiated with different type arguments, the
generated code is in some cases identical. We describe mechanisms
that allow the different instantiations to be replaced with a single
common instantiation. The basic idea is to decompose a complex
type into a set of orthogonal parameter dimensions (with image
types, these include color space, channel depth, and constness) and
identify which parameters are important for a given generic algo-
rithm. Dimensions irrelevant for a given operation can be cast to a
single ”base” parameter value. Note that while this technique is pre-
sented as a solution to dealing with code bloat originating from the
“dynamic dispatching” we use in GIL, the technique can be used
in generic libraries without a dynamic dispatching mechanism as
well.

In general, a developer of a software library and the technolo-
gies supporting library development are faced with many, possibly
competing, challenges, originating from the vastly different context
the libraries can be used. Considering GIL, for example, an applica-
tion such as Adobe Photoshop requires a library flexible enough to
handle the variation of image representations at run time, but also
places strict constraints on performance. Small memory footprint,
however, becomes essential when using GIL as part of a software
running on a small device, such as a cellular phone or a PDA. Ba-
sic software engineering principles ask for easy extensibility, etc.
The design and techniques presented in this paper help in building
generic libraries that can combine efficiency, flexibility, extensibil-
ity, and compactness.

C++’s template system provides a programmable sub-language
for encoding compile-time computations, the uses of which are
known as template metaprogramming (see e.g. [25], [8, §.10]). This
form of generative programming proved to be crucial in our solu-
tion: the process of pruning unnecessary instantiations is orches-
trated with template metaprograms. In particular, for our metapro-
gramming needs, we use the Boost Metaprogramming Library
(MPL) [2, 14] extensively. In the presentation, we assume some
familiarity with the basic principles of template metaprogramming
in C++.

The structure of the paper is as follows. Section 2 describes
typical approaches to fighting code bloat. Section 3 gives a brief
introduction to GIL, and the code bloat problems therein. Section 4
explains the mechanism we use to tackle code bloat, and Section 5
describes how to apply the mechanism with dynamic dispatching

functions. In the results section we demonstrate that our method can result
in noticeable code size reduction even in the presence of such heuristics.

to generic algorithms. We report experimental results in Section 6,
and conclude in Section 7.

2. Background
One common strategy to reduce code bloat associated with the
instantiation model is template hoisting (see e.g. [6]). In this ap-
proach, a class template is split into a non-generic base class and a
generic derived class. Every member function that does not depend
on any of the template parameters is moved, hoisted, into the base
class; also non-member functions can be defined to operate directly
on references or pointers to objects of the base-class type. As a re-
sult, the amount of code that must be generated for each different
instantiation of the derived class decreases. For example, red-black
trees are used in the implementation of associative containers map,
multimap, set, and multiset in the C++ Standard Library [15]. Be-
cause the tree balancing code does not need to depend on the types
of the elements contained in these containers, a high-quality im-
plementation is expected to hoist this functionality to non-generic
functions. The GNU Standard C++ Library v3 does exactly this:
the tree balancing functions operate on pointers to a non-generic
base class of the tree’s node type.

In the case of associative containers, the tree node type is split
into a generic and non-generic part. It is in principle possible to split
a template class into several layers of base classes, such that each
layer reduces the number of template parameters. Each layer then
potentially has less type variability than its subclasses, and thus two
different instantiations of the most derived class may coalesce to a
common instantiation of a base class. Such designs seem to be rare.

Template hoisting within a class hierarchy is a useful technique,
but it allows only a single way of splitting a data type into sub-parts.
Different generic algorithms are generally concerned with different
aspects of a data-type. Splitting a data type in a certain way may
suit one algorithm, but will be of no help for reducing instantiations
of other algorithms. In the framework discussed in this paper, the
library developer, possibly also the client of a library, can define a
partitioning of data-types, where a particular algorithm needs to be
instantiated only with one representative of each equivalence class
in the partition.

We define the partition such that differences between types
that do not affect the operation of an algorithm are ignored. One
common example is pointers - for some algorithms the pointed type
is important, whereas for others it is ok to cast to void∗. A second
example is differences due to constness (consider STL’s iterator
and const iterator concept). The generated code for invoking a
non-modifying algorithm (one which accepts immutable iterators)
with mutable iterators will be identical to the code generated for
an invocation with immutable iterator. Some algorithms need to
operate bitwise on their data, whereas others depend on the type of
data. For example, assignment between a pair of pixels is the same
regardless of whether they are CMYK or RGBA pixels, whereas the
type of pixel matters to an algorithm that sets the color to white, for
example.

3. Generic Image Library
The Generic Image Library (GIL) is Adobe’s open source image
processing library [5]. GIL addresses a fundamental problem in
image processing projects — operations applied to images (such
as copying, comparing, or applying a convolution) are logically the
same for all image types, but in practice image representations in
memory can vary significantly, which often requires providing mul-
tiple variations of the same algorithm. GIL is used as the framework
for several new features planned for inclusion in the next version of
Adobe Photoshop. GIL is also being adopted in several other imag-
ing projects inside Adobe. Our experience with these efforts show

16

that GIL helps to reduce the size of the core image manipulation
source code significantly, as much as 80% in a particular case.

Images are 2D (or more generally, n-dimensional) arrays of
pixels. Each pixel encodes the color at the particular point in the
image. The color is typically represented as the values of a set of
color channels, whose interpretation is defined by a color space.
For example, the color red can be represented as 100% red, 0%
green, and 0% blue using the RGB color space. The same color
in the CMYK color space can be approximated with 0% cyan,
96% magenta, 90% yellow, and 0% black. Typically all pixels in
an image are represented with the same color space.

GIL must support significant variation within image represen-
tations. Besides color space, images may vary in the ordering of
the channels in memory (RGB vs. BGR), and in the number of bits
(depth) of each color channel and its representation (8 bit vs. 32
bit, unsigned char vs. float). Image data may be provided in inter-
leaved form (RGBRGBRGB...) or in planar form where each color
plane is separate in memory (RRR..., GGG... BBB...); some algo-
rithms are more efficient in planar form whereas others perform
better in interleaved form. In some image representations each row
(or the color planes) may be aligned, in which case a gap of un-
used bytes may be present at the end of each row. There are rep-
resentations where pixels are not consecutive in memory, such as a
sub-sampled view of another image that only considers every other
pixel. The image may represent a rectangular sub-image in another
image or an upside-down view of another image, for example. The
pixels of the image may require some arbitrary transformation (for
example an 8-bit RGB view of 16-bit CMYK data). The image data
may not be at all in memory (a virtual image, or an image inside
a JPEG file). The image may be synthetic, defined by an arbitrary
function (the Mandelbrot set), and so forth.

Note that GIL makes a distinction between images and image
views. Images are containers that own their pixels, views do not.
Images can return their associated views and GIL algorithms op-
erate on views. For the purpose of this paper, these differences are
not significant, and we use the terms image and image views (or
just views) interchangeably.

The exact image representation is irrelevant to many image pro-
cessing algorithms. To compare two images we need to loop over
the pixels and compare them pairwise. To copy one image into an-
other we need to copy every pixel pairwise. To compute the his-
togram of an image, we need to accumulate the histogram data over
all pixels. To exploit these commonalities, GIL follows the generic
programming approach, exemplified by the STL, and defines ab-
stract representations of images as concepts. In the terminology of
generic programming, a concept is the formalization of an abstrac-
tion as a set of requirements on a type (or types) [4, 16]. A type
that implements the requirements of a concept is said to model the
concept. Algorithms written in terms of image concepts work for
images in any representation that model the necessary concepts. By
this means, GIL avoids multiple definitions for the same algorithm
that merely accommodate for inessential variation in the image rep-
resentations.

GIL supports a multitude of image representations, for each of
which a distinct typedef is provided. Examples of these types are:

• rgb8 view t: 8-bit mutable interleaved RGB image
• bgr16c view t: 16-bit immutable interleaved BGR image
• cmyk32 planar view t: 32-bit mutable planar CMYK image
• lab8c step planar view t: 8-bit immutable LAB planar image

in which the pixels are not consecutive in memory

The actual types associated with these typedefs are somewhat in-
volved and not presented here.

GIL represents color spaces with distinct types. The naming of
these types is as expected: rgb t stands for the RGB color space,
cmyk t for the CMYK color space, and so forth. Channels can
be represented in different permutations of the same set of color
values. For each set of color values, GIL identifies a single color
space as the primary color space — its permutations are derived
color spaces. For example, rgb t is a primary color space and bgr t
is its derived color space.

GIL defines two images to be compatible if they have the same
set and type of channels. That also implies their color spaces must
have the same primary color space. Compatible images may vary
any other way - planar vs. interleaved organization, mutability, etc.
For example, an 8-bit RGB planar image is compatible with an 8-bit
BGR interleaved image. Compatible images may be copied from
one another and compared for equality.

3.1 GIL Algorithms
We demonstrate the operation of GIL with a simple algorithm,
copy pixels(), that copies one image view to another. Here is one
way to implement it:2

template <typename View1, typename View2>
void copy pixels(const View1& src, const View2& dst) {

std::copy(src.begin(), src.end(), dst.begin());
}

A requirement of copy pixels is that the two image view types be
compatible and have the same dimensions, and that the destination
be mutable. An attempt to instantiate copy pixels with incompati-
ble images results in a compile-time error.

Each GIL image type supports the begin() and end() mem-
ber functions as defined in the STL’s Container concept. Thus the
body of the algorithm just invokes the copy() algorithm from the
C++ standard library. If we expand out the std::copy() function,
copy pixels becomes:

template <typename View1, typename View2>
void copy pixels(const View1& src, const View2& dst) {

typedef typename View1::iterator src it = src.begin();
typedef typename View2::iterator dst it = dst.begin();
while (src it != dst.end()) {
∗dst it++ = ∗src it++;

}
}

Each image type is required to have an associated iterator type
that implements iteration over the image’s pixels. Furthermore,
each pixel type must support assignment. Note that the source and
target images can be of different (albeit compatible) types, and
thus the assignment may include a (lossless) conversion from one
pixel type to another. These elementary operations are implemented
differently by different image types. A built-in pointer type can
serve as the iterator type of a simple interleaved image3, whereas
in a planar RGB image it may be a bundle of three pointers to
the corresponding color planes. The iterator increment operator
++ for interleaved images may resolve to a pointer increment, for
step images to advancing a pointer by a given number of bytes,
and for a planar RGB iterator to incrementing three pointers. The
dereferencing operator ∗ for simple interleaved images returns a
reference type; for planar RGB images it returns a planar reference
proxy object containing three references to the three channels. For
a complex image type, such as one representing an RGB view
over CMYK data, the dereferencing operator may perform color
conversion.

2 Note that GIL image views don’t own the pixels and don’t propagate their
constness to the pixels, which explains why we take the destination as a
const reference. Mutability is incorporated into the image view type.
3 Assuming the image has no gap at the end of each row

17

Due to the instantiation model, the calls to the implementations
of the elementary image operations in GIL algorithms can be re-
solved statically and usually inlined, resulting in an efficient algo-
rithm specialized for the particular image types used. GIL algo-
rithms are targeted to match the performance of code hand-written
for a particular image type. Any difference in performance from
that of hand-written code is usually due to abstraction penalty, for
example, the compiler failing to inline a forwarding function, or
failing to pass small objects of user-defined types in registers. Mod-
ern compilers exhibit zero abstraction penalty with GIL algorithms
in many common uses of the library.

3.2 Dynamic dispatching in GIL
Sometimes the exact image type with which the algorithm is to be
called is unknown at compile time. For this purpose, GIL imple-
ments the variant template, i.e. a discriminated union type. The
implementation is very similar to that of the Boost Variant Li-
brary [12]. One difference is that the Boost variant template can be
instantiated with an arbitrary number of template arguments, while
GIL variant accepts exactly one argument 4. This argument itself
represents a collection of types and it must be a model of the Ran-
dom Access Sequence concept, defined in MPL. For example, the
vector template in MPL models this concept. A variant object in-
stantiated with an MPL vector holds an object whose type can be
any one of the types contained in the type vector.

Populating a variant with image types, and instantiating another
template in GIL, any image view, with the variant, yields a GIL
image type that can hold any of the image types in the variant.
Note the difference to polymorphism via inheritance and dynamic
dispatching: in polymorphism via virtual member functions, the
set of virtual member functions, and thus the set of algorithms,
is fixed but the set of data types implementing those algorithms
is extensible; with variant types, the set of data types is fixed, but
there is no limit to the number of algorithms that can be defined
for those data types. The following code illustrates the use of the
any image view type:5

typedef variant<mpl::vector<rgb8 view t, bgr16c view t,
cmyk32 planar view t,
lab8 step planar view t> > my views t;

any image view<my views t> v1, v2;
jpeg read view(file name1, v1);
jpeg read view(file name2, v2);

...
copy pixels(v1, v2);

Compiling the call to copy pixels involves examining the run
time types of v1 and v2 and dispatching to the instantiation of
copy pixels generated for those types. Indeed, GIL overloads al-
gorithms for any image view types, which do exactly this. Con-
sequently, all run time dispatching occurs at a higher level, rather
than at the inner loops of the algorithms; any image view contain-
ers are practically as efficient as if the exact image type was known
at compile time. Obviously, the precondition to dispatching to a
specific instantiation is that the instantiation has been generated.
Unless we are careful, this may lead to significant template bloat,
as illustrated in the next section.

3.3 Template bloat originating from GIL’s dynamic
dispatching

To ease the definition of lists of types for the any image view tem-
plate, GIL implements type generators. One of these generators is

4 The Boost Variant Library offers similar functionality with the
make variant over metafunction.
5 The mpl::vector instantiation is a compile-time data structure, a vector
whose elements are types; in this case the four image view types.

cross vector image view types, which generates all image types
that are combinations of given sets of color spaces and channels,
and the interleaved/planar and step/no step policies, as the follow-
ing example demonstrates:

typedef mpl::vector<rgb t,bgr t,lab t,cmyk t>::type ColorSpaceV;
typedef mpl::vector<bits8,bits16,bits32>::type ChannelV;

typedef any image view<cross vector image view types<
ColorSpaceV, ChannelV,
kInterleavedAndPlanar, kNonStepAndStep> > any view t;

any view t v1, v2;

v1 = rgb8 planar view t(..);
v2 = bgr8 view t(..);

copy pixels(v1, v2);

This code defines any image t to be one of 4× 3× 2× 2 = 48
possible image types. It can have any of the four listed color spaces,
any of the three listed channel depths, it can be interleaved or
planar and its pixels can be adjacent or non-adjacent in memory.
The above code generates 48 × 48 = 2304 instantiations. Without
any special handling, the code bloat will be out of control.

In practice, the majority of these combinations are between in-
compatible images, which in the case of run-time instantiated im-
ages results in throwing an exception. Nevertheless, such exhaus-
tive code generation is wasteful since many of the cases generate
essentially identical code. For example, copying two 8-bit inter-
leaved RGB images or two 8-bit interleaved LAB images (with the
same channel types) results in the same assembly code — the inter-
pretation of the channels is irrelevant for the copy operation. The
following section describes how we can use metaprograms to avoid
generating such identical instantiations.

4. Reducing the Number of Instantiations
Our strategy for reducing the number of instantiations is based on
decomposing a complex type into a set of orthogonal parameter di-
mensions (such as color space, channel depth, constness) and iden-
tifying which dimensions are important for a given operation. Di-
mensions irrelevant for a given operation can be cast to a single
”base” parameter value. For example, for the purpose of copying,
all LAB and RGB images could be treated as RGB images. As men-
tioned in Section 2, for each algorithm we define a partition among
the data types, select the equivalence class representatives, and only
generate an instance of the algorithm for these representatives. We
call this process type reduction.

Type reduction is implemented with metafunctions which map a
given data type and a particular algorithm to the class representative
of that data type for the given algorithm. By default, that reduction
is identity:

template <typename Op, typename T>
struct reduce { typedef T type; };

By providing template specializations of the reduce template for
specific types, the library author can define the partition of types
for each algorithm. We return to this point later. Note that the
algorithm is represented with the type Op here; we implement GIL
algorithms internally as function objects instead of free-standing
function templates. One advantage is that we can represent the
algorithm with a template parameter.

We need a generic way of invoking an algorithm which will
apply the reduce metafunction to perform type reduction on its
arguments prior to entering the body of the algorithm. For this
purpose, we define the apply operation function6:

6 Note that reinterpret cast is not portable. To cast between two arbitrary
types GIL uses instead static cast<T∗>(static cast<void∗>(arg)). We
omit this detail for readability.

18

struct invert pixels op {
typedef void result type;

template <typename View>
void operator()(const View& v) const {

const int N = View::num channels;
typename View::iterator it = v.begin();
while (it != v.end()) {

typename View::reference pix=∗it;
for (int i=0; i<N; ++i)

pix[i]=invert channel(pix[i]);
++it;

}
}

};
template <typename View>
inline void invert pixels(const View& v) {

apply operation(v, invert pixels op());
}

Figure 1. The invert pixels algorithm.

template <typename Arg, typename Op>
inline typename Op::result type
apply operation(const Arg& arg, Op op) {

typedef typename reduce<Op,Arg>::type base t;
return op(reinterpret cast<const base t&>(arg));

}

This function provides the glue between our technique and the algo-
rithm. We have overloads for the one and two argument cases, and
overloads for variant types. The apply operation function serves
two purposes — it applies reduction to the arguments and invokes
the associated function. As the example above illustrates, for tem-
plated types the second step amounts to a simple function call. In
Section 5 we will see that for variants this second step also re-
solves the static types of the objects stored in the variants, by going
through a switch statement.

Let us consider an example algorithm, invert pixels. It inverts
each channel of each pixel in an image. Figure 1 shows a possible
implementation (which ignores performance and focuses on sim-
plicity) that can be invoked via apply operation.

With the definitions this far, nothing has changed from the per-
spective of the library’s client. The invert pixels() function merely
forwards its parameter to apply operation(), which again forwards
to invert pixels op(). Both apply operation() and invert pixels()
are inlined, and the end result is the same as if the algorithm im-
plementation was written directly in the body of invert pixels().
With this arrangement, however, we can control instantiations with
defining specializations for the reduce metafunction. For example,
the following statement will cause 8-bit LAB images to be reduced
to 8-bit RGB images when calling invert pixels:

template<>
struct reduce<invert pixels op, lab8 view t> {

typedef rgb8 view t type;
};

This approach extends to algorithms taking more than one argu-
ment — all arguments can be represented jointly as a tuple. The
reduce metafunction for binary algorithms can have specializations
for std::pair of any two image types the algorithm can be called
with — Section 4.1 shows an example. Each possible pair of input
types, however, can be a large space to consider. In particular, us-
ing variant types as arguments to binary algorithms (see Section 5)
generates a large number of such pair types, which can take a toll
on compile times. Fortunately, for many binary algorithms it is pos-
sible to apply unary reduction independently on each of the input

arguments first and only consider pairs of the argument types af-
ter reduction – this is potentially a much smaller set of pairs. We
call such preliminary unary reduction pre-reduction. Here is the
apply operation taking two arguments:

template <typename Arg1 typename Arg2, typename Op>
inline typename Op::result type
apply operation(const Arg1& arg1, const Arg2& arg2, Op op) {

// unary pre−reduction
typedef typename reduce<Op,Arg1>::type base1 t;
typedef typename reduce<Op,Arg2>::type base2 t;

// binary reduction
typedef std::pair<const base1 t∗, const base2 t∗> pair t;
typedef typename reduce<Op,pair t>::type base pair t;

std::pair<const void∗,const void∗> p(&arg1,&arg2);
return op(reinterpret cast<const base pair t&>(p));

}

As a concrete example of a binary algorithm that can be invoked
via apply operation, the copy pixels() function can be defined as
follows:

struct copy pixels op {
typedef void result type;

template <typename View1, typename View2>
void operator()(const std::pair<const View1∗,

const View2∗>& p) const {
typedef typename View1::iterator src it = p.first→ begin();
typedef typename View2::iterator dst it = p.second→ begin();
while (src it != dst.end()) {
∗dst it++ = ∗src it++;

}
}

};

template <typename View1, typename View2> inline void
copy pixels(const View1& src, const View2& dst) {

apply operation(src, dst, copy pixels op());
}

We note that the type reduction mechanism relies on an unsafe cast
operation, which relies on programmers assumptions not checked
by the compiler or the run time system. The library author defining
the reduce metafunction must thus know the implementation de-
tails of the types that are being mapped to the class representative,
as well as the implementation details of the class representative. A
client of the library defining new image types can specialize the
reduce template to specify a partition within those types, without
needing to understand the implementations of the existing image
types in the library.

4.1 Defining reduction functions
In general, the reduce metafunction can be implemented by what-
ever means is most suitable, most straightforwardly by enumerat-
ing all cases separately. Commonly a more concise definition is
possible. Also, we can identify “helper” metafunctions that can
be reused in the type reduction for many algorithms. To demon-
strate, we describe our implementation for the type reduction of
the copy pixels algorithm. Even though we use MPL in GIL exten-
sively, following the definitions requires no knowledge of MPL;
here we use a traditional static metaprogramming style of C++,
where branching is expressed with partial specializations.

The copy pixels algorithm operates on two images — we thus
apply the two phase reduction strategy discussed in Section 4, first
pre-reducing each image independently, followed by the pair-wise
reduction.

To define the type reductions for GIL image types, reduce must
be specialized for them:

19

template <typename Op, typename L>
struct reduce<Op, image view<L> >

: public reduce view basic<Op, image view<L>,
view is basic<image view<L> >::value> {};

template <typename Op, typename L1, typename L2>
struct reduce<Op, std::pair<const image view<L1>∗,

const image view<L2>∗> >
: public reduce views basic<

Op, image view<L1>, image view<L2>,
mpl::and <view is basic<image view<L1> >,

view is basic<image view<L2> > >::value> {};

Note the use the use metafunction forwarding idiom from the
MPL, where one metafunction is defined in terms of another meta-
function by inheriting from it, here reduce is defined in terms of
reduce view basic.

The first of the above specializations will match any GIL
image view type, the second any pair7 of GIL image view types.
These specializations merely forward to reduce view basic and
reduce views basic—two metafunctions specific to reducing GIL’s
image view types. view is basic template defines a compile time
predicate that tests whether a given view type is one of GIL’s built-
in view types, rather than a view type defined by the client of the
library. We can only define the reductions of view types known to
the library, the ones satisfying the prediacte—for all other types
GIL applies identity mappings using the following default defini-
tions for reduce view basic and reduce views basic:

template <typename Op, typename View, bool IsBasic>
struct reduce view basic { typedef View type; };
template <typename Op, typename V1, typename V2,

bool AreBasic>
struct reduce views basic {

typedef std::pair<const V1∗, const V2∗> type;
};

The above metafunctions are not specific to a particular type reduc-
tion and are shared by reductions of all algorithms.

The following reductions that operate on the level of color
spaces are also useful for many algorithms in GIL. Different color
spaces with the same number of channels can all be reduced to one
common type. We choose rgb t and rgba t as the class represen-
tatives for three and four channel color spaces, respectively. Note
that we do not reduce different permutations of channels. For ex-
ample, we cannot reduce bgr t to rgb t because that will violate
the channel ordering.

template <typename Cs> struct reduce color space {
typedef Cs type;

};
template <> struct reduce color space<lab t> {

typedef rgb t type;
};
template <> struct reduce color space<hsb t> {

typedef rgb t type;
};
template <> struct reduce color space<cmyk t> {

typedef rgba t type;
};

We can similarly define a binary color space reduction — a meta-
function that takes a pair of (compatible) color spaces and returns
a pair of reduced color spaces. For brevity, we only show the inter-
face of the metafunction:

7 We represent the two types as a pair of constant pointers because it makes
the implementation of reduction with a variant (described in Section 5)
easier.

template <typename SrcCs, typename DstCs>
struct reduce color spaces {

typedef ... first t;
typedef ... second t;

};

The equivalence classes defined by this metafunction represent
the color space pairs where the mapping of channels from first
to second color space is preserved. We can represent such map-
pings with a tuple of integers. For example, the mapping of
pair<rgb t,bgr t> is 〈2, 1, 0〉, as the first channel r maps from the
position 0 to position 2, g from position 1 to 1, and b from 2 to 1.
Mappings for pair<bgr t,bgr t> and pair<lab t,lab t> are rep-
resented with the tuple 〈0, 1, 2〉. We have identified eight mappings
that can represent all pairs of color spaces that are used in practice.
New mappings can be introduced when needed as specializations.

With the above helper metafunctions, we can now define the
type reduction for copy pixels. First we define the unary pre-
reduction that is performed for each image view type indepen-
dently. We perform reduction in two aspects of the image: the color
space is reduced with the reduce color space helper metafunc-
tion, and both mutable and immutable views are unified. We use
GIL’s derived view type metafunction (we omit the definition for
brevity) that takes a source image view type and returns a related
image view in which some of the parameters are different. In this
case we are changing the color space and mutability:

template <typename View>
struct reduce view basic<copy pixels fn,View,true> {
private:

typedef typename
reduce color space<typename View::color space t>::type Cs;

public:
typedef typename derived view type<

View, use default, Cs, use default, use default, mpl::true
>::type type;

};

Note that this reduction introduces a slight problem — it would
allow us to copy (incorrectly) between some incompatible images
— for example from hsb8 view t into lab8 view t, as they both
will be reduced to rgb8 view t. However, such calls should never
occur, as calling copy pixels with incompatible images violates its
precondition. Even though this pre-reduce significantly improves
compile times, due to the above objection we did not use it in our
measured experiments.

The first step of binary reduction is to check whether the two
images are compatible; the views are compatible predicate pro-
vides this information. If the images are not compatible, we reduce
to error t — a special tag denoting type mismatch error. All algo-
rithms throw an exception when given error t:

template <typename V1, typename V2>
struct reduce views basic<copy pixels fn, V1, V2, true>

: public reduce copy pixop compat<V1,V2,
mpl::and <views are compatible<V1,V2>,
view is mutable<V2> >::value > {};

template <typename V1, typename V2, bool IsCompatible>
struct reduce copy pixop compat {

typedef error t type;
};

Finally, if the two image views are compatible, we reduce their
color spaces pairwise, using the reduce color spaces metafunction
discussed above. Figure 2 shows the code, where the metafunction
derived view type again generates the reduced view types that
change the color spaces, but keep other aspects of the image view
types the same.

Note that we can easily reuse the type reduction policy for
copy pixels for other algorithms for which the same policy applies:

20

template <typename V1, typename V2>
struct reduce copy pixop compat<V1, V2, true> {
private:

typedef typename V1::color space t Cs1;
typedef typename V2::color space t Cs2;
typedef typename

reduce color spaces<Cs1,Cs2>::first t RCs1;
typedef typename

reduce color spaces<Cs1,Cs2>::second t RCs2;

typedef typename
derived view type<V1, use default, RCs1>::type RV1;

typedef typename
derived view type<V2, use default, RCs2>::type RV2;

public:
typedef std::pair<const RV1∗, const RV2∗> type;

};

Figure 2. Type reduction for copy pixels of compatible images.

template <typename V, bool IsBasic>
struct reduce view basic<resample view fn, V, IsBasic>

: public reduce view basic<copy pixels fn, V, IsBasic> {};

template <typename V1, typename V2, bool AreBasic>
struct reduce views basic<resample view fn, V1, V2, AreBasic>

: public reduce views basic<copy pixels fn, V1, V2, AreBasic> {};

5. Minimizing Instantiations with Variants
Type reduction is most necessary, and most effective with variant
types, such as GIL-s any image view, as a single invocation of
a generic algorithm would normally require instantiations to be
generated for all types in the variant, or even for all combinations
of types drawn from several variant types. This section describes
how we apply the type reduction machinery in the case of variant
types.

Variants are comprised of three elements — a type vector of
possible types the variant can store (Types), a run-time value
(index) to this vector indicating the type of the object currently
stored in the variant, and the memory block containing the instan-
tiated object (bits). Invoking an algorithm, which we represent as
a function object, amounts to a switch statement over the value of
index, each case N of which casts bits to the N-th element of Types
and passes the casted value to the function object. We capture this
functionality in the apply operation base template:8

template <typename Types, typename Bits, typename Op>
typename Op::result type
apply operation base(const Bits& bits, int index, Op op) {

switch (index) {
...
case N: return op(reinterpret cast<const

typename mpl::at c<Types, N>::type&>(bits));
...
}

}

As we discussed before, such code instantiates the algorithm with
every possible type and can lead to code bloat. Instead of calling
this function directly from the apply operation function template
overloaded for variants, we first subject the Types vector to reduc-
tion:

8 The number of cases in the switch statement equals the size of the Types
vector. We use the preprocessor to generate such functions with different
number of case statements and we use specialization to select the correct
one at compile time.

template <typename Types, typename Op>
struct unary reduce {

typedef ... reduced t;
typedef ... unique t;
typedef ... indices t;

static int map index(int index) {
return dynamic at c<indices t>(index);

}
template <typename Bits>
static typename Op::result type
apply(const Bits& bits, int index, Op op) {

return apply operation base<unique t>
(bits,map index(index),op);

}
}

Figure 3. Unary reduction for variant types.

template <typename Types, typename Op>
inline typename Op::result type
apply operation(const variant<Types>& arg, OP op) {

return unary reduce<Types,Op>::
template apply(arg. bits,arg. index,op);

}

The unary reduce template performs type reduction, and its apply
member function invokes apply operation base with the smaller,
reduced, set of types. The definition of unary reduce is shown in
Figure 3. The definitions of the three typedefs are omitted, but they
are computed as follows:

• reduced t — a type vector that holds the reduced types corre-
sponding to each element of Types. That is, reduced t[i] ==
reduce<Op, Types[i]>::type

• unique t — a type set containing the same elements as the type
vector reduced t, but without duplicates.

• indices t — a type set containing the indices (represented
as MPL integral types, which wrap integral constants into
types) mapping the reduced t vector onto the unique t set,
i.e., reduced t[i] == unique t[indices t[i]]

The dynamic at c function is parameterized with a type vector
of MPL integral types, which are wrappers that represent integral
constants as types. The dynamic at c function takes an index to the
type vector and returns the element in the type vector as a run-time
value. That is, we are using a run-time index to get a run-time value
out from a type vector. The definitions of dynamic at c function
are generated with the preprocessor; the code looks similar to the
following9:

template <typename Ints>
static int dynamic at c(int index) {

static int table[] = {
mpl::at c<Ints,0>::value,
mpl::at c<Ints,1>::value,
...

};
return table[index];

}

Some algorithms, like copy pixels, may have two arguments each
of which may be a variant. Without any type reduction, applying a

9 In reality the number of table entries must equal the size of the type vector.
We use the Boost Preprocessor Library [17] to generate function objects
specialized over the size of the type vector, whose application operators
generate tables of appropriate sizes and perform the lookup. We dispatch to
the right specialization at compile time, thereby assuring the most compact
table is generated.

21

binary variant operation is implemented using a double-dispatch —
we first invoke apply operation base with the first variant, pass-
ing it a function object, which, when invoked, will in turn call
apply operation base on the second argument, passing it the orig-
inal function. If N is the number of types in each input variant, this
implementation will generate N2 instantiations of the algorithm
and N + 1 switch statements having N cases each.

We can, however, possibly achieve more reduction if we con-
sider the argument types together, rather than each independently.
Figure 4 shows the definition of the overload for the binary
apply operation function template. We leave several details with-
out discussion, but the general strategy can be observed from the
code:

1. Perform unary reduce on each input argument to obtain the set
of unique reduced types, unique1 t and unique2 t. A binary
algorithm can define pre-reductions for its argument types, such
as the color space reductions described in Section 4.1. Any pre-
reductions at this step are beneficial, as they reduce the amount
of compile-time computations preformed in the next step.

2. Compute bin types, a type vector for the cross-product of the
unique pre-reduced types. Its elements are all possible types of
the form std::pair<const T1∗, const T2∗> with T1 and T2
drawn from unique1 t and unique2 t respectively.

3. Perform unary reduction on bin types, to obtain unique t —
the set of unique pairs after reducing each pair under the binary
operation.

Finally, to invoke the binary operation we use a switch statement
over the unique pairs of types left over after reduction. We map the
two indices to the corresponding single index over the unique set of
pairs. This version is advantageous because it instantiates far fewer
than N2 number of types and uses a single switch statement instead
of two nested ones.

6. Experimental Results
To assess the effectiveness of type reduction in practice, we mea-
sured the executable sizes, and compilation times, of programs that
called GIL algorithms with objects of variant types when type re-
duction was applied, and when it was not applied.

6.1 Compiler Settings
For our experiments we used the C++ compilers of GCC 4.0 on OS
X 10.4 and Visual Studio 8 on Windows XP. For GCC we used the
optimization flag −O2, and removed the symbol information from
the executables with the Unix strip command prior to measuring
their size. Visual Studio 8 was set to compile in release mode, using
all settings that can help reduce code size, in particular the ”Min-
imize Size” optimization (/O1), link-time code generation (/Gl),
and eliminating unreferenced data (/OPT:REF). With these the
compiler can in some cases detect that two different instances of
template functions generate the same code, and avoid the duplica-
tion of that code. This makes template bloat a lesser problem in
the Visual Studio compiler, as type reduction possibly occurs di-
rectly in the compiler. We show, however, improvement even with
the most aggressive code-size minimization settings.

6.2 Test Images
For testing type reduction with unary operations, we use an exten-
sive variant of GIL image views, varying in color space (Grayscale,
RGB, BGR, LAB, HSB, CMYK, RGBA, ABGR, BGRA, ARGB),
in channel depth (8-bit, 16-bit and 32-bit) and in whether the pixels
are consecutive in memory or offset by a run-time specified step.
This amounts to 10 × 3 × 2 = 60 combinations of interleaved im-
ages. In addition, we include planar versions for the primary color

template <typename Types1, typename Types2, typename Op>
struct binary reduce {

typedef unary reduce<Types1,Op> unary1 t;
typedef unary reduce<Types2,Op> unary2 t;
typedef typename unary1 t::unique t unique1 t;
typedef typename unary2 t::unique t unique2 t;

typedef cross product pairs<unique1 t, unique2 t> bin types;
typedef unary reduce<bin types,Op> binary t;
typedef typename binary t::unique t unique t;

static inline int map indices(int index1, int index2) {
int r1=unary1 t::map index(index1);
int r2=unary1 t::map index(index2);
return bin reduced t::map index(

r2∗mpl::size<unique1 t>::value + r1);
}

public:
template <typename Bits1, typename Bits2>
static typename Op::result type
apply(const Bits1& bits1, int index1,

const Bits2& bits2, int index2, Op op) {
std::pair<const void∗,const void∗> pr(&bits1, &bits2);

return apply operation base<unique t>
(pr, map indices(index1,index2),op);

}
};
template <typename T1, typename T2, typename BinOp>
inline typename BinOp::result type apply operation(

const variant<T1>& arg1, const variant<T2>& arg2, BinOp op)
{

return binary reduce<T1,T2,Op>::
template apply(arg1. bits,arg1. index,

arg2. bits,arg2. index, op);
}

Figure 4. Binary reduction for variant types.

spaces (RGB, LAB, HSB, CMYK and RGBA) which adds another
5 × 3 × 2 = 30 combinations for a total of 90 image types.10

Binary operations result in explosion in the number of combi-
nations to consider for type reduction. The practical upper limit for
direct reduction, with today’s compilers and typical desktop com-
puters, is about 20×20 combinations; much beyond that consumes
notable amounts of compilation resources.11 Thus, for binary oper-
ations we use two smaller test sets. Test B consists of ten images —
Grayscale, BGR, RGB, step RGB, planar RGB, planar step RGB,
LAB, step LAB, planar LAB, planar step LAB, all of which are in
8-bit. Test C consists of twelve 8-bit images — in RGB, LAB and
HSB, each of which can be planar or interleaved, step or non-step.

To summarize: the test set A contains 90 image types, B con-
tains 10 image types, and C contains 12 image types.

6.3 Test Algorithms
We tested with three algorithms — invert pixels, copy pixels and
resample view.

10 We split the images in two sets because GIL does not allow planar
versions of grayscale (as it is identical to interleaved) or derived color
spaces (because they can be represented by the primary color spaces by
rearranging the order of the pointers to the color planes in the image
construction).
11 GIL determines how complex a given binary type reduction will be and
suppresses computing it directly when the number of combinations exceeds
a limit. In such a case, the binary operation is represented via double-
dispatch as two nested unary operations. This allows more complex binary
functions to compile, but the type reduction may miss some possibilities for
sharing instantiations.

22

Sn Sr Decrease in %
Test 1. 201.6 107.5 47%
Test 2. 252.8 75.9 70%
Test 3. 259.8 144.0 45%
Test 4. 318.7 98.8 69%
Test 5. 62.2 31.2 50%

Table 1. Size, in kilobytes, of the generated executable in the five
test programs compiled with GCC 4.0 C++ compiler, without (Sn)
and with (Sr) type reduction. The fourth column shows the percent
decrease in the size of the generated code that was achieved with
type reduction.

The unary algorithm invert pixels inverts each channel of each
pixel in an image. Although less useful than other algorithms,
invert pixels is simple and allows us to measure the effect of our
technique without introducing too much GIL-related code. As a
channel-independent operation, invert pixels does not depend on
the color space or ordering of the channels. We tested invert pixels
with the test set A: type reduction maps the 90 image types in test
set A down to 30 equivalence classes.

The copy pixels algorithm, as discussed in Sections 3 and 4, is
a binary algorithm performing channel-wise copy between compat-
ible images and throws an exception when invoked with incompati-
ble images. Applied to test images B, our reduction for copy pixels
reduces the image pair types from 10 × 10 = 100 down to 26
(25 plus one ”incompatible image” case). Without this reduction
there are 42 compatible combinations and 58 incompatible ones.
The code for the invalid combinations is likely to be shared even
without reduction. Thus our reduction transforms 43 cases into 26
cases, which is approximately a 40% reduction.

For test images C, our reduction for copy pixels reduces the
image pairs from 12 × 12 = 144 down to 17 (16 plus the ”in-
compatible image” case). Without the reduction, there would be 48
valid and 96 invalid combinations. Thus our reduction transforms
49 into 17 cases, which is approximately a 65% reduction.

We also use another binary operation — resample view. It
resamples the destination image from the source under an arbitrary
geometric transformation and interpolates the results using bicubic,
bilinear or nearest-neighbor methods. It is a bit more involved than
copy pixels and is therefore less likely to be inlined. It shares
the same reduction rules as copy pixels (works for compatible
images and throws an exception for incompatible ones). We test
resample pixels with test images B and C (again, A is too big for
a binary algorithm to handle).

In summary we are running 5 tests: (1) copy pixels on test
images B, (2) copy pixels on test images C, (3) resample view
on test images B, (4) resample view on test images C, and (5)
invert pixels on test images A.

6.4 Test Results
Our results are obtained as follows: For each of the five tests in an
otherwise empty program, we construct an instance of any image
with the corresponding image type set and invoke the correspond-
ing algorithm. We measure the size of the resulting executable and
subtract from it the size of the executable if the algorithm is not
invoked (but the any image view instance is still constructed). The
resulting difference in code sizes can thus be attributed to just the
code generated from invoking the algorithm. We compute these dif-
ferences for both platforms, with and without the reduction mech-
anism, and report the results on Tables 1 and 2.

The results show that we are, on the average, cutting the exe-
cutable size by more than half under GCC and as much as 70% at
times. Since Visual Studio can already avoid generating instantia-
tions whose assembly code is identical, our gain with this compiler

Sn Sr Decrease in %
Test 1. 42.0 34.5 18%
Test 2. 41.5 26.0 37%
Test 3. 46.0 42.0 8%
Test 4. 33.5 34.0 -1%
Test 5. 24.0 16.5 31%

Table 2. Size, in kilobytes, of the generated executable in the
five test programs compiled with Visual Studio 8’s C++ compiler,
without (Sn) and with (Sr) type reduction. The fourth column
shows the percent decrease in the size of the generated code that
was achieved with type reduction.

Visual Studio 8 GCC
Test 1. 106% 116%
Test 2. 78% 97%
Test 3. 87% 118%
Test 4. 75% 103%
Test 5. 194% 307%

Table 3. The effect of type reduction to compilation times in the
five test programs. The percentages are computed as 100×Tr/Tn,
where Tn is the compilation time without type reduction and Tr the
compilation time using type reduction.

is less pronounced. However, we can still observe reduction in the
executable size, as much as 32% at times. We believe this is due to
two factors — first, Visual Studio’s optimization cannot be applied
when the code is inlined (which is the case for tests 1, 2 and 5).
Indeed those tests show the largest gain. But even for non-inlined
code in test 3 we observed a notable reduction. We believe this
is due to the simplification of the switch statements. Test 3 with-
out reduction generates 11 (nested) switch statements of 10 cases
each, whereas we only generate one switch statement with 26 cases.
We also tried inlining resample view under Visual Studio and got
roughly 30% code reduction for tests 3 and 4, (in addition to being
about 20% faster to compile, and slightly faster to execute since we
avoid two function calls and a double-dispatch).

We also measured the time to compile each of the five tests
of both platforms when reduction is enabled and compared it to
the time when no reduction is enabled. The results are reported in
Table 3. We believe there are two main factors in play. On the one
hand our reduction techniques involve some heavy-duty template
meta-programming, which slows down compiling. On the other
hand, the number of instantiated copies of the algorithm is greatly
reduced, which reduces the amount of work for the later phases
of compiling, in particular if the algorithm’s implementation is of
substantial size. In addition, a large portion of the types generated
during the reduction step are not algorithm-dependent and might be
reused when another related algorithm is compiled with the same
image set. Finally, when compile times are a concern, our technique
may be enabled only towards the end of the product cycle.

7. Conclusions
Combining run-time polymorphism and generic programming with
the instantiation model of C++ is non-trivial. We show how variant
types can be used for this purpose but, without caution, this easily
leads to a severe code bloat. As its main contribution, the paper
describes library mechanism for significantly reducing code bloat
that results from invoking generic algorithms with variant types,
and demonstrates their effectiveness in the context of a production
quality generic library.

We discussed the problems of the traditional class-centric ap-
proach to addressing code bloat: template hoisting within class hi-

23

erarchies. This approach requires third-party developers to abide
by a specific hierarchy in a given module, and can be inflexible —
one hierarchy may allow template hoisting for certain algorithms
but not for others. Moreover, complex relationships involving two
or more objects may not be representable with a single hierarchy.

We presented an alternative, algorithm-centric approach to ad-
dressing code bloat, which allows the definition of partitions among
types, each specific to one or more generic algorithms. The algo-
rithms need to be instantiated only for one representative of the
equivalence class in each partition. Our technique does not enforce
a particular hierarchical structure that extensions to the library must
follow. The rules for type reduction are algorithm-dependent and
implemented as metafunctions. The clients of the library can define
their own equivalence classes by specializing a particular type re-
duction template defined in a generic library, and have the induced
type reductions be applied when using the generic algorithms. Also,
new algorithms can be introduced by third-party developers and
all they need to do is define the reduction rules for their algo-
rithms. Algorithm reduction rules may be inherited; we discussed
the copy pixels and resample view algorithms which have identi-
cal reduction rules.

The primary disadvantage of our technique is that it relies on
a cast operation, the correctness of which is not checked. The
reduction specifications declare that a given type can be cast to
another given type when used in a given algorithm. That requires
intimate knowledge of the type and the algorithm. Nevertheless,
we believe the generality and effectiveness of algorithm-centric
type reduction justify the safety concerns. We demonstrated that
this technique can result in reducing the size of the generated code
in half for compilers that don’t support template bloat reduction.
Even for compilers that employ aggressive pruning of duplicate
identical template instantiations, our technique can result in further
noticeable decrease in code size.

The framework presented in this paper is essentially an active
library, as defined by Czarnecki et al. [7]. It draws from both
generic and generative programming, static metaprogramming with
C++ templates in particular. We accomplish a high degree of reuse
and good performance with the generic programming approach to
library design. Static metaprogramming allows us to fine tune the
library’s internal implementation — for example, to decrease the
amount of code to be generated.

Our future plans include experimenting with the framework
in domains other than imaging. We have experience on generic
libraries for linear algebra, which seems to be a promising domain,
sharing similarities with imaging: a large number of variations
in many aspects of the data types (matrix shapes, element types,
storage orders, etc.).

Acknowledgments
We are grateful for Hailin Jin for his contributions to GIL and in-
sights on early stages of this work. This work was in part supported
by the NSF grant CCF-0541014.

References
[1] Adobe Source Libraries, 2006. opensource.adobe.com.
[2] David Abrahams and Aleksey Gurtovoy. C++ Template Metapro-

gramming: Concepts, Tools, and Techniques from Boost and Beyond.
Addison-Wesley, 2004.

[3] Ping An, Alin Jula, Silvius Rus, Steven Saunders, Tim Smith, Gabriel
Tanase, Nathan Thomas, Nancy Amato, and Lawrence Rauchwerger.
STAPL: An adaptive, generic parallel C++ library. In Languages and
Compilers for Parallel Computing, volume 2624 of Lecture Notes in
Computer Science, pages 193–208. Springer, August 2001.

[4] Matthew H. Austern. Generic programming and the STL: Using
and extending the C++ Standard Template Library. Professional

Computing Series. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1998.

[5] Lubomir Bourdev and Hailin Jin. Generic Image Library, 2006.
opensource.adobe.com/gil.

[6] Martin D. Carroll and Margaret A. Ellis. Designing and Coding
Reusable C++. Addison-Wesley, 1995.

[7] Krzysztof Czarnecki, Ulrich Eisenecker, Robert Glck, David Vande-
voorde, and Todd Veldhuizen. Generative programming and active
libraries (extended abstract). In M. Jazayeri, D. Musser, and R. Loos,
editors, Generic Programming. Proceedings, volume 1766 of Lecture
Notes in Computer Science, pages 25–39. Springer-Verlag, 2000.

[8] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Program-
ming Methods, Tools, and Applications. Addison-Wesley, 2000.

[9] ECMA. C# Language Specification, June 2005. http://www.
ecma-international.org/publications/files/ECMA-ST/
Ecma-334.pdf.

[10] ECMA International. Standard ECMA-367: Eiffel analysis, design
and programming Language, June 2005.

[11] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr.
On the design of CGAL, a computational geometry algorithms
library. Software – Practice and Experience, 30(11):1167–1202,
2000. Special Issue on Discrete Algorithm Engineering.

[12] Eric Friedman and Itay Maman. The Boost.Variant library.
http://www.boost.org/libs/variant, January 2004.

[13] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification, Third Edition. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2005.

[14] Aleksei Gurtovoy and David Abrahams. The Boost C++ metapro-
gramming library. www.boost.org/libs/mpl, 2002.

[15] International Organization for Standardization. ISO/IEC 14882:1998:
Programming languages — C++. Geneva, Switzerland, 1998.

[16] D. Kapur and D. Musser. Tecton: a framework for specifying and
verifying generic system components. Technical Report RPI–92–20,
Department of Computer Science, Rensselaer Polytechnic Institute,
Troy, New York 12180, July 1992.

[17] Vesa Karvonen and Paul Mensonides. The Boost.Preprocessor library.
http://www.boost.org/libs/preprocessor, 2002.

[18] Andrew Kennedy and Don Syme. Design and implementation of
generics for the .NET Common Language Runtime. In PLDI ’01:
Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation, pages 1–12, New York, NY,
USA, 2001. ACM Press.

[19] David A. Musser and Alexander A. Stepanov. Generic Programming.
In Proceedings of International Symposium on Symbolic and
Algebraic Computation, volume 358 of Lecture Notes in Computer
Science, pages 13–25, Rome, Italy, 1988.

[20] W. R. Pitt, M. A. Williams, M. Steven, B. Sweeney, A. J. Bleasby,
and D. S. Moss. The Bioinformatics Template Library–generic
components for biocomputing. Bioinformatics, 17(8):729–737, 2001.

[21] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost
Graph Library: User Guide and Reference Manual. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[22] Jeremy Siek and Andrew Lumsdaine. The Matrix Template Library:
A generic programming approach to high performance numerical
linear algebra. In International Symposium on Computing in Object-
Oriented Parallel Environments, 1998.

[23] Jeremy Siek, Andrew Lumsdaine, and Lie-Quan Lee. Generic
programming for high performance numerical linear algebra. In
Proceedings of the SIAM Workshop on Object Oriented Methods
for Inter-operable Scientific and Engineering Computing (OO’98).
SIAM Press, 1998.

[24] A. Stepanov and M. Lee. The Standard Template Library. Technical
Report HPL-94-34(R.1), Hewlett-Packard Laboratories, April 1994.
http://www.hpl.hp.com/techreports.

[25] Todd L. Veldhuizen. Using C++ template metaprograms. C++
Report, 7(4):36–43, May 1995. Reprinted in C++ Gems, ed. Stanley
Lippman.

24

Generic Library Extension in a Heterogeneous Environment

Cosmin Oancea Stephen M. Watt
Department of Computer Science
The University of Western Ontario
London Ontario, Canada N6A 5B7
{coancea,watt}@csd.uwo.ca

Abstract
We examine what is necessary to allow generic libraries to be used
naturally in a heterogeneous environment. Our approach is to treat
a library as a software component and to view the problem as
one of component extension. Language-neutral library interfaces
usually do not support the full range of programming idioms that
are available when a library is used natively. We address how
language-neutral interfaces can be extended with import bindings
to recover the desired programming idioms. We also address the
question of how these extensions can be organized to minimize the
performance overhead that arises from using objects in manners
not anticipated by the original library designers. We use C++ as
an example of a mature language, with libraries using a variety of
patterns, and use the Standard Template Library as an example of
a complex library for which efficiency is important. By viewing
the library extension problem as one of component organization,
we enhance software composibility, hierarchy maintenance and
architecture independence.

Categories and Subject DescriptorsD.1.5 [Programming Tech-
niques]: Object-Oriented Programming; D.2.2 [Software Engi-
neering]: Modules and Interfaces, Software Libraries

General Terms Languages, Design

Keywords Generalized algebraic data types, Generics, Parametric
Polymorphism, Software Component Architecture, Templates

1. Introduction
Library extension is an important problem in software design. In
its simplest form, the designer of a class library must consider how
to organize its class hierarchy so that there are base classes that
library clients may usefully specialize. More interesting questions
arise when the designers of a library wish to provide support for
extension of multiple, independent dimensions of the library’s be-
havior. In this situation, there are questions of how the extended
library’s hierarchy relates to the original library’s hierarchy, how
objects from independent extensions may be used and how the ex-
tensions interact.

This paper examines the question of library extension in a het-
erogeneous environment. We consider the situation where software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCSD’06 October 22, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM [to be supplied]. . . $5.00

libraries are made available as components in a multi-language,
potentially distributed environment. In this setting, the program-
mer finds it difficult and rather un-safe to compose libraries based
on low level language-interoperability solutions. Therefore, com-
ponents are usually constructed and accessed through some frame-
work such asCORBA [14], DCOM [6] or the .NET framework [5]. In
each case, the framework provides a language-neutral interface to
a constructed component. These interfaces are typically simplified
versions of the implementation language interface to the same mod-
ules because of restrictions imposed by the component framework.
Restrictions are inevitable: Each framework supports some set of
common features provided by the target languages at the time the
framework was defined. However, programming languages and our
understanding of software architecture evolves over time, so ma-
ture component frameworks will lack support for newer language
features and programming styles that have become common-place
in the interim. If a library’s interface is significantly diminished by
exporting it through some component architecture, then it may not
be used in all of the usual ways that those experienced with the li-
brary would expect. Programmers will have to learn a new interface
and, in effect, learn to program with a new library.

We have described previously the Generic Interface Definition
Language framework,GIDL [8], a CORBA IDL extension with
support for parametric polymorphism and (operator) overload-
ing, which allows interoperability of generic libraries in a multi-
language environment.GIDL is designed to be agenericcompo-
nent architectureextension. Here “generic” has two meanings: First
GIDL encapsulates a common model for parametric polymorphism
that accommodates a wide spectrum of requirements for specific se-
mantics and binding times of the supported languages: C++, Java,
and Aldor [16]. Second, theGIDL framework can be easily adapted
to work on top of variousIDL -based component-systems in use
today such asCORBA, DCOM, JNI [15].

This paper explores the question of how to structure theGIDL
C++ language bindings to achieve two high-level goals: The first
goal is to design an extension framework as a component that can
easily be plugged-in on top of different underlying architectures,
and together with other extensions. The second goal is to enable
theGIDL software components to reproduce as much of their orig-
inal native language interfaces as possible, and to do so without in-
troducing significant overhead. This allows programmers familiar
with the library to use it as designed. In these contexts, we identify
the language mechanisms and programming techniques that foster
a better code structure in terms of interface clarity, type safety, ease
of use, and performance.

While our earlier work [8] presented the high-level ideas em-
ployed in implementing theGIDL extension mechanism, this paper
takes a different perspective, in some way similar to that of Oder-
sky and Zenger. In [11], they argue that one reason for inadequate
advancement in the area of component systems is the fact that main-
stream languages lack the ability to abstract over the required ser-

25

vices. They identify three language abstractions, namelyabstract
type members, selftype annotations, andmodular mixin composi-
tion that enable the design of first-class value components (compo-
nents that use neither static data nor hard references).

We look at theGIDL extension as a component that can be
employed on top of other underlying architectures and which can
be, at its turn, further extended. Consequently, we identify the
following as desirable properties of the extension:
• The extension interface should be type-precise and it should

allow type-safety reasoning with respect to the extension itself.
The type-safety result for the whole framework would thus be
derived from the ones of the extensions and of the underlying
architecture.
• The extension should be split in first-class value components.

In the GIDL case for example, one component should encapsu-
late the underlying architecture specifics and be statically gen-
erated. The other one should generically implement the exten-
sion mechanism. This would allowGIDL to be plugged in with
various backend-architectures without modifying the compiler.
• The extension should preserve the look and feel of the underly-

ing architecture, or at least not complicate its use.
• The extension overhead should be within reasonable limits, and

there should be good indication that compiler techniques may
be developed to eliminate it.

In the context ofGIDL ’s C++ bindings, we identify the language
concepts and programming strategies that enable a better code
structure in the sense described above. We particularly recognize
the generalized algebraic data typesparadigm [17] to be essential
in enforcing a clear and concise meta-interface of the extension. In
agreement with [11], we also find that the use of (C++ simulated)
abstract type members, andtraits allows the extension to be split
into first-class value components. This derives the obvious software
maintenance benefits.

The second part of this paper reports on an experiment where
we have usedGIDL to export part of the C++ Standard Template
Library (STL) functionality to a multi-language, potentially dis-
tributed use. We had two main objectives:

The first objective was to determine to what degree the interface
translation could preserve the coding style “look and feel” of the
original library. Ideally, theSTL and itsGIDL-exported programs
should differ only in the types used. This allows theSTL program-
mers to easily “learn” to use theGIDL interface to write for example
distributed applications. More importantly, this opens the door to a
richer composition betweenGIDL andSTL objects, as enabled by
the STL orthogonal design of its domains. For exampleGIDL iter-
ators are themselves validSTL iterators and thus they can be ma-
nipulated by theSTL containers and algorithms. In this context we
investigate the issues that prevent the translation to conform with
the library semantics, the techniques to amend them, and the trade-
offs between translation ease-of-use and performance.

The second objective was to determine whether the interface
translation could avoid introducing excessive overhead. We show
how this can be achieved through the use of various helper classes
that allow the usualSTL idioms to be used, while avoiding unnec-
essary copying of aggregate objects.

The rest of the paper is organized as follows. Section 2 briefly
recalls theGADT programming technique, and gives a high-level
review of theGIDL framework. Section 3 presents the rationale
for employing GADT-based techniques to extend existing frame-
works, and outlines the issues to be addressed when translating the
STL library to a heterogeneous environment. Section 4 describes
the design of theGIDL bindings for the C++ language. Section 5
describes the “black-box” type translation of theSTL library to a
multi-language, distributed environment viaGIDL and discusses
certain usability/efficiency trade-offs. Finally Section 6 presents
some concluding remarks.

data Exp t where
Lit :: Int -> Exp Int
Plus :: Exp Int -> Exp Int -> Exp Int
Equals :: Exp Int -> Exp Int -> Exp Bool
Fst :: Exp(a,b) -> Exp a

eval :: Exp t -> t
eval e = case e of

Lit i -> i
Plus e1 e2 -> eval e1 + eval e2
Equals e1 e2 -> eval e1 == eval e2
Fst e -> fst (eval e)

Figure 1. GADT-Haskell interpreter example.

public class Pair<A,B> { /* ... */ }
public abstract class Exp<T> { /* ... */ }

public class Lit : Exp<int>
{ public Lit(int val) { /* ... */ } }
public class Plus : Exp<int>
{ public Plus(Exp<int> a, Exp<int> b) { /* ... */ } }
public class Equals : Exp<bool>
{ public Equals(Exp<int> e1, Exp<int> e2) { /* ... */ } }
public class Fst<A,B> : Exp<A>
{ public Fst(Exp<Pair<A,B>> e) { /* ... */ } }

Figure 2. GADT-C# interpreter example.

2. Background
The first subsection of this chapter introduces at a high-level the
generalized algebraic data types[17, 4] (GADT) concept and illus-
trates its use through a couple of examples. The second subsection
briefly recounts the architectural design of theGIDL framework and
the semantics of the parametric polymorphism model it introduces.
A detailed account of this work is given elsewhere [8].

2.1 Generalized Algebraic Data Types

Functional languages such as Haskell and ML support generic
programming through user-defined (type) parameterized algebraic
datatypes (PADTs). A datatype declaration defines both a named
type and a way of constructing values of that type. For example a
binary tree datatype, parameterized under the types of the keys and
values it stores, can be defined as below.

data BinTree k d = Leaf k d |
Node k d (BinTree k d) (BinTree k d)

Both value constructors have the generic result typeBinTree
k d, and any value of typeBinTree k d is either a leaf or a node,
but it cannot be statically known which.BinTree is an example of
a regular datatype since all its recursive uses in its definition are
uniformly parameterized under the parametric typesk andd.

