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1 Introduction

Let C(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a cubic form. It was shown by Davenport
[5], that there exists a nonzero vector x ∈ Zn for which C(x) = 0, providing
only that n ≥ 16. The goal of this paper is to extend the admissible range for
n as follows.

Theorem 1 Let C(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a cubic form with n ≥ 14.
Then there exists x ∈ Zn − {0} for which C(x) = 0.

The result can be rephrased in geometric language to say that any projective
cubic hypersurface defined over Q, of dimension at least 12, has a Q-point.
Davenport’s result was extended to arbitrary number fields by Pleasants [9],
and it would be interesting to know whether Theorem 1 could similarly be
extended.

These results can be seen as an attempt to extend the classical theorem of
Meyer (1884) from quadratic forms to cubic forms. Meyer showed that any
indefinite quadratic from over Z in 5 or more variables must represent zero. In-
deed Meyer’s result was generalized by Minkowski , who showed that a quadratic
form over Z, in any number of variables, represents zero if and only if it rep-
resents zero over every completion of Q. It is a well-known fact that this local
condition is automatically satisfied for Qp as soon as n ≥ 5. Thus Meyer’s result
requires only the condition of indefiniteness. The analogous fact for cubic forms
is that p-adic zeros exist whenever n ≥ 10, see Davenport [6, Chapter 18] for
example. Of course the condition for R holds for any n in this case. Thus it is
natural to conjecture that Theorem 1 should hold as soon as n ≥ 10. Indeed
for smaller values of n one might expect that it should suffice for the form C(x)
to represent zero in each field Qp. However when n = 3 or 4 it is possible for a
cubic form to have zeros in every completion of Q, without there being a global
zero. This is shown by the examples

3x3
1 + 4x3

2 + 5x3
3, and 5x3

1 + 9x3
2 + 10x3

3 + 12x3
4

of Selmer [10] and Cassels and Guy [4] respectively. This phenomenon is ex-
plained by the Brauer-Manin obstruction, and it is known that there is no such
obstruction for non-singular cubic forms with n ≥ 5. Thus for cubic forms over
Z we conjecture that there is a non-trivial zero:

(i) whenever n ≥ 10;

(ii) for non-singular forms, when 5 ≤ n ≤ 9 and there is a zero in every
completion Qp; and

1



(iii) when n = 3 or 4 in those cases for which there is a zero in every completion
Qp and the Brauer-Manin obstruction is empty.

Note that the situation for singular cubic forms is unclear when 5 ≤ n ≤ 9. The
author is grateful to Professors Colliot-Thélène and Salberger for alerting him
to this area of uncertainty. However Salberger has shown, in unpublished work,
that the Bruer-Manin obstruction for singular cubic hypersurfaces is empty, for
any n, except possibly when the singular locus has co-dimension 2 or 3.

In the quadratic case one can readily assume that the form is non-singular,
or indeed diagonal, but for cubic forms this is a significant issue. Indeed if one
is willing to assume that the cubic form is non-singular then substantial further
progress is possible. Thus Hooley [8] has shown that a non-singular cubic form
in 9 or more variables, defined over Z, has a non-trivial representation of zero
if and only if there is a representation in every completion of Q. Moreover
Baker [1] has shown that any diagonal cubic form over Z in 7 or more variables
represents zero non-trivially. (For diagonal cubics in 7 or more variables the
local conditions hold automatically.) Furthermore there is a conditional result
of Swinnerton-Dyer [11], which assumes the finiteness of the Tate-Shafarevich
group for elliptic curves over Q(

√−3). Under this hypothesis it is shown that
a diagonal cubic form in 5 or more variables represents zero if it does so over
every Qp.

The strategy for our proof is similar in several ways to that of Davenport [5],
although there will be one major difference. We shall use the circle method, and
in suitable circumstances we shall prove an asymptotic formula for the number
of zeros of C(x) in an appropriate large cube.

Let B ⊂ Rn be given by

B =
∏

1≤i≤n

[ξi − ρ, ξi + ρ] ⊆ [−1, 1]n, (1.1)

where C(ξ) = 0, and let PB = {x : P−1x ∈ B}. The cube B will be considered
fixed throughout. We then define

N (P ) = #{x ∈ Zn ∩ PB : C(x) = 0}.
In general one might hope that N (P ) would grow like Pn−3. However there are
certain forms C(x) for which this is false. An example is given by

C(x1, . . . , xn) = x3
1 + x2(x2

3 + . . .+ x2
n), (1.2)

which vanishes whenever x1 = x2 = 0, so that N (P ) À Pn−2 for suitable cubes
B. As in Davenport [5] we shall therefore consider two alternative cases. In
the first the form C(x) has non-trivial zeros for “geometric reasons”, and in the
second we shall establish an asymptotic formula for N (P ), for suitable B. Thus,
in either case, C(x) must represent zero. In the first alternative one shows only
that there is at least one zero. Thus it is not clear in this case whether the zeros
are Zariski-dense on the variety C(x) = 0. However, on any non-degenerate
cubic hypersurface with n ≥ 4, once one has obtained one rational point one
can find infinitely many more.

To describe the two alternatives precisely requires a certain amount of tech-
nical detail. We write the form C(x) in the shape

C(x1, . . . , xn) =
∑

i,j,k

cijkxixjxk,
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in which the coefficients cijk are symmetric in the indices i, j, k. We shall assume,
as we may by replacing C(x) by 6C(x), that the cijk are all integral. We define
an n× n matrix M(x) by taking its entries to be

M(x)jk =
∑

i

cijkxi, (1.3)

and we write
r(x) := rank(M(x)). (1.4)

We are now ready to describe our two alternatives.

Theorem 2 Let ε > 0 be given. Then either

#{x ∈ Zn : |x| < H, r(x) = r} ¿ε H
r+ε, (1.5)

holds for every non-negative integer r ≤ n, or the equation C(x) = 0 has a
non-trivial integral zero (for “geometric reasons”).

When the first alternative above holds we use the circle method to produce
the following result.

Theorem 3 Assume that C(x) has no rational linear factor. Suppose that (1.5)
holds for every r, and every ε > 0. Suppose further that the centre point ξ of
the cube B is a non-singular point of the variety C(x) = 0 such that ξi 6= 0 for
every index i. Then there is a positive ρ0(n, ξ) such that whenever the cube B
has ρ ≤ ρ0(n, ξ), and whenever n ≥ 14, we have

N (P ) ∼ Pn−3SJ0 as P →∞,

where S and J0 are the usual singular series and singular integral respectively.
(Thus S depends only on the form C(x), while J0 depends only on C(x) and
the box B.) Both S and J0 are strictly positive.

As Davenport observes [6, Chapter 16], a suitable point ξ always exists under
the above hypotheses. (In fact the only point where we use the conditions on
ξ is in handling the singular integral.) The above two results therefore suffice
for Theorem 1. We remark that our first result is essentially a restatement
of Davenport [6, Lemma 14.3], (though the reader should note the switch in
notation between r and n− r). However the assertion is sufficiently important
to warrant formal statement as a theorem. For the precise interpretation of the
“geometric reasons” the reader should consult [6, Chapter 14]. As an example of
Theorem 2 we observe that, for the form C(x) in (1.2), one finds that r(x) ≤ 3
whenever x2 = 0. Thus for some r ≤ 3 we will have

#{x ∈ Zn : |x| < H, r(x) = r} À Hn−1 À Hr+1

as soon as n ≥ 5.
We also remark that the singular integral J0 is convergent and positive when-

ever ξ and ρ are chosen as in Theorem 3, providing only that C(x) has no ra-
tional linear factor, and n ≥ 2. This is implicit in the work of Davenport [6,
Chapter 16]. As to the singular series we shall prove the following assertion.

Theorem 4 Suppose that (1.5) holds for every ε and every r. Then the singular
series S is absolutely convergent providing that n ≥ 11.
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It is easy to see that our result has a consequence for the representation of
rational numbers by cubic forms. Thus, if C(x) ∈ Q[x] is a non-degenerate cubic
form, with 13 or more variables, then C(x) represents every rational number,
using rational values for the variables. One might hope to do slightly better,
but the obvious line of attrack appears to fail.

