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Abstract fortunately, any analysis problem requiring satisfying two or more
A general class of program analyses can be characterized as a COm(;ontext-free properties simultaneously is undecidable [19]. A gen-

bination of context-free and regular language reachability. We de-
fineregularly annotated set constraint constraint formalism that

captures this class of analysis problems. We give a constraint res-

olution algorithm and show experimentally that an implementation
of our approach is both efficient and scalable. Our results consider-
ably extend the class of reachability problems expressible naturally
in a single constraint formalism, including such diverse applica-

tions as interprocedural dataflow analysis, precise type-based flow

analysis, and pushdown model checking.

Categories and Subject DescriptorsD.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.2¢gics and Meanings
of Program$: Semantics of Programming Languages

General Terms Algorithms, Design, Experimentation, Languages,
Theory

Keywords Set constraints, context-free language reachability,
flow analysis, annotated inclusion constraints, pushdown model
checking

1. Introduction

eral class of reachability properties that remains decidable is the
intersection of a context-free language with any number of regu-
lar languages. A number of natural analysis problems fall into this
classl[2/ 4] 11, 10].

In this paper we show how to extend set constraints to express
program analyses involving the intersection of one context-free and
any number of regular reachability properties. Existing implemen-
tations of analyses that combine context-free and regular reacha-
bility are hand optimized and tuned to a particular analysis prob-
lem. Our constraint resolution algorithm allows these analyses to
be written at a higher level while also providing an implementa-
tion that is more efficient than those written by hand. In short,
we enlarge the class of program analyses that can be solved effi-
ciently with a single constraint resolution algorithm. In addition,
our method enables us to resolve an open problem: we give a prac-
tical method to combine (predicative) parametric polymorphic re-
cursion with non-structural subtyping in a label flow analysis.

Our approach builds on an idea first introduced [in! [22], in
which terms and constraints can be annotated with a word from
some language. We introducegularly annotated set constraints
in which each constructor of a term and each constraint can be
annotated with a word from a regular language. The principal

Many program analyses are expressible as reachability problemscontributions of this paper are as follows:

on labeled graphs with requirements that certain labels match: a
constructor must be matched with a corresponding destructor, a
function call must be matched with a function return, and so on.
Dynamic transitive closure of a graph [17], context-free reachabil-
ity [20], and the cubic-time fragment of set constraints [8, 1] are

all formalisms that describe such analyses. These three approaches

are closely related: set constraint solvers are implemented using
optimized dynamic transitive closure algorithms[[5] 24, 9] and the
most efficient general implementation of context-free reachability

is based on a reduction to set constraints [12]. Representative pro-

gram analysis problems that can be solved with these methods in-
clude polymorphic flow analysis [18] and field-sensitive points-to
analysis[[23].

There are more complex analysis problems in which multiple
reachability properties must be satisfied simultaneously. For exam-
ple, one can easily define problems that require matching of both
function calls/returns and data type constructors/destructors. Un-

[copyright notice will appear here]

¢ We introduce regularly annotated set constraints and give a
formal semantics. Previous work on annotated constraints has
not addressed semantics, probably because the applications
use only finite languages$ [l16]. Because our annotations can
be drawn from infinite regular languages, annotations are not
bounded in size and understanding even the termination of a
constraint solver requires formalization. We also find that a
regular language is a more natural specification mechanism for
annotations than thencat andmatch operators used in [16],
and the regular language formulation is amenable to automatic
generation of the constraint resolution rules.

We give a novel and very efficient constraint resolution algo-
rithm for solving regularly annotated set constraints. Our pre-
liminary experiments show that this algorithm is not only fast
and scalable in theory, but also in practice.

We show how to combine previous results|[12] with annotations

to express a type-based flow analysis that supports polymorphic
recursion and non-structural subtyping in a label flow analysis.

We also show how to apply annotated inclusion constraints to

solve pushdown model checking problems and interprocedural
bit-vector dataflow problems that operate on the program'’s con-
trol flow graph.

The remainder of this paper is organized as follows: in Sec-
tion [ we introduce the new constraint formalism and provide a
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semantics. Sectiofi$ 3 anp 4 present applications of our formalism.

If Qisasetoftermsthe® - w = {t- w|t € Q}.

Sectior{ b describes our implementation and presents experimental

results. Sectiop]6 contains related work, and Se€fion 7 concludes.

2. Annotated Constraints

In this section, we introduce the syntax and semantics of regularly
annotated set constraints, give an algorithm for solving such con-
straints, and work through an example.

2.1 Set Constraints

Lete,d, ... € C be a set of constructors; each construetbas an
arity a(c). Constructors inductively define a setgrbund term</":

T ={c(t1, ..., ta@)|ti € TAce C}

2.2.2 Annotated Set Constraints

A regularly annotated set constraing an inclusion constraint
se1 C. Ssea, Where sei, sex are set expressions and €
L(M***). We normally abbreviatee; C. sep by dropping the
annotationse; C ses.