Generalized algebraic data types (GADTs) enhance the func-
tional programming languagePADTs by allowing constructors
whose results are instantiations of the datatype with other types
than the formal type parameters. Figure 1 presents part of the def-
inition of the types needed to implement a simple language inter-
preter. Note that all the type-constructors (Lit, Plus, Equals, and
Fst) refine the type parameter ofExp, and use theExp datatype at
different instantiations in the parameters of each constructor. Also
Fst uses the type variableB that does not appear in its result type.
These are recognized as attributes of theGADT concept; its useful-
ness is illustrated by the fact that one can now write a well-typed
evaluator function (eval). The example is inspired from [4] and is
written in an extension of Haskell withGADTs.

Kennedy and Russo[4] show, among other things, that existing
object oriented programming languages such as Java and C# can
express a large class ofGADT programs through the use of gener-
ics, subclassing and virtual dispatch. A C# implementation of the
interpreter usingGADTs is sketched in Figure 2.

26

/*********************** GIDL interface ***********************/
interface Comparable< K >
{ boolean operator">" (in K k); boolean operator"=="(in K k); };

interface BinTree< K:-Comparable<K>, D >
{ D getData(); K getKey(); D find(in K k); };
interface Leaf< K:-Comparable<K>, D > : BinTree<K,D>
{ void init(in K k, in D d); };
interface Node< K:-Comparable<K>, D > : BinTree<K,D>
{ BinTree<K,D> getLeftTree(); BinTree<K,D> getRightTree(); };

interface Integer : Comparable<Integer> { long getValue(); };
interface TreeFactory<K:-Comparable<K>, D> {

Integer mkInt(in long val);
BinTree<K,D> mkLeaf(in K k, in D d);
BinTree<K,D> mkNode
(in K k, in D d, in BinTree<K;D> right, in BinTree<K;D> left);

};
/*********************** C++ client code **********************/
TreeFactory<Integer, Integer> fact(...); // get a factory object
Integer i6=fact.mkInt(6), i7=fact.mkInt(7), i8=fact.mkInt(8);
BinTree<Integer, Integer> b6=fact.mkLeaf(i6,i6),

b8=fact.mkLeaf(i8,i8), tree=fact.mkNode(i7,i7,b6,b8);
int res = tree.find(i8).getValue(); // 8

Figure 3. GIDL specification and C++ client code for a binary tree

2.2 The GIDL Framework

The Generic Interface Definition Language framework [8] (GIDL
for short) is designed to be agenericcomponent architecture exten-
sion that provides support for parameterized components and that
can be easily adapted to work on top of various software component
architectures in use today:CORBA, DCOM, JNI. (The current imple-
mentation is on top ofCORBA). We summarize theGIDL model for
parametric polymorphism in Section 2.2, and briefly describe the
GIDL architecture in Section 2.2. An in depth presentation of these
topics can be found in [8].

The GIDL language

GIDL extends CORBA–IDL [12] language with support forF-
bounded parametric polymorphism. Figure 3 shows abstract data
type (ADT)-like GIDL interfaces for a binary tree that is type-
parameterized under the types of data and keys stored in the
nodes. The type-parameterK in the definition of theBinTree in-
terface is qualified to export the whole functionality of its qualifier
Comparable<K>; that is, the comparison operations> and==. GIDL
also supports a stronger qualification denoted by: that enforces a
subtyping relation between the instantiation of the type parameter
and the qualifier. Figure 3 also presents C++ client code that builds
a binary tree and finds in the tree the data of a node that is identified
through its key. Note that the code is very natural for the most parts;
the only place whereCORBA specifics appear is in the creation of
the factory object (fact).

The GIDL Extension Architecture

Figure 4 illustrates at a high level the design of theGIDL frame-
work. The implementation employs a generic type erasure mech-
anism, based on the subtyping polymorphism supported byIDL .
A GIDL specification compiled with theGIDL compiler generates
an IDL file where all the generic types have beenerased, together
with GIDL wrapper stub and skeleton bindings, which recover the
lost generic type information. CurrentlyGIDL provides language
bindings for C++, Java, and Aldor. Compiling theIDL file creates
the underlying architecture (UA) stub and skeleton bindings. Every
GIDL-stub (client) wrapper object references aUA-stub object. Ev-
eryGIDL-skeleton (server) wrapper inherits from the corresponding
UA-skeleton type. This technique is somewhat related with the “rei-
fied type” pattern of Ralph Johnson [3], where objects are used to
carry type information.

GIDL
Specification Application

(C++/Java/Aldor)

Server

SkeletonIDLIDL Stub

IDL Specification

Client
Application

(C++/Java/Aldor)

GIDL
method

invocation

marshal the
params

to the IDL
skeleton

call server
wrap params

un−wrap the
return

un−wrap params

method
call IDL

GIDL

Stub
Wrapper

wrap the
result

return to the
GIDL stub

return to the
IDL skeleton proper GIDL

invoke the

method

GIDL
Wrapper
Skeleton

server invocation
return from to marshal

the return

delegate the CMdelegate the

to handle the
invocation

CM

−−> marshal the invocation to the skeleton
marshal the return to the stub <−−

Communication Middleware (CM)

Figure 4. GIDL architecture
circle – user code; hexagon – GIDL component;
rectangle – underlying architecture component;
dashed arrow – is compiled to;
solid arrow – method invocation flow

The solid arrows in Figure 4 depict method invocation. When a
method of aGIDL stub wrapper object is called, the implementation
retrieves the parameters’UA-objects, invokes theUA method on
these, and perform the reverse operation on the result. The wrapper
skeleton functionality is the inverse of the client. The wrapper
skeleton method createsGIDL stub wrapper objects encapsulating
theUA objects, thus recovering the generic type erased information.
It then invokes the user-implemented server method with these
parameters, retrieves theUA IDL -object or value of the result and
passes it to theIDL skeleton.

The extension introduces an extra level of indirection with re-
spect to the method invocation mechanism of the underlying frame-
work. This is the price to pay for the generality of the approach: this
generic extension will work on top of anyUA vendor implementa-
tion while maintaining backward compatibility. However, since the
GIDL wrappers are mainly storing generic type information, one
can anticipate that the introduced overhead can be eliminated by
applying aggressive compiler optimizations.

3. Problems Statement and High-Level Solutions
This section states and motivates the main issues addressed by this
paper, and presents at the high-level the methods employed to solve
them: Section 3.1 summarizes the rationale and the techniques we
have used to structure theGIDL language bindings. Section 3.2
outlines the main difficulties a heterogeneous translation of theSTL
library has to overcome, and points to a solution that preserves the
library semantics and programming patterns.

3.1 Software Extensions via GADTs

Among theGADTs applications, the literature enumerates: strongly
typed evaluators, generic pretty printing, generic traversal and
queries and typed LR parsing. This paper finds another important
application of theGADT concept: in the context of software archi-
tecture extensions. This section describes things at a high-level,
while Section 4 presents in detail the C++ binding.

Section 2.2 has introducedGIDL as ageneric extension frame-
work that enhancesCORBA with support for parametric polymor-
phism. TheGIDL wrapper objects can be seen as an aggregation of

27

class Foo_CORBA { /* ... */ }
class Foo_GIDL {

Foo_CORBA obj; /* ... */
Foo_CORBA getOrigObj () { return obj; }
void setOrigObj (Foo_CORBA o) { ... }
static Foo_CORBA _narrow (Foo_GIDL o) { ... }
static Foo_GIDL _lift (Foo_CORBA o) { ... }
static Foo_GIDL _lift (CORBA_Any a) { ... }
static CORBA_Any _any_narrow(Foo_GIDL a) { ... }

}

Figure 5. Pseudocode for the casting functionality of the
Foo GIDL GIDL wrapper.Foo CORBA is its correspondingCORBA
class.CORBA Any-type objects can store anyCORBA-type values.

class Base_GIDL<T_GIDL, T_CORBA> {
T_CORBA getOrigObj () { return obj; }
void setOrigObj (T_CORBA o) { ... }
static T_CORBA _narrow (T_GIDL o) { ... }
static T_GIDL _lift (T_CORBA o) { ... }
static T_GIDL _lift (CORBA_Any a){ ... }
static CORBA_Any _any_narrow(T_GIDL a) { ... } /* ... */

}
class Foo_GIDL : Base_GIDL<Foo_GIDL, Foo_CORBA> ...

Figure 6. GADT pseudocode for the casting functionality of the
Foo GIDL GIDL wrapper.

a reference to the correspondingCORBA object, the generic type in-
formation associated with them and the two-way casting function-
ality they define (CORBA-GIDL types). It follows that aGIDL wrap-
per is composed of two main components: the functionality de-
scribed in theGIDL interface, and thecastingfunctionality needed
by the system for the two way communication with the underlying
framework (CORBA).

In this way, we deal with two parallel type hierarchies: the
original one (CORBA) and the one of the extension (GIDL). Figure 5
shows that each type of the extension encapsulates the functionality
to transform back and forth between values of its type and values of
its correspondingCORBA type, and also between values of its type
and values of theCORBA type Any. Values of typeAny can store
any otherCORBA type values, soGIDL uses typeAny as the erasure
of the non-qualified type-parameter.

This functionality can be expressed in an elegant way via
GADTs, by writing a parameterized base class that contains the im-
plementation for the casting functionality together with a precise
interface, and by instantiating this base class with corresponding
pairs ofGIDL-CORBA types. Figure 6 demonstrates this approach.
We seethree main advantagesfor integrating theGIDL casting
functionality viaGADTs:
• This functionality is written now as a system component and not

mangled inside theGIDL wrapper. It can be integrated either by
inheritance (see the C++ mapping), or by aggregation (see the
Java mapping).
• In addition it constitutes a clear meta-interface that character-

izes all the pairs of types from the two parallel hierarchies, and
makes it easier to reason about the type-safety of theGIDL ex-
tension.
• Finally, this approach is valuable from a code maintenance /

post facto extension point of view. The casting functionality
code is dependent on the underlying framework (CORBA, JNI,
DCOM). Implementing it as a meta-program (see the C++ map-
pings), besides the obvious software maintenance advantages of
beingstaticand written only once (thus short), allows theGIDL
compiler to generategenericcode that is independent on the
underlying architecture. Porting the framework on top of a new
architecture will require rewriting this static code, reducing the
modifications to be done at the compiler’s code generator level.

1. Vector< Long, RAI<Long>, RAI<Long> > vect = ...;
2. RAI<Long> it_beg=vect.begin(), it_end=vect.end(), it=it_beg;
3. while(it!=it_end)
4. *it++ = (vect.size() - i);
5. sort(it_beg, it_end); cout<<*it_beg<<endl;

Figure 7. C++ client code using aGIDL translation ofSTL. RAI
andVector are theGIDL types that model theSTL random access
iterator and vector types;sort is the nativeSTL function.

The problem with this approach is that if theFoo GIDL interface
is a subtype of sayFoo0 GIDL then it inherits the casting function-
ality of Foo0 GIDL – an undesired side-effect. The C++ binding
addresses this problem by making theGIDL wrapper inherit from
two components: one which respects the original inheritance hier-
archy and which contains the functionality described in theGIDL
specification, and one implementing thesystemfunctionality
(Base GIDL<Foo GIDL, Foo CORBA>).
This method breaks the subtyping hierarchy between theGIDL
wrappers, and instead mimics subtyping by means of automatic
conversion. This solution will be discussed in detail in Section 4.
Since Java does not support automatic conversions, the Java map-
ping defines the casting component as an inner class of theGIDL
wrapper, and uses a mechanism that resembles virtual types in or-
der to retrieve and invoke the proper caster. TheGIDL Java bindings
are not however the subject of this paper.

3.2 Preserving the STL Semantics and Code Idioms

Figure 7 gives an example ofGIDL client code that retrieves a
vector’s iterator (it beg), updates it, sorts it and displays its first
element. To allow such code, the translation needs to conform with
both the native library semantics and its coding idioms.

First, to preserve theSTL semantics, certain type properties must
be enforced statically. For example, the parameters of thesort
function need to belong to an iterator type that allows random
access to its elements. As discussed in Section 5.1 these properties
are expressed at theGIDL interface level by means of parametric
polymorphism and operator overloading.

Second, for the (distributed) program to yield the expected re-
sult, it and it beg have to reference different implementation-
object instances sharing the same internal representation. Other-
wise, after the execution of the while-loop (lines3 − 4), it beg
either points to its end, or it is left unchanged. Moreover, the in-
struction*it++ = i is supposed to update the value of the itera-
tor’s current element. Neither one of these requirements is achieved
with theGIDL semantics. As detailed in Section 5.3, we can obtain
the expected behavior with an extension mechanism applied to the
GIDL stubs that overrides the default behavior in favor of one that
satisfies theSTL coding style.

4. Building a Natural C++ Interface from GIDL
This section presents the rationale behind theGIDL C++ bindings.
We start by presenting theGADT approach used to implement the
casting functionality of theGIDL wrapper objects. We then show
how theGIDL inheritance hierarchies are implemented and com-
ment on the language features that we found most useful in this
context. Finally, we demonstrate the ease of use of theGIDL exten-
sion and reason about the soundness of the translation mechanism.

4.1 The Generic Base Class

Figure 8 presents a simplified version of the base class for the
wrapper object whoseGIDL type is String, WString or some
interface. The type parameterT denotes the currentGIDL class,A
is its correspondingCORBA class, whileA v denotes theCORBA
smart pointer helper type that assists with memory management
and parameter passing. TheBaseObject class inherits from the

28

1 class ErasedBase { protected: void* obj; };
2 template<class T,class A,class A_v> class BaseObject :
3 public ErasedBase, public GIDL_Type<T> {
4 protected:
5 static void fillObjFromAny(CORBA::Any& a, A*& v) {
6 CORBA::Object_ptr co = new CORBA::Object();
7 a>>=co; A* w = A::_narrow(co); v = w;
8 }
9 static void fillAnyFromObj(CORBA::Any& a, A* v) { a<<=v; }
10 public:
11 typedef A GIDL_A; typedef A_v GIDL_A_v; typedef Self T;
12
13 BaseObject(A* ob) { this->obj = ob; }
14 BaseObject(const A_v& a_v) {this->obj=a_v._retn();}
15 BaseObject(const T& ob) { this->obj = ob.obj; } //
16 BaseObject(const GIDL::Any_GIDL& ob)
17 {T::fillObjFromAny(*ob.getOrigObj(),getOrigObj());}
18 template<class GG> BaseObject(
19 const BaseObject<GG,GG::GIDL_A,GG::GIDL_A_v>& o
20) { this->obj = (A*)o.getOrigObj(); }
21 /*** SIMILAR CODE FOR THE ASSIGNMENT OPERATORS ***/
22
23 operator A*() const { return (A*)obj; }
24 template < class GG > operator GG() const{
25 GG g; // test GG superclass of the current class!
26 if(0) { A* ob; ob = g.getOrigObj(); }
27 void*& ref = (void*&)g.getOrigObj();
28 ref = GG::_narrow(this->getOrigObj()); return g;
29 }
30 A*& getOrigObj() const { return (A*) obj; }
31 void setOrigObj(A* o) { obj = o; }
32
33 static A*& _narrow(const T& ob){return ob.getOrigObj();}
34 static CORBA::Any* _any_narrow(const T& ob) { /* ... */ }
35 static T _lift(CORBA::Any& a, T& ob)
36 { T::fillObjFromAny(a,ob.getOrigObj()); return ob; }
37 static T _lift(CORBA::Object* o) { return T(A::_narrow(o));}
38 static T _lift(const A* ob) { return T(ob); }
39 /*** SIMILAR: _lift(A_v) AND _lift(CORBA::Any& v) ***/
40 };

Figure 8. The base class for theGIDL wrapper objects whose types
areGIDL interfaces. (We have omitted theinline keyword)

ErasedBase class that stores the type-erased representation under
the form of a void pointer, and from theGIDL Type, the supertype
of all GIDL types. ThefillObjFromAny andfillAnyFromObj
functions abstract theCORBA functionality of creating an object
from aCORBA Any-type value, and vice-versa. They are re-written
for theString/WString types as theCORBA specific calls differ.
The implementation provides overloaded constructors, assignment
operators and accessor functions that work over variousCORBA
and GIDL types, allowing the user to manipulate in an easy and
transparent wayGIDL wrapper objects.

The generic constructor (lines18-20) receives as a parameter a
GIDL object whose type is in factGG. The use ofBaseObject<GG,
GG::GIDL A,GG::GIDL A v>, together with the cast toA* in line
20, statically checks that the instantiation of the typeGG is a GIDL
interface type that is a subtype of the instantiation ofT (with re-
spect to the originalGIDL specification). This irregular use of the
BaseObject type constructor is one of theGADT characteristics.
Note also the use of theabstract type membersGG::GIDL A and
GG::GIDL A v. The mapping also defines a type-unsafe cast oper-
ator (lines24-29) that allows the user to transform an object to one
of a more specialized type. The implementation, however, statically
ensures that the result’s type is a subtype of the current type.

4.2 Handling Multiple Inheritance

We now present the rationale behind the C++ mapping of the
GIDL inheritance hierarchies. There are two main requirements that
guided our design:

template<class K, class D> BinTree {
protected: ::BinTree* obj;
public: // system functionality

void setOrigObj(::BinTree* o) { obj = o; }
// GIDL specification functionality /* ... */

};
template<class K, class D> Node : public virtual BinTree<K, D> {

protected: ::Node* obj;
public: // system functionality

void setOrigObj(::Node* o) { obj = o; }
// GIDL specification functionality

BinTree<K,D> getLeftTree() { /* ... */ }
};

Figure 9. Naive translation for the C++ mapping

• As far as the representation is concerned, eachGIDL wrapper
stores precisely one (corresponding)CORBA-type object: its
erasure. This is a performance concern. It is important to keep
the object layout of theGIDL stub wrapper small.
• In terms of functionality, theGIDL wrapper features only the

casting functionality associated with its type; in other words
the systemfunctionality is not subject to inheritance. This is a
type-soundness, as well as a performance concern.

Throughout this section we refer to theGIDL specification in
Figure 3. We first examine the shortcomings of a naı̈ve transla-
tion that would preserve the inheritance hierarchy among the gen-
eratedGIDL wrappers. Figure 9 shows such an attempt. If each
GIDL wrapper stores its own representation as an object of its cor-
respondingCORBA-type, the wrapper object layout will grow expo-
nentially. An alternative would be to store the representation under
the form of a void pointer in a base class and to use virtual in-
heritance (see theBaseObject class in Figure 8). However, then
the system is not type-safe, since the user may call, for example,
thesetOrigObj function of theBinTree class to set theobj field
of a Node GIDL wrapper. Now calling theNode::getLeftTree
method on the wrapper will result in a run-time error. This happens
because theNode wrapper inherits thecasting functionalityof the
BinTree wrapper.

Figure 10 shows our solution. The abstract classLeaf P models
the inheritance hierarchy in theGIDL specification: it inherits from
BinTree P and it provides the implementation for the methods
defined in theLeaf GIDL interface (n.n.init). Our mechanism
resembles Scala [9] traits [10].Leaf P does not encapsulate state
and does not provide constructors, but inherits from theBinTree P
“trait”. It provides the servicespromised by the corresponding
GIDL interface, andrequires an accessorfor the CORBA object
encapsulated in the wrapper (thegetErasedObj function).

Finally, theLeaf wrapper class aggregates the casting function-
ality and the services promised by theGIDL specification by in-
heriting fromLeaf P andBaseObject respectively. It rewrites the
functionality that is not subject to inheritance: the constructors and
the assignment operators by calling the corresponding operations
in BaseObject. Note that there is no subtyping relation between
the wrappers even if theGIDL specification requires it. However,
the templated constructor ensures a type-safe, user-transparent cast
between sayLeaf<A,B> andBinTree<A,B>.

To summarize, the C++ binding usesGADTs andabstract type
membersto enforce a precise meta-interface of the extension. The
latter we simulate in C++ by using templates in conjunction with
typedef definitions. Further on, the functionality described in the
GIDL interface is implemented viatraits. We represent traits in
C++ as abstract classes and the require services as abstract virtual
methods. The latter are provided by theGIDL wrapper that “mixins”
the two-wayGIDL-CORBA casting with the functionality published
in the specification. Our extension experiment constitutes another

29

template<class K,class D> class Leaf_P : public BinTree_P<K,D>{
protected:

virtual void* getErasedObj() = 0;
::Leaf* getObject_Leaf(){ return (::Leaf*)getErasedObj(); }

public:
void init(const K& a1, const D& a2) {

CORBA::Object_ptr& a1_tmp = K::_narrow(a1);
CORBA::Any& a2_tmp = *D::_any_narrow(a2);
getObject_Leaf()->init(a1_tmp, a2_tmp);

}
};
template<class K,class D> class Leaf :

public virtual Leaf_P< K, D >,
public BaseObject<Leaf<K,D>,::Leaf,::Leaf_var>

{
protected:

typedef Leaf<K,D> T;
typedef BaseObject<T,GIDL_A,GIDL_A_v> BT;
void* getErasedObj() { return obj; }

public:
Leaf() : BT() { }
Leaf(const GIDL_A_v a) : BT(a) { }
Leaf(const GIDL_A* a) : BT(a) { }
Leaf(const T & a) : BT(a) { }
Leaf(const Any_GIDL & a) : BT(a) { }
template <class GG> Leaf(

const BaseObject<GG, GG::GIDL_A, GG::GIDL_A_v>& a
) : BT(a) { }
/*** SIMILAR CODE FOR THE ASSIGNMENT OPERATORS ***/

};

Figure 10. Part of the C++ generated wrapper for theGIDL::Leaf
interface.::Leaf and::Leaf var areCORBA-types

empirical argument to strengthen Odersky and Zenger’s claim that
abstract type members, andmodular mixin compositionare vital in
achieving first-class value components. We would add theGADT
technique to that.

4.3 Ease of Use

One additional feature of theGIDL framework, in our view, is
that it is much simpler to be used than its underlyingCORBA
architecture. At a high-level, this is accomplished by making the
GIDL wrappers to encapsulate a variety of constructors, cast and
assignment operators.

Figures 11A andB illustrate theCORBA/GIDL code that inserts
GIDL/CORBAOctet andString objects intoAny objects, then per-
forms the reverse operation and prints the results. Note that the use
of CORBA specific functions, such asCORBA::Any::from string,
is hidden inside theGIDL wrappers; theGIDL code is uniform with
respect to all the types, and mainly uses constructors and assign-
ment operators. AllGIDL wrappers provide a casting operator to
their original CORBA-type object that is transparently used in the
statement that prints the two objects. Figure 11C presents the im-
plementation of the generic assignment operator of theAny GIDL
type. SinceGIDL Type is an abstract supertype for allGIDL types,
its use in the parameter declaration statically ensures that the pa-
rameter is actually aGIDL object. By construction, the only class
that inherits fromGIDL Type<T> is T, therefore the dynamic cast
is safe. Finally the method calls theT:: lift operation (see Fig-
ure 8) that fills in the object encapsulated by theGIDL Any wrapper
with the appropriate value stored in theT-type object.

Figure 11D presents one of the shortcomings of our mapping.
The GIDL wrapper for arrays, as for all the otherGIDL wrapper-
types, has as representation its correspondingCORBA generic-type
erased object. The representation for anArray T-type object will
be an array of theCORBA Any type objects, since the erasure of the
non-qualified type-parameterT is theAny CORBA type. Although
the user may expect that a statement likearr[i] = i inside the
for-loop should do the job, this is not the case. The reason is that

// A. CORBA code
using namespace CORBA;
Octet oc = 1; Char* str = string_dup("hello"); Any a_oc, a_str;
a_str <<= CORBA::Any::from_string(str, 0);
a_oc <<= CORBA::Any::from_octet (oc);
a_oc >>= CORBA::Any::to_octet (oc);
a_str >>= CORBA::Any::to_string (str, 0);
cout<<"Octet (1): "<<oc<<" string (hello): "<<str<<endl;

// B. GIDL code:
using namespace GIDL;
Octet_GIDL oc(1); String_GIDL str("hello"); Any_GIDL a_oc, a_str;
a_oc = sh; a_str = str; oc = a_oc; str = a_str;
cout<<"Octet (1): "<<oc<<" string (hello): "<<str<<endl;

// C. The implementation of the Any_GIDL::operator=
template<class T> void Any_GIDL::operator=(GIDL_Type<T>& b){

T& a = dynamic_cast<T&>(b);
if(!this->obj) this->obj = new CORBA::Any();
T::_lift(this->obj, a);

}

// D. GIDL Arrays
interface Foo<T> { //GIDL specification

typedef T Array_T[100];
T sum_and_revert(inout Array_T arr);

};
// C++ code using the GIDL specification above
Foo<Long_GIDL> foo = ...; Foo<Long_GIDL>::Array_T arr;
for(int i=0; i<100; i++) {

Long_GIDL elem(i); arr[i] = elem;
}
int sum=foo.sum_and_invert(arr); Long_GIDL arr_0=arr[0];
cout<<"sum (4950): "<<sum<<" arr[0] (99): <<arr_0<<endl;

Figure 11. GIDL/CORBA use of theAny type

Data Type In Inout Out Return
fixed struct ct struct& struct& struct& struct
var struct ct struct& struct& struct& struct*

fixed array ct array array array array sl*
var array ct array array array sl* array sl*

any ct any& any& any*& any*
...

Table 1. CORBA types for in, inout, out parameters and the result.
ct = const, sl = slice, var = variable.

Any GIDL does not provide an assignment operator or constructor
that takes anint parameter.

Another simplification that GIDL brings refers to the types
of the in, inout andout parameter, and the type of the result.
Table 1 shows several of these types as specified in theCORBA
standard. TheGIDL parameter passing scheme is much simpler:
the parameter type forin is const T&, for inout andout is T&,
for the result isT, whereT denotes an arbitraryGIDL type. The
necessary type-conversions are hidden in theGIDL wrapper.

4.4 Type-Soundness Discussion

We restrict our attention to the wrapper-types corresponding to
the GIDL interfaces. The same arguments apply to the rest of the
wrapper-types. Let us examine the type-unsafe operations of the
BaseObject class, presented in Figure 8. Note first that any func-
tion that receives a parameter of typeAny GIDL or CORBA::Any is
unsafe, as the user may insert an object of a different type than the
one expected. For example theLeaf(const Any GIDL& a) con-
structor expects that an object ofCORBA type Leaf was inserted
in a: the user may decide otherwise, however, and the system can-
not statically enforce it. It is debatable whether the introduction of
generics toCORBA has rendered the existence of theAny type un-

30

// GIDL specification
interface Foo<T, I:-Test, E: Test> {

Test foo(inout T t,inout I i,inout E e);
}
// Wrapper stub for foo
template<class T, class I, classE>
GIDL::Test Foo<T,I,E>::foo(T& t, I& i, E& e) {

CORBA::Any& et = T::_any_narrow(t);
CORBA::Object*& ei = I::_narrow(i);
CORBA::Test*& ee = E::_narrow(e);
CORBA::Test* ret = getObjectFoo()->foo(et, ei, ee);
return GIDL::Test::_lift(ret);

}
// Wrapper skeleton for foo
template<class T, class I, class E> ::Test Foo_Impl<T,I,E>::foo
(CORBA::Any& et, CORBA::Object*& ei, ::Test*& ee) {

T& t=T::_lift(et); I& i=I::_lift(ei); E& e=E::_lift(ee);
GIDL::Test ret = fooGIDL(t, i, e);
return GIDL::Test::_narrow(ret);

}

Figure 12. GIDL interface and the corresponding stub/skeleton
wrappers for functionfoo

necessary inGIDL at the user level. We decided to keep it in the
language for backward compatibility reasons. The drawback is that
the user may manipulate it in a type-unsafe way.

In addition to these, there are two more unsafe operations:
template < class GG > operator GG() const { ... }
static T lift (const CORBA::Object* o) { ... }.

The templated cast operator is naturally unsafe, as it allows the
user to cast to a more specialized type. Thelift method is used
in the wrapper to lift an export-based qualified generic type object
(:-), since its erasure isCORBA::Object*. Its use inside the wrap-
per is type-safe; however, if the user invokes it directly, it might
result in type-errors.

Our intent is that the user access to theGIDL wrappers should
be restricted to the constructors, the assignment and cast operators,
and the functionality described in theGIDL specification, while the
rest of the casting functionality should be invisible. However this is
not possible since thenarrow and lift methods are called in the
wrapper method implementation to cast the parameters, and hence
need to be declared public.

A type-soundnessresult is difficult to formalize as we are un-
aware of such results for (subsets of) the underlyingCORBA archi-
tecture, and the C++ language is type-unsafe. In the following we
shall give some informal soundness arguments for a subset of the
GIDL bindings. We assume that the user can access only wrapper
constructors and operators and only those that do not involve the
Any type. The preciseGADT interface guarantees that the creation
of GIDL objects will not yield type-errors. It remains to examine
method invocations. It is trivial to see from the implementation of
the lift, narrow, and any narrow functions (Figure 8) that the
following relations hold:

G:: lift[A*]◦G:: narrow[G] (a) ∼ a
G:: lift[Object*]◦G:: narrow[G] (a) ∼ a
G:: lift[Any]◦G:: any narrow[G] (a) ∼ a

where[] is used for the method’s signature,◦ stands for function
composition, whileg1∼g2 denotes thatg1 andg2 are equivalent
in the sense that they encapsulate the reference to the sameCORBA
object implementation. (The reverse also holds.)

Figure 12 presents theGIDL operationFoo::foo() and its C++
stub/skeleton mapping. The stub wrapper will translate the param-
eter to an object of the correspondingCORBA erased type via the
narrow/ any narrow methods. The skeleton wrapper does the re-

verse: lifts aCORBA type object to a correspondingGIDL type ob-
ject. Since the instantiations for theT, I, andE type parameters are
the same on the client and server side, the above relations and the

exactGADT casting interface guarantee that theGIDL object passed
as parameter to the stub wrapper by the client will have the same
type and will hold a reference to the same object-implementation
as the one that is delivered to thefooGIDL server implementation
method. The same argument applies to the result object.

5. Library Translation: Trappers
The immediate use ofGIDL is to enable applications that combine
parameterized, multi-language components. This section investi-
gates another important application: what is required to useGIDL as
a vehicle to access generic libraries beyond their original language
boundaries, and what techniques can automate this process? For the
purpose of this paper, we restrict the discussion to the simpler case
when the implementation shares a single process space.

We find C++’s Standard Template Library(STL) to be an ideal
candidate for experimentation due to the wealth of generic types,
the variety of operators, and high-level properties such as the or-
thogonality betweenthe algorithm and container domainsit ex-
poses. Furthermore, the fact that, for performance reasons,STL
does not hide the representation of its objects poses new translation-
related challenges. In what follows, we review theSTL library at a
high level, show theGIDL specification for a server encapsulating
part of STL’s functionality, identify and propose solutions to two
issues that prevent the translation from implementing the library
semantics, and discuss the performance-related trade-offs.

5.1 STL at a High Level

STL [2] is a general purpose generic library known for providing
a high level of modularity, usability, and extensibility to its com-
ponents, without impacting the code’s efficiency. TheSTL com-
ponents are designed to beorthogonal, in contrast to the tradi-
tional approach where, for example,algorithmsare implemented as
methods insidecontainerclasses. This keeps the source code and
documentation small, and addresses the extensibility issue as it al-
lows the user algorithms to work with theSTL containers andvice-
versa. The orthogonality of the algorithm and container domains
is achieved, in part, through the use of iterators: the algorithms
are specified in terms of iterators that are exported by the contain-
ers and are data structure independent.STL specifies for each con-
tainer/algorithm the iterator category that it provides/requires, and
also the valid operations exported by each iterator category. These
are however defined as English annotations in the standard, as C++
lacks the formalism to express them at the interface level.

Figures 13 and 14 present excerpts of theGIDL iterators and
vector interfaces respectively. We simulateselftypes[11] by the
use of an additional generic type,It, bounded via a mutual re-
cursive export based qualification (:-). This abstracts the iterators
functionality: InpIt<T> exports==(InpIt<T>) method, while
RaiIt<T> exports the==(RaiIt<T>) method. Aninput iterator
has to support operations such as: incrementation (it++), deref-
erencing (*it), and testing for equality/non-equality between two
input iterators(it1==it2, it1!=it2). A forward iteratorallows
reading, writing, and traversal in one direction. Abidirectional iter-
ator allows all the operations defined for theforward iterator, and
in addition it allows traversal in both directions.Random access
iterators are supposed to support all the operations specified for
bidirectional iterator, plus operations as: addition and subtraction
of an integer (it+n, it-n), constant time access to a locationn el-
ements away (it[n]), bidirectional big jumps (it+=n; it-=n;),
and comparisons (it1>it2; etc). The design of iterators and con-
tainers is non-intrusive as it does not assume an inheritance hier-
archy; we use inheritance between iterators only to keep the code
short. TheSTLvector container does not expect the iterators to be
subject to an inheritance hierarchy, but only to implement the func-
tionality described in theSTL specification:RI is expected to share

31

interface BaseIter<T, It:-BaseIter<T; It> > {
unsigned long getErasedSTL(); It cloneIt();
void operator"++@p"(); void operator"++@a"();

};
interface InputIter<T,It:-InputIter<T;It> >:BaseIter<T,It>{

T operator"*" ();
boolean operator"==" (in It it);
boolean operator"!=" (in It it);

};
interface ForwardIter<T, It:-ForwardIter<T; It> >

: OutputIter<T, It>, InputIter<T; It>
{ void assign(in T t1); };

interface BidirIter<T, It:-BidirIter<T; It> >
: ForwardIter<T, It>
{ void operator"--@p"(); void operator"--@a"(); };

interface RandAccessIter<T,It:-RandAccessIter<T,It> >
: BidirIter<T, It> {

boolean operator">" (in It it);
/* same for "<", ">=", "<=" */
Iterator operator"+" (in long n);
Iterator operator"-" (in long n);
void operator"+=" (in long n);
void operator"-=" (in long n);
T operator"[]"(in long n);
void assign(in T obj, in long index);

};

interface InpIt<T> : InputIter<T, InpIt<T> > {};
interface ForwIt<T> : ForwardIter<T, ForwIt<T> >{};
interface BidirIt<T> : BidirIter<T, BidirIt<T> > {};
interface RAI<T> : RandAccessIter<T, RAI<T> >{};

Figure 13. GIDL specification forSTL iterators; @p/@a disam-
biguate between prefix/postfix operators

interface STLvector
<T, RI:-RandAccessIter<T,RI>; II:-InputIter<T,II> > {

unsigned long getErasedSTL();
RI begin (); RI end(); T operator"[]"(in long n);
void insert(in RI pos, in long n, in T x);
void insert(in RI pos, in II first, in II last);
RI erase (in RI first, in RI last);
void assignAtIndex(in T obj, in long index);
T getAtIndex (in long index);
void assign (in II first, in II end);
void swap (in STLvector<T, Ite, II> v); //....

};

Figure 14. GIDL specification forSTL vector

structural similarity [1] with its qualifierRandAccessIter. Note
that, unlike its underlying architecture,GIDL supports operator and
method overloading.

As observed in [8], theGIDL interface is expressive, self-
describing, and enforces theSTL specification requirements at a
high-level. Another interesting aspect is thatGIDL stub wrappers
for iterators are themselves validSTL iterators: They encapsu-
late the functionality specified bySTL. They can also encapsulate
the necessary type aliasing definitions, either by specifying them
directly in the GIDL specification, or by making theGIDL stub
wrapper extend theSTL base class of their corresponding itera-
tor category. For exampleInputIter stub extends theSTL class
input iterator<T,int>. The latter is achieved by enriching the
GIDL specification with meta data.

5.2 Implementation Approaches

GIDL is designed to be agenericextension framework that can plug
in various back-ends as underlying architectures. An orthogonal,
but nevertheless important, direction is to employGIDL as middle-
ware for exporting generic libraries’ functionality to different envi-
ronments than those for which they were originally designed. Our
approach is to use ablack-boxtranslation scheme that wraps the

template <class T,class It,class It_impl,class II>
class STLvector_Impl :

virtual public ::POA_GIDL::STLvector<T, It, II>,
virtual public ::PortableServer::RefCountServantBase

{
private: vector<T>* vect;
public:

STLvector_Impl() { vect = new vector<T>(10); }
virtual GIDL::UnsignedLong_GIDL getErasedSTL()

{ return (CORBA::ULong)(void*)vect; }
virtual void assign(T& val, GIDL::Long_GIDL& ind)

{ (*vect)[ind] = val; }
virtual T getAtIndex(GIDL::Long_GIDL& ind)

{ return (*vect)[ind]; }
virtual T operator[](GIDL::Long_GIDL& a1_GIDL)

{ return (*vect)[a1_GIDL]; }
virtual It erase(It& it1_GIDL, It& it2_GIDL) {

T* it1 = (T*)it1_GIDL.getErasedSTL();
T* it2 = (T*)it2_GIDL.getErasedSTL();
vector<T>::iterator it_r = vect->erase(it1, it2);
It_impl* it_impl = new It_impl(it_r, vect->size());
return (*it_impl->_thisGIDL());

} // ...
};

template<class T,class It,class It_impl>
class InputIter_Impl :

virtual public POA_GIDL::InputIter<T, It>,
virtual public BaseIter_Impl<T, It, It_impl>,
virtual public ::PortableServer::RefCountServantBase

{
// private: T* iter; field inherited from BaseIter_Impl
public:

virtual It cloneItGIDL()
{ return (new It_impl(iter))->_thisGIDL(); }

virtual GIDL::UnsignedLong_GIDL getErasedSTL()
{ return (CORBA::ULong)(void*)iter; }

virtual T operator*() { return *iter; }
virtual GIDL::Boolean_GIDL operator==(It& it1_GIDL) {

CORBA::ULong d1 = this->iter;
CORBA::ULong d2 = it1_GIDL.getErasedSTL();
return (d1==d2);

};
};

Figure 15. GIDL vector and input iterator server implementations.

library objects intoGIDL objects and to study what other constructs
are required to enforce the library semantics.

Figure 15 exemplifies our approach. Each implementation of a
GIDL type holds a reference to the correspondingSTL object that
can be accessed via thegetErasedSTL function in the form of
anunsigned long value. The implementation of theerase func-
tion retrieves theSTL objects corresponding to theGIDL wrapper
parameters, calls theSTL erase function on theSTL vector refer-
ence, and creates a newGIDL server corresponding to the iterator
result. Note that the semantics of theerase function are irrelevant
in what the translation mechanism is concerned.

The GIDL code in Figure 16 provides, in our opinion, the look
and feel of regularSTL code. The only thing that differs are the
types for the vector and iterators (lines1-4). A vector is obtained in
line 6. Therai beg andrai end iterators point to the start and the
end of the vector element sequence. Then the loop in lines12-15
assigns new values to the vector’s elements.

There are, however,two problemswith the current implementa-
tion. The first appears in line14 wheredereferencing is followed by
an assignmentas in*rai=val. In C++ this assigns the valueval to
the iterator’s current element. TheGIDL code does not accomplish
this: the result of the* operator is aLong GIDL object whose value
is set toval. The iterator’s current element is not updated as no re-
quest is made to the server. The origin of this problem is thatGIDL
does not support reference-type results, since the implementation
and client code are not assumed to share the same process space.

32

1. typedef GIDL::Long_GIDL Long;
2. typedef GIDL::RAI<Long> rai_Long;
3. typedef GIDL::InpIt<Long> inp_Long
4. typedef GIDL::STLvector<Long,rai_Long,rai_Long>
5. Vect_Long;
6. Vect_Long vect = ...;
7. rai_Long iter = vect.begin();
8. rai_Long rai_end = vect.end();
9. rai_Long rai_beg = iter; // problem 2
10.
11. int count = 0;
12. while(rai_beg!=rai_end) {
13. if(*rai_beg!=33)
14. *rai_beg++ = count++; // problem 1
15. }
16. cout<<*iter<<endl;

Figure 16. GIDL client code that uses theSTL library.

The second problem surfaces in line16, where the user intends
to print the first element of the vector. The copy constructor of
the GIDL wrapperdoes not createa new implementation object,
but insteadaliasesit: After line 9 is executed, bothrai beg and
iter share the same implementation. Consequently, at line16 all
three iterators point to the end of the vector. The easy fix is to
replace line9 with rai Long rai beg = iter.clone() or with
rai Long rai beg = iter+0. We are aiming, however, for a
higher degree of composition betweenGIDL andSTL components,
where for exampleGIDL iterators can be used as parameters toSTL
algorithms. Since theSTL library code is out of our reach, the direct
fix is not an option.

One way to address the first problem is to introduce a newGIDL
parameterized type, sayWrapType<T>, whose object-implementation
stores aT value while itsGIDL interface provides accessors for it:
interface WrapType<T> { T get(); void set(in T t) }
. WrapType is a specialGIDL type: its constructors and assignment
operators call theset function, while its cast operator calls theget
function to return the encapsulatedT-type object. Instantiating the
iterator and vector overWrapType<T> instead ofT fixes the first
issue. The main drawback of this approach is that it adds an ex-
tra indirection. In order to get theT type object two server calls are
performed instead of one. Furthermore, it is not user-transparent, as
the iterators and vectors need to be instantiated over theWrapType
type. The next section discusses the techniques we employed to
deal with these issues.

5.3 Trappers and Wrappers

We preserve theSTL’s programming idioms underGIDL by extend-
ing theGIDL wrapper with yet another component that enforces the
library semantics. Figure 17 illustrates our approach.RaiIt Lib
refines the behavior of its correspondingGIDL wrapperRAI to
match the library semantics.

First, it provides two sets of constructors and assignment op-
erators. The one that receives as parameter a library wrapper
object clonesthe iterator implementation object, while the other
one aliases it. The change in Figure 16 is to makerai Long and
Vect Long aliasRaiIt Lib<Long> and
STLvect Lib<Long,rai Long,rai Long> types, respectively.
Now iter/rai end alias the implementation of the iterators re-
turned by thebegin/end vector operations, whilerai beg clones
it (see lines7, 8, 9). At line 16 iter points to the first element of
the vector, as expected.

Second, the RaiIt Lib class defines a new semantics for the
* operator that now returns aTrapper object. At a high-level, the
trapper can be seen as a proxy for performing read/write opera-
tions. It captures the container and the index and uses container-
methods to perform the operation. The “trapper” in Figure 17 ex-

template<class T,class Iter> class TrapperIterStar : public T {
protected:

Iter it;
public:

TrapperIterStar(const Iter& i)
{ it = i; obj = (*it).getOrigObj(); }

TrapperIterStar(const TrapperIterStar<T,Iter>& tr)
{ it = tr.it; obj = (*it).getOrigObj(); }

void operator=(const T& t)
{ it.assign(t); obj = t.getOrigObj(); }

void operator=(const TrapperIterStar<T,Iter>& tr)
{ it.assign(tr.getOrigObj()); obj = tr.getOrigObj(); }

};

template<class T> class RaiIt_Lib : public GIDL::RAI<T::Self> {
private:

typedef GIDL::RAI<T> It;
typedef TrapperIterStar<T,It> Trapper;
typedef GIDL::BaseObject<It,::RAI,::RAI_var> GIDL_BT;

public:
typedef T Elem_Type;
typedef Self It;

RaiIt_Lib() : GIDL_BT() {}
RaiIt_Lib(const It& r): GIDL_BT(r.getOrigObj()) {}
RaiIt_Lib(const RaiIt_Lib<T>& r)

: GIDL_BT(r.cloneIt().getOrigObj()) {}

operator It() { return *this; }
Trapper operator*() { return Trapper(*this); }

void operator=(const It& iter)
{ setOrigObj(iter.getOrigObj()); }

void operator=(const InpIt_Lib<T>& iter)
{ setOrigObj(iter.cloneIt().getOrigObj()); }

};

template<class T,class RI,class II> class Vect_Lib
: public GIDL::STLvector<T::Self,RI::Self,II::Self>{...}

Figure 17. Library Iterator Wrapper and its associated Trapper that
targets ease of use.

tends its type parameter, and thus inherits all the type parameter op-
erations. In addition it refines the assignment operator ofT to call
an iterator method to update its elements. This technique solves the
problem encountered at line14 in Figure 16 and it can be applied in
a more general context to extendGIDL with reference-type results.
Note that the use of thetrapper is transparent for the user. The
type TrapperIterStar does not appear anywhere in the client
code. Furthermore, objects belonging to this type can be stored and
manipulated asT& objects. For example,T& t = *it; if(t<0)
t=-t; will successfully update the iterator’s current element. This
requires however that theGIDL wrappers declare the=(T&) opera-
tor virtual.

We conclude this section with several remarks. It is easy to an-
ticipate howGIDL metadata can drive the compiler to generate the
library wrapper code that captures the library semantics. All that is
needed is the name of a method-member:cloneIt for the iterator’s
copy constructor andassign for the type-reference result. When
available, the library wrappers should replace theGIDL correspond-
ing types. For example, when using anSTL algorithm with GIDL
iterators, the former should be parameterized by the library wrap-
per types. Finally, note that nesting library wrappers is safe: We
have thatRaiIt Lib<RaiIt Lib<Long> > it; **it=5; works
correctly. Also, the use of theSelf abstract type member in the
extension clause of the iterator/vector library wrappers ensures that
the their inherited operations returnGIDL wrapper objects. There-
fore no unnecessary cloning operation are performed:
Vect Lib<Long,RaiIt Lib<Long>,RaiIt Lib<Long> > v;
RaiIt Lib<Long> it = vect.begin();

33

template<class T,class Iter> class TrapperIterStar {
protected: Iter it;
public:

TrapperIterStar(const Iter& i) { it = i; }
TrapperIterStar(const TrapperIterStar<T,Iter>& tr)

{ it = tr.it; }
operator T() { return *it; }

TrapperIterStar<T::Elem_Type, T> operator*() const
{ return *(*it); }

void operator=(const TrapperIterStar<T,Iter>& trap)
{ it.assign(trap.it.operator*()); }

void operator=(const T& t) { it.assign(t); }
};

Figure 18. Trapper model that targets performance

Trapper Type 200000 20000 2000 200
EOU trapper 13.4 11.7 5 3.4
Perf. trapper I 1 1.4 1.5 1.68
Perf. trapper II 1 1.05 1.16 1.17

Table 2. The table shows the time ratio between trapper-based and
optimalSTL code that tests the read/write operation on the iterator’s
elements. The size of the iterator is varied from200 to 200000.

EOU trapper= the one in Figure 17 (ease of use).
Perf Trapper I= the one in Figure 18 (performance).
Perf Trapper II= improved version of the latter, which by-passes

the extra indirection introduced by theGIDL wrappers.

5.4 Ease of use - Performance Trade-off

The trapper’sdesign is a trade-off between performance and ease
of use. The implementation above targets ease of use, since a
trapper object can be disguised and manipulated under the form
of a T& object. An alternative, targeting performance, can model
the trapper as a read/write lazy evaluator as shown in Figure 18.
Note that the mix-in relation is cut off, and instead the support for
nested iterators is achieved by exporting the* operator. It follows
that the trapper cannot be captured as aT& object and used at a later
time. The intent is that a trapper is subject to exactly one read or
write operation (but not both), as in:T t = *it++; *it = t;
t.method1();. The trapper’s purpose is to postpone the action
until the code reveals the type of the operation to be performed
(read or write). Consequently, the constructors and the= operators
are lighter, while a write operation accesses the server only once
(instead of twice). Furthermore, this approach does not require the
= operator to be declaredvirtual in theGIDL wrapper.

Table 2 shows the trapper-related performance results. Notice
that the code using the trapper targeting ease of use is from3.4 to
13.4 times slower than the optimalSTL code, while the one tar-
geting performance incurs an overhead of at most68%. As the it-
erator size increases, the cache lines are broken and the overhead
approaches0. The test programs were compiled with thegcccom-
piler version3.4.2 under the maximum optimization level (-O3),
on a2.4 GHz Pentium4 machine.

We found thetrapperconcept quite useful and we employed it
to implement theGIDL arrays. The previous design was awkward
in the sense that, for example, theLong GIDL class was storing
two fields: anint and a pointer to anint. The latter pointed to
the address of the former when the object was not an array element
and to the location in the array otherwise. All the operations were
effected on the pointer field. By contrast, thetrapper technique
allows a natural representation consisting of only oneint field.

6. Conclusions
We have examined a number of issues in the extension of generic
libraries in heterogeneous environments. We have found certain
programming language concepts and techniques to be particularly
useful in extending libraries in this context:GADT, abstract type
membersand traits. Generic libraries that are exported through a
language-neutral interface may no longer support all of their usual
programming patterns. We have shown how particular language
bindings can be extended to allow efficient, natural use of complex
generic libraries. We have chosen theSTL library as an example
because it is atypically complex, with several orthogonal aspects
that a successful component architecture must deal with. The tech-
niques we have used are not specific to theSTL library, and there-
fore may be adapted to other generic libraries. This is a first step
in automating the export of generic libraries to a multi-language
setting.

References
[1] P. Canning, W. Cook, W. Hill, and W. Olthoff. F-Bounded Poly-

morphism for Object Oriented Programming. InACM Symposium
on Functional Programming Languages and Computer Architecture
(FPCA), pages 273–280, 1989.

[2] A. S. David R. Musser, Gillmer J. Derge.STL Tutorial and Reference
Guide, Second Edition. Addison-Wesley (ISBN 0-201-37923-6),
2001.

[3] R. E. Johnson. Type Object. InEuroPLoP, 1996.
[4] A. Kennedy and C. V. Russo. Generalized Algebraic Data Types

and Object-Oriented Programming. InProceedings of the 20th
Annual ACM Conference on Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 21–40, 2005.

[5] A. Kennedy and D. Syme. Design and Implementation of Generics
for the .NET Common Language Runtime. InProceedings of the
ACM SIGPLAN 2001 conference, 2000.

[6] Microsoft. DCOM Technical Overview.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndcom/html/msdndcomtec.asp, 1996.

[7] Sun Microsystems. JavaBeans
http://java.sun.com/products/javabeans/reference/api/, 2006.

[8] C. E. Oancea and S. M. Watt. Parametric Polimorphism for Software
Component Architectures. InProceedings of the 20th Annual ACM
Conference on Object Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 147–166, 2005.

[9] M. Odersky and al. Technical Report IC 2004/64, an Overview of
the Scala Programming Language. Technical report, EPFL Lausanne,
Switzerland, 2004.

[10] M. Odersky, V. Cremet, C. Rockl, and M. Zenger. A Nominal Theory
of Objects with Dependent Types. InProceedings of ECOOP’03.

[11] M. Odersky and M. Zenger. Scalable Component Abstractions. In
Proceedings of the 20th Annual ACM Conference on Object Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
pages 41–57, 2005.

[12] OMG. Common Object Request Broker Architecture — OMG
IDL Syntax and Semantics. Revision2.4 (October 2000), OMG
Specification, 2000.

[13] OMG. Common Object Request Broker: Architecture and Specifica-
tion. Revision2.4 (October 2000), OMG Specification, 2000.

[14] J. Siegel.CORBA 3 Fundamentals and Programming. John Wiley
and Sons, 2000. ”Wiley computer publishing.”.

[15] Sun. Java Native Interface Homepage,
http://java.sun.com/j2se/1.4.2/docs/guide/jni/.

[16] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio, S. C. Morrison,
J. M. Steinbach, and R. S. Sutor.AXIOM Library Compiler User
Guide. Numerical Algorithms Group (ISBN 1-85206-106-5), 1994.

[17] H. Xi, C. Chen, and G. Chen. Guarded Recursive Data Type
Constructors. InProceedings of the 30th ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages (POPL), pages
224–235, 2003.

34

Adding Syntax and Static Analysis to Libraries via
Extensible Compilers and Language Extensions∗

Eric Van Wyk
University of Minnesota

evw@cs.umn.edu

Derek Bodin
University of Minnesota

bodin@cs.umn.edu

Paul Huntington
University of Minnesota

johnspa@cs.umn.edu

ABSTRACT
We show how new syntactic forms and static analysis can be
added to a programming language to support abstractions
provided by libraries. Libraries have the important char-
acteristic that programmers can use multiple libraries in a
single program. Thus, any attempt to extend a language’s
syntax and analysis should be done in a composable man-
ner so that similar extensions that support other libraries
can be used by the programmer in the same program. To
accomplish this we have developed an extensible attribute
grammar specification of Java 1.4 written in the attribute
grammar specification language Silver. Library writers can
specify, as an attribute grammar, new syntax and analysis
that extends the language and supports their library. The
Silver tools automatically compose the grammars defining
the language and the programmer-selected language exten-
sions (for their chosen libraries) into a specification for a new
custom language that has language-level support for the li-
braries. We demonstrate how syntax and analysis are added
to a language by extending Java with syntax from the query
language SQL and static analysis of these constructs so that
syntax and type errors in SQL queries can be detected at
compile-time.

1. INTRODUCTION
Libraries play a critical role in nearly all modern program-
ming languages. The Java libraries, C# libraries, the C++
Standard Template Library, and the Haskell Prelude all pro-
vide important abstractions and functionality to program-
mers in those language; learning a programming language
now involves learning the intricacies of its libraries as well.
The libraries are as much a part of these languages as their
type systems. Using libraries to define new abstractions for
a language helps to keep the definition of the language sim-
pler than if these features where implemented as first class
constructs of the language.

∗Different aspects of this work are partially funded by NSF
CAREER Award #0347860 and the McKnight Foundation.

LCSD ’06 Portland, Oregon USA

An important characteristic of libraries is their composi-
tionality. A programmer can use multiple libraries, from
different sources, in the same application. Thus, libraries
that support specific domains can be used in applications
with aspects that cross multiple domains. For example, a
Java application that stores data in a relational database,
processes the data and displays it using a graphical user
interface may use both the JDBC and the Swing libraries.
Furthermore, abstractions useful to much smaller commu-
nities, such as the computational geometry abstractions in
the CGAL C++ library, can also be packaged as libraries.

Libraries have a number of drawbacks, however. As mech-
anisms for extending languages they provide no means for
library writers to add new syntax that may provide a more
readable means of using the abstraction in a program. Tra-
ditional libraries provide no effective means for library writ-
ers to specify any static semantic analysis that the compiler
can use to ensure that the library abstractions (methods
or functions) are used correctly by the programmer. When
libraries embed domain specific languages into the “host”
language, as the JDBC library embeds SQL into Java, there
is no means for statically checking that expressions in the
embedded language are free of syntax and type errors. This
is a serious problem with the JDBC library since syntax
and type errors are not discovered at compile time but at
run time. Traditional libraries also provide no means for
specifying optimizations of method and function calls.

These drawbacks, especially in libraries for database ac-
cess, have led some to implement the abstractions not as
libraries but as constructs and types in the language. There
is an trend in database systems towards more tightly inte-
grating the application program with the database queries.
Jim Gray [10] calls this removing the “inside the database”
and “outside the database” dichotomy. In many cases, this
means more tightly integrating the Java application pro-
gram with the SQL queries to be performed on a database
server. SQLJ is an example of this. Part 0 of the SQLJ
standard [7] specifies how static database queries can be
written directly in a Java application program. An SQLJ
compiler checks these queries for syntax and type errors.
This provides a much more natural programming experience
than that provided by a low level API such as JDBC (Java
DataBase Connector) which require the programmer to treat
database query commands as Java Strings that are passed,
as strings, to a database server where they are not checked
for syntactic or type correctness until run time. More re-

35

cently, Cω [3] and the Microsoft LINQ project [15] have
extended C# and the .Net framework to directly support
the querying of relational data.

These extended languages have added relational data query
constructs because the technologies have matured to a rel-
atively stable point and because very many programs are
written that can make use of these features. Thus, if one is
working in this domain, one can benefit from a language that
directly supports the task at hand. Programmers working
in less popular domains, however, are left with the library
approach as it is the only way in which their domain-specific
abstractions can be used in their programs. In the approach
of SQLJ, Cω, and LINQ, a new monolithic language with
new features is created, but there is no way for other com-
munities to further extend Java or C# with new syntax and
semantic analysis to support their domains.

In this paper we present a different, more general, approach
to integrating programming and database query languages
based on extensible languages and illustrate how new syntax
and static analysis can be added to library-based implemen-
tations of new abstractions. The key characteristic of this
approach is that multiple language extensions can be com-
posed to form a new extended language that supports all
aspects of a programming task. We have developed several
modular, composable, language extensions to Java. In this
paper we describe the extension that embeds SQL into Java
to provide syntax and type checking for SQL queries and
thus supports the implementation of these features in the
JDBC library. We have built other extensions with domain-
specific language features; one specifies program transforma-
tions that simplify the writing of robust and efficient compu-
tational geometry programs. Another general purpose ex-
tension adds pattern matching constructs from Pizza [17] to
Java. Java and the language extensions are all specified as
attribute grammars written in the attribute grammar spec-
ification language Silver. The Silver tools can automatically
compose the grammars defining the host language Java and
a programmer selected set of extensions to create a speci-
fication of a custom extended version of Java that has the
features relevant to different specific domains. The tools
then translate the specification to an executable compiler
for the language.

Section 2 introduces the extensible language framework and
its supporting tools. Section 3 describes a modular SQL
extension to Java that we have constructed in order to illus-
trate what is possible in the framework. Section 4 provides
the specifications of a subset of Java (Section 4.1) and some
of the extension constructs (Section 4.2) to illustrate how
the full extension in Section 3 was implemented. Section 5
describes related work, future work, and concludes.

2. EXTENSIBLE LANGUAGE SPECIFICA-
TIONS AND SUPPORTING TOOLS

An extensible compiler allows the programmer to import the
unique combination of general-purpose and domain-specific
language features that raise the level of abstraction to that
of a particular problem domain. These features may be
new language constructs, semantic analyses, or optimizing
program transformations, and are packaged as modular lan-
guage extensions. Language extensions can be as simple as

a for-each loop that iterates over collections or the set of
SQL language constructs described in this paper.

To understand the type of language extensibility that we
seek, an important distinction is made between two activ-
ities: (i) implementing a language extension, which is per-
formed by a domain-expert feature designer and (ii) select-
ing the language extensions that will be imported into an
extensible language in order to create an extended language.
This second activity is performed by a programmer. This
is the same distinction seen between library writers and li-
brary users. This distinction and the way that extensible
languages and language extensions are used in our frame-
work is diagrammed in Figure 1.

selects -

R
writes

?

�

�

�

Programmer

Program with
SQL and CG
constructs

-

Host Language
Specification

???
Extensible

Compiler Tools

?
generates

input outputCustomized
Compiler

- Translated
Program

Language
Extensions

Feature
Designers

implements
SQL

implements
foreach

implements
CG

Figure 1: Using Extensible Languages and Language
Extensions.