Our proofs of Theorems 3 and 4 require substantial new ideas, which we shall
explain later. For the time being let it suffice to say that we shall supplement
Weyl’s inequality with van der Corput’s method. This has both advantages and
disadvantages, but the former outweigh the latter. Amongst the advantages are
the possibility of combining van der Corput’s method with an averaging process
which leads to additional savings, which prove to be crucial. However the basic
form of the method is not quite sufficient even to prove Theorem 3 for n ≥ 15.
Thus our success depends on the use of two additional techniques, each of which
provides a small extra saving. As a result this paper is not as elegant as one
might like.

A few words about notation are required. We shall use the symbol c to denote
various positive real constants depending on the form C(x), not necessarily
the same at each occurrence. We shall take the form C(x), the cube B, and
the parameter ε ∈ (0, 1), to be fixed throughout. It will transpire that any
sufficiently small ε > 0 will be suitable for our purposes. Any order constants
which we write in O(. . .) or ¿ notations will be allowed to depend on C(x), on
B, and on ε. It will be convenient to assume that 10 ≤ n ≤ 16. We shall write N
for the set of strictly positive integers {1, 2, 3, . . .}. We will encounter a number
of summations involving vectors x,y, z etc. These will always be restricted to
integer vectors, so that we write

∑
x∈PB as a shorthand for

∑
x∈PB∩Zn , for

example. Finally we shall assume without comment that the parameter P is a
sufficiently large integer, at various stages in the argument.

Thanks are due to Tim Browning for his numerous helpful comments and
careful proof-reading, which have greatly improved this paper.

2 Davenport’s Approach

In this section we shall describe the route taken by Davenport. In doing so we
shall encounter a number of results which we are able to re-use for our own work.
Moreover we hope that the rationale for the approach taken in the present paper
will be clearer once it is compared and contrasted with Davenport’s method.

We shall base our description on the exposition in [6, Chapters 13–18], rather
than [5]. The former establishes a slightly weaker result, in which C(x) has at
least 17 variables. One should really think of this as dealing with “16 + ε”
variables. In [5] Davenport uses an extra device to reduce “16 + ε” to “16− δ”,
but this particular trick will not be relevant to our discussions.

The underlying approach is based on the circle method, in which one takes
the Major Arcs to be of the form

M′(a, q) =
[
a

q
− P−3+∆ ,

a

q
+ P−3+∆

]

for 1 ≤ a ≤ q with (a, q) = 1 and q ≤ P∆. Here ∆ is a small fixed positive real
number to be defined in due course, see Lemma 6.2. From now on any order
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constants will be allowed to depend on ∆ as well as C(x), B and ε. We write
M′ for the union of the various M′(a, q).

We define the generating function

S(α) =
∑

x∈PB
e(αC(x)),

where e(β) := exp(2πiβ) as usual, so that

N (P ) =
∫ 1

0

S(α)dα.

We also define the complete exponential sums

Sa,q =
∑

x mod q

e(
a

q
C(x)),

and the singular series, given by

S =
∞∑

q=1

∑

1≤a≤q
(a,q)=1

q−nSa,q.

This may or may not be convergent. Davenport [6, Lemma 15.3] shows under
suitable conditions that Sa,q ¿ε q

7n/8+ε for any ε > 0. This suffices to establish
absolute convergence for n ≥ 17, but is too weak for smaller value of n.

The work of Davenport (see Lemma 15.4, Chapters 16, 17 and 18 of [6]) now
suffices to establish the following result.

Lemma 2.1 Assume that C(x) has no rational linear factor. Let n ≥ 10 and
suppose that the centre point ξ of the cube B is a non-singular point of the variety
C(x) = 0, and satisfies ξi 6= 0 for each index i. Suppose further that ρ in (1.1)
is sufficiently small. Assume that ∆ < 1/5 and suppose that the singular series
is absolutely convergent. Then the singular series S and the singular integral
J0 are both strictly positive, and

∫

M′
S(α)dα = Pn−3SJ0 + o(Pn−3)

as P →∞.

We must now consider the minor arcs, as described in [6, Chapter 13]. Here
Davenport uses a generalization of Weyl’s inequality which passes from the
bound

|S(α)|2 ≤
∑

|y|<P

|
∑

z∈R(y)

e(α(C(y + z)− C(z)))| (2.1)

via Cauchy’s inequality to

|S(α)|4 ¿ Pn
∑

|x|,|y|<P

|
∑

z∈S(x,y)

e(αC(x,y, z))|, (2.2)

where
C(x,y, z) = C(x + y + z)− C(x + z)− C(y + z) + C(z). (2.3)
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Here R(y) and S(x,y) are certain cubes inside PB. Moreover we have written
|x| for the Euclidean length of x, and have taken ρ in (1.1) to be sufficiently
small. If we now define the bilinear forms

Bi(x;y) :=
n∑

j,k=1

cijkxjyk (1 ≤ i ≤ n)

we find that

C(x,y, z) = 6
n∑

i=1

ziBi(x;y) + ψ(x,y),

where ψ(x,y) is independent of z. It therefore follows that

|S(α)|4 ¿ Pn
∑

|x|,|y|<P

|
∑

z∈S(x,y)

e(6α
n∑

i=1

ziBi(x;y))|

¿ Pn
∑

|x|,|y|<P

n∏

i=1

min(P , ||6αBi(x;y)||−1).

As in the proof of [6, Lemma 13.2] we find that

∑

|x|,|y|<P

n∏

i=1

min(P , ||6αBi(x;y)||−1) ¿ (PL)nN(α, P ),

where
L := logP

and

N(α, P ) := #{(x,y) ∈ Z2n : |x|, |y| < P, ||6αBi(x;y)|| < P−1 ∀i ≤ n}. (2.4)

It therefore follows that

|S(α)|4 ¿ P 2nLnN(α, P ). (2.5)

The focus of the investigation now moves to the analysis of N(α, P ). This
would be straightforward in the case of a diagonal form, since the bilinear form
Bi(x;y) would then just be a scalar multiple of xiyi. Thus it is exactly at this
point that the general shape of C(x) begins to cause difficulties. Davenport’s
solution is ingenious, but involves a loss relative to the diagonal case. Using the
geometry of numbers he proves the following result (see [6, Lemma 12.6]).

Lemma 2.2 Let L ∈ Mn(R) be a real symmetric n × n matrix. Let a > 0 be
real, and let

N(Z) := #{u ∈ Zn : |u| < aZ, ||(Lu)i|| < a−1Z ∀i ≤ n}.

Then, if 0 < Z1 ≤ Z2 ≤ 1, we have

N(Z2) ¿ (
Z2

Z1
)nN(Z1).
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(Davenport requires that a > 1. However if 0 < a ≤ 1 and 0 < Z1 ≤ Z2 ≤ 1,
the only available vector u will be u = 0. Thus N(Z1) = N(Z2) = 1, in which
case the lemma is trivial.)

Under suitable circumstances, an inequality of the form ||αm|| < P−1
0 forces

m to be zero. Specifically we have the following easy lemma, which we shall
prove at the end of this section.

Lemma 2.3 Let a real number M ≥ 0 be given and let α = a/q + θ, with
2qM |θ| ≤ 1. Suppose that m ∈ Z is such that |m| ≤ M and ||αm|| < P−1

0 for
some P0 ≥ 2q. Then q|m. In particular we will have m = 0 if in addition we
have either

(a) M < q; or

(b) |θ| > (qP0)−1.