The next step is to define assignmeptthat map set expres-
sions to sets of annotated ground terms. A wrinkle arises, however,
because the set expressions are not themselves annotated,; it turns
out that we do not need to burden the analysis designer with anno-
tating the set expressions. The insight is that it is possible to infer
the needed annotations on set expressions during constraint resolu-
tion. We extend set expressions witlord set variableattached to
each constructor:

Note that constructors may be constants (arity zero); the constants

form the base case of the definitionDf
Set expressiorare terms over set variablés ), . . .

se =X | c(ser,...,Seqc))

The meaning of a set expression is a set of ground terms: het
an assignment mapping set variables to subsets dhen

ple(ser, ., 5eae))) = {c(tr, s tage))[ti € p(sed)}
Set constraintsare inclusion constraintse; C ses between

set expressions. An assignmenis a solutionof the constraint if
p(ser) € p(sez).

2.2 Regularly Annotated Set Constraints

We extend set constraints as follows. Bebe a finite alphabet, and

let M be a finite state automaton ah While regular languages
and finite automata are equivalent, it is technically more conve-
nient to work with automata. Also, because regular languages are
closed under intersection, it is sufficient to deal only with a single
machine representing the intersection of all the regular reachability
properties for a given application.

2.2.1 Annotated Terms

The first step in our extension is to define the universe of terms.
The intuition is that each term should be annotated with a word
from L(M), the language of/; such a term encodes information
for both the set constraint property (the term) and the regular
reachability property (the word). This idea does not work, however,
without two modifications:

¢ Word annotations must be included at every level of the term,
not just at the root; every constructor must be annotated, and
different constructors in the same term may have different an-
notations.

e Because individual constraints express only part of a global so-
lution of all the constraints, it is too strong to require annota-
tions be full words inL(M). Instead, annotations may be any
substring of a word ir.(M).

Theannotated ground ternwver constructors, d, ... € C and
finite automaton\/ are

™ — {Cw(th. . »,ta(c))|ti eT™ A AceCArwe L(M)}

Let M*** be the minimal deterministic finite state automaton
accepting substrings df (M) (the set of all substrings of a reg-
ular language is also regular). The domain we are interested in is
T]\/Isub_

To define the semantics of annotated constraints we will need
an operation that appends a word to all levels of an annotated term:

’
w

Cw(tl, - .,ta<c)) . w' =c" (t1 . w/, . .,ta<c) . w/)

se =X | c¥(se1,. .., 5€q(c))

The word set variables, 3, . .. range over subsets df(M**?).
An assignmenp now maps set variables to sets of annotated terms
and word variables to sets of words.

p(c®(ser, ..., 5€q(c))) {c”(t1,. .. tae)|w € p(a) Ati € p(ses)}

An assignmenp is a solution of a system of annotated con-
straints{se1 C,, sez} if

plser) - w C plses)

for every constraint in the system.

Solutions may assign arbitrary sets to the word and term vari-
ables, provided they satisfy the constraints. We now show that a
restricted family of solutions, theegular solutions are sufficient
to characterize all solutions. For automatufi“?, let S be the set
of statesso € S be the start state, and: X* x S — S be the
transition function. We sayw andw’ areequivalentw = w' if
§(w, s0) = d(w’, s0). We extend= to an equivalence relation on
annotated terms:

(b, tage) = ¢ (o the) Sw=w A Nt =t

3

Again, the constants (zero-ary) constructors form the base case of
this definition. An assignmentis regular if

wepla)Ahw=w & w epla)

tep(X)At=t & t epX)

Lemma2.1. If t = ¢ andt-w e T thent - w =t - w.
Proof. The proof is by induction on the structuretofWithout loss

of generality, assume= c¢*(t1,...,tq(). Then because = ¢/,
we knowt" = c¥(t1, ..., ty(.)) wherez = y andt; = ;.

(t1, .. tage)) - W
(- w, .t w) =
(Y w, e W) =
Ut w, e W) =

Aty tae) W =

The first step is just the definition of For the second step, note
Moub . . . Agsub

thatt -w € T implies that, for each, t; - w € T

and therefore we can apply the induction hypothesis to conclude

thatt; - w = t; - w. For the third step, we observe that= y

implies thatzw = yw becauseé(zw, so) must be defined (again,

because-w € TMsub) andd is a function. The last step is another
application of the definition of
O
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Example 1. Consider the following constraint system:

¢ Gy W
FPW) C, X

X C. 0"
O’Y(y) Ce Z

We have annotated each constructor with a state variable. Map
the state variables as follows, where the states are given by the
machine M3, accepting substrings of (M), also given in
Figure[1: a,3 = {0}, v = {1}. Set variables are mapped as
follows: Y, W = {c'},X = {o'(c")}, and Z = {o'(c")}. Itis
easy to see that this assignment is a solution of the constraints.

