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Abstract This paper presents asymptotically optimal algo-
rithms for rectangular matrix transpose, FFT, and sorting on
computers with multiple levels of caching. Unlike previous
optimal algorithms, these algorithms arecache oblivious: no
variables dependent on hardware parameters, such as cache
size and cache-line length, need to be tuned to achieve opti-
mality. Nevertheless, these algorithms use an optimal amount
of work and move data optimally among multiple levels of
cache. For a cache with sizeZ and cache-line lengthL where
Z � Ω�L2� the number of cache misses for anm� n ma-
trix transpose isΘ�1�mn�L�. The number of cache misses
for either ann-point FFT or the sorting ofn numbers is
Θ�1��n�L��1� logZ n��. We also give anΘ�mnp�-work al-
gorithm to multiply anm� n matrix by ann� p matrix that
incursΘ�1��mn�np�mp��L�mnp�L

p
Z� cache faults.

We introduce an “ideal-cache” model to analyze our algo-
rithms. We prove that an optimal cache-oblivious algorithm
designed for two levels of memory is also optimal for multi-
ple levels and that the assumption of optimal replacement in
the ideal-cache model can be simulated efficiently by LRU re-
placement. We also provide preliminary empirical results on
the effectiveness of cache-oblivious algorithms in practice.

1. Introduction
Resource-oblivious algorithms that nevertheless use re-
sources efficiently offer advantages of simplicity and
portability over resource-aware algorithms whose re-
source usage must be programmed explicitly. In this
paper, we study cache resources, specifically, the hier-
archy of memories in modern computers. We exhibit
several “cache-oblivious” algorithms that use cache as
effectively as “cache-aware” algorithms.

Before discussing the notion of cache obliviousness,
we first introduce the�Z�L� ideal-cache model to study
the cache complexity of algorithms. This model, which
is illustrated in Figure 1, consists of a computer with a
two-level memory hierarchy consisting of an ideal (data)
cache ofZ words and an arbitrarily large main mem-
ory. Because the actual size of words in a computer is
typically a small, fixed size (4 bytes, 8 bytes, etc.), we
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Figure 1: The ideal-cache model

shall assume that word size is constant; the particular
constant does not affect our asymptotic analyses. The
cache is partitioned intocache lines, each consisting of
L consecutive words which are always moved together
between cache and main memory. Cache designers typ-
ically useL � 1, banking on spatial locality to amortize
the overhead of moving the cache line. We shall gener-
ally assume in this paper that the cache istall:

Z � Ω�L2� � (1)

which is usually true in practice.
The processor can only reference words that reside

in the cache. If the referenced word belongs to a line
already in cache, acache hit occurs, and the word is
delivered to the processor. Otherwise, acache miss oc-
curs, and the line is fetched into the cache. The ideal
cache isfully associative [20, Ch. 5]: cache lines can be
stored anywhere in the cache. If the cache is full, a cache
line must be evicted. The ideal cache uses the optimal
off-line strategy of replacing the cache line whose next
access is furthest in the future [7], and thus it exploits
temporal locality perfectly.

Unlike various other hierarchical-memory models
[1, 2, 5, 8] in which algorithms are analyzed in terms of
a single measure, the ideal-cache model uses two mea-
sures. An algorithm with an input of sizen is measured
by its work complexity W �n�—its conventional running
time in a RAM model [4]—and itscache complexity
Q�n;Z�L�—the number of cache misses it incurs as a



function of the sizeZ and line lengthL of the ideal cache.
When Z and L are clear from context, we denote the
cache complexity simply asQ�n� to ease notation.

We define an algorithm to becache aware if it con-
tains parameters (set at either compile-time or runtime)
that can be tuned to optimize the cache complexity for
the particular cache size and line length. Otherwise, the
algorithm iscache oblivious. Historically, good perfor-
mance has been obtained using cache-aware algorithms,
but we shall exhibit several optimal1 cache-oblivious al-
gorithms.

To illustrate the notion of cache awareness, consider
the problem of multiplying twon� n matricesA and
B to produce theirn� n productC. We assume that
the three matrices are stored in row-major order, as
shown in Figure 2(a). We further assume thatn is
“big,” i.e., n � L, in order to simplify the analysis. The
conventional way to multiply matrices on a computer
with caches is to use ablocked algorithm [19, p. 45].
The idea is to view each matrixM as consisting of
�n�s� � �n�s� submatricesMi j (the blocks), each of
which has sizes � s, where s is a tuning parame-
ter. The following algorithm implements this strategy:

BLOCK-MULT�A�B�C�n�
1 for i� 1 to n�s
2 do for j� 1 to n�s
3 do for k� 1 to n�s
4 do ORD-MULT�Aik�Bk j�Ci j�s�

The ORD-MULT�A�B�C�s� subroutine computes
C �C�AB on s� s matrices using the ordinaryO�s3�
algorithm. (This algorithm assumes for simplicity that
s evenly dividesn, but in practices andn need have no
special relationship, yielding more complicated code in
the same spirit.)