From the programmer’s perspective, importing new language
features should be as easy as importing a library in a tra-
ditional programming language. We want to maintain the
compositional nature of libraries. They need only select the
language extensions they want to use (perhaps the SQL and
geometric (CG) extensions shown in Figure 1) and write
their program to use the language constructs defined in the
extensions and the “host” language. They need not know
about the implementation of the host language or the ex-
tensions. The specifications for the selected language exten-
sions and the host language are provided to the extensible
compiler tools that generate a customized compiler. This
compiler implements the unique combination of language
features that the programmer needs to address the particu-
lar task at hand. Thus, there is an initial “compiler genera-
tion” step that the tools, at the direction of the programmer,
must perform. Language extensions are not loaded into the
compiler during compilation.

The feature designer’s perspective is somewhat different;
they are typically sophisticated domain experts with some
knowledge of the implementation of the host language be-
ing extended. Critically, feature designers do not need to
know about the implementations of other language exten-
sions since they will not be aware of which language exten-
sions a programmer will import. This paper shows how the
functionality provided by a library can be enhanced by lan-
guage extensions that provide new syntax to represent the
abstractions provided by the library and new static analysis
that can ensure that the library is used correctly.

36

2.1 Attribute grammars and Silver
Extensible languages and language extensions in our frame-
work are based on attribute grammars. The extensible host
language is specified as a complete attribute grammar and
the language extensions are specified as attribute grammar
fragments. These are written in Silver, an attribute gram-
mar specification language developed to support this. The
Silver extensible compiler tools combine the attribute gram-
mar specifications of the host language and the program-
mer selected language extension to create an attribute gram-
mar specification for the custom extended language desired
by the programmer. An attribute grammar evaluator for
this grammar implements the compiler for the extended lan-
guage. We choose to define languages and extensions as at-
tribute grammars, enhanced with with a mechanism called
forwarding [19], because language specifications defined in
the way can be automatically combined by the tools.

In Silver, attribute grammars are package as modules defin-
ing either a host language or a language extension. The
module edu:umn:cs:melt:java14 defines Java 1.4. It de-
fines the concrete syntax of the language, the abstract syn-
tax and the semantic analyses required to do most type
checking analyses and to do package/type/expression name
disambiguation. We continue to extend this with additional
attribute definitions specifying additional static analyses.
Our aim is to perform all static analyses performed by a
traditional Java compiler. The grammar defines most as-
pects of a Java compiler but it does not specify byte-code
generation. Language extensions add new constructs, like
the SQL constructs described here, and their translation to
pure Java 1.4 code, that a traditional Java compiler then
converts to byte-codes for execution. The static analysis we
perform is to support analysis of extensions and to ensure
that any statically detectable errors (such as type errors
and access violations) in the extended Java language are
caught so that erroneous code is not generated. Program-
mers should not be expected to look at the generated Java
code; errors should be reported on the code that they write.

In Section 4, we show Silver specifications for a simplified
versions of our Java 1.4 grammar and the SQL grammar.
We also show how the host language is composed with ex-
tensions to create an extended language specification.

3. A MODULAR LANGUAGE EXTENSION
TO JAVA THAT EMBEDS SQL

In this section we describe a language extension that adds
new constructs and semantic analyses that embed SQL into
Java. The functionality is provided by the JDBC library —
what is added is new syntax and analysis to statically detect
syntax and type errors in SQL queries.

This extension specifies SQL productions for statically check-
ing the syntax and type correctness of static SQL queries and
queries which incorporate values from Java variables and
expressions. It also allows for the dynamic creation of SQL
queries in such a way that ensures that they are syntactically
correct but it does not statically check the type correctness
of dynamically generated queries. The integration compo-
nent of the extension provides new constructs for registering
database drivers, setting up connections, specifying and ver-

ifying the types of fields in tables on the database server that
are used in the application, as well as executing queries and
commands on the database server. The extended language
will perform some semantic analysis on the SQL constructs
to check for errors and then translate the constructs into
pure Java code that uses the JDBC library. Figure 2 pro-
vides a code fragment written in the Java+SQL extended
language. Figure 3 show the generated Java code fragment
that the Java+SQL fragment translates to.

1. register driver "com.mysql.jdbc.Driver" ;

2. connection c="jdbc:mysql://db.domain.com/db..";

3. import table person [VARCHAR first name ,

VARCHAR last name, INTEGER age] ;

4. ResultSet rs = using c query {
SELECT last name FROM person WHERE

first name LIKE "derek" };
5. String s = "derek" ; int i = 4 ;

6. rs = using c query { SELECT first name

FROM person WHERE first name LIKE s };
7. rs = using c query { SELECT first name

FROM person WHERE age > i } ;

8. rs = using c query { SELECT first name FROM person

WHERE first name LIKE $("der" + "ek") };
9. sqlExpr e1=sql expr {person.first name LIKE s};
10. sqlExpr e2=sql expr {e1 AND last name LIKE "bodin"};
11. rs = using c query

{ SELECT first name FROM person WHERE e2 };

Figure 2: SQL/Java example program fragment.

Static SQL queries: First consider lines 1-4 in Figure 2
that use constructs in the SQL extension to set up a connec-
tion to a database server and execute a static SQL query.
Here three new statements added by the extension are used
to register a database driver, to create a connection c to
a specific database server, and to make the person table
from that database available for use in the program. The
import table construct specifies the fields and their type
in the person database. At compile time, the declaration
of the person table and the types of its fields are entered
into an environment (symbol table) that is referenced dur-
ing the type checking of the static queries.1 Line 4 shows a
statically specified SQL query.

In this example, since there are no syntax or type errors,
the Java code in lines 1-4 of Figure 3 will be generated.
The register driver and connection statement translate
into the expected JDBC calls. The import table construct
defines the type information used in the using and SQL
constructs to perform static type checking, but it trans-
lates to the empty statement since it has no implementation
in the generated Java code. The using query construct
is translated to the expected JDBC createStatement and
executeQuery methods calls on the JDBC Connection ob-
ject c.

Accessing Java variables and expressions: The SQL

1Although not implemented in the current version of the
extension, this construct could consult the database schema
at compile time (as is done in SQLJ) to verify that the types
in the database scheme match those given here.

37

1. Class.forName ("com.mysql.jdbc.Driver") ;

2. Connection c = DriverManager.getConnection (

"jdbc:mysql://db.domain.com:3306/db ...");

3. // empty statement, was import

4. ResultSet rs = c.createStatement().executeQuery(

"SELECT " + "first name" + " FROM " + "person" +

"WHERE " + "first name" + " LIKE " + "\"derek\");

5. String s = "derek" ; int i = 4 ;

6. rs = c.createStatement().executeQuery(

"SELECT " + "first name" + " FROM " + "person"

+ "WHERE " + "first name" + " LIKE " + s);

7. rs = c.createStatement().executeQuery(

"SELECT " + "first name" + " FROM " + "person"

+ "WHERE " + "age" + " > " + i);

8. rs = c.createStatement().executeQuery(

"SELECT " + "first name" + " FROM " + "person"

++ "WHERE " + "first name" + " LIKE " +

("der" + "ek"));

9. String e1 = "person.first name" + " LIKE " + s;

10. String e2 = e1 + " AND " + "last name" +

" LIKE " + "\"bodin\"" ;

11. rs = c.createStatement().executeQuery(

"SELECT " + "first name" + " FROM " + "person"

+ "WHERE " + e2) ;

Figure 3: Translation to pure Java of SQL/Java ex-
ample program fragment.

queries defined in the SQL extension can access values from
Java variables and expressions and still statically check that
they are syntactically and type correct. For example, con-
sider the lines 4-7 of Figure 2. The Java+SQL compiler
will type-check these queries and, since no type errors ex-
ist, generate the pure Java code seen in lines 4-7 of Figure 3
(modulo reformatting). The examples translate to Java code
that creates a string that contains the query using the value
of variable s or i. The third example, computes the value
of the expression whose value is included in the query. The
type checking of these queries is possible here because the
productions in the language extension have access to the
attributes of the host language attribute grammar that con-
tain the names and types of the in-scope variables. Because
s is not a field in the table person but is an in-scope local
variable the reference to s in line 6 of Figure 2 is to the local
variable. In line 8, the $(...) notation is used to embed Java
expressions in SQL expressions.

Dynamic creation of SQL queries: The SQL extension
also allows for the creation of dynamic SQL queries that
can be statically verified to be syntactically correct. Con-
sider lines 9–11 of Figure 2 that makes use of the new type
sqlExpr. The variables e1 and e2 of type sqlExpr hold
syntactically correct SQL expressions. SQL expressions are
written according to the SQL grammar but are wrapped in a
sql expr { ... } construct to avoid conflicts and ambiguities
in the parser that may arise since the expression language of
SQL and the expression language of Java are similar. The
Java code generated for the SQL+Java code is show in lines
9–11 of Figure 3.

In the generated Java code of Figure 3, the queries are syn-
tactically correct but the type information that is present

in the extension constructs of Figure 2 is gone and queries
are represented as strings. Thus, statically checking the syn-
tactic correctness of queries constructed as strings requires a
much more sophisticated analysis, like that found in the Java
String Analyzer [5] and incorporated in the JDBC Checker
tool [9]. The JDBC checker does check that dynamically cre-
ated queries are also type correct. That is something that
this simple extension does not do. Nothing prohibits that
kind of sophisticated analysis being done by this tool how-
ever. In fact, extensible languages provide the right “hooks”
for extracting information used by such analysis. The con-
trol flow information needed by JSA can be generated by
appropriate attribute definitions.

Some may justifiably question some of the design decisions
of this extension. For example, should we recognize s in line
6 of Figure 2 as a local variable, or should we require the
use of the $(...) notation. It is not our aim to answer these
sorts of questions. Our goal is to show how syntax and static
analyses can be added to a programming language, not to
argue the merits of specific SQL extension constructs.

4. EXTENSIBLE LANGUAGE IMPLEMEN-
TATIONS VIA ATTRIBUTE GRAMMARS

In this section we describe some features of the host language
attribute grammar specification to show how it is combined
with the attribute grammar specification of a language ex-
tension, in this case the SQL extension, to create a spec-
ification for an extended language. Section 4.1 introduces
attribute grammars and a portion of the specification of the
host language. It also introduces an extension to attribute
grammars, called forwarding that is useful in defining modu-
lar and composable language extensions. Section 4.2 shows
a portion of the attribute grammar that defines the SQL
language extension and discusses how it integrates SQL into
Java. For presentation reasons, we have simplified and omit-
ted some features of the specifications that do not aid in
understanding how language features can be added as com-
posable extensions.

4.1 Host language specification
Attribute grammars add a layer of semantics to the syntactic
specifications provided by context free grammars by asso-
ciating attributes with non-terminal symbols and attribute
defining functions with productions. Attribute grammars
as originally defined by Knuth [13] can be extended with a
number of enhancements that makes them more practical to
use for (modular) language specification. In our framework
we incorporate higher-order attributes [21] which store syn-
tax trees (without attribute values). These allow new lan-
guage constructs (trees) to be generated and passed around
the original syntax tree at compilation time. We also use a
mechanism called forwarding [19] that makes the automatic
combination of different language extensions possible.

A portion of a drastically simplified version of the Java 1.4
host-language attribute grammar specification is shown in
Figure 4. It first specifies the name of this grammar mod-
ule. These names, similar to Java package names, use Inter-
net domain names to ensure uniqueness, and are used when
grammars, representing languages and extensions, are com-
posed. This process is described in Section 4.3. Next it de-

38

fines a collection of non-terminal symbols; the non-terminal
Stmt represents Java statements, Expr represents Java ex-
pressions, and Type for Java types. These nonterminals are
used in the concrete productions to specify the parser for
Java. The nonterminal TypeRep is used by abstract produc-
tions to represent types.

Next are specifications for the terminal symbol for identifiers
(Id) and its defining regular expression and for semicolons.
Next several synthesized attributes (syn attr) and inher-
ited attributes (inh attr) are defined. Attributes label the
nonterminal and terminal nodes in an object programs syn-
tax tree. Synthesized attributes store information that prop-
agates up the tree and thus productions define synthesized
attributes that label their left-hand side non-terminal. In-
herited attributes store information that propagates down
the tree and thus productions define inherited attributes
that label their right-hand side child non-terminals. The
pp attribute of type String holds the pretty-print version
of constructs it decorates. This attribute decorates (written
occurs on) nonterminals Expr, Stmt, and Type. The inher-
ited environment attribute env is a list of pairs mapping
names to their type representations; it forms a symbol table
that decorates Expr, Stmt, and Type. The typerep attribute
decorates expressions to indicate their type and decorates
type expressions (Type) to indicate their representation. An
errors attribute is a list of strings.

Concrete productions (indicated by con prod) such in the
local variable declaration production local var dcl are used
by the parser generator. Abstract productions (indicated
by abs prod) are not. Silver allows attributes to be de-
fined in both concrete and abstract productions. The left
and right-hand side nonterminals and some right-hand side
terminal symbols are named. In local var dcl the nonter-
minal Stmt is named s and this name is used in the block
of attribute definitions that follow the production signature.
Some keyword and punctuation terminals symbols, defined
in the manner of terminal SemiColon match just one lexeme
and can be referenced in the production by that lexeme,
as is done in local var dcl. This production defines pp

as expected using the pretty print of the type expression t

and the lexeme of the terminal id. Attributes values are
referenced on nodes using the dot notation. It also defines
its defs attribute to be the mapping from the name of the
identifier to the representation of the type t. Definitions
are collected according to the scope rules of the language to
populate the env attribute. Details of this are elided.

The while production defines the Java while-loop. It de-
fines the concrete syntax by specifying that a while loop is
of nonterminal type Stmt and that it is composed of the
keyword “while”, a left paren, a condition of type Expr, a
right paren, and a loop body of type Stmt. The pp attribute
is defined as expected from the string literals and value of
the pp attribute on the child non-terminals. In the specifi-
cations, square brackets denote lists and ++ denotes list, as
well as string, concatenation. The pp attribute will label all
nodes in the concrete syntax tree, but we will omit further
definitions of pp on productions as their behavior is what is
expected. The while loop also copies its env attribute to its
children. When this is the expected behavior we will some-
times leave these copy rules out of the given specifications.

grammar edu:umn:cs:melt:java14;

nonterminal Expr, Stmt, Type, TypeRep ;

terminal Id / [a-zA-Z][a-zA-Z0-9_]* / ;

terminal SemiColon ’;’ ;

syn attr pp :: String occurs on Expr, Stmt, Type ;

syn attr name :: String occurs on TypeRep ;

inh attr env :: [(String, TypeRep)]

occurs on Stmt, Expr, Type ;

syn attr defs :: [(String, TypeRep)] occurs on Stmt ;

syn attr typerep :: TypeRep occurs on Expr, Type ;

syn attr errors :: [String] ;

syn attr hostStmt :: Stmt occurs on Stmt ;

syn attr hostExpr :: Expr occurs on Expr ;

syn attr hostType :: Type occurs on Type ;

con prod local_var_dcl s::Stmt ::= t::Type id::Id ’;’

{ s.pp = t.pp ++ " " ++ id.lexeme ++ ";"

s.defs = [(id.lexeme, t.typerep)] ;

s.hostStmt = local_var_dcl(t.hostType,id); }

con prod while

s::Stmt ::= ’while’ ’(’ cond::Expr ’)’ body::Stmt

{ s.pp = "while (" ++ cond.pp ++ ") \n" ++ body.pp ;

cond.env = s.env ;

body.env = s.env ;

s.errors = (if cond.typerep.name != "boolean"

then ["Error: condition must be boolean"] else [])

++ cond.errors ++ body.errors ;

s.hostStmt = while(cond.hostExpr,body.hostStmt); }

con prod idRef e::Expr ::= id::Id

{ e.typerep = lookup (e.env, id.lexeme) ;

e.error = e.typerep.errors

e.hostExpr = idRef(id); }

con prod booleanType t::Type ::= ’boolean’

{ t.pp = "boolean" ;

t.typerep = booleanTypeRep(); }

abs prod booleanTypeRep tr::TypeRep ::=

{ tr.name = "boolean" ;

tr.error = [] ; }

abs prod notFoundTypeRep tr::TypeRep ::= n::String

{ tr.name = "NotFound" ;

tr.error = ["Error " ++ n ++ "not found"]; }

Figure 4: Simplified Java host language Silver spec-
ification.

con prod driver

s::Stmt ::= ’register’ ’driver’ d::StringLiteral

{ s.pp = "register driver " ++ d.lexeme ++ ";"

s.errors = ... check the d is valid ... ;

forwards to ‘‘Class.forName (|s.lexeme|) ’’ ; }

Figure 5: SQL Driver construct specification.

39

The identifier reference production idRef passes the name
id.lexeme to the lookup function to extract the TypeRep as-
sociated with that name from its environment e.env. If the
name is not in the environment, lookup returns the TypeRep
built by the notFoundTypeRep production. Type checking
is done by name and implemented by examining the name

attribute on a constructs typerep attribute. For example,
in the while production, the name attribute on the type
node of the condition expression is checked to see that it is
“boolean”. Type expressions (Types) are specified by con-
crete productions and the corresponding abstract produc-
tions construct their type representations which are used to
label expressions with their type.

The attributes hostStmt, hostExpr, and hostType are used
to generate the syntax tree in which all constructs defined in
language extensions have been translated to their pure Java
1.4 representations. On each host language production, the
host attribute for its left-hand side nonterminal is defined
following the pattern shown in Figure 4. These attributes
are not defined on language extension productions.

As stated, we provide only some of the simplified definitions
of the Java host language that have been implemented in
Silver. For example, not shown are the implementation of
objects and classes which are a significant portion of the
specification. But they are not critical here.

4.1.1 Forwarding and language extensions
Forwarding [19] is an extension to higher-order attribute
grammars that allows new language constructs in modular
language extensions to be defined in terms of existing host
language constructs. But it also allows the explicit specifi-
cation of semantic analyses (new ones specified by the ex-
tension or existing ones in the host language) by allowing
productions to explicitly specify attribute definitions. We
will use the SQL driver registration construct in line 1 of
Figure 2 to illustrate this; its specification is shown Figure 5.

A valid but minimal language extension could simply rewrite
this construct to the semantically equivalent statement shown
in line 1 of Figure 3. While this would provide an implemen-
tation for the driver construct, it is inadequate because any
errors made by the programmer would be reported as er-
rors in the generated Class.forName construct that the pro-
grammer did not write. Forwarding solves this problem. It
allows productions to define, in addition to attribute defini-
tions, a semantically equivalent construct that they should,
in essence, be translated to. This translation does not re-
place the existing construct however. This construct has the
same non-terminal type as the left-hand side of the defin-
ing production. If, during compilation, a node in the syn-
tax tree is queried for an attribute for which its production
does not explicitly provide a definition then that query is
forwarded to the semantically equivalent “forwards to” con-
struct specified by the production which returns its value for
that attribute. This construct also inherits, automatically,
the same attribute values as the “forwarding” production.

In the case of the driver production in Figure 5, if a driver
Stmt node is asked for its errors attributes, it returns the
values computed by the driver production. The definition
of this attribute it elided but will check if the string literal

is a valid driver string — in Figure 2 it is the class name
com.mysql.jdbc.Driver. This production also explicitly
defines its pp attribute. Now consider the host attributes
defined on all productions in the host language specifica-
tion. These attributes contain the tree of the program in
which the language extension constructs are translated to
their representation in the host language. This is shown for
the while production and others in Figure 4. If the driver

construct is queried for the value of this attribute — as it
would be during compilation — this query is passed to the
forwarded-to construct and its hostStmt value is returned.
This is how the extended language program is translated to
one in the host language.

In Silver, the tree that a production forwards to is con-
structed using the names of the productions as tree-creation
functions in which the parameters are the child trees. Through-
out the paper we do not show these tree constructions but
instead simply give a stylized string representing the con-
crete syntax of the constructed tree as this makes it easier
to see what a construct forwards to. These strings use dif-
ferent quotes (‘‘...’’ instead of "..."). Also, “holes” are
specified by vertical bars (| ... | in which values from
child trees can be included in the parameterized string. For
example, in the specification of the forwards to construct
of the driver construct, the lexeme of the terminal s is the
parameter to the Class.forName construct. The vertical
bars are in essence an unquote operator.

In the current Java implementation, we do not translate pro-
grams to Java byte code. If the errors attribute is empty,
then the extended compiler outputs value of the host at-
tribute on the root of the tree. This is pure Java code in
which the language extensions have been compiled down to
their representations in the host language.

4.2 Specification of the SQL extension
In Section 3 we described the SQL constructs in the SQL
extension and showed what examples of the new constructs
translate to. In this section we cover some of the attribute
grammar specification of the SQL language extension. As in
the Java specification, space limitations require us to present
a simplified and reduced version of the actual specifications.
We focus on how the SQL extensions work with the type
system of the Java specification and how errors are collected
to statically check type correctness of static queries.

The productions, nonterminals, and attributes defined in
Figures 5 and 6 integrate SQL into Java. The table import
production sqlImport and the sqlQuery production, for ex-
ample, have Java defined non-terminals on their left-hand
side, but, in most cases, SQL defined non-terminals on their
right. The non-terminal SqlQuery (used by sqlQuery) and
its productions are defined in Figure 7. The sqlQuery pro-
duction reports errors from sq::SqlQuery and forwards to
the JDBC code seen in the examples in Section 3.

Table Import Statement: In Figure 6, the sqlImport

production adds to defs (and thus indirectly the the en-
vironment env) the table name and its type representa-
tion. This representation is just the environment (again as
a list) consisting of column names and type representations
specified in productions sqlColType, sqlColTypesOne, and

40

grammar edu:umn:cs:melt:java14:exts:sql ;

nonterminal SqlQuery, SqlColTypes, SqlColType ;

attribute defs, pp occurs on SqlQuery,

SqlColTypeList, SqlColType ;

-- Table import and table type specifications --

con prod sqlImport

s::Stmt ::= ’import’ ’table’ t::Id

’[’ cols::SqlTypeCols ’]’ ’;’

{ s.defs = [(t.lexeme, sqlTableTypeRep(cols.defs))];

s.pp = "import table [" ++ "] ;" ;

forwards to skip(); }

con prod sqlColTypesOne

stfs::SqlColTypeList ::= stf::SqlColType

{ stfs.pp = stf.pp ; stfs.defs = stf.defs ; }

con prod sqlColTypesCons

stfs::SqlColTypes ::= stf::SqlColType ’,’

stfs2::SqlColTypes

{ stfs.pp = stf.pp ++ stfs2.pp ;

stfs.defs = stf.defs ++ stfs2.defs ; }

con prod sqlColType

stf::SqlColType ::= t::SqlType f::Id

{ stf.pp = t.pp ++ " " ++ f.lexeme ;

stf.defs = [(f.lexeme, t.typerep) ; }

-- SQL Column Types --

con prod sqlIntegerType st::SqlType ::= ’INTEGER’ {..}

abs prod sqlIntegerTypeRep tr::TypeRep ::= {..}

con prod sqlVarCharType st::SqlType ::= ’VARCHAR’ {..}

abs prod sqlVarCharTypeRep tr::TypeRep ::= {..}

abs prod sqlTableTypeRep

tr::TypeRep ::= cols::[(String, TypeRep)]

{ tr.name = "SqlTable" ; tr.errors = [];

tr.tableEnv = cols ; }

syn attr tableEnv :: [(String, TypeRep)]

occurs on TypeRep ;

-- Sql Query integration --

con prod sqlQuery

e::Expr ::= ’using’ c::Id ’query’ ’{’ sq::SqlQuery ’}’

{ e.pp = "using " ++ c.lexme ++ " query {" ++

sq.pp ++ "}" ;

e.typerep = ... Java class ResultSet ... ;

e.errors = sq.errors ;

forwards to ‘‘|id.lexeme|.createStatement().

executeQuery(|sq.javaExpr|)’’ ; }

-- New Java Types for Sql Exprs for dynamic queries --

con prod sqlExprType t::Type ::= ’sqlExpr’

{ t.pp = "sqlExpr" ;

t.typerep = sqlExprTypeRep(); }

abs prod sqlExprTypeRep tr::TypeRep ::= ’sqlExpr’

{ tr.name = "sqlExpr" ;

tr.errors = [] ; }

Figure 6: Productions linking Java and SQL

sqlColTypesCons. These productions create this environ-
ment using the defs attribute. This is then packaged as a
TypeRep by the production sqlTableTypeRep. This environ-
ment will be used to look up the type of column names used
in SQL queries. The attribute definitions of the productions
for SQL types (nonterminal SqlType) INTEGER and VARCHAR

and type representations (nonterminal SqlType) are elided
but define their pp, typerep, name, and errors attributes in
just the same manner as the Java type in Figure 4 and the
Java type slqExpr do. The production forwards to the Java
skip statement since it has no Java representation. An al-
ternative implementation would be to forward to Java code
that verifies, at run time, that the specified type of the table
matches the schema of the table in the database.

SQL Query: Also in Figure 6, the production sqlQuery

defines the concrete syntax for the using ... query construct
which is a Java Expr. It integrates the SQL queries with
Java. It defines its pp as expected, its errors are those
discovered in the SQL query sq, and its typerep is the rep-
resentation of the Java class ResultSet. It forwards to the
method calls (as illustrated in Figure 3) on the connection.
The parameter to the executeQuery method is the Java
string-valued expression generated by the SQL constructs
shown in Figure 7 and stored in the attribute javaExpr.

In Figure 7 are the non-terminals and productions that de-
fine (a small subset of) SQL expressions. Syntax errors in
SQL query expressions are detected by the parser since they
are written directly in the object program (between “{“ and
“}”) and not encapsulated in strings. Type errors are com-
puted in much the same way as in the Java host language.

The production sqlSelect extracts the environment tableEnv
from the type representation of the SQL table. This is
passed down the SQL syntax tree in the colenv attribute
where it is used by the sqlId production to look up the
types of column names. This type information is then used
to type-check the SQL queries. In production sqlId the
identifier id could be a Java identifier or a column reference.
If it is found in the environment containing column names,
the attribute colenv, then it is a column reference and its
javaExpr is the lexeme of that identifier with wrapped in
quotes as a Java string literal. For example, in line 6 of Fig-
ure 2 the id first name in the WHERE clause would be found
in the column environment colenv. Thus, its translation to
Java is the literal "first name" seen in line 6 of Figure 3. If
the identifier is found in the standard environment env then
it is a Java variable and its javaExpr is the Java variable
with that name. For example, in line 6 of Figure 2, s in the
WHERE clause would be found in the environment env. Its
translation to Java is a variable s seen in line 6 of Figure 3.
The types of Java variables are then converted to SQL types.
The converted local attribute in sqlId presents a simpli-
fied (from the actual implementation) mechanism for doing
this. Java strings and integers are converted to their SQL
versions. Java sqlExpr types used in dynamic queries are
handled differently and discussed below.

Dynamic Queries: Dynamic creation of SQL queries cre-
ates a number of challenges for statically type checking SQL
queries. The basis of the problem is that the Java identifiers
that contain SQL expressions (e1 and e2 in Figure 2) have

41

grammar edu:umn:cs:melt:java14:exts:sql ;

nonterminal SqlQuery, SqlExpr ;

attribute pp occurs on SqlQuery, SqlExpr ;

inh attr colenv :: [(String,TypeRep)]

occurs on SqlQuery, SqlExpr ;

syn attr javaExpr::Expr occurs on SqlQuery, SqlExpr;

con prod sqlSelect

sq::SqlQuery ::= ’SELECT’ fields::SqlExpr ’FROM’

table::Expr ’WHERE’ where::SqlExpr

{ sq.pp = ... ;

sq.javaExpr = ‘‘ "SELECT " + |fields.javaExpr| +

"FROM" + |table.pp| + "WHERE" + |where.javaExpr|’’;

sq.errors = fields.errors ++ where.errors ++

if table.typerep.name == "SqlTable" then []

else ["Error: table must have type SqlTable"]

fields.env = sq.env ;

fields.colenv = table.typerep.tableEnv ;

where.env = sq.env ;

where.colenv = table.typerep.tableEnv ; }

con prod sqlId

se::SqlExpr ::= id::Id

{ se.pp = id.lexeme ;

se.javaExpr = if sqltype.name != "NotFound"

then ‘‘ "|id.lexeme|" ’’

else ‘‘ |id.lexeme| ’’ ;

se.typerep = if sqltype.name != "NotFound"

then sqltype else converted ;

se.errors = se.typerep.errors ;

local javatype :: TypeRep

= lookup(se.env,id.lexeme);

local sqltype :: TypeRep

= lookup(se.colenv,id.lexeme);

local converted :: TypeRep

= if javatype.name == "String"

then sqlVarCharTypeRep()

else if javatype.name == "int"

then sqlIntegerTypeRep()

else if javatype.name == "sqlExpr"

then sqlExprTypeRep()

else notFoundTypeRep(id.lexeme);

}

Figure 7: SQL query and expression specifications.

grammar edu:umn:cs:melt:java_sql ;

import edu:umn:cs:melt:java14 ;

syntax edu:umn:cs:melt:java14 ;

import edu:umn:cs:melt:java14:exts:sql ;

syntax edu:umn:cs:melt:java14:exts:sql ;

import edu:umn:cs:melt:java14:exts:rlp;

syntax edu:umn:cs:melt:java14:exts:rlp;

import core ;

abstract production main top::Main ::= args::String

{ forwards to java_main(args, parse) ; }

Figure 8: Composed language Silver specification.

the Java type specified by the production sqlExprTypeRep.
The information about the SQL type is not present in the
particular type representation scheme used here. Thus, it
cannot be determined if the SQL expression is, for example,
an SQL INTEGER or VARCHAR. In the current implementation
of the SQL language extension we do not attempt to stat-
ically type check dynamically generated queries. Instead,
Java variables of type sqlExpr are given, in the production
sqlId the converted type of sqlExprTypeRep(). In type
checking, this type deemed to be compatible with all other
types so that no errors are generated for such identifiers.
Although checking such queries is possible and is done by
other tools, such as the JDBC Checker [9], our goals here are
not to create the most sophisticated embedding of SQL into
Java. They are to show how syntax and static analysis can
be added to to host language to support the functionality
provided by a library.

4.3 Composition of Java and Language Exten-
sion Specifications

As outlined in Section 2, programmers compose host lan-
guage and language extensions with no implementation level
knowledge of the language or the extensions but need only
select the desired extensions. We are currently developing an
Eclipse plug-in for the extensible compiler framework that
supports this selection process. The plug-in will automati-
cally generate from the list of selected extensions the Silver
specification that composes the host language and selected
extensions. In Figure 8 is the Silver specification that would
be generated if the programmer selected the SQL extension
described above and the computational geometry extension
that implements the randomized linear perturbation (rlp)
scheme for handling data degeneracies in geometric algo-
rithms. What the rlp extension does specifically is not of
interest here. This composed extended language has features
to support both the domains of relational database queries
and computational geometry. The import statements im-
port the grammar specifications in the named Silver module.
The syntax statements import the concrete syntax speci-
fications from the named modules to build the parser for
the extended language. The final three lines import utility
types like Main. The main production is similar in intent to
the C main function; here it delegates to the main produc-
tion java main in the java14 host specification. Although
this shows that correctly-specified extensions can be easily
composed, it is possible to write Silver specifications that
when composed with the host language do not result in well-
defined attribute grammars. Section 5.2 discusses issues of
syntactic and semantic composability of extensions.

5. CONCLUSION
5.1 Related Work
There are other languages such as SQLJ [7], Cω [3] and
.NET languages like C# that use the LINQ [15] .NET project
that provide a more complete embedding of SQL constructs
than we have specified in the SQL language extension above.
Cω and LINQ also address the mismatch between the types
in SQL and the host language. For example, SQL INTEGER

types can have the value NULL, but Java int types cannot.
Other mismatches between the object view and the rela-
tional table view of data are also addressed in these lan-
guages but not in the extension described in this paper.

42

These are new, well-crafted, useful languages, but they are
monolithic solutions. They cannot be extended to provide
the same sort of language and analysis support to other do-
mains. The extensible language framework presented here
illustrates how such language and analysis support can be
provided in an extensible manner.

Similar work has been done in extending Java with XML
language constructs. For example, JWig [6] is a Java based
framework that allows programmers to write XML directly
in Java. The framework analysis ensures that all statically
and dynamically generated XML segments are syntactically
correct XML. JWig does this by using a Java parser ex-
tended with new rules for, among other constructs, XML.
This parser outputs pure Java which a standard Java com-
piler converts to byte-code, much like our framework. JWig
then analyzes the byte-code using the Java Syntax Anal-
yser [5]. It statically verifies that the XML segments gen-
erated and used in the original JWig program file are valid
XML. One problem with this approach is that errors are re-
ported by the Java compiler on the Java code generated by
JWig. This can be confusing to programmers and is some-
thing that can be avoided in our framework since extensions
can define their own error-checking analysis. This problem
is shared by macro-based approaches to language extension.
Some modern macro systems, such as Maya [1] and JTS [2],
do however provide specific error checking facilities.

There is a significant amount of work in the language pro-
cessing tools community for building extensions to languages.
For example, the Polyglot extensible Java compiler [16] al-
lows Java to be extended with powerful abstractions such
as pattern matching [14]. However, this system requires one
to write Java code to incorporate new extensions into Java.
In the extensible language framework we propose, extensions
selected by the programmer are naturally and automatically
composed to form a new extended compiler. MetaBorg[4] is
another system that allows one to extend a host language
by adding concrete syntax for objects. This system is based
on StrategoXT [20] and uses strategies and term-rewriting
to process programs. Specifying semantic analyses, like the
error checking, is less straight forward than it is using at-
tributes and it is not clear that different extensions can be
combined automatically.

The attribute grammar community has also addressed issues
of modular language design. Of particular interest are the
rewritable reference attribute grammars [8] in the JastAddII
system. An extensible Java 1.4 compiler has also be specified
in this system. Language extension constructs are translated
to host language constructs by destructive rewrites on the
syntax tree. Thus all analysis on an extension construct
must be completed before any analysis on its translation
to the host language. Although forwarding is similar to
rewriting, it is non-destructive so that the original tree and
the forwards-to tree exist simultaneously. This turns out
to be important when multiple extensions introduce new
semantic analyses because a construct will need both trees
— the original for its analysis and the forwards-to tree for
analyses from other extensions.

The Broadway compiler [12] allows library writers to specify,
for the host language compiler, how uses of library abstrac-

tions can be optimized. This tool is based on abstract inter-
pretation. However, it does not provide means for specifying
new language constructs .

5.2 Future Work
Program comprehension: While new domain-specific syn-
tax can be useful, if each member of a development group
imported their own favorite set of extensions for use in the
code for which they are responsible, group members may not
understand each other’s code. This problem is not unique to
extensible languages, since libraries can be misused in a sim-
ilar fashion, although at least the syntax if not the intent of
library uses is clear. A solution is to use some discipline and
restrict the set of libraries or language extensions to be used
on a project. For extensible languages to have real-world
impact, deployment issues such as these must be addressed.

Syntactic composability: We are also investigating tech-
niques to ensure that the combination of syntactic specifica-
tions from several extensions will work together. Grammars
used by Yacc-like tools are notoriously brittle and adding
productions can easily move the grammar out of the class
of grammars handled by the tools. One approach being in-
vestigated is the use of GLR parsers which can parse all
context free grammars. Another approach would be the use
of parsing expressions grammars, which are closed under
composition [11]. Other systems, such as the Intentional
Programming [18] system developed at Microsoft Research,
avoid this problem by building a structure editor in which
programmers manipulate the AST of the program directly.

Semantic composability: One requirement to ensure that
the attribute grammar of the extended language is well-
defined is that extensions need to honor the attribute de-
pendencies of the non-terminals they extend. For example,
the production sqlQuery in Figure 6 has a Java nontermi-
nal (Expr) on its left-hand side and thus can be used any-
where that an expressions would be. Thus, it cannot define
attributes such that a host language synthesized attribute
depends on an inherited attribute on which it did not de-
pend in the host language specification. Otherwise some
host language production with an expression as a child may
not define the inherited attribute required for computing
the synthesized attribute. Although the standard defined-
ness test [19] can perform this analysis on the extended lan-
guage grammar a better approach would involve a modular
analyses that can be performed by the feature designer that
would ensure compatibility with other extensions that also
pass the modular analysis.

Java Language Specification: As mentioned earlier, the
specification of the static analysis in the Java 1.4 attribute
grammar must be completed so that type errors are reported
on the extended language program and not on the generated
pure Java code. We intend to extend this specification to
Java 1.5 as many features like the for-each loop and auto-
boxing and unboxing can be specified as modular extensions
to the Java 1.4 specification. Silver is currently available on
the web at http://www.melt.cs.umn.edu.

5.3 Conclusions
We have shown how new syntax and new static analysis
that supports the abstractions provided in a library can be

43

specified so that they can be easily incorporated into an ex-
tensible language at the direction of the programmer. The
new syntax and analysis address drawbacks of library-based
approaches to specification of new abstractions by providing
a more natural syntactic representation of the abstractions
and, more importantly, providing analysis to statically check
for their correct use. A key characteristic of the approach
presented here is that multiple language extensions can be
composed, and used by the programmer, in a manner similar
to how multiple libraries can be used in the same program.
This differs from the monolithic approach to language ex-
tension taken in SQLJ, Cω, and in the LINQ project.

Libraries have proved to be a very successful means for spec-
ifying, packaging, and distributing new abstractions that
support the needs of different user (programmer) communi-
ties. Interested parties in small domains can design, imple-
ment, and distribute abstractions that support their work.
The compositional and user-driven nature of libraries has
been a key to their success, and thus we support both of
these aspects in the framework for language extension pre-
sented in this paper.

Acknowledgements:
We thank Phil Russel for this assistance of the specification
of the SQL extension. We thank Lijesh Krishnan for his help
in the development of the Java 1.4 Silver attribute grammar.

6. REFERENCES
[1] J. Baker and W. Hsieh. Maya: Multiple-dispatch

syntax extension in java. In Proc. of ACM PLDI
Conf., pages 270–281. ACM, 2002.

[2] D. Batory, D. Lofaso, and Y. Smaragdakis. JTS: tools
for implementing domain-specific languages. In
Proceedings Fifth International Conference on
Software Reuse, pages 143–53. IEEE, 2–5 1998.

[3] G. Bierman, E. Meijer, and W. Schulte. The essence
of data access in cω. In ECOOP 2005, Proceedings of
19th European Conference on Object-Oriented
Programming, pages 287–311, 2005.

[4] M. Bravenboer and E. Visser. Concrete syntax for
objects: domain-specific language embedding and
assimilation without restrictions. In Proc. ACM Conf.
on Object-oriented programming, systems, languages,
and applications (OOPSLA), pages 365–383, New
York, NY, USA, 2004. ACM Press.

[5] A. S. Christensen, A. M. ller, and M. I. Schwartzbach.
Precise analysis of string expressions. In Proc. Static
Analysis Symposium, 2003.

[6] A. S. Christensen, A. Møller, and M. I. Schwartzbach.
Extending java for high-level web service construction.
ACM Trans. Prog. Lang. Syst., 25(6):814–875, 2003.

[7] A. Eisenberg and J. Melton. SQLJ part 0, now known
as SQL/OLB (object-language bindings). SIGMOD
Rec., 27(4):94–100, 1998.

[8] T. Ekman and G. Hedin. Rewritable reference
attributed grammars. In Proc. of ECOOP ’04 Conf.,
pages 144–169, 2004.

[9] C. Gould, Z. Su, and P. Devanbu. Jdbc checker: A
static analysis tool for sql/jdbc applications. In ICSE
’04: Proceedings of the 26th International Conference
on Software Engineering, pages 697–698, Washington,
DC, USA, 2004. IEEE Computer Society.

[10] J. Gray. The next database revolution. In SIGMOD
’04: Proceedings of the 2004 ACM SIGMOD
international conference on Management of data,
pages 1–4, New York, NY, USA, 2004. ACM Press.

[11] R. Grimm. Better extensibility through modular
syntax. In PLDI ’06: Proceedings of the 2006 ACM
SIGPLAN conference on Programming language
design and implementation, pages 38–51, New York,
NY, USA, 2006. ACM Press.

[12] S. Guyer and C. Lin. Broadway: A software
architecture for scientific computing. In R. F. Boisvert
and P. T. P. Tang, editors, The Architecture of
Scientific Software, pages 175–192. Kluwer Academic
Press, 2000.

[13] D. E. Knuth. Semantics of context-free languages.
Mathematical Systems Theory, 2(2):127–145, 1968.
Corrections in 5(1971) pp. 95–96.

[14] J. Liu and A. C. Myers. Jmatch: Iterable abstract
pattern matching for java. In Proc. International
Symposium on Practical Aspects of Declarative
Languages, January 2003.

[15] E. Meijer, B. Beckman, and G. Bierman. Linq:
reconciling object, relations and xml in the .net
framework. In SIGMOD ’06: Proceedings of the 2006
ACM SIGMOD international conference on
Management of data, pages 706–706, New York, NY,
USA, 2006. ACM Press.

[16] N. Nystrom, M. R. Clarkson, and A. C. Myer.
Polyglot: An extensible compiler framework for java.
In Proc. 12th International Conf. on Compiler
Construction, volume 2622 of LNCS, pages 138–152.
Springer-Verlag, 2003.

[17] M. Odersky and P. Wadler. Pizza into Java:
translating theory into practice. In Proc. of ACM
POPL Conf., pages 146–159, 1997.

[18] C. Simonyi. The future is intentional. IEEE
Computer, 32(5):56–57, May 1999.

[19] E. Van Wyk, O. de Moor, K. Backhouse, and
P. Kwiatkowski. Forwarding in attribute grammars for
modular language design. In Proc. 11th Intl. Conf. on
Compiler Construction, volume 2304 of LNCS, pages
128–142, 2002.

[20] E. Visser. Program transformation with Stratego/XT:
Rules, strategies, tools, and systems in
StrategoXT-0.9. In C. Lengauer et al., editors,
Domain-Specific Program Generation, volume 3016 of
Lecture Notes in Computer Science, pages 216–238.
Spinger-Verlag, June 2004.

[21] H. Vogt, S. D. Swierstra, and M. F. Kuiper.
Higher-order attribute grammars. In ACM PLDI
Conf., pages 131–145, 1990.

44

A Static Analysis for the
Strong Exception-Safety Guarantee

Gustav Munkby and Sibylle Schupp
Dept. of Computing Science,

Chalmers University of Technology, Gothenburg

E-mail: {munkby,schupp}@cs.chalmers.se

ABSTRACT
Exception handling mechanisms provide a structured way
to deal with exceptional circumstances, making it easier to
read and reason about programs. Exception handling, how-
ever, cannot avoid the problem that the transfer of control
might leave the program in an inconsistent state—resources
might leak, invariants might be violated, the program state
might be changed. Since client code often needs to know
how a program behaves in the presence of exceptions, the
exception-safety classification distinguishes three different
classes of safety guarantees; this classification is used, for
example, during the review process in the Boost organiza-
tion for standardized libraries in C++. Classifying the safety
level of a procedure requires understanding program invari-
ants and tracking program state at any given point in the
code, which is error-prone when done by hand. Yet, no tool
support is available to date. In this paper we present the
first automated analysis for exception guarantees. The anal-
ysis addresses two of the three safety guarantees, the strong
and the no-throw guarantee. The analysis is implemented
in the BangSafe tool set, which interfaces the Elsa parser
for C++ and targets C++ programs. BangSafe itself is im-
plemented in Ruby.

1. INTRODUCTION
In libraries and other modern software systems it is com-
mon to employ exception-handling mechanisms to deal with
exceptional situations. Instead of intertwining normal code
and error-handling code, guarding a possibly great num-
ber of single expressions with error checks, and introducing
multiple exit points of a procedure, exception handling al-
lows separating all error-handling code from the normal code
and encapsulating it in exception handlers. This separation
makes it easier not only to read the normal code, but also
to reason about the error-handling code and to analyze it
[6, 12, 15].

Proper use of exception handling consists of two separate
responsibilities: error detection and error handling. In a

stand-alone application, the code that detects an excep-
tional situation often also directly handles it in the way
that is appropriate for the particular application. In a li-
brary designed for use by different clients in different con-
texts, however, the library designer cannot decide on one
particular handling but must delegate this decision to the
client. For any failing procedure that is visible outside the
library, clients should be able to handle an exceptional sit-
uation on their own terms. For that, however, often more
information is needed than just which kinds of exceptions
might be active. If clients want to retry the failing oper-
ation, for example, or to ignore the exception, they need
to know whether they can safely do so. If the exception
has left the program in an inconsistent state—for example,
with leaking resources, invalidated data type invariants, or
a modified program state—it will be incorrect just to con-
tinue.

The so-called exception-safety classification supplies the re-
quired information by classifying procedures according to
three different safety levels. The classification was intro-
duced during the standardization of the Standard Template
Library (STL) in C++ as part of the contract between li-
brary components and users. Although the classification
itself is language-independent, it is applied most systemati-
cally in C++, for example, during the review process in the
Boost organization for library standardization. Classifying
the exception-safety guarantee of a procedure requires de-
tecting the “worst” possible control flow of the procedure,
i.e., the biggest possible change or inconsistency that could
occur when an exception leaves the procedure. Since the
control flow usually contains a great number of paths that
are not directly visible at source-code level, it is in practice
difficult to correctly classify a procedure. Passing a param-
eter, leaving a scope, or calling a sub-routine are all but
examples where the compiler creates or includes code that
complicates the control flow and must be traced even if it
ultimately does not raise an exception. Thus, even if one is
familiar with the semantics of the source language, it is not
trivial to follow the flow of control by hand. Yet, no tool is
available to automate the classification.

As an essential step towards the desired tool support, we
have designed and implemented the first automated analy-
sis for exception-safety guarantees. The analysis addresses
the strong and the no-throw guarantee, the two strongest
guarantees. The core idea of the algorithm is to partition
the set of all possible control-flow graphs into five equiva-

45

lence classes and to define a semiring structure from alge-
bra on this set of equivalence classes. An appropriate ini-
tial annotation of the control-flow graph provided, the two
semiring operators allow deriving the equivalence class of an
entire control-flow graph from the equivalence classes of its
subgraphs. The final exception-safety classification, thus,
can be gained by combining the results of subclassifications,
which characterizes the analysis as compositional. Further-
more, the analysis is an interprocedural and efficient 2-pass
procedure over the annotated abstraction of the control-flow
graph.

A prototype of the analysis is implemented in the Bang-
Safe tool set, which interfaces the Elsa parser for C++ and
handles a reasonable and relevant subset of C++ programs.
BangSafe itself is implemented in Ruby. Compared to the
ultimate goal of a fully-fledged tool of industrial strength,
the prototype lacks support for a number of features of the
C++ language. Yet, before such support is added, one should
be confident that the analysis is sufficiently precise and its
algorithmic logic correct. The main purpose of the proto-
type, therefore, is that it allows us to conduct the necessary
experiments. Once the analysis is experimentally validated,
we believe it to be extensible to handle all features used in
C++ libraries, in particular since the underlying algorithm is
both compositional and efficient.

The paper is organized as follows. In Sect. 2, we discuss the
terminology and motivation of the exception-safety classifi-
cation. The analysis is first outlined in Sect. 3, which de-
scribes the overall architecture, and then discussed in detail
in Sect. 4, which presents the equivalence classes and the
semiring formalization of the abstract representation, and
Sect. 5, which contains the main algorithm. Sect. 6 puts to-
gether the various parts of the analysis and Sect. 7 provides
examples, including an example of a false positive. A sum-
mary of related work (Sect. 8), an evaluation of the analysis
combined with an outline of future work (Sect. 9), and a
final summary (Sect. 10) conclude the paper.

2. EXCEPTION-SAFETY GUARANTEES
The exception-safety classification classifies procedures into
one of three different safety levels, namely the basic, the
strong, and the no-throw guarantee [1]. The basic guaran-
tee is the weakest, and states that the procedure does not
invalidate any of its invariants if an exception is thrown.
It ensures that no resources leak and that all data-type in-
variants are valid. The strong guarantee, next, additionally
specifies that if an exception is thrown from an operation,
then the program state shall be the same as before the op-
eration started. The strong guarantee ensures that any de-
tectable changes, even operations such as creating or moving
objects, are undone before the exception leaves the context.
Finally, the no-throw guarantee means that the procedure
may not throw any exceptions. Fig. 1 summarizes the three
guarantees as they usually are spelled out.

Classifying exception safety is no new idea. Already in the
late 1970s, Cristian introduced the notion of procedures that
are weakly and strongly tolerant towards exceptions [4]. In
difference to the exception-safety guarantees, Cristian’s tol-
erance levels are specified on an exception-by-exception ba-
sis. If a procedure fulfills the requirements of the strong

basic: the invariants of the program are preserved.

strong: in addition to the basic guarantee, the operation
provides rollback semantics in the event of an excep-
tion.

no-throw: the operation does not throw an exception.

Figure 1: Exception-safety guarantees

exception-safety guarantee, Cristian’s classification specifies
it as weakly tolerant towards all exceptions occurring during
its execution. A procedure that is strongly tolerant towards
an exception can actually fix the problem that the excep-
tion signals. The corresponding exception-safety guarantee
is the no-throw guarantee.

Exception-safety classification in C++ was introduced dur-
ing the implementation of the C++ standard library [2], as
part of the contractual specification between a procedure
and its clients. Nowadays, the exception-safety classifica-
tion is established and widely used. It is a standard topic
in C++ courses [17], supported by a number of idioms [18],
and used in the standardization process [5]. In our analysis,
we therefore target C++. Libraries in other languages can,
in principle, benefit from the exception-safety classification
as well, but interaction with a virtual machine in languages
such as Java complicates control flow considerably.

From the standpoint of automation, the strong and no-throw
guarantees are similar to each other, while the basic guar-
antee requires an entirely different approach. For the strong
and no-throw guarantees it suffices to detect the existence
of state modifications and active exceptions, while the ba-
sic guarantee also requires an understanding of the invari-
ants of the program and the ability to check them. Since
the stronger guarantees include the requirements of the ba-
sic guarantee, it is somewhat surprising that the stronger
guarantees are simpler to analyze. If the strong guaran-
tee holds, however, no program state changes are allowed,
which prevents breaking any invariants. We can therefore
cover the basic guarantee requirements through the state
property that governs the strong guarantee.

The analysis presented in this paper concerns the strong
and the no-throw, but not the basic guarantee. It assumes
that the full source code is available, so that all throw state-
ments can be syntactically detected. It furthermore makes
the simplifying assumption that all state modifications hap-
pen by way of object-level assignments, i.e., all side effects
have been modeled correspondingly. The restriction to as-
signments allows for a syntactic approach, but incurs a loss
of precision; we further discuss precision in Sect. 5.3.

3. ARCHITECTURE
Our exception-safety analysis is realized as a series of trans-
formations. Fig. 2 gives an overview of the stages from the
initial C++ input to the output containing the exception-
safety classification. The first stage parses the input into an
abstract syntax tree. In the next stage, a control-flow graph
is constructed using the information from the abstract syn-
tax tree. The third, and most important step, is the appli-

46

C++ AST CFG Annotate Output

−→ −→ −→ −→

Figure 2: Transformations of the analysis

〈function〉 ::= 〈type〉 〈identifier〉 ’(’ 〈arg〉* ’)’ 〈compound〉

〈compound〉 ::= ’{’ 〈stmt〉* ’}’

〈stmt〉 ::= 〈compound〉 | 〈loop〉 | 〈branch〉 | 〈try〉 | 〈expr〉 ’;’

〈loop〉 ::= ’for’ ’(’ 〈expr〉 ’;’ 〈expr〉 ’;’ 〈expr〉 ’)’ 〈compound〉

〈branch〉 ::= ’if’ ’(’ 〈expr〉 ’)’ 〈compound〉 ’else’ 〈compound〉

〈try〉 ::= ’try’ 〈compound〉 〈handler〉+

〈handler〉 ::= ’catch’ ’(’ 〈arg〉 ’)’ 〈compound〉

〈expr〉 ::= 〈literal〉 | 〈oper〉 | 〈call〉 | 〈throw〉 | 〈assignment〉

〈call〉 ::= 〈identifier〉 ’(’ 〈expr〉* ’)’

〈throw〉 ::= ’throw’ 〈expr〉

〈assignment〉 ::= 〈expr〉 ’=’ 〈expr〉

Figure 3: Supported input grammar

cation of our analysis-algorithm to add annotations to the
control-flow graph; this part will be discussed in detail in
Sect. 4 and Sect. 5. The last step, finally, interprets the
top-level annotation and emits the classification.

Fig. 3 shows a segment of the grammar of the supported
target language. The described language is characterized in
two ways:

• It centers around the features of exception handling.

• It contains a subset of executable C++, to ensure that
standard parsers are applicable.

Additionally, the target language includes all features that
have a simple and straightforward mapping from C++ to the
terminals and non-terminals used in Fig. 3. In the interest
of readability, we have omitted those features.

The transformations are implemented as a set of command-
line applications in Ruby, where each of them allows pre-
senting and visualizing the various stages of the analysis in
different ways. The most important tools include Bang-
Graph, which produces an annotated control-flow graph
for each procedure, and BangSafe, which runs the main
algorithm and produces a trace with the exception-safety
classification and invalidating paths.

4. ABSTRACT REPRESENTATION
As always in static analysis, the key is to find an abstract
representation that is simple enough to solve the problem

ε
The graph contains neither state-changes
nor throw-expressions.

m m

The graph contains a state-modification,
but no throw-expression that exits the
procedure.

t t

The graph contains a throw that exits
the procedure, but no state-modification
occurs.

u m t

The graph contains a state-modification
and a throw that exists the procedure, but
only one of them can happen since they are
in different execution branches.

s
m

t

The graph contains a state-modification
that is followed by a throw that exits the
procedure.

Table 1: Abstract representation

efficiently, but still ensures that the results can be used to
interpret the original problem. To check the strong guar-
antee we must examine whether the program state at pro-
cedure exit is the same as at procedure entry. Therefore,
we keep track of state modifications, throw-expressions, and
their ordering. By varying only these parameters, and using
the grammar specified in Fig. 3, we can reduce the set of
all possible control-flow graphs to five equivalence classes.
The abstract representation can then be interpreted as a
mapping of a control-flow graph to one of the equivalence
classes. Table 1 lists the five equivalence classes, including
the smallest representative graph each and a description of
its characteristics.

As the table shows, both checked guarantees can be repre-
sented by two different equivalence classes, one with state
modification in the normal execution and one without. The
equivalence classes ε and m map to the no-throw guaran-
tee, and the equivalence classes t and u map to the strong
guarantee. The strong guarantee is violated exactly when a
graph falls in the equivalence class s, the no-throw guarantee
is violated when the graph is labeled t, u, or s.

The idea of our analysis is to compute the classification of a
control-flow graph by appropriately combining the annota-
tions of its subgraphs. We therefore introduce the following
two binary operators:

sequence Corresponds to the sequential execution of two
graphs. This scenario occurs for most of the grammar
rules (see Fig. 3).

Sequencing captures the case where an m is followed
by a t. We note that a series of consecutive m can
be abstracted to a single m. One might wonder why
a t annotation, which represents an exiting exception,
can be sequenced with another graph. If the anal-
ysis was to support automatic destructors, which is
planned but not yet the case, an exiting exception is
no longer necessarily the last expression.

branch Represents a choice between the execution of two
alternative graphs. This operator, as expected, origi-

47

ε t m u s
ε ε t m u s
t t t s s s
m m s m s s
u u s s s s
s s s s s s

(a) sequence

ε t m u s
ε ε t m u s
t t t u u s
m m u m u s
u u u u u s
s s s s s s

(b) branch

Figure 4: Semiring operations

nates from the branch statement in the grammar (see
Fig. 3).

Since the exception-safety guarantee is a worst-case
guarantee, our analysis is interested in possible viola-
tions of the guarantee. In most cases we can there-
fore discard one of the branches and just keep the
worse. There is one exception, though, namely when
one branch leads to m and the other to t. Since both
branches are equally ’bad’, we must introduce a new
symbol u to denote this type of structure.

Fig. 4 defines formally the binary operations sequence and
branch on the set of equivalence classes S = {ε,m, t, u, s},
listed in Table 1. The definition follows the intuitive under-
standing of the two operators; for example, both branch and
sequence are intuitively expected to map an ε to itself. The
sequence operation for u is defined as:

∀x ∈ S : sequence(u, x) ≡
branch(sequence(m,x), sequence(t, x)),

which is natural, since we want the worse alternative of two
branches.

Given these definitions, we can define a semiring for our
abstract representation, (S, branch, sequence) [8]. It is easy
to see that the branch operation is idempotent, thus allows
defining a strict partial order:

∀a, b ∈ S : a < b :⇔ a 6= b ∧ branch(a, b) = b, (1)

which results in the following finite partial order of the
classes:

ε < m, t < u < s.

Intuitively speaking, these inequalities mean that larger el-
ements constitute bigger threats to the invalidation of the
strong guarantee. As Fig. 4 shows, the sequence operator
respects this order, i.e.,

a ≤ sequence(a, b) ∧ b ≤ sequence(a, b). (2)

We use this ordering later, in the discussion of the analysis
algorithm, when reasoning about the termination property.

As the reader might have noticed, using above classification,
our abstract representation contains neither any terminol-
ogy to describe loops nor any loop operations. Yet, it will
become clear that the operations above suffice.

5. ALGORITHM

The analysis operates on the control-flow graph of a proce-
dure in two stages. In the first stage, all nodes are identi-
fied that correspond to non-local modifications or exceptions
that exit the procedure, and annotated with m and t. This
annotation is based on a syntactic analysis of the source-
code expressions. For correctly annotated call-sites, called
procedures must be checked before their callers, thus the al-
gorithm in its current form cannot deal with recursion. The
second stage considers these nodes as single-element graphs,
classified according to the equivalence relation in Table 1,
and uses them as the base to incrementally combine more
and more annotations, corresponding to larger and larger
subgraphs, until the whole procedure is covered. Crucial
for the incremental combination of annotations is the local
update rule, which is applied locally to each node. In the
following subsections, we describe the local update rule and
reason about the correctness, complexity, and precision of
the algorithm. We assume that the initial abstract annota-
tion, from the first transformation of the control-flow graph,
is available.