Figure 1. Finite state automatof/y,;; for the single fact bit-

vector languageM it is the same automaton. 2.3 Constraint Solving

Our constraint solving algorithm takes a standard, two-phase ap-

. . roach:
We sayp < p’ if p(a) C p'(a) for all word and set variables P
a. We sayp’ is theregular completionof p if p’ is the smallest e The first phase nondeterministically applies a set of resolution
assignment such that > p andy’ is regular. rules to the constraints until no more rules apply. The rules pre-
. ) serve all solutions of the constraints. If no manifest contradic-
Theorem 2.2. If p is a solution of a system of annotated con- tion is discovered, the final constraint system isdfved form
straints, then its regular completiphis also a solution. which is guaranteed to have at least one solution.
e The second phase tests entailment queries on the solved form
Proof. Consider any constraist; C., ses and termé € p’(se1); system: Do the constraints imply, for example, thiaE X for
the goal is to show - w € p'(se2). some annotated terni and set variable?
tep(ser) = 2.3.1 Resolution Rules
t' € p(ser) = forsomet’ =t The first two resolution rules deal with constraints between con-
t w e p(ser) = structor expressions:
t'wep(ses) = c*(se1,...,5€q(c)) Cuw c’g(se'l,...,se;(c)) =
tow e p(ses) N sei Cuw se; Ad(w,a) C B

() Cwdi(..) =

We briefly explain each step. The first implication follows from no solution

the fact thap’ is the regular completion ¢f: there must be atleast ~ The first rule propagates inclusions between constructed terms to

one termt’ in p(se1) such thatt’ = ¢. The second implication inclusions on the components. Recall that we require that all con-

follows from the fact thap is a solution of the constraints, and  straints are annotated with words I{M*“%). Because this rule

the third implication follows becausé > p. The last step follows ~ does not generate any new annotations, it preserves this invariant.

from Lemmg 2.1, using the fact th&t= ¢ from the first step and  The other part of the first rule producstate constraintbetween

the fact that’ - w € p(seq) impliest’ - w € M (because is the state varigbles annotat!ng construgtor expressions: the po§sible

a solution, which by definition ranges over subsetﬂffﬁub). O state annotgtlons on the_rlght-hand side constructor expression

are constrained to contain at ledgtv, «), the set of automaton

states reachable from statesdron wordw (we defined(w, @),
Because for any solution of a system of constraints the regu- WhereQ is a set of states, to bg(w, s)|s € Q}). Because states

lar completion is also a solution, it suffices to compute only the are just constants (zero-ary constructors) and the transition function

regular solutions. Thus Theordm .2 suggests the following alter- ¢ is known and fixed for a given application, these state constraints

nate characterization of the word variables on constructors: Sinceare themselves simple examples of set constraints.

the only interesting sets of words are full equivalence classes cor-  The second resolution rule simply recognizes manifestly incon-

responding to the states 87°“*, we can treat word variables as ~ Sistent constraints. _ _ o o

state variables and map them to sets of statég 8. This shift of The only other resolution rule is transitive closure. Transitive

perspective has the important advantage that we can now deal withc/oSure propagates annotations by concatenating annotations to-

finite sets of states instead of potentially infinite sets of words. A gether. To ensure termination, we must bound the maximum length
mappingp(e) = {s1, sz, ...} corresponds to the regular solution ~ ©f an annotation, and here we make essential use of the finite state

p(a) = {w|d(so,w) € {s1,52,...}}. automatonl/*“*. Because we are only concerned with computing

From here on we will refer to these sets of states, not sets of the regular solutions, constraint solving is not concerned with the
words, in constructor annotations; we use the tetate variables exact word in the annotated constraint but only with the state of
instead of word variables for clarity. Our algorithm infers the sets the automaton reached with the annotation word as the input. Thus,
of states needed as annotations automatically, which is why we doWe can use the pumping length of the automaton as a bound on
not represent them in the surface syntax. word length. Whenever the concatenation of two wardsw’ ex-

We illustrate annotated constraints with a simple example. As- ceedsp, the pumping length ol ***, there musbt exist a word”
sume that the input finite state machifé;;, is the automaton ~ Whose length is at mogt, so that a run of\/**” on w” ends in

shown in Figur{]l. It happens that fdf,;; the machineM 5 is the same state as a run an w’. Since we are checking properties
exactly the same. againstM *“*, we can ignore any constraint path notligh %),
which also preserves the invariant that all annotations are drawn
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from L(M**"). The transitive closure rule that reflects these ob-
servations is:

se1 Cuw X Cor se2 = se1 Cpump(w-w) Se2 if w- w € L(Ms“b)

The operatiorpump(w) picks a word of length at most the
pumping length ofd7**®, so that a run of\/*** onw ends in the
same state as a run pizmp(w) on M*“?. Algorithmically, the
pump operation is implemented by running the automaton on the
word and pruning out any letters occurring on cyclic paths in the
run (we describe a more efficient implementation in Sedfiop 2.5).
The membership cheak-w’ € L(M**?) guarantees that we only
consider constraint paths that the automatdrmight eventually
accept; it serves the same purpose as the more specializéath
operation in[[16].

Returning to Examplg]1, the solved form of this system is:

¢ Cyg W
W) c, &
X C (Y
o'(y) < 2
W) S, 07(Y)
Cy Y
c” gg Yy
8g.8) < v

Notice that the transitive constraints C, W C, Y result in the
constraintc® C, Y becausgump(gg) = g for the machine in

Figure].