In some cases it can happen that Lemma 2.3 applies directly to each of
the inequalities ||6αBi(x;y)|| < P−1. Usually however either the bound M for
Bi(x;y) is too large, or P0 = P is too small. In these case one may apply
Lemma 2.2 to good effect. One takes the matrix L to be 6M(x), with M(x)
given by (1.3). Then (Ly)i = 6Bi(x;y), and if a = P we will have

N(1) = #{y ∈ Zn : |y| < P, ||6αBi(x;y)|| < P−1 ∀i ≤ n}.
Thus N(1) ¿ Z−nN(Z) for 0 < Z ≤ 1, whence, on summing over x, we deduce
that

N(α, P ) ¿ Z−n#{(x,y) ∈ Z2n : |x| < P, |y| < ZP,

||6αBi(x;y)|| < ZP−1 ∀i ≤ n}. (2.6)

Rather than using the estimate (2.6) directly, Davenport reverses the rôles of
x and y in (2.6), and uses the matrix L = 6M(y) in Lemma 2.2 with a =
PZ−1/2, Z1 = Z3/2 and Z2 = Z1/2 to deduce that

N(α, P ) ¿ Z−2n#{(x,y) ∈ Z2n : |x| < ZP, |y| < ZP,

||6αBi(x;y)|| < Z2P−1 ∀i ≤ n}. (2.7)

By choosing Z appropriately one can hope to make Lemma 2.3 applicable, and
thence to deduce that

N(α, P ) ¿ Z−2n#{(x,y) ∈ Z2n : |x| < ZP, |y| < ZP, Bi(x;y) = 0 ∀i ≤ n}.
Specifically, it suffices that Z satisfies each of the conditions

0 < Z < 1, Z2 < (12cq|θ|P 2)−1, Z2 < P/(2q),

and
Z2 < max(

q

6cP 2
, qP |θ|),

where c =
∑ |cijk| for the coefficients cijk of C(x).

This brings us to the study of the density of integer solutions to the system
of simultaneous bilinear equations

Bi(x;y) = 0 ∀i ≤ n. (2.8)
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If r(x) = r the solutions y belong to a vector space of dimension n − r,
so that there are O(Y n−r) integer solutions y in the region |y| < Y , for
any Y ≥ 1. If (1.5) holds the total number of solutions with |x| < X and
r(x) = r is O(Xr+εY n−r). Thus on summing over r ≤ n we see that there are
O(max(X,Y )n+ε) integer solutions with |x| < X and |y| < Y . This bound is es-
sentially best possible, since if x = 0 then every y provides a solution, and simi-
larly if y = 0. Hence the most efficient way of using the boundO(max(X,Y )n+ε)
is to have X = Y , and it is for this reason that it is natural to use (2.7) rather
than (2.6).

On applying the above bound we find that

N(α, P ) ¿ Z−2n.(ZP )n+ε

for appropriate Z ≥ P−1. The bound is trivially true when Z ≤ P−1, since we
always have N(α, P ) ¿ P 2n. It then follows from (2.5) that

|S(α)|4 ¿ P 3n+εLnZ−n.

We therefore choose Z (essentially) as large as possible, given the constraints
above. Thus we take

Z =
1
2

min

{
1 ,

1√
12cq|θ|P 2

,

√
P√
2q
, max(

√
q√

6cP 2
,
√
qP |θ|)

}
,

which results in the bound

|S(α)|4 ¿ P 3n+εLn{1 + (q|θ|P 2)n/2 + qn/2P−n/2

+ min(Pnq−n/2 , (qP |θ|)−n/2)}. (2.9)

In particular we see that

S(α) ¿ Pn+ε{(q|θ|)n/8 + (q|θ|P 3)−n/8) + P−3n/16} for q ≤ P 3/2,

and since A1/2 ≤ B +AB−1 for any A,B > 0 we deduce that

S(α) ¿ Pn+ε{(q|θ|)n/8 + (q|θ|P 3)−n/8)} for q ≤ P 3/2. (2.10)

We now consider the effect of applying Dirichlet’s Approximation Theorem
to a typical α in the minor arcs m. For a given parameter Q one may write
α = a/q + θ, with |θ| ≤ (qQ)−1 and q ≤ Q. Moreover the values of α for which

1
2qQ

≤ |θ| ≤ 1
qQ

and Q/2 ≤ q ≤ Q

will make up a positive proportion of [0, 1]. For such α the bound (2.9) becomes

|S(α)|4 ¿ P 3n+εLn{1 + PnQ−n/2 +Qn/2P−n/2},
which is optimal for Q = P 3/2, yielding

S(α) ¿ P 13n/16+ε. (2.11)

Moreover, for this choice of Q, and a general α, we obtain

|S(α)|4 ¿ P 3n+εLn min(Pnq−n/2 , (qP |θ|)−n/2),
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and hence
S(α) ¿ Pn+εq−n/8 min{1 , (P 3|θ|)−n/8).

This is equivalent to the conclusion given by Davenport [6, (15.1) & (15.2)].
However we have preferred to phrase the result in terms of an upper bound for
S(α) subject to approximation properties of α, rather than using the contra-
positive of this formulation. By adapting the argument to work with the cube
0 < x1, . . . , xn ≤ q one can obtain similarly the bound

Sa,q ¿ q7n/8+ε

as in Davenport [6, Lemma 15.3]. We shall improve on this in §8.
One now sees that the contribution to the minor arc integral from a range

|θ| ≤ (qQ)−1, with Q = P 3/2, (2.12)

is
¿ Pn−3+εq−n/8

as long as n ≥ 9. Summing for P∆ < q ≤ Q = P 3/2, and for a less than and
coprime to q, will produce a bound o(Pn−3) precisely when n > 16. We should
point out here that there is a clear sense in which Davenport’s bound is better
with respect to θ than it is with respect to q, in as much as one needs only n > 8
for the θ integration, but n > 16 for the q summation. We shall capitalize on
this later, using Davenport’s result for small θ.

The above estimates suffice to establish a version of Theorem 3 for the case
n > 16. To handle the case n = 16, Davenport [5] slightly improves the treat-
ment of the number of solutions to (2.8), showing under suitable circumstances
that the number of solutions with x,y 6= 0 and |x|, |y| ≤ X is O(Xn−δ) for
some small positive δ. Subsequent work allows us to reduce the exponent in
this result somewhat, but the way in which the bound is used is by no means
straightforward, and the improvement seems not to lead to a sharpening of the
16 variable result.

We conclude this section by establishing Lemma 2.3, which is quite elemen-
tary. The result is trivial if M = 0, so we shall assume that M > 0. We shall
repeatedly use the fact that ||x + y|| ≤ ||x|| + ||y|| for every real x, y ∈ R. If
||αm|| < P−1

0 then

||a
q
m|| ≤ ||αm||+ ||θm|| < P−1

0 + (2qM)−1|m| ≤ (2q)−1 + (2qM)−1M = q−1.

It follows that q|m, and if |m| ≤M < q we must have m = 0. In the alternative
case, in which we have |θ| > (qP0)−1, we observe that

|θm| ≤ (2qM)−1|m| ≤ (2qM)−1M ≤ 1
2
,

whence
|θm| = ||θm|| ≤ ||a

q
m||+ ||αm|| = ||αm|| ≤ P−1

0 ,

on recalling that q|m. Thus

|m| ≤ (P0|θ|)−1 < q,

whence we must have m = 0. This completes the proof of the lemma.
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3 A Simple Version of van der Corput’s Method

Davenport’s method, as described in §2, involves the use of Lemma 2.2 two
times in order to reduce the size of both the vectors x and y occurring in (2.4).
The fundamental new idea in this paper is to to use van der Corput’s method to
reduce the size of one of the variables, and to apply Lemma 2.2 only once. This
has a number of advantages but also the disadvantage that the upper bound
P−1 for ||6αBi(x;y)|| is reduced only once. As a result we shall have to make
a smaller choice of Q than in (2.12).

We shall use a variant of van der Corput’s method, but before looking at
this in detail we shall describe the most basic form of the method, to introduce
the reader to the fundamental idea. We choose a positive integer H ≤ P and
write, temporarily, f(x) = e(αC(x)) for x ∈ PB and f(x) = 0 otherwise. Then

HnS(α) =
∑

h

∑

x∈Zn

f(x + h),

where the sum is for vectors with 1 ≤ hi ≤ H for each i. We re-write this as

HnS(α) =
∑

x∈Zn

∑

h

f(x + h).

