
Camera Calibration
Lab Exercise 3 for the Computer Vision Course

Paul Withagen & Rein van den Boomgaard
University of Amsterdam,

The Netherlands

October 28, 2002

Abstract

This lab exercise investigates the algorithm to calibrate a camera. The
calculated camera parameters will be used to draw objects in the scene. We
follow the book [Trucco98], chapter 6.

Together with exercises two and four we will work towards the mea-
surement of an object in a real-world scene for which images from different
locations are available.

In chapter 1 and 2 we give some theory and code to do camera calibration
and to calculate the camera parameters. Then in chapter 3 the problems we
want you to solve are given. In chapter 4 we explain what we expect from
you and in Appendix A some comments are given about the different use of
T in chapter 2 and 6 of [Trucco98].

Figure 1: An image of a calibration rig, left with calibration points, right with
cubes to check the calibration.

Computer Vision, Lab Exercise 3: Camera Calibration 2

1 Estimating the camera projection matrix

In this section we consider the camera projection to be a black box. All we assume
here is the relation: λixi

λiyi
λi

 = M

Xi

Yi
Zi
1

between a point in 3D space(Xi, Yi, Zi) and the depicted point on the retina
(xi, yi). This relationship (the matrixM) can be learned from examples.

Let the points(xi, yi) for i = 1, . . . , n be collected in a Matlab arrayxy such
thatxy(i,1) equalsxi andxy(i,2) equalsyi, i.e. the i-th row in the matrix
xy is the point(xi, yi). Equivalently let the corresponding 3D points(Xi, Yi, Zi)
be collected in the matrixXYZ.

Figure 2:Calibration object. The calibration object consists of two perpendicu-
lar planes. On the planes square tiles are depicted (the sides of the tiles are 1cm).
A convenient world coordinate frame is graphically overlayed on the image. The
retina coordinates together with the corresponding 3D coordinates of the points
indicated with a ’+’ are available in the fileCV3 calibrationpoints.mat .

In Fig. 2 an image of a calibration object is shown. The 18 points marked with
a ’+’ are available in the fileCV3 calibrationpoints.mat . Loading this
file (load CV3 calibrationpoints) will set thexy andXYZ matrix. An
interactive program to collect points in 2D and corresponding points in is given in
CV3 collectPoints.m .

The camera projection matrixM can be estimated by solving the homoge-

Computer Vision, Lab Exercise 3: Camera Calibration 3

neous linear system (see Eq. 6.17 in [Trucco98]):

Am = 0 (1)

with

A =

X1 Y1 Z1 1 0 0 0 0 −x1X1 −x1Y1 −x1Z1 −x1

0 0 0 0 X1 Y1 Z1 1 −y1X1 −y1Y1 −y1Z1 −y1

X2 Y2 Z2 1 0 0 0 0 −x2X2 −x2Y2 −x2Z2 −x2

0 0 0 0 X2 Y2 Z2 1 −y2X2 −y2Y2 −y2Z2 −y2

· · · · · · · · · · · ·
Xn Yn Zn 1 0 0 0 0 −xnXn −xnYn −xnZn −xn
0 0 0 0 Xn Yn Zn 1 −ynXn −ynYn −ynZn −yn

(2)

and
m =

(
m11,m12, . . . ,m33,m34

)T
. (3)

Given the matricesxy andXYZ it is relatively easy to construct the matrixA:

3a 〈Construct A-matrix3a〉≡
x = xy(:,1);
y = xy(:,2);
X = XYZ(:,1);
Y = XYZ(:,2);
Z = XYZ(:,3);
o = ones(size(x));
z = zeros(size(x));
Aoddrows = [X Y Z o z z z z -x.*X -x.*Y -x.*Z -x];
Aevenrows = [z z z z X Y Z o -y.*X -y.*Y -y.*Z -y];
A = [Aoddrows; Aevenrows];

This code is used in chunk 4b.

It should be noted that the matrixA in the above code fragment isnot the matrix as
defined in equation Eq. 2. The solution of the homogeneous system is not changed
by taking theA matrix defined in the above Matlab code instead (why not?).

The non-trivial solution of the homogeneous equationAm = 0 is found by
selecting form the last column of the matrixV that results from the singular value
decomposition of the matrixA. The Matlab code is:

3b 〈Calculate solution of A m = 03b〉≡
[U, D, V] = svd(A);
m = V(:,end);

This code is used in chunk 4b.

Computer Vision, Lab Exercise 3: Camera Calibration 4

Reshapingmback into a3×4 matrix is a bit tricky. The Matlab convention for
‘linearizing’ matrices is to put the elementscolumn wiseinto a large vector. The
mvector is obtained fromMby putting the elementsrow wiseinto a large vector.
The solution is to reshapem into a 4 × 3 matrix whose transpose is the camera
projection matrixM:

4a 〈Reshape m vector into M matrix4a〉≡
M = reshape(m,4,3)’;

This code is used in chunk 4b.