Lemma 2.3. Constraint resolution applying the transitive closure

and constructor rules terminates and preserves all solutions of the

constraints.

Proof. (Sketch) The interesting case is the transitive closure rule.
The number of possible constraints is a function of the maximum

annotation length and the number of set expressions. As the reso-
lution rules do not create any new set expressions and the length of

the longest annotation is bounded by thenp operation, the total
number of possible constraints is also bounded. To prove that all so-
lutions are preserved, we use the fact thaptep(w-w') = w-w’

to show that every regular solution of the constraints is preserved
by adding the transitive constraint. O

2.3.2 Queries

In this section we outline queries on solved systems. The simplest
form of query we are interested in is, roughly speaking, whether
a particular term¢ with an annotation inL(M) is always in a
particular set variabl&’ in every solution. Intuitively, this question
models whether a particular abstract vatugan flow to a program
point corresponding to the set variabl¢along a path annotated
with a word in L(M). Note that for queries we are interested in
annotations in our original languadé M), not L (M *“?).

More precisely, we say that a system of constraiit®ntails a
system of constraintSs, writtenC; |= C2, if every solution ofC
is a solution ofC. Let C be the solved system of constraints. The
formalization of the simple query is:

CAsoCaAsgCB...EtCyw X

wheres, is the start state ai/*“?, , 3, . . . are the state variables
appearingt, andw € L(M). We can now explain a number of
important aspects of querying annotated set constraints:

CANsg C aNsy C 6E] Without the state constraints

so C a A ..., the least solution of the constraints would assign
the empty set to every state variable, as the constraints gener-
ated by the constructor rule (recall Secfion 3.3.1) do not require
any state variables to be non-empty. Thus, it is important in our
approach that the constraint resolution phase preserve all so-
lutions of the constraints; it is only when we ask a query and
constrain some state variables to include particular states that
there are non-trivial least solutions.

¢ Set constraint solvers differ in how much work they assign to

the solving phase and the query phase. We have described an
eager solver that does essentially all the work in the resolution
rules, as in[[B]; queries in this case are particularly easy to solve.
For example, for a constant, the entailment

CAhspCalEc”Cyw X

holds if and only if the constraint® C,, X is present in

the solved form syster’. Our implementation is based on a
strategy that is not completely eager; it does not compute some
transitive constraints. This design saves a great deal of space
and time in solving by using a sparser representation, but also
requires a little more work to answer queries [5].

Demand driven solvers essentially move all of the work of reso-
lution to queries([B]. As another optimization, our implementa-
tion solves automata state constraints on demand. Our solver ac-
tually does not generate state constraints or annotate construc-
tors at all during resolution and this has important performance
advantages (see Sectfgh 5). For our queries, the automata state
constraints needed to answer a query can be reconstructed as
part of the entailment computation itself.

e Our applications do need queries beyond asking whether a
single term is in a set variable. The general form of a query
is to ask whether a set of terms (given by a set expression)
intersected with a variable is non-empty, given that the that
constructors must be annotated in certain states. We present
only the simpler case formally because it requires no additional
notation, and the general case introduces no new ideas.

Returning again to Examp[é 1, |4 be the solved form of the
constraints. The query

CiA0CaAN0CBE (™) C,y 2

is true. The least solution @f; A0 C a A0 C s the assignment
given in ExampléL.

We can now explain in more detail why we solve constraints
over 7" instead ofT"™ . Because the solving phase does not
know the queries, it cannot know which constructors are expected
to be in which states. The transitive closure rule, in particular, can-
not simply reject concatenations of words that are naL.{d/),
as such annotations may later combine with other annotated con-
straints through other uses of the transitive closure rule to form a

word in L(M). By solving in the larger domaifi™ ** we preserve
termination and also preserve all entailment queries.

2.4 An Example: Bit-Vector Annotations

As an example we show how to express bit-vector problems as
a regular annotation language. This annotation language could be
used to implement bit-vector based interprocedural dataflow anal-
ysis [10]. For an analysis that tracksfacts, we pick an alpha-

bet ¥ partitioned into two sets¥ {g1,...,9n} @and K =

e Because all of our constructors are monotonic, constraint sys-
tems have least solutions and to check the entailment it suf-
fices to check that C,, X holds in the least solution of

11f anti-monotonic (contravariant) constructors are included, the constraints
can be solved and the same entailments can be checked, but there may not
be least solutions of the global system of constraints.
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{k1,...,kn} (gens andkills, respectively). The idea is that a I(z)=o

gen followed by a matchingzill, as in the wordg;k;, cancel, Trs o (Var)

and thafgens andkills are idempotent. Figufg 1 shows the finite ’

state automaton/ 1, for a single dataflow fact. For this language, T'Fei:o1r T'les:oo (Pair)
H H . sub

the pumping length is 1: in the automatdfy;;;, pump(gg) = g, TF (e1,e2)" F o1 x£ o3

pump(gk) = ¢, etc. Thus, we do not need to keep track of arbitrary

sequences gfens andkills in constraint resolution; it suffices to T'ke:o x5 oy ‘

track just the state of/;%8. An n-bit language can be derived from TFrei o (Proji = 1,2)
a product construction. €.1: 0