5.1 Local update rule
For the presentation of the local update rule, the notion of
a maximal reachable subgraph is helpful. Let G = (V,A)
be a digraph and v be a node in G. The maximal reachable
subgraph Gv = (Vv, Av) is defined as the maximal induced
subgraph such that Vv contains v and all nodes x for which
there exists a directed path from v to x. Since every path
starting at v goes through one of v’s successors, we can in-
troduce the following set notation:

Gv = (Vv ⊆ V,Av ⊆ A)

Vv = {v} ∪
[

∀y: (v,y)∈A

Vy

Av = {(x, y) ∈ A : x ∈ Vv ∧ y ∈ Vv},

where Vv is defined as the union of the singleton set v and the
set of nodes in a maximal reachable subgraphs rooted at one
of v’s neighbors y. Because of this representation as a union,
one can determine the exception-safety classification of a
procedure incrementally, by combining the local annotation
of the current node and the classification of the maximal
reachable subgraphs of its adjacent nodes. We can therefore
define a local update procedure that will be executed for
every node. To properly handle loops, as we will show, some
nodes must be visited twice.

Fig. 5 describes in pseudo code how the local update works.
The branching operator is applied to the previously recorded
annotations, states[x], for all adjacent nodes. Sequencing
this result according to Fig. 4 with the annotation for the
current node, yields the annotation representing the maxi-
mal subgraph reachable from the current node. This anno-
tation is recorded so that it can be accessed without recal-
culation.

We apply the local update rule in a postorder traversal.
This ordering is chosen to ensure that successors already
encapsulate the annotation of the subgraph reachable from
these nodes. Assuming the calculated annotation holds for

48

def local update (node, cfg, states)
succ state = ε
for successor in adjacent nodes(node, cfg)

succ state = branch(succ state, states[successor])
end
states[node] = sequence(annotate(node), succ state))

end

Figure 5: Local update rule

m t

Figure 6: Control flow requiring two passes

all reachable subgraphs, the annotation for the procedure
entry contains the final annotation of the procedure. When
later inspecting another procedure that calls the analyzed
procedure, we can attach this annotation to the call-site,
without further computation. The single annotation for a
whole procedure means that the algorithm scales well to the
interprocedural case and that it is compositional.

5.2 Partial and total correctness
For partial correctness, we must prove that the annotation of
the root node of the annotated control-flow graph contains
the correct classification of the entire procedure. We divide
the argumentation into two cases. First we assume there are
no loops, and show that a single iteration using the update
rule is sufficient. We then introduce loops and show that
two traversals are sufficient.

Assuming no loops, a topological ordering can be estab-
lished, which ensures that the annotation for the adjacent
subgraphs will be computed before visiting the current node.
Every new subgraph is a starting node sequenced with the
branches to its adjacent subgraphs. If all adjacent subgraphs
are correctly annotated, the correctness of the current an-
notation follows directly from the definition of a subgraph
and the operations in Fig. 4.

By introducing loops, it will no longer be possible to define a
topological ordering of the control-flow graph nodes. Fig. 6
contains the smallest possible example graph that will not
be correctly classified after a single iteration of the analysis.
The correct annotation for the unlabeled node is s. After
one iteration, however, the analysis produces only u, because
when the node labeled m is analyzed, the annotation of the
subgraph reachable from the unlabeled node has not yet
been computed.

For any loop-entry, we note that the reachability of other
nodes is not affected by the existence of back-edges. As it
is easy to see from Table 1, the only classification not solely
determined by reachability is s. Since both a state mod-
ification and a thrown exception must be reachable for a
procedure to be annotated with s (see Fig. 4), the anno-
tation for the first iteration must be at least u. Applying
another iteration, the loop-entry will be annotated s if and
only if the loop contains an m; from there, its annotation

cannot change any further. We therefore conclude that two
iterations of the above traversal of the graph ensure that the
procedure-entry is annotated with the correct classification
of the whole procedure, with respect to Table 1.

To show total correctness, we also need to prove that the
algorithm terminates. In the simplest implementation we
could add a loop around the update procedure just described
and loop until we reach a fixed point. Since we have already
seen in Sect. 4 that our abstract representation can be rep-
resented as a finite partial order (Eq. 1) and our operations
respect this ordering (Eq. 2), we know that a fixed point
exists and that the loop terminates. From the discussion
of partial correctness, however, we can more precisely claim
that two iterations will suffice.

5.3 Complexity and precision
The complexity of the algorithm is dominated by the costs
for graph traversal. Given that we can perform O(1) table
lookup, the complexity of the whole analysis is:

O(|V |+ |A|),

where |V | denotes the number of nodes and |A| the number
of edges.

The precision of the algorithm is lessened mainly by the
following abstractions:

• Treating every state modification as irreversible. This
essentially prevents the algorithm from detecting cases
where the state is first invalidated, and then by a later
state modification revalidated—a pattern very com-
mon in real code.

• Detecting whether a variable is only local in scope,
is only done syntactically. Modifications to references
and dereferencing pointer variables will therefore al-
ways lead to m annotations. This loss of precision
happens early, in the initial annotation of the control-
flow graph, and is propagated further by the local up-
date rule. In the interprocedural case we lose further
precision since we do not map modifications against
passed arguments.

• Pessimizing on constructs with nondeterministic ex-
ecution order. To ensure that all possible orders of
execution are included without making the graph too
big, procedure call arguments and other indeterminis-
tic ordering constructs are converted to loops. Unfor-
tunately, this introduces infeasible execution paths.

• Merging several branches and always taking the worst.
This will ensure that no possible problems are missed,
but will in some cases result in a pessimistic judgment
of a procedure. This is not a property of the algo-
rithm, but a property of exception-safety classification
in general.

• Assuming that all syntactically possible branches are
executed and that all loops terminate. This means
that infeasible paths are considered feasible.

49

6. PUTTING IT TOGETHER
We can now return to Fig. 2 in Sect. 3 and explain the four
major transformations in more detail.

The first step is to parse C++, which is performed by the
third-party program Elsa, developed by McPeak et al. [9,
10]. Elsa constructs an abstract syntax tree, annotated
with type-checking information. It claims to support most
of standard C++, but we have not verified that claim. Elsa
emits the abstract syntax tree as an Xml-hierarchy. From
there, the BangSafe toolset picks up the program repre-
sentation and maps it to its own internal representation in
Ruby.

The second step lowers the abstract syntax tree to an expres-
sion-level control-flow graph with support for interprocedu-
ral exception-flow. The control-flow graph is at expression
level because the C++ language constructs for exceptions and
state modifications are all expressions. To be able to con-
struct the interprocedural exception-flow correctly we must
ensure that callees are always processed before callers. Re-
cursion would make this impossible, thus is not currently
supported.

The actual analysis happens during the third transformation
where the control-flow graph is annotated according to the
exception-safety classification. As we explained in Sect. 5,
the main algorithm of the analysis, the local update rule,
is applied incrementally to all subgraphs of the control-flow
graph of the procedure under consideration. As we also ex-
plained there, the local update rule assumes that the initial
graph has been annotated with labels indicating state mod-
ifications and exiting exceptions. By the end of the third
transformation, the root node of the control-flow graph con-
tains the final classification of the procedure: it violates the
strong guarantee exactly when the root node is labeled with
s, and the no-throw guarantee when it is labeled t, u, or s.

The last step organizes the command-line output of the anal-
ysis. If the previous step has determined that the strong
guarantee is invalidated, the tool emits not just the diag-
nostics but also the paths possibly leading to invalidation.
This is done in the simplest of ways by just enumerating all
possible paths through a procedure; to ensure termination,
loops are contracted in a preprocessing step. Because of the
enumeration, the complexity of the last step is exponential
in the number of sequential branches if the strong guarantee
has been violated.

7. EXAMPLES
In this section, we walk the reader through three different
examples, to illustrate how the different transformations
of our algorithm work. The first and the second exam-
ple demonstrate correctly detected guarantees, and the last
example demonstrates a false positive. All examples come
from Stroustrup [17], but are slightly simplified. Most no-
tably, we replaced class-based allocation by two functions.
We also replaced the templates in Stroustrup’s examples by
instantiated templates, since our tool does not support unin-
stantiated templates.

All three examples use implementations of a constructor for
a vector class in the style of the C++ standard library, which

1 template<class T>
2 vector<T>::vector(size_type n, const T & val) {
3 v = cpp_malloc<T>(n);
4 space = last = v + n;
5 for (T* p=v; p != last; ++p) {
6 new (p) T(val);
7 }
8 }

Figure 7: Source code for naive approach

is implemented using a dynamically allocated buffer and
three pointers. The constructor we are looking at allocates
space for n elements and constructs as many copies of an
initial value in the allocated space.

The problems discussed in Stroustrup’s examples come from
the fact that copy construction of objects can fail. To enforce
failure, for demonstration purposes, we devise a bomb class,
which is specifically designed to throw exceptions when be-
ing copy-constructed.

7.1 The naive approach
The first example is listed in Fig. 7. Stroustrup calls it the
naive approach. There are two sources of exceptions within
the procedure:

• cpp malloc throws if no memory is available (line 3).

• Placement new uses the copy constructor of the el-
ement type T to copy the initial value val (line 6).
This copy constructor might throw.

By careful manual analysis, it is possible to figure out that if
the latter throws, one has already allocated memory, which
would be necessary to free. Yet, memory leakage is not the
only problem. One might have actually successfully con-
structed a few copies before a copy construction fails. A
correct program also needs to destruct these objects.

Our analysis will produce a trace describing that the strong
guarantee is invalidated because it is possible to perform a
cpp malloc that is followed by at least one copy construction
before throwing an exiting exception.

The first annotation pass generates the control-flow graph
in Fig. 8, which has abstracted from the original control-
flow graph all irrelevant nodes and kept only the ones with
information about exception raises and state modifications;
for technical reasons BangGraph introduces an exit node
for each original node in the control-flow graph and keeps
all annotations in these exit nodes. As we can see from
the graph, at this point all inner nodes are labeled with m
or t (see Table 1) and the root node, i.e., the procedure
entry, with e (representing the ε in Table 1). After the next
step, where the local-update rule is applied, some nodes will
change to u or s, and the root node will contain the final
classification of the procedure.

A closer look at the BangGraph output in Fig. 8 reveals
that the analysis is overly conservative: we have five dif-
ferent m annotations, but only the one for the cpp malloc
invocation (line 3) and the one for the copy construction in

50

Exit[AST::CC::E_assign]{m}

Exit[AST::CC::E_assign]{m}

Exit[AST::CC::E_assign]{m}

CFG::Final{e}

Exit[AST::CC::E_new]{m}

ExceptionalExit[AST::CC::E_new]{t}

Exit[AST::CC::E_funCall(cpp_malloc<bomb>)]{m}

Function(vector<bomb>::vector<bomb>){e}

ExceptionalExit[AST::CC::E_funCall(cpp_malloc<bomb>)]{t}

Figure 8: BangGraph for naive approach

the new-expression (line 6) are needed. The other assign-
ments are updates to instance variables of the constructor,
which ideally should not produce m annotations. However,
support for the special semantics of constructors has not yet
been implemented.

If we ignore the back-edge in Fig. 8 and consider all success-
ful copy constructions as a single operation, we can identify
five distinct execution paths through the procedure:

• Failing early with cpp malloc.

• Succeeding by skipping the loop, avoiding both normal
and exceptional exits of the new-expression.

• Succeeding by completing the copy construction of all
entries, skipping the exceptional exit of the new-ex-
pression.

• Failing at the first copy construction, going directly to
the exceptional exit of the new-expression.

• Failing at a subsequent copy construction, entering
first the normal exit of the new-expression, continu-
ing to the exceptional exit.

Running BangSafe on the example, produces the trace in
Fig. 9. This trace has not been pruned, to show the volume
of information within the logfile. The interesting portion
of the output starts at the line containing the constructor
vector<bomb>::vector<bomb>, which shows that the proce-
dure is correctly annotated with s and lists an invalidating
path. This path describes the worst case where both cpp -
malloc and one successful copy construction have been ap-
plied before an exception exits the constructor. The copy
construction is, as explained earlier, embedded in the new-
expression.

> bangsafe vector-naive.dump

Annotation for ’bad_alloc’ is e
Annotation for ’operator new’ is u
Annotation for ’cpp_malloc<>’ is u
Annotation for ’vector<T>::vector<>’ is u
Annotation for ’bomb’ is u
Annotation for ’cpp_malloc<bomb>’ is u
Annotation for ’vector<bomb>::vector<bomb>’ is s

Detected invalidating path:
> m:4:AST::CC::E_funCall(cpp_malloc<bomb>)
> m:4:AST::CC::E_assign
> m:5:AST::CC::E_assign
> m:5:AST::CC::E_assign
> m:7:AST::CC::E_new
> t:7:AST::CC::E_new(AST::CC::E_throw)

Annotation for ’bomb’ is e
Annotation for ’bad_alloc’ is e
Annotation for ’operator new’ is e
Annotation for ’~vector’ is e
Annotation for ’operator=’ is e
Annotation for ’operator delete’ is e
Annotation for ’cpp_free<>’ is e
Annotation for ’vector’ is e
Annotation for ’cpp_malloc<int>’ is u
Annotation for ’operator=’ is e
Annotation for ’~bomb’ is e
Annotation for ’operator=’ is e
Annotation for ’~vector’ is e
Annotation for ’operator=’ is e
Annotation for ’vector<int>::vector<int>’ is u
Annotation for ’vector’ is e
Annotation for ’~bad_alloc’ is e
ERROR: instance of IO needed

Figure 9: BangSafe for naive approach

7.2 The naive approach, take two
Now suppose that we instantiate the same constructor with
int instead of bomb. Then the example provides the strong
guarantee because the copy construction of int cannot throw.
The analysis can confirm that. We do not list the trace sep-
arately, but the result is part of Fig. 9, where the entry for
vector<int>::vector<int> is u, which indicates that no state
modification took place before the exception was thrown;
thus the strong guarantee holds. This result is correct, since
only allocation can fail, but all allocation takes place before
any state modification.

The output of BangGraph for the instantiation with int
looks identical to Fig. 8, except that the node labeled as an
exceptional exit from the new-expression together with its
attached edges no longer exist.

7.3 The revised example
As a final example, we discuss a case where our analysis
produces a false positive. In this example, Stroustrup solves
the exception-safety violation from the naive approach in
a straightforward way, by using the standard routine unini-
tialized fill to construct the objects and wrapping the whole
block of code in a try-catch block to ensure that any allo-
cated memory is freed on failure.

51

1 template <class T>
2 vector<T>::vector(size_type n, const T& val)
3 {
4 v = cpp_malloc<T>(n);
5 try {
6 uninitialized_fill(v, v+n, val);
7 space = last = v+n;
8 }
9 catch (...) {

10 cpp_free(v);
11 throw;
12 }
13 }

Figure 10: Revised source code

> bangsafe vector-revised.dump
...
Annotation for ’vector<bomb>::vector<bomb>’ is s

Detected invalidating path:
> m:4:E_funCall(cpp_malloc<bomb>)
> m:4:E_assign
> m:6:E_funCall(uninitialized_fill<bomb*,bomb>)
> m:10:E_funCall(cpp_free<bomb>)
> t:11:E_throw()

...

Figure 11: BangSafe for revised example

As the BangSafe trace in Fig. 11 shows, the analysis has
identified a path through the procedure that invalidates the
strong guarantee. The path represents successful allocation,
cpp malloc, followed by failing uninitialized fill. Since the
result of the allocation is assigned to a variable (line 4) and
uninitialized fill causes an exception that exits the proce-
dure, the annotated control-flow graph contains a sequence
of m followed by t for this path. Therefore, the analysis pro-
duces an s annotation for the whole procedure. In reality
this path constitutes no problem—it represents a false pos-
itive: the state is restored because the memory allocated is
freed (line 9), uninitialized fill actually provides the strong
guarantee, and the assignment is to an instance variable in
the constructor, thus could never have modified the program
state.

The latter source of a false positive, conservative treatment
of assignments, can be dealt with relatively easily, by adding
special support for constructor semantics. A more funda-
mental problem is that the algorithm does not realize that
the state changed by cpp malloc is reverted by cpp free.
Using our syntactic abstraction, this restoration cannot be
detected. Not being able to detect reversals is also the reason
why uninitialized fill is classified incorrectly with s instead
of u.

8. RELATED WORK
Despite of the practical relevance of exception safety, only
little theoretical work or practical support exist. The only
automation available until recently was based on a test suite
for the C++ standard library, which Abrahams developed
as part of the implementation of STLport [1]. The testing
technique has since been generalized and incorporated into
the Boost Test library [14]. Testing requires tailoring the
test-suite to the library or program being tested. It is on
the one hand more powerful than our approach insofar it
enables checking even the basic guarantee. On the other
hand, it must be adapted for every target.

Alexandrescu et al. describe a manual analysis for exception-
safety classification [3]. The abstraction in their approach is
similar to ours, but based on a classification of procedures,
not of control-flow graphs: they distinguish between pure
procedures, which neither modify program state nor cause
any side effects, and impure procedures, which are not pure.
We can map our five equivalence classes in a straightforward
manner to their terminology: s, u, and m correspond to an
impure procedure, t and ε to a pure procedure. While we
capture the final level of exception safety directly in one of
the equivalence classes, Alexandrescu et al. need to further
distinguish which kind of guarantee an impure procedure
provides; pure procedures give the strong guarantee by def-
inition. Like our analysis, theirs can check the strong and
no-throw guarantees, but not the basic guarantee. The most
important difference, yet, is that their algorithm is designed
for manual application, thus pays less attention to the de-
tails necessary for automation.

In our analysis we rely on interprocedural exception-flow.
This part of our analysis has been inspired by similar anal-
yses by Robillard et al. for Java [13], and Schaefer et al. for
Ada [16].

9. EVALUATION AND FUTURE WORK
The current prototype implementation can deal with pro-
grams in a subset of C++ that already allows us to test the
design of the analysis-algorithm and to put on an experi-
mentally validated basis the ideas that underlie our static
analysis of the strong and no-throw exception-safety guar-
antee. The examples presented in Sect. 7 mark a good start
for this kind of test, but we need to identify more test cases
for the logic of the algorithm and run the prototype on them.

Ultimately, we want to be able to provide a fully-fledged tool
for exception-safety classification. To that end, we have to
evaluate the abstractions of the analysis and its precision
by performing real-world benchmarking. Testing with real-
world libraries presupposes that the analysis can deal with
more features of the C++ language than it currently does.
Most of these features we expect to impose no difficulties to
the algorithmic logic of the analysis, although they might be
technically non-trivial to implement. The thesis of the first
author goes into detail about several possible extensions [11].
Of all possible extensions, the most interesting, and also
the most complicated one, is the support for uninstantiated
templates, which will require modifications of the analysis.

Enabling the analysis to support uninstantiated templates
is not easy, mainly because one must identify all implicit
subroutine calls that affect the final exception-safety clas-
sification. In C++, many expressions can implicitly lead to
procedure calls, including automatic type conversions, over-
loaded operators, and return statements. If a template is
instantiated, we can rely on the parser to lower the abstract
syntax tree to explicitly include any procedure calls as part
of its type checking. For uninstantiated templates, however,
only limited type checking can take place.

Given the relevance of uninstantiated templates, one might
wonder how useful a prototype is that provides support for
instantiated templates only. Yet, we claim that a focus
on instantiated templates is a proper simplification for a

52

first prototype, particularly since we believe that the cur-
rent analysis can be embedded in the more developed one
that accomplishes full template support.

One might also wonder whether the upcoming introduction
of concepts in the next major version of C++ will make sup-
port for templates easier [7]. In short, concepts allow ex-
pressing constraints on template parameters and therefore
enable the compiler, without specializing a template, to de-
termine the set of candidate functions that could be called
from a specific call-site. Concepts can thus restrict the be-
havior of all admissible templates, but they cannot ensure
that all candidates behave identically in terms of our anal-
ysis: our analysis needs to know what types of exceptions
are thrown and whether state-modifications can take place
inside a candidate, but those properties are not considered
during the concept check. It is conceivable, however, that
one can specify these properties of interest in terms of con-
cepts and then explicitly state the mapping from a procedure
to the provided exception-safety guarantees. Our analysis
could then be adopted to produce such mappings automat-
ically.

Benchmarking with real-world libraries is also necessary to
assess the abstractions of the analysis and the resulting pre-
cision of the final exception-safety classification. Almost
all static analyses are imprecise insofar they might produce
false positives. Very practically, thus, their usefulness de-
pends on the actual number of false positives. We expect
that the most prominent reason for loss of precision is due
to our assumption to detect the invalidation of the strong
exception-safety guarantee by identifying explicit state mod-
ification. Given that the full source code is available, state
modification is a necessary condition for breaking the strong
guarantee. Yet, it is no sufficient condition—not every state
modification violates the strong guarantee. To reduce the
number of false positives, one could exploit the semantics
of C++ to determine that some state modifications result in
effects that are just local and will not escape the procedure
boundaries. Currently, we can identify an assignment as lo-
cal only if the assignment is directly to a local non-reference
variable, but we must be conservative if the assignment is
to a dereferenced pointer or reference. To improve the pre-
cision of the analysis, we want to investigate the benefits of
adding support for a points-to analysis. We think that the
points-to analysis would be most effective in combination
with an improved interprocedural analysis. The analysis
could then bind modifications of arguments to local vari-
ables in the caller instead of treating them as global state
modifications. Again, experiments are necessary to decide
whether those efforts are worthwhile.

Another practical question is the scalability of the analysis.
The complete examples, including template instantiations,
the vector class, and needed supporting procedures, consist
of less than 100 lines of C++ source code each. By design,
however, the analysis is prepared to handle larger programs.
Its costs are linear in the size of the control-flow graph, it is
an interprocedural analysis and, due to the semiring formal-
ization, it is compositional: since all required information is
contained within the equivalence-class annotations and the
final result is kept in the root node of the control-flow graph
of a program, an already analyzed program that becomes a

subprogram of a larger program can be represented just by
its root node, annotated with the classification; the semir-
ing operations on the larger control-flow graph and the local
update rule then propagate its classification correctly. In its
current incarnation, the analysis is a whole-program source-
code analysis, but refining it to a fragment analysis seems
possible.

Finally, it is worthwhile pointing out that our analysis, like
related analyses, assumes that side effects have been made
explicit, for example, by a previous analysis.

10. SUMMARY
An important part of the contract between a library com-
ponent and its client is the exception-safety guarantee that
the library component assures; the actual safety level de-
fines the options the client has when handling an exception.
In particular in C++, exception-safety guarantees are part of
the review process of libraries and, conversely, many library
components are designed with the strong exception-safety
guarantee in mind. Until now, however, exception-safety
guarantees have to be determined by hand. We have de-
signed and implemented a static analysis of the strong and
the no-throw exception-safety guarantees, which automat-
ically determines for a given library procedure whether or
not it gives the strong or no-throw exception-safety guar-
antee. The analysis also allows a library developer to test
whether the exceptional behavior of the library procedures
is as intended.

It is not always necessary to demand the strong guarantee:
depending on the application and its fault tolerance level,
but also on the design of a component, its degree of mu-
tability and its number of valid states, it might suffice to
ask for the basic guarantee. Even though the analysis is
designed to support only the two stronger guarantees, we
believe that it is helpful even for the basic guarantee. The
analysis explicitly lists the cases where the strong guarantee
is invalidated, thereby highlighting the locations where the
basic guarantee could be invalidated.

The core idea of the underlying algorithm, to recapitulate, is
to introduce five equivalence classes of control-flow graphs
and define a semiring structure over them. Based on an
initial (syntactic) annotation of the control-flow graph with
state modifications and exiting exceptions, the semiring op-
erators propagate this annotation in an efficient and com-
positional manner.

Acknowledgements
This work was in part supported by the project CEDES,
which is funded within the Intelligent Vehicle Safety Systems
(IVSS) program, a joint research program by the Swedish
industry and government. We thank the reviewers of LCSD
for their insightful comments and suggestions.

53

11. REFERENCES
[1] D. Abrahams. Exception-safety in generic components.

In M. Jazayeri, R. Loos, and D. R. Musser, editors,
Generic Programming, volume 1766 of Lecture Notes
in Computer Science, pages 69–79. Springer, 1998.

[2] D. Abrahams and G. Colvin. Making the C++
standard library exception safe. Technical Report
N1086 = 97-0048R1, C++ Standards Committee, 1997.

[3] A. Alexandrescu and D. B. Held. Smart pointers
reloaded (ii): Exception safety analysis. C/C++ Users
Journal, 21(12):40–44, December 2003.

[4] F. Cristian. A recovery mechanism for modular
software. In ICSE ’79: Proceedings of the 4th
International Conference on Software Engineering,
pages 42–50.A, Piscataway, NJ, USA, 1979. IEEE
Press.

[5] B. Dawes. Boost library requirements and guidelines.
http://www.boost.org/more/lib_guide.htm,
November 2003.

[6] J. B. Goodenough. Structured exception handling. In
POPL ’75: Proceedings of the 2nd ACM
SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 204–224, New York,
NY, USA, 1975. ACM Press.

[7] D. Gregor and B. Stroustrup. Concepts. Technical
Report N2081=06-0151, ISO/IEC JTC 1, Information
Technology, Subcommittee SC 22, Programming
Language C++, September 2006.

[8] U. Hebisch and H. J. Weinert. Semirings: Algebraic
Theory & Applications in Computer Science. World
Scientific, January 1999.

[9] S. McPeak. Elkhound and Elsa.
http://www.cs.berkeley.edu/~smcpeak/elkhound/,
August 2005.

[10] S. McPeak and G. C. Necula. Elkhound: A fast,
practical GLR parser generator. In E. Duesterwald,
editor, CC, volume 2985 of Lecture Notes in Computer
Science, pages 73–88. Springer, 2004.

[11] G. Munkby. Design and implementation of an
algorithm for the strong exception-safety guarantee in
C++. Master’s thesis, Chalmers University of
Technology, May 2006.

[12] B. Randell. System structure for software fault
tolerance. In Proceedings of the International
Conference on Reliable Software, pages 437–449, 1975.

[13] M. P. Robillard and G. C. Murphy. Static analysis to
support the evolution of exception structure in
object-oriented systems. ACM Transactions on
Software Engineering Methodology, 12(2):191–221,
2003.

[14] G. Rozental. Boost Test Library homepage.
http://www.boost.org/libs/test, May 2005.

[15] B. G. Ryder and M. L. Soffa. Influences on the design
of exception handling ACM SIGSOFT project on the
impact of software engineering research on
programming language design. SIGSOFT Software
Engineering Notes, 28(4):29–35, 2003.

[16] C. F. Schaefer and G. N. Bundy. Static analysis of
exception handling in Ada. Software—Practice &
Experience, 23(10):1157–1174, 1993.

[17] B. Stroustrup. The C++ Programming Language,
chapter Appendix E. Addison-Wesley Professional,
special edition, February 2000.

[18] H. Sutter. Exceptional C++ Style: 40 New Engineering
Puzzles, Programming Problems and Solutions. AW
C++ in Depth Series. Addison Wesley, August 2004.

54

Extending Type Systems in a Library

Extending Type Systems in a Library
Type-safe XML-processing in C++

Yuriy Solodkyy
Texas A&M University
yuriys@cs.tamu.edu

Jaakko Järvi
Texas A&M University

jarvi@cs.tamu.edu

Esam Mlaih
Texas A&M University

mlaih@tamu.edu

Abstract
Type systems built directly into the compiler or interpreter of a pro-
gramming language cannot be easily extended to keep track of run-
time invariants of new abstractions. Yet, programming with domain
specific abstractions could benefit from additional static checking.
This paper presents library techniques for extending the type sys-
tem of C++ to support domain specific abstractions. The main con-
tribution is a programmable “subtype” relation. As a demonstration
of the techniques, we implement a type system for defining type
qualifiers in C++ as well as type system for the XML processing
language, capable of, e.g., guaranteeing that a program only pro-
duces valid XML documents according to a given XML Schema.

Keywords type systems, XML, type qualifiers, C++, template
metaprogramming, software libraries

1. Introduction
It is in general not possible to decide statically the set of all safe pro-
grams. Type systems of practical programming languages can only
approximate this set, rejecting some safe programs, and accepting
some unsafe ones. For example, the if statement below is rejected
by a C++ compiler, even though the type-incorrect execution path
would never be taken, and the initialization of j is accepted, even
though i will always lead to a “division by zero” error:

int i = 1;
if (i == 1) i = 0; else i = ”error”;
int j = 1/i;

Replace i == 1 in the condition with an arbitrarily complex com-
putation, and it is evident why practical type systems have this be-
havior: it is too inefficient, or impossible, to statically keep track of
computations with certain abstractions to guarantee safety. There
are, however, many abstractions for which ensuring safety with a
type system would be neither inefficient nor impossible. Consider
the following piece of code, accepted by a C++ compiler:

double U; // voltage
double I; // current

...
double P = U/I; // power, oops!

Copyright is held by the author/owner(s).
LCSD ’06 October 22nd, Portland, Oregon.
ACM [to be supplied].

The variables obviously correspond to physical quantities, but the
units of those are outside of the type system, and the easy error goes
undetected.

There are numerous domain-specific abstractions for which type
systems could in principle guarantee important run-time invariants
— but the abstractions are not modeled as part of the type system of
the programming language used. Of course, many type systems for
domain-specific abstractions have been developed. For example,
type systems for rejecting incorrect computations with physical
quantities such as the one in our example above, can be found [22].
As other examples, there are type systems for tracking memory
usage errors with a non-null annotation [9, 12, 13], automatically
detecting format-string security vulnerabilities [26], keeping track
of positive and negative values [7], ensuring that user pointers are
never dereferenced in kernel space [21], preventing data races and
deadlocks [3], and so forth. All of the above type systems can be
based on annotating types with different kinds of type qualifiers,
and tracking their use in expressions.

We note that none of the above type systems has found their
way to mainstream languages. Whether programmers can benefit
from such type systems becomes a question of whether the abstrac-
tions involved are common enough and safety properties impor-
tant enough to warrant complicating the specification of a general-
purpose programming language, and its compilers and interpreters.
It is clear that programming languages cannot be extended to sup-
port typing disciplines for every possible domain. Ideally, it would
be possible to extend type systems to guarantee run-time invariants
of new domain specific abstractions.

Work towards the above goals exists: Chin, Markstrum and
Millstein [7] present a framework for creating type refinements, ca-
pable of extending type systems with domain specific typing rules.
They share our view that language designers cannot anticipate all
of the practical ways in which types may be refined in a particular
type system in order to enforce a particular invariant. The proposed
solution is a framework for user-defined type refinements, allowing
programmers to augment a language’s type system with new type
annotations to ensure invariants of interest. The framework allows
the generation of a type-checker based on declarative rules. Other
work with similar goals include that of optional, ”pluggable” type
systems [4]. While clearly beneficial, the above kind of frameworks
have not yet found widespread use.

In this paper, instead of a special purpose framework, we advo-
cate a more lightweight mechanism for refining type systems with
domain-specific abstractions: as software libraries. We show that
most of type refinements presented, for example, in [7, 13, 23], and
available through dedicated frameworks can also be implemented
as a library in a general-purpose programming language, namely
C++. Our approach is therefore to refine the C++ type system with
domain specific abstractions via libraries. The underlying C++ type
system cannot obviously be altered — by refining the type sys-

55

tem, we primarily mean defining the convertibility relations be-
tween data types of particular domains, and how these user-defined
data types behave with respect to the built-in types of C++. Being
constrained with the limits of expressiveness of a general-purpose
programming language, not everything that special purpose frame-
works would allow is possible. For example, the framework de-
scribed in [7] ensures the soundness of the generated type-systems,
which we cannot do automatically.

Prior work in this direction exists. E.g., C++ libraries for track-
ing physical units are presented in [2,5]. The introduction of several
recent programming techniques and foundational C++ libraries,
however, enable a more disciplined approach to defining such type
system refinements. In this paper, we collect these techniques to-
gether, and show how to apply them for refining the C++ type sys-
tem. This paper presents work in progress, providing the following
contributions:

• We identify the necessary library tools that are needed for
extending the C++ type systems for domain-specific types.

• We identify necessary language features in C++ that enable the
definition of an arbitrary “subtyping” relation.

• We provide a library of primitives that allows easy extension of
the C++ type system with user-defined typing rules.

• We demonstrate with two extensive examples: a type system
for building type-qualifiers and a type system for XML docu-
ments, which can, e.g., guarantee statically that a program only
produces XML documents that are valid according to a given
XML Schema.

To wet an appetite we present here a small example of what can be
done with our approach:

alt<seq<Name,Email>, seq<Name,Tel> > old contact;
seq<Name, alt<Email,Tel> > new contact = old contact;

The alt and seq types represent, respectively, alternation and se-
quencing of XML elements while Name. The Email and Tel
types represent particular XML elements. Thus, old contact and
new contact are objects that represent fragments of XML data. We
discuss these types in detail in Section 4.2. Our library statically as-
sures that the two XML types are compatible and the initialization
of new contact with old contact is safe, and generates the necessary
code to conduct such a transformation. With our library, arbitrarily
complex XML schemas can be represented as C++ types. These
types provide static guarantees about dynamic content of their val-
ues, can aid in parsing appropriate XML documents, and provide
safe conversion operations between fragments of XML data.

2. C++ building blocks
The toolbox of a C++ programmer has grown with some notable
additions during the recent years. We note the following techniques
that are relevant for defining type refinements:

• The ability to express interesting typing rules obviously neces-
sitates that one can encode computations in a library. C++ tem-
plates are a Turing-complete language [30], and thus they allow
arbitrary computations on types and constants to be performed
at compile time. Such template metaprograms [29] have been
frequently used in various C++ libraries. Template metapro-
gramming, however, remained a relatively ad-hoc activity un-
til the introduction of the Boost Metaprogramming Library
(MPL) [1, 15]. MPL provides a solid foundation for metapro-
gramming, defining essentially a little programming language
and a supporting library for defining metafunctions, functions
from types to types. MPL provides the ability to define higher-
order metafunctions, lambda functions etc., and a host of data
structures and algorithms for storing and manipulating types.

For more complex typing rules, a framework like MPL is essen-
tial; we use MPL extensively to define relations between types,
e.g., to provide a user-defined “subtyping” relation. For exam-
ple the following application of the is subtype metafunction de-
fines whether the two types we used earlier are in “subtyping”
relation:

typedef alt<seq<Name, Email>,
seq<Name, Tel> > old contact;

typedef seq<Name, alt<Email, Tel> > new contact;

is subtype<old contact, new contact>::type;

Following the conventions of MPL, the result of the is subtype
metafunction is not a Boolean constant, but either the type
mpl::true or mpl::false .

• Type systems typically define in which context the use of ob-
jects of certain types is allowed, what operators between objects
of different types are allowed, and so forth. With metafunctions,
it is possible to define arbitrary sets of types and relations be-
tween types. The ability to enable or disable functions based on
conditions defined by arbitrary metafunctions then allows one
to define the contexts where the specified sets of types are valid.
This ability is offered with the enable if templates [18, 19]. We
use these templates to enable certain operations, such as assign-
ment, only when its parameters are in a subtyping relation. For
example, the following assignment operation is only defined,
i.e., only matches during the overload resolution, if the right-
hand side of the assignment is an arithmetic type:

class A {
...
template <class T>
typename enable if<is arithmetic<T>, A&>::type
operator=(const T&);

};

The first argument to enable if is the condition, the is arithmetic
metafunction is defined in the current draft specification of the
C++ Standard Library, and the second argument is the type of
the entire enable if<...>::type type expression in the case where
the condition is true. Thus, in the definition above, the return
type of the assignment operation is A&.

• To be able to define typing rules and conversion operators based
on the types’ structural properties, the representation of the
types must be accessible to template metaprograms. The tuple
types in the Boost Fusion Library [20] provide us with such
a representation: complicated types can be represented as Fu-
sion’s tuples, and manipulated with its algorithms at compile
time. Fusion works quite similarly to MPL, but where, say, an
MPL vector only contains types, a Fusion tuple contains values
as well. Similar to MPL metafunctions, we can define meta-
functions in Fusion too, but those metafunctions also have a
run-time component. As a simple demonstration of the func-
tionality offered by the Fusion library, below we first create a
tuple type, populate its elements with values, define a function
object that prints out its argument, filter out all non-arithmetic
types from the tuple, and then print out the values that remain:

typedef fusion::tuple<std::string, int, char> grading record;
grading record rec = fusion::make tuple(”Joe Smith”, 89, ’B’);

struct print {
template <class T>
void operator()(const T& x) const { std::cout << x; }

}
for each(filter if<is arithmetic<Sequence> >(rec), print());

Note that MPL metafunctions (such as is arithmetic) can be
given as inputs to Fusion algorithms, as well as normal func-
tion objects (print()). Some Fusion algorithms, for example

56

transform, requires a hybrid of a metafunction class and a func-
tion object. This algorithm transforms a tuple to another tuple,
potentially transforming both the types and the values of the
elements. Fusion tuples are used to represent the XML types
and Fusion algorithms are the foundation when defining im-
plicit conversions between XML types.

• During the past few years, several new C++ Libraries that
implement new “language constructs” have been introduced.
Though not strictly essential for our approach in general, in the
XML typing library we find good use for the Boost Variant [8]
and the Boost Optional [6] libraries, both of which provide no-
table new functionality to C++. For example, in the following,
Contact is a discriminated union type that can hold an object of
any of the three types Email, Tel, or ICQ, and an object of type
MiddleName possibly contains a string:

typedef boost::variant<Email, Tel, ICQ> Contact;
typedef boost::optional<std::string> MiddleName;

Both libraries are equipped with an API for convenient manip-
ulation of the types.

We point out that MPL, Boost Fusion, Variant, and Optional,
even enable if, have all been developed using the generic program-
ming methodology, building their interfaces to a large extent against
common concepts (in the technical sense). As a result, the above li-
braries are highly interoperable. For example, the list of the element
types of a variant type can be viewed as an MPL sequence, and thus
manipulated either with the MPL or Fusion algorithms; enable if
expects MPL metafunctions as its condition argument, and so forth.
Though mere libraries, the above set extends the C++ language in
a significant way.

3. XTL - an eXtensible Typing Library
In this section we demonstrate how the library techniques from
the previous section enable extending the C++ type system. We
present the rationale and design of library components that support
this task. We refer to these components and the accompanying
conventions collectively as the eXtensible Typing Library (XTL).

3.1 Simple example
We start with a simple example, presented in [7], that extends the
integer type with qualifiers pos and neg, which can be used to stati-
cally track when a value in a variable is positive or negative. Using
techniques used in C++ for decades [28], we can express a simple
but incomplete solution, shown in Figure 1. Constructors, assign-
ment and conversion operator are supposed to capture relationship
of the new type pos<T> and original type T. Objects of the under-
lying numeric type (T) can be used to initialize objects of pos<T>

and neg<T> types. As this is an unsafe operation, it is equipped
with a run-time assertion. Conversions back to the underlying nu-
meric type are safe, and provided with the user-defined conversion
operators to T. How the qualified types behave with various oper-
ators is encoded by overloading those operators, as demonstrated
with the overloads of the arithmetic operators.

This straightforward solution, however, is fairly limited. When
using solely the types pos<T> and neg<T>, the behavior is well
defined, but the interaction of these types with other types, either
built-in or user-defined, or with other possible qualifiers, is not.
For example, the unsafe code in Figure 2 compiles without errors.
We can identify several questions, the answers to which are not
clear in this simple approach: What is the relationship between
the element type T and type pos<T>? The provided constructor
and conversion operator make them convertible to one another, but
does this conversion loose any semantic information? Can values
of one type always be implicitly converted to and used in place of

template <class T>
struct pos {

explicit pos(const T& t) : m t(t) { assert(t > 0); }
operator T() const { return m t; }
pos& operator=(const pos& p) {

m t = p.m t;
return ∗this;

}
T m t;

};

template <class T> struct neg;

template <class T>
pos<T> operator+(const pos<T>& a, const pos<T>& b);

template <class T>
T operator+(const pos<T>& a, const neg<T>& b);

template <class T>
T operator+(const neg<T>& a, const pos<T>& b);

template <class T>
neg<T> operator+(const neg<T>& a, const neg<U>& b);
// ... other operations

Figure 1. Straightforward implementation of type qualifiers pos
and neg. The definition of the class neg is not shown; it is analogous
to the definition of pos.

the other? Are these types in a subtyping relation? How about the
relationship of instantiations of pos and neg with different element
types? What should, e.g., be the relationship between pos<int> and
pos<double>? We note that the straightforward approach is lacking
in many respects.

neg<int> ni(−20);
unsigned un = ni; // oops: un = (unsigned)(int)ni

Figure 2. Impact of standard conversions on pos.

3.2 XTL Subtyping
The central notion in XTL is a user-definable “subtyping” relation
(not based on inheritance). XTL sets the policies of how the subtype
relation is extended for new user-defined types, and provides the
general building blocks to make the task effortless. In particular,
when a user defines a type to be a subtype of another type, the rest
of the framework assures that objects of the first type can be used
in contexts where objects of the second type are expected. Note
that even though we use the term subtyping, a conversion may in
some cases be involved, e.g., in the case of XML types described
in Section 4.2. In practice, when an object of a subtype is used in
the context where supertype is expected, a user-defined conversion
is implicitly performed. As part of defining the XTL subtyping
relation for data types of a domain, the programmer defines the
necessary conversion operators as well.

XTL defines a generic metafunction is subtype<S,T> that eval-
uates to mpl::false by default and should be specialized to evaluate
to mpl::true whenever type S is a subtype of type T. A type sys-
tem built using XTL is responsible for specializing the is subtype
metafunction for primitives of a particular problem domain. Once
these basic relations have been established, XTL provides an elab-
orate set of ready to use subtyping algorithms for compound types.
Among such we support subtyping of function types, array types,
type sequences, discriminated unions, and types refined with type
qualifiers similar to those described in [12].

57

The XTL subtyping relation is fully under the control of the
programmer. For example, if deemed useful, the C++ type char can
be defined to be a subtype of int, int a subtype of double, double a
subtype of complex<double>, and so forth. In fact, such safe con-
versions are commonly useful, so they are available through in-
clusion of a dedicated XTL header file. New types can be added
to the XTL’s subtyping relation by partially or explicitly specializ-
ing the is subtype template. All specializations collectively consti-
tute the metafunction, and thus the subtyping relation. The classes
and types involved do not have to be altered when extending the
is subtype metafunction.

3.3 Subtype casting
Since physical representations of values in different types may
vary, our definition of subtyping relation implies existence of a
unified conversion mechanism capable of transforming physical
representation of a subtype into a physical representation of a
supertype. Such a conversion in XTL is accomplished with the
subtype cast function template, invoked as subtype cast<T>(val),
where T represents a supertype of val’s type. This function deduces
the type of val and if it is a subtype of T, converts val to an object
of type T. Otherwise the subtype cast function template is disabled
with the enable if mechanism, and a call to it results in a compile-
time error.

We demonstrate the use of the XTL subtyping relation and
subtype cast with subtyping of function types. Consider the follow-
ing two function types and corresponding values:

class A {}; class B : public A {};
typedef A (B to A)(B);
typedef B (A to B)(A);
A f(B);
B g(A);

According to the usual subtyping rules between function types
(covariant on return types, contravariant on parameter types) such
a function type A to B would be a subtype of B to A in some
languages—these rules, however, are not part of the C++’s typing
rules, as demonstrated with the following:

B to A∗ pf = &f; // ok
A to B∗ pg = &g; // ok
pf = &g; // error

XTL allows the definition of such a relation, after which an explicit
subtype cast succeeds:

pf = subtype cast<B to A>(&g); // OK

At this point XTL checks the type-safety of the conversion and
generates a proxy function that performs necessary conversions of
the arguments and the result when the function is invoked. It is
worth noting that these conversions are also done with the help of
subtype cast—types recognized by the XTL compose. For exam-
ple, instead of types A and B, the parameter and return types of the
above functions could be other function types, or pos and neg, or
any types recognized by the XTL, and the framework would check
for the appropriate subtype relation of those types. Thus, the frame-
work allows extension with many domain-specific types indepen-
dently, resulting in the expected behavior when the types interact.
Crucial for this is that the subtyping relation of all abstractions is
defined by extending the same is subtype metafunction, and that the
accompanying conversions occur via the subtype cast function.

Before we proceed to revising our example, we note that explicit
casting is not a very elegant feature. In many practical cases, we can
avoid its use by providing implicit conversions as either constructor
on a supertype or conversion operator on a subtype, which redirect
their call to appropriate subtype cast. Such implicit conversion is
not, however, possible in the following cases:

• Both types are pre-existing types (e.g. built-in or standard
types) that the developer of a type system cannot alter—neither
to define a constructor in the super type nor a conversion oper-
ator in the subtype.

• The constructor and/or assignment operator that implement im-
plicit conversions in a subtype is a member template, in which
case a conversion operator in the supertype is not applied. See
example in Figure 5 for details.

Taking this into account, it is advisable not to rely on implicit
conversions between types encoded as part of the XTL framework
in generic code, but rather use subtype cast explicitly if conversions
are necessary. This will assure that the code works with all applica-
ble types.

3.4 pos and neg example revisited
To demonstrate the use of the XTL’s subtyping relation, we rewrite
our naive implementation of the pos and neg class templates, ex-
tending the subtyping relation appropriately, and defining the sub-
type casts. The pos class template is shown in Figure 3. The defini-
tion of neg is similar.

template <class T>
struct pos {

explicit pos(const T& t) : m t(t) { assert(t > 0); }
template <class U>
pos(const U& u,

typename enable if<
is subtype<U, pos<T> >, void>::type∗ = 0) :

m t(subtype cast<T>(u)) {}
template <class U>
typename

enable if<is subtype<U, pos<T> >, pos&>::type
operator=(const U& u) {

m t = subtype cast<T>(u);
return ∗this;

}
template <class U>
operator U() const { return subtype cast<U>(m t); }
// non−template operator= and the data member as before

};

Figure 3. Definition of the pos class template within XTL

We can observe a new constructor in the pos class. Though
taking two arguments, the second one has a default value, and
thus the constructor implements an implicit conversion. The first
argument seemingly matches any type, but in reality only types that
are subtypes of pos<T> will be considered. This is made possible
by the second parameter that acts as a guard: the constructor is
only enabled if U is defined to be a subtype of pos<T> with
the is subtype metafunction. The rather complex type expression
boils down to the type void∗ when the function is enabled, thus
the parameter can accept the default value 0. This is an idiomatic
use of the enable if template to place a constraint to a constructor.
The body of the constructor performs a conversion between the
representations using the subtype cast function.

The assignment operation has the same guard as the convert-
ing constructor described above. The condition is now, however,
expressed as part of the return type of the operator. Again, this is
idiomatic use of enable if. The effect is that an object of type U
can be assigned to a variable of type pos<T> exactly when U is a
subtype of pos<T>.

The non-parametrized conversion operator was replaced by a
parametrized one to rule out introduction of standard conversions

58

into the chain of conversions, which was letting the counter ex-
ample in Figure 2 work. Note that the enable if template cannot
be applied to a conversion operator, because it has neither explicit
return type nor arguments to which we can bind the enable if’s con-
dition [18, 19].

The subtyping rules for pos are defined outside of the pos class,
by specializing the is subtype metafunction:

namespace xtl {
template <class S>
struct is subtype<pos<S>, S> : mpl::true {};
template <class S, class T>
struct is subtype<pos<S>, pos<T> > : is subtype<S, T> {};
}

Here, the first specialization states that a pos type is a subtype of its
element type, and two pos types are in a subtyping relation if their
element types are.

The subtype cast function has some subtle behavior with C++
overloading rules, since call to it requires explicitly specifying a
template argument. To evade the subtleties, this function directly
forwards to the subtype cast impl function, wrapping the target type
of the conversion inside a target template. Hence, subtype cast impl
requires no explicit specialization, and is the function overloaded
when extending XTL with new types. According to the above sub-
typing rules, we overload a function subtype cast impl function to
tell the compiler how to convert between a subtype and a supertype
in this case of pos-qualified types:

template <class T>
T subtype cast impl(target<T>, const pos<T>& p) {

return p.m t;
}
template <class T, class S>
pos<T>
subtype cast impl(target<pos<T> >, const pos<S>& p) {

return pos<T>(subtype cast<T>(p.m t));
}

Definitions of operators now also change slightly to take sub-
typing into account:

template <class T, class U>
pos<typename join<T, U>::type>
operator+(const pos<T>& a, const pos<U>& b)
{

typedef typename join<T, U>::type join type;
return pos<join type>(

subtype cast<join type>(a.m t) +
subtype cast<join type>(b.m t));

}

The metafunction join used here is provided by XTL and returns the
“join” of two types, i.e., the least supertype of its arguments. For
two types of which one is a subtype of the other, this metafunction
simply returns the supertype. For types that are not in subtyping
relation, join relies on appropriate specializations that have to be
provided by the designer of a type system. For example, assuming
the relations float <: double and T <: complex<T>, double and
complex<float> are not in a subtyping relation. They can be given
a join type complex<double> by specializing the join metafunction.

3.5 Type qualifiers
The pos and neg qualifiers presented above are a simple example of
an important direction for enriching type systems: refining a type
with qualifiers. Type qualifiers modify existing types to capture
additional semantic properties of the values flowing through the
program. Probably the best-known example of a type qualifier is the

const qualifier of C++ that is used to track immutability of values
at different program points. Other examples include type qualifiers
for distinguishing between user and kernel level pointers [21], safe
handling of format strings [26], and tracking of values with certain
mathematical properties [7].

Instead of implementing different type qualifiers to type systems
in an ad-hoc manner, several systems, based on a general theory of
type qualifiers, have been described [11–13]. These systems allow
an economical definition of different domain-specific qualifiers.

In this section, we review common properties of type qualifiers,
and show how to implement type qualifiers as a C++ template li-
brary using the XTL framework. To give a brief example we use
taintedness analysis [26] that uses qualifiers untainted and tainted
to tag data coming from trustworthy and potentially untrustwor-
thy sources, respectively. The requirement is that tainted data may
never flow where untainted data is expected. We may want to ensure
that, say, data originating from measurements, considered as trust-
worthy (untainted) data, do not mix it with tainted data from un-
trustworthy sources (e.g. assumptions, values obtained from mod-
eling etc.) to produce untrustworthy results. Note that type quali-
fiers can be composed—besides trustworthiness, values may have
other properties we want to track: positiveness, constness, measure-
ment units etc. The following pseudo-code involves multiple type
qualifiers applied to the same type:

extern double untainted kg get weight();
double const kg a = get weight(); // OK, untainted dropped
double kg untainted b = a; // Error, no untainted in the RHS
b = get weight(); // OK, qualifiers are preserved

We discuss later this section how to verify type safety of an as-
signment that involves multiple type qualifiers; here we just note
that the order of application of type qualifiers to a type should not
matter—it does not in our framework—and types that differ only
in the order of qualifiers should be semantically equivalent. In what
follows, by qualified type we mean a type that is obtained through
applying one or more type qualifiers to an unqualified type.

As with pos and neg, we represent a type qualifier as a template
class with a single parameter, representing the type being qualified.
By taking advantage of the common properties of all type quali-
fiers, we can reduce the work that is necessary for defining a new
qualifier. The developer of a type qualifier explicitly marks his tem-
plate class as a type qualifier through specialization of a traits-like
class is qualifier, and defines the wrapper class. It is not necessary
to alter the is subtype metafunction or the subtype cast functions.
These rules follow according to whether the qualifier is positive or
negative [12], which the programmer states in the definition of the
qualifier class. An example definition is shown in Figure 4.

DEFINITION 1. A type qualifier q is positive if T <: q T for all
types T. A type qualifier q is negative if q T <: T for all types T.

The C++ qualifier const, type qualifier tainted [26] and optional [6]
are examples of positive type qualifiers because T <: const T,
T <: tainted<T> and T <: optional<T>. Qualifiers pos, neg,
nonnull, and untainted mentioned above are examples of nega-
tive type qualifiers because pos<T> <: T, nonnull<T> <: T, and
untainted<T> <: T.

The overload resolution mechanism of C++ is based on com-
paring the structure of types of the formal and actual arguments
and finding the best match. Thus, overloading various operators to
implement the typing behavior of qualifiers in a straightforward
manner of Figure 1, would “favor” the topmost qualifiers, and be
dependent on the order of qualifiers.

To account for this, definitions of operations on type qualifiers
have to be made independent of a particular order of qualifiers
application. To do this, we note that type qualifiers do not change

59

template <class T>
struct untainted

: negative qualifier<typename unqualified type<T>::type>
{

typedef negative qualifier<
typename unqualified type<T>::type

> base;
using base::unqualified type;

untainted() : base() {}
untainted(const untainted& p) : base(p) {}
explicit untainted(const unqualified type& t) : base(t) {}
template <class U>
explicit untainted(

const U& u,
typename enable if<

is subtype<U, untainted<T> >, void
>::type∗ = 0

) : base(subtype cast<T>(u)) {}
template <class U>
operator U() const
{ return subtype cast<U>(∗this); }
untainted& operator=(const untainted& p) {

unqualified value() = p.unqualified value();
return ∗this;

}
template <class U>
typename enable if<

is subtype<U, untainted<T> >,
untainted&

>::type
operator=(const U& u) {

base::operator=(subtype cast<T>(u));
return ∗this;

}
};

Figure 4. The definition of the untainted type qualifier class using
the XTL framework.

the underlying operation, only the type of the result. For example,
when we apply qualifier pos to type int we still use the addition
operation defined on ints, but ask pos to be applied to the result
type whenever both argument types are qualified with it. Taking this
into account, XTL defines generic operations on qualified types and
lets the user customize how a particular operation changes the type.
For example, the following code shows how one would define the
typing rules of the untainted and tainted qualifiers for the addition
operator:

template <template<class> class A, template<class> class B>
struct plus {

typedef mpl::identity<mpl:: 1> type;
};
template <> struct plus<untainted, untainted>
{ typedef qual<untainted> type; };
template <> struct plus<untainted, tainted>
{ typedef qual<tainted> type; };
// ...

This traits-like template class takes two qualifier templates (note it
expects template template parameters), and defines a metafunction
that will be applied to the result type. It defaults to mpl::identity,
which means that qualifiers neither have to be added to nor removed
from the result type. The class template qual we use above defines
a metafunction that applies a given qualifier template to the result
type. XTL’s generic implementation of a particular operation will
loop through all possible combinations of qualifiers in argument

type(s) and apply corresponding meta-functions to compute the
qualifiers that should be applied to the result type.

To arrange that a particular operator is not dependent of the
order of qualifiers in its argument types (for example that the over-
loading behavior of untainted<nonnull<optional<int>>> is the
same as that of optional<untainted<nonnull<int>>>) the XTL
uses enable if to overload operators and functions for qualified
types. The is subtype metafunction can inspect the set of type
qualifiers, and base the subtyping relation on the negativeness
or positiveness of the qualifiers. Omitting some details, the rule
of thumb is that to preserve a subtyping relation, a positive type
qualifier can only be added to the right-hand side, and a nega-
tive type qualifier can only be removed from the left-hand side.
For example: nonnull<optional<untainted<T>>> is a subtype
of tainted<optional<nonnull<U>>> whenever T <: U. Here the
negative type qualifier untainted was dropped from the left-hand
side while positive type qualifier tainted was added to the right
hand side. Other qualifiers were preserved. Dropping the optional
qualifier in the right hand side would have made subtyping to fail.
The XTL’s definition of is subtype has this behavior.

nonnull<neg<int> > a(−44);
pos<untainted<nonnull<int> > > b(2);

neg<nonnull<long> > m = a ∗ b; // OK
nonnull<pos<double> > e = b − a; // Error: nonnull
pos<double> d = b − a; // OK: no nonnull

nonnull<tainted<double> > bc =
subtype cast<nonnull<tainted<double> > >(b);

nonnull<tainted<double> > bi = b; // same as above
bi = b;

pos<nonnull<int> > c(3);
string cc =

subtype cast<nonnull<tainted<string> > >(c);
string ci = c;
ci = c; // Oops

Figure 5. Example of working with XTL’s qualifiers.

To give a feel of working with type qualifiers built with XTL,
Figure 5 shows code using some of the type qualifiers mentioned
above. The last assignment in the example fails to compile. This
is because string defines its assignment operator as a template, and
as a result XTL’s conversion operator in the supertype is not tried.
As discussed in Section 3.3, we may thus sometimes need to resort
to an explicit conversion using subtype cast; in this example, we
could write ci = subtype cast<string>(c);.

Even with the subtyping and casting functionality provided by
the XTL, the definition of an individual type qualifier class is still
fairly elaborate, but mostly boilerplate code. For cases where no
special run-time checks are needed, the XTL provides two macros
for taking care of this boilerplate:

DECLARE POSITIVE QUALIFIER(tainted);
DECLARE NEGATIVE QUALIFIER(untainted);

The metafunctions that describe how different operations carry the
qualifiers must obviously still be defined.

We are experimenting with an alternative design, where all
qualified types are represented as instances of a single qualified
template, taking two type parameters: the element type and an MPL
type list. In this design, an individual qualifier type becomes an
empty tag class, simplifying the definition of new qualifiers even
more. Another benefit is that the list of qualifiers is in a readily
accessible form for querying and manipulating with metaprograms.
The (subjective) drawback is a less natural syntax for the user.

60

4. Typing XML in C++
In this section, we describe how the XTL, with the help from
several C++ template libraries, allow an elaborate extension to the
C++’s type system: static typing of XML.

4.1 Background: regular expression types
Type systems that understand XML data have gained considerable
interest. The central idea is to harness the type system to guarantee
statically that a particular program cannot manipulate, or produce
XML documents that do not conform to a particular DTD [32] or
Schema [25]. The insight is that XML data corresponds directly
to regular expression types, which then can be given a representa-
tion in the type systems of various languages. Some of the recent
efforts in this direction include the XDuce language [16] specifi-
cally designed for XML processing, that has a direct representation
for regular expression types; the Cω [24] and Xtatic [14] languages
that extend C# with regular expression types; and the HaXml [31]
toolset, that uses Haskell’s algebraic data types to represents XML
data.