The presented code fragments can be put together in the function
CV3 estimateProjectionMatrix to estimateM given the calibration
points (collected in matricesxy andXYZ).

4b 〈CV3 estimateProjectionMatrix.m4b〉≡
function M = CV3 estimateProjectionMatrix(xy, XYZ)
〈Construct A-matrix3a〉
〈Calculate solution of A m = 03b〉
〈Reshape m vector into M matrix4a〉

Root chunk (not used in this document).

The following Matlab code fragment loads the calibration points and then es-
timates the projection matrix

4c 〈EstimateMatrix4c〉≡
load CV3 calibrationpoints
M = CV3estimateProjectionMatrix(xy, XYZ);

Root chunk (not used in this document).

Computer Vision, Lab Exercise 3: Camera Calibration 5

Figure 3:Drawing 3D cubes in the scene.The calibrated camera enables us to
draw 3D objects in the scene.

The projection matrix estimated in this section and the knowledge from exer-
cise 2 can be used to render 3D figures in the scene depicted in Fig. 2. Here we
take a simple cube with sides of 1cm. These corresponds with the squares on the
calibration pattern. This allows for an easy visual check of the projection matrix
estimation.

2 Camera parameters from the projection matrix

In practical situations it is not always sufficient to have estimated the projection
matrix M , The camera parameters are needed. In this section we assume that
the projection matrix has been estimated with the procedure from the previous
sections. The estimated projection matrix is denoted asM̂ :

M̂ =

 m̂11 m̂12 m̂13 m̂14

m̂21 m̂22 m̂23 m̂24

m̂31 m̂32 m̂33 m̂34

 .

For easy of reference later on we will subdivide the matrixM̂ into 4 3-element
vectors:

M̂ =

 qT
1

qT
2

qT
3

q4

whereqi is a 3 element vector.

It should be noted that as always when working with homogeneous represen-
tation of vectors and operators in space the test on equality should be read as

Computer Vision, Lab Exercise 3: Camera Calibration 6

equality up to a scale factor. In this case we would like to find the camera param-
etersfx, fy, ox, oy, the rotation matrixR (with elementsrij) and the translation
vector with elementsTx, Ty andTz. We thus are looking for those parameters
such that:

M̂ = γM

where

M =

 −fxr11 + oxr31 −fxr12 + oxr32 −fxr13 + oxr33 −fxTx + oxTz
−fyr21 + oyr31 −fyr22 + oyr32 −fyr23 + oyr33 −fyTy + oyTz

r31 r32 r33 Tz

 .

(4)
Note that the rows and columns of a rotation matrix form an orthonormal basis.
This leads to:

|γ| =
√

qT
3 q3.

We now setσ = γ/|γ| andM̂ = M̂/|γ| and obtain:

Tz = σm̂34 (5)

r3i = σm̂3i, i = 1, 2, 3 (6)

ox = qT
1 q3 (7)

oy = qT
2 q3 (8)

fx =
√

qT
1 q1 − o2

x (9)

fy =
√

qT
2 q2 − o2

y (10)

r1i = σ(oxm̂3i − m̂1i)/fx (11)

r2i = σ(oym̂3i − m̂2i)/fy (12)

Tx = σ(oxm̂34 − m̂14)/fx (13)

Ty = σ(oym̂34 − m̂24)/fy (14)

It should be noted that there is an error in [Trucco98] on page 135. The above
equations forTx andTy differ slightly from their definition.

From Eq. 5 we see thatσ is equal to the sign of̂m34. Thus in case the origin
of the world frame is in front of the camera we takeσ = m̂34/|m̂34| else we set
σ = −m̂34/|m̂34|.

The rotation matrixR̂ obtained with this estimation procedure is not guaran-
teed to be orthogonal. Therefore we calculate the rotation matrix that is closest
to the estimated matrix (in the Frobenius norm sense). LetR̂ = UDV T then
R = UV T.

The above equations can be easily ’translated’ into Matlab. We do so without
comments.

Computer Vision, Lab Exercise 3: Camera Calibration 7

6 〈CV3 estimateCameraParameters.m6〉≡
function [fx, fy, ox, oy, R, T] = ...

CV3 estimateCameraParameters(M, inFront)
% estimate camera parameters given projection matrix
M = M / sqrt(M(3,1)ˆ2+M(3,2)ˆ2+M(3,3)ˆ2);
if inFront

s = sign(M(3,4));
else

s = -sign(M(3,4));
end
T(3) = s*M(3,4);
R = zeros(3,3);
R(3,:)=s*M(3,1:3);
q1 = M(1,1:3)’;
q2 = M(2,1:3)’;
q3 = M(3,1:3)’;
q4 = M(1:3,4);
ox = q1’*q3;
oy = q2’*q3;
fx = sqrt(q1’*q1 - oxˆ2);
fy = sqrt(q2’*q2 - oyˆ2);
R(1,:) = s*(ox*M(3,1:3) - M(1,1:3)) / fx;
R(2,:) = s*(oy*M(3,1:3) - M(2,1:3)) / fy;
T(1) = s*(ox*M(3,4) - M(1,4)) / fx;
T(2) = s*(oy*M(3,4) - M(2,4)) / fy;
T = T’;
[U,D,V] = svd(R);
R = U*V’;

Root chunk (not used in this document).