Since B ⊆ [−1, 1]n in (1.1), and H ≤ P , it follows that f(x + h) = 0 unless
max |xi| ≤ 2P . Thus Cauchy’s inequality yields

H2n|S(α)|2 ≤ (2P + 1)n
∑

x∈Zn

|
∑

h

f(x + h)|2. (3.1)

We expand the square to give

H2n|S(α)|2 ≤ (2P + 1)n
∑

h1

∑

h2

∑

x∈Zn

f(x + h1)f(x + h2)

= (2P + 1)n
∑

h1

∑

h2

∑

y∈Zn

f(y + h1 − h2)f(y)

= (2P + 1)n
∑

h

w(h)
∑

y∈Zn

f(y + h)f(y), (3.2)

where, in the final line, the sum over h is for max |hi| ≤ H, and

w(h) := #{h1,h2 : h = h1 − h2} ≤ Hn. (3.3)

We therefore conclude that

|S(α)|2 ¿ H−nPn
∑

h

|T (h, α)|, (3.4)

where
T (h, α) :=

∑

y∈Zn

f(y + h)f(y). (3.5)

A comparison of (3.4) with (2.1) shows that the special case H = P of van der
Corput’s method reduces to our previous bound. Thus nothing has been lost at
this stage, but potential flexibility in the choice of H has been introduced.
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As is §2 we now square |T (h, α)| to give

|T (h, α)|2 =
∑
y,z

e(α{C(y + h)− C(y)− C(z + h) + C(z)}),

where the summation is subject to the conditions

y + h,y, z + h, z ∈ PB.

If we substitute y = z + w the sum becomes
∑
z,w

e(αC(w,h, z)),

in the notation of (2.3), where the summation conditions are now

z + w + h, z + w, z + h, z ∈ PB.

For given w and h, the conditions on z define a box. Hence if ρ in (1.1) is small
enough, the argument leading to (2.5) produces

|T (h, α)|2 ¿ (PL)nN(α, P,h), (3.6)

where we have defined

N(α, P,h) := #{w ∈ Zn : |w| < P, ||6αBi(h;w)|| < P−1 ∀i ≤ n}.

We then apply Lemma 2.2 to deduce, as in (2.6), that

N(α, P,h) ¿ Z−n#{w ∈ Zn : |w| < ZP, ||6αBi(h;w)|| < ZP−1 ∀i ≤ n}

for any Z ∈ (0, 1].
We have now reached the major point of difference between our approach

and Davenport’s. In our method, if H is chosen suitably, both variables h,w in
the bilinear forms Bi above will be suitably small, while Davenport requires a
second application of Lemma 2.2 to achieve this. Thus our strategy is to apply
Lemma 2.3 at this stage, taking P0 = PZ−1 and M = cHZP with a suitable
constant c so that 6|Bi(h;w)| ≤ cHZP . The conditions required are then that
Z ≤ 1, 2q ≤ PZ−1, |θ| ≤ (2cqHZP )−1 and either cHZP < q or |θ| > Z(qP )−1.
We define

ψ := |θ|+ 1
P 2H

. (3.7)

Then it suffices to have

Z ≤ 1, Z ≤ {2(c+ 1)qHPψ}−1, and Z ≤ {2(c+ 1)}−1qPψ. (3.8)

Providing the above conditions are satisfied Lemma 2.3 will yield

N(α, P,h) ¿ Z−n#{w ∈ Zn : |w| < ZP, Bi(h;w) = 0 ∀i ≤ n}.

The values of w are restricted to a vector space of dimension n − r(h) where
r(h) is as in (1.4). Thus, when ZP À 1 we have

N(α, P,h) ¿ Z−n(ZP )n−r(h).

11



If we insert this bound into (3.6) and (3.4) we find that

|S(α)|2 ¿ H−nPn
∑

h

(PL)n/2{Z−n(ZP )n−r(h)}1/2.

According to (1.5) each rank r(h) = r occurs O(Hr+ε) times, and summing
over the possible values of r we conclude that

|S(α)|2 ¿ P 2n+ε{P−n/2Z−n/2 +H−n}Ln/2.

Clearly this is trivially true if the condition ZP À 1 is violated. We choose Z
as large as possible within the constraints (3.8), as

Z = min
({2(c+ 1)qHPψ}−1 , {2(c+ 1)}−1qPψ

)
. (3.9)

Note that this automatically yields Z ≤ 1. We then have

|S(α)|2 ¿ P 2n+ε{(qHψ)n/2 + P−n(qψ)−n/2 +H−n}Ln/2.

We would like to choose H to optimize this, recalling that H ≤ P must be a
positive integer. However this is not straightforward, since ψ depends on H.
We shall take

H =
{

[q1/3], |θ| ≤ q−1/3P−2,
max{[P−2|θ|−1] , [(q|θ|)−1/3]}, |θ| > q−1/3P−2.

Then if q ≤ P 3 we will have 1 ≤ H ≤ P . Moreover we will have

H ¿ q1/3 ¿ H, ψ ¿ (P 2H)−1 ¿ ψ

and
H ¿ max{P−2|θ|−1 , (q|θ|)−1/3} ¿ H, ψ ¿ |θ| ¿ ψ

respectively in the two cases. Under the additional assumption that |θ| ≤ q−2

this leads to
|S(α)|2 ¿ P 2n+ε{P−nqn/2 + q−n/3}Ln/2 (3.10)

and
|S(α)|2 ¿ P 2n+ε{(q|θ|)n/3 + P−n(q|θ|)−n/2}Ln/2 (3.11)

in the two cases respectively.
As is §2 we proceed to consider the effect of these bounds when α is approx-

imated via Dirichlet’s Theorem with

|θ| ≤ 1
qQ

and q ≤ Q.

The values of α for which

1
2qQ

≤ |θ| ≤ 1
qQ

and Q/2 ≤ q ≤ Q

will make up a positive proportion of [0, 1]. For such α the above bounds reduce
to

S(α) ¿
{

Pn+εQ−n/6, Q ≤ P 6/5,
Pn/2+εQn/4, Q ≥ P 6/5.

12



Thus the optimal choice is Q = P 6/5, for which our estimate becomes

S(α) ¿ P 4n/5+ε. (3.12)

This is clearly superior to (2.11). However, even if (3.12) were to hold for all
α, it would not suffice to establish Theorem 3 for n ≥ 15, let alone for n ≥ 14.
Indeed the bounds (3.10) and (3.11), even taken in conjunction with (2.9), are
not quite enough to handle the case n = 16, so that further savings are essential.
The author is grateful to Dr Browning for this observation.

4 Averaged Versions of van der Corput’s
Method

It is well known in the context of one-dimensional exponential sums that the
inequality on which van der Corput’s method is based can be interpreted as
arising from a mean square average of the sum over a short range. Thus, for
example, the classical bound

ζ(
1
2

+ it) ¿ε t
1/6+ε, (t ≥ 1)

for the Riemann Zeta-function, valid for any ε > 0, corresponds to a mean-value
estimate ∫ T+T 1/3

T

|ζ(1
2

+ it)|2dt¿ε T
1/3+ε (T ≥ 1)

(see Heath-Brown [7]), or indeed to the bound E(T ) ¿ε T
1/3+ε for the error

term in the asymptotic formula

∫ T

0

|ζ(1
2

+ it)|2dt = T (log
T

2π
+ 2γ − 1) + E(T ),

(see Balasubramanian [2]). In general one can expect a better bound for the
mean square of an exponential sum than can be obtained by applying van
der Corput’s method pointwise. In effect, the averaging process automatically
produces a shortened variable, corresponding to the reduction from P to H
which one sees on comparing (3.4) with (2.1). Unfortunately, when one has
n-dimensional exponential sums, a 1-dimensional averaging corresponds to the
shortening of only one variable, rather than n variables.