Nx:o,f:0 >0 Fe:d

2.5 Complexity TT fo:r) 7 =ciomo (Def)
We sketch a generic complexity argument for the constraint res-
olution algorithm described Sectign P.3. A system of constraints F'te:o Fo<o

. . g . (Sub)
containing no annotations can be solvedim?) time, wheren is Fe:o
the number of variables in the constraint system. Intuitively, this is
because each of thevariables can have up tolower bounds and I'(fy=0 o={o |
n upper bounds; thus every variable in the transitive closure causes TFf.o (Inst)
at mostO(n?) work and there ar@(n) variables.

For an annotated system of constraints, we must derive a new Figure 2. Type rules for polymorphic recursive system

bound on the number of lower and upper bounds. Consider a partic-
ular lower bound in a set constraint systeenC X (the argument ) ) )
for upper bounds is the same). In an annotated constraint systenfonstructor matching language context-free. While this approach
there may be many lower bounds betweerand X', one for each can be modeled using annotated set constraints (see Secfjon 3.6),
distinct wordw that can annotate the constraints, so the problem is We first present a natural alternative that models function match-
to bound the number of distinct word annotatieRsC., X. Lets ings as a context-free language, while reducing the type-constructor
be the number states in automattfi“®. We claim that there areat ~ mMatching problem to a regular language. For this analysis, we ap-
mostO(s) constraints of the forme C,, X' in a solved system. To ~ Ply a reduction strategy described in previous work [12] to model
see this, note that theumnyp operation equates words that lead to the  context-free language reachability of function matchings as a set
same state il/**®. Thus, it suffices to annotate constraints with  constraint problem. We use regular annotations to model regular
states instead of words, and there are andjistinct states. In the ~ language reachability of type constructor/destructor matchings.
n-bit language, for instance, this approach automatically exploits ~ This analysis permits non-structural subtyping constraints. To
order independence of distinct bits: If a constralntC,, ,, Y is our knowledge, ours is the first practical attempt to combine poly-
already present in the system, the constr&in€,,,, Y is redun- rr_norphlc recursion with r)on-strl_JcturaI subtyping constraints (we
dant (i.e..g192 = g2g1) and need not be added. This redundancy discuss a previous effort in Sectiph 6).
check takes constant time. 3.1 Source Language

Thus, each variable in an annotated system can have up to
n - s lower bounds and: - s upper bounds. With states as the The analysis operates on the following source language:
annotations on constraints, new annotations fitwep operation)

can be computed in constant time using a table lookup, so for each e == n
of n variables in the constraint system the solver does at most | @
O(n?s?) work. The total complexity is therefor®(n>s?). Note | (e1,e2)
that this is a generic argument that can usually be sharpened for the | edi=1,2
constraints generated by a particular application. | fle
fd = flz:7):7'=e

| Ivsi | fd fd

3. Flow Analysis In the function definitionf(z : 7) : 7" = e, f is bound

In this section we describe a novel flow analysis application that within e. For simplicity, the source language does not include
uses regular annotations to increase precision. Our motivation is touseful features such as conditionals, mutual recursion or higher-
investigate practical algorithms for context-sensitive, field-sensitive order functions. The analyses presented here can be extended to
flow analysis. A proof by Reps shows the general problem to be un- these features; we omit them only to simplify the presentation. We
decidable[[1B]; as mentioned in Sect[dn 1, the core issue is the ar-user to range over unlabeled types (pairs, integers, type variables,
bitrary interleaving of two matching properties: function calls and and first-order functions). Types are labeled with set variailes
returns, and type constructors and destructors. Viewing Reps’ re-We useo to range over labeled types, which are introduced by a
sult in a type-based setting, we see that the problem involves pre-spread operator:
cisely handling flow through polymorphic recursive functions and
recursive types. Practical solutions to this problem require approx-
imating one or the other matching property. In practice the ap-
proach taken almost universally is to approximate function match-
ings, which is typically done by analyzing sets of mutually recur-
sive functions monomorphically. The functiont{ returns the label on the top-level constructor of
Our view is that the essence of this approximation is reduc- a labeled type.
ing one matching to a regular language, while precisely model-
ing the other matching as a context-free language. For example,
treating recursive functions monomorphically reduces the language Figure[2 shows the type system for the polymorphic recursive
of calls and returns to a regular language, while leaving the type- analysis. The rules for variables, pairs, and pair projection are

spread(T1 X T2) spread(Ti) x £ spread(r2) L fresh

spread(int) = int* L fresh

spread(a) = aof L fresh

3.2 Type Rules and Constraint Generation
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tl(o) C ti(a") (Sub)
<o

Oil(tl(g).) € ti(e’) (Pos Inst)