Depending on the cache size of the machine on which
BLOCK-MULT is run, the parameters can be tuned to
make the algorithm run fast, and thus BLOCK-MULT is
a cache-aware algorithm. To minimize the cache com-
plexity, we chooses to be the largest value such that
the threes� s submatrices simultaneously fit in cache.
An s� s submatrix is stored onΘ�s� s2�L� cache lines.
From the tall-cache assumption (1), we can see that
s � Θ�

p
Z�. Thus, each of the calls to ORD-MULT runs

with at mostZ�L � Θ�s2�L� cache misses needed to
bring the three matrices into the cache. Consequently,
the cache complexity of the entire algorithm isΘ�1�
n2�L��n�

p
Z�3�Z�L�� �Θ�1�n2�L�n3�L

p
Z�, since

the algorithm has to readn2 elements, which reside on�
n2�L

�
cache lines.

The same bound can be achieved using a simple

1For simplicity in this paper, we use the term “optimal” as a syn-
onym for “asymptotically optimal,” since all our analyses are asymp-
totic.

cache-oblivious algorithm that requires no tuning pa-
rameters such as thes in BLOCK-MULT. We present
such an algorithm, which works on general rectangular
matrices, in Section 2. The problems of computing a
matrix transpose and of performing an FFT also suc-
cumb to remarkably simple algorithms, which are de-
scribed in Section 3. Cache-oblivious sorting poses a
more formidable challenge. In Sections 4 and 5, we
present two sorting algorithms, one based on mergesort
and the other on distribution sort, both of which are op-
timal in both work and cache misses.

The ideal-cache model makes the perhaps-
questionable assumptions that there are only two
levels in the memory hierarchy, that memory is man-
aged automatically by an optimal cache-replacement
strategy, and that the cache is fully associative. We
address these assumptions in Section 6, showing that
to a certain extent, these assumptions entail no loss
of generality. Section 7 discusses related work, and
Section 8 offers some concluding remarks, including
some preliminary empirical results.

2. Matrix multiplication
This section describes and analyzes a cache-oblivious al-
gorithm for multiplying anm�n matrix by ann� p ma-
trix cache-obliviously usingΘ�mnp� work and incurring
Θ�m� n� p��mn� np�mp��L�mnp�L

p
Z� cache

misses. These results require the tall-cache assumption
(1) for matrices stored in row-major layout format, but
the assumption can be relaxed for certain other layouts.
We also show that Strassen’s algorithm [31] for multi-
plying n�n matrices, which usesΘ�nlg7� work2, incurs
Θ�1�n2�L�nlg7�L

p
Z� cache misses.

In [9] with others, two of the present authors analyzed
an optimal divide-and-conquer algorithm forn� n ma-
trix multiplication that contained no tuning parameters,
but we did not study cache-obliviousnessper se. That
algorithm can be extended to multiply rectangular matri-
ces. To multiply am�n matrix A and an� p matrix B,
the REC-MULT algorithm halves the largest of the three
dimensions and recurs according to one of the following
three cases:�

A1
A2

�
B �

�
A1B
A2B

�
� (2)

�
A1 A2

��B1
B2

�
� A1B1�A2B2 � (3)

A
�

B1 B2
�

�
�

AB1 AB2
�
� (4)

In case (2), we havem � maxfn� pg. Matrix A is split
horizontally, and both halves are multiplied by matrixB.
In case (3), we haven�maxfm� pg. Both matrices are

2We use the notation lg to denote log2.



split, and the two halves are multiplied. In case (4), we
have p � maxfm�ng. Matrix B is split vertically, and
each half is multiplied byA. For square matrices, these
three cases together are equivalent to the recursive mul-
tiplication algorithm described in [9]. The base case oc-
curs whenm � n � p � 1, in which case the two ele-
ments are multiplied and added into the result matrix.

Although this straightforward divide-and-conquer al-
gorithm contains no tuning parameters, it uses cache op-
timally. To analyze the REC-MULT algorithm, we as-
sume that the three matrices are stