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Abstract
A general class of program analyses can be characterized as a com-
bination of context-free and regular language reachability. We de-
fine regularly annotated set constraints, a constraint formalism that
captures this class of analysis problems. We give a constraint res-
olution algorithm and show experimentally that an implementation
of our approach is both efficient and scalable. Our results consider-
ably extend the class of reachability problems expressible naturally
in a single constraint formalism, including such diverse applica-
tions as interprocedural dataflow analysis, precise type-based flow
analysis, and pushdown model checking.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages

General Terms Algorithms, Design, Experimentation, Languages,
Theory

Keywords Set constraints, context-free language reachability,
flow analysis, annotated inclusion constraints, pushdown model
checking

1. Introduction
Many program analyses are expressible as reachability problems
on labeled graphs with requirements that certain labels match: a
constructor must be matched with a corresponding destructor, a
function call must be matched with a function return, and so on.
Dynamic transitive closure of a graph [17], context-free reachabil-
ity [20], and the cubic-time fragment of set constraints [8, 1] are
all formalisms that describe such analyses. These three approaches
are closely related: set constraint solvers are implemented using
optimized dynamic transitive closure algorithms [5, 24, 9] and the
most efficient general implementation of context-free reachability
is based on a reduction to set constraints [12]. Representative pro-
gram analysis problems that can be solved with these methods in-
clude polymorphic flow analysis [18] and field-sensitive points-to
analysis [23].

There are more complex analysis problems in which multiple
reachability properties must be satisfied simultaneously. For exam-
ple, one can easily define problems that require matching of both
function calls/returns and data type constructors/destructors. Un-
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fortunately, any analysis problem requiring satisfying two or more
context-free properties simultaneously is undecidable [19]. A gen-
eral class of reachability properties that remains decidable is the
intersection of a context-free language with any number of regu-
lar languages. A number of natural analysis problems fall into this
class [2, 4, 11, 10].

In this paper we show how to extend set constraints to express
program analyses involving the intersection of one context-free and
any number of regular reachability properties. Existing implemen-
tations of analyses that combine context-free and regular reacha-
bility are hand optimized and tuned to a particular analysis prob-
lem. Our constraint resolution algorithm allows these analyses to
be written at a higher level while also providing an implementa-
tion that is more efficient than those written by hand. In short,
we enlarge the class of program analyses that can be solved effi-
ciently with a single constraint resolution algorithm. In addition,
our method enables us to resolve an open problem: we give a prac-
tical method to combine (predicative) parametric polymorphic re-
cursion with non-structural subtyping in a label flow analysis.

Our approach builds on an idea first introduced in [22], in
which terms and constraints can be annotated with a word from
some language. We introduceregularly annotated set constraints,
in which each constructor of a term and each constraint can be
annotated with a word from a regular language. The principal
contributions of this paper are as follows:

• We introduce regularly annotated set constraints and give a
formal semantics. Previous work on annotated constraints has
not addressed semantics, probably because the applications
use only finite languages [16]. Because our annotations can
be drawn from infinite regular languages, annotations are not
bounded in size and understanding even the termination of a
constraint solver requires formalization. We also find that a
regular language is a more natural specification mechanism for
annotations than theconcat andmatch operators used in [16],
and the regular language formulation is amenable to automatic
generation of the constraint resolution rules.

• We give a novel and very efficient constraint resolution algo-
rithm for solving regularly annotated set constraints. Our pre-
liminary experiments show that this algorithm is not only fast
and scalable in theory, but also in practice.

• We show how to combine previous results [12] with annotations
to express a type-based flow analysis that supports polymorphic
recursion and non-structural subtyping in a label flow analysis.
We also show how to apply annotated inclusion constraints to
solve pushdown model checking problems and interprocedural
bit-vector dataflow problems that operate on the program’s con-
trol flow graph.

The remainder of this paper is organized as follows: in Sec-
tion 2 we introduce the new constraint formalism and provide a
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semantics. Sections 3 and 4 present applications of our formalism.
Section 5 describes our implementation and presents experimental
results. Section 6 contains related work, and Section 7 concludes.

2. Annotated Constraints
In this section, we introduce the syntax and semantics of regularly
annotated set constraints, give an algorithm for solving such con-
straints, and work through an example.

2.1 Set Constraints

Let c, d, . . . ∈ C be a set of constructors; each constructorc has an
arity a(c). Constructors inductively define a set ofground termsT :

T = {c(t1, . . . , ta(c))|ti ∈ T ∧ c ∈ C}
Note that constructors may be constants (arity zero); the constants
form the base case of the definition ofT .

Set expressionsare terms over set variablesX ,Y, . . .:

se ::= X | c(se1, . . . , sea(c))

The meaning of a set expression is a set of ground terms. Letρ be
an assignment mapping set variables to subsets ofT . Then

ρ(c(se1, . . . , sea(c))) = {c(t1, . . . , ta(c))|ti ∈ ρ(sei)}
Set constraintsare inclusion constraintsse1 ⊆ se2 between

set expressions. An assignmentρ is a solutionof the constraint if
ρ(se1) ⊆ ρ(se2).

2.2 Regularly Annotated Set Constraints

We extend set constraints as follows. LetΣ be a finite alphabet, and
let M be a finite state automaton onΣ. While regular languages
and finite automata are equivalent, it is technically more conve-
nient to work with automata. Also, because regular languages are
closed under intersection, it is sufficient to deal only with a single
machine representing the intersection of all the regular reachability
properties for a given application.

2.2.1 Annotated Terms

The first step in our extension is to define the universe of terms.
The intuition is that each term should be annotated with a word
from L(M), the language ofM ; such a term encodes information
for both the set constraint property (the term) and the regular
reachability property (the word). This idea does not work, however,
without two modifications:

• Word annotations must be included at every level of the term,
not just at the root; every constructor must be annotated, and
different constructors in the same term may have different an-
notations.

• Because individual constraints express only part of a global so-
lution of all the constraints, it is too strong to require annota-
tions be full words inL(M). Instead, annotations may be any
substring of a word inL(M).

Theannotated ground termsover constructorsc, d, . . . ∈ C and
finite automatonM are

T M = {cw(t1, . . . , ta(c))|ti ∈ T M ∧ c ∈ C ∧ w ∈ L(M)}

Let Msub be the minimal deterministic finite state automaton
accepting substrings ofL(M) (the set of all substrings of a reg-
ular language is also regular). The domain we are interested in is
T Msub

.
To define the semantics of annotated constraints we will need

an operation that appends a word to all levels of an annotated term:

cw(t1, . . . , ta(c)) · w′ = cww′
(t1 · w′, . . . , ta(c) · w′)

If Q is a set of terms thenQ · w = {t · w|t ∈ Q}.

2.2.2 Annotated Set Constraints

A regularly annotated set constraintis an inclusion constraint
se1 ⊆w se2, where se1, se2 are set expressions andw ∈
L(Msub). We normally abbreviatese1 ⊆ε se2 by dropping the
annotationse1 ⊆ se2.

The next step is to define assignmentsρ that map set expres-
sions to sets of annotated ground terms. A wrinkle arises, however,
because the set expressions are not themselves annotated; it turns
out that we do not need to burden the analysis designer with anno-
tating the set expressions. The insight is that it is possible to infer
the needed annotations on set expressions during constraint resolu-
tion. We extend set expressions withword set variablesattached to
each constructor:

se ::= X | cα(se1, . . . , sea(c))

The word set variablesα, β, . . . range over subsets ofL(Msub).
An assignmentρ now maps set variables to sets of annotated terms
and word variables to sets of words.

ρ(cα(se1, . . . , sea(c))) = {cw(t1, . . . , ta(c))|w ∈ ρ(α) ∧ ti ∈ ρ(sei)}
An assignmentρ is a solution of a system of annotated con-

straints{se1 ⊆w se2} if

ρ(se1) · w ⊆ ρ(se2)

for every constraint in the system.
Solutions may assign arbitrary sets to the word and term vari-

ables, provided they satisfy the constraints. We now show that a
restricted family of solutions, theregular solutions, are sufficient
to characterize all solutions. For automatonMsub, let S be the set
of states,s0 ∈ S be the start state, andδ : Σ∗ × S → S be the
transition function. We sayw andw′ areequivalent, w ≡ w′ if
δ(w, s0) = δ(w′, s0). We extend≡ to an equivalence relation on
annotated terms:

cw(t1, . . . , ta(c)) ≡ cw′
(t′1, . . . , t

′
a(c)) ⇔ w ≡ w′ ∧

^
i

ti ≡ t′i

Again, the constants (zero-ary) constructors form the base case of
this definition. An assignmentρ is regular if

w ∈ ρ(α) ∧ w ≡ w′ ⇔ w′ ∈ ρ(α)

t ∈ ρ(X) ∧ t ≡ t′ ⇔ t′ ∈ ρ(X)

Lemma 2.1. If t ≡ t′ andt · w ∈ T Msub

thent · w ≡ t′ · w.

Proof. The proof is by induction on the structure oft. Without loss
of generality, assumet = cx(t1, . . . , ta(c)). Then becauset ≡ t′,
we knowt′ = cy(t′1, . . . , t

′
a(c)) wherex ≡ y andti ≡ t′i.

cx(t1, . . . , ta(c)) · w =

cxw(t1 · w, . . . , ta(c) · w) ≡
cxw(t′1 · w, . . . , t′a(c) · w) ≡
cyw(t′1 · w, . . . , t′a(c) · w) =

cy(t′1, . . . , t
′
a(c)) · w =

The first step is just the definition of·. For the second step, note
that t · w ∈ T Msub

implies that, for eachi, ti · w ∈ T Msub

and therefore we can apply the induction hypothesis to conclude
that ti · w ≡ t′i · w. For the third step, we observe thatx ≡ y
implies thatxw ≡ yw becauseδ(xw, s0) must be defined (again,

becauset ·w ∈ T Msub

) andδ is a function. The last step is another
application of the definition of·.
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Figure 1. Finite state automatonM1bit for the single fact bit-
vector language.Msub

1bit is the same automaton.

We sayρ ≤ ρ′ if ρ(a) ⊆ ρ′(a) for all word and set variables
a. We sayρ′ is the regular completionof ρ if ρ′ is the smallest
assignment such thatρ′ ≥ ρ andρ′ is regular.

Theorem 2.2. If ρ is a solution of a system of annotated con-
straints, then its regular completionρ′ is also a solution.

Proof. Consider any constraintse1 ⊆w se2 and termt ∈ ρ′(se1);
the goal is to showt · w ∈ ρ′(se2).

t ∈ ρ′(se1) ⇒
t′ ∈ ρ(se1) ⇒ for somet′ ≡ t

t′ · w ∈ ρ(se2) ⇒
t′ · w ∈ ρ′(se2) ⇒
t · w ∈ ρ′(se2)

We briefly explain each step. The first implication follows from
the fact thatρ′ is the regular completion ofρ: there must be at least
one termt′ in ρ(se1) such thatt′ ≡ t. The second implication
follows from the fact thatρ is a solution of the constraints, and
the third implication follows becauseρ′ ≥ ρ. The last step follows
from Lemma 2.1, using the fact thatt′ ≡ t from the first step and
the fact thatt′ · w ∈ ρ(se2) impliest′ · w ∈ T Msub

(becauseρ is

a solution, which by definition ranges over subsets ofT Msub

).