We proceed to investigate the mean-square

M(α,H) :=
∫ α+(P 2H)−1

α−(P 2H)−1
|S(β)|2dβ.

We required the centre point ξ of the box B to be non-singular. We may
therefore re-order the indices so that G > 0 where we write, temporarily,

G :=
∣∣∣∣
∂C(ξ)
∂ξ1

∣∣∣∣ . (4.1)

13



We now run through the argument of the previous section, up to (3.2), but
with α replaced by β and h restricted by the conditions 1 ≤ h1 ≤ P and
1 ≤ h2, h3, . . . , hn ≤ H. This yields the inequality

P 2H2n−2|S(β)|2 ≤ (2P + 1)n
∑

h

w(h)
∑

y∈Zn

f(y + h)f(y),

where now the summation condition on h is |h1| ≤ P and max2≤i≤n |hi| ≤ H.
Moreover, the weight w(h) is still given by (3.3), but with the new restrictions
on h1,h2. We now have

M(α,H) ≤ e

∫ ∞

−∞
exp{−H2P 4(β − α)2}|S(β)|2dβ

≤ e(2P + 1)nP−2H2−2n
∑

h

w(h)
∑

y∈Zn

I(h,y), (4.2)

where

I(h,y) :=
∫ ∞

−∞
exp{−H2P 4(β − α)2}e(β{C(y + h)− C(y)})dβ, (4.3)

and where the sums over h and y are restricted by the condition that y+h and
y belong to PB. We may alternatively write

I(h,y) =
√
π

HP 2
exp(−π2{C(y + h)− C(y)

HP 2
}2)e(α{C(y + h)− C(y)}),

and since w(h) ¿ PHn−1 it is clear that terms with

|C(y + h)− C(y)| ≥ HP 2L (4.4)

make a total contribution O(1) to M(α,H). However

C(y + h)− C(y) = h1
∂C(y)
∂y1

+O(HP 2) +O(h2
1P ),

the order constants depending on the form C(x) alone, and not on the box B.
If we choose ρ small enough in (1.1) we will have

|∂C(y)
∂y1

| ≥ 1
2
P 2G,

since we must have y+h,y ∈ PB. Moreover, again by choosing ρ small enough,
we can force the error term O(h2

1P ) above to be at most 1
4G|h1|P 2 in absolute

magnitude. It then follows that

|C(y + h)− C(y)| ≥ 1
4
G|h1|P 2 +O(HP 2).

Thus, for large enough P , the condition (4.4) will be met unless |h1| ≤ 5G−1HL,
say, or indeed unless |h1| ≤ HL2. We therefore conclude that the contribution
to (4.2), arising from those terms with |h1| > HL2, is O(1).

We may now deduce from (4.2) that

M(α,H) ¿ Pn−2H2−2n
∑

|h1|≤HL2

∑

|h2|≤H

. . .
∑

|hn|≤H

w(h)

∣∣∣∣∣∣
∑

y∈Zn

I(h,y)

∣∣∣∣∣∣
.
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In (4.3) the range |β−α| ≥ H−1P−2L trivially contributes O(1) in total, whence

M(α,H) ¿ 1 + Pn−1H1−n
∑

|hi|≤HL2

∫ α+(P 2H)−1L

α−(P 2H)−1L
|T (h, β)|dβ,

where T (h, β) is given by (3.5). Roughly speaking, this bound says that a
suitable mean-square average of S(β) is bounded by the corresponding average
of

Pn−1H1−n
∑

h

|T (h, β)|.

If we compare this with (3.4) we see that we have gained a factor HP−1.
We conclude our initial treatment of M(α,H) by estimating T (h, β) as in

(3.6), to deduce that

M(α,H) ¿ 1 + P 3n/2−3H−nLn/2+1
∑

|hi|≤HL2

max
β∈I

N(β, P,h)1/2, (4.5)

where
I = {β : |β − α| ≤ H−1P−2L}. (4.6)

5 Averages of N(β, P,h)

Our next task is to consider the size of N(β, P,h). The average we will consider
is

A(θ,R,H, P ) :=
∑

R<q≤2R

∑

a≤q
(a,q)=1

∑

|hi|≤HL2

max
β

N(β, P,h)1/2, (5.1)

where β is in the range (4.6) with α = a/q + θ. We begin by observing that if
|hi| ≤ HL2 and |w| < P , then |Bi(h;w)| ≤ cHPL2 for some constant c. Thus,
if β lies in the range (4.6), the inequality ||6βBi(h;w)|| < P−1 implies

||6αBi(h;w)|| < P−1 + 6cP−1L3 ≤ (1 + 6c)P−1L3.

Now, if we set P̃ = {(1 + 6c)L3}−1P we will have

max
β

N(β, P,h) ≤ #{w ∈ Zn : |w| < P, ||6αBi(h;w)|| < P̃−1 ∀i ≤ n}.

Write P̂ = P̃ /2. We proceed to cover the region |w| < P by O(PnP̂−n) balls
|w| < P̂/2. If w0,w1 are two integer vectors in the same ball, both counted in
the set above, then |w1 −w0| < P̂ and

||6αBi(h;w1 −w0)|| < 2P̃−1 = P̂−1 ∀i ≤ n.

It follows that

max
β

N(β, P,h)

¿ PnP̂−n#{w ∈ Zn : |w| < P̂ , ||6αBi(h;w)|| < P̂−1 ∀i ≤ n}
¿ L3nN(α, P̂ ,h).
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We proceed to use Lemma 2.2 in two different ways, taking a = P̂ so that
N(1) ¿ Z−nN(Z) for any Z ∈ (0, 1]. In the first application we will choose Z
just small enough to ensure thatm = 6Bi(h;w) = 0, while in the second we shall
only require that q|m. The condition |m| ≤M will hold with M = cHP̂ZL2 for
a suitable constant c. The first choice needs 0 < Z ≤ 1, |θ| ≤ (2qcHP̂ZL2)−1,
P0 = P̂Z−1 ≥ 2q, and either

cHP̂ZL2 < q or |θ| > (qP̂ )−1Z.

When R < q ≤ 2R it therefore suffices to take

Z = Z1 := cL−3 min{(RHPψ)−1 , RPψ},
for a suitable constant c > 0, with ψ given by (3.7) as before. In particular

Z1 ≤ cL−3(RHPψ)−1/2(RPψ)1/2 ≤ 1

for sufficiently small c. For the second application it suffices similarly to take

Z = Z2 := cL−3 min{1, (RHPψ)−1}. (5.2)

Thus our first choice leads to

max
β

N(β, P,h) ¿ L3nN(α, P̂ ,h)

¿ L3nZ−n
1 #{w ∈ Zn : |w| < Z1P̂ , Bi(h;w) = 0 ∀i ≤ n}

¿ L3nZ−n
1 {1 + (Z1P̂ )n−r},

where r = r(h). Since P ≥ H ≥ 1 we trivially have N(β, P,h) ¿ Pn ¿ L3nP̂n,
whence

N(β, P,h) ¿ L3n min
(
P̂n , Z−n

1 {1 + (Z1P̂ )n−r}
)
.