(Neg Inst)

o1 3L o3 02 =% o4

(Fun Inst)

o1 — o2 X4 03 — 04

e (Int WL)
m

Figure 4. Finite state automaton for single level pairs

(Var WL)
o

tl(or) Cu L tl(or) C2 L
(01) 2, (01) 2, pair (y:int) : 8 = (14,y"H7;

C tl - tl ;
£ =15 (1) El: =12 (o2) (Pair WL) main () : int = (pair® 25).2V
o1 X7 09
Figure 3. Constraint generation for polymorphic recursive system Figure 5. Non-structural subtyping example

straightforward. The rule (Def) adds the types of the argument
variabler and the functiory to the environment, allowing recursive  3.2.2 Type Constructor Matching with Annotations
uses of f. Functions must be instantiated before use via the rule
(Inst). The rule (Sub) permits non-structural subtyping stepsyi.e.
ando’ do not need to share the same type structure.

Annotations are used to model the matching language of type con-
structors and destructors. For example, in the expregsidny>)” .17,

The constraint generation rules are shown in Figlire 3. One key the constralnP( gl%m_P models the flow from the first component
aspect of constraint generation is that we do not apply constraints©f the pair to the pair constructor, and the constraint; =~ 2
downward through types—constraints extend only to the top-level models the flow from the pair to the projected resuit. The two an-
constructorg] Constraints between substructures of types are dis- hotations[;,, and;,, should “cancel” each other, reflecting the
covered automatically as needed during constraint resolution. Theflow from X’ to Z via the un-annotated constraiat C =. While
rules in Figuré B use one new form of set expressigprogection this language of matchings appears context-free, in the absence of
expression, which we have omitted until now for simplicity. For a recursive types it is not possible for a symbol of the fofmto
constructor of arity: there aren projection operators, one for each ~ be followed by another of the same symbol without first encoun-
argument position. The important property of projections is given tering a corresponding. symbol to cancel the first symbol. This

by the following equation: is the reason we need the extracomponent on annotations: to
B distinguish pair projection on different levels of the type. Thus, for
c (™ (ser, ..., 8€i,...,5en)) = se; a given input program, we can place a bound the longest string

I . . - of annotations we need consider by the size of the largest type.
Ecr;r)éﬁggoiztsol?hzeélgg?i?;rrilg t|rsw %rgc\t,;lg]q lzjnderStOOd and easily incor In Figure[4 we show the finite state automaton for this annotation
We require annotated constraints representing type constructorsl"’mguage when the program’s largest typgdér (int). In the pres-

and destructors be only between the labels representing the conyc€ of recursive types, flow must be approximated, for example

structed term and its components. Rules (Pair WL), (Var WL) and gﬁnrgg ﬁg'r?g annotated constraints on recursive types with empty
(Int WL) define awell-labelingrelation on labeled types. All la- ’
beled types in the program must be well-labeled.

3.3 Answering Flow Queries

3.2.1 Function Call Matching with Terms To ask whether a particular label (sa}) flows to another label (say
As mentioned previously, we apply a result from][12] to model Y), the constraint: C X, wherex is a fresh constant, is added
the matching of function calls and returns. Briefly, we create a to the system. The&’ flows to ) if x is in the least solution of
unary constructos; for each function instantiation siteand add a Y. This query yields answers fonatchedflow, and this approach
constraint; (W) C X to model the flow from an actual parameter can be extended to partially-matched reachability through functions
labeled withWV to a formal parameter labeled witki. Flow from (called PN reachability i [12]).

the function’s return label (say) to the label at the function’s
return site (sayZ) is modeled by a constrainf ' ()) C Z. The

result in [18] shows that this is equivalent to polymorphic recursive ) .
treatment of functions. Consider the program in Figufé 5 (taken frdm [6]). Non-structural

subtyping can assigpair the typeint” — £ along with the
2 As noted earlier we could also treat function types as type constructors Constraini3 = int* x” int®. Figurd § shows a slightly simplified

and extend our construction to handle higher-order function types; we treat constraint graph for this program. Flow frofiito V is captured by
function types specially here only for brevity. the constraints:

3.4 An Example
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Figure 6. Constraint graph for the program in Figyrg 5 (only
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which imply the relationshigg C V.

3.5 Stack-Aware Aliasing

seteuid(!0) seteuid(0)

seteuid(0) . f priv \ execl(..) o
- seteuid(!0)

Figure 7. Automaton for process privilege.

—

unpriv

While the above example is somewhat contrived, stack-aware
alias queries allay a real problem: in most alias analyses, the mem-
ory abstraction is based on syntactic occurrences of calls to allo-
cation routines (e.gnalloc andnew). Simple refactorings such
as wrapping an allocation function (or allocating an object’s fields
within a constructor in an object-oriented language) can destroy
the precision of the analysis. Stack-aware alias queries use the call
stack to disambiguate object allocation sites, giving a form of ob-
ject sensitivity.