Because for any solution of a system of constraints the regu-
lar completion is also a solution, it suffices to compute only the
regular solutions. Thus Theorem 2.2 suggests the following alter-
nate characterization of the word variables on constructors: Since
the only interesting sets of words are full equivalence classes cor-
responding to the states ofMsub, we can treat word variables as
state variables and map them to sets of states ofMsub. This shift of
perspective has the important advantage that we can now deal with
finite sets of states instead of potentially infinite sets of words. A
mappingρ(α) = {s1, s2, . . .} corresponds to the regular solution
ρ(α) = {w|δ(s0, w) ∈ {s1, s2, . . .}}.

From here on we will refer to these sets of states, not sets of
words, in constructor annotations; we use the termstate variables
instead of word variables for clarity. Our algorithm infers the sets
of states needed as annotations automatically, which is why we do
not represent them in the surface syntax.

We illustrate annotated constraints with a simple example. As-
sume that the input finite state machineM1bit is the automaton
shown in Figure 1. It happens that forM1bit the machineMsub

1bit is
exactly the same.

Example 1. Consider the following constraint system:

cα ⊆g W
oβ(W) ⊆g X

X ⊆ε oγ(Y)
oγ(Y) ⊆ε Z

We have annotated each constructor with a state variable. Map
the state variables as follows, where the states are given by the
machineMsub

1bit accepting substrings ofL(M1bit), also given in
Figure 1: α, β = {0}, γ = {1}. Set variables are mapped as
follows:Y,W = {c1},X = {o1(c1)}, andZ = {o1(c1)}. It is
easy to see that this assignment is a solution of the constraints.

2.3 Constraint Solving

Our constraint solving algorithm takes a standard, two-phase ap-
proach:

• The first phase nondeterministically applies a set of resolution
rules to the constraints until no more rules apply. The rules pre-
serve all solutions of the constraints. If no manifest contradic-
tion is discovered, the final constraint system is insolved form,
which is guaranteed to have at least one solution.

• The second phase tests entailment queries on the solved form
system: Do the constraints imply, for example, thatcs ∈ X for
some annotated termcs and set variableX?

2.3.1 Resolution Rules

The first two resolution rules deal with constraints between con-
structor expressions:

cα(se1, . . . , sea(c)) ⊆w cβ(se′1, . . . , se
′
a(c)) ⇒V

i sei ⊆w se′i ∧ δ(w, α) ⊆ β

cα(. . .) ⊆w dβ(. . .) ⇒
no solution

The first rule propagates inclusions between constructed terms to
inclusions on the components. Recall that we require that all con-
straints are annotated with words inL(Msub). Because this rule
does not generate any new annotations, it preserves this invariant.
The other part of the first rule producesstate constraintsbetween
the state variables annotating constructor expressions: the possible
state annotationsβ on the right-hand side constructor expression
are constrained to contain at leastδ(w, α), the set of automaton
states reachable from states inα on wordw (we defineδ(w, Q),
whereQ is a set of states, to be{δ(w, s)|s ∈ Q}). Because states
are just constants (zero-ary constructors) and the transition function
δ is known and fixed for a given application, these state constraints
are themselves simple examples of set constraints.

The second resolution rule simply recognizes manifestly incon-
sistent constraints.

The only other resolution rule is transitive closure. Transitive
closure propagates annotations by concatenating annotations to-
gether. To ensure termination, we must bound the maximum length
of an annotation, and here we make essential use of the finite state
automatonMsub. Because we are only concerned with computing
the regular solutions, constraint solving is not concerned with the
exact word in the annotated constraint but only with the state of
the automaton reached with the annotation word as the input. Thus,
we can use the pumping length of the automaton as a bound on
word length. Whenever the concatenation of two wordsw · w′ ex-
ceedsp, the pumping length ofMsub, there must exist a wordw′′

whose length is at mostp, so that a run ofMsub on w′′ ends in
the same state as a run onw ·w′. Since we are checking properties
againstMsub, we can ignore any constraint path not inL(Msub),
which also preserves the invariant that all annotations are drawn
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from L(Msub). The transitive closure rule that reflects these ob-
servations is:

se1 ⊆w X ⊆w′ se2 ⇒ se1 ⊆pump(w·w′) se2 if w · w′ ∈ L(Msub)

The operationpump(w) picks a word of length at most the
pumping length ofMsub, so that a run ofMsub on w ends in the
same state as a run ofpump(w) on Msub. Algorithmically, the
pump operation is implemented by running the automaton on the
word and pruning out any letters occurring on cyclic paths in the
run (we describe a more efficient implementation in Section 2.5).
The membership checkw ·w′ ∈ L(Msub) guarantees that we only
consider constraint paths that the automatonM might eventually
accept; it serves the same purpose as the more specializedmatch
operation in [16].

Returning to Example 1, the solved form of this system is:

cα ⊆g W
oβ(W) ⊆g X

X ⊆ oγ(Y)
oγ(Y) ⊆ Z

oβ(W) ⊆g oγ(Y)
W ⊆g Y
cα ⊆g Y

δ(g, β) ⊆ γ

Notice that the transitive constraintscα ⊆g W ⊆g Y result in the
constraintcα ⊆g Y becausepump(gg) = g for the machine in
Figure 1.

Lemma 2.3. Constraint resolution applying the transitive closure
and constructor rules terminates and preserves all solutions of the
constraints.

Proof. (Sketch) The interesting case is the transitive closure rule.
The number of possible constraints is a function of the maximum
annotation length and the number of set expressions. As the reso-
lution rules do not create any new set expressions and the length of
the longest annotation is bounded by thepump operation, the total
number of possible constraints is also bounded. To prove that all so-
lutions are preserved, we use the fact that thepump(w·w′) ≡ w·w′

to show that every regular solution of the constraints is preserved
by adding the transitive constraint.

2.3.2 Queries

In this section we outline queries on solved systems. The simplest
form of query we are interested in is, roughly speaking, whether
a particular termt with an annotation inL(M) is always in a
particular set variableX in every solution. Intuitively, this question
models whether a particular abstract valuet can flow to a program
point corresponding to the set variableX along a path annotated
with a word inL(M). Note that for queries we are interested in
annotations in our original languageL(M), notL(Msub).

More precisely, we say that a system of constraintsC1 entails a
system of constraintsC2, writtenC1 |= C2, if every solution ofC1

is a solution ofC2. Let C be the solved system of constraints. The
formalization of the simple query is:

C ∧ s0 ⊆ α ∧ s0 ⊆ β . . . |= t ⊆w X

wheres0 is the start state ofMsub, α, β, . . . are the state variables
appearingt, andw ∈ L(M). We can now explain a number of
important aspects of querying annotated set constraints:

• Because all of our constructors are monotonic, constraint sys-
tems have least solutions and to check the entailment it suf-
fices to check thatt ⊆w X holds in the least solution of

C ∧ s0 ⊆ α ∧ s0 ⊆ β . . ..1 Without the state constraints
s0 ⊆ α ∧ . . ., the least solution of the constraints would assign
the empty set to every state variable, as the constraints gener-
ated by the constructor rule (recall Section 2.3.1) do not require
any state variables to be non-empty. Thus, it is important in our
approach that the constraint resolution phase preserve all so-
lutions of the constraints; it is only when we ask a query and
constrain some state variables to include particular states that
there are non-trivial least solutions.

• Set constraint solvers differ in how much work they assign to
the solving phase and the query phase. We have described an
eager solver that does essentially all the work in the resolution
rules, as in [8]; queries in this case are particularly easy to solve.
For example, for a constantcα, the entailment

C ∧ s0 ⊆ α |= cα ⊆w X

holds if and only if the constraintcα ⊆w X is present in
the solved form systemC. Our implementation is based on a
strategy that is not completely eager; it does not compute some
transitive constraints. This design saves a great deal of space
and time in solving by using a sparser representation, but also
requires a little more work to answer queries [5].

• Demand driven solvers essentially move all of the work of reso-
lution to queries [9]. As another optimization, our implementa-
tion solves automata state constraints on demand. Our solver ac-
tually does not generate state constraints or annotate construc-
tors at all during resolution and this has important performance
advantages (see Section 5). For our queries, the automata state
constraints needed to answer a query can be reconstructed as
part of the entailment computation itself.

• Our applications do need queries beyond asking whether a
single term is in a set variable. The general form of a query
is to ask whether a set of terms (given by a set expression)
intersected with a variable is non-empty, given that the that
constructors must be annotated in certain states. We present
only the simpler case formally because it requires no additional
notation, and the general case introduces no new ideas.

Returning again to Example 1, letC1 be the solved form of the
constraints. The query

C1 ∧ 0 ⊆ α ∧ 0 ⊆ β |= oβ(cα) ⊆g Z

is true. The least solution ofC1 ∧ 0 ⊆ α∧ 0 ⊆ β is the assignment
given in Example 1.

We can now explain in more detail why we solve constraints
over T Msub

instead ofT M . Because the solving phase does not
know the queries, it cannot know which constructors are expected
to be in which states. The transitive closure rule, in particular, can-
not simply reject concatenations of words that are not inL(M),
as such annotations may later combine with other annotated con-
straints through other uses of the transitive closure rule to form a
word inL(M). By solving in the larger domainT Msub

we preserve
termination and also preserve all entailment queries.

2.4 An Example: Bit-Vector Annotations

As an example we show how to express bit-vector problems as
a regular annotation language. This annotation language could be
used to implement bit-vector based interprocedural dataflow anal-
ysis [10]. For an analysis that tracksn facts, we pick an alpha-
bet Σ partitioned into two setsG = {g1, . . . , gn} and K =

1 If anti-monotonic (contravariant) constructors are included, the constraints
can be solved and the same entailments can be checked, but there may not
be least solutions of the global system of constraints.
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{k1, . . . , kn} (gens andkills, respectively). The idea is that a
gen followed by a matchingkill, as in the wordgiki, cancel,
and thatgens andkills are idempotent. Figure 1 shows the finite
state automatonM1bit for a single dataflow fact. For this language,
the pumping length is 1: in the automatonMsub

1bit, pump(gg) = g,
pump(gk) = ε, etc. Thus, we do not need to keep track of arbitrary
sequences ofgens andkills in constraint resolution; it suffices to
track just the state ofMsub

1bit. An n-bit language can be derived from
a product construction.

2.5 Complexity

We sketch a generic complexity argument for the constraint res-
olution algorithm described Section 2.3. A system of constraints
containing no annotations can be solved inO(n3) time, wheren is
the number of variables in the constraint system. Intuitively, this is
because each of then variables can have up ton lower bounds and
n upper bounds; thus every variable in the transitive closure causes
at mostO(n2) work and there areO(n) variables.