Regular expression types, e.g. as defined in XDuce, are sets
of sequences over certain domains. Values from those domains
denote singleton and composite sequences. Composite sequences
are formed with the regular expression operators , (concatenation),
| (alternation), ∗ (repetition) and ? (optionality) together with type
constructors of the form l[· · ·]. If S and T are types, then S, T
denotes all the sequences formed by concatenating a sequence from
S and a sequence from T . S|T denotes a type that is a union
of sequences from S and sequences from T . Type l[T], where
T is a type and l ranges over a set of labels, defines a set of
labeled sequences, where each sequence from T becomes classified
with the label l. Type T∗ denotes a set of sequences obtained by
concatenating any finite number of times sequences from T . The
empty sequence is denoted with () and T? denotes any sequence T
or an empty sequence.

Consider for example the following XML snippet describing a
path to a file:

<path>
<dir-name>C</dir-name>
<dir-name>Media</dir-name>
<dir-name>Video</dir-name>
<file-name>Experience.mpg</file-name>

</path>

This snippet conforms to the following XML Schema:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xsd:schema xmlns:xsd

="http://www.w3.org/2001/XMLSchema">
<xsd:element name="dir-name" type="xsd:string"/>
<xsd:element name="file-name" type="xsd:string"/>
<xsd:element name="path">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="dir-name"
maxOccurs="unbounded"/>

<xsd:element ref="file-name"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
</xsd:schema>

The labels of XDuce mentioned above classify types similarly
to how XML tags classify their content; For example, dir−name[...]
corresponds to <dir−name>...</dir−name> in XML parlance.
Still using XDuce syntax, the regular expression type

path[dir−name[string]∗, file−name[string]]

defines a set of XML snippets that match the above schema, that
is, the set of XML snippets with ”path” as a root element that
contains zero or more ”dir-name” elements followed by a ”file-
name” element.

An interesting feature of the XDuce language is the subtyping
relation between regular expression types. This subtyping relation
is defined as semantic subtyping, as the subset relation between lan-
guages generated by two tree automata [16]. Defining subtyping
between regular expression types corresponds to defining which
XML fragments are safely convertible to which other XML frag-
ments. For example, the following subtyping relationships hold:

DirName∗, FileName <: (DirName | FileName)∗
(DirName, DirName)∗, DirName <: DirName, DirName∗

An application of subtyping between XML fragments is, for ex-
ample, to provide backward compatibility of documents that corre-
spond to older schema: code written against a newer schema should
work for older schemas, as long as the type defined by the newer
schema is a supertype of the type defined by the older one.

The decision problem for such subtyping relation is EXPTIME-
hard [17] in the worst case, but has reported to be efficient in cases
of practical interest.

4.2 Regular expression types in C++
We define an encoding of regular expression types in C++. Regular
expression types are represented as nested template instantiations,
consisting of sequence types, variants, and lists. We represent XML
elements in our system as a pair of two types, the first of which
represents the element’s tag and second the element’s data:

template <class Tag, class T = detail::empty>
class element {

T data;
};

The Tag type denotes the name of the XML element, or the label
in XDuce’s regular expression types. Empty XML elements can be
represented by an element instantiated with nothing but a tag type.
Complex XML elements may have several levels of instantiation
of element passed as their data type. Consider for example the
following XML snippet:

<path>
<file-name>Experience.mpg</file-name>

</path>

It could be given the following type in our library:

struct path { /∗...∗/ };
struct file name { /∗...∗/ };
typedef xml::element<

path,
xml::element<file name, std::string>

> MyXMLDoc;

Tag-classes are also used to keep additional information about
the tag: the name as a character array, XML node type, additional
restrictions etc.

struct file name {
static const char∗ tag name() { return ”file name”; }
typedef xml::attribute node type;

};

Sequencing of XML elements is represented with xml::seq class
that is just a simple wrapper around Fusion’s tuple class [20].
The reason we wrap Fusion tuples is that having a wrapper class
abstracts us from a particular implementation, and allows us to

61

change behavior of certain operations, e.g., by performing some
preprocessing on the tuple types. For example, we wrap the I/O
operators of Fusion tuples to do a flattening of sequences: e.g., the
sequence (A, B, (C, D), E) is flattened to (A, B, C, D, E). Fusion
tuples are MPL-compliant sequences [1, 15]; we operate on the
fusion tuples with MPL algorithms in our subtyping algorithm.
Here is an example of using sequencing of elements:

typedef xml::element<file name, string> XMLFileName;
typedef xml::element<dir name, string> XMLDirName;
typedef xml::element<

path,
xml::seq<XMLDirName, XMLDirName, XMLFileName>

> XMLPathOfDepth3;

The empty sequence () is represented by xml::seq<>.
Alternation of XML elements is represented with the xml::alt

class template that is again just a simple wrapper, now around
Boost’s variant template [8]. In case of alternation, the wrapping
is to be able to redefine the I/O routines. Here is a small example
of using alternation:

typedef xml::element<file name, string> XMLFileName;
typedef xml::element<dir name, string> XMLDirName;
typedef xml::alt<XMLFileName, XMLDirName> XMLPathChunk;

The empty union is represented by xml::alt<>.
A repetition of XML elements is represented with the xml::rep

class, which is a wrapper over an std::vector of Fusion tuples. Using
repetition, the path definition from Section 4.1 can be expressed as
follows:

typedef xml::element<file name, string> XMLFileName;
typedef xml::element<dir name, string> XMLDirName;
typedef xml::element<

path,
xml::seq<xml::rep<XMLDirName>, XMLFileName>

> XMLPath;

We chose to implement repetition rather than the more general
recursion to account for restrictions imposed on us by the C++
language. We omit details here, but point out that our current
implementation of the subtyping algorithm cannot handle all the
cases that involve repetition: we are working on extending the
algorithm.

4.2.1 Subtyping relation
We utilize the static metaprogramming capabilities of C++ to es-
tablish a subtyping relation between two regular expression types.
Again, the is subtype metafunction is harnessed for this purpose.
We do not currently support the full semantic subtyping relation
of XDuce; as we already mentioned an implementation of gen-
eral recursion or even right/tail recursion as used in XDuce seems
problematic as a pure C++ library. Nevertheless, implementation of
repetition, which is functionally equivalent to right/tail recursion
seems to be feasible, which is what we are currently working on.

Also, unlike XDuce, we currently do not allow subtagging —
subtyping on tags. We assume that only elements with the same
tags can be in subtyping relationship and those with different tags
are automatically assumed not to be in such a relationship. We do
not anticipate difficulties in implementing subtagging within our
framework.

The implementation of is subtype metafunction for XML types
is fairly intricate and we do not show it here. It amounts to im-
plementing the subtyping rules of XDuce (really a limited form of
them per the restrictions mentioned above) using MPL. Once the
is subtype metafunction has been defined to recognize our XML
types, we can exploit it to implement guards similar to those in the
constructors of the qualified types—Figure 6 demonstrates with the
converting constructor of the element class template.

template <class Tag, class T = detail::empty>
class element {

// A converting constructor, matches if the
// argument is a ”subtype” in the library’s
// type system
template <class UTag, class U>
element(const element<UTag, U>&,

typename enable if<
is subtype<

element<UTag, U>,
element< Tag, T>

>,
void

>::type∗ = 0
)

{ ... }
// rest of the class definition ...

};

Figure 6. The converting constructor of the element class template.

We do not overload subtype cast impl to define conversions on
element types because we define such conversions on the element
class itself. Calling subtype cast on the element type then calls the
most general implementation of subtype cast impl, which simply
tries to apply either a standard or a user defined conversion on the
type, which is exactly what we need.

4.3 Supporting functionality
In addition to the core “type system”, we have implemented some
supporting functionality as part of our XML processing library.
This includes I/O, and automatic generation of the C++ types from
an XML Schema. For I/O, we provide both direct streaming op-
erations, and a module for interacting with the Expat parser [10].
For generating the C++ types corresponding to a particular XML
Schema, we use XSL transformations.

Figure 7 presents a complete example of working with our XML
framework. The code marked by comments are taken verbatim
from the header file generated from a corresponding .xsd file (the
XML Schema description).

4.4 Impact on compile times
Heavy use of template metaprogramming is known to increase
compile times of C++ programs, often significantly. We conducted
experiments to estimate the impact that library-defined type sys-
tems written using the XTL have on compile times. We tested both
the uses of type qualifiers and the use of the XML framework. All
tests were performed under GCC 3.4.4 on Intel Pentium M proces-
sor running at 2 GHz with 512 MB of RAM.

Our test-suit for type qualifiers consisted of 11 test programs,
all semantically equivalent, but having a different number of qual-
ifiers attached to the types of the values with which the program
performed computations: program with index n used n qualifiers.
Each program consisted of 20 functions, each of which instantiated
values of two different types and then performed an operation on
them. Each applied qualifier had up to 4 rules defined on it. Com-
pilation times (in seconds) for these tests are given in Table 1. The
compile time should be compared against the value in row 0, which
defines the baseline: the equivalent program without any qualifiers.

The subtyping relation of the XML types is computationally
more expensive than that of type qualifiers. As mentioned earlier,
in the general case deciding subtyping of regular expression types
is EXPTIME-hard. The computationally expensive cases are sub-
typing relations of the following form:

l(A1, · · · , An) <: l(B11, · · · , B1n)| · · · |l(Bk1, · · · , Bkn)

62

using namespace xml;
using namespace std;

// >>>> generated definitions >>>> //
struct name { /∗...∗/ }; struct email { /∗...∗/ };
struct tel { /∗...∗/ }; struct icq { /∗...∗/ };
struct contact { /∗...∗/ };

typedef element<name, string> XMLName;
typedef element<email, string> XMLEmail;
typedef element<tel, alt<string,int> > XMLTel;
typedef element<icq, int> XMLICQ;
typedef alt<XMLEmail,XMLTel,XMLICQ> AnyField;
typedef element<contact,

seq<XMLName,XMLEmail,XMLTel> > XMLOldContact;
typedef element<contact,

seq<XMLName,AnyField,AnyField> > XMLNewContact;
// <<<< generated definitions <<<< //

int main() {
try {
ifstream xml(”old−contact.xml”); // must exist
XMLOldContact old contact;
xml >> old contact; // parse file
XMLNewContact new contact = old contact; // OK
cout << new contact; // output XML source
// old contact = new contact; // ERROR
}
catch(invalid input& x) {

cerr << ”Error parsing ” << x.what();
return −1;

}
return 0;

}

Figure 7. Complete example of working with XML. Type
XMLOldContact is a subtype of XMLNewContact, which is
why assignment new contact = old contact is allowed while
old contact = new contact is not.

N Time
0 1.12
1 1.72
2 2.61
3 2.81
4 3.18
5 3.94
6 4.97
7 5.55
8 6.28
9 15.40
10 19.22

Table 1. Compilation times, in seconds, of the type qualifiers test
programs.

Verification of such a relation in the general case involves a number
of steps that is proportional to the number of ways a k-element set
can be split into n disjoint sets. Detailed discussion can be found
in [17].

We wanted to test the effect of this worst-case scenario on
compile times. Our test suite for the XML type system consisted of
81 tests—one for each combination of n and k (ranging from 1 to 9)
from the above relation. In each of the tests we invoked is subtype
metafunction using XML types that trigger the exponential case
with essentially the following code:

BOOST STATIC ASSERT((
is subtype<

element<a, seq<AK0, ... , AKN> >,
alt<element<a, seq<A00, ... , A0N> >,

element<a, seq<A10, ... , A1N> >,
... ,
element<a, seq<AK0, ... , AKN> >

>
>::type::value

));

Table 2 represents compilation times in seconds for different values
of n and k. Empty entries correspond to tests that did not finish
within 10 minutes.

n/k 1 2 3 4 5 6
1 1.42 1.60 1.62 1.73 1.93 2.08
2 1.42 1.72 2.25 3.56 7.98 24.91
3 1.38 1.67 2.47 5.75 29.85
4 1.52 1.85 3.50 24.27 155.25
5 1.44 2.03 6.74 130.72
6 1.52 2.28 17.89 179.72
7 1.46 2.64 54.94
8 1.66 3.48 155.41
9 1.58 4.91

Table 2. Compilation times, in seconds, of the test programs for
the XML type system.

We note that even though these times grow exponentially, other
implementations of the subtyping algorithm have been reported to
behave satisfactorily on practical examples [17], suggesting that
the exponential case with large n and k does not manifest often
in practice.

Summarizing the test results, using our approach to refining
type systems can have a notable negative impact on compile times.
For example in the case of the type qualifiers, the slowdown is quite
reasonable, and typical for libraries relying on template metapro-
gramming. In the XML case, the pathological cases that lead to
exponential growth in the cost of deciding subtyping also obvi-
ously increase the compilation times exponentially. The tests we
performed are only suggestive.

5. Conclusions and future work
We presented a library solution for extending the type system of a
general-purpose programming language with typing of domain-
specific abstractions. The presented solution does not require
any compiler support and can be fully implemented in standard
C++ [27]. We have demonstrated that it is feasible to implement
elaborate typing behavior purely as a library.

In the future, we plan to explore the limits of the approach, im-
plementing different kinds of type system extensions in terms of the
XTL tools we described, as well as polish implementations of the
ones we presented, and make them publicly accessible. Our XML
framework currently lacks full support of subtyping for repetition,
which is part of our future work. Also, going more into XML do-
main, currently we only support a basic subset of primitive XML
data types. We plan to extend this support to other built-in types as
well as possibly provide a compile- and run-time support of facets.
It is important to stress that the presented XML processing library is
not an XML parser—its purpose is to provide compile-time guaran-
tees that the XML code produced by a particular application corre-
sponds to the appropriate XML Schema. It also provides means for
automatic conversion between conforming XML representations,
as well as provides a machinery to map XML Schema definitions
to corresponding library abstractions.

63

References
[1] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming:

Concepts, Tools, and Techniques from Boost and Beyond. Addison-
Wesley, 2004.

[2] J. Barton and L. Nackman. Scientific and Engineering C++. Addison-
Wesley, 1994.

[3] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe
programming: preventing data races and deadlocks. In OOPSLA
’02: Proceedings of the 17th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages
211–230, New York, NY, USA, 2002. ACM Press.

[4] G. Bracha. Pluggable type systems. October 2004.
[5] W. E. Brown. Applied Template Metaprogramming in SIUNITS: the

Library of Unit-Based Computation. In In Second Workshop on C++
Template Programming, Oct. 2001. in conjunction with OOPSLA’01,
http://www.oonumerics.org/tmpw01/brown.pdf.

[6] F. Cacciola. Boost Optional. http://www.boost.org/libs/
optional/.

[7] B. Chin, S. Markstrum, and T. Millstein. Semantic type qualifiers.
In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, pages 85–95,
New York, NY, USA, 2005. ACM Press.

[8] I. M. Eric Friedman. Boost Variant. http://www.boost.org/
doc/html/variant.html, 2002.

[9] D. Evans. Static detection of dynamic memory errors. In PLDI ’96:
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 44–53, Philadelphia, PA, USA, May 1996.
ACM Press.

[10] The Expat XML Parser. http://expat.sourceforge.net/,
2006.

[11] J. S. Foster. Type Qualifiers: Lightweight Specifications to Improve
Software Quality. University of California, Berkeley, 2002.

[12] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers.
In PLDI ’99: Proceedings of the ACM SIGPLAN 1999 conference on
Programming language design and implementation, pages 192–203,
New York, NY, USA, 1999. ACM Press.

[13] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers.
In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation, pages 1–12,
New York, NY, USA, 2002. ACM Press.

[14] V. Gapeyev, M. Y. Levin, B. C. Pierce, and A. Schmitt. The Xtatic
experience. In Workshop on Programming Language Technologies
for XML (PLAN-X), Jan. 2005. University of Pennsylvania Technical
Report MS-CIS-04-24, Oct 2004.

[15] A. Gurtovoy. The Boost MPL library. http://www.boost.org/
libs/mpl/doc/index.html, July 2002.

[16] H. Hosoya and B. C. Pierce. XDuce: A typed XML processing

language (preliminary report). In D. Suciu and G. Vossen, editors,
International Workshop on the Web and Databases (WebDB), May
2000. Reprinted in The Web and Databases, Selected Papers, Springer
LNCS volume 1997, 2001.

[17] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression types
for xml. ACM Trans. Program. Lang. Syst., 27(1):46–90, 2005.

[18] J. Järvi, J. Willcock, H. Hinnant, and A. Lumsdaine. Function
overloading based on arbitrary properties of types. C/C++ Users
Journal, 21(6):25–32, June 2003.

[19] J. Järvi, J. Willcock, and A. Lumsdaine. Boost enable if Library.
Boost, 2003. http://www.boost.org/libs/utility/enable
if.html.

[20] D. M. Joel de Guzman. Boost Fusion. http://spirit.
sourceforge.net/dl more/fusion v2/libs/fusion/doc/
html/index.html, April 2006.

[21] R. Johnson and D. Wagner. Finding user/kernel pointer bugs with
type inference. In USENIX Security Symposium, pages 119–134,
2004.

[22] A. Kennedy. Dimension types. In Proceedings of the 5th European
Symposium on Programming (ESOP), volume 788 of Lecture Notes
in Computer Science. Springer-Verlag, 1994.

[23] Y. Mandelbaum, D. Walker, and R. Harper. An effective theory
of type refinements. In ICFP ’03: Proceedings of the eighth ACM
SIGPLAN international conference on Functional programming,
pages 213–225, New York, NY, USA, 2003. ACM Press.

[24] M. Research. Cw. http://research.microsoft.com/Comega/,
2005.

[25] XML Schema. http://www.w3.org/XML/Schema, 2005.
[26] U. Shankar, K. Talwar, J. Foster, and D. Wagner. Detecting format

string vulnerabilities with type qualifiers, 2001.
[27] I. . I. Standard. Programming languages - C++. American National

Standards Institute, September 1998.
[28] B. Stroustrup. The C++ Programming Language. Addison-Wesley,

Reading, MA, USA, 1986.
[29] T. L. Veldhuizen. Using C++ template metaprograms. C++ Report,

7(4):36–43, May 1995. Reprinted in C++ Gems, ed. Stanley
Lippman.

[30] T. L. Veldhuizen. C++ templates are Turing complete. www.osl.iu.
edu/∼tveldhui/papers/2003/turing.pdf, 2003.

[31] M. Wallace and C. Runciman. Haskell and XML: Generic
combinators or type-based translation? In Proceedings of the
Fourth ACM SIGPLAN International Conference on Functional
Programming (ICFP‘99), volume 34–9, pages 148–159, N.Y., 27–29
1999. ACM Press.

[32] Extensible markup language (XMLTM). http://www.w3.org/
XML, 2005.

64

Anti-Deprecation:
Towards Complete Static Checking for

API Evolution

S. Alexander Spoon
LAMP, Station 14

Swiss Federal Institute of Technology in Lausanne (EPFL)
CH-1015 Lausanne

lex@lexspoon.org

ABSTRACT
API evolution is the process of migrating an inter-library
interface from one version to another. Such a migration re-
quires checking that all libraries which interact through the
interface be updated. Libraries can be updated one by one if
there is a transition period during which both updated and
non-updated libraries can communicate through some tran-
sitional version of the interface. Static type checking can
verify that all libraries have been updated, and thus that
a transition period may end and the interface be moved
forward safely. Anti-deprecation is a novel type-checking
feature that allows static checking for more interface evo-
lutions periods. Anti-deprecation, along with the more fa-
miliar deprecation, is formally studied as an extension to
Featherweight Java. This formal study unearths weaknesses
in two widely used deprecation checkers.

“In Java when you add a new method to an interface, you
break all your clients.... Since changing interfaces breaks
clients you should consider them as immutable once you’ve
published them.” –Erich Gamma [21]

“NoSuchMethodError” –Java VM, all too frequently

1. OVERVIEW
Libraries communicate with each other via application pro-
gramming interfaces (API’s), or interfaces for short. The
key idea with interfaces is that so long as a set of libraries
conform to their interfaces, those libraries will tend to func-
tion together when they are combined. This approach is a
key part of standard discussions of software modularity [2].

This interfaces idea supports independent evolution of li-
braries, in that libraries can be updated so long as they
continue to conform to their interfaces. However, this strat-

LCSD 2006 Portland, Oregon, USA

egy does not address evolution of the interfaces themselves.
Since in practice the first definition of an interface is often
insufficient, practitioners need some approach for improving
interfaces. This is the problem of interface evolution.

Interface evolution arises in practice for large-scale projects
with multiple independent development groups. The Eclipse
project, for example, includes plugin code written by devel-
opment groups all over the world. For such projects, sub-
stantial attention is put onto the problem of safely upgrading
interfaces [5].

Transition periods provide a general mechanism for evolving
the interfaces between independently maintained libraries.
A transition period is a period of time during which both
updated and non-updated libraries can successfully commu-
nicate through an evolving interface.

During a transition period, all libraries that conform to the
original version of an interface must be allowed to continue
to function. As the transition period progresses, more and
more libraries should be updated for the forthcoming ver-
sion of the interface, while continuing to work with the
transitional version of the interface. A transition period
can successfully terminate when all libraries communicating
through the interface have been either updated or aban-
doned. At that time, the interface itself can be upgraded.

Static type checking can be used to verify that a transition
period may be safely entered or left. At the beginning of
a transition period, static checking can ensure that all li-
braries conforming to the current interface will continue to
conform to the new, transitional interface. At the end of a
transition period, static checking can ensure that all checked
libraries are ready to progress to the next version of the in-
terface. The same checker can be used for both purposes
if the checker has two strictness levels. The strict level is
used to check the exit from transition periods, while the
looser transitional level is used for all other type-checking
purposes.

This article studies static type checking for deprecation and
anti-deprecation of methods. Deprecation is widely used,
while anti-deprecation appears to be novel for programming
languages. After describing the features in general, the arti-
cle defines them formally as an extension to Featherweight

65

public interface ConnectionListener {

public void connectionClosed();

public void connectionClosedOnError(Exception e);

}

public interface ConnectionListener2

extends ConnectionListener {

public void connectionAuthenticated();

}

Figure 1: Two interfaces from Eclipse. The second
interface is the same as the first except that it re-
quires one new method.

public interface ConnectionListener {

public void connectionClosed();

public void connectionClosedOnError(Exception e);

encouraged public void connectionAuthenticated();

}

Figure 2: With encouraged methods, the new
method could have been gradually phased into the
original interface.

Java [11], and proves several core properties about the for-
malism. This systematic study not only defines the new
feature, but unearths two places where current deprecation
checkers could be improved.

2. STATIC TRANSITION CHECKING
Static checking can help both entering and leaving transition
periods. When entering a transition period, the checker can
verify that clients will continue to compile and run, even
if not all libraries using the interface are available. As the
transition period moves forward, each library’s developers
can use the checker as they update their library to verify
that their updates are sufficient for the next version of the
interface. Once all libraries have been updated and checked,
it is safe to move the interface forward.

Put another way, the entries and exits of transition periods
are refactorings [14]. If the static checker is satisfied, then
crossing these end points causes a change in program syntax
but not in program behavior.

Not all libraries need to be available to those maintaining
the interface. The conditions for entering a transition period
are typically weak, thus giving interface maintainers broad
liberty to start an interface transition. Leaving the tran-
sition period requires more work, but it does not need to
be finished immediately. Every library whose components
use the interface must be checked with the strict checker,
but those checks can occur throughout the transition pe-
riod. Once the (loose) organization of library maintainers
have decided that sufficient checking has occurred, and if no
errors are known to be present, the transition period can be
left.

Organization processes for deciding that enough library as-
semblies have been checked that a transition period may

be left are beyond the scope of this article. Presumably,
however, some such agreement has been reached among the
library developers. As one example arrangement, the main-
tainers of the interface might commit to a minimum length
of evolution period. That length might be e.g. six months, a
year, or five years. Anyone building assemblies that use that
interface must periodically check their library, with a period
no longer than the agreed length of evolution periods.

A static transition checker can be described as having two
modes: transitional and strict. If a library passes the transi-
tional checker, then the library can communicate with other
libraries through the interface. If a library additionally
passes the strict checker, then the library will also continue
to work if the interface is updated. The strict checker takes
into consideration extra annotations describing the desired
interface changes, while the transitional checker mostly ig-
nores such annotations.

Implementations can combine the two checking modes. All
code must pass the transitional checker, while failure to ad-
ditionally pass the strict checker causes interface-evolution
warnings.

3. ANTI-DEPRECATION
Deprecation allows a static checker to emit warnings when-
ever a caller tries to use a method that is expected to dis-
appear in a future version of an interface. A complemen-
tary scenario is also important: sometimes a future version
of an interface will require an additional method. An an-
notation for such future required methods could be called
anti-deprecation.

The typical usage for anti-deprecation is shown in Figures 1
and 2. Figure 1 shows one of Eclipse’s “I*2” interfaces, an
interface that is an extension of an earlier interface. Expe-
rience with the framework showed that the earlier interface
was too thin, but given the nature of Java interfaces, new
methods could not be added to the existing, published inter-
face. Thus, the Eclipse developers added a second interface
which merely extends the first interface and adds one new
method. With encouraged methods, the designers would
have had the option to phase in the method to the existing
interface, as shown in Figure 2.

A simple way to annotate anti-deprecation is to add an
encouraged keyword to the language. Unlike other meth-
ods, a method marked as encouraged cannot be called. Its
presence only serves to mark that a future version of the
interface will include that same method as abstract.

During transitional checking, encouraged methods are, for
the most part, treated as if they were not present at all. The
only restriction is that encouraged methods cannot over-
ride other non-encouraged methods. Allowing such would
be complicated and unhelpful—after all, if a method is al-
ready present due to inheritance, what use is it to encourage
it further? The one exception, that encouraged methods can
nonetheless override other encouraged methods, is necessary
so that encouraged methods can be added over other en-
couraged methods. In strict checking, even this case is not
allowed, and the encouraged method deeper in the hierarchy
needs to be removed.

66

L ::= class C extends C { C̄ f̄ ; K X̄ M̄ }
X ::= deprecated m;

K ::= C(C̄ f̄) { super(f̄); this.f̄ = f̄ ; }
M ::= C m(C̄ f̄) MB

MB ::= { return e ; } | abstract | encouraged
e ::= x | e.f | e.m(ē) | new C(ē) | (C)e

Figure 3: Syntax of FJ-ADE

During strict checking, encouraged methods add several re-
quirements for programs to pass the checker. First, any
method that overrides an encouraged method must have
the required parameter types and return type. This re-
quirement is present so that when an encouraged method
is later promoted to a required method, all methods over-
riding it will have conforming types. Second, every subclass
of a class with an encouraged method must either implement
the method or be considered abstract and uninstantiable.

The combination of deprecation and anti-deprecation allows
for an additional class of changes that neither mechanism
supports alone: arbitrary changes to a method’s signature.
For example, one might wish to change the set of exceptions
thrown by a method, or change a method’s return type, or
change its public or private visibility.

Such changes can always be accomplished using four tran-
sition periods. The first period introduces a new version of
the method with a different name than the original method.
Since the method is new, it can be given any type signature
at all. The second period deprecates the original method,
thus inducing callers to use the new version of the method.
The third period replaces the deprecated original method
with an encouraged method of the desired signature. The
fourth period deprecates the temporary method name, thus
inducing clients to change back to using the original method.

Alternatively, developers can choose a shorter two-phase se-
quence if they are content for the new method to have a
different name from the original. They can simply stop af-
ter the first two transition phases.

These rules for encouraged and deprecated might seem pes-
simistic. These rules are formed under the assumption that
developers in other groups might both implement any inter-
face and invoke the methods it advertises. If this assumption
were changed to restrict what other developers can do, then
some interface changes could be safely performed with fewer
or even no transition periods.

For example, suppose that one party controls an interface
along with all of its implementors. In that case, that party
can add methods to the interface without needing a transi-
tion period. They can simply make a simultaneous release
of the updated interface and the updated implementors of
that interface. Likewise, if one party controls all callers to
an interface, e.g. as with call backs, that party can remove
methods from the interface without needing a transition pe-
riod.

The present work addresses the less constrained scenario
where outside developers can both implement an interface
and call through it. The main reason for this choice is that
it is the more general and difficult case. However, notice
that even when outside developers are expected to be more
constrained in their work, it is desirable to allow them the
greater flexibility. At the least, it is useful for testing if pro-
grammers can implement their own mock objects to stand
in place of the usual ones [12, 9].

4. EXTENDING FEATHERWEIGHT JAVA
While deprecated and encouraged are simple to describe, it
proves tricky to develop the precise rules for checking them
so that transition periods can be safely entered and left. In
order to determine the precise checking rules, the bulk of
this article focuses on a formal study of a small language
including these keywords.

The keywords are added to Featherweight Java (FJ) [11],
a language that has several appealing characteristics: it is
tiny, making it amenable to formal study; it uses familiar
syntax, so that the work is more approachable; and it cap-
tures two features at the heart of object-oriented languages,
message sending and inheritance.

In one way, though, the FJ language is a little too small for
the present purpose: it does not include a notion of inter-
faces. Instead of adding a full interface concept, it suffices
to add abstract methods. Abstract methods allow abstract
classes, which for the present purpose serve as perfectly fine
interfaces. The full extended language is called FJ-ADE
because it is Featherweight Java with three new keywords:
abstract, deprecated, and encouraged.

The notation is generally that of FJ. When a line of code
is written down by itself as an assumption, the meaning is
that that line of code appears somewhere in the program.
A sequence is written x̄, denoting the sequence x1, . . . , xn,
where #(x̄) = n. The empty sequence is • by itself, while a
comma between two sequences denotes concatenation. Pairs
of sequences are a shorthand for a sequence of pairs; for
example, C̄ x̄ means C1 x1 . . . Cn xn. The notation x ∈ ȳ
means that x = yi for some i. Negation, written ¬P , is
not boolean negation, but instead means that P cannot be
proven with the available inference rules.

The syntax of FJ-ADE is given in Figure 3. There are a few
differences from FJ:

• Methods can be abstract. Any class that defines or
inherits an abstract method is considered abstract and
cannot be instantiated with new.

• Methods can be encouraged. An encouraged method
will be added to a future version of the class with the
specified type signature.

• Each class has a list of deprecated methods. Depre-
cated methods are going to be removed in a future
version of the class.

Subtyping for FJ-ADE is shown in Figure 7. As in FJ, it
exactly follows the class hierarchy.

67

T-Var
x : C ∈ Γ
Γ ` x : C

T-Field
Γ ` e0 : C0 fields(C0) = C̄ f̄

Γ ` e0.fi : Ci

T-New

fields(C) = D̄ f̄ str ; Γ ` ē : C̄ C̄ <: D̄
¬abstract(C) (str = trans) ∨ (¬postabs(C))

str ; Γ ` new C(ē) : C

T-Invk

str ; Γ ` e0 : C0

mtype(m,C0, false, str = trans) = D̄ → C
str ; Γ ` ē : C̄ C̄ <: D̄

str ; Γ ` e0.m(ē) : C

T-UCast
Γ ` e0 : D D <: C

Γ ` (C)e0 : C

T-DCast
Γ ` e0 : D C <: D C 6= D

Γ ` (C)e0 : C

T-SCast
Γ ` e0 : D D 6<: C D 6<: C stupid warning

Γ ` (C)e0 : C

Figure 4: Typing of expressions

T-Method-Fresh

str ; x̄ : C̄, this : C ` e0 : E0 E0 <: C0

class C extends D {. . . }
¬mavail(m,D, (str = strict), true)

C0 m(C̄ x̄) { return e0; } str−OK IN C

T-Method-Over

str ; x̄ : C̄, this : C ` e0 : E0 E0 <: C0

class C extends D {. . . }
mtype(m,D, (str = strict), true) = D̄ → D0

C̄ = D̄ C0 = D0

C0 m(C̄ x̄) { return e0; } str−OK IN C

T-Method-Abs

class C extends D {. . . }
¬mavail(m,D, (str = strict), true)

C0 m(C̄ x̄) abstract str−OK IN C

T-Method-Enc

class C extends D {. . . }
¬mavail(m,D, (str = strict), true)

C0 m(C̄ x̄) encouraged str−OK IN C

Figure 5: Typing of methods

T-Class

K = C(D̄ ḡ, C̄ f̄) { super(ḡ); this.f̄ = f̄ ; }
fields(D) = D̄ ḡ M̄ str−OK IN C

∀m ∈ X̄ : candep(C,m)

class C extends D { C̄ f̄ ; K X̄ M̄ } str−OK

Figure 6: Typing of classes

68

C <: C

class C extends E {. . . } E <: D

C <: D

Figure 7: Subtyping

fields(Object) = •

class C extends D {C̄ f̄ ; K X̄ M̄}
fields(D) = D̄ ḡ

fields(C) = D̄ ḡ, C̄ f̄

Figure 8: Field lookup

An entire program is denoted CT or CT ′. Notationally,
CT is a table, and CT (C) is the class named C in program
CT . Valid programs have several syntactic restrictions: the
inheritance hierarchy is non-cyclical, all field names and pa-
rameter names are distinct, Object 6∈ dom(CT), and every
class name appearing in the program is in the domain of
CT .

The fields function, defined in Figure 8, computes the com-
plete list of fields in a class.

The mtype function, defined in Figure 9, looks up the type
of a method assuming it is invoked on a particular class. As
compared to FJ, FJ-ADE’s mtype function has two new flag
parameters: one determining whether to include methods
that are merely encouraged, and one determining whether
to include methods that have been deprecated. While FJ’s
mtype considers all methods equally, FJ-ADE’s mtype op-
tionally declines to consider deprecated or encouraged meth-
ods or both, according to the two flags. Such methods are
significant or not in different contexts in the type checker,
and thus mtype must have extra parameters.

One particular complication is the treatment of deprecated
methods when the fourth flag is false. In that case, mtype is
still defined for that method if the chain of methods it over-
rides includes a non-deprecated method, and if all methods
in that chain up to the non-deprecated method have the
same type signature. The addition of this case means that
core properties about mtype remain simple. See Lemma 1
and Lemma 2.

The mavail relation, also shown in Figure 9, claims that a
method is available in a class without being specific about
the method’s type. Its arguments are the same as for mtype.

The mbody function, defined in Figure 10, is used during
evaluation to find the method responding to a message-send
expression. It is the same as in FJ except that there are two
new clauses to support abstract and encouraged methods.

The abstract function, also defined in Figure 10, checks
whether a class defines or inherits an abstract method. Note
that this definition ignores encouraged methods, because

MT-Here

class C extends D {C̄ f̄ ; K X̄ M̄}
B m(B̄ x̄) MB ∈ M̄

enc ∨ (MB 6= encouraged)
dep ∨ (m 6∈ X̄)

mtype(m,C, enc, dep) = B̄ → B

MT-Inher

class C extends D {C̄ f̄ ; K X̄ M̄}
m /∈ M̄

mtype(m,D, enc, dep) = B̄ → B

mtype(m,C, enc, dep) = B̄ → B

MT-Depover

class C extends D {C̄ f̄ ; K X̄ M̄}
B m(B̄ x̄) MB ∈ M̄ m ∈ X̄

mtype(m,D, enc, false) = B̄ → B

mtype(m,C, enc, false) = B̄ → B

mtype(m,C, enc, dep) = D̄ → D

mavail(m,C, enc, dep)

Figure 9: Method type lookup

those methods are not yet available.

Post-abstract classes are those that might become abstract
after the program evolves forward. The postabs function,
defined in Figure 11, gives a conservative notion of post-
abstract classes. It is defined in terms of a postneeds func-
tion which claims, more specifically, that the class might
lack a particular method following either the removal of
deprecated methods or the upgrading of encouraged meth-
ods to abstract or both. A class that postneeds any method
at all is considered post-abstract.

The type checker of FJ needs to be updated in two ways for
FJ-ADE. First, it needs to address the three new keywords.
Second, it needs to have both a strict and transitional mode.
An FJ-ADE typing judgement is written str ; Γ ` e : C. As
usual, Γ is a static typing environment, e is an expression,
and C is a type (i.e., a class). The str flag specifies whether
to use strict type checking (str = strict) or transitional
type checking (str = trans).

The typing rules for expressions are shown in Figure 4. Only
two rules differ from FJ. First, the T-Invk judgement must
specify the two extra parameters of mtype. The first ar-
gument is always false, because methods that are present
merely for encouragement are not allowed to be invoked, not
even in transitional mode. In transitional mode, encouraged
methods might not be implemented yet. In strict mode they
must be available, but they are left unavailable so that the
strict checker does not admit any programs the transitional
checker rejects. The second argument is true in transitional
mode and false otherwise, because deprecated methods can
be used only during transitional checking.

The other changed rule is T-New, which now disallows in-
stantiating abstract classes. This rule means that an in-
variant during evaluation is that all instantiated objects are
concrete, thus making it safe for T-Invk to consider abstract

69

MB-Conc

class C extends D {K X̄ M̄}
B m(B̄ x̄) { return e } ∈ M̄

mbody(m,C) = x̄.e

MB-Abs

class C extends D {K X̄ M̄}
B m(B̄ x̄) abstract ∈ M̄
mbody(m,C) = abstract

MB-Enc

class C extends D {K X̄ M̄}
B m(B̄ x̄) encouraged ∈ M̄
mbody(m,C) = encouraged

MB-Inher

class C extends D {K X̄ M̄}
m 6∈ M̄ mbody(m,D) = MB

mbody(m,C) = MB

mbody(m,C) = abstract

abstract(C)

Figure 10: Method lookup

methods as potential callees. In strict mode, T-New also
disallows instantiating post-abstract classes. Post-abstract
classes are not abstract now, but might become so after
forthcoming interface changes.

The rules for typing methods are given in Figure 5. The
main change from FJ is that, under strict typing, any method
overriding an encouraged method must have the same signa-
ture that was encouraged. An additional change is that ab-
stract methods and encouraged methods may only override
encouraged methods. In principle abstract methods could
be allowed in more places, but the complication provides no
insight for the present purposes.

Finally, the rule for typing a class is given in Figure 6. The
only difference from FJ is that the list of deprecated meth-
ods must be checked. The precise rule is given by the candep
relation shown in Figure 12. Deprecated methods may not
override concrete methods; they may only override depre-
cated, abstract, and encouraged methods.

It is not useful to have a deprecated method to override
a concrete, non-deprecated method. Code can type check
against the superclass with no deprecation warning, because
the superclass’s implementation is not deprecated. At run
time, such code might actually invoke the deprecated method.
In such a case, removing the deprecated method will mean
the program’s behavior changes.

If this behavior change is acceptable, and the overriding
method does not need to be called, then that method should
simply be removed outright. If the change is not acceptable,
then either the method should be kept indefinitely, or the
superclass’s method should be deprecated so that no clients
can call it.

That concludes the typing rules. The semantics of FJ-ADE,
which are exactly the same as those of FJ, are shown in

postneeds(m,C)

postabs(C)

PN-Abs

class C extends D {K X̄ M̄}
B m(B̄ x̄) abstract ∈ M̄

postneeds(m,C)

PN-Enc

class C extends D {K X̄ M̄}
B m(B̄ x̄) encouraged ∈ M̄

postneeds(m,C)

PN-Deprec

class C extends D {K X̄ M̄}
postneeds(m,D) m ∈ X

postneeds(m,C)

PN-Inher

class C extends D {K X̄ M̄}
postneeds(m,D) m 6∈M

postneeds(m,C)

Figure 11: Post-abstract classes

class C extends D {. . . }
¬mavail(m,D, false, false)

candep(m,C)

postneeds(m,C)

candep(m,C)

Figure 12: Deprecated methods can only override
other deprecated methods and potentially abstract
methods.

Figure 13.

5. PROPERTIES
Given the careful definition of FJ-ADE, we can now study
some properties that it enjoys. The properties are divided
into two parts: typical type-soundness properties, and prop-
erties to support statically checked interface evolution.

The proofs contain no surprises, so they and some lemmas
are omitted. The full proofs appear in an extended technical
report [18].

5.1 Type soundness
There are three type-soundness properties worth dwelling
on. The first two show that FJ-ADE is type sound in the
usual sense: it enjoys both subject reduction and progress
theorems. The last property is that strict checking implies
transitional checking.

Theorem 1. (Subject Reduction). Suppose CT is str-
OK. If str ; Γ ` e : C and e −→ e′, then str ; Γ ` e′ : C′

for some C′ <: C.

The proof structure is very close to that for subject reduc-
tion for FJ. The main differences are in the supporting lem-

70

R-Field
fields(C) = C̄ f̄

(new C(ē)).fi −→ ei

R-Invk
mbody(m,C) = x̄.e0

(new C(ē)).m(d̄) −→ [d̄/x̄, new C(ē)/this]e0

R-Cast
C <: D

(D)(new C(ē)) −→ new C(ē)

RC-Field e −→ e′

e.f −→ e′.f

RC-Invk-Recv e −→ e′

e.m(ē) −→ e′.m(ē)

RC-Invk-Arg e −→ e′

e0.m(d̄, e, f̄) −→ e0.m(d̄, e′, f̄)

RC-New-Arg e −→ e′

new C(d̄, e, f̄) −→ new C(d̄, e′, f̄)

RC-Cast e −→ e′

(C)e −→ (C)e′

Figure 13: Evaluation

mas.

The first lemma is that mtype’s last two arguments do not
affect the type the function calculates, but only whether the
function is defined or not. Further, changing one argument
or both from false to true can only cause the function to
change from undefined to defined, never from defined to un-
defined. That is, the truer the third and fourth arguments,
the more often mtype is defined.

Lemma 1. (Internal Consistency of mtype). Suppose dep,
dep′, enc, and enc′ are four booleans such that enc ⇒ enc′

and dep ⇒ dep′. If mtype(C,m, enc, dep) = C̄ → C0, then
mtype(C,m, enc′, dep′) = C̄ → C0.

The following lemma shows that, roughly, once mtype re-
turns a result at one point in the class hierarchy, it returns
the same result deeper in the hierarchy under that point.
Note, though, that this is only true so long as encouraged

methods are ignored; during transitional checking, methods
are allowed to change the type signature when they override
a method that is merely encouraged.

Lemma 2. (Subclasses and mtype). Suppose CT is str-
OK and that mtype(m,D, false, dep) = C̄ → C0. For all
C <: D, also mtype(m,C, false, dep) = C̄ → C0.

Lemma 3. (Term Substitution Preserves Typing). Sup-
pose CT is str-OK. If str ; Γ, x̄ : B̄ ` e : D, and str ; Γ ` d̄ : Ā
where Ā <: B̄, then str ; Γ ` [d̄/x̄]e : C, for some C <: D.

Lemma 4. (Weakening). If str ; Γ ` e : C, then str ; Γ, x :
B ` e : C.

The next lemma is modified from that for FJ by adding two
arguments to the use of mtype. The choice of parameters—
false and (str = trans)—are those used by T-Invk.

Lemma 5. Suppose that CT is str-OK, mbody(m,C0) =
x̄.e, and mtype(m,C0, false, (str = trans)) = D̄ → D.
Then, there is a D0 with C0 <: D0, and a C with C <: D,
such that str ; x̄ : D̄, this : D0 ` e : C.

Theorem 2. (Progress). Suppose CT is trans-OK, and
e is any well-typed expression.

1. If e includes (new C0(ē)).f as a subexpression, then
fields(C0) = C̄ f̄ and f ∈ f̄ for some C̄ and f̄ .

2. If e includes (new C0(ē)).m(d̄) as a subexpression, then
mbody(m,C0) = x̄.e0 and #(x̄) = #(d̄) for some x̄ and
e0.

As with FJ, several theorems follow immediately from The-
orem 1 and Theorem 2. FJ-ADE is type sound, in that all
terminating program executions either compute a value or
get stuck at an incorrect cast. Furthermore, cast-free pro-
grams do not get stuck and thus always proceed to produce
a value if they terminate. Since these theorems follow so
directly, the precise definitions and theorem statements are
omitted.

Finally, strict type checking abides by its name: strict type
checking is strictly more strict than transitional type check-
ing.

Theorem 3. (Strict Checking). Suppose CT is strict-
OK. If strict; Γ ` e : C, then trans; Γ ` e : C. Further,
CT is also trans-OK.

5.2 Safe transitions
This section shows how to use the strict and transitional
modes of FJ-ADE to evolve interfaces safely. There are two
properties given which show when it is safe to add a dep-
recated or encouraged method, thus entering a transition
period. Following, there are two theorems showing that,
when a program strictly checks, it is safe to remove depre-
cated methods as well as to upgrade encouraged methods to
abstract methods. Finally, there are four theorems showing
that when the four described safe changes are made, the re-
sulting programs not only type check but continue to behave
identically.

The notation needs extra precision, because these properties
all involve two programs. There are two versions of each re-
lation and function, one for each program under discussion.
To disambiguate between the two versions when it is not
clear from context, the program is used as a subscript. For
example, abstractCT (C0) means that C0 is abstract in pro-
gram CT , and str ; Γ `CT ′ x : e means that x type checks in
program CT ′ with checking mode str.

71

All of these properties discuss a single program being up-
dated from one version to the next. However, as discussed
in Section 2, the properties are carefully written to support
updating single classes when that class is going to be used
in many different programs.

Specifically, the two introduction theorems, require only tran-
sitional type checking plus properties of the superclasses of
the modified class. Thus, transitional changes can be intro-
duced safely so long as the superclasses of the changed class
are immediately available. Further, the requirements on su-
perclasses are weak enough that the superclasses can them-
selves be modified according to the introduction theorems
without invalidating the requirements of the introduction
theorems.

The two removal theorems, to contrast, require that all in-
teresting programs be strictly checked before it is safe to
perform the removal. This is potentially a lot of work, but
the programs do not need to be tested all at once. They can
be tested one by one throughout the transition period, as
each collaborating development group finds time.

Theorem 4. (Deprecation Introduction). Let CT be any
class table that is trans-OK, class A be a class in CT , and
m be a method of class A. Suppose that if m overrides a
method, then that method is either encouraged or deprecated,
i.e. if A extends B then ¬mavail(m,B, false, false). De-
fine CT ′ as the same class table as CT except that m is
deprecated in class A. Given these assumptions, whenever
trans; Γ `CT e : C, it is also true that trans; Γ `CT ′ e : C.
Further, CT ′ is trans-OK.

Theorem 5. (Encouragement Introduction). Let CT be
any class table that is trans-OK, and let A be a class in CT
which does not define or inherit a non-encouraged method
named m, i.e. it is the case that ¬mavail(m,A, false, true).
Define CT ′ to be the the same class table as CT except that
A has the following additional method definition:

B m(B̄ x̄) encouraged

Then, whenever trans; Γ `CT e : C, it is also true that
trans; Γ `CT ′ e : C. Further, CT ′ is trans-OK.

Theorem 6. (Deprecation Removal). Let CT be any class
table that is strict-OK, and let A be a class in CT which de-
fines a method named m that is deprecated. Define CT ′ to
be the same class table as CT except that m is removed from
A. Then, whenever strict; Γ `CT e : C, it is also true that
strict; Γ `CT ′ e : C. Furthermore, CT ′ is strict-OK.

Theorem 7. (Encouragement Upgrade). Let CT be a
class table that is strict-OK, and let A be a class in CT
which has the following method definition:

B m(B̄ x̄) encouraged

Define CT ′ to be the same class table except that the above
method definition is replaced by this one:

B m(B̄ x̄) abstract

abstract class A {

abstract int foo(int x);

}

class B extends A {

/**

* @deprecated

*/

int foo(int x) {

return x+1;

}

}

class Client {

void run() {

A a = new B();

}

}

Figure 14: Removing a method can cause a class to
become abstract. Instantiating such a class should
cause a deprecation warning.

Then, whenever strict; Γ `CT e : C, strict; Γ `CT ′ e : C.
Furthermore, CT ′ is strict-OK.

Theorem 8. Let CT and CT ′ be as in Theorem 4. If
e −→CT e

′ and trans; Γ ` e : C, then e −→CT ′ e
′.

Theorem 9. Let CT and CT ′ be as in Theorem 5. If
e −→CT e

′ and trans; Γ ` e : C, then e −→CT ′ e
′.

Theorem 10. Let CT and CT ′ be as in Theorem 6. If
e −→CT e

′ and strict; Γ ` e : C, then e −→CT ′ e
′.

Theorem 11. Let CT and CT ′ be as in Theorem 7. If
e −→CT e

′ and strict; Γ ` e : C, then e −→CT ′ e
′.

6. WEAKNESSES IN CURRENT TOOLS
Today’s practical deprecation checkers do not flag all code
that can fail if a deprecated method is removed. Instead,
they detect only direct accesses to deprecated features. This
section examines four general categories of checks that a
full transition checker should include. Along the way, this
section examines the level of support of each category in Sun
javac version 1.5.0 06 and Eclipse 3.2.

Method invocation
In strict mode, the T-Invk rule does not allow a message-
send expression to invoke a method that is deprecated. Cur-
rent checkers capture this familiar rule.

Post-abstract methods
In strict checking mode, the T-New rule does not allow
instantiating a post-abstract class, i.e. a class that might
be abstract after a transition phase is left. An example is
given in Figure 14. Class B is not abstract currently, but
it will be come abstract once the deprecated method foo is

72

class A {

void frob() {

System.out.println("frobbed!");

}

}

class B extends A {

int accesses = 0;

/**

* @deprecated

*/

void frob() {

accesses += 1;

super.frob();

}

}

class Client {

void run() {

A a = new B();

a.frob();

}

}

Figure 15: Deprecating a method that overrides a
concrete method can result in invariants being bro-
ken.

removed. Thus, while B is not abstract currently, it will be
after its deprecated method is removed. A proper transition
checker should issue a warning for code that instantiates B,
because such code will no longer function if the deprecated
method is removed. No warning is given, though, by javac

or Eclipse.

Deprecated methods and overriding
Not all overrides of abstract, encouraged, and deprecated
methods are allowed. Deprecated methods should only over-
ride other deprecated methods, abstract methods, and en-
couraged methods.

An example problem appears in Figure 15. The code in
class C type checks by considering method A.foo, but at
run time it invokes B.foo. If method B.foo is removed, then
the behavior of the program will change and B’s invariants
might be broken. If this behavior change is truly acceptable,
then B.foo should be removed instead of deprecated. Again,
javac and Eclipse do not issue a warning for this code.

Encouraged methods and overriding
The requirements on encouraged methods are discussed in
Section 3. Anti-deprecation is not supported at all in exist-
ing tools.

7. RELATED WORK
There has been substantial work supporting interface evo-
lutions that are refactorings [4, 1, 10, 15]. When such work
applies, the benefit can be immense, because the transition
period can be shortened or even eliminated. Nonetheless,
many desirable interface changes are not refactorings at all.

For example, not all uses of deprecated methods can be
rewritten to use non-deprecated methods. Sometimes the
basic functionality is being removed. For such changes, some
kind of transition period is necessary, and checking tools can
help entering and leaving those transition periods safely.

There has been work on language features to help manage or
eliminate incompatibilities due to interface upgrades. The
reuse contracts of Steyaert, et al., allow detection of a vari-
ety of upgrade problems when given only the new version of
an interface and not the old one [20]. The override keyword
of C# and Scala prevents accidental override of newly added
methods in a superclass [7, 22, 13, 16]. The present work
focuses more on managing the transition periods than on de-
tecting or ameliorating problems after an interface changes.

Interface definitions of various kinds have long supported
recording deprecation. Two examples for programming lan-
guages are Java’s deprecation annotations [3] and Eiffel’s
obsolete keyword [8]. The present work uses the same con-
cept but adds anti-deprecation.

Dig and Johnson have quantitatively studied the kinds of in-
terface changes that occurred during the lifetime four soft-
ware systems [6]. The authors start with the developers’
change logs and the version control systems for each soft-
ware system, and then use these data sources to identify the
relative frequency of several kinds of API changes. For ex-
ample, they classify over 80% of the API changes as some
kind of refactoring. Software science such as this provides
invaluable input for those designing transition mechanisms
that are to be useful in practice.

8. FUTURE WORK
The present work is entirely theoretical. It remains future
work to try the encouraged annotations and the new check-
ing rules in practice. Two platforms are promising for such
a study: Eclipse and Scala Bazaars [17, 19]. Eclipse, as pre-
viously discussed, is a very widely used platform with many
components developed independently. Scala Bazaars is a
code-sharing network for Scala users. Users share Scala code
compiled to Java bytecodes, and the compiled libraries all
too frequently become incompatible due to seemingly trivial
changes in the inter-library interfaces.

The theoretical work is also not complete. First, there are
still interface evolutions that are impossible to check with
FJ-ADE. For example, the checker does not support changes
in constructor signatures nor changes in the classes that are
inherited. It remains future work to investigate transition
checking rules that are more general.

Additionally, this theory’s checker produces a coarse result:
either all changes may proceed, or none. Future work will
check each change individually instead of having a bulk
strict versus trans checking mode. One formalism that
looks promising is to replace the checking mode with a hold
set, where the hold set includes the set of changes which
may not yet progress. If checking succeeds with a method
left out of hold, then that one method may be updated even
if the others are not ready. Given such a mechanism, new
transition periods can begin while old ones are in the middle,
without adding an additional obstacle to the old transition

73

period.

Finally, a number of techniques complement evolution check-
ing. Detection remains important: how do developers be-
come aware that they are making an interface change? In-
terfaces themselves can be more flexible: e.g. there could be
a construct, analogous to instanceof, for dynamically test-
ing whether an object implements an encouraged method.
Organizational questions arise as well. For example, is it
helpful in practice to record a default “interface evolution
rate” at the package level, or should every change have its
own rate recorded, or should the tools avoid this question
entirely?

9. CONCLUSION
Interface evolution is a recurring practical problem. This
article investigates one technique, static checking for depre-
cation and anti-deprecation, which can make interface evo-
lution more graceful. Even these simple method-level evo-
lutions exhibit some subtlety, and the formal study brings
out weaknesses in existing tools.

This work is only a beginning, though. Checking tools can
potentially check more than method additions and removals.
Furthermore, checking tools themselves are just one tool in
the toolbox for developers to address interface evolution.

10. ACKNOWLEDGMENTS
Thank you to the anonymous reviewers. Your careful read-
ing and feedback have made this article much more readable
and relevant.

11. REFERENCES
[1] Ittai Balaban, Frank Tip, and Robert Fuhrer.

Refactoring support for class library migration. In
Proc. of Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2005.

[2] Douglas Bell. Software Engineering: A Programming
Approach, chapter 6: Modularity. Addison Wesley, 3rd
edition, 2005.

[3] Gilad Bracha, James Gosling, Bill Joy, and Guy
Steele. The Java Language Specification. Addison
Wesley, 3rd edition, 2005.

[4] Kingsum Chow and David Notkin. Semi-automatic
update of applications in response to library changes.
In Proc. of International Conference on Software
Maintenance (ICSM), 1996.

[5] Jim des Rivières. Evolving Java-based APIs.
http://www.eclipse.org/eclipse/development/

java-api-evolution.html.

[6] Danny Dig and Ralph Johnson. The role of
refactorings in API evolution. In Proc. of
International Conference on Software Maintenance
(ICSM), September 2005.

[7] ECMA. ECMA-334: C# Language Specification.
European Association for Standardizing Information
and Communication Systems (ECMA), second
edition, December 2002.

[8] ECMA. ECMA-367: Eiffel: Analysis, Design and
Programming Language. European Association for
Standardizing Information and Communication
Systems (ECMA), 2nd edition, June 2006.

[9] Steve Freeman, Tim Mackinnon, Nat Pryce, and Joe
Walnes. Mock roles, not objects. In Companion to the
ACM conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA),
New York, NY, USA, 2004. ACM Press.

[10] Johannes Henkel and Amer Diwan. Catchup!
Capturing and replaying refactorings to support API
evolution. In Proc. of International Conference on
Software Engineering (ICSE), 2005.

[11] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: A minimal core calculus for Java
and GJ. In Proc. of Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA),
October 1999.

[12] Tim Mackinnon, Steve Freeman, and Philip Craig.
Endo-testing: Unit testing with mock objects. In Proc.
of eXtreme Programming and Flexible Processes in
Software Engineering (XP), 2000.

[13] Martin Odersky, Philippe Altherr, Vincent Cremet,
Burak Emir, Sebastian Maneth, Stéphane Micheloud,
Nikolay Mihaylov, Michel Schinz, Erik Stenman, and
Matthias Zenger. An overview of the Scala
programming language. Technical Report IC/2004/64,
EPFL, 2004.

[14] William F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, 1992.

[15] Jeff H. Perkins. Automatically generating refactorings
to support API evolution. In Proc. of Program
Analysis for Software Tools and Engineering
(PASTE), September 2005.

[16] Scala web site. http://scala.epfl.ch.

[17] Scala Bazaars web site.
http://www.lexspoon.org/sbaz.

[18] Alexander Spoon. Anti-deprecation: Towards complete
static checking for api evolution (extended version).

Technical Report LAMP-REPORT-2006-004, École
Polytechnique Fédérale de Lausanne (EPFL), 2006.

[19] Alexander Spoon. Package universes: Which
components are real candidates? Technical Report
LAMP-REPORT-2006-002, École Polytechnique
Fédérale de Lausanne (EPFL), 2006.

[20] Patrick Steyaert, Carine Lucas, Kim Mens, and Theo
D’Hondt. Reuse contracts: Managing the evolution of
reusable assets. In Proc. of Object Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), October 1996.

[21] Bill Venners. A conversation with Erich Gamma, part
III. http://www.artima.com/lejava/articles/
designprinciples.html, June 2005.

[22] Visual C# web page.
http://msdn.microsoft.com/vcsharp/.

74

A Generic Lazy Evaluation Scheme for
Exact Geometric Computations

[Extended Abstract]

Sylvain Pion
INRIA, Sophia-Antipolis, FRANCE

Sylvain.Pion@sophia.inria.fr

Andreas Fabri
GeometryFactory, Grasse, FRANCE

andreas.fabri@geometryfactory.com

ABSTRACT
We present a generic C++ design to perform efficient and
exact geometric computations using lazy evaluations. Exact
geometric computations are critical for the robustness of ge-
ometric algorithms. Their efficiency is also critical for most
applications, hence the need for delaying the exact compu-
tations at run time until they are actually needed. Our
approach is generic and extensible in the sense that it is
possible to make it a library which users can extend to their
own geometric objects or primitives. It involves techniques
such as generic functor adaptors, dynamic polymorphism,
reference counting for the management of directed acyclic
graphs and exception handling for detecting cases where ex-
act computations are needed. It also relies on multiple pre-
cision arithmetic as well as interval arithmetic. We apply
our approach to the whole geometric kernel of Cgal.