However the minimum above is clearly O(Z−n
1 (Z1P̂ )n−r), whether Z1P̂ ≥ 1 or

not. Thus

max
β

N(β, P,h) ¿ L3nZ−n
1 (Z1P̂ )n−r

¿ L6nPn
(
min{(RHψ)−1 , RP 2ψ})−r

¿ L6nPn{(RHψ)r + (RP 2ψ)−r}. (5.3)

Our second choice for Z yields

max
β

N(β, P,h) ¿

L3nZ−n
2 #{w ∈ Zn : |w| < Z2P̂ , q|Bi(h;w) ∀i ≤ n}. (5.4)

In order to count vectors w with q|Bi(h;w) for every i we shall decompose q
into different types of prime factors. For given h, with r(h) = r, we say that p
is of type I if p divides every r× r minor of the matrix M(h). If p is not of type
I we shall say that p is of type II. We then decompose q as q = q1q2, where q1 is
a product of type I primes, and q2 a product of type II primes. For any integer
m we write

Λ(m) = {w ∈ Zn : m|Bi(h;w)∀i}
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and we set Λ(h) = Λ(q2). Thus the condition that q|Bi(h;w) for every i then
restricts w to the lattice Λ(h), whose determinant d(Λ(h)) will be a product of
prime powers for primes p|q2. We proceed to estimate this determinant, using
the fact that d(Λ(m)) is the index [Zn : Λ(m)]. Then

[Zn : Λ(pe)] = [Λ(p0) : Λ(pe)] =
e∏

f=1

[Λ(pf−1) : Λ(pf )]. (5.5)

Moreover the map
θ : Zn/Λ(p) → Λ(pf−1)/Λ(pf )

given by
w + Λ(p) 7→ pf−1w + Λ(pf )

is an injective homomorphism, so that [Zn : Λ(p)] divides [Λ(pf−1) : Λ(pf )].
However if p is a type II prime, then the conditions p|Bi(h;w) define a lattice
of determinant pr, whence (5.5) implies that per|d(Λ(h)) whenever pe||q2. It
follows that qr

2|d(Λ(h)).
We shall require some further facts about lattices and their successive min-

ima, which we summarize in the following lemma.

Lemma 5.1 Let Λ ⊆ Zn be an n-dimensional lattice of determinant d(Λ) and
with successive minima λ1 ≤ . . . ≤ λn. Then d(Λ) ≤ ∏n

i=1 λi and

#{x ∈ Λ : |x| ≤ B} ¿
∏

i≤n

(1 +B/λi).

For a proof, see (2.2) and Lemma 4 of Browning and Heath-Brown [3], for
example.

We shall take Λ = Λ(h). We observe that

q2Zn ⊆ Λ ⊆ Zn

whence 1 ¿ λi ¿ q2 for every index i. Moreover Lemma 5.1 implies that∏
λi ≥ qr

2 and
#{x ∈ Λ : |x| ≤ B} ¿

∏

i≤n

(1 +B/λi).

If we maximize the right hand side with respect to the various λi, subject to
the above constraints, we find that the extremum occurs when r of the λi are
of order q2 and the remainder are of order 1. If B ≥ 1 this leads to an estimate
of the form

#{x ∈ Λ : |x| ≤ B} ¿ (1 +
B

q2
)rBn−r.

We now apply this bound in (5.4), with Z2 as in (5.2), and B = 1 + Z2P̂ .
Then if HRψ ≤ 1 we have

Z−1
2 B = Z−1

2 + P̂ ¿ L3(1 +HRPψ + P ) ¿ L3P

and
B−1 ¿ Z−1

2 P̂−1 ¿ L6(P−1 +HRψ).
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It follows that

max
β

N(β, P,h) ¿ L3nZ−n
2 (1 +

B

q2
)rBn−r

= L3n{B−1 + q−1
2 }r(Z−1

2 B)n

¿ L12n{P−r + (HRψ)r + q−r
2 }Pn

when HRψ ≤ 1. Moreover the bound is trivial when HRψ ≥ 1, since we always
have N(β, P,h) ¿ Pn.

We may now combine the above result with (5.3) to deduce that

max
β

N(β, P,h)

¿ L12nPn
(
(RHψ)r(h) + min{(RP 2ψ)−r(h) , P−r(h) + q

−r(h)
2 }

)

¿ L12nPn
(
(RHψ)r(h) + P−r(h) + min{(RP 2ψ)−r(h) , q

−r(h)
2 }

)
.

Thus it follows that

A(θ,R,H, P ) ¿ RL6nPn/2
∑

|hi|≤HL2

∑

R<q≤2R

(
(RHψ)r(h)/2 + P−r(h)/2

+ min{(RP 2ψ)−r(h)/2 , q
−r(h)/2
2 }

)
. (5.6)

We therefore proceed to consider

V (h, R, ψ) :=
∑

R<q≤2R

min{(RP 2ψ)−r/2 , q
−r/2
2 }

for a given vector h, with r(h) = r. Recall that q = q1q2, with q1 composed of
powers of primes each of which divides every r × r minor of the matrix M(h).
However, since r(h) = r, there is some such minor M0 = M0(h), say, which is
non-zero. It follows that we may write

V (h, R, ψ) ¿
∑

q1≤2R

∑

R/q1<q2≤2R/q1

min{(RP 2ψ)−r/2 , q
−r/2
2 }

¿
∑

q1≤2R

Rq−1
1 min{(RP 2ψ)−r/2 , (R/q1)−r/2},

where q1 runs over integers all of whose prime factors divide M0. We split the
available range for q1 into dyadic intervals S ≤ q1 < 2S, whence

V (h, R, ψ) ¿ LRS−1 min
(
(RP 2ψ)−r/2 , (R/S)−r/2

)
#{q1 ≤ 2S}

for some positive integer S ≤ R. We estimate the number of admissible values
of q1 by the well-known method of Rankin. We have

#{q1 ≤ 2S} ¿ Sε
∑
q1

q−ε
1

where the sum on the right runs over all integers q1 composed only of prime
factors dividing M0. Thus

∑
q1

q−ε
1 =

∏

p|M0

(1− p−ε)−1 ¿ d(|M0|) ¿ |M0|ε/n,
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where d(|M0|) is the divisor function. Since |M0| ¿ HrL2r we conclude that

#{q1 ≤ 2S} ¿ (HS)εL,
and hence that

V (h, R, ψ) ¿ L2(HR)ε max
S≥1

RS−1 min{(RP 2ψ)−r/2 , (R/S)−r/2}.

When P 2ψ ≥ 1 and r ≥ 2 the value S = 1 is maximal, while if P 2ψ ≤ 1 and
r ≥ 2 the worst S is (P 2ψ)−1. Hence

V (h, R, ψ) ¿ L2(HR)εR(RP 2ψ)−r/2 min{1 , P 2ψ}
if r ≥ 2. On the other hand, when r ≤ 1, the maximum occurs at S = 1, so
that

V (h, R, ψ) ¿ L2(HR)εR(RP 2ψ)−r/2 min{1 , (P 2ψ)r/2}.
We combine our two estimates by writing

V (h, R, ψ) ¿ L2(HR)εR(RP 2ψ)−r/2 min{1 , (P 2ψ)e(r)}
with e(r) = r/2 for r ≤ 1 and e(r) = 1 otherwise.

We now see from (5.6) and (1.5) that

A(θ,R,H, P ) ¿ R2L6nPn/2
∑

|hi|≤HL2

(
(RHψ)r(h)/2 + P−r(h)/2

+R−1V (h, R, ψ)
)

¿ R2+εL6n+2Pn/2+ε
∑

|hi|≤HL2

(
(RHψ)r(h)/2 + P−r(h)/2

+ (RP 2ψ)−r(h)/2 min{1 , (P 2ψ)e(r(h))}
)

¿ R2+εPn/2+3ε
n∑

r=0

Hr
(
(RHψ)r/2 + P−r/2

+ (RP 2ψ)−r/2 min{1 , (P 2ψ)e(r)}
)

¿ R2+εPn/2+3ε
(
1 + (RH3ψ)n/2 +HnP−n/2

+ (H2R−1P−2ψ−1)n/2 min{1 , P 2ψ}
+H2R−1P−2ψ−1 min{1 , P 2ψ}
+ (H2R−1P−2ψ−1)1/2 min{1 , (P 2ψ)1/2}

)
.