3.6 A Dual Analysis

As mentioned earlier, a more widely used approach to combining
context-sensitivity and field sensitivity is to approximate the lan-

guage of function calls and returns by treating mutually recursive
functions monomorphically. We note that this analysis is also ex-
pressible in our framework. The key change is to swap the roles of
annotations and terms: now annotati¢hand]’ model call/return

The analysis presented in this section can be used to implement?aths tf’laf“”Ct'O” call sitg and constructors;(. . .) and projec-
context-sensitive, field-sensitive alias analysis. An interesting con- tionso; " (...) model constructing/destructing tlith field from a
sequence of this formulation is that an additional dimension of sen- tuple. We can also take advantageediry constructors to “cluster”
sitivity can be recovered during the alias query phase. A standard tYPes, so that instead of using two constructarsindo, to repre-
approach to computing aliasing information from a points-to anal- Sent the firstand second components of a pair, we use a binary con-
ysis is to intersect sets of abstract locations— an empty intersectionSt"UCt‘grpaW to construct a pair, and projectiopgir—"(...) and
indicates that two expressions do not alias. In our setting, we canpair " (...) to deconstruct a pair. This more natural representation
instead intersect the solutions of two variables and test for empti- ¢an actually improve performance, as edge additions that would

ness, givingstack-awarealias queries.
Consider the following C program:

void main() {
int a,b;
fool(&a,&b); // constructor o1
fo0o2(&b,&a); // constructor oo

void foo(int *x, int *y) {
// May x and y be aliased?
}

If the above represents the whole progratmand y clearly
cannot be aliased withifioo. If the points-to sets themselves are

not considered context-sensitively, however, the points-to results

containpt(x) = pt(y) = {a, b}, and the analysis would report that
x andy may alias.

In our setting, points-to sets are terms where unary constructors
encode information about function calls. Our analysis would yield
the following solution (annotations elided) representing points-to

sets for the above program:

X = Hoi(a),02(b)}
Y = {ox(a),01(0)}

Intersecting the solutions fak and Y reveals that there are

need to be discovered twice using unary constructors can be dis-
covered a single time instead using a binary constructar [12]. With
this approach, the constraint system for the example program in
Figure[$ is as follows:

B Cy, Y
pair(A,Y) C H
H G, T
pair~3(7) C V
which implies the desired constrai§tC V.

4. Pushdown Model Checking

In this section, we use regularly annotated set constraints to solve
pushdown model checking problems. We show how to verify the
same class of temporal safety properties as MOPS, a model check-
ing tool geared towards finding security bugs in C cade [4].

Following the approach of [4], we model the program as a
pushdown automat®. Transitions in the PDA are determined by
the control flow graph, and the stack is used to record the return
addresses of unreturned function calls. Temporal safety properties
are modeled by a finite state machiné. Intuitively we want to
intersect the languagdq M) and L(P); the program is treated as
a generator for this composed language.

We use the following property concerning Unix process priv-
ilege as a running example: a process should never execute an

no common ground terms; hence the two variables are not aliased.untrusted program in a privileged state—it should drop all per-
The view put forth here is that the constraint solutions themselves missions beforehand. Concretely, if a program cadiseuid (0),
are an appropriate data structure for representing context-sensitivegranting root privilege, it should cafleteuid (!0) before calling

points-to sets.

the exec1 () function. A program that violates this property may
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give an untrusted program full access to the system. Figure 7 shows

a finite state machine that characterizes this property, and the fol- pcimPT C S
lowing is a C program that violates the property: S1 Coeteuid(o) S2
S C 83
seteuid(0); S2 C Sy
S3 Caeteuid(10) S5
execl(¢‘/bin/sh’’, ‘‘sh’’, NULL); S, C S5

Ss gewecl(m) Se

This program gives the user a shell with root privileges, which ~ The constraints imply thaic?™ is in the least solution a4,
probably represents a security vulnerability. the constraint variable corresponding to #wcl call, indicating
the presence of a possible security vulnerability.

4.1 Modeling Programs with Constraints

We now show how to find violations of temporal safety properties 5. Implementation
using annotated constraints. For each statemigrthe control flow We have added a preliminary implementation of regularly anno-
graph, we associate a set constraint varigbleor each successor tated set constraints to theaBSHEE toolkit [13] by adding sup-
statemens; of s (with constraint variable;), we add a constraint  port for annotations to BNSHEE's existing implementation of set
to the graph. The annotations are those program statements thatonstraints. Many of the technical details (such as handling projec-
are relevant to the security property (i.e., the statements labelingtion merging [24] and cycle elimination|[5]) are similar to those
transitions in Figurg]7). The specific form of the constraint depends addressed i [22]; we omit them herealSHEE also usegrojec-
on s; there are three cases to consider: tion patternsin place of pure projections (following the approach
in [12]); the expressive power is the same but projection patterns
1. If sis not relevant to the security property, and is not a function are better suited to an implementation.
call, add the constrair C S;. The pump function is currently implemented by hand for each
2. If s is relevant to the security property (labels a state transition finite state automaton. Automatically producing temp func-
in the FSM for the security property) add the constr&in€ , tionis §tra|ghtforward, anq we don't believe tha}t our manual effqrts
S, would improve the scalability over an automatlca_lly_generated im-
o ) ) ) plementation. Since ANSHEE already does specialization based
3. If s is a call to functionf at call sitei, add the constraints o a statically-specified description of the term constructors used
0i(S) C Fentry ando; ' (Fezit) C Si, WhereFeniry (Fexit) in an analysis, it is very natural to extend specialization to the input
is the node representing the entry (exit) point of functfon finite state automaton.
Our implementation omits state variables on set expressions
To model the program counter, we create a single 0-ary con- completely during constraint solving and instead does all of the