Keywords
computational geometry, exact geometric computation, nu-
merical robustness, interval arithmetic, lazy evaluation,
generic programming, C++, Cgal

1. INTRODUCTION
Non-robustness issues due to numerical approximations are
well known in geometric computations, especially in the
computational geometry literature. The development of the
Cgal library, a large collection of geometric algorithms im-
plemented in C++, expressed the need for a generic and
efficient treatment of these problems.

Typical solutions to solve these problems involve exact arith-
metic computations. However, due to efficiency issues, good
implementations make use of arithmetic filtering techniques
to benefit from the speed of certified floating-point approx-
imations like interval arithmetic, hence calling the costly
multi-precision routines rarely.

One efficient approach is to perform lazy exact computations
at the level of geometric objects. It is mentioned in [13]
and an implementation is described in [7]. Unfortunately,
this implementation does not use the generic programming
paradigm, although the approach is general. This is exactly
the novelty of this paper.

In this paper, we devise a generic design to provide the most
generally applicable methods to a large number of geomet-
ric primitives. Our design makes it easy to apply to the
complete geometry kernel of Cgal, and is extensible to the
user’s new geometric objects and geometric primitives.

Our design thus implements lazy evaluation of the exact ge-
ometric objects. The computation is delayed until a point
where the approximation with interval arithmetic is not pre-
cise enough to decide safely comparisons, which may hope-
fully never be needed.

Section 2 describes in more detail the context and moti-
vation in geometric computing, as well as the basics of a
generic geometric kernel parameterized by the arithmetic,
and what can be done at this level. Then, Section 3 discusses
our design in detail, namely how geometric predicates, con-
structions and objects are adapted. Section 4 illustrates how
our scheme can be applied to the users’ own geometric ob-
jects and primitives. We then provide in Section 5 some
benchmarks that confirm the benefit of our design and im-
plementation. Finally, we list a few open questions related
to our design in Section 6, and conclude with ideas for future
work.

2. EXACT GEOMETRIC COMPUTATIONS
AND THE CGAL KERNEL

2.1 Exact Geometric Computations
Many geometric algorithms such as convex hull computa-
tions, Delaunay triangulations, mesh generators, are noto-
riously prone to robustness issues due to the approximate
nature of floating-point computations. This is due to the
dual nature of geometric algorithms: on one side numeri-
cal data is used, such as coordinates of points, and on the
other side discrete structures are built, such as the graph
representing a mesh.

The bridges between the numerical data and the Boolean de-
cisions which allow to build a discrete structure, are called

75

the geometric predicates. These are functions taking geomet-
ric objects such as points as input and returning a Boolean
or enumerated value. Internally, these functions typically
perform comparisons of numerical values computed from the
input. A classical example is the orientation predicate of
three points in the plane, which returns if the three points
are doing a left turn, a right turn, or if they are collinear
(see Figure 1). Using Cartesian coordinates for the points,
the orientation is the sign (as a three-valued function: -1, 0,
1) of the following 3-dimensional determinant which reduces
to a 2-dimensional one:

1 1 1
p.x() q.x() r.x()
p.y() q.y() r.y()

=
q.x()− p.x() r.x()− p.x()
q.y()− p.y() r.y()− p.y()

positive
orientation

negative
orientation

p

r

q

Figure 1: The orientation predicates of 3 points in
the plane.

Many predicates are built on top of signs of polynomial ex-
pressions over the coordinates of the input points. Evaluat-
ing such a function with floating-point arithmetic is going to
introduce roundoff errors, which can have for consequence
that the sign of the approximate value differs from the sign
of the exact value. The impact of wrong signs on the geomet-
ric algorithms which call the predicates can be disastrous,
as for example it can break some invariants like planarity
of a graph, or make the algorithm loop. Didactic exam-
ples of consequences can be found in [12] as well as in the
computational geometry literature.

Operations building new geometric objects, like the point at
the intersection of two lines, the circumcenter of three non-
collinear points, or the midpoint of two points, are called
geometric constructions. We will use the term geometric
primitives when referring to either predicates or construc-
tions.

In order to tackle these non-robustness issues, many solu-
tions have been proposed. We focus here on the exact geo-
metric computation paradigm [16], as it is a general solution.
This paradigm states that, in order to ensure the correct
execution of the algorithms, it is enough that all decisions
based on predicates are taken correctly. Concretely, this
means that all comparisons of numerical values need to be
performed exactly.

A natural way to perform the exact evaluation of predi-
cates is to evaluate the numerical expressions using exact
arithmetic. For example, since most computations are signs

of polynomials, it is enough to use multi-precision rational
arithmetic which is provided by libraries such as Gmp [8].
Note that exact arithmetic is also available for all algebraic
computations using libraries such as Core [10] or Leda [5],
which is useful when doing geometry over curved objects.
This solution works well, but it tends to be very slow.

2.2 The Geometry Kernel of CGAL
Cgal [1] is a large collection of computational geometry al-
gorithms. These algorithms are parameterized by the ge-
ometry they apply to. The geometry takes the form of
a kernel [9, 4] regrouping the types of the geometric ob-
jects such as points, segments, lines, ... as well as the ba-
sic primitives operating on them, in the form of functors.
The Cgal kernel provides over 100 predicates and 150 con-
structions, hence uniformity and genericity is crucial when
treating them, from a maintenance point of view.

Cgal provides several models of kernels. The basic fam-
ilies are the template classes Cartesian and Homogeneous

which are parameterized by the type representing the coor-
dinates of the points. They respectively use Cartesian and
homogeneous representations of the coordinates, and their
implementation looks as follows:

template < class NT >

struct Cartesian {

// Geometric objects

typedef ... Point_2;

typedef ... Point_3;

typedef ... Segment_2;

...

// Functors for predicates

typedef ... Compare_x_2;

typedef ... Orientation_2;

...

// Functors for constructions

typedef ... Construct_midpoint_2;

typedef ... Construct_circumcenter_2;

...

};

These simple template models already allow to use double

arithmetic or multi-precision rational arithmetic for exam-
ple. Cgal therefore provides a hierarchy of concepts for
the number types, which describe the requirements for types
to be pluggable into these kernels, such as addition, multi-
plication, comparisons... The functors are implemented in
the following way (here the return type of the predicate is
a three-valued enumerated type, moreover some typename

keywords are removed for clarity):

template < class Kernel >

class Orientation_2 {

typedef Kernel::Point_2 Point;

typedef Kernel::FT FT;

public:

typedef CGAL::Orientation result_type;

result_type

operator()(Point p, Point q, Point r) const

76

{

FT det = (q.x() - p.x()) * (r.y() - p.y())

- (r.x() - p.x()) * (q.y() - p.y());

if (det > 0) return POSITIVE;

if (det < 0) return NEGATIVE;

return ZERO;

}

};

template < class Kernel >

class Construct_midpoint_2 {

typedef Kernel::Point_2 Point;

public:

typedef Point result_type;

result_type

operator()(Point p, Point q) const

{

return Point((p.x() + q.x()) / 2,

(p.y() + q.y()) / 2);

}

};

As much as conversions between number types are useful,
Cgal also provides tools to convert geometric objects be-
tween different kernels. We shortly present these here as
they will be referred to in the sequel. A kernel converter is
a functor whose function operator is overloaded for each ob-
ject of the source kernel and which returns the corresponding
object of the target kernel. Such conversions may depend on
the details of representation of the geometric objects, such
as homogeneous versus Cartesian representation. Cgal pro-
vides such converters parameterized by converters between
number types, for example the converter between kernels of
the Cartesian family:

template < class K1, class K2, class NT_conv =

Default_conv<K1::FT, K2::FT> >

struct Cartesian_converter {

NT_conv cv;

K2::Point_2

operator()(K1::Point_2 p) const

{

return K2::Point_2(cv(p.x()), cv(p.y()));

}

...

};

Related to this, Cgal also provides a way to find out the
type of a geometric object (say, a 3D segment) in a given ker-
nel, given its type in another kernel and this second kernel.
This is in practice the return type of the function operator
of the kernel converter described above.

template < class O1, class K1, class K2 >

struct Type_mapper {

typedef ... type;

};

The current implementation works by specializing on all

known kernel object types like K1::Point 2, K1::Segment 3.
A more extensible approach could be sought, although this
is not the main point of this paper.

2.3 A Generic Lazy Exact Number Type
In order to speed up the exact evaluation of predicates, peo-
ple have observed that, given that the floating-point eval-
uation gives the right answer in most cases, it should be
enough to add a way to detect the cases where it can change
the sign, and rely on the costly multi-precision arithmetic
only in those cases. These techniques are usually referred to
as arithmetic filtering.

There are many variants of arithmetic filters, but we are
going to focus on one which applies nicely in a generic con-
text, and is based on interval arithmetic [3], a well known
tool to control roundoff errors in floating-point computa-
tions. The idea is that we implement a new number type
which forwards its operations to an interval arithmetic type,
and also remembers the way it was constructed by stor-
ing the history of operations in a directed acyclic graph
(Dag) [2]. Figure 2 illustrates the history Dag of the ex-
pression

√
x+
√
y −

p
x+ y + 2

√
xy.

When a comparison is performed on this number type and
the intervals overlap, then the Dag is used to recompute
the values with an exact multi-precision type, hence giving
the exact result. Cgal provides such a lazy number type
called Lazy exact nt<NT> parameterized by the exact type
used to perform the exact computations when needed (such
as a rational number type). Somehow, this can be seen as a
wrapper on top of its template parameter, which delays the
computations until they are needed, as hopefully they won’t
be needed at all.

sqrt + *

yx

sqrt

sqrt

*

2

+

+

sqrt

−

Figure 2: Example Dag:
√
x+
√
y −

p
x+ y + 2

√
xy.

This solution works very well. It can however be further

77

improved in terms of efficiency. Indeed we note that there
are several overheads which can be optimized. First, a node
of the Dag is created for each arithmetic operation, so it
would be nice to be able to regroup them in order to dimin-
ish the number of memory allocations as well as the memory
footprint. Second, rounding mode changes for interval arith-
metic computations are made for each arithmetic operation,
so again, it would be nice to be able to regroup them to
optimize away these mode changes.

These remark have lead to a new scheme mentioned in [13],
and the description of an implementation has also been pro-
posed in [7]. The idea is to introduce a Dag at the geometric
level, by considering geometric primitives for the nodes. The
next section describes such an optimized setup. Our design
differs from the one in [7] in that we followed the generic
programming paradigm and extensive use of templates to
make it as easily extensible as possible.

3. DESIGN OF THE LAZY EXACT COM-
PUTATION FRAMEWORK

The previously described design of lazy computation is
based only on genericity over the number type. In this sec-
tion, we make use of the genericity at the higher level of
geometric primitives, in order to provide a more efficient so-
lution. We first describe how to filter the predicates. Then
we extend the previous idea of Lazy exact nt to geometric
objects and constructions.

3.1 Filtered Predicates
Performing a filtered predicate means first evaluating the
predicate with interval arithmetic. If it fails, the predicate
is evaluated again, this time with an exact number type. As
all predicates of a Cgal kernel are functors we can use the
following adaptor:

template <class EP, class AP, class C2E, class C2A>
class Filtered_predicate
{

typedef AP Approximate_predicate;
typedef EP Exact_predicate;
typedef C2E To_exact_converter;
typedef C2A To_approximate_converter;

EP ep;
AP ap;
C2E c2e;
C2A c2a;

public:

typedef EP::result_type result_type;

template <class A1, class A2>
result_type
operator()(const A1 &a1, const A2 &a2) const
{

try {
Protect_FPU_rounding P(FE_TOINFTY);
return ap(c2a(a1), c2a(a2));

} catch (Interval_nt_advanced::unsafe_comparison) {
Protect_FPU_rounding P(FE_TONEAREST);
return ep(c2e(a1), c2e(a2));

}
}

};

Function operators with any arity should be provided. This

is currently done by hand up till a fixed arity, and will be
replaced when variadic templates become available in C++.

Note that Protect FPU rounding changes the current
rounding mode of the FPU to the one specified as argument
to the constructor, and saves the old one in the object. Its
destructor restores the saved mode, which happens at the
return of the function or when an exception is thrown.

The class Filtered kernel is hence obtained from a kernel
K by adapting all predicates of K. This is currently done
with the preprocessor. The geometric objects as well as the
constructions remain unchanged.

template < class K >
struct Filtered_kernel {

// The various kernels
typedef Cartesian<double> CK;
typedef Cartesian<Interval_nt> AK;
typedef Cartesian<Gmpq> EK;

// Kernel converters
typedef Cartesian_converter<CK, AK> C2A;
typedef Cartesian_converter<CK, EK> C2E;

// Geometric objects
typedef CK::Point_2 Point_2;
...
// Functors for predicates
typedef Filtered_predicate<AK::Compare_x_2,

EK::Compare_x_2,
C2E, C2A> Compare_x_2;

...
};

3.2 Lazy Exact Objects
Performing lazy exact constructions means performing con-
structions with interval approximations, and storing the se-
quence of construction steps. When later a predicate applied
to these approximations cannot return a result that is guar-
anteed to be correct, the sequence of construction steps is
performed again, this time with an exact arithmetic. Now
the predicate can be evaluated correctly.

The sequence of construction steps is stored in a Dag. Each
node of the Dag stores (i) an approximation, (ii) the exact
version of the function that was used to compute the ap-
proximation, (iii) and the lazy objects that were arguments
to the function. So the out-degree of a node is the arity of
the function.

The example illustrates that lazy objects can be of the same
type, without being the result of the same sequence of con-
structions. a, m, and b are all point-ish. Therefore we have
a template handle class, with a pointer to a node of the Dag.
In our example, only the latter are of different types.

We will now explain some of the classes in Figure 4 in more
detail.

Lazy exact is the handle class. It also does reference count-
ing with a design similar to the one described in [11]. It has
Lazy exact nt as subclass, which provides arithmetic oper-
ations. Note that this framework handles arithmetic and
geometric objects in a unified way. For example a distance
between geometric objects yields a lazy exact number, and

78

Midpoint

a

s1

s2

b

m pi

Intersect Project

m'

s1 s2

l

lb

i' p'

Figure 3: The Dag represents the midpoint of an
intersection point and the vertical projection of a
point on a line. Testing whether a, m, and b are
collinear has a good chance to trigger an exact con-
struction.

a lazy exact number can become the coordinate of a point.

The class Construction is an abstract base class. It stores
the approximation, and holds a pointer to the exact value.
Initially, this pointer is set to NULL, and it is the virtual
member function update exact which later may compute
the exact value and then cache it.

The subclass Construction 2 is used for binary functions.
Similar classes exist for the other arities. These classes store
the arguments and the exact version of the function. The
arguments may be of arbitrary types. In the case of lazy ex-
act geometric objects or lazy exact numbers the arguments
are handles as described before.

template <class AC, class EC, class LK, class A1, class A2>
class Construction_2

: public Construction<AC::result_type, EC::result_type, E2A>
, private EC

{
typedef AC Approximate_construction;
typedef EC Exact_construction;
typedef LK::C2E To_exact_converter;
typedef LK::C2A To_approximate_converter;
typedef LK::E2A Exact_to_approximate_converter;
typedef AC::result_type AT;
typedef EC::result_type ET;

A1 m_a1;
A2 m_a2;

const EC& ec() const { return *this; }

public:

void
update_exact()
{

Construction_1<AC,EC,LK,A1>

A1 a1;
EC ec;

operator()(A1)

Handle Ref

Lazy_exact<AT,ET,E2A>

AT approx()
ET exact()

Lazy_exact_nt<ET>

operator *, +, -,...\

<<abstract>>

Construction<AT,ET,LK>

AT at;
ET* et;

AT approx()
ET exact()
void update_exact()

Construction_2<AC,EC,LK,A1,A2>

A1 a1;
A2 a2;
EC ec;

operator()(A1, A2)

1..N

Figure 4: The class hierarchy for the nodes of the
Dag.

this->et = new ET(ec()(C2E()(m_a1), C2E()(m_a2)));
this->at = E2A()(*(this->et));
// Prune lazy dag
m_a1 = A1();
m_a2 = A2();

}

Construction_2(const AC& ac, const EC& ec,
const A1& a1, const A2& a2)

: Construction<AT,ET,E2A>(ac(C2A()(a1), C2A()(a2)),
m_a1(a1), m_a2(a2)

{}
};

The constructor stores the two arguments. It then takes
their approximations and calls the approximate version of
the functor.

In case the exact version of the construction is needed, this
gets computed in the update exact method. It fetches the
exact versions of the arguments, which in turn may trigger
their exact computation if they are not already computed
and cached. From the exact lazy object one computes again
the approximate object, as the object computed with the
approximate version of the functor has a good chance to
have accumulated more numerical error.

Finally, the Dag is pruned. As the nodes of the Dag are
reference counted, some of them may get deallocated by the
pruning. Most often A1 and A2 will be lazy exact objects.
For performance reasons their default constructors generates
a handle to a shared static node of the Dag.

Also, we use private derivation of the exact construction EC,
instead of storing it as data member, in order to benefit from
the empty base class optimization.

The other derived classes store the leaves of the Dag. There
is a general purpose leaf class, and more specialized ones, for
example for creating a lazy exact number from an int. They
are there for performance reasons.

3.3 The Functor Adaptor
So far we have only explained how lazy constructions are
stored, but not how new nodes of the Dag are generated.

79

The following functor adaptor is applied to all the construc-
tions we want to make lazy. It has function operators for
other arities.

template <class LK, class AC, class EC>
class Lazy_construct
{

typedef LK Lazy_kernel;
typedef AC Approximate_construction;
typedef EC Exact_construction;
typedef LK::AK AK;
typedef LK::EK EK;
typedef EK::FT EFT;
typedef LK::E2A E2A;
typedef LK::C2E C2E;
typedef AC::result_type AT;
typedef EC::result_type ET;
typedef Lazy_exact<AT, ET, E2A> Handle;

AC ac;
EC ec;

public:

typedef Type_mapper<AT,AK,LK>::type result_type;

template <class A1, class A2>
result_type
operator()(const A1& a1, const A2& a2) const
{

try {
Protect_FPU_rounding P(FE_TOINFTY);
return Handle(new Construction_2<AC, EC, LK, A1, A2>

(ac, ec, a1, a2));
} catch (Interval_nt_advanced::unsafe_comparison) {

Protect_FPU_rounding P(FE_TONEAREST);
return Handle(new Construction_0<AT,ET,LK>

(ec(C2E()(a1), C2E()(a2))));
}

}
};

The functor first tries to construct a new node of the Dag.
If inside the approximate version of the construction an ex-
ception is thrown, we perform the exact version of the con-
struction, and only create a leaf node for the Dag.

3.4 Special-Case Handling
The generic functor adaptor works out of the box for all
functors that return lazy exact geometric objects or a lazy
exact number.

Functors returning objects which are not made lazy are an
easy to handle exception. An example in Cgal is the func-
tor that computes a bounding box with double coordinates
around geometric objects, whose width is not required to be
tight. As the intervals corresponding to the coordinates of
the approximate geometric object are already 1-dimensional
bounding boxes, we never have to resort to the exact geo-
metric object. The functor adaptor is trivial.

Some functors of Cgal kernels return a polymorphic object.
For example, the intersection of two segments may be empty,
or a point, or a segment. In order not to have a base class
for all geometric classes, Cgal offers a class Object1 which
is capable of storing typed objects. The problem we have to
solve is that the lazy exact functor must not return a lazy
exact Object, but instead must return an Object holding

1The Object class is comparable to boost::any.

a lazy geometric object. This is solved by looping over all
Cgal kernel types, to try to cast, and if it works to construct
the lazy geometric object and put it in an Object again.

Less trivial cases are functors which pass results of a com-
putation back to reference parameters, or which write into
output iterators. They need a special functor as well as spe-
cial Construction classes. It is not hard to write them, but
the problem is that they must be dispatched by hand, as we
have no means of introspection. One solution would be to
introduce functor categories.

3.5 The Lazy Exact Kernel
We are ready to put all pieces together, by defining a new
kernel which has an approximate and an exact kernel as
template parameters.

template < class AK, class EK >
struct Lazy_kernel {

// Kernel converters
typedef Lazy_kernel<AK, EK> LK;
typedef Approx_converter<LK, AK> C2A;
typedef Exact_converter<LK, EK> C2E;
typedef Cartesian_converter<EK, AK> E2A;

// Geometric objects
typedef Lazy_exact<AK::Point_2, EK::Point_2> Point_2;
typedef Lazy_exact<AK::Segment_2, EK::Segment_2> Segment_2;

// Functors for predicates
typedef Filtered_predicate<EK::Compare_x_2, AK::Compare_x_2,

C2E, C2A> Compare_x_2;
...

// Functors for constructions
typedef Lazy_construct<LK, AK::Construct_midpoint_2,

EK::Construct_midpoint_2>
Construct_midpoint_2;

...

typedef Lazy_Construct_returning_object<LK, AK::Intersection_2,
EK::Intersection_2>

Intersection_2;
};

In the current implementation we use the preprocessor to
generate the typedefs from a list of types, and we use
the Boost Mpl library for dispatching the special cases.
Approx converter simply fetches the stored approximate
object. Similarly Exact converter fetches the exact approx-
imate object, possibly triggering its computation.

4. EXTENSIBILITY
We have to distinguish between different levels of extensi-
bility.

When Cgal kernels get extended by geometric objects and
constructions this needs changes in the lazy construction
framework if the new constructions have “new” interfaces,
e.g., two output iterators, followed by two reference param-
eters to return a result. This would need a new node type
for the Dag, a new functor, and hard wired dispatching in
the lazy kernel. Otherwise there is nothing to do.

When the Cgal user wants to extend the lazy kernel with his
own geometric objects and constructions, he first has to add
them to the kernel that then gets into the lazy computation

80

machinery, as described in [9]. Then, what we stated in the
previous paragraph applies.

The Curved kernel and the Lazy curved kernel of Cgal
which provide primitives on circles and circular arcs [14, 6],
are examples for both.

5. BENCHMARKS
We now run a simple benchmark that illustrates the benefit
of our techniques. We compare the running time and mem-
ory consumption of various kernel choices with the following
algorithm:

• generate 2000 pairs of 2D points with random coordi-
nates (using drand48()).

• construct 2000 segments out of these points.

• intersect all pairs of segments among these, and store
the resulting intersection points.

• shuffle the resulting points

• iterate over consecutive triplets of these points, and
compute the orientation predicate of these.

Figure 5 provides the resulting data for a choice of four
different kernels:

• SC<Gmpq> stands for the simple Cartesian representa-
tion kernel parameterized with Gmpq, which is a C++
wrapper around the multi-precision rational number
type provided by Gmp,

• SC<Lazy exact nt<Gmpq>> uses the lazy exact eval-
uation mechanism at the arithmetic level,

• Lazy kernel<SC<Gmpq>> is our approach for per-
forming lazy exact evaluations at the geometric object
level,

• Lazy kernel<SC<Gmpq>> (2) is similar to the previ-
ous one, but it does not include the additional opti-
mization which consists in eliminating rounding mode
changes, which is allowed by the consecutive interval
computations,

• finally, SC<double> is the simple Cartesian represen-
tation kernel parameterized with double. It is given
for reference as it is not robust in all cases. It shows
what the optimal performance could be.

Benchmarks have been performed using the GNU g++ com-
piler versions 3.4 and 4.1 with the -O2 optimization option.
The machine was a Pentium-M laptop at 1.7 GHz, equipped
with 1 GB of RAM and 1 MB of cache, running the Fedora
Core 3 Linux distribution. The memory consumption is the
same for these two compiler versions, however timings differ
significantly. Timings are given in seconds and memory in
megabytes.

The results show that our approach wins almost a factor
of 10 on memory over the basic lazy evaluation scheme. It

Kernel time time mem
g++ 3.4 g++ 4.1

SC<Gmpq> 71 70 70
SC<Lazy exact nt<Gmpq>> 9.4 7.4 501
Lazy kernel<SC<Gmpq>> (2) 4.9 3.6 64
Lazy kernel<SC<Gmpq>> 4.1 2.8 64

SC<double> 0.98 0.72 8.3

Figure 5: Benchmarks comparing different kernels.

is also between 2 and 3 times faster. However, it remains 4
times slower than the approximate floating-point evaluation,
but of course it is guaranteed for all cases.

The benchmark also illustrates the gain obtained thanks to
the elimination of rounding mode changes, which is now
allowed by the regrouping of operations on intervals.

Another data point illustrating the improvements is that
we measured the number of DAG nodes allocated. For
SC<Lazy exact nt<Gmpq>>, 29 million nodes were allo-
cated, while for Lazy kernel<SC<Gmpq>> only 2.5 million
nodes were needed. So we have won a factor of more than
10, due to the regrouping allowed by our design.

Note that the algorithm we chose uses random data, hence
it does not produce many filter failures, so almost no ex-
act evaluation is performed. Another thing worth noticing
is that it uses relatively simple 2D primitives. More com-
plex primitives, especially in higher dimensions, should show
more benefits to the method. Finally, real-world geomet-
ric applications tend to produce more combinatorial output,
hence the relative runtime cost of primitives is smaller, so
the slow down factor is lower in those cases. First such
experiments on a 3D surface reconstruction algorithm have
shown a factor of 6 improvement on memory consumption
and a speed up factor of 3.

6. OPEN DESIGN QUESTIONS
Here is a list of open questions related to our framework.

The first question concerns the regrouping of expressions.
Our framework asks the user to pass it functors specifying
the level at which the regrouping of expressions is made. In
Cgal this is not a problem since the primary interface of the
kernel towards the geometric algorithms is a list of functors.
However it has the drawback of not being automatic. We
can think of approaches based on expression templates [15]
which would automatically detect sequences of operations
and regroup them. Unfortunately, expression templates are
limited to single statement expressions and they tend to
slow down compilation times considerably. Could there be a
way to extend the automatic regrouping to more than single
statements? Maybe the auto keyword recently proposed for
addition to the C++ language will allow to propagate this
through several statements? Or maybe the Axiom feature
part of the proposal for concepts in C++ could be used to
specify this kind of transformation.

Another question is if similarly delayed computations are

81

used in other areas, and if yes, then is it possible to find out
a common design, more general than the one we propose.

7. CONCLUSION AND FUTURE WORK
We have presented in this paper a generic framework which
implements lazy exact geometric computations, motivated
by the needs for robustness and efficiency of geometric al-
gorithms. This framework allows to delay the costly exact
evaluation using multi-precision arithmetic when the faster
interval arithmetic suffices.

The proposed design is easily extensible to new geometric
primitives – predicates and constructions –, as well as new
geometric objects. It is based on a template family for rep-
resenting lazy objects, as well as generic functor adaptors
which produce them.

Future work in this area will consist of various added special-
case optimizations as well as generalizations. It is for exam-
ple possible to refine the filtering scheme by growing the
precision little by little instead of switching directly to full
multi-precision computation in case of insufficiency of preci-
sion of the intervals. We also would like to study possibilities
of merging the Filtered predicate and Lazy construct

functor adaptors. Possible optimizations for specific cases
also can be done, using faster schemes than interval arith-
metic (so-called static filters). Moreover, the current way of
providing a full kernel is by a list of types for the objects
and functors, which is provided through the use of the pre-
processor, we will therefore try to provide a better design
on this particular point.

Finally, we plan to make our implementation part of a fu-
ture release of Cgal, whose entire geometry kernel already
benefits from it.

8. ACKNOWLEDGMENTS
The work reported in this paper has been supported in part
by the IST Programme of the EU as a Shared-cost RTD
(FET Open) Project under Contract No IST-006413 (ACS
- Algorithms for Complex Shapes).

9. REFERENCES
[1] CGAL User and Reference Manual, 3.2 edition, 2006.

[2] M. Benouamer, P. Jaillon, D. Michelucci, and J.-M.
Moreau. A lazy solution to imprecision in
computational geometry. In Proc. 5th Canad. Conf.
Comput. Geom., pages 73–78, 1993.

[3] H. Brönnimann, C. Burnikel, and S. Pion. Interval
arithmetic yields efficient dynamic filters for
computational geometry. Discrete Applied
Mathematics, 109:25–47, 2001.

[4] H. Brönnimann, A. Fabri, G.-J. Giezeman, S. Hert,
M. Hoffmann, L. Kettner, S. Schirra, and S. Pion. 2D
and 3D kernel. In C. E. Board, editor, CGAL User
and Reference Manual. 3.2 edition, 2006.

[5] C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA
class real number. Technical Report MPI-I-96-1-001,
Max-Planck Institut Inform., Saarbrücken, Germany,
Jan. 1996.

[6] I. Z. Emiris, A. Kakargias, S. Pion, M. Teillaud, and
E. P. Tsigaridas. Towards an open curved kernel. In
Proc. 20th Annu. ACM Sympos. Comput. Geom.,
pages 438–446, 2004.

[7] S. Funke and K. Mehlhorn. Look – a lazy
object-oriented kernel for geometric computation.
Computational Geometry - Theory and Applications
(CGTA), 22:99–118, 2002.

[8] T. Granlund. GMP, the GNU multiple precision
arithmetic library. http://www.swox.com/gmp/.

[9] S. Hert, M. Hoffmann, L. Kettner, S. Pion, and
M. Seel. An adaptable and extensible geometry kernel.
In Proc. Workshop on Algorithm Engineering, volume
2141 of Lecture Notes Comput. Sci., pages 79–90.
Springer-Verlag, 2001.

[10] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap.
The CORE Library Project, 1.2 edition, 1999.
http://www.cs.nyu.edu/exact/core/.

[11] L. Kettner. Reference counting in library design –
optionally and with union-find optimization. In
Workshop on Library Centric Software Design,
october 2005.

[12] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and
C. Yap. Classroom examples of robustness problems in
geometric computations. In Proc. 12th European
Symposium on Algorithms, volume 3221 of Lecture
Notes Comput. Sci., pages 702–713. Springer-Verlag,
2004.

[13] S. Pion. De la géométrie algorithmique au calcul
géométrique. Thèse de doctorat en sciences, Université
de Nice-Sophia Antipolis, France, 1999. TU-0619.

[14] S. Pion and M. Teillaud. 2D circular kernel. In C. E.
Board, editor, CGAL User and Reference Manual. 3.2
edition, 2006.

[15] T. L. Veldhuizen. Expression templates. C++ Report,
7(5):26–31, June 1995. Reprinted in C++ Gems, ed.
Stanley Lippman.

[16] C. Yap. Towards exact geometric computation.
Comput. Geom. Theory Appl., 7(1):3–23, 1997.

82

APPENDIX
A. BENCHMARK CODE
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Lazy_kernel.h>
#include <CGAL/Gmpq.h>
#include <CGAL/Lazy_exact_nt.h>
#include <CGAL/intersections.h>
#include <CGAL/Timer.h>
#include <CGAL/Memory_sizer.h>
using namespace CGAL;

// Choosing a kernel:
//typedef Simple_cartesian<Gmpq> K;
//typedef Simple_cartesian<Lazy_exact_nt<Gmpq> > K;
//typedef Lazy_kernel<Simple_cartesian<Gmpq> > K;
typedef Simple_cartesian<double> K;

typedef K::Point_2 Point;
typedef K::Segment_2 Segment;

Point random_point() { return Point(drand48(), drand48()); }
Segment random_segment() { return Segment(random_point(), random_point()); }

int main() {
int loops = 2000, init_mem = Memory_sizer().virtual_size();
Timer t; t.start();

std::cout << "Generating initial random segments: " << loops << std::endl;
std::vector<Segment> segments;
for (int i = 0; i < loops; ++i)

segments.push_back(random_segment());

std::cout << "Counting intersections [brute force algorithm]: " << std::flush;
std::vector<Point> points;
for (int i = 0; i < loops-1; ++i)

for (int j = i+1; j < loops; ++j) {
Object obj = intersection(segments[i], segments[j]);
if (const Point* pt = object_cast<Point>(&obj))

points.push_back(*pt);
}

std::cout << points.size() << std::endl;

// we shuffle the points, as consecutive points have good chance to come
// from the same segments, hence filter failures in orientation() later...
std::random_shuffle(points.begin(), points.end());

std::cout << "Performing orientation tests" << std::endl;
int negative_ort = 0, positive_ort = 0, collinear_ort = 0;
for (int i=0; i < points.size()-2; ++i) {

Orientation o = orientation(points[i], points[i+1], points[i+2]);
if (o < 0) ++negative_ort;
else if (o > 0) ++positive_ort;
else ++collinear_ort;

}
std::cout << "orientation results : (-) = " << negative_ort

<< " (+) = " << positive_ort
<< " (0) = " << collinear_ort << std::endl;

t.stop();
std::cout << "Total time = " << t.time() << std::endl;
std::cout << "Total memory = " << ((Memory_sizer().virtual_size() - init_mem) >>10)

<< " KB" << std::endl;
}

83

84

A Generic Topology Library

René Heinzl
Christian Doppler Laboratory

Gusshausstrasse 27-29
Vienna, Austria

heinzl@iue.tuwien.ac.at

Michael Spevak
Institute for Microelectronics

Gusshausstrasse 27-29
Vienna, Austria

spevak@iue.tuwien.ac.at

Philipp Schwaha
Christian Doppler Laboratory

Gusshausstrasse 27-29
Vienna, Austria

schwaha@iue.tuwien.ac.at

ABSTRACT
We present a generic topology library that is based on topo-
logical space and combinatorial properties. A notation is in-
troduced whereby data structures can be described by their
topological cell dimensions and internal combinatorial prop-
erties. A common interface for different types of data struc-
tures is presented. Various issues of iteration of these data
structures can be explained from the topological properties.
Using this multi-dimensional topology library we introduce
new possibilities for functional programming in the field of
scientific computing.

1. INTRODUCTION
In this work we investigate internal topological and combi-
natorial properties of data structures and the effect on their
interfaces. Generic interfaces to data structures have proven
to be highly successful means of generic programming. With
the great achievement of accessing all data structures in a
minimal but concise way, generic programming has emerged.
A detailed analysis of generic programming is given in [1],
where this topic is introduced from a theoretical point of
view, namely category theory. A lot of insight is gained
through this approach and a solid base has been achieved
with this theory. Our work deals with the basic nature
of topological spaces related only to data structures and
is based on GrAL [2]. This is not as general as the cate-
gory theory approach, but the basic features and issues are
exposed.

Usually programmers have to know the specific proper-

ties of data structures to achieve the best performance of
an algorithm. A simple example is the iteration and data
access within a std::vector, which is constant, whereas the
insertion or deletion uses linear time. This is relevant for the
actual run-time behavior of all implemented algorithm ap-
plied to it. Closely related to this issue is the fact that the
C++ STL algorithms use the most basic iteration mecha-
nism for the access to data structures, the forward itera-
tor mechanism. The optimal way of iteration of containers
can often not be achieved, because linear iteration is simply
not optimal [1], such as traversing a std::map or higher-
dimensional topological structures, e.g., boost::graph from
the Boost Graph library [3]. We introduce (Section 4.1) a
unified data structure definition, where only the dimension
and the combinatorial properties of topological spaces are
specified. This can also be accomplished automatically at
compile-time, based on requirements of algorithms.

Modern application design requires the utilization of data
structures in several dimensions. Especially the field of
scientific computing uses different topological elements to
discretize partial differential equations (PDE). Various ap-
proaches are available such as the STL containers, the BGL,
and for grids the GrAL [2]. However, a standardized

interface to these data structures is missing. We intro-
duce a basic interface (Section 4.2.3) for different dimensions
of data structures based on topological and combinatorial
properties.

A major issue of generic programming is the treatment of
data structure iteration and data access [4], but the
upcoming C++0x standard does not yet include this insight
[5]. Therefore we use the property map concept [4], which is
presented in Section 5 to utilize an extra data space. Briefly,
the combination of iteration and access leads to a miscate-
gorized algorithm specialization.

Our search for a general data structure library for the needs
of scientific computing has shown that the topological struc-
tures of different STL containers and BGL mechanisms can
be abstracted and generalized to a multi-dimensional generic
topology library (GTL). We do not only separate the data
access and iteration [4], but also provide a formal descrip-
tion of the underlying topological space with emphasis on
the combinatorial properties:

topological space + data type = data structure

With a formalization of the topological properties and the
iteration mechanism this approach renders a new possibility
of the functional programming paradigm (Section 7) which
is emerging in C++ [6, 7]. Up to now, functional expres-
sions lack the support of a unique interface for all different
kinds of data structure iteration. As we present in a generic
discretization library for the discretization of various partial
differential equations (GDL [8]), the full power of functional
programming is revealed with consistent topological data
structure. Note, the GTL is not restricted to applications
for scientific computing, simple iterations can be specified
elegantly as well.

2. MOTIVATION
Our motivation for developing generic libraries is derived
from the need in high performance applications in the field
of scientific computing, especially in Technology Computer

85

Aided Design (TCAD). Briefly, TCAD deals with the as-
sembly of large equation systems by utilizing discretized
partial differential equations from different fields of physics.
All types of PDEs (elliptic, parabolic, hyperbolic) have to
be considered for the various types of problems from the
fields of semiconductor simulation [9]. Different grid types
and dimensions of topological elements, linear and nonlinear
solvers with their associated numerical issues have to be con-
sidered during application development and demand great
care to ensure high software quality while also addressing
performance issues.

Our institute has a long history in developing such appli-
cations [10, 11, 12, 13, 14]. In early years only one- and
two-dimensional data structures were used, due to the limi-
tations of computer resources. The imperative programming
paradigm was sufficient for this type of task [11]. With the
improvement of computer hardware and the advent of the
object-oriented programming paradigm, the shift to more
complex data structures was possible. More complexity is
added when modeling requires a change of the underlying
topological data structure, usually from regular to irregular
grids. Additional complexity is introduced by changes in
the solver mechanisms or through the use of different types
of data, e.g., vectorial or tensorial data [15]. The most dras-
tic changes usually result from a change in the discretization
scheme, or the mathematical problem formulation itself that
is derived from PDEs [9, 16].

The main motivation for the GTL was the circumstance that
a detailed analysis of the tools developed at our institute
has shown the following distribution between the amount of
source code for data structures and algorithms:

Name Year DS Algorithm Reference
MINIMOS 1980 60 % 40 % [9]
S*AP 1989 60 % 40 % [12]
MINIMOS-NT 1996 70 % 30 % [13]
ELSA 1999 70 % 30 % [17]
WSS 2000 90 % 10 % [14]

Most of these applications use data structures such as list
and array as well as triangles, quadrilaterals, tetrahedra,
cuboids, each with their own different access and storage
mechanisms, and iteration operations. Although these tools
use the C++ STL to some extent, the overall application
design is not based on generic libraries. For this reason, the
number of source lines is growing quickly due to the complex
requirements of two and three-dimensional problems. The
currently used applications exceed the limit of maintainabil-
ity greatly.

This was the start for our own analysis related to data struc-
tures and different programming paradigms in TCAD. Our
analysis then revealed that, up to now, none of the inves-
tigated libraries (BGL, GrAL) can be used directly. For
lower-dimensional applications (0D, 1D) the libraries suf-
fer from higher-dimensional information, such as incidence
or adjacence. Applications, based on libraries, which use
different types of grids (triangles, tetrahedra, cubes) were
always outperformed by manually tuned applications. How-
ever, for the field of scientific computing, it is essential to
abstract from the iteration mechanism, dimensionality, and
type of the underlying cell complex.

3. FORMAL SPECIFICATION
This section introduces the basic notation of topological
spaces and cell complexes in our approach. In Figure 1 we
present an overview of the terms used.

Figure 1: Basic mathematical formalism.

Of particular interest are the combinatorial properties of a
CW-complex to characterize different data structures of ar-
bitrary dimensions. Hence, we introduce the formal specifi-
cation of a CW-complex [18] first. A complete introduction
of all terms is available in [2, 18].

Definition: CW-Complex C, [18]
A pair (T , E), with T a Hausdorff space and a decomposition
E into cells is called a CW-Complex, iff the following axioms
are satisfied:

- mapping function: for each n-cell c ∈ E a continuous func-
tion Φe : Dn → T exists, which transforms Dn homeo-
morphically onto a cell c and Sn−1 in the union of maxi-
mal (n−1) dimensional cells. Dn represents an n-dimensional
ball and Sn−1 represents the n− 1 cell complex.

- finite hull: the closed hull(c) of each cell c ∈ E connects
only with a finite number of other cells.

- weak topology: A ⊂ T is open, iff each A∩hull(c) is open.

An n-cell describes the cell with the highest dimension:

- zero-dimensional (0D) cell complex: vertex

- one-dimensional (1D) cell complex: edge

- two-dimensional (2D) cell complex: triangle

For this work, the most important property of a CW-complex
can be explained by the usage of different n-cells and the
consistent way of attaching sub-dimensional cells to the n-
cells. This fact is covered by the mapping function. From
now, we use an abbreviation to specify the CW-complex
with its dimensionality, e.g., a 1-cell complex describes a
one-dimensional CW-complex. An illustration of this type
of cell complex is given in Figure 2.

In the regime of data structures the requirements of a CW-
complex, the finite hull and weak topology, are always sat-
isfied due to the finite structure. The underlying topology
of a CW-complex used in computer data structures is al-
ways generated from the power set P(X). For this reason,
the topological space cannot be used directly to characterize
the different data structural properties. An example is the
topological space of a random access container specified by

86

Figure 2: Representation of a 1-cell complex with cells
(edges, C) and vertices (V).

the following code line:

std : : vector<int > conta ine r (3) ;

The topological space T is described by the power set which
models the arbitrary access of this container.

T = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}

For this reason we introduce the concept of a topological
neighborhood [18].

Definition: Neighborhood
A subset A ⊆ X of a topological space T is a neighborhood
of an element p ∈ X, iff it contains an element O of T that
contains p.

A ⊆ X neighborhood of p ⇐⇒ ∃O ∈ T : p ∈ O,O ⊆ A

A base of neighborhoods at p ∈ X is a set of neighborhoods
of p such that every neighborhood of p contains one of the
base neighborhoods. We introduce the notion of bn which
describes the number of elements of the base of neighbor-
hoods. Different data structures can be uniquely character-
ized by this number. To illustrate this term we present the
following list data structure:

std : : l i s t <int > conta ine r (4) ;

T is also described by the power set but the base of neigh-
borhood can be used to characterize the list. The following
sub-set of the topology represents the base of neighborhood
of the list:

Ti = {{0, 1}, {1, 2}, {2, 3}, {3, 4}}

Next, we introduce the combinatorial properties of a cell
complex. These properties are responsible for the internal
layout of data structures, as well as for the iteration mech-
anisms of these data structures.

With the assumption of cell complexes and the base of neigh-
borhoods we introduce the following term:

Definition: Adjacence and Incidence
Given two sets a, b ∈ T , we define a binary adjacence rela-
tion Radj(a, b) with the following properties:

Radj(a, b) : ⇐⇒ a ∩ b 6= ∅

As a special case of adjacence we define the incidence rela-
tion Rin(a, b):

Rin(a, b) : ⇐⇒ a ∩ b = a ∨ b

The incidence relation gives the possibility of an iteration of
a topological spaces, using only the definition of a base of
neighborhoods which separates the combinatorial properties
of our underlying topological spaces.

To define higher-dimensional cell complexes, a mechanism
is introduced which handles the internal structures of cells.
The topological space of, e.g., a triangular grid is described
by the vertex on cell information. The number of elements
of a sub-set does not give any information about the internal
structure of this element. The sub-set Tj = {1, 2, 3, 4} can
describe a tetrahedron in three dimensions or a quadrilateral
in two dimensions. In order to be able to distinguish these
different element, we introduce the concept of a poset:

Definition: Poset, [19]
A poset (S,<) is a finite set S, together with a partial order
relation.

In the case of a cell complex, the partial order relation is
described by incidence. A Hasse diagram can be used to
visualize the poset of a cell. Any two elements are connected
by a line, if they are comparable.

Figure 3: A Hasse-diagram for a triangle cell (top) and a
quadrilateral cell (bottom).

With the Hausdorff property of the CW-complex we can
uniquely characterize cells or faces by their set of vertices.
We define {a, b, c} as the element which exactly contains the
vertices a, b, c.

Another important property is the locality of the cell com-
plex. Two different properties can be distinguished, which
represent the arbitrary and the iterative access of data struc-
tures.

Definition: Global Cell Complex
A cell complex C which is homeomorphic to the following
combinatorial structure of cells [2], where id represents the
dimensional ticks:

{[i1, i1 + 1]× ..× [id, id + 1] | 0 ≤ ij ≤ mj}

87

is called a cell complex with global properties. Here the
topological incidence relation is apparent from the fact that
global information is explicitly available. This property is
important because of the fact, that a global cell complex
describes the random access container types.

Definition: Local Cell Complex
Conversely, a cell complex which cannot be described glob-
ally is called a local cell complex.

In scientific computing, neighborhood information of a local
cell complex has to be stored explicitly. Due to the non-
trivial construction of instances of cell complex types, we
refer to literature [20]. Related to data structures, a local
cell complex models different types of lists, trees, or maps.

4. GENERIC TOPOLOGY LIBRARY
In this section we introduce the basic idea of the underlying
cell complex for data structures. The classification of each
data structure is using the dimension of the cells. Figure 4
shows a 0-cell complex. In this special case, cells and vertices
are identical. No neighborhood information is given, only
the cells are depicted. This topological structure covers most
of the STL data structures. The differences between each
of the data structures such as std::vector and std::list

can be found in the base of neighborhoods and the incidence
relation or, in other words, in their combinatorial properties.

The internal mechanism and utilization of the internal struc-
ture of the data structure is not possible due to the 0-cell
complex, which means that no higher incidence or adjacence
(see Section 3) is available directly. No data can be stored
on edges or cells easily.

Generic algorithms cannot always use the internal structure
of, e.g., std::map or boost::graph without modification.
Copying a map or graph could be much more efficient, if
the algorithms were aware of different internal topologies of
data structure, such as the tree structure of a map.

Figure 4: Iteration over cells within a 0-cell complex.

As already mentioned, applications designed in the field
of scientific computing need higher-dimensional data struc-
tures as well as higher-dimensional iteration operations. Con-
sider, for example, a 1-cell complex (Figure 5) and a 2-cell
complex (Figure 6).

In the case of the 1-cell complex, the basic concept of inci-
dence is mostly covered. There are only edges and vertices,
and most of the operations on these two elements can be
implemented with basic methods. For higher-dimensional
cell complexes, e.g., a 2-cell complex, the incidence relation
becomes more complex. There are various permutations of
incidence relations which all lead to a different iteration. All
vertices connected to a triangle, or all edges which are part
of the triangle can be traversed. Also adjacent iteration can
be derived easily.

Figure 5: Iteration over edges for a 1-cell complex.

Figure 6: Iteration over cells and incident vertices of a cell
for a 2-cell complex.

4.1 Topological Properties of Data Structures
We can now show, based on the formal definitions in Section
3, that we can derive a consistent categorization of differ-
ent data structures and therewith a homogeneous interface
which does not restrict the dimensionality or iteration mech-
anism of the data structures. In the following table we char-
acterize common data structures with their combinatorial
properties. The used terms are:

- dim: dimension of the cell complex

- locality: refers to the local or global combinatorial prop-
erties of the underlying space

- bn: represents the number of the elements of the base of
neighborhoods of the cell

SLL stands for single-linked-list whereas DLL means double-
linked-list. A global defined cell complex does not require a
base of neighborhood due to the fact, that the neighborhood
is implicitly available.

data structure dim locality bn
array/vector 0 global
SLL/stream 0 local 2
DLL/binary tree 0 local 3
arbitrary tree 0 local 4
graph 1 global
regular grid 2 global
irregular rid 2 local 4
regular grid 3 global
irregular grid 3 local 5

The next code snippet presents our topological data struc-
ture definition. The first number stands for the actual di-
mension, the tags global and local stand for the combinato-

88

rial property, and the final number specifies the number of
elements of the base of neighborhoods.

topology<0, global > topo; // array
topology<0, local, 2> topo; // SLL/stream
topology<2, global > topo; // regular grid
topology<2, local, 4> topo; // irregular grid

For a 0-cell complex the STL iterator traits can be used to
classify the data structure easily:

topology<0, random_acess> topo; // global
topology<0, forward> topo; // local, 2
topology<0, bidirectional> topo; // local, 3

Based on this formulation, an automatic mechanism is pos-
sible to derive optimal data structures based on the require-
ments of algorithms.

To show the implementation with the GTL and equivalence
of the data structure compared to the STL vector a simple
code snippet is presented:

Equivalence of data structures

typedef topology <0 , random access > topo t ;
typedef long data t ;

typedef c e l l t <topo t , data t > c on t a i n e r t ;
c on t a i n e r t conta ine r ;

// i s e qu i v a l en t to

std : : vector<data t > conta ine r ;

Here, the separation of the topological structure specifica-
tion can be clearly observed.

4.2 Finite Cell Complexes
This section deals with the analysis of the data structures
from the STL and BGL and generalize these expressions to
arbitrary-dimensional data structures. We show that all dif-
ferent data structures model a common interface and each
dimension can use specializations to obtain the best perfor-
mance.

4.2.1 The 0-Cell Complex
A typical representative of a 0-cell complex is the topological
structure of a simple array. The C++ STL containers such
as vector and list are representatives and are schemati-
cally depicted in Figure 7. The points represent the cells on
which data values are stored.

Figure 7: Representation of a 0-cell complex with a topo-
logical structure equivalent to a standard container.

Iteration and data access is used simultaneously in the basic
iterator concept of the STL. The next code snippet presents
these facts, where the forward iteration ++it is used to tra-
verse the cells. The *it is used to access the value attached
to the cell at position it.

C++ STL approach

std : : vector<int > conta ine r ;
s td : : vector<int > : : i t e r a t o r i t ;

i t = conta ine r . begin () ;
++i t ; // t o p o l o g i c a l t r a v e r s a l
int value = ∗ i t ; // data access

On the one hand side, the iterator concept is one of the key
elements of the C++ STL. It separates the actual data struc-
ture access from algorithms. Thereby the implementation
complexity is significantly reduced. On the other hand side,
it combines iteration and data access. The improvements of
separating the iteration and data access are outlined with a
cursor and property map concept [4]. A possible application
of this approach is demonstrated in the next code snippet:

Separated iteration and data access

vector<bool> conta ine r ;
vector<bool > : : i t e r a t o r i t ;
property map pm(conta ine r) ;

i t = conta ine r . begin () ;
++i t ; // i t e r a t i o n
bool value = pm(∗ i t) ; // data access

The std::vector<bool>::iterator can be modeled by a
random access iterator [4], whereas the data access returns
a temporary object which can be used efficiently [21] with
modern compilers. Additionally, this mechanism offers the
possibility of storing more than one value corresponding to
the iterator position. This feature is especially useful in the
area of scientific computing, where different data sets have
to be managed, e.g., multiple scalar or vector values on a
vertex, face, or cell.

Based on the formal classification of Section 3 we analyze
the combination of iteration and data access in more detail.
The following list overviews the basic iterator traits [22]:

- input/output

- forward

- bidirectional

- random access

As we have seen, there is a unique and distinguishable def-
inition possible for all of these data structural properties.
On the one hand side, the backward and forward compat-
ibility of the new iterator categories are a major problem
[23]. On the other hand side, problems are encountered,
if we integrate the iterator categories into our topological
specification. In the following the replacement for the input
and output traits is listed:

- incrementable

- single pass

- forward

The combinatorial property of the underlying space of these
three categories is the same: a 0-cell complex with a local
topological structure, defined by the following code snippet:

topology<0, local, 2> tp;

The old iterator properties have only used two different cat-
egories which specify the data behavior, namely the input
and output property.

89

The difference between these three categories can be de-
scribed by:

- incrementable: this is a topological property only

- single pass: this is a data property only

- forward: this combines the incrementable and single pass
properties

Only the incrementable property can be described by a topo-
logical property, whereas the other two categories are data
dependent.

4.2.2 The 1-Cell Complex
This type of cell complex is usually called a graph. Figure 2
presents a typical example. A cell of this type of cell complex
is called an edge. Incidence and adjacence information is
available between edges and vertices.

We give examples on simple algorithms based on graphs us-
ing the BGL. The BGL implements comprehensive and high
performance graph treatment capabilities including the asso-
ciated adjacence and incidence relation. Iteration and data
access are separated by the already mentioned cursor and
property map concept [3]. The next code snippet presents
an iteration using mechanisms of the BGL. In this algorithm
all edges are traversed.

BGL iteration

typedef ad j a c e n c y l i s t <vecS , vecS > Graph ;
Graph gr (number o f po ints) ;

// edge i n i t i a l i z a t i o n

e d g e i t e r a t o r e i t , e i t e nd ;

for (t i e (e i t , e i t e nd) = edges (gr) ;
e i t != e i t e nd ; ++ e i t)

{
t e s t s o u r c e 1 += source (∗ e i t , gr) ;
t e s t s o u r c e 2 += ta rg e t (∗ e i t , gr) ;

}

With the GTL the same functionality can be accomplished
as demonstrated in the following code snippet. The global

keyword is used to highlight the global structure of the
graph, which means, that the internal data layout is pre-
pared for a dense graph storage.

GTL iteration

typedef topology <1 , g loba l > topo t ;
topo t topo (number o f v e r t i c e s) ;

// c e l l i n i t i a l i z a t i o n

c e l l o n v e r t e x i t cov i t , c ov i t end ;

for (t i e (cov i t , c ov i t end) = c e l l s (topo) ;
c ov i t != cov i t end ; ++ cov i t)

{
t e s t s o u r c e 1 += source (∗ cov i t , topo) ;
t e s t s o u r c e 2 += ta rg e t (∗ cov i t , topo) ;

}

4.2.3 The ND Cell Complex
We extend the 0-cell and 1-cell complex types to arbitrary-
dimensional cell complexes. In this work we restrict the

topological spaces to the most important to scientific com-
puting: the local (Figure 8) and the global cell complex
(Figure 9). Based on our cell complex types the following
cell types are available:

- 0-cell: vertex

- 1-cell: edge

- 2-cell: triangles, quadrilaterals

- 3-cell: tetrahedra, cubes

Figure 8: Local cell complex (left) and a cell representation
(right). Vertices are marked with black circles.

Figure 9: Global cell complex (left) and a cell representation
(right).

The following code snippet presents the implementation of
an arbitrary topology with the structure of a local 2-cell
complex. The stored data is based on scalar values using a
double for representation.

Iteration with our approach

typedef topology <2 , l o c a l , 4 > topo t ;
t o p o l o gy t r a i t s <topo t > : : i t e r a t o r i t ;

typedef data<s ca l a r , double> data t ;
data t data ;
d a t a t r a i t s <data t > : : va lue value ;

i t = topo . v e r t ex beg in () ;

++i t ; // i t e r a t i o n
value = data (∗ i t) ; // access

The next example presents an iteration mechanism starting
with an arbitrary cell iterator evaluated on a cell complex,
which is an instance of a topological cell complex. Then a
vertex on cell iterator is initialized with a cell of the complex.
The iteration is started with the for loop. During this loop
an edge on vertex iterator is created and initialized with the
evaluated vertex. This edge iterator starts the next itera-
tion. The corresponding graphical representation is given in
Figure 10. The necessary valid() mechanism models a circu-
lator concept [24]. The objects marked depict the currently
evaluated objects. In the first iteration state the vertex v1 is
used and the iteration is performed over the incident edge,
then the iteration continues with the remaining vertices.

90

Figure 10: Incidence relation and iteration mechanism.

A more complex iteration

c e l l i t e r a t o r c e i t = topo . c e l l b e g i n () ;

v e r t e x o n c e l l i t e r a t o r vo c i t (∗ c e i t) ;
for (; v o c i t . v a l i d (); ++ voc i t)
{

e d g e on v e r t e x i t e r a t o r e ov i t (∗ voc i t) ;

for (; e ov i t . v a l i d (); ++ eov i t)
{

// opera t ions on edges
}

}

As can be seen, the iteration mechanism can be used in-
dependently of the used dimension or type of cell complex.
The iteration is initialized with a cell iterator only. Three
different objects have to be assured by the cell complex: ver-
tices, edges, and cells. All cell complex types which support
these three objects can be used for this iteration.

5. DATA ACCESS
We use the property map concept by a functional access
mechanism called data accessor. The data accessor imple-
mentation also takes care of accessing data sets with dif-
ferent data locality, e.g., data on vertices, edges, facets, or
cells. This locality is specified by the given key key d. Dur-
ing initialization the data accessor da is bound to a specific
cell complex with that key. The operator() is evaluated
with a vertex of the cell complex as argument. The next
code snippet presents this assignment briefly.

Data assignment

s t r i n g key d = ” use r data ” ;
data t da = s c a l a r d a t a (topo , key d) ;

da (ver tex) = 1 . 0 ;

In the following code snippet, a simple example of the generic
use of this accessor at run-time is given, where a scalar value
is assigned to each vertex in a domain. The data accessor
creates an assignment which is passed to the std::for each

algorithm.

Data assignment

da t da = s c a l a r d a t a (topo , key d) ;

f o r e a ch
(
topo . v e r t ex beg in () ,
topo . ver tex end () ,
da = 1.0

) ;

Another example is given, where the data accessor is com-
bined with the topological structure to completely specify a
container. The data accessor can be used independently.

Equivalence of data structures

typedef topology <0 , random access > topo t ;
typedef long data t ;
c on ta in e r t <topo t , data t > conta ine r ;

// i s e qu i v a l en t to

std : : vector<data t > conta ine r ;

6. GTL ARCHITECTURE
The GTL is based on a layered concept, which means that
the iteration mechanism and data access mechanisms are or-
thogonal (Figure 11). The lowest layer represents the con-
cepts for cell, vertex, and the poset information. The other
part of the lowest layer implements the data storage. It
can be observed that data can be handled independently of
the topological information and iteration. The second layer
provides the incidence relation and the data accessor mech-
anisms.

Figure 11: Conceptual view of the GTL.

The highest level in the GTL is based on meta and func-
tional programming for a convenient usage of the different
iteration mechanisms. To illustrate these mechanisms dif-
ferent examples are presented. The first snippet shows a
simple functional iteration:

91

Functional iteration

typedef topology <2 , random access > topo t ;
typedef long data t ;
c on ta in e r t <topo t , data t > conta ine r ;

g t l : : i t e r a t e <v e r t e x on c e l l >

[
s td : : cout << 1 << std : : endl

] (con ta ine r) ;

With the GDL, different algorithms can be used as well as
presented in the next example. Here different topological
containers can be traversed and the data is accumulated
and printed.