The first, fourth, fifth, and sixth terms in the brackets have the form

1 +Anm+A2m+Am1/2

with m ≤ 1. However it is clear that Am1/2 ≤ max(1, A2m), and that A2m ≤
max(1, Anm). Thus the final two terms are redundant and we may conclude
that

A(θ,R,H, P ) ¿ R2+εPn/2+3ε
(
1 + (RH3ψ)n/2 +HnP−n/2

+ (H2R−1P−2ψ−1)n/2 min{1 , P 2ψ}
)
.
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Finally we note that

HnP−n/2 = {(RH3ψ)n/2.(H2R−1P−2ψ−1)n/2}1/2H−n/4

≤ max{(RH3ψ)n/2 , (H2R−1P−2ψ−1)n/2}H−n/4

≤ {(RH3ψ)n/2 + (H2R−1P−2ψ−1)n/2}H−1

≤ (RH3ψ)n/2 + (H2R−1P−2ψ−1)n/2 min{1 , P 2ψ},

since P 2ψ ≥ H−1. Thus

A(θ,R,H, P ) ¿ R2+εPn/2+3ε
(
1 + (RH3ψ)n/2

+ (H2R−1P−2ψ−1)n/2 min{1 , P 2ψ}
)
. (5.7)

It turns out that it suffices to use the term P 2ψ from the minimum occurring
here.

6 Bounding the Minor Arc Integral

Our goal in this section is to estimate the contribution to the minor arc integral
arising from those regions where α = a/q + θ and either q or θ is “large” (or
both). We assume that the minor arcs are defined via Dirichlet’s Approximation
Theorem with

|α− a

q
| ≤ 1

qQ
, q ≤ Q

for some Q in the range P ≤ Q ≤ P 5/4. Suppose that H = H(R,φ, P ) is a
positive integer with H ≤ P , and consider

Σ(R,φ,±) :=
∑

R<q≤2R

∑

a≤q
(a,q)=1

∫ 2φ

φ

|S(
a

q
± ν)|dν

with φ ≤ (RQ)−1 and R ≤ Q. Our aim in this section is to achieve a bound
Σ(R,φ,±) ¿ Pn−3−ε.

The simplest procedure is to apply the bound (2.10) directly, leading to

Σ(R,φ,±) ¿ R2φPn+ε{(Rφ)n/8 + (RφP 3)−n/8)}.

We therefore obtain our first result, as follows.

Lemma 6.1 We have
Σ(R,φ,±) ¿ Pn−3−ε

providing that φ ≤ (RQ)−1 and

R(16−n)/(n−8)P−3+8ε ≤ φ ≤ R−(n+16)/(n+8)P−24/(n+8)−ε.

Here we use the assumption that n ≥ 10 to help in controlling the ε terms in
the exponents.
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To use our version of van der Corput’s method we begin by employing
Cauchy’s inequality to deduce that

Σ(R,φ,±) ¿ φ1/2R





∑

R<q≤2R

∑

a≤q
(a,q)=1

∫ 2φ

φ

|S(
a

q
± ν)|2dν





1/2

.

We may cover the range [φ, 2φ] with O(1 + P 2Hφ) intervals of the form

[θ − P−2H−1, θ + P−2H−1]

with φ ≤ θ ≤ 2φ, whence

Σ(R,φ,±) ¿ φ1/2ψ1/2R




P 2H

∑

R<q≤2R

∑

a≤q
(a,q)=1

M(
a

q
+ θ,H)





1/2

for some θ in the range φ ≤ |θ| ≤ 2φ, with ψ as in (3.7) as before. We may then
use (4.5) and (5.1) to deduce that

Σ(R,φ,±) ¿ φ1/2ψ1/2R
{
R2P 2H + P 3n/2−1H1−nLn/2+1A(θ,R,H, P )

}1/2

,

whence (5.7) produces

Σ(R,φ,±) ¿ φ1/2ψ1/2R2
{
P 2H + P 2n−1+5εH1−nE

}1/2
, (6.1)

where
E = 1 + (RH3ψ)n/2 + (H2R−1P−2ψ−1)n/2P 2ψ. (6.2)

The term P 2H in the braces in (6.1) will turn out to be negligible.
We proceed to show that if n ≥ 14 then

Σ(R,φ,±) ¿ Pn−3−ε, (6.3)

if Q is suitably chosen. We shall also show that if n ≤ 13, and if Q ¿ R ¿ Q
and Q−2 ¿ φ ¿ Q−2, then there is no choice of Q for which our bounds will
suffice to prove (6.3).

We begin by supposing that n ≥ 14. In fact we shall present the calculations
for n = 14, larger values being handled similarly. In the course of our analysis
we shall assume that ε is sufficiently small whenever it is necessary. We will
have

φ1/2ψ1/2R2{P 2n−1+5εH1−nE}1/2 ¿ Pn−3−ε

providing that

φ1/2ψ1/2R2{P 2n−1+5εH1−n}1/2 ¿ Pn−3−ε. (6.4)

and
E ¿ 1. (6.5)
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We begin by choosing H so that (6.4) holds. For this latter condition it is
sufficient to have

φψR4P 5+7ε ¿ Hn−1.

In view of (3.7) this is equivalent to

Hn−1 À φ2R4P 5+7ε and Hn À φR4P 3+7ε.

When n = 14 we may therefore take

H =
[
P ε max{(φ2R4P 5)1/13 , (φR4P 3)1/14 , 1}

]
.

We will then have H ≤ P , since φ ≤ (RQ)−1 and R ≤ Q ≤ P 5/4. Moreover we
find that

φ1/2ψ1/2R1/2{P 2H}2 ¿ R2{P 3}1/2 ¿ P 5/2.P 3/2 ¿ Pn−3−ε,

so that the term P 2H in the braces in (6.1) produces a satisfactory contribution.
We now need to investigate whether or not our choice of H ensures that

(6.5) holds. We first consider the term (RH3ψ)n/2 in E. It is convenient to
note at this point that if we set

φ0 = (R4P 31)−1/15,

then

H =
[
P ε max{(φR4P 3)1/14 , 1}

]
, ψ ¿ P ε(P 2H)−1 for φ ≤ φ0, (6.6)

and
H =

[
P ε max{(φ2R4P 5)1/13 , 1}

]
, ψ ¿ φ for φ ≥ φ0. (6.7)

Now, when φ ≤ φ0 we calculate that

RH3ψ ¿ RH2P ε−2

¿ RP 3ε−2{1 + (φR4P 3)1/7}
¿ RP 3ε−2{1 + (Q−1R3P 3)1/7}
¿ QP 3ε−2 + P 3ε−11/7Q9/7

¿ 1

providing that
Q ≤ P 11/9−3ε.

Similarly when φ ≥ φ0 we have

RH3ψ ¿ RH3φ

¿ RφP 3ε{1 + (φ2R4P 5)3/13}
¿ Q−1P 3ε{1 + (Q−2R2P 5)3/13}
¿ Q−1P 15/13+3ε

¿ 1

providing that
Q ≥ P 15/13+3ε.
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We therefore choose
Q = P 13/11

which then suffices to ensure that RH3ψ ¿ 1 if ε is small enough.
We turn now to the condition

(H2R−1P−2ψ−1)n/2P 2ψ ¿ 1, (6.8)

which is also necessary for (6.5). When φ ≤ φ0 we have ψ ≥ (P 2H)−1, whence

(H2R−1P−2ψ−1)n/2P 2ψ ¿ (H3R−1)n/2H−1.

Thus, for n = 14, it is enough to have H ≤ R7/20. We therefore see from (6.6)
that it suffices to have R ≥ P 3ε and φ ≤ min(φ0, φ1), where

φ1 = R9/10P−3−14ε.

Similarly when φ ≥ φ0 we have ψ ≥ φ, whence (6.8) holds for n = 14 if
H14 ¿ R7P 12φ6. In view of (6.7) it suffices to have

P 14ε ≤ R7P 12φ6

and
P 14ε(φ2R4P 5)14/13 ≤ R7P 12φ6.