structorpc and add the constraipt C Spain, WhereSmain is the calculations involving machine states during queries (recall Sec-
constraint variable corresponding to the first statement (entry point) tion [2:32). By omitting state variables from the solver we can do
of the program’siain function. aggressive hash-consing of terms, and the memory savings from
hash consing is substantial. The time and space overhead needed
4.2 Checking for Security Violations to implement the word operations in the transitive closure rule is

In order to check for violations of the property, we record each minim_ellll (recall Shecti_o%]S). ‘ h we h duced
statement that could cause a transition to the error state. For each 10 lllustrate t ef\_/la ('j'ty orour ahﬁporggc\/{/weh ave reproduce o
such statement, we query the least solution of the constraints bySOME experiments first done using R bbb

intersecting with an automaton for partially-matched reachabil- aPPlications of MOPS because pushdown model checking is super-
ity (PN reachability). The presence of an annotated ground term ficially very different from the usual applications oRBSHEE. We
pce™°" denotes a violation of the security property. The ground chose a security property (Property 5 fram [3]) and checked sev-

terms themselves serve as witness paths (in this setting, a possibl€T@! sensitive software packages for security violations using the
runtime stack) that leads to the error. approach outlined in Sectidrj 4. We also simultaneously checked

for violations of the simple process privilege property described in

43 AnExample Sectior| 4. The additional property we checked is as follows:

Consider the following C program: 1. A program should calimask (077) before calls tankstemp

2. Never call the functionsmpnam, tempnam, tmpfile
s1: seteuid(0); // acquire privilege

sg: if (.. { Programs that violate condition 1 are vulnerable to race condi-
S3: seteuid(getuid()); // drop privilege tion attacks, and violations of condition 2 allow all users to read
} temporary files, which may not be secffe.
else { We report in Tablg]1 the number of lines of code for each pack-
S4: age (using David Wheelersloccount tool [26]), the number of
executables for each package, and the time to check the property
s5: execl(‘‘/bin/sh’’, ‘‘sh’’, NULL); for all executables in the package. Each executable in a package is
Sgt ... checked separately; note that thgenSSL package, though it has

fewer lines of code than theind package, has the largest single
) ) ) program that we check. The experiment was performed on a 2.80
This program violates the security property: the programmer
has made the common error of forgetting to drop privileges on all 3[3] also checks to see if the parametemtestenp is reused. We do not
paths to theexecl call. check this property because we have not implemented so-gadigeeirn
The constraints for this example are as follows: variables which allow syntactic matching of program constructs.
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Benchmark KLOC | Programs| Time (s) what would otherwise be intractably large relations. One disadvan-
At 3.1.8-33 3 2 .15 tage is that BDD-based toolkits cannot be treated as a “black box”;
OpenSSH 3.5p1-6 45 1 1.24 using them effectively requires subtle understanding of the internal
Postfix 2.2.5 71 40 17.2 BDD representation (in particular, variable orderings). BDD-based
Bind 9.2.2 203 30 50.1 algorithms also have exponential worst-case performance and at
OpenSSL 0.9.6e 120 1 216 least to date have not been integrated with context-free proper-
ties. As we have shown here, a class of reachability problems more
Table 1. Benchmark data for experiment general than those handled by current BDD-based methods can be

solved in polynomial time.

Other analyses that demand more expensive algorithms, e.g.
GHz Intel Xeon machine with 4 Gb of memory. Our analysis times path sensitive analyses, cannot be expressed with the polynomial
show that our algorithm’s scalability and performance is very good, time algorithms we present here.
and even this preliminary implementation is usable for realistic ap-
plications. Our times are also faster than those reported for MOPS,7. Conclusion
in most cases by more than an order of magniﬂmﬂais compar-
ison of wall clock times is not fair (the MOPS experiments were
done on a 1.5 GHz machine, and we have not exactly replicated
the experiments) but does show that our general implementation of
annotated set constraints is at least competitive with hand-written
versions.

In this paper, we have described a new formalism that extends set
constraints with annotations drawn from a regular language. We
have shown how to express applications as diverse as type-based
flow analysis, interprocedural dataflow analysis, and pushdown
model checking within this formalism. We have implemented an
algorithm for solving regularly annotated constraints withianB
SHEE, our constraint-based program analysis toolkit. Preliminary
6. Related Work experiments with our implementation suggest that it scales well
Regularly annotated set constraints are partly inspired by the an-with good performance.
notated inclusion constraints presented.id [22, 16]. We have shown
how to incorporate infinite regular languages as annotations, and
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