GTL iteration with GDL mechanisms

typedef topology <2 , random access > topo t ;
typedef long data t ;

c on ta in e r t <topo t , data t > conta ine r ;
c on t a i n e r t : : d a t a a c c e s s o r da ;

g t l : : i t e r a t e <c e l l >

[
s td : : cout <<

gdl : : sum<v e r t e x on c e l l > (0 . 0) [da (1)]
<< std : : endl

] (con ta ine r) ;

7. OUTLOOK
The field of scientific computing requires an efficient nota-
tion of equation systems, has to construct equations, and has
to abstract from the iteration mechanisms of different un-
derlying objects. Various algorithms in the field of scientific
computing only depend on the combinatorial properties of
the underlying space. Using only combinatorial information
results in more stable algorithms.

By providing a concise interface to different kinds of data
structures, a new type of equation specification is made pos-
sible. In this way algorithms and equations can be specified
independently from dimension or topological cell complex
types.

To show the requirement for the equation specification we
use a simple equation system resulting from a self-adjoint
PDE type. Figure 12 presents a local patch of a 1-cell com-
plex on which the equation is evaluated.

The data Aij represents the area of the dual graph (Voronoi
graph). Using a finite volume discretization scheme [9] a
generic Poisson equation div(ε grad(Ψ)) = ̺ can be formu-
lated in two spatial dimensions as:

X

j

Dij Aij = ̺ (1)

Dij =
Ψj −Ψi

dij

εi + εj

2
(2)

Dij stands for the projection of the dielectric flux onto the
cell/edge ci that connects the vertices vi and vj . The direct
transformation of each equation element can be observed
clearly when considering the following source code:

Figure 12: Cell complex with corresponding data.

Generic Poisson equation

value =
(

gdl : : sum<vertex edge>

[
gd l : : d i f f <edge vertex>

[
Ps i (1)

] ∗ A(1)/d(1) ∗
gdl : : sum<edge vertex >[e p s i l o n (1)] / 2

] − rho (1)
) (ver tex) ;

The term Psi represents the distributed data set, A the
Voronoi area, d the distance of two points, rho the right
hand side, and epsilon some material property. It is im-
portant to stress that all data sets have to be evaluated in
their right data locality, that is Psi, epsilon, and rho on
vertices and A, d on the incident edges. The example uses the
unnamed function object 1 only. The data accessor imple-
mentation handles the correct access mechanism. The GDL
implements mechanisms to derive the correct data locality
of each unnamed object. An in-depth discussion is given in
[8] The complex resulting from this mapping is completed
by specifying the current vertex object vertex at run-time.

8. CONCLUSION
We have shown that the specific properties of different data
structures can be specified by means of topological and com-
binatorial properties. An automatic derivation of optimal
data structures based on the requirements of algorithms is
possible.

Based on the topological properties the iterator traits can
be derived automatically from combinatorial properties of
the corresponding data structure. A concise iteration mech-
anism for different dimension is presented which includes
the STL containers as well as higher-dimensional cell com-
plex types. Different issues of the currently used iterator
mechanism can be easily explained.

The full power of functional programming is revealed, when
it performs different types of topological traversal with our
approach.

9. ADDITIONAL AUTHORS
Siegfried Selberherr, email: selberherr@iue.tuwien.ac.at

92

10. REFERENCES
[1] G. D. Reis and J. Jarvi, “What is Generic

Programming?” in Library Centric Sofware Design,
OOPSLA, San Diego, CA, USA, October 2005.

[2] G. Berti, “Generic Software Components for Scientific
Computing,” Dissertation, Technische Universität
Cottbus, 2000.

[3] J. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost
Graph Library: User Guide and Reference Manual.
Addison-Wesley, 2002.

[4] D. Abrahams, J. Siek, and T. Witt, “New Iterator
Concepts,” ISO/IEC JTC 1, Information Technology,
Subcommittee SC 22, Programming Language C++,
Tech. Rep. N1477 03-0060, 2003.

[5] D. Gregor, J. Willcock, and A. Lumsdaine, “Concepts
for the C++0x Standard Library: Iterators,”
ISO/IEC JTC 1, Information Technology,
Subcommittee SC 22, Programming Language C++,
Tech. Rep. N2039=06-0109, June 2006.

[6] Boost Lambda Library, Boost, http://www.boost.org.
[Online]. Available: http://www.boost.org

[7] Boost Phoenix, Boost, 2004,
http://spirit.sourceforge.net/. [Online]. Available:
http://spirit.sourceforge.net/

[8] M. Spevak, R. Heinzl, P. Schwaha, T. Grasser, and
S. Selberherr, “A Generic Discretization Library,” in
Library Centric Sofware Design, OOPSLA, Portland,
OR, USA, October 2006.

[9] S. Selberherr, Analysis and Simulation of
Semiconductor Devices. Wien–New York: Springer,
1984.

[10] S. Selberherr, A. Schütz, and H. Pötzl,
“MINIMOS—A Two-Dimensional MOS Transistor
Analyzer,” IEEE Trans. Electron Dev., vol. ED-27,
no. 8, pp. 1540–1550, 1980.

[11] S. Halama, C. Pichler, G. Rieger, G. Schrom,
T. Simlinger, and S. Selberherr, “VISTA — User
Interface, Task Level, and Tool Integration,” IEEE
J.Techn. Comp. Aided Design, vol. 14, no. 10, pp.
1208–1222, 1995.

[12] R. Sabelka and S. Selberherr, “A Finite Element
Simulator for Three-Dimensional Analysis of
Interconnect Structures,” Microelectronics Journal,
vol. 32, no. 2, pp. 163–171, 2001.

[13] IµE, MINIMOS-NT 2.1 User’s Guide, Institut für
Mikroelektronik, Technische Universität Wien,
Austria, 2004,
http://www.iue.tuwien.ac.at/software/minimos-nt.

[14] T. Binder, A. Hössinger, and S. Selberherr, “Rigorous
Integration of Semiconductor Process and Device
Simulators,” IEEE Trans.Comp.-Aided Design of Int.
Circ. and Systems, vol. 22, no. 9, pp. 1204–1214, 2003.

[15] W. Benger, “Visualization of General Relativistic
Tensor Fields via a Fiber Bundle Data Model,”
Dissertation, Freie Universität Berlin, 2004.

[16] P. A. Markowich, C. Ringhofer, and C. Schmeiser,
Semiconductor Equations. Wien-New York: Springer,
1990.

[17] A. Sheikholeslami, E. Al-Ani, R. Heinzl,
C. Heitzinger, F. Parhami, F. Badrieh, H. Puchner,
T. Grasser, and S. Selberherr, “Level Set Method
Based General Topography Simulator and its
Applications in Interconnect Processes,” in Intl. Conf.
on Ultimate Integration of Silicon, Bologna, Italy, July
2005, pp. 139–142.

[18] K. Jänich, Topologie. Heidelberg: Springer, 2001.

[19] A. J. Zomorodian, “Topology for Computing,” in
Cambridge Monographs on Applied and Computational
Mathematics, 2005.

[20] J. R. Shewchuk, “Delaunay Refinement Mesh
Generation,” Dissertation, School of Computer
Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, May 1997.

[21] J. Siek and A. Lumsdaine, “Mayfly: A Pattern for
Lightweight Generic Interfaces,” in Pattern Languages
of Programs, July 1999.

[22] M. H. Austern, Generic Programming and the STL:
Using and Extending the C++ Standard Template
Library. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1998.

[23] M. Zalewski and S. Schupp, “Changing Iterators with
Confidence. A Case Study of Change Impact Analysis
Applied to Conceptual Specifications,” in Library
Centric Sofware Design, OOPSLA, San Diego, CA,
USA, October 2005.

[24] A. Fabri, “CGAL- The Computational Geometry
Algorithm Library,” 2001,
citeseer.ist.psu.edu/fabri01cgal.html. [Online].
Available: citeseer.ist.psu.edu/fabri01cgal.html

93

94

A Generic Discretization Library

Michael Spevak
Institute for Microelectronics

Disastrous 27-29
1040 Vienna, Austria

spevak@iue.tuwien.ac.at

René Heinzl
Christian Doppler Laboratory

Gusshausstrasse 27-29
1040 Vienna, Austria

heinzl@iue.tuwien.ac.at

Philipp Schwaha
Christian Doppler Laboratory

Gusshausstrasse 27-29
1040 Vienna, Austria

schwaha@iue.tuwien.ac.at

ABSTRACT
We present a generic library which provides means to spec-
ify partial differential equations using different discretization
schemes, dimensions, and topologies. Due to the common
interfaces for simulation domains as well as numerical alge-
bra we have an overall high inter-operability.

1. INTRODUCTION
One of the major topics in the field of scientific computing
is the solution of differential equations. The field of differen-
tial equations covers various sub-fields of varying complexity
and has different requirements on the underlying simulation
domain as well as the mathematical formalism. In the most
complex cases we face a system of coupled partial differential
equations.

As mathematical structures such as scalar fields on a simu-
lation domain do not have a direct mapping to data struc-
tures of a computer, discretization schemes and numerical
methods have to be employed. During the last decades a
vast number of different tools for the solution of differential
equations has been developed. In general, the methods that
need to be performed have not changed. Some of them have
to be used together with other techniques. Based on a data
structure which represents a cell complex, an equation sys-
tem is assembled. After the solution of the equation system
is computed the data are mapped back to the cell complex.

The main part of our work is the re-factoring and separa-
tion of the program structures needed for the discretization
as well as the assembly of differential equations. By in-
vestigating numerous tools we found that various parts of
code have been re-implemented in each of these tools. The
tediously implemented domain-specific improvements intro-
duced by each of the tools were not reusable in any way and
had to be recoded repeatedly.

Typical programs operate on two different structures, namely
a simulation domain and a matrix data structure. In the
process of re-factoring and re-organizing of available code it
is crucial to define all the external interfaces explicitly. The
formalization of topological mechanisms allows the imple-
mentation of different discretization schemes independently
from the actual representation of the topological data struc-
ture. The generic topology library (GTL) [7] provides an im-
plementation of such a data structure which can be parametrized
for arbitrary dimensions and cells.

Figure 1: Interface dependencies of discretization

schemes, solving algorithms and matrix interfaces

and the simulation domain

The interface for the simulation domain requires access to
the topological structure as well as the defined functions.
The GTL models these interfaces and provides the neces-
sary functionality to store values on the simulation domain,
which are given discretely on the single topological elements.
The topological functionality is mostly needed to fulfill the
requirements of the discretization schemes such as the finite
element method [14] or the finite volume method [12]. All of
these schemes need a set of neighboring elements based on
the topological property of incidence. Two elements are
incident if one of the sets is a subset of the other.

The formalization of matrix access mechanisms for the use
in numerical algebra provides the inter-operability and ex-
changability needed for different solver mechanisms [8]. This
allows a comparison of different numeric algebra software
packages under the same circumstances, which is usually not
possible without a considerable amount of manual work.

There are many different interfaces [1, 8] available for the
efficient assembly of equation systems. In general the in-
terface can be reduced to only a few requirements. Even
if there are solvers available which support highly specific
storage structures such as band matrices, symmetric matri-
ces or diagonal matrices, using different compressed matrix
formats, the basic operations of the solvers are the same.
The main problem of all of these solution mechanisms is
the lack of a high level standard interface which reduces the
detail of knowledge required by the end user.

We present a simple interface which makes the internal ma-
trix structure completely interchangeable and due to orthog-
onality of the concepts we can reduce this effort of interfac-
ing from O(m× n) to O(m+ n). The generic discretization
library (GDL) introduces interfaces and makes them appli-
cable to a huge number of problems. Its main aims are to

95

formalize the way of discrete mathematical formula speci-
fication and to provide a formalized way of coding mathe-
matical expressions.

The intended range of applications covers typical PDE meth-
ods as encountered in electrodynamics, mechanics, diffusion
processes, fluid mechanics, and chemical reactions as well as
typically discrete phenomena such as particle dynamics or
even graph based problems.

The main focus of the design of the GDL was spent on spec-
ifying the mathematical formalisms. There have been ap-
proaches towards domain specific languages in this field [9,
2, 3, 11] but most of them are very specific and only work
in special cases such as finite element or finite volume dis-
cretization schemes. We construct the base framework of
topological operations, which covers different discretization
schemes as well as purely discrete phenomena.

2. REQUIREMENTS RESULTING FROM
DISCRETIZATION SCHEMES

The main aim of discretization schemes is to yield a numeric
representation of a differential equation by projecting it onto
a discrete simulation domain. Typically, the discretization
of differential equations is achieved on elements of an un-
derlying cell complex, e.g. on vertices. This results in an
algebraic equation being assembled for each of the discrete
elements of the complex. The assembled algebraic equations
do not only involve values on single vertices, but also depend
on neighboring elements. It is therefore impossible to solve
the equations at each vertex locally and a set of coupled
equations is obtained.

The discretization schemes we have investigated are the fi-
nite element method, the finite volume method, and as spe-
cialized case the finite difference method [13]. In particular,
we show the different iteration mechanisms necessary for
implementation.

The finite element method uses shape functions on the high-
est dimensional elements. Each global shape function is lo-
cated on a vertex. Therefore shape-functions have non-zero
values in all cells containing this vertex. The main aim of
this discretization scheme is to find a weighted residual for-
mulation. For the formulation of this discretization scheme
the following operations have to be performed.

On all cells (c) in Neighborhood(v)

On all vertices (w) in Neighborhood(c)

...

Finite volume schemes and finite difference schemes as well
as the required topological iteration mechanisms are dis-
cussed in [4].

3. EXTERNAL INTERFACES
The main topological requirements on the simulation do-
main is an iteration over incident elements. A typical ex-
ample of such an iteration is to find all incident edges of
a vertex or vice versa. These operations use iterator-like
structures [7] for all permutations of different topological
elements. Apart from incidence and iteration, discretiza-
tion schemes need the property of orientation. All elements
have a standard orientation, e.g. an edge provides a source

Figure 2: Orientation of an edge. The orienta-

tion function returns either +1 or −1 depending on

whether the vertex is the sink or the source of the

edge.

and a sink vertex. We define an orientation function O(a, b)
between an edge and a vertex which returns +1 if a ver-
tex coincides with the source and −1 if the vertex coincides
with the sink (Figure 2). A full reference of the topological
iteration possibilities can be found in [7].

An interface to linear solvers has to provide several opera-
tions like the solution of a linear equation system, the inver-
sion of a matrix or the retrieval of eigenvalues. Non-linear
solver mechanisms are usually based on linear solvers and
therefore can be matched to this interface.

All of these methods have in common that they are capable
of handling matrices covering an arbitrary number of entries.
At the time of initialization of the matrix data structure,
the number of rows and columns of the matrix as well as
the number of right hand side vectors has to be specified.
In order to define the 10 × 10 matrix structure for a linear
solver with three right hand side vectors we call the following
constructor.

matrix_t msi(10, 3);

All matrix elements can be accessed by a function object.
This interface can be used in order to obtain the values of
the right hand side, the solution, eigenvalues or eigenvectors.

matrix_t::entry_accessor entry(msi);

matrix_t::rhs_accessor rhs(msi);

entry(0, 1) = 12.5;

rhs(2, 2) = 3.4;

Algorithms and data structures for linear algebra can be for-
mulated independently. While simulation tools fill the en-
tries of the matrix using properties of the simulation domain
and the discretized differential equations, solver mechanisms
operate on the matrix in order to provide the solution of the
discretized problem.

4. A FUNCTIONAL CALCULUS
FOR DISCRETIZATION

We have already listed the operations which are necessary
to formulate discretization schemes. Based on the example
of the Laplace operator we introduce the notions necessary
for a fast as well as efficient implementation.

Due to space considerations we omit the means of matrix as-
sembly. However we have to state that differential equations
can be formulated using the associated differential opera-
tors. All differential equations L(f) = 0 can be represented
by their operator L(f). The underlying matrix mechanisms
can be employed to determine all entries of the discretized
differential equation and assemble the differential equations.

96

For the following considerations we only show the applica-
tion of the differential operator.

4.1 Specification of Mathematical Formulae
The simplest expressions of our calculus are data which are
stored on topological elements. Each of the discrete formu-
lae has to access different values which are associated with
the topological elements.

We assume a simulation domain where values are stored on
vertices. Each vertex has one value ψ stored on it. If a
function evaluation of the expression ψ has to be performed
in a distinct vertex, we obtain this stored value.

If we limit the calculus to simple evaluations of the values
of data, it unnecessarily impoverishes the resulting calculus
without leading to a significant simplification of expressions.
However, if we can combine these expressions using opera-
tors, we obtain a huge variety of combinations which cover
a very broad range of expressions.

So far, the operations used do not differ very much from a
typical functional approach such as the Boost Lambda Li-
brary or Boost Phoenix [5]. The major difference of math-
ematical expressions occurring in discretization to typical
functional expressions is that the location of evaluation does
not change in functional expressions. In the following exam-
ple that shows the evaluation of the Laplace operator we see
that for the calculation we do not only need values on the
vertex of interest but we also have to access values within
its neighborhood. We investigate the typical finite volume
formulation of this differential operator.

div(grad(ψi)) =
X

j

ψj − ψi

di,j

· Ai,j (1)

Even though this formulation is common for finite volume
formulations, it is not directly implementable in a computer.
First and most importantly, the ranges of the sum as well as
the indices i and j are not defined explicitly. A lot of infor-
mation is implicit and is only valid within the framework of
the specific discretization scheme. For the sake of generality,
however, we can not keep domain specific notations.

There is only one iteration operation to adjacent vertices,
there are data Ai,j which seem to be evaluated on both
of these vertices. More precisely, the formulation states:
Doubly indexed data are stored on an edge (which is defined
by the vertices i and j), singly indexed data fields are located
on vertices. Even though the summation index j is specified,
the kind of iteration (namely vertex-vertex adjacency over
edges) is assumed implicitly. From the implementation point
of view this specification can only be implemented using
further assumptions.

Expression (1) can be re-organized in order to show a con-
sistent iteration scheme which allows a formulation free of
domain specific notational abbreviations. We use a sum as
well as a difference based on topological iteration. The in-
dices ve and ev denote a local neighborhood iteration from
a vertex to an edge and vice versa (3, 4). We explicitly
name the occurring topological elements, the initial vertex
is called v, the edges are called e and the vertices derived by

Figure 3: Exterior iteration loop. Starting from the

base vertex, the incident edges are determined and

traversed. The values of A as well as d are evaluated

on the edges.

Figure 4: The interior iteration loop. The vertices

which are incident with the edges are used for data

access.

iteration are called w.

div(grad(ψ(v))) =
X

ve(v,e)

A(e)

d(e)
∆ev(e,w)ψ(w) . (2)

Even though this formulation provides explicit naming of the
topological elements we can see that this is not necessary for
most of them. In the outer sum the data accessed are located
only on e, in the difference the data accessed are located only
on w. Even though the accessed data are not always located
on the actually traversed element, this holds true in most of
the cases. Therefore we implicitly access the element that is
actually being traversed in the innermost loop. This allows
us to reduce our formulation without losing generality.

div(grad(ψ)) =
X

ve

A

d
∆evψ . (3)

However, the difference of elements is directly connected to
the order in which the elements are traversed. Due to the
fact that the implementation of the cell complex is based
purely on topological neighborhood information, the order is
completely free and the subtractions may be performed in an
arbitrary order. We overcome this problem by generalizing
the difference to more general summation processes using
appropriate multiplicative factors to determine if a value
has to be added or subtracted.

In order to define the sign, we use the orientation function
O(a, b), (see Section 2) which is passed to the edge as well as
the vertex (Figure 2). As a consequence we have to access
the edge and pass it to the orientation function. As the edge
orientation function uses the edge which is not the element
of the innermost loop, we have to use an explicit name e.

div(grad(ψ)) =
X

ve

A

d

X

ev(e,w)

ψ · O(e,w) . (4)

97

With this calculus we can handle a wide range of mathe-
matical formulations which orthogonally use the methods
of topological iteration and conventional functional expres-
sions.

5. APPLICATIONS
This section describes the basic structure of a generic dis-
cretization library as well as its application to differential
equations using different discretization schemes. Based on
the functional calculus we establish a set of functional ex-
pressions to specify arithmetic operations and function ap-
plication to data in combination with topological iteration
methods. We provide a few basic examples which show the
application of the mentioned discretization schemes.

5.1 Finite Volumes
We show a possible procedural implementation of the Laplace
operator first. It uses iterators which are gradually replaced
by a functional approach in order to obtain a formulation
which is close to the expression.

Using a purely generic approach with functional elements
for data access applied to (4) yields:

double laplacian;

vertex_edge veit(v);

for(; veit.valid(); ++veit) {

double inter = 0;

edge_vertex evit(*veit)

for(; evit.valid(); ++evit) {

inter += psi(*evit) * Orient(*evit, *veit);

}

inter *= A(*veit) / d(*veit);

laplacian += inter;

}

Conventional formula assembly using loops and accumula-
tion implies the use of loop counters or iterators, as well as
intermediate results, which are avoided in the mathematical
formulation. We explicitly need to name the iterators evit,
veit as well as the variable inter. This does not only force
us to find names for these variables in each implementation
but also introduces redundant information.

Apart from this fact, we can see that in most cases we only
need the iterator of the innermost loop explicitly. This en-
ables us to condense the formulation using function objects
which provide accumulation in combination with topological
iteration. For the sake of simplicity we omit the orientation
function at this point.

sum<vertex_edge>(ZERO)[

A(_1) / d(_1) * sum<edge_vertex>(ZERO)[

psi(_1)]]

(v);

Although this formulation does not cover the complete infor-
mation, the expression already contains the semantic infor-
mation of the original formula. In contrast to the Phoenix
2 library we use the unnamed function object 1 for the el-
ement of the innermost loop. This means, that in the outer
sum 1 denotes the edge, whereas in the inner sum 1 de-
notes the vertex.

Indeed, there are two significant problems with this formu-
lation: First, the return value of functions is hard to deter-
mine, because it is not given explicitly. In addition, more
general accumulation routines require some kind of neutral
value to start the accumulation. For this reason, we explic-
itly insert the neutral element, in our case ZERO. As there
are many kinds of accumulation operations (sums, products,
all, exist) the value can not be coupled to the type but has
to be specified explicitly.

The second problem arises when we introduce the orienta-
tion function. Even though such a function can be made
available as a functional expression, the second argument,
namely the edge is not available directly. In analogy to the
Phoenix library we use a named variable e to keep the local
element available in the inner loops. These local variables
are passed to the function objects using the local calling
stack.

laplacian = sum<vertex_edge>(ZERO)[

A(_1) / d(_1) * sum<edge_vertex>(ZERO, _e)[

psi(_1) * Orient(_1, _e)]]

(v);

This functional expression is equivalent to the mathematical
formulation (4) and transforms the semantics into the C++
programming language.

5.2 Finite Elements
The finite element scheme uses an integral formulation in
order to assemble partial differential equations. For each
two points belonging to a common cell C (e.g. a triangle)
an integral is evaluated. This integral determines a local
summand for the differential operator.

sum<vertex_cell>(ZERO, _v)[

sum<cell_vertex>(ZERO, _c)[

psi(_1)*int(_c, _1, _v)]]

(v);

All finite element formulations using shape functions which
are located on the vertices can be re-formulated in this man-
ner. For higher order finite elements, this method can be
easily generalized to general neighborhood operations.

All equation-specific properties of the formulation can be en-
capsulated in the term int(c, 1, v). The integral term
returns the value of an integral, where L is the given differ-
ential operator

int(C, i, j) :=

Z

C

Lψi(x) · ψj(x) · dV . (5)

The arguments passed to this term are the cell which is
the domain of integration. This integral formulation can be
evaluated either using an analytical formula or numerically.
After the integrals are evaluated and the resulting linear
equation is evaluated, it is entered into the global matrix.

6. IMPLEMENTATION
The GDL is based on the Phoenix2 library and excessively
uses the interfaces provided there. The GDL provides three
different kinds of function objects: Data accessors, functions
and accumulators. We briefly show how accumulation is
implemented using the Phoenix2 library. Data accessors are
used in formulae in order to access values which are stored

98

with respect to a topological element. These accessors can
be adapted to the underlying property map and do not use
topological features.

In the accumulation objects, topological information is com-
bined with information of the data stored. We show the
implementation of the following line.

sum<IteratorTag>(Initial)[Summand]

First, we use several object generators in order to beautify
the code and to save manual effort for explicitly coding data
types. For the implementation as Phoenix2 objects, we pro-
vide a class which implements a function eval as well as a
meta-function apply which returns the return type of eval

depending on the arguments passed.

The evaluation function requires the so called environment,
which contains function arguments, as well as further objects
for the summand and for the initial value, which are also
implemented as Phoenix 2 data structures. In the following
implementation, the types of the variables are omitted due
to space considerations.

We obtain the first element of the passed environment and
construct a GTL style iterator. Then we initialize the result
value with the result value of the function object init. In
the next snippet, we perform the iteration combined with
the evaluation of the summand.

eval(Env & env, Initial & init, Summand & summand)

{

base_elem(at<0>(env.args));

Iterator iter(base_elem);

result = init.eval(env);

while(iter.valid()){

result += summand.eval(newenv(env, *iter));

++iter;

}

For the evaluation of the summand, we have to pass the
value of the iterator. If we use a vertex on cell iterator of the
GTL, this function is passed a cell. The summand, however,
has to be passed a vertex. For this reason we introduce
a function newenv which transforms the environment. All
other variables of the environment are preserved, only the
first variable is changed.

We briefly measure the loss of performance due to the achieved
level of abstraction. This was tested for the calculation of
a finite volume difference approximation of a Laplace oper-
ator. A three dimensional mesh is used and compared with
respect to compile time as well as run time for the functional
implementation as well as for its imperative analogon.

We found that the run time for evaluation of functional ex-
pressions was within the specified range of Phoenix2 which
is about 1 per cent. The abstraction penalty was under one
per cent. However resource use for the compilation of large
functional expressions is not negligible. The evaluation of
large functional data structures also requires large amounts
of RAM. For a more in-depth benchmark of functional struc-
tures we refer to [6].

Figure 5: Two dimensional iteration. A two dimen-

sional field of vector is iterated. The GDL provides

general access mechanisms.

7. OUTLOOK
The GDL is not restricted to the operations used in scientific
computing. Almost every branch of computer science deals
with data structures with a more complicated underlying
topology, and therefore can be reformulated to use an inter-
face which is provided by the GTL. We show applications
of this library which were not intended at the beginning but
can also be performed using the GDL.

As a typical example we show an array data type (e.g.
std::vector). If we can specify GTL style iterators which
can be easily provided for each type of array we have the
ability to access the underlying data structure via the GDL
interfaces. Even though a vector can be specified by means
of the GTL explicitly, one might have an implementation
which relies on std::vector.

Such an expression is listed in the following snippet. A vec-
tor is traversed and all its elements are summed up. This is
still possible using standard algorithms which is shown for
comparison. For this reason we use some of the GTL func-
tionality to represent the topological structure of the vector.

vector<int> vec;

sum<vector>(ZERO)[_1](vec);

accumulate(vec.begin(), vec.end(), ZERO, _1 + _2);

The following operations are not possible with standard al-
gorithms but can be specified using functional environments
like FC++ or Phoenix2 [10, 5]. We give a GDL as well
as a Phoenix2 implementation. An iteration over a two-
dimensional field is performed. (Figure 5)

vector<vector<int> > vec2;

sum<vector>(ZERO)[sum<vector>(ZERO)[_1]](vec2);

std::accumulate(vec2.begin(), vec2.end(), 0,

_1 + phoenix::accumulate(_2, 0.0,

lambda()[_1 + _2]))

In the following we show a simple example which exceeds
the power of available functional frameworks. We perform
an iteration over a container. During this iteration we accu-
mulate the product of the values stored in the N elements
which are topologically closest to the initial element. The
set of these N elements is called a meta-cell (Figure 6). A
the meta cell<N> iterator of the GTL which provides the
required functionality.

99

Figure 6: Metacell iteration. In this iteration the

the 2 closest elements of a given element are tra-

versed.

vector<int> vec;

sum<vector>(ZERO)[

product<meta_cell<3> >(ZERO)[_1]]

(vec);

Even though FC++ and Phoenix2 provide container access,
such operations can not be performed in an easy manner
without rewritings of some components for this special case.
Using the iteration data structures of the GTL, one can use
arbitrary subsets for accumulation or iteration.

The applicability of the GDL strongly depends on the avail-
ability of topological iteration mechanisms on the underly-
ing data structures. In most cases it is possible to establish
such a layer. If data structures model the GTL interfaces
it is also possible to specify general functional behavior via
the GDL.

8. CONCLUSION
We have shown that the presented library closes the gap
between the field of discretized equations and scientific ap-
plication development. Apart from syntactic difficulties of
C++, which complicate the formulation, the specified for-
mulae are identical. Compiler error messages with a higher
semantic level could even help the application designer to
detect problematic code.

The library offers a possibility of very compact and minimal-
istic formulation. Even though some expressions can still be
shortened, the use of the GDL reduces the effort of specifi-
cation enormously. This does not only increase the speed of
specification, but it also reduces the probability of typical
errors.

The consequent use of the library does not only lead to a
minimal effort of specification, but it also makes the pro-
grammer aware of the topological structures which are re-
quired for the discretization schemes. For this reason the
framework supports direct implementation of mathemati-
cal formulations. Programmers and mathematicians have
proved with well defined interfaces and the functional losses
resulting from the explanation of formalisms is greatly re-
duced.

9. ADDITIONAL AUTHORS
Tibor Grasser, email: grasser@iue.tuwien.ac.at
Siegfried Selberherr, email: selberherr@iue.tuwien.ac.at

10. REFERENCES
[1] E. Angerson, Z. Bai, J. Dongarra, A. Greenbaum,

A. McKenney, J. D. Croz, S. Hammarling, J. Demmel,

C. Bischof, and D. Sorensen. LAPACK: A Portable
Linear Algebra Library for High-Performance
Computers. Proc. Supercomp. ’90, pages 2–11, 1990.

[2] W. Bangerth, R. Hartmann, and G. Kanschat.
deal.II Differential Equations Analysis Library,

Technical Reference. http://www.dealii.org.

[3] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II
– A General Purpose Object Oriented Finite Element
Library. Technical Report ISC-06-02-MATH, Institute
for Scientific Computation, Texas A&M University,
2006.

[4] G. Berti. Generic Software Components for Scientific

Computing. PhD thesis, Technische Universität
Cottbus, 2000.

[5] Boost. Boost Phoenix2, 2006.
http://spirit.sourceforge.net/.

[6] R. Heinzl, P. Schwaha, M. Spevak, and T. Grasser.
Performance Aspects of a DSEL for Scientific
Computing with C++. In Proc. of the POOSC Conf.,
Nantes, France, July 2006.

[7] R. Heinzl, M. Spevak, P. Schwaha, and S. Selberherr.
A Generic Topology Library. In Library Centric

Sofware Design, OOPSLA, accepted, Portland, OR,
USA, October 2006.

[8] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J.
Hoekstra, J. J. Hu, T. G. K., R. B. L., K. R. Long,
R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.
Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley. An Overview of the
Trilinos Project. ACM Trans. on Math. Software,
2005. For TOMS special issue on the ACTS Collection.

[9] Kevin Kramer, W. Nicholas, G. Hitchon, University of
Wisconsin. Semiconductor Devices, a Simulation

Approach. Prentice Hall Professional Technical
Reference, 1997.

[10] B. McNamara and Y. Smaragdakis. Functional
Programming in C++ using the FC++ Library.
SIGPLAN, 36(4):25–30, Apr. 2001.

[11] C. Prud’homme. A Domain Specific Embedded
Language in C++ for Automatic Differentiation,
Projection, Integration and Variational Formulations.
Sci. Comp., page submitted, 2005.

[12] S. Selberherr. Analysis and Simulation of

Semiconductor Devices. Springer, Wien–New York,
1984.

[13] J. C. Strikwerda. Finite Difference Schemes and

Partial Differential Equations. Chapman and Hall,
1989.

[14] O. C. Zienkiewicz and R. L. Taylor. The Finite

Element Method. McGraw-Hill, Berkshire, England,
1987.

100

The SAGA C++ Reference Implementation

Lessons Learnt from Juggling with Seemingly Contradictory Goals

Hartmut Kaiser Andre Merzky Stephan Hirmer Gabrielle Allen
Louisiana State University Vrije Universiteit Louisiana State University Louisiana State University

Baton Rouge Amsterdam Baton Rouge Baton Rouge
Louisiana, USA Netherlands Louisiana, USA Louisiana, USA

hkaiser@cct.lsu.edu andre@merzky.net shirmer@cct.lsu.edu gallen@cct.lsu.edu

ABSTRACT
The Simple API for Grid Applications (SAGA) is an API
standardization effort within the Open Grid Forum (OGF).
OGF strives to standardize grid middleware and grid ar-
chitectures. Many OGF specifications are still in flux, and
multiple, incompatible grid middleware systems are used in
research or production environments. SAGA provides a sim-
ple API to programmers of scientific applications, with high
level grid computing paradigms which shield from the diver-
sity and dynamic nature of grid environments.

The SAGA specification scope will be extended in the
coming years, in sync with maturing service specifications.
SAGA is defined in SIDL (Scientific IDL). A C++ language
binding is under development, language bindings for FOR-
TRAN, Java, Python and C are planned.

Implementing the SAGA API specification is an inter-
esting and challenging problem itself, due to the dynamic
environment presented by current grids. Nevertheless, the
perceived need of the grid community for a high level API
is great enough to tackle that problem now, and not to
wait until the standardization landscape settles. This pa-
per describes how the C++ SAGA reference implementa-
tion tries to cope with these requirements – we believe there
are lessons to learn for other API implementations.

1. INTRODUCTION
Relatively few existing grid-enabled applications exploit

the full potential of grid environments. This is mainly caused
by the difficulties faced by programmers trying to master
the complexities of grids (see section 2). Several projects
concentrate on the development of high-level, application-
oriented toolkits that free programmers from the burden of
adjusting their software to different and changing grids. The
Simple API for Grid Applications (SAGA) [1] is a prominent
recent API standardization effort which intends to simplify
the development of grid-enabled applications, even for scien-
tists with no background in computer science, or grid com-
puting. SAGA was heavily influenced by the work under-
taken in the GridLab project [2], in particular by the Grid

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Application Toolkit (GAT) [3], and by the Globus Commod-
ity Grid [4]. The concept of high level grid APIs has proved
to be very useful in several projects developing cyberinfras-
tructures, such as the SURA Coastal Ocean Observing Pro-
gram (SCOOP) which uses GAT to interface to large data
archives [5] using multiple access protocols.

The C++ implementation of the SAGA API presented in
this paper leverages the experience we obtained from devel-
oping the GAT and will provide a reference implementation
for the OGF standardization process. As the SAGA API is
originally specified using the Scientific Interface Description
Language (SIDL) [6], the implementation also represents a
first attempt to develop the SAGA C++ language bindings.
It has a number of key features, described later in detail:

• Synchronous, asynchronous and task oriented versions
of every operation are transparently provided.

• Dynamically loaded adaptors bind the API to the ap-
propriate grid middleware environment, at runtime.
Static pre-binding at link time is also supported.

• Adaptors are selected on a call-by-call basis (late bind-
ing, supported by a object state repository), which al-
lows for incomplete adaptors and inherent fail safety.

• Latency hiding (e.g. asynchronous operations and bulk
optimizations) is generically and transparently applied.

• A modular API architecture minimizes the runtime
memory footprint.

• API extensions are greatly simplified by a generic call
routing mechanism, and by macros resembling (SIDL) [6]
used in the SAGA specification.

• Strict adherence to Standard-C++ and the utilization
of Boost [7] allows for excellent portability and plat-
form independence.

2. REQUIREMENTS
As mentioned in the introduction, the SAGA C++ ref-

erence implementation must cope with a number of very
dynamic requirements. Additionally, it must provide the
“simple” and “easy-to-use” API the SAGA standard is in-
tended to specify. We describe the resulting requirements
in some detail motivating our SAGA implementation design
described in section 3.

We identified several main characteristics the SAGA C++
reference implementation must provide, if any of these prop-
erties is missing, acceptance in the targeted user community
will be severely limited:

• It must cope with evolving grid standards and chang-
ing grid environments.

101

• It must be able to cope with future SAGA extensions,
without breaking backward compatibility.

• It must shield application programmers from the evolv-
ing middleware, and X should allow various incarna-
tions of grid middleware to co-exist.

• It must actively support fail safety mechanisms, and
hide the dynamic nature of resource availability.

• It must be portable and, both syntactically and se-
mantically, platform independent.

• It must allow these and other latency hiding techniques
to be implemented.

• It must meet other end user requirements outside of
the actual API scope, such as ease of deployment, ease
of configuration, documentation, and support of mul-
tiple language bindings.

3. GENERAL DESIGN
The implementation level requirements of the SAGA ref-

erence implementation as described in the previous section
directly motivate a number of design objectives. Our most
important objective was to design a state-of-the-art Grid
application framework satisfying the majority of user-needs
while remaining as flexible as possible.

This flexibility and extensibility of the implementation,
is then central to the design, and dominates the overall
architecture of the library (see figure 1). As a summary:
only components known to be stable, such as the SAGA
“look & feel” and the SAGA utility classes, are statically in-
cluded in the library – all other aspects of the API imple-
mentation, such as the core SAGA classes and the middle-
ware compile time and run time bindings, are designed to
be components which can be added and selected separately.

Application

SAGA Engine

SAGA API

SAGA CPI

Middleware

Adaptors

MiddlewareRemote Server

Job

Job

Job

Data

Data

Data

API Packages

API

Figure 1: Architecture: A lightweight engine dis-
patches SAGA calls to dynamically loaded middle-
ware adaptors. See text for details.

3.1 Design Objectives
Although the Simple API for Grid Applications is, by def-

inition simple for application developers, this doesn’t imply
that the implementation itself has to be simple. We made a
major effort to build as much logic and functionality as pos-
sible into the SAGA library core, providing all the needed
common functionality. This enables the user to extend it
with minimal effort. On the other hand, the library is de-
signed to be easy to build, use, and deploy.

A major design objective was to maximize decoupling of
different components of the developed library to provide as
much flexibility, adaptability and modularity as possible.

As the SAGA implementation is expected to be used on
different platforms and operating systems we strive for max-
imal implementation portability.

The API should be extensible with minimal effort: ideally,
adding a new API class is orthogonal to all other properties
of the implementation.

3.2 The Overall Architecture
To meet these goals we decided to decouple the library

components in three completely orthogonal dimensions –
the user of the library may use and combine these freely
and develop additional suitable components usable in tight
integration with the provided modules.

3.2.1 Horizontal Extensibility – API Packages
Our implementation uses the grouping of sets of API func-

tions as defined by the SAGA specification to define API
packages. Current packages are: file management, job man-
agement, remote procedure calls, replica management, and
data streaming. These modules depend only on the SAGA
engine, the user is free to use and link only those actually
needed by the application, minimizing the memory foot-
print. It is straightforward to add new packages (as the
SAGA specification is expected to evolve) since all common
operations needed inside these packages (such as adaptor
loading and selection, or method call routing) are imported
from the SAGA engine. The creation of new packages is
essentially reduced to: (1) add the API package files, and
declare the classes, (2) reflect the SAGA object hierarchy
(see section 4.1.2), and (3) add class methods.

The declaration and implementation of the API methods
is simplified by macros, which essentially correspond directly
to the methods SIDL specification (see section 4.6). We are
considering (partly) automating new package generation, by
parsing the SIDL specification and generating the class stubs
and class method specifications. Additionally, this approach
will also allow us to generate other SAGA language bindings
from the SIDL specification, such as for C and FORTRAN.

3.2.2 Vertical Extensibility – Middleware Bindings
A layered architecture (see figure 1) allows us to verti-

cally decouple the SAGA API from the used middleware.
Separate adaptors, either loaded at runtime, or pre-bound
at link time, dispatch the various API function calls to the
appropriate middleware. These adaptors implement a well
defined Capability Provider Interface (CPI) and expose that
to the top layer of the library, making it possible to switch
adaptors at runtime, and hence to switch between differ-
ent (even concurrent) middleware services providing the re-
quested functionality.

The top library layer dispatches the API function calls
to the corresponding CPI function. It additionally contains
the SAGA engine module, which implements: (1) the core
SAGA objects such as session, context, task or task container
– these objects are responsible for the SAGA look & feel,
and are needed by all API packages, and (2) the common
functions to load and select matching adaptors, to perform
generic call routing from API functions to the selected adap-
tor, to provide necessary fall back implementations for the
synchronous and asynchronous variants of the API functions

102

(if these are not supported by the selected adaptor).
The dynamic nature of this layered architecture enables

easy future extensions by adding new adaptors, coping with
emerging grid standards and new grid middleware.

3.2.3 Extensibility for Optimization and Features
Many features of the engine module are implemented by

intercepting, analyzing, managing, and rerouting function
calls between the API packages, (where they are issued)
and the adaptors (where they are executed and forwarded
to the middleware). To generalize this management layer,
a PIMPL [8] (Private IMPLementation) idiom was chosen,
and is rigorously used throughout the SAGA implemen-
tation. This PIMPL layering allows for a number of ad-
ditional properties to be transparently implemented, and
experimented with, without any change in the API pack-
ages or adaptor layers. These features include: generic call
routing, task monitoring and optimization, security man-
agement, late binding, fallback on adaptor invocation er-
rors, and latency hiding mechanisms. The decoupling of
these features from the API and the adaptors succeeds, es-
sentially, because these properties affect only the IMPL side
of the PIMPL layers.

The engine module is thus fully generic, and loosely cou-
pled to both the API and adaptor layers. Any engine fea-
ture, all optimizations, latency hiding techniques, monitor-
ing features etc. are implemented in generically, and are
orthogonal to the API and adaptor extensions.

4. IMPLEMENTATION DETAILS
The following section will describe certain implementation

details of the SAGA C++ reference implementation. As will
be described, the implementation gains its flexibility mainly
from the combined application of C++’s compile time and
runtime polymorphism features, i.e. template’s and virtual
functions respective.

4.1 General Considerations
To achieve maximum portability, platform independence

and code reuse, the SAGA C++ reference implementation
relies strictly on the Standard C++ language features, and
uses the C++ Standard and Boost libraries where possible.

4.1.1 The SAGA task model
A central concept of the SAGA API design is the SAGA

task model [9], prescribing the form of synchronous and
asynchronous method calls. Essentially, each method call
comes in three variants: as a synchronous call (executed
immediately), as a asynchronous call, and as a task call.
The latter versions of the calls return a saga::task class
instance. A saga::task thus represents an asynchronously
running operation, and has an associated state (New, Run-

ning, Finished, Failed). Task versions of the method
calls return a New task, asynchronous versions return a Run-

ning task. For symmetry reason, we added a fourth, syn-
chronous version of method calls, returning a Finished task.
The realization of the saga::impl::task class bases on a
implementation of the futures paradigm, a concurrency ab-
straction first proposed for MultiLisp [10]. The C++ ren-
dering of the SAGA task model is shown in figure 2.

While we tried to absolutely minimize the use of tem-
plate’s in the API layer, it was decided to implement the
different flavors of the API functions using function tem-

SAGA task model

string dest = "any://host.net//data/dest.dat";
file file ("any://host.net//data/src.dat");

// normal sync version of the copy method
file.copy (dest);

// the three task versions of the same method
task t1 = file.copy <task::Sync> (dest);
task t2 = file.copy <task::ASync> (dest);
task t3 = file.copy <task::Task> (dest);

// task states of the returned saga::task
// t1 is in ’Finished’ or ’Failed’ state
// t2 is in ’Running’ state
// t3 is in ’New’ state

t3.run ();
t2.wait ();
t3.wait ();
// all tasks are ’Finished’ or ’Failed’ now

Figure 2: The SAGA task model rendered in C++

plates (see figure 2). This makes the whole SAGA C++
implementation generic with respect to the synchronicity
model, being another reason for providing two types of the
synchronous function flavors: a direct and a task based one.

4.1.2 The Object Instance Structure
As already mentioned, the SAGA API objects are imple-

mented using the PIMPL idiom. Their only essential mem-
ber is a boost::smart ptr<> to the base class of the im-
plementation object instance1, keeping it alive. This makes
them very lightweight and copyable without major overhead,
and therefore storable in any type of container.

Task N
(saga::task)

Task 2
(saga::task)

Facade object
(saga::file)

Implementation object
(saga::impl::file)

CPI instance
(default_adaptor::file)

Task 1
(saga::task)

Creation

Strong reference

Weak reference

API objects Implementation objects Adaptor objects

Figure 3: Object instance structure: Copying a API
object instance means sharing state, returned tasks
keep implementation alive.

As shown in figure 3, any API object instance creates the
corresponding impl instance holding all the instance data of
the SAGA object instance Copying of an API instance there-
fore shares this state between the copied instances. This
behavior is consistent with anticipated handle based SAGA
language bindings (e.g. in C or FORTRAN), where copying
the handle representing a SAGA object instance naturally

1We refer to the implementation side of the PIMPL layer as impl
classes in this document

103

means sharing the internal instance data as well2.
Due to the shared referencing after copies, the impl in-

stances can be kept alive by objects which depend on their
state – for example, a task keeps the objects alive for which
they represent a asynchronous method call (see figure 3).

The call sequence for creating a SAGA API object in-
stance is shown in figure 4. Whenever needed, the imple-
mentation creates a CPI object instance implemented in one
of the adaptors. The process of adaptor selection and CPI
instantiation is injected into the API packages by the macros
mentioned before (see section 3.2.1).

Facade instance

Implementation

Adaptor selector

CPI instance

Constructor

Select adaptor

Create CPI instance

Constructor

API objects Implementation objects Adaptor objects

Instance creation

Figure 4: Object creation: Sequence diagram de-
picting the creation of all components as showed
in figure 3. Note, how the call is intercepted by
a SAGA engine module component to select a ap-
propriate adaptor.

4.2 Inheritance and PIMPL
An interesting problem in the strict application of the

PIMPL mechanism lies in the API object hierarchy: the
saga::file class for example inherits the saga::ns entry

class, which inherits the saga::object class. Additionally,
the SAGA specification requires all these classes to imple-
ment additional interfaces. Now, the PIMPL paradigm re-
quires all class instances to own exactly one impl pointer3,
and are built using single inheritance only, otherwise we
would face object slicing problems when copying around the
base classes only. The solution is (1) to add the required in-
terfaces to the most derived classes by duplication the inter-
face functions, and (2) to up-cast the impl reference stored
in the base class whenever needed.

API classes access the impl pointer through get impl(),
which, in derived classes, implies a static up-cast for the
base class’ impl pointer.

The implementation objects resemble the API object hi-
erarchy. These are also derived from a common base class
and contain, somewhere in their own hierarchy, similar ob-
jects to the API objects. The saga::impl::file class4 in-
herits the saga::impl::ns entry class, which inherits the
implementation specific saga::impl::proxy class, which is

2A polymorphic saga::object::clone() method is, however,
part of the SAGA API, and allows for explicit deep copies of
API objects, forcing the instance data to be copied as well.
3In fact the impl pointer stored in any saga::object instance is a
boost::smart ptr<saga::impl::object>, i.e. a reference to the
very base class of the implementation object hierarchy.
4The saga::impl::file class for example is the implementation
equivalent to the saga::file class, as we kept all API classes in
namespace saga and all corresponding implementation classes in
namespace saga::impl.

Constructors in the saga::file hierarchy

// saga::file constructor
file::file ([args])
: ns_entry (new saga::impl::file ([args])) {}

// saga::ns_entry constructor
ns_entry::ns_entry (saga::impl::ns_entry* impl)
: saga::object (impl) {}

// saga::object constructor
// ’impl_’ is a boost::smart_ptr<saga::impl::object>
object::object (saga::impl::object* impl)
: impl_ (impl) {}

Figure 5: Realizing inheritance in PIMPL classes
(simplified). Only the saga::object base class owns
an impl pointer.

derived from the common saga::impl::object class. Thus,
the class hierarchy on the implementation side of the PIMPL
paradigm reflects the API side of the class hierarchy, ensur-
ing the correct casting behavior in the get impl() methods.

4.3 State Management
Section 4.1.2 discussed object state, in relation to state

sharing of objects after shallow copies. Here we describe the
object state management of the SAGA implementation in
more detail, since state management is a central element on
several layers. On a different layer, the adaptors represent
operations on the object instances, and need to maintain
state as well. At the adaptor level this is complicated by
the fact that the object state can (and in general will) be
changed by several adaptors (remember: adaptors are se-
lected at runtime, and may change for each API function
invocation). For state management, we hence distinguish
between three types of state information.

• Instance data represent the state of API objects (e.g.
file name, file pointer etc.). These are predefined and
not amendable by the adaptor as they represent com-
mon data either passed from the constructor, or needed
for consistent state management on the API level.

• Adaptor data represent the state of CPI objects (e.g.
open connections) and are shared between all instances
of all CPI object types implemented by a single adap-
tor and corresponding to a single adaptor instance.

• Adaptor-instance data represent the state shared be-
tween all CPI instances created for a single API object
and implemented by the same adaptor (e.g. remote
handles).

The lifetime of any type of the state information is main-
tained by the SAGA engine module, which significantly sim-
plifies the writing of adaptors.

All three types of state information are carefully pro-
tected from race conditions potentially caused by the multi-
threaded nature of the implementation. We provide helper
classes simplifying the correct locking of the instance data.
This uniform state management enables object state persis-
tency in the future, with minimal impact on the code base.

4.4 Generic Call Routing
The essential idea of the implemented generic API call

routing mechanism is to represent the calls as abstract ob-
jects, and to redirect their execution depending on several

104

attributes and the adaptor suitability. For example, an asyn-
chronous method call for a saga::file instance is preferably
directed to a asynchronous file adaptor, or, if such is not
available, to a synchronous file adaptor, wrapping it in a
thread, or, returns an error otherwise (NotImplemented).

This routing mechanism allows for (1) trivial (synchronous)
adaptor implementations, (2) late binding (differents adap-
tor can be selected for each call, even on the same API object
instance), (3) variable adaptor selection strategies (based on
adaptor meta data, user preferences, and heuristics), and (4)
latency hiding (bulk optimization [11], or automatic load
distribution over multiple adaptors). Figure 6 is depicting
the injection of the call routing mechanism by the SAGA
engine.

CPI function call

Activate adaptor

API objects Implementation objects Adaptor objects

Facade instance Implementation Adaptor selector CPI instance

API function call

impl function call

Select adaptor

Call routing

Routed call
Middleware
invocation

Figure 6: API function call: Diagram illustrating
the execution sequence through the different object
instances during a call to any adaptor supplied func-
tion.

All SAGA API methods come in synchronous and asyn-
chronous flavors (see section 4.1.1). To avoid, that adaptors
need to implement both flavors, we provide fallback imple-
mentations in the SAGA engine. The synchronous behavior
is modelled by executing the the asynchronous implementa-
tion and waiting for it to finish. The asynchronous wraps
the synchronous implementation into a thread representing
the asynchronous remote operation.

Even if this approach has a couple of drawbacks (it is
not really asynchronous, the middleware call still blocks,
causing lock problems if implemented badly, and tasks are
not able to survive the application life time), the mechanism
simplifies adaptor implementations greatly, as most of the
existing grid middleware is not fully asynchronous anyway.

4.5 Adaptor Selection
The selection of suitable adaptors at runtime is a central

component in the implementation (see figure 6). It is, a very
simple mechanism: on loading, the adaptor components reg-
ister their capabilities in the adaptor registry. If a method
is to be executed, the adaptor selector searches that registry
for all suitable adaptors, orders them, and tries them one-
by-one, until the method invocation succeeds. The adaptor
selection is routed through SAGA engine, generically imple-
menting this for any API function.

To overcome the limitations of this approach (several CPI
instances have to be created, remote operations add addi-
tional latencies), our library allows adaptors to specify ad-
ditional, key/value based meta data, and also allows to ex-
change the adaptor selection component.

4.6 Utilization of Macros
Our SAGA implementation makes extensive use of C++

preprocessor macros. This might be perceived as a design
flaw, at least by some readers, and we were very hesitant to
utilize macros extensively. However, the benefits for the end
user and other programmers(!) seem currently to outweigh
the problems, such as limited debugging abilities. mentioned
in section 3.2.1, We are using Boost.Wave [7] features to pre-
generate partially macro expanded sources to overcome the
disadvantages of plain macros, hence simplifying debugging
and improving readability.

5. IMPLEMENTATION PROPERTIES
This section summarizes the properties of our SAGA im-

plementation from an end user perspective, gives an overview
about the lessons learnt, and motivates further develop-
ments and extensions.

5.1 Uniformity over Programming Languages
The SAGA API specification is language independent.

One of the consequences of this is that it does not use tem-
plates, which were thought too difficult to express uniformly
over many languages. Also, the specification tries to be
concise about object state management, and hence also ex-
presses semantics for shallow and deep copies. Our imple-
mentation follows the SAGA API specification closely. It is
also designed to accommodate wrappers in other languages.
A Python wrapper for our library is in alpha status, and we
plan to add wrappers to provide bindings to C, FORTRAN,
Perl, and possibly others. In the past we found it very use-
ful to be able to write Python adaptors for the GAT [3], a
predecessor of SAGA, and we will provide similar support
here as well.

5.2 Genericity in Respect to Middleware, and
Adaptability to Dynamic Environments

The dynamic nature of grid middleware is addressed in
our implementation by the described adaptor mechanism
which binds to diverse middleware. Late binding, fall back
mechanisms, and flexible adaptor selection allow for addi-
tional resilience against an dynamic and evolving run time
environment. Adaptors need to deploy mechanisms like re-
source discovery, and need to implement fully asynchronous
operations, if the complete software stack is to be able to
cope with dynamic grids.

5.3 Modularity ensures Extensibility
Section 4.6 described how the SAGA implementation will

be able to cope with the expected evolution and extension
of the SAGA API. The adaptor mechanism allows for easy
extensions of the library, providing additional middleware
bindings. The task of adaptor writing requires massively
more effort than the implementation of the presented li-
brary. Ideally, middleware vendors will implement adaptors
for SAGA, and deliver them as part of their client side soft-
ware stack. This would be a major step towards wide spread
grid applications.

5.4 Portability and Scalability
Heterogeneous distributed systems naturally require por-

table code bases. Our library implementation is very portable,
as we strictly adhere to the C++ standard and portable

105

libraries. We currently develop the library on Windows,
Linux and MacOS concurrently, covering three major target
platforms without any problems. However, the portability
of our SAGA implementation depends on the portability of
the adaptors, and hence on the portability of the grid mid-
dleware client interfaces, being the much greater problem if
compared to the library code itself.

Distributed applications are often sensitive to scalability
issues, in particular in respect to remote communications.
This equally applies to SAGA, so that scalability concerns
are naturally raised in respect to SAGA implementations as
well. Even if the SAGA API is not targeting high perfor-
mance communication schemes, but tries to stick to simple
communication paradigms, our design allows for zero-copy
implementations of the SAGA communication APIs, and for
fast asynchronous notification on events – both are deemed
critical for implementing scalable distributed applications.

5.5 Simplicity for the End User
SAGA is designed to be simple. However, simplicity of

an API is not only determined by its API specification, but
also by its implementation: simple deployment and config-
uration, resilience against lower level failures, adaptability
to diverse environments, stability, correctness, and peaceful
coexistence with other programming paradigms, tools and
libraries are some of the characteristics which need attention
while implementing the SAGA API.

A modular implementation helps to keep a library imple-
mentation itself simple. Features as the generic call routing,
or the adaptor selection are hidden in the engine module.
Modeling these central properties as modules increases the
readability and maintainability of the code significantly.

Due to its notion of tasks the SAGA API implicitly in-
troduces a concurrent programming model. Our C++ lan-
guage binding of the API, allows to combine that model with
arbitrary mechanisms for managing concurrent program el-
ements (thread safety, object state consistency, etc.).

6. FUTURE WORK
As mentioned, work on appropriate middleware adaptors

will undoubtedly require significant resources in the future.
This motivates us to work on simplifying adaptor creation,
integration and maintenance, and seek support and con-
tributions from the OpenSource community, and from grid
middleware vendors. We will develop other language bind-
ings on API and adaptor level, and apply further generic
latency hiding techniques.

7. CONCLUSION
We have described the C++ reference implementation of

the SAGA API, which is designed as a generic and extensi-
ble API framework: it allows for the extension of the SAGA
API, easily usable for other APIs); it allows for run-time
extension of middleware bindings, and it allows for orthogo-
nal optimizations and features, such as late binding, diverse
adaptor selection strategies, and latency hiding. The used
techniques enable these features, amongst them the applica-
tion of the PIMPL paradigm for a complete class hierarchy
and generic call routing.

These implementation techniques incur a certain over-
head, however, in grid environments the runtime overhead
is usually vastly dominated by communication latencies, so

that this overhead does not matter. The lesson learned is
that distributed environments allow for fancy mechanisms,
which are too expensive in local environments. Fail safety
and latency hiding mechanisms are more important than,
for example, virtual functions, late binding, and additional
abstraction layers.

8. ACKNOWLEDGMENTS
We thank Thorsten Schütt for his work on Futures; Michel

Zsandstra and Vladimir Prus for their initial work on dy-
namic loading; the SAGA groups in OGF for their work
on the SAGA specification; the Center for Computation &
Technology at Louisiana State University, the Vrije Univer-
siteit Amsterdam, and the XtreemOS project for funding
this work.

9. REFERENCES
[1] SAGA Core Working Group. Simple API for Grid

Applications – API Version 1.0. Technical report,
OGF, 2006.
http://forge.ggf.org/sf/projects/saga-core-wg.

[2] Gridlab: A Grid Application Toolkit and Tsetbed.
http://www.gridlab.org/.

[3] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser,
T. Kielmann, A. Merzky, R. Nieuwpoort,
A. Reinefeld, F. Schintke, T. Schütt, E. Seidel, and
B. Ullmer. The Grid Application Toolkit: Towards
Generic and Easy Application Programming Interfaces
for the Grid. Proceedings of the IEEE, 2004.