If we set

φ2 = P 4ε max{R−7/6P−2 , R−7/10P−43/25} = R−7/10P 4ε−43/25

it follows that (6.8) holds for φ ≥ max(φ0, φ2).
A further calculation shows that we will have φ2 ≤ φ0 ≤ φ1 whenever

R ≥ P 12ε+4/5. Thus (6.8) is always true in this case. For the remaining range
P 3ε ≤ R ≤ P 12ε+4/5 we have φ1 ≤ φ0 and φ2 ≥ P−2εφ0. It therefore follows for
this case that (6.8) holds unless φ1 ≤ φ ≤ P 2εφ2. For this intermediate range
we call on Lemma 6.1, which gives a satisfactory result when

R1/3P−3+8ε ≤ φ ≤ R−15/11P−12/11−ε. (6.9)

It therefore suffices to note that

R1/3P−3+8ε ≤ φ1 = R9/10P−3−14ε

for R ≥ P 40ε, and that

R−15/11P−12/11−ε ≥ P 2εφ2 = R−7/10P 6ε−43/25

for
R365 ≤ P 346−3850ε.

Since we are assuming that R ≤ P 4/5+12ε this last condition holds providing
that ε is small enough.

We have therefore shown that for n = 14 the bound (6.3) holds, for φ ≤
(RQ)−1 and P 40ε ≤ R ≤ Q, providing we choose Q = P 13/11. We also need
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to handle the case in which R ≤ P 40ε and φ is not too small. We shall write
∆ = 40ε. Then if R ≤ P∆ and P−3+∆ ≤ φ ≤ (RQ)−1 we have

φ ≥ P−3+40ε ≥ R1/3P−3+8ε

and
φ ≤ (RQ)−1 = R−1P−13/11 ≤ R−15/11P−12/11−ε.

Thus φ is in the range (6.9) when R ≤ P∆ and P−3+∆ ≤ φ ≤ (RQ)−1, so that
(6.3) holds, by Lemma 6.1.

We are now able to conclude as follows.

Lemma 6.2 Suppose that n = 14, that ε is sufficiently small, and that ∆ = 40ε.
Then if φ ≤ (RQ)−1 and R ≤ Q = P 13/11, we will have

Σ(R,φ,±) ¿ Pn−3−ε

unless
R ≤ P∆, and φ ≤ P−3+∆.

We proceed to cover the bulk of the minor arcs by sets of the form

I(a, q) = {α =
a

q
+ ν : φ0 ≤ |ν| ≤ 1

qQ
},

where φ0 = P−3+∆ if q ≤ P∆ and φ0 = P−n otherwise. By removing the small
intervals [a/q − P−n, a/q + P−n] we are able to use a dyadic subdivision of the
remaining range I(a, q) into O(L) subintervals. It is clear that the intervals
[a/q − P−n, a/q + P−n] contribute ¿ R2 ¿ Pn−3−ε to the minor arc integral.
We also note that

∑

q≤Q

∑

a≤q
(a,q)=1

∫

I(a,q)

|S(α)|dα¿ L2Σ(R,φ,±)

for some R ≤ Q, some φ ≤ (RQ)−1, and some choice of ±, as a double dyadic
subdivision shows. Thus the minor arc integral is O(Pn−3−ε/2), and hence
Theorem 3 follows from Lemma 2.1, once we have established the convergence
of the singular series, as in Theorem 4.

We conclude this section by discussing the case n = 13, with a view to
showing that the bounds we have established are not sufficient to handle the
case in which R is of order Q and φ is of order Q−2. It is not possible for φ to
be in the range covered by Lemma 6.1, since that would imply

Q3/5P−3 ¿ Q−2 ¿ Q−29/21P−24/21,

and hence
Q¿ P 15/13 and QÀ P 24/13,

which is impossible, since 15
13 <

24
13 . If (6.1) were to apply we would have

φ1/2ψ1/2R2{P 2n−1H1−n(1 + (RH3ψ)n/2)}1/2 ¿ Pn−3,

whence
Q2ψP 5 ¿ H12 and Q17P 10ψ15H15 ¿ 1.
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Since ψ ≥ φÀ Q−2 we would deduce that

P 5 ¿ H12 and P 10H15 ¿ Q13.

Similarly, since ψ À (P 2H)−1 we would find that

Q2P 3 ¿ H13 and Q17 ¿ P 20.

We would therefore have H À P 5/12, whence

Q13 À P 10H15 À P 65/4.

However this is incompatible with Q17 ¿ P 20. Thus we see that it is not
possible to show even that

Σ(R,φ,±) ¿ Pn−3

for n = 13, Q¿ R¿ Q and Q−2 ¿ φ¿ Q−2.

7 The Singular Series

It remains to establish Theorem 4. We must begin by relating Sa,q to S(a/q).
The analysis of §3 goes though unchanged, with the cube B in (1.1) replaced by

B′ =
∏

1≤i≤n

(−1
2
,

1
2
],

in which case Sa,q = S(a/q) with P = q. In particular we see from (3.10) that

Sa,q ¿ q5n/6+ε. (7.1)

This would suffice to prove the convergence of the singular series for n ≥ 13,
and so is enough for Theorem 3. However for Theorem 4 we must work a little
harder.

We begin by deducing from (3.4) and (3.6), with P = q, that

|Sa,q|2 ¿ H−nqn(q log q)n/2
∑

h

N(a/q, q,h)1/2.

We shall need to consider only prime values p = q ≥ 5. We divide the available
vectors h into two types. If r(h) = r we shall say that h is “bad” if p divides at
least one of the r× r minors of M(h). Otherwise we shall say that h is “good”.
If h is good we merely observe that if ||6aBi(h;w)/p|| < p−1 for every i then
p|Bi(h;w) for every i. Thus w is restricted to an (n − r)-dimensional vector
space modulo p, whence

N(a/p, p,h) ≤ pn−r

in this case. When h is bad we apply Lemma 2.2 with a = p, Z2 = 1 and
Z1 = cH−1, in which c ∈ (0, 1) is chosen so as to make |Bi(h;w)| < p whenever
|w| < pZ1. Then ||6aBi(h;w)/p|| < p−1 implies Bi(h;w) = 0, so that

N(a/p, p,h) ¿ Z−n
1 #{w ∈ Zn : |w| < cpH−1, Bi(h;w) = 0 ∀i ≤ n}

¿ Z−n
1 (pH−1)n−r

¿ Hrpn−r.
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We now consider

Σ(R) :=
∑

R<p≤2R

∑

1≤a≤p−1

|Sa,p|2.

From the above analysis we see that

Σ(R) ¿ H−nR2n+1(logR)n/2
∑

h

∑

R<p≤2R

p−r/2δ(h, p),

where δ(h, p) = Hr/2 if h is bad for p, and δ(h, p) = 1 otherwise. suppose firstly
that r ≥ 1. Since r = r(h) it follows that not all the r × r minors of M(h) can
vanish, so that there can be at most ¿ logH ¿ logR primes p which divide all
such minors. Thus

∑

R<p≤2R

p−r/2δ(h, p) ¿ R−r/2{R+Hr/2 logR}.

However we can have r(h) = 0 only for h = 0, so the above estimate holds also
for r = 0. It then follows from (1.5) that

Σ(R) ¿ H−nR2n+1(logR)1+n/2
∑

r≤n

Hr+εR−r/2{R+Hr/2}

¿ H−nR2n+1+2ε{R+R1−n/2Hn +R−n/2H3n/2}.

We therefore choose H = [R(n+2)/(3n)], which leads to

Σ(R) ¿ R(5n+4)/3+2ε. (7.2)

We are now ready to complete the proof of Theorem 4. The singular series
is absolutely convergent if and only if the singular product

∏
p

{1 +
∞∑

e=1

∑

a≤pe

(a,p)=1

p−en|Sa,pe |}

is also absolutely convergent. Let

ap :=
∞∑

e=1

∑

a≤pe

(a,p)=1

p−en|Sa,pe |.

Then the product
∏

(1 + ap) will be absolutely convergent if and only if the
sum

∑
ap is absolutely convergent. The bound (7.1) suffices to handle terms

involving pe for e ≥ 2, as soon as n > 9, so that it remains to consider the
convergence of ∑

p

∑

a≤p
(a,p)=1

p−n|Sa,p|.

However each dyadic range R < p ≤ 2R contributes O(R(10−n)/6+3ε), by (7.2)
in conjunction with Cauchy’s inequality. Thus we have absolute convergence as
soon as n > 10, as required.
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