For an annotated system of constraints, we must derive a new
bound on the number of lower and upper bounds. Consider a partic-
ular lower bound in a set constraint systemse ⊆ X (the argument
for upper bounds is the same). In an annotated constraint system
there may be many lower bounds betweense andX , one for each
distinct wordw that can annotate the constraints, so the problem is
to bound the number of distinct word annotationsse ⊆w X . Let s
be the number states in automatonMsub. We claim that there are at
mostO(s) constraints of the formse ⊆w X in a solved system. To
see this, note that thepump operation equates words that lead to the
same state inMsub. Thus, it suffices to annotate constraints with
states instead of words, and there are onlys distinct states. In the
n-bit language, for instance, this approach automatically exploits
order independence of distinct bits: If a constraintX ⊆g1g2 Y is
already present in the system, the constraintX ⊆g2g1 Y is redun-
dant (i.e.,g1g2 ≡ g2g1) and need not be added. This redundancy
check takes constant time.

Thus, each variable in an annotated system can have up to
n · s lower bounds andn · s upper bounds. With states as the
annotations on constraints, new annotations (thepump operation)
can be computed in constant time using a table lookup, so for each
of n variables in the constraint system the solver does at most
O(n2s2) work. The total complexity is thereforeO(n3s2). Note
that this is a generic argument that can usually be sharpened for the
constraints generated by a particular application.

3. Flow Analysis
In this section we describe a novel flow analysis application that
uses regular annotations to increase precision. Our motivation is to
investigate practical algorithms for context-sensitive, field-sensitive
flow analysis. A proof by Reps shows the general problem to be un-
decidable [19]; as mentioned in Section 1, the core issue is the ar-
bitrary interleaving of two matching properties: function calls and
returns, and type constructors and destructors. Viewing Reps’ re-
sult in a type-based setting, we see that the problem involves pre-
cisely handling flow through polymorphic recursive functions and
recursive types. Practical solutions to this problem require approx-
imating one or the other matching property. In practice the ap-
proach taken almost universally is to approximate function match-
ings, which is typically done by analyzing sets of mutually recur-
sive functions monomorphically.

Our view is that the essence of this approximation is reduc-
ing one matching to a regular language, while precisely model-
ing the other matching as a context-free language. For example,
treating recursive functions monomorphically reduces the language
of calls and returns to a regular language, while leaving the type-

Γ(x) = σ

Γ ` x : σ
(Var)

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` (e1, e2)
L ` σ1 ×L σ2

(Pair)

Γ ` e : σ1 ×L σ2

Γ ` e.i : σi

(Proj i = 1, 2)

Γ, x : σ, f : σ → σ′ ` e : σ′

Γ ` f(x : τ) : τ ′ = e : σ → σ′
(Def)

Γ ` e : σ ` σ ≤ σ′

` e : σ′
(Sub)

Γ(f) = σ σ �i
+ σ′

Γ ` f i : σ′
(Inst)

Figure 2. Type rules for polymorphic recursive system

constructor matching language context-free. While this approach
can be modeled using annotated set constraints (see Section 3.6),
we first present a natural alternative that models function match-
ings as a context-free language, while reducing the type-constructor
matching problem to a regular language. For this analysis, we ap-
ply a reduction strategy described in previous work [12] to model
context-free language reachability of function matchings as a set
constraint problem. We use regular annotations to model regular
language reachability of type constructor/destructor matchings.

This analysis permits non-structural subtyping constraints. To
our knowledge, ours is the first practical attempt to combine poly-
morphic recursion with non-structural subtyping constraints (we
discuss a previous effort in Section 6).

3.1 Source Language

The analysis operates on the following source language:

e ::= n
| x
| (e1, e2)
| e.i i = 1, 2
| f i e

fd ::= f(x : τ) : τ ′ = e
| fd; fd

In the function definitionf(x : τ) : τ ′ = e, f is bound
within e. For simplicity, the source language does not include
useful features such as conditionals, mutual recursion or higher-
order functions. The analyses presented here can be extended to
these features; we omit them only to simplify the presentation. We
useτ to range over unlabeled types (pairs, integers, type variables,
and first-order functions). Types are labeled with set variablesL.
We useσ to range over labeled types, which are introduced by a
spread operator:

spread(τ1 × τ2) = spread(τ1)×L spread(τ2) L fresh
spread(int) = intL L fresh
spread(α) = αL L fresh

The functiontl returns the label on the top-level constructor of
a labeled type.

3.2 Type Rules and Constraint Generation

Figure 2 shows the type system for the polymorphic recursive
analysis. The rules for variables, pairs, and pair projection are
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tl(σ) ⊆ tl(σ′)

σ ≤ σ′
(Sub)

o−1(tl(σ)) ⊆ tl(σ′)

σ �i
+ σ′

(Pos Inst)

o(tl(σ′)) ⊆ tl(σ)

σ �i
− σ′

(Neg Inst)

σ1 �i
− σ3 σ2 �i

+ σ4

σ1 → σ2 �i
+ σ3 → σ4

(Fun Inst)

intL
(Int WL)

αL
(Var WL)

tl(σ1) ⊆[1τ1
L tl(σ1) ⊆[2τ2

L
L ⊆]1τ1

tl(σ1) L ⊆]2τ2
tl(σ2)

σ1 ×L σ2

(Pair WL)

Figure 3. Constraint generation for polymorphic recursive system

straightforward. The rule (Def) adds the types of the argument
variablex and the functionf to the environment, allowing recursive
uses off . Functions must be instantiated before use via the rule
(Inst). The rule (Sub) permits non-structural subtyping steps, i.e.σ
andσ′ do not need to share the same type structure.