To check the above computations we can use Eq. 4 to constructM from the pa-
rameters.

7 〈CV3 projectionMatrixFromParameters.m7〉≡
function M = CV3 projectionMatrixFromParameter(fx, fy,

ox, oy, R, T)
% construct projection matrix from parameters
M = [

-fx*R(1,1)+ox*R(3,1), -fx*R(1,2)+ox*R(3,2), ...
-fx*R(1,3)+ox*R(3,3), -fx*T(1)+ox*T(3);
-fy*R(2,1)+oy*R(3,1), -fy*R(2,2)+oy*R(3,2), ...
-fy*R(2,3)+oy*R(3,3), -fy*T(2)+oy*T(3);
R(3,1), R(3,2), R(3,3), T(3)

];
Root chunk (not used in this document).

Computer Vision, Lab Exercise 3: Camera Calibration 8

This reconstructed matrix can be used to draw the cubes in the image. Compare
the results with the drawings that were made in a previous section.

3 Exercises

3.1 Accuracy I

Redo the camera calibration as introduced in the previous sections but now using
more calibration points (a rule of the thumb is that accurate results need about 20
to 30 calibration points). Report the calculated camera parameters.

3.2 Accuracy II

Figure 4:Different views of the calibration rig. The four views are depicted in
images CV3view1.jpg, CV3view2.jpg, CV3view3.jpg, and CV3view4.jpg.

Redo the calibration but now for different views of the calibration rig. Ob-
viously the internal camera parameters should in theory be constant. The
different views are given in Fig. 4 and are available in the following
tif files: CV3 view1.jpg, CV3 view2.jpg, CV3 view3.jpg, and
CV3 view4.jpg .

You can use these points and the calculated camera parameters in the Stereo
Vision exercise (Exercise 4).

3.3 Direct Estimation of Camera Parameters

In section 6.2 of [Trucco98] a calibration procedure is described that di-
rectly estimates the internal and external camera parameters (Algorithm
EXPL PARSCAL).

Write the Matlab code to implement the calibration procedure. Again
you can interactively select your calibration points (or take the ones in the
CV3 calibrationpoints.mat file.

The image center can be taken as the outcome of the calibration procedure
explained and implemented in this report.

Computer Vision, Lab Exercise 3: Camera Calibration 9

3.4 Example code

The code in this report is available as m-files and the figures in this exercise are
generated usingCV3 calibration.m .

Also given is the programCV3 collectPoints.m , which enables you to
define the calibration points interactively. The program first gives the opportunity
to zoom in on the image (all points need to be visible though). Enterreturn
when you want to start collecting the points.Then the program asks for the XYZ
coordinates of the 3D point (each coordinate separately) and then you have the
opportunity to select a point in the image interactively. You have to select a 2D
point by clicking on it.

Evidently a much more user friendly version of this program is needed that
uses a GUI to present the user with a form to fill in with the coordinates. If there
are any volunteers. . . .

Computer Vision, Lab Exercise 3: Camera Calibration 10

4 The hand-in

A small report is expected which solves all problems in this document. Include
figures, images, tables, and code where appropriate. You could also include a
running version of your code, but the report should be sufficiently detailed to
base your grade on. If you do send code, name the function we should run to
recreate all your resultsrunme.m and don’t forget to use a lot of comments in
your code. Explain what a function does, what problem you are solving with it,
which variables you use etc..

A solution to most of the problems presented in a reasonable report will be
rewarded with a six. For higher grades the report should be better, and for a nine
or ten you should really do something extra. Extra credits can be achieved by for
example trying the algorithms on your own dataset (from the Internet for exam-
ple), writing a nice GUI around your software, improving the given algorithms,
illustrating the theoretical answer by experiments you did, etc.

Bundle any code and the report (pdf preferred, MS Word acceptable) in a zip
or tgz-file, and mail it tocompvision@science.uva.nl . Do not forget to
write you names and student numbers in the e-mail, report, and code. Do this
before the deadline:Monday 4 November, 23:59.

See the practicum webpage:
http://carol.wins.uva.nl/ ∼paulw/CV2002Prac.html for dead-
lines, updates, bugs etc. For questions you can email to
compvision@science.uva.nl , but check the website for FAQs and for info
when help is available.

Computer Vision, Lab Exercise 3: Camera Calibration 11

A The use ofT in [Trucco98]

The use ofT in [Trucco98] is not done very consequently. See the note on page
126. This means you can convert the translation matrices between chapters by:

T6 = −RT2,

where the indices refer to chapters in the book. Keep this in mind when you use
code from the previous exercise.

Literature

[Trucco98] Emanuele Trucco and Alessandro Verri, “Introductory techniques of 3-D
computer vision”, Prentice Hall, 1998