[4] G. v. Laszewski, I. Foster, J. Gawor, and P. Lane. A
Java commodity grid kit. Concurrency and
Computation: Practice and Experience,
13(8–9):645–662, 2001.

[5] D. Huang and G. Allen and C. Dekate and H. Kaiser
and Z. Lei and J. MacLaren. getdata: A Grid Enabled
Data Client for Coastal Modeling. In High
Performance Computing Symposium (HPC 2006),
April 3–6 2006.

[6] SIDL. Scientific Interface Definition Language.
http://www.llnl.gov/CASC/components/babel.html.

[7] Boost C++ libraries. http://www.boost.org/.

[8] H. Sutter. Pimples–Beauty Marks You Can Depend
On. C++ Report, 10(5), 1998.
http://www.gotw.ca/publications/mill04.htm.

[9] T. Goodale, S. Jha, H. Kaiser, T. Kielmann,
P. Kleijer, G. v. Laszewski, C. Lee, A. Merzky,
H. Rajic, and J. Shalf. SAGA: A Simple API for Grid
Applications – High-Level Application Programming
on the Grid. Computational Methods in Science and
Technology: special issue ”Grid Applications: New
Challenges for Computational Methods”, 8(2), SC05,
November 2005.

[10] R. H. Halstead Jr. Multilisp: A language for
concurrent symbolic computation. Transactions on
Programming Languages and Systems, 7(4):501–538,
October 1985.

[11] S. Hirmer, H. Kaiser, A. Merzky, A. Hutanu, and
G. Allen. Seamless Integration of Generic Bulk
Operations in Grid Applications. In Submitted to
International Workshop on Grid Computing and its
Application to Data Analysis (GADA’06), Agia Napa,
Cyprus, 2006. Springer Verlag.

106

A Parameterized Iterator Request Framework for Generic
Libraries

Jacob Smith
Texas A&M University
thechao@cs.tamu.edu

Jaakko Järvi
Texas A&M University

jarvi@cs.tamu.edu

Thomas Ioerger
Texas A&M University
ioerger@cs.tamu.edu

Abstract
The iterator abstraction is central to many generic libraries, such as
the Standard Template Library (STL). Generic algorithms are com-
monly specialized with regard to the kinds of iterators available.
There is, however, no mechanism for selecting the kind of iterator
that a container should provide for a particular algorithm. We pro-
pose a framework for explicitly requesting iteration schemes from
containers by using a collection of tag classes. This is a new axis of
parameterization for STL-like generic libraries. The motivation for
the framework comes from our work with the CCTBX and TEX-
TAL Protein Crystallography (PX) libraries. The models of the data
in this domain provide multiple, complex iteration schemes, and
the efficiency of many algorithms depends crucially on selecting
a suitable scheme. The framework allows individual algorithms to
access the preferred iteration scheme over the container it uses. We
describe the framework with examples in the context of the STL
and the PX libraries.

1. Introduction
Generic programming emphasizes algorithm specialization, which
essentially means providing many implementations for the same
functionality. A specialization of a generic algorithm places more
requirements on its inputs and can make more assumptions on
them, possibly enabling a more efficient implementation. A sim-
ple example is finding an element in an unsorted versus in a sorted
sequence: the former requires linear run-time with respect to the
length of the sequence, the latter only logarithmic since the assump-
tion about sortedness allows an implementation using the binary
search strategy.

In generic libraries, such as the Standard Template Library [13]
(STL), algorithm specialization is used for many algorithms whose
inputs are types conforming to the STL’s iterator concepts. For ex-
ample, the distance function—for measuring the distance between
two iterators—is defined for all types that meet the requirements
of the INPUTITERATOR concept. (We assume the reader is familiar
with the established terminology of generic programming, includ-
ing terms such as “concept”, “modeling”, and “refinement” — see
for example [3].) The least specialized version of distance is im-
plemented by counting the number of times the first iterator is in-
cremented to reach the second iterator. A different specialization of

Copyright is held by the author/owner(s).
LCSD ’06 October 22nd, Portland, Oregon.
ACM [to be supplied].

this distance-computing algorithm—operating in constant time—
is provided for RANDOMACCESSITERATORs. Due to the random ac-
cess capability of the iterators, the implementation of this special-
ization is a simple subtraction. Typically algorithm specialization
takes place automatically: the generic library selects the best avail-
able specialization for the types of the inputs to the algorithm.

STL algorithms operate on sequences described as pairs of iter-
ators. The source of a sequence is often a container which provides
mechanisms (such as the begin and end functions) to present the
contents of the container as a sequence. When using these mecha-
nisms the container provides the most powerful iterator types it can
offer to enable the most efficient algorithms to be defined for it. For
example, v.begin() for a v with type std::vector gives a RANDOMAC-
CESSITERATOR, whereas l.begin() for an l with type std::list is only
capable of providing a BIDIRECTIONALITERATOR. The result is that
the two lines below eventually invoke different implementations of
the distance function, the first being a constant time operation with
respect to the distance between the iterators, and the second linear:

distance(v.begin(), v.end());
distance(l.begin(), l.end());

Algorithm specialization along the hierarchy of iterator con-
cepts is not the only opportunity for specialization. In particular,
in a design where algorithms also operate on containers and not
solely on iterators, the selection of the iteration scheme for a par-
ticular container can be subjected to specialization, and can result in
performance gains. Note that in many domains the norm of passing
data to generic algorithms is via containers, not iterators; graphs
and matrices serve as examples of such data. In Section 4.3 we
describe data structures in the domain of protein crystallography
where this is true as well.

When requesting a sequence from an STL container (with the
begin and end member functions), the container typically provides
iterators that conform to the most refined iterator concept possible.
This can be less than ideal. It might be more efficient to provide
a less capable iterator scheme—it is possible for the container
to implement the less capable iterator in a more efficient way.
Similar situations occur frequently. For example, consider a generic
image type that represents a two-dimensional raster image with an
arbitrary number of channels, parametrized over the value type of
the channels. Examples of concrete instances of such an image
type include a one-bit black and white mask, an RGB or CMYK
bitmap, or images with a larger number of color channels. Such
an image type can be implemented as an array whose size is the
product of the width, height, and the number of channels. Assume
we lay out the image data in this array as a list of raster lines,
where a raster line is a list of pixels, where a pixel is a list of
values from each channel. Consider visiting each channel value and
performing some independent operation on it. If the only iteration
scheme provided by the image type directly models the hierarchy

107

“raster line, pixel, channel value”, a function visiting each channel
value requires three nested loops:

raster line iterator rtr = image.begin();
raster line iterator rnd = image.end();

for (; rtr!=rnd; ++rtr) {
pixel iterator ptr = rtr→ begin();
pixel iterator pnd = rtr→ end();

for (; ptr!=pnd; ++ptr) {
channel iterator ctr = ptr→ begin();
channel iterator cnd = ptr→ end();

for (; cnd!=ctr; ++ctr) some operation (∗ctr);
}
}

This hierarchy may not, however, be necessary for the operation
performed with the channel values. In such a case, this iteration
scheme will perform a non-trivial amount of unnecessary work.
A more direct and efficient mechanism for visiting all channel
values is to iterate over the underlying contiguous memory directly,
ignoring the hierarchical structure:

channel iterator ctr = begin<channel>(image);
channel iterator end = end<channel>(image);

for (; cnd!=ctr; ++ctr)
some operation (∗ctr);

The begin<channel> and end<channel> functions are requests for
this non-hierarchical iteration scheme (see Section 3). This itera-
tion scheme is considerably faster; we report timing results in Sec-
tion 4.1.

Requesting a simpler iterator scheme for efficiency is the “dual”
of algorithm specialization over iterator schemes. If equivalent al-
gorithmic functionality can be provided with the same complexity
guarantees with a simpler iterator, then it is preferable to use the
simpler iterator as it will have improved performance. Section 4.2
discusses the algorithmic differences between “Las Vegas” and se-
quential INPUTITERATORs. For example, the exact same code (the
STL’s find algorithm) has drastically different performance charac-
teristics depending upon which iteration scheme is used.

In this paper, we propose a lightweight framework for algo-
rithms to request a particular iterator scheme from a container or
a sequence source. The library consists of a small number of func-
tions forming the API for the client of the library, and requires the
algorithm and container implementations to follow a small set of
conventions, a relatively light burden for the library developers.

The core of the framework is a set of tag structs which we call
iterator tags. The global functions begin and end parametrized with
a tag and a container give access to the iterator schemes that a con-
tainer provides. In essence, the proposed framework suggest a new
degree of parametrization to STL-like generic libraries. We suspect
that it is possible to identify a set of iterator tags that could be es-
tablished similar to the iterator concepts in the STL. We do not sug-
gest such a set in this paper, but describe a handful of useful iterator
schemes. We identify situations where parameterizing the iteration
scheme provides notable benefits. In describing the framework, we
assume some familiarity with template metaprogramming, as de-
scribed, e.g., in [1].

2. Background and Motivation
In the STL [14], access to the iterator of a container is provided
through the member functions begin and end. Some containers
support iteration backwards with the members rbegin and rend.
Additionally, STL containers overload these functions for the case
where the container is a const object. Any single container can
thus provide up to four different iterator types (but essentially only
two iteration schemes). For any particular STL container, these

schemes are always the most capable iterators that the container
can offer, for example, std::vector provides RandomAccessIterators,
and std::list BidirectionalIterators [14]. The STL containers are thus
closely tied to the iterator scheme they implement and to the iterator
concept the return types of their begin and end functions provide.
Even if a container could provide multiple iteration schemes over
its data, the STL defines no generic interface for accessing them.

In order to take advantage of alternative iterator schemes, we
need a mechanism to access such schemes. A straightforward
mechanism for doing this would be to provide a specific function
name for each iteration scheme, as is already done with rbegin and
rend. Dedicating a specific function name for each iteration scheme
does not, however, work well with generic programming: function
names become hard-wired in the implementations of generic algo-
rithms. When writing a generic algorithm, the iteration scheme
is not necessarily known. If we assume a generic algorithm is
parametrized over a container type, and it uses a particular mem-
ber function of the container to access an iteration scheme, then
the use of the algorithm is limited to containers which implement
the particular function name for requesting the iterator. Using dis-
tinct member functions for each iterator scheme also goes against
the principle of specialization. Algorithm specialization automat-
ically selects the best available implementation for an algorithm,
but gracefully degrades to a slower version if the requirements of
the faster ones are not met. Similarly, we wish to allow a request
for a particular iterator scheme, but settle for a less specialized one,
if the exact requested one is not supported by a particular container.

The STL implements algorithm selection using tag dispatch-
ing: a fixed set of tag structs which each correspond to a particular
iterator concept. The tag of any iterator type can be accessed via the
iterator traits machinery. The iterator traits<Iter>::iterator category
expression is guaranteed to denote the tag of the type Iter, if Iter
conforms to one of the iterator concepts [14]. Similar to iterator
categories, we use tags to refer to different iterator schemes. Our
iterator request framework defines the global functions begin and
end that take a container type as their function parameter, and ad-
ditionally a type argument specifying the requested iterator tag. In
this way the iterator tag is not a fixed part of the signature. It can be,
for example, a type parameter at the call site to the begin and end
functions—a generic algorithm can itself be parametrized over the
tag, allowing the caller of the algorithm to specify the tag requested
in the interior of the algorithm. This allows clients of the generic
algorithm to “reach through” the algorithm to specify functionality.

3. Iterator Request Framework
The iterator request framework consists of a family of begin and
end functions, a metafunction that computes the type of the iter-
ators returned by the begin and end functions, and some helper
functions and metafunctions. We first describe the metafunction
iterator, shown in Figure 1, that specifies the type of the iterators
for a given iterator tag–container pair. By default, a metafunction
called iterator<Tag, Container>::type resolves to the member type
iterator in Container. The default is thus to access the iterator mem-
ber type in the STL containers. To make the iterator types of other
iteration schemes accessible, a generic library must specialize the
iterator template for the relevant iterator tag–container type pairs.

The second metafunction, const , is for convenience; it provides
access to the type of the iterators implementing the constant version
of the requested iteration scheme. The default is, analogously, the
const iterator member type of the container parameter.

In addition to the above metafunctions, the interface to the
library includes the functions begin, end, and const begin, and
const end. The first two functions provide both constant and non-
constant access to the iterators. The latter two functions are in-
cluded to aid in situations when a constant iterator scheme is

108

template < typename Tag, typename Container >
struct iterator {

typedef typename Container::iterator type;
};
template < typename Arg >
struct const {

typedef typename Arg::const iterator type;
};
template < typename Tag, typename Container >
struct const < iterator<Tag,Container> > {

typedef typename Container::const iterator type;
};

Figure 1. The iterator and const metafunctions for the framework.

needed, but where the current context is non-constant. All four
functions are parametrized over both an iterator tag and a container
type. Their return types are computed with the iterator metafunc-
tion discussed above, and shown in Figure 1.

Figure 2 shows all versions of the begin interface functions; the
implementations of the end functions are analogous. All the inter-
face functions merely forward the calls to appropriate tagged begin
or tagged end functions, implementing the three different versions
of begin and end with only two “back-end” functions. This means
less work for the container implementer.

template < typename Tag, typename Container >
typename iterator<Tag,Container>::type
begin (Container& ctr) {

return tagged begin(ctr,Tag());
}
template < typename Tag, typename Container >
typename const <iterator<Tag,Container> >::type
begin (Container const& ctr) {

return tagged const begin(ctr,Tag());
}
template < typename Tag, typename Container >
typename const <iterator<Tag,Container> >::type
const begin (Container const& ctr) {

return tagged const begin(ctr,Tag());
}

Figure 2. The set of begin functions for the framework.

The tagged begin and tagged end functions are shown in Fig-
ure 3. The default versions of these functions forward to the con-
tainer’s member functions begin and end, using the current STL
convention. The second function is the same as the first, except that
the computed return type is constant. It is up to the container or
algorithm implementer to overload these functions to return the de-
sired iterator for a particular iterator tag.

template < typename Tag, typename Container >
typename iterator<Tag,Container>::type
tagged begin (Container& ctr, Tag) {

return ctr.begin();
}
template < typename Tag, typename Container >
typename const <iterator<Tag,Container> >::type
tagged begin (Container const& ctr, Tag) {

return ctr.begin();
}

Figure 3. The set of tagged begin functions for the framework.

In sum, to add a new iterator scheme, one metafunction must
be extended with a new class template specialization (iterator) and

with four function template overloads (the const and non-const
versions of the tagged begin and tagged end).

4. Examples
In this section we demonstrate the use and benefits of the iterator
request framework with three examples. The first one is the image
example discussed in Section 1, for which we present some run-
time performance information; the second is in the context of the
STL; and the third is our motivating example taken from the com-
putational protein crystallography context.

4.1 Timings for images
In Section 1 we presented two alternative schemes of iterating over
the pixels of an image. To demonstrate the importance of being
able to select the most suitable iteration scheme for such image
containers, we measured the performance difference of the two
different iteration schemes, which we refer to as hierarchical and
linear. Our implementation of the image was a wrapper around
the std::vector. Access to the iterators are through the framework’s
begin and end functions, using either of the tags hierarchical or
linear. Each of the hierarchical iterators stores a pointer to its parent
iterator and an integer to the offset from the parent’s offset. That is,
the raster iterator stores a pointer to the image and the raster-line it
is representing. A pixel iterator stores a pointer to its parent raster-
line iterator and an offset into that raster-line to the pixel. And the
channel iterator stores a pointer to its parent pixel iterator and an
offset into the pixel.

Size, Channels 1 3 6
128×128 1.75 2.15909 2.24436
256×256 1.74011 2.15009 2.23694
512×512 1.73558 2.14746 2.24312

1024×1024 1.73084 2.15235 2.25039

Figure 4. The ratios of the execution time of the hierarchical
iteration scheme over the execution time of the linear iteration
scheme, measured by timing the execution times of a function
essentially equivalent to the STL’s fill. The columns are the number
of channels, and the rows are the number of pixels.

We measured the performance of iterating through images with
varying width, height, and the number of channels using both iter-
ation schemes. Our test algorithm was a variation of the STL fill al-
gorithm: we assigned the value “127” to each channel value in the
image. The measured data are depicted in Figure 4, which shows
the ratios of execution time of the hierarchical iterator scheme im-
plementation to that of the linear iterator scheme implementation.
The hierarchical iterator is generally about twice as fast as the linear
iterator on a PowerBook5,6 G4 at 1.67 GHz with 2 GB of RAM.

4.2 Alternate run-time characteristics for std::find

In the above example with images, the selected iterator scheme
affected the implementation of the algorithm. In this section, we
show how changing the iterator scheme can affect the run-time
performance, even run-time behavior, of the same piece of code. In
particular, we take a linear deterministic algorithm and convert it
into a Las Vegas algorithm. A Las Vegas algorithm is a randomized
algorithm that terminates when some stopping condition is met or
a certain number of iterations have occurred.

The input arguments of the STL find algorithm must be INPUTIT-
ERATORs, at minimum. The find algorithm implements a straightfor-
ward sequential search. The run-time performance for find is depen-
dent upon the distribution of the data in the sequence being iterated
over, leading possibly to the worst-case behaviour being realized

109

frequently. In such a case, a randomized algorithm, e.g. a Las Ve-
gas algorithm, can possibly guarantee a better average complexity
of iterator increments and dereferences.

With the iterator scheme selection framework we can parametrize
a generic algorithm over the iteration scheme, allowing the client
to choose the iteration scheme to be used in the find algorithm.
In the following example, we associate the iterator tag linear with
the sequential iterator scheme and the las vegas with the Las Vegas
iteration scheme:

template <typename Tag, typename Container>
void uses find (Container const& ctr,

typename Container::value type const& v) {
...
std::find(begin<Tag>(ctr), end<Tag>(ctr), v);
...
}

Note that the uses find function does not need to change in order
to change the iterator scheme for std::find; the Tag type parameter
tunnels through to find, as demonstrated by the following code
fragment:

std::vector<int> a(1000,0), b(1000,1);
a.insert(a.end(), b.begin(), b.end());
a function that calls find<linear>(a, 1);
a function that calls find<las vegas>(a, 1);

4.3 Protein Crystallography
The impetus for the iterator request framework was from design-
ing generic algorithms for computational protein crystallography
(PX). This section describes how without such a framework writ-
ing generic code leads to unacceptable trade-offs: the programmer
must either depend on library-specific data structures, or accept an
unreasonable loss of efficiency—a performance penalty of up to
a factor of 30. We first briefly introduce the field of protein crys-
tallography, followed by the discussion on implementing one of
the key algorithms of PX libraries. We then demonstrate the use of
our framework that avoids the above trade-off, achieving simulta-
neously generality and efficiency.

4.3.1 Background information on PX
In computational protein crystallography, one of the fundamental
data structures is the electron density container. This is a container
which represents the “presence” of an electron at a particular point
in space—literally, the probability of an electron being at a given
point in space. The electron density is computed by taking the Fast
Fourier Transform (FFT) of a set of reflections, where a reflection is
a five-tuple representing a 3D reflection-plane, an amplitude, and a
phase [8, 12]. The data comes from bombarding a crystal of a pro-
tein with X-Rays. The electron density is used in algorithms and
programs to help the crystallographer construct a model of the pro-
tein under investigation, to be used in drug discovery, determining
novel structures, and so forth [12].

The libraries we primarily work with are TEXTAL [9] and
CCTBX [7]. TEXTAL is a tool chain that automatically builds pro-
tein models from electron density data [9]. CCTBX is a library of
algorithms and other tools to aid in the development of PX soft-
ware [7]. Within CCTBX and TEXTAL—as with other PX libraries
not considered here [4, 5]—the electron density container has nu-
merous different representations [7–9, 12], leading to numerous
ways of iterating over the data.

In TEXTAL and CCTBX the iterators used are also coordinates,
i.e. the type which represents an iterator with the normal semantics
(increment, dereference), is also a type which implements the se-
mantics of a 3-dimensional vector, or an offset, depending on the
iterator. Access to the data in an electron density container is then

provided either by dereferencing the iterator in the normal way, or
by “passing” the iterator as a coordinate to the electron density con-
tainer, usually by the operator []. The two concepts are mixed to
provide programmers’ the syntactic convenience of iterators and,
on the other hand, coordinate access to the same data when that
is more natural. There are a large number of coordinate systems—
and their equivalent iterator schemes—for the electron density con-
tainer which arise from the various descriptions of the topology of
the electron density data.

The large number of iteration schemes arises because there are
four coordinate systems and three so called “symmetry” repre-
sentations. The coordinate systems are know as the linear-array,
grid, fractional, and cartesian system. Of these, the grid coordinate
system—and it’s equivalent iteration scheme—is the default sys-
tem for the CCTBX and TEXTAL libraries. The grid-coordinates
essentially represent the data as a 3-dimensional array. The linear-
array is a 1-dimensional array, and the underlying structure which
holds the data. The fractional and cartesian coordinate systems are
3-dimensional systems which are used to conveniently represent
the underlying topology, and “real” space, respectively. All of the
coordinate systems and iteration schemes are necessary, and should
thus be accessible to the client of these libraries [4, 5, 7, 9].

For each coordinate system there are three levels of increasing
symmetry: non-symmetric, translation-independent, and asymmet-
ric. The different symmetry concepts provide different levels of so-
phistication to the representation of the actual underlying topol-
ogy of the space [8]. In this paper non-symmetric means to not
use symmetry relations; translation-independent means to consider
an entire unit-cell; and asymmetric means to use the most refined
space group. Figure 5 depicts the symmetry classes with a simpli-
fied example. The four coordinate systems and the three symme-
tries amount to ten—we exclude the two higher symmetries for
the linear-array coordinate system—different RANDOMACCESSIT-
ERATORS possible for any electron density container.

Figure 5. The three types of symmetry. The image represents a
finite subset of the infinite symmetric plane. Box 1 (half solid, half
dash line) represents the asymmetric symmetry. Box 2 (using a
solid line) represents the translation-independent symmetry. Box
3 (using —. line) represents a non-symmetric subset. In theory
algorithms that operate on the asymmetric unit should be faster
because they cover less data; in practice, the cost of discovering the
proper symmetry operator to map the data back into the asymmetric
unit more than offsets this.

Each iterator type is useful depending upon the algorithm in
question. For example, since negative values are not well defined
for electron density, some algorithms [9] set negative density val-
ues to zero; this can only be done with the linear-array or grid co-
ordinate systems, that provide mutability. Real-space refinement,
a method to make the modeled protein fit better into the electron

110

Figure 6. The eight point interpolation algorithm. (1) Given an ar-
bitrary point in space (the disc), (2) find the eight surrounding grid
iterators/coordinates, and (3) measure the distance from the given
point to the “lower-left” iterator. The distances—α, β, γ—are used
to weight the values of the eight coordinates to find the linearly
interpolated value. Finding the eight surrounding points may re-
quire finding symmetric copies which are possibly “far away” in
the the underlying data, necessitating costly computations. For the
non-symmetric case no computations are needed, for translation-
independent data the computations are a modulus operations, but
for asymmetric data searching a list of 4×4 rotation-translation
matrix operators is required. Because TEXTAL and CCTBX do
not have efficient algorithms to find the operator, asymmetric algo-
rithms are almost always slower than their translation-independent
equivalents, even though there is less data.

density data, is a critical technique in PX that relies heavily on the
cartesian coordinates. This is because cartesian coordinates have
an intuitive notion of distance and direction [6, 11]. Translation-
independent and asymmetric symmetries, which are most naturally
expressed in the fractional coordinate system, are useful in isolating
a unique model [2].

4.3.2 Density Interpolation Algorithm
The density interpolation (DI) function is a critical algorithm used
in PX. It computes a electron density value at an arbitrary coor-
dinate in space based on the known stored electron density val-
ues surrounding that coordinate. The DI algorithm is invoked, e.g.,
in the inner loop of the real-space refinement algorithm [6] that
fits a model into the electron density data, and must therefore be
efficient. This necessitates several different iterator schemes for
accessing data in the electron density container. In particular, the
non-symmetric symmetry can dramatically benefit from using the
linear-array coordinate system.

The iteration selection framework gives access to many iterator
schemes, which allowed us to implement an efficient DI algorithm
in a generic fashion. The following pseudo-code outlines the com-
putation of an interpolated electron density value at a given coordi-
nate:

INPUT: coordinate, P; electron density, E
OUTPUT: linearly interpolated value, V
grid point ←convert to grid coordinate system (P)
grid iters[8] ←get iterators surrounding (grid point)
values[8] ←get values of (grid iters)
distances[6] ←get distances to grid iters (grid point, grid iters[0])
V ←linearly weight values based on distance (distances, values)

The algorithm differentiates between a grid coordinate system
point, and a grid coordinate system iterator. The former is some
arbitrary vector in 3-dimensional space defined by the grid co-
ordinate system. The latter is a dereferenceable and mutable it-
erator of the grid iterator scheme, pointing to a value stored in
memory. To compute the interpolated density, the algorithm first
converts the coordinate from its given coordinate system (carte-

sian, fractional, etc.) to the grid coordinate system. The algorithm
then computes the coordinates for the eight grid coordinate sys-
tem iterators which surround the given point. Then, the values of
the iterators are acquired—this can be a non-trivial computation,
potentially exploiting the asymmetric, translation-independent, or
non-symmetric symmetries. The distance from the point whose
value is being interpolated to the “lower-left” grid iterator is cal-
culated, and six weights are computed from the components of the
distance as depicted in Figure 6.

4.3.3 Generic Density Interpolation using Iterator Selection
The most efficient way to compute the density interpolation is
with the non-symmetric symmetry using the linear-array iterator
scheme. Our benchmark for the fastest DI implementation is the
TEXTAL function, InterpolateDensity, which makes these assump-
tions about the data. In addition, TEXTAL’s InterpolateDensity is
highly optimized: for example, it hand-unrolls all the loops that
compute the weighted-average. To acquire the values of the grid
coordinates surrounding the point to be interpolated, the TEXTAL
code converts the lower-left grid coordinate to a linear-array iter-
ator, then uses pre-computed offsets to find the other seven sur-
rounding grid points, similar to Figure 7. By using precomputed
offsets, the algorithm saves the recomputation of linear offsets into
the underlying linear-array for the other seven grid iterators.

The TEXTAL InterpolateDensity code is dependent upon the
particular selection of symmetry. Furthermore, different stages of
the algorithm use different iterator schemes. TEXTAL encodes the
concrete iterator types directly into the InterpolateDensity function,
which is a non-generic function that only works with the TEXTAL’s
data structure representing the electron density map.

As described above, the interpolation algorithm consists of two
parts: acquiring the values of the surrounding points, and com-
puting the value in the current coordinate as a weighted average
of the values of the surrounding points. The former part must be
encoded differently for different symmetries, the latter part works
for any symmetry. In order to make the code generic, we must
first factor the symmetry-dependent value-acquisition code out of
the symmetry-independent weight-averaging code. The weight-
averaging code uses only the grid iterator scheme. The value-
acquisition code uses different iteration schemes depending upon
the symmetry. In our implementation of the value-acquisition code
in Figure 7 for non-symmetric data, we use the linear-array itera-
tion scheme. To acquire a linear-array iterator we use our frame-
work with the tag linear. We then convert the input grid coordinate
to an offset with the function linearize.

The resulting code is nearly identical to the TEXTAL code, ex-
cept for the call to acquire the alternate iterator scheme. Without
the ability to specify the linear-array iterator scheme we would
be unable to take advantage of the “pre-computed offsets” opti-
mization described above. This very localized change allows us to
write both symmetry-independent and generic code, making the al-
gorithm usable with any electron density container: the algorithm
is parametrized over the coordinate type, the electron density con-
tainer, and the symmetry type. This means that the client can pass
in a point from any coordinate system (cartesian, fractional, grid,
linear), and implicitly or explicitly specify any type of symmetry
(non-symmetric, translation-independent, asymmetric), and get an
interpolated value.

We compared our implementation to the density interpolation
algorithm to that of TEXTAL’s; to the comparable but less op-
timized standard density interpolation routine in CCTBX called
nonsymmetric eight point interpolation; and to the CCTBX’s rou-
tine basic map::get value which is more general than the above
two. The CCTBX’s basic map::get value function supports differ-
ent symmetries in the value acquisition through the use of vir-

111

ALGORITHM: get corner values
INPUT: Electron Density, E; Grid Coordinate, X; Values, values

3 data ←begin<linear>(E)
data += linearize(X)
values[0] ←∗data

6 values[1] ←∗(data+1)
data += stride(E,0)
values[2] ←∗data

9 values[3] ←∗(data+1)
data += stride(E,1)
values[6] ←∗data

12 values[7] ←∗(data+1)
data −= stride(E,0)
values[4] ←∗data

15 values[5] ←∗(data+1)

Figure 7. Part of our implementation of the electron density inter-
polation algorithm. Here, we acquire the values of the eight sur-
rounding coordinates of a given point. We use the iterator selection
framework to choose the linear-array iterator for this purpose (see
line 3). This code uses pre-computed offsets stored in the electron
density container, and accessed by the function stride. The iterator
is offset by the linearized grid coordinate X to get to the value in the
lower-left corner; the other seven values are calculated from pre-
computed offsets into the linear-array. Using the linear-array itera-
tor, instead of a grid iterator, dramatically boosts the speed of this
implementation. Except for a change to line 3, this code is nearly
identical to the corresponding part of TEXTAL’s InterpolateDensity
function.

tual functions and overloading. Using a dual-processor, hyper-
threaded, 3.04 GHz Pentium IV, with 2 GB of RAM, our generic
C++ implementation of the algorithm for density interpolation
runs about 5–10% faster than TEXTAL’s InterpolateDensity. The
speed increase is due to suggestions for additional optimizations—
which we implemented—in the TEXTAL code-base. Compared to
CCTBX’s nonsymmetric eight point interpolation routine, our im-
plementation is about 3–5 times faster, and it is about 30 times
faster than CCTBX’s basic map::get value. We have written the
necessary adaptors to use our generic algorithm with TEXTAL’s
emapT C-struct, and with CCTBX’s numerous electron density
container implementations.

5. Conclusion
The proposed iterator request framework allows containers to pro-
vide multiple iterator schemes in an easily accessible way. The it-
erator scheme is requested using a tag class, and not by a dedicated
function name corresponding to the iterator scheme. Thus, the iter-
ation scheme can be a parameter in a generic algorithm; a generic
algorithm does not have to hard-wire the iterator scheme it uses. A
single algorithm can even use several iteration schemes from the
same container. Selecting a different iteration scheme becomes a
simple change to the tag used to request the iterator.

The motivation for the framework comes from our experiences
with implementing generic algorithms for the domain of computa-
tional protein crystallography. In that domain, the majority of the
generic algorithms operate on containers, rather than pairs of itera-
tors. Moreover, the containers support numerous iteration schemes,
the choice of which has a dramatic impact on performance of the
algorithms. The framework allowed us to write our algorithms in a
fully generic way, and apply the most appropriate iteration scheme

for each calling context. We found the framework crucial for writ-
ing efficient code for the complex data-structures in the domain.

The iterator selection framework is a generalization of the fam-
ily of functions, such as begin, end, rbegin, rend, where a fixed sig-
nature is used to refer to an iterator scheme. Abstracting the iterator
scheme in the begin and end functions is a new and beneficial axis
of parametrization in generic libraries. Essentially, by varying the
iteration scheme, we can get drastically different behavior and per-
formance from the exact same algorithm or code.

In this paper we discussed several iterator schemes and their
corresponding tags in context of isolated examples. Our next step
is to continue to analyze the iterator tags and identify a set of
generally applicable and “standardized” tags and their refinement
hierarchy. We believe that with a full “concept analysis” a small
number of useful tags, analogous to the STL’s iterator hierarchy,
can be developed.

References
[1] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming:

Concepts, Tools, and Techniques from Boost and Beyond. Addison-
Wesley, 2004.

[2] P. D. Adams, R. W. Grosse-Kunstleve, L.-W. Hung, T. R. Ioerger, A. J.
McCoy, N. W. Moriarty, R. J. Read, J. C. Sacchettini, N. K. Sauter,
and T. C. Terwilliger. PHENIX: building new software for automated
crystallographic structure determination. Acta Crystallographica
Section D, 58(11):1948–1954, Nov 2002.

[3] M. H. Austern. Generic programming and the STL: Using and
extending the C++ Standard Template Library. Professional
Computing Series. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1998.

[4] A. T. Brünger. X-Plor Version 3.1: A System for X-Ray Crystallogra-
phy and NMR. Yale University Press, 1993.

[5] K. Cowtan. The clipper project. Joint CCP4 and ESF-EACBM
Newsletter on Protein Crystallography, 40, 2002.

[6] K. Gopal, T. Romo, E. Mckee, K. Childs, L. Kanbi, R. Pai, J. Smith,
J. Sacchettini, and T. Ioerger. Textal: Automated crystallographic
protein structure determination. Proceedings of the Seventeenth
Conference on Innovative Applications of Artificial Intelligence,
pages 1483–1490, 2005.

[7] R. W. Grosse-Kunstleve, N. K. Sauter, N. W. Moriarty, and P. D.
Adams. The computational crystallography toolbox: crystallographic
algorithms in a reusable software framework. J. Appl. Cryst., 35:126–
136, 2002.

[8] T. Hahn. International Tables for Crystallography, Volume A: Space
Group Symmetry. Spring, 2002.

[9] T. R. Ioerger, T. Holton, J. A. Christopher, and J. C. Sacchettini.
TEXTAL: A pattern recognition system for interpreting electron
density maps. In Proceedings of AAAI, pages 130–137.

[10] T. R. Ioerger and J. C. Sacchettini. Automatic modeling of protein
backbones in electron-density maps via prediction of cα coordinates.
Acta Crystallographica Section D, 58(12):2043–2054, Dec 2002.

[11] T. R. Ioerger and J. C. Sacchettini. Textal system: Artificial
intelligence techniques for automated protein model building.
Methods in Enzymology, 374:244–270, 2003.

[12] G. Rhodes. Crystallography Made Crystal Clear, Third Edition : A
Guide for Users of Macromolecular Models. Academic Press, 2006.

[13] A. Stepanov and M. Lee. The Standard Template Library. Technical
Report HPL-94-34(R.1), Hewlett-Packard Laboratories, Apr. 1994.
http://www.hpl.hp.com/techreports.

[14] B. Stroustrup. The C++ Programming Language (Third Edition and
Special Edition). Addison-Wesley Publishing Co., New York, NY,
USA, 1997.

112

Pound Bang What?

John P. Linderman
AT&T Labs–Research

jpl@research.att.com

ABSTRACT
The author and other data mining researchers at AT&T run
perl scripts and their attendant library modules on web
sites with different architectures and operating systems. On
most of these sites, we are not at liberty to modify perl

or the collection of modules considered “standard”. On at
least one of these sites, we maintain separate test and pro-
duction environments. The challenge is: To what extent
is it possible to run the same scripts and library modules,
without modification, in all these environments? By em-
ploying a site-specific wrapper command instead of invok-
ing perl directly, we have been able to hide the differences
among the environments, making the scripts and libraries
more portable and often more efficient as well. The wrap-
per concept has made it possible to react quickly to changes
made by site administrators. The implementation is simple
and the benefits are not limited to library modules written
in perl.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.7 [Software

Engineering]: Distribution, Maintenance, and Enhance-
ment—portability

General Terms
Standardization, Languages, Design

Keywords
Perl, portability, modularity

1. THE PROBLEM
As part of a program of research in data mining, we maintain
a number of web pages, primarily written in perl, on a
web site associated with AT&T Research. A web server
was already operating there, and it was accessible to the
AT&T intranet. But most of us do our research and program
development on other machines, often personal computers
where we have complete control. The location of the perl

OOPSLA’06 Portland, Oregon, October 22-26, 2006

interpreter and our module libraries is often different on
our personal machines and the research website, so when we
moved scripts from our personal machines to the web server,
we had to change a few lines in the script to accommodate
the differences.

As business units came to rely on the web services, we real-
ized that we needed a backup system for the research server,
which is subject to occasional down time. This production
server is more reliable, but less accessible to researchers,
and effectively beyond our control. This reliable server uses
a more structured software release process, with separate
test and production hierarchies on the same server. Fur-
ther changes were required as the scripts moved from the
research website to the test environment, and then again to
the production environment.

Such changes were largely mechanical, but they were a nui-
sance at best, and if the changes were not made correctly,
the scripts would fail. Because the scripts were known to
differ from site to site, one could not verify that the “same
version” was in two places by such simple mechanisms as
comparing two checksums. What could be done to make it
possible to run the scripts without modification in all the
different environments?

2. COMMAND EXECUTION
Both the problem and our solution are related to the way
that commands are identified and executed in operating sys-
tems derived from UNIX. We will therefore take a detailed
look at command execution.

The basic execve system call for executing a command takes
three arguments, a command file name, an array of argu-
ments to be passed to the command, and an array of strings
that constitute the environment in which the command is
executed. Significantly, the environment is inherited by all
other commands that the original command might invoke.
The strings in the environment are, by convention, of the
form

NAME=value

One of the most important environment variables is PATH,
whose value is a list of directory names separated by colons.
Most shells, and some commonly used front ends to execve,
look at the command file name, and, if the name does not
include a directory component, look through the directories
in the PATH list for the first that contains an executable

113

file with the given name. The complete path name is then
passed to the execve system call.

For example, given

PATH=/bin:/usr/bin:/usr/local/bin:.

then a command file name of

/usr/local/bin/perl

will be used, unmodified, because it already specifies the
directory containing the perl command. However, if the
command file name is simply perl, then directories in the
PATH list are searched, in the order in which they occur, for
an executable file named perl. Assuming /bin contains no
such file, but /usr/bin does, then

/usr/bin/perl

will be the command name passed to execve. Many of the
front ends to the execve system call do not explicitly men-
tion the environment array. Whatever environment array is
in effect when the front end call is made is passed along to
the execve call.

The first argument in the array of arguments passed to the
executed command is, by convention, the name of the com-
mand itself. Most executed commands ignore this first ar-
gument except, perhaps, for display in diagnostic messages.
We will see another use for this argument later.

The first argument to execve, a command file name, f, must
either be a compiled “binary” file, or an ordinary “text” file
whose first line begins with the characters #!. Binary files
are simply executed, with the arguments and environment
discussed above. Files starting with #!, usually pronounced
“pound bang”, are more interesting.

2.1 execve and #!
If executable text file f begins with the characters #!, the
first term following the #! is treated as the name of an
interpreter command. execve does no PATH searching, so
the command name is usually a full path name. We will
refer to the interpreter command file as interpreter. The
effect of execve is very much like what would happen if

interpreter f arguments-to-f

were executed by a typical shell. That is, the command file
name is passed as an argument to the interpreter identified
in that command file, and any arguments to the original
command are passed along following the command file name.
A single, optional, argument a can follow the interpreter
name on the #! line, and it will result in something similar
to shell command

interpreter a f arguments-to-f

When execve is invoked by a shell, it can be difficult to
determine who is doing what. So to completely understand
execve and !#, let us eliminate the intervention of any shell.
We start with a very simple C program, args.c.

#include <stdio.h>

int main(int argc, char *const argv[])

{

int i;

for (i = 0; i < argc; ++i) {

printf("%s\n", argv[i]);

}

return 0;

}

It simply prints all of its arguments, including the often
ignored first argument. We will assume it has been compiled
into file args in the current directory. If we run

./args a b c

the result will be

./args

a

b

c

This is really just telling us what the shell put into the ar-
gument array that ended up in an execve call. To eliminate
the actions of the shell, we employ another very simple C

program, invoke.c,

#include <unistd.h>

int main(int argc, char *const argv[])

{

char *array[] = {

"command",

"arg1",

NULL

};

char *env[] = { NULL };

execve(argv[1], array, env);

}

invoke just passes an argument vector of known contents
and a completely empty environment to the command file
whose name is supplied as its first argument. If we execute

invoke args

we get

command

arg1

as we would expect. The shell orchestrated the execution
of invoke, but we know exactly how invoke executed com-
mand args. Finally, we create an executable text file

args.int

containing just one line

#! args -x # comment?

It is usually a bad idea to use a relative path name following
a #!, but we know that a command named args is in this
directory, so we can get away with it. If we now execute

invoke ./args.int

we get

args

-x # comment?

./args.int

arg1

So the low-level effect of calling execve with a command
file starting with #! is to replace the first argument array
entry with the original command file name, pushing the in-
terpreter file name (and optional argument, if any) onto the
argument array, and then executing the interpreter with this
argument array.

Note that it is the kernel1, not a shell, that is processing the
#! line. White space between the #! and the interpreter
1The !# construct of execve is not directly supported by
Microsoft operating systems. It can be made available by
using UNIX compatibility packages such as UWIN[2]. Even
where !# is not supported, our wrapper can be invoked ex-
plicitly, with many of the advantages we discuss.

114

name is ignored, as is white space between the interpreter
name and optional argument. But the argument is every-
thing else that follows the interpreter name, untouched, as
a single argument, with no notion of comments or multiple
arguments. An interpreter might know what to do with an
argument containing embedded white space, but most famil-
iar interpreters will not. If anything follows the interpreter
name, it is usually just a single token.

While we have the tools at hand for inspecting low level
operations, consider

ln -s args.int argsym

invoke argsym

This creates a symbolic link to args.int from argsym, so a
reference to argsym turns into a reference to args.int. We
then invoke the command via this symbolic link. The result
is

args

-x # comment?

argsym

arg1

Although we know it is the args.int command that is ac-
tually executed, it is the name by which it was invoked,
argsym, that appears in the execve argument list. For our
purposes, this will be very convenient.

3. POUND BANG WHAT?
One of the items that forced us to change scripts as we
moved them from site to site was the location of the perl

interpreter. Although it was often found in /usr/bin/perl,
this was not always true, and on some sites, /usr/bin/perl
was a release that was too old to support all the language
constructs our scripts relied on. In some places, the scripts
started with

#!/usr/bin/perl

in others

#!/usr/local/bin/perl

and in still others

#!/usr/common/bin/perl.new

On sites under our control, we could install a suitable release
of perl in /usr/local/bin/perl, but we did not control all
the sites where the scripts would be running. Understand-
ably, system administrators on shared systems take a pro-
prietary view of the contents of “standard” directories like
/usr/bin or /usr/local/bin. They support many commu-
nities of users, and no single community can dictate, for ex-
ample, what release of perl is installed in /usr/local/bin.
We cannot use the “real” location of perl in the #! line
if we hope to run the scripts without modification on all
machines.

So we started with the premise that we are more likely
to achieve our goals by requesting the creation of a nor-
mal home directory, say /home/vip for our very important
project, rather than negotiating for names in standard com-
mand directories. Of course, it may be that /home/vip is
already in use on a machine we would like to port to, or that
/home is not where home directories reside on the machine in
question. In that case, scripts will have to change. But the

string /home/vip is sufficiently unusual that we can proba-
bly get away with wholesale substitution for it, replacing it
with a path to a home directory we can control. If we can-
not achieve absolute portability, minimizing and simplifying
the changes is a good second best.

So we will assume that /home/vip is the root of a hier-
archy we can control, without special permission from the
administrators. And we will boldly go ahead and assume
that /home/vip/wrapbin/perl is going to appear on our #!
lines, and see where that takes us.

We do not have to do a complete perl installation in the
/home/vip hierarchy, although that is not terribly difficult
if no acceptable release of perl is already available. We can
make a symbolic link to some suitable release of perl, for
example

ln -s /usr/bin/perl /home/vip/wrapbin/perl

The symbolic link will reference different commands on dif-
ferent sites, but that is not visible in the #! line, which we
have now standardized.

4. PERL LIBRARY MODULES
That is not a bad start, but our scripts also rely on perl

library modules that are not part of the standard perl dis-
tribution. We could (and, initially, did) begin each script
with a

use lib qw(/home/vip/lib);

which causes perl to look for modules in the /home/vip/lib
directory before it searches the standard perl library direc-
tories. But now we have put /home/vip into each script
twice, and we would prefer not to sprinkle funny names
about any more widely than necessary. More to the point,
this does not address the need to have a test and produc-
tion environment on the same machine. Presumably, test
versions of some modules differ from the production ver-
sions. So a fixed directory will not support two or more
environments on the same machine.

Speaking of “environments”, though, we can use the

PERL5LIB

environment variable to determine where non-standard mod-
ules will be looked for. Like the PATH environment variable,
which specifies a list of directories where a command file
might be found, PERL5LIB specifies a list of directories where
perl will look for modules. Assume we create Test and Prod

directories under /home/vip for the test and production en-
vironments. We can put all the production-quality modules
under Prod/lib, and set environment variable

PERL5LIB=/home/vip/Prod/lib

for the production environment. We can put test versions
of modules into Test/lib, and set

PERL5LIB=/home/vip/Test/lib:/home/vip/Prod/lib

in the test environment, so we preferentially pick up test
versions but find standard versions in the production envi-
ronment, if there is no test version present.

Now we can get rid of the use lib in all our scripts. If one
of our perl scripts invokes other perl scripts via backticks
or the system command, these commands inherit the envi-
ronment with the extended PERL5LIB variable, so they, too,
will find the appropriate library modules.

115

5. MORE ENVIRONMENT VARIABLES
Our scripts invoke commands other than perl scripts. Like
perl itself, these may be in different places on different sites,
so we carefully avoid full path names. Anticipating the need
to have distinct test and production versions of these, as
well, we will want separate PATH environment variables for
these environments.

PATH=/home/vip/Prod/bin:...

PATH=/home/vip/Test/bin:/home/vip/Prod/bin:...

/home/vip/Prod/bin serves two purposes. It is a repository
for commands that we write, and it can hold symbolic links
to pre-existing commands in much the same way that we
have (so far) used

/home/vip/wrapbin/perl

to select a suitable release. It is not necessary to make a
symbolic link for every command we might invoke. Judi-
cious selection of the other directories in the search PATH

will often result in the “right” command being found by
default. For example, if our production PATH starts with

/home/vip/Prod/bin:/bin:/usr/bin:...

then any commands found in /bin or /usr/bin do not have
to be linked into our production bin if the standard search
would find the command we wish to invoke.

What is true of PATH and PERL5LIB also applies to load li-
brary paths, and command-specific environment variables.
We have a whole collection of environment variables that
might have to be set to distinguish the test and production
environments. That is not such a horrible price to pay to
make the scripts and modules totally portable. But it is a
bit clumsy. You would like to have the script do something
sensible and predictable, like default to the production envi-
ronment, if the script were invoked without having done the
environment variable setup. And what if we want to have
different releases of perl, itself, in the test and production
environments? We have hard-wired

#!/home/vip/wrapbin/perl

into our scripts. How do we distinguish between the test
and production releases?

6. WRAPPERS
Maybe /home/vip/wrapbin/perl could be a tiny shell script
that looks at something in the environment, sets the entire
collection of environment variables accordingly, and then,
with PATH already set appropriately, invokes perl, allowing
the PATH to determine which release will be selected.

#!/bin/sh

export PATH=/home/vip/Prod/bin:/bin:/usr/bin ...

export PERL5LIB=/home/vip/Prod/lib

...

if test -n "$TESTING"

then

PATH=/home/vip/Test/bin:$PATH

PERL5LIB=/home/vip/Test/lib:$PERL5LIB

...

fi

perl "$@"

This would package up the environment variable setting, and
make it possible to have different releases of perl accessible.

This does not quite work, because the command following a
#! must be a compiled command, not another #! command.
However, it is simple enough to compile a tiny wrapper that
invokes a shell script like the one above. The only downside
is that the invocation of the wrapper to invoke the shell to
invoke the real command adds to the overhead of executing
the real command.

7. PERFORMANCE
The command

perl -e 0

simply evaluates the expression 0. If we measure how long
it takes to run, what we are really measuring is the time it
takes to get perl started. We ran this baseline test with
three different commands. One was the actual perl inter-
preter we use on the machine where the tests were run. We
will refer to this as the unwrapped invocation. Another was a
compiled wrapper we use on our website. It sets a number of
environment variables, then executes perl, which, given the
PATH it establishes, is the same interpreter used in the un-
wrapped invocation. We will call this the C wrapper. The
third command is a tiny C program that executes a shell
script similar to the one in the previous section, the shell
wrapper.

100,000 iterations of each command took between 150 and
280 seconds on the machine we used for the measurements.
The unwrapped version was fastest, averaging about 154
seconds over ten such runs. The C wrapper was second, with
an average around 187 seconds, and the shell wrapper came
in around 279 seconds. Absolute times vary from machine to
machine, but the ratios are more consistent. The C wrapper
adds about 20%, the shell wrapper about 80%.

Whether a few milliseconds matter depends on the nature
of the application. If the perl scripts run for more than a
second, the startup overhead is obviously insignificant. If
the scripts run for only a fraction of a second, the overhead
matters more. The test, doing as little as it did, is a worst-
case scenario.

In fact, we discovered that the wrappers can actually im-
prove performance. Many of our scripts used the perl POSIX
library module to extract information about the host they
were running on. For example

use POSIX qw(uname);

$ENV{HOST} = (uname())[1];

sets the HOST environment variable from the second element
of the array returned by the uname routine. Suppose we
modify the shell wrapper by adding

export HOST=‘hostname‘

This accomplishes the same thing, so we can compare the
modified shell wrapper executing the 0 expression, and the
unwrapped version invoking uname as shown above. The
C wrapper was already setting HOST, so there is no need
to rerun it. With these modifications, the shell wrapper
times increased to an average of around 391 seconds, but
the unwrapped times jumped to 795 seconds.

The POSIX module is large, nearly 19,000 bytes. Even though
we need only one method from the module, the entire mod-
ule must be read and parsed. By eliminating the need to use

116

the module, we more than pay for the additional overhead
of the wrappers.

8. BEYOND PERL
With the basic “stuff the environment and run” functional-
ity in place, it becomes evident that the wrapper is useful
for commands other than perl. Establishing a special PATH
is useful to any script that may invoke other commands, so
one might like to have a “wrapperized” awk and python and
so on. We do not have to construct a different wrapper for
each command. The C wrapper, for example, uses the base-
name of the command name, dropping any directories that
might have been included in the name, as the default com-
mand name to be executed. After making all the changes
to the environment, the last thing it does it to call execvp,
the PATH-searching front end to the execve call, with just
this basename as the command name. If we invoke the C

wrapper as

/home/vip/wrapbin/perl

then the basename is perl and we end up invoking whatever
version our PATH determines. If we simply make a symbolic
link to

/home/vip/wrapbin/perl

from

/home/vip/wrapbin/awk

then we can use this awk command in our #! lines and
enjoy all the environment variables, like PATH and HOST, set
by the wrapper. We could do the same for other interpreters,
like python, but to do a proper job, we would want to set
interpreter-specific variables like

PYTHONPATH

which is the python equivalent of PERL5LIB. There are perl

variables that are of no interest to python, and vice versa.
This results in a certain amount of “environment bloat”, but
as long as there is no disagreement about the meaning of any
given environment variable, it is unlikely to be noticed, and
we will see later why it is advantageous to have a single
wrapper rather that one wrapper per interpreter.

We built our C wrapper so that if variable

WRAP_COMMAND

is present in the environment, its value will be used in pref-
erence to the basename.

WRAP_COMMAND=awk /home/vip/wrapbin/perl awk-script

will therefore invoke awk without the need to create a sym-
bolic link, and

WRAP_COMMAND=printenv /home/vip/wrapbin/perl

is a favorite way to see the environment variables that the
wrapper sets. This relies, of course, on an executable ver-
sion of the command being found in the search PATH. The
wrapper can set a umask, for example, but if you try to see
what it is by invoking

WRAP_COMMAND=umask /home/vip/wrapbin/perl

it will not work, because umask is a shell builtin, not an
executable binary.

Similar features can be added to the shell wrapper, but they
require changes to, and symbolic links to, both the compiled
wrapper and the shell scripts it invokes.

8.1 Symbolic Links and Hard Links
There are two kinds of links we can use to give alternative
names to the wrappers. Where symbolic links store a path
to another file, hard links assign another name to an existing
file. There is a tiny bit of extra overhead for the operating
system to chase the path associated with a symbolic link.
So why use symbolic links where a hard link could be used?

When we want to modify the wrapper, it is important to do
so atomically. That is, commands referring to the wrapper
must see the old version or the new version, but not some
file where part of the new version has been copied, but part
of the old version still remains. The shell command

mv new-file file

employs the rename system call, which is atomic. The atom-
icity is achieved by changing the directory entry for file to
reference a new file. No file copying is involved.

If we have been using symbolic links, the rename atomically
changes all the references. However, if file1 is a hard link
to file, then after the rename, file1 continues to be a
name for the old version. The old version continues to be
a valid executable command, but it may be that the old
and new versions are logically incompatible, for example,
by using different formats for some log file. What is more,
there is no atomic way to make file1 a hard link to the new
file. file1 must first be removed, then linked, and there
is a “window”, however tiny, between the removal and the
linking where a command referencing file1 would fail. By
using symbolic links, we make atomic update easy.

9. TEST VERSUS PRODUCTION
Our C wrapper makes it easy to do conditional environment
variable assignments based on the value, if any, of environ-
ment variable WRAP SELECT. Our convention is that the pro-
duction environment is to be used unless WRAP SELECT has
a value containing the letter t. This means it is easy to ex-
ercise the test environment by setting WRAP SELECT=t. This
is fine for interactive testing, but we do not always have
complete control over our environment, for example, when
a script is invoked from a website.

Recall that the wrapper has access to the name of the com-
mand in which the wrapper name followed the #!. Our
wrapper looks for an occurrence of the string /test/ in that
command name, and sets WRAP SELECT to t if the string is
found. The wrapper can use the getcwd function to deter-
mine the name of the directory in which it is executing, and
our wrapper performs a similar check for the directory name.
The identity of the user executing the command could also
be checked.

It is therefore not necessary for WRAP SELECT to be set when
the wrapper is invoked. The wrapper can check other as-
pects of the broader environment in which it finds itself to
set the variable, as appropriate.

10. UNEXPECTED BENEFITS
When we made our latest move to a new web server, the
system administrators decided to use a new mechanism,
cgi-wrap, to execute user web scripts. Simple test scripts
ran correctly under cgi-wrap, but in actual use, we noticed

117

that some long-running scripts were exiting before they com-
pleted, and large files were being truncated. We discovered
that cgi-wrap was setting resource limits to constrain run-
away scripts. The system administrators were very coopera-
tive, and offered to raise the limits. But a few of our scripts
spawn jobs that may run for days, and write files that are
hundreds of megabytes. Limits large enough to accommo-
date these jobs would not do much to constrain ordinary
scripts.

Instead, we modified the cgi-wrap source so that “soft” lim-
its were set, but “hard” limits were not. This opened up the
possibility of resetting the soft limits. We then modified
our wrapper to remove the limits that cgi-wrap imposed.
No modifications were needed to the individual scripts, and
scripts that did not employ the wrapper inherited limits that
were quite reasonable for ordinary web applications.

We also discovered that some of the redirects to the new
website were interacting badly with the CGI perl module,
resulting in “not found” errors when users submitted forms.
We found that we could correct the problem by performing
a string substitution on the SCRIPT NAME environment vari-
able. We modified a few scripts to get the users back on the
air. But then we realized that the changes were easy to do
in the wrapper. By making the changes there, we fixed the
problem for all scripts, without modifying them directly.

11. OTHER POSSIBILITIES
The benefits described in the previous section are due, in
part, to the wrapper acting as a “executable point of con-
tact” for all scripts. Changes made there take effect in every
script that invokes the wrapper, without having to change
the scripts.

One could do performance monitoring by bracketing the fi-
nal execvp system call with a fork and a wait, and then
logging the results of a getrusage call. Such logging could
be turned on and off dynamically, based on script name or
time of day or day of the week.

The real joy is that it is not necessary to anticipate all the
things you might want to do. You can add (and remove)
functionality as inspiration dictates, and the changes come
and go, globally and instantaneously, as you install various
implementations of the wrapper.

12. RELATED WORK
12.1 Commands that Invoke Commands
Commands whose function is to make inheritable changes
to the environment and then execute a different command
in that modified environment are not new. The nohup and
nice commands are examples from the earliest days of the
UNIX operating system.

nohup nice sort -o out largefile &

might be used to sort a large file at reduced processor pri-

ority (nice) and to ignore the signal that will be sent if the
session ends before the sort is complete (nohup).

Conventional wrapper commands like nohup take, as argu-
ments, the name of the command to be executed, and the
arguments to that command. This makes them unusable
with the #! construct, where arguments are limited in num-
ber and length. Our wrapper usually determines the com-
mand to be executed from the name by which the wrapper
is invoked. It can only invoke commands whose basenames
are also a name for the wrapper.

The commands invoked by a conventional wrapper are de-
signed to do something sensible in the absence of any wrap-
per. Our wrapper is associated with a suite of commands
that anticipate operating in environments where no single
default will be effective everywhere. The suite relies on the
wrapper to configure a suitable environment for execution.

12.2 Configuring for Multiple Environments
There are configuration tools like autoconf[3] and iffe[1]
that facilitate porting commands to disparate environments.
The model is to configure a single command once, using a
combination of user-specified options and automatic detec-
tion of system-specific differences. These tools could be used
to configure a suite of commands for a given machine, but
they fail to address the need to have different test and pro-
duction environments on a single machine. Configuration
tools might be valuable for porting our wrapper, particularly
if the nature of the wrapper were more formally expressed.
But we would not choose to configure individual commands,
even if that were possible. We like the single, executable,
point of contact that a wrapper provides.

13. SUMMARY
The use of a small, compiled wrapper can contribute sig-
nificantly to the portability and testability of scripts. The
additional overhead will be insignificant for most applica-
tions, and performance improvements have been observed.
By acting as an executable point of contact for all scripts, a
wrapper provides wholesale protection from changes in the
operating environment, and offers opportunities for dynamic
logging and measurement.

14. REFERENCES
[1] Glenn S. Fowler, David G. Korn, John J. Snyder, and

Kiem-Phong Vo. Feature-based portability. In Very
High Level Languages Symposium (VHLL), pages
197–207, October 1994.

[2] David G. Korn. UWIN — UNIX for Windows. In The
USENIX Windows NT Workshop 1997, pages 133–145,
1997.

[3] David Tilbrook and Russell Crook. Large scale porting
through parameterization. In USENIX Conference
Proceedings, pages 209–216, Summer 1992.

118