The constraint generation rules are shown in Figure 3. One key
aspect of constraint generation is that we do not apply constraints
downward through types—constraints extend only to the top-level
constructors.2 Constraints between substructures of types are dis-
covered automatically as needed during constraint resolution. The
rules in Figure 3 use one new form of set expression, aprojection
expression, which we have omitted until now for simplicity. For a
constructor of arityn there aren projection operators, one for each
argument position. The important property of projections is given
by the following equation:

c−i(cα(se1, . . . , sei, . . . , sen)) = sei

Projections in set constraints are well understood and easily incor-
porated into the algorithms in Section 2.

We require annotated constraints representing type constructors
and destructors be only between the labels representing the con-
structed term and its components. Rules (Pair WL), (Var WL) and
(Int WL) define awell-labeling relation on labeled types. All la-
beled types in the program must be well-labeled.

3.2.1 Function Call Matching with Terms

As mentioned previously, we apply a result from [12] to model
the matching of function calls and returns. Briefly, we create a
unary constructoroi for each function instantiation sitei, and add a
constraintoi(W) ⊆ X to model the flow from an actual parameter
labeled withW to a formal parameter labeled withX . Flow from
the function’s return label (sayY) to the label at the function’s
return site (sayZ) is modeled by a constrainto−1

i (Y) ⊆ Z. The
result in [18] shows that this is equivalent to polymorphic recursive
treatment of functions.

2 As noted earlier we could also treat function types as type constructors
and extend our construction to handle higher-order function types; we treat
function types specially here only for brevity.

0

1[¹

2

[²

]¹

3
[²

]²
4[¹

]²

]¹

Figure 4. Finite state automaton for single level pairs

pair (y:int) : β = (1A,yY)P;
main () : int = (pairi 2B).2V

Figure 5. Non-structural subtyping example

3.2.2 Type Constructor Matching with Annotations

Annotations are used to model the matching language of type con-
structors and destructors. For example, in the expression(xX , yY)P .1Z ,
the constraintX ⊆[1int

P models the flow from the first component
of the pair to the pair constructor, and the constraintP ⊆]1int

Z
models the flow from the pair to the projected result. The two an-
notations[1int and ]1int should “cancel” each other, reflecting the
flow from X to Z via the un-annotated constraintX ⊆ Z. While
this language of matchings appears context-free, in the absence of
recursive types it is not possible for a symbol of the form[iτ to
be followed by another of the same symbol without first encoun-
tering a corresponding]iτ symbol to cancel the first symbol. This
is the reason we need the extraτ component on annotations: to
distinguish pair projection on different levels of the type. Thus, for
a given input program, we can place a bound the longest string
of annotations we need consider by the size of the largest type.
In Figure 4 we show the finite state automaton for this annotation
language when the program’s largest type ispair(int). In the pres-
ence of recursive types, flow must be approximated, for example
by replacing annotated constraints on recursive types with empty
annotations.

3.3 Answering Flow Queries

To ask whether a particular label (sayX ) flows to another label (say
Y), the constraintx ⊆ X , wherex is a fresh constant, is added
to the system. ThenX flows toY if x is in the least solution of
Y. This query yields answers formatchedflow, and this approach
can be extended to partially-matched reachability through functions
(called PN reachability in [12]).

3.4 An Example

Consider the program in Figure 5 (taken from [6]). Non-structural
subtyping can assignpair the typeintY → βH along with the
constraintβ = intA×P intZ . Figure 6 shows a slightly simplified
constraint graph for this program. Flow fromB toV is captured by
the constraints:
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Figure 6. Constraint graph for the program in Figure 5 (only
relevant edges are shown)

oi(B) ⊆ Y
Y ⊆[2int

P
P ⊆ H

o−1
i (H) ⊆ T

T ⊆]2int
V

which imply the relationshipB ⊆ V.

3.5 Stack-Aware Aliasing

The analysis presented in this section can be used to implement
context-sensitive, field-sensitive alias analysis. An interesting con-
sequence of this formulation is that an additional dimension of sen-
sitivity can be recovered during the alias query phase. A standard
approach to computing aliasing information from a points-to anal-
ysis is to intersect sets of abstract locations– an empty intersection
indicates that two expressions do not alias. In our setting, we can
instead intersect the solutions of two variables and test for empti-
ness, givingstack-awarealias queries.

Consider the following C program:

void main() {
int a,b;

foo1(&a,&b); // constructor o1

foo2(&b,&a); // constructor o2

}
void foo(int *x, int *y) {

// May x and y be aliased?
}

If the above represents the whole program,x and y clearly
cannot be aliased withinfoo. If the points-to sets themselves are
not considered context-sensitively, however, the points-to results
containpt(x) = pt(y) = {a, b}, and the analysis would report that
x andy may alias.

In our setting, points-to sets are terms where unary constructors
encode information about function calls. Our analysis would yield
the following solution (annotations elided) representing points-to
sets for the above program:

X = {o1(a), o2(b)}
Y = {o2(a), o1(b)}

Intersecting the solutions forX and Y reveals that there are
no common ground terms; hence the two variables are not aliased.
The view put forth here is that the constraint solutions themselves
are an appropriate data structure for representing context-sensitive
points-to sets.

unpriv error

seteuid(!0)

privseteuid(0) execl(...)
seteuid(!0)

seteuid(0)

Figure 7. Automaton for process privilege.

While the above example is somewhat contrived, stack-aware
alias queries allay a real problem: in most alias analyses, the mem-
ory abstraction is based on syntactic occurrences of calls to allo-
cation routines (e.g.malloc andnew). Simple refactorings such
as wrapping an allocation function (or allocating an object’s fields
within a constructor in an object-oriented language) can destroy
the precision of the analysis. Stack-aware alias queries use the call
stack to disambiguate object allocation sites, giving a form of ob-
ject sensitivity.

3.6 A Dual Analysis

As mentioned earlier, a more widely used approach to combining
context-sensitivity and field sensitivity is to approximate the lan-
guage of function calls and returns by treating mutually recursive
functions monomorphically. We note that this analysis is also ex-
pressible in our framework. The key change is to swap the roles of
annotations and terms: now annotations[i and]i model call/return
paths to a function call sitei, and constructorsoi(. . .) and projec-
tionso−1

i (. . .) model constructing/destructing theith field from a
tuple. We can also take advantage ofn-ary constructors to “cluster”
types, so that instead of using two constructorso1 ando2 to repre-
sent the first and second components of a pair, we use a binary con-
structorpair to construct a pair, and projectionspair−1(. . .) and
pair−2(. . .) to deconstruct a pair. This more natural representation
can actually improve performance, as edge additions that would
need to be discovered twice using unary constructors can be dis-
covered a single time instead using a binary constructor [12]. With
this approach, the constraint system for the example program in
Figure 5 is as follows:

B ⊆[i Y
pair(A,Y) ⊆ H

H ⊆]i T
pair−2(T ) ⊆ V

which implies the desired constraintB ⊆ V.

4. Pushdown Model Checking
In this section, we use regularly annotated set constraints to solve
pushdown model checking problems. We show how to verify the
same class of temporal safety properties as MOPS, a model check-
ing tool geared towards finding security bugs in C code [4].

Following the approach of [4], we model the program as a
pushdown automataP . Transitions in the PDA are determined by
the control flow graph, and the stack is used to record the return
addresses of unreturned function calls. Temporal safety properties
are modeled by a finite state machineM . Intuitively we want to
intersect the languagesL(M) andL(P ); the program is treated as
a generator for this composed language.

We use the following property concerning Unix process priv-
ilege as a running example: a process should never execute an
untrusted program in a privileged state—it should drop all per-
missions beforehand. Concretely, if a program callsseteuid(0),
granting root privilege, it should callseteuid(!0) before calling
theexecl() function. A program that violates this property may
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give an untrusted program full access to the system. Figure 7 shows
a finite state machine that characterizes this property, and the fol-
lowing is a C program that violates the property:

seteuid(0);
· · ·
execl(‘‘/bin/sh’’, ‘‘sh’’, NULL);

This program gives the user a shell with root privileges, which
probably represents a security vulnerability.

4.1 Modeling Programs with Constraints

We now show how to find violations of temporal safety properties
using annotated constraints. For each statements in the control flow
graph, we associate a set constraint variableS. For each successor
statementsi of s (with constraint variableSi), we add a constraint
to the graph. The annotations are those program statements that
are relevant to the security property (i.e., the statements labeling
transitions in Figure 7). The specific form of the constraint depends
ons; there are three cases to consider:

1. If s is not relevant to the security property, and is not a function
call, add the constraintS ⊆ Si.

2. If s is relevant to the security property (labels a state transition
in the FSM for the security property) add the constraintS ⊆s

Si.

3. If s is a call to functionf at call sitei, add the constraints
oi(S) ⊆ Fentry ando−1

i (Fexit) ⊆ Si, whereFentry (Fexit)
is the node representing the entry (exit) point of functionf .

To model the program counter, we create a single 0-ary con-
structorpc and add the constraintpc ⊆ Smain, whereSmain is the
constraint variable corresponding to the first statement (entry point)
of the program’smain function.

4.2 Checking for Security Violations

In order to check for violations of the property, we record each
statement that could cause a transition to the error state. For each
such statement, we query the least solution of the constraints by
intersecting with an automaton for partially-matched reachabil-
ity (PN reachability). The presence of an annotated ground term
pcerror denotes a violation of the security property. The ground
terms themselves serve as witness paths (in this setting, a possible
runtime stack) that leads to the error.

4.3 An Example

Consider the following C program:

s1: seteuid(0); // acquire privilege
s2: if (. . .) {
s3: seteuid(getuid()); // drop privilege

}
else {

s4: . . .
}

s5: execl(‘‘/bin/sh’’, ‘‘sh’’, NULL);
s6: . . .

This program violates the security property: the programmer
has made the common error of forgetting to drop privileges on all
paths to theexecl call.

The constraints for this example are as follows:

pcunpriv ⊆ S1

S1 ⊆seteuid(0) S2

S2 ⊆ S3

S2 ⊆ S4

S3 ⊆seteuid(!0) S5

S4 ⊆ S5

S5 ⊆execl(...) S6

The constraints imply thatpcpriv is in the least solution ofS4,
the constraint variable corresponding to theexecl call, indicating
the presence of a possible security vulnerability.

5. Implementation
We have added a preliminary implementation of regularly anno-
tated set constraints to the BANSHEE toolkit [13] by adding sup-
port for annotations to BANSHEE’s existing implementation of set
constraints. Many of the technical details (such as handling projec-
tion merging [24] and cycle elimination [5]) are similar to those
addressed in [22]; we omit them here. BANSHEE also usesprojec-
tion patternsin place of pure projections (following the approach
in [12]); the expressive power is the same but projection patterns
are better suited to an implementation.

Thepump function is currently implemented by hand for each
finite state automaton. Automatically producing thepump func-
tion is straightforward, and we don’t believe that our manual efforts
would improve the scalability over an automatically generated im-
plementation. Since BANSHEE already does specialization based
on a statically-specified description of the term constructors used
in an analysis, it is very natural to extend specialization to the input
finite state automaton.

Our implementation omits state variables on set expressions
completely during constraint solving and instead does all of the
calculations involving machine states during queries (recall Sec-
tion 2.3.2). By omitting state variables from the solver we can do
aggressive hash-consing of terms, and the memory savings from
hash consing is substantial. The time and space overhead needed
to implement the word operations in the transitive closure rule is
minimal (recall Section 2.5).

To illustrate the viability of our approach, we have reproduced
some experiments first done using MOPS. We chose to examine the
applications of MOPS because pushdown model checking is super-
ficially very different from the usual applications of BANSHEE. We
chose a security property (Property 5 from [3]) and checked sev-
eral sensitive software packages for security violations using the
approach outlined in Section 4. We also simultaneously checked
for violations of the simple process privilege property described in
Section 4. The additional property we checked is as follows:

1. A program should callumask(077) before calls tomkstemp

2. Never call the functionstmpnam, tempnam, tmpfile

Programs that violate condition 1 are vulnerable to race condi-
tion attacks, and violations of condition 2 allow all users to read
temporary files, which may not be secure.3

We report in Table 1 the number of lines of code for each pack-
age (using David Wheeler’ssloccount tool [26]), the number of
executables for each package, and the time to check the property
for all executables in the package. Each executable in a package is
checked separately; note that theOpenSSL package, though it has
fewer lines of code than theBind package, has the largest single
program that we check. The experiment was performed on a 2.80

3 [3] also checks to see if the parameter tomkstemp is reused. We do not
check this property because we have not implemented so-calledpattern
variables, which allow syntactic matching of program constructs.
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Benchmark KLOC Programs Time (s)
At 3.1.8-33 3 2 .15
OpenSSH 3.5p1-6 45 1 1.24
Postfix 2.2.5 71 40 17.2
Bind 9.2.2 203 30 50.1
OpenSSL 0.9.6e 120 1 216

Table 1. Benchmark data for experiment

GHz Intel Xeon machine with 4 Gb of memory. Our analysis times
show that our algorithm’s scalability and performance is very good,
and even this preliminary implementation is usable for realistic ap-
plications. Our times are also faster than those reported for MOPS,
in most cases by more than an order of magnitude.4 This compar-
ison of wall clock times is not fair (the MOPS experiments were
done on a 1.5 GHz machine, and we have not exactly replicated
the experiments) but does show that our general implementation of
annotated set constraints is at least competitive with hand-written
versions.

6. Related Work
Regularly annotated set constraints are partly inspired by the an-
notated inclusion constraints presented in [22, 16]. We have shown
how to incorporate infinite regular languages as annotations, and
we believe that finite state automata are a more natural specifica-
tion language for annotations than theconcat andmatch operators
used in prior work. We also believe that the annotation languages
used in [16] can be expressed in terms of finite state automata.

Parametric regular path queries are a declarative way of spec-
ifying graph queries as regular expression patterns [15]. Regular
path queries are not as powerful as set constraints, though the use
of parameters to correlate related data may be a useful addition to
our framework.

The combination of polymorphic recursion and non-structural
subtyping that we consider in Section 3 was first considered in
[6]. The solution proposed in [6] has the disadvantage that poly-
morphism on data types is achieved by copying constraints on
data types. While there is no implementation of this algorithm,
the general experience with constraint-copying implementations is
that they are slow [7]. For this reason we consider our approach,
which relies on regular annotations rather than copying constraints
for polymorphism, to be a more practical algorithm for this class of
analyses.

Weighted pushdown systems (WPDS) label transitions with val-
ues from a domain of weights [21]. Weighted pushdown reacha-
bility computes the meet-over-all-paths value for paths that meet
certain properties. WPDS have been used to solve various inter-
procedural dataflow analysis problems—the weight domains are
general enough to compute numerical properties (e.g., for constant
propagation), which cannot be expressed using our annotations. On
the other hand, WPDS focus on checking a single, but extended,
context-free property, while annotated constraints naturally express
a combination of a context-free and any number of regular reacha-
bility properties. The exact relationship between WPDS and regu-
larly annotated constraints is not clear.

Binary Decision Diagrams (BDDs) have been utilized as an al-
ternative to graph reachability for program analysis applications
[25, 14]. As in our approach, analyses are specified with a high level
language. BDDs are used as a back-end to compactly represent

4 The comparison is even more favorable when we consider that MOPS
compacts its input control flow graphs to eliminate property-irrelevant pro-
gram statements, reducing CFGs by orders of magnitude. We perform no
such compaction.

what would otherwise be intractably large relations. One disadvan-
tage is that BDD-based toolkits cannot be treated as a “black box”;
using them effectively requires subtle understanding of the internal
BDD representation (in particular, variable orderings). BDD-based
algorithms also have exponential worst-case performance and at
least to date have not been integrated with context-free proper-
ties. As we have shown here, a class of reachability problems more
general than those handled by current BDD-based methods can be
solved in polynomial time.

Other analyses that demand more expensive algorithms, e.g.
path sensitive analyses, cannot be expressed with the polynomial
time algorithms we present here.

7. Conclusion
In this paper, we have described a new formalism that extends set
constraints with annotations drawn from a regular language. We
have shown how to express applications as diverse as type-based
flow analysis, interprocedural dataflow analysis, and pushdown
model checking within this formalism. We have implemented an
algorithm for solving regularly annotated constraints within BAN-
SHEE, our constraint-based program analysis toolkit. Preliminary
experiments with our implementation suggest that it scales well
with good performance.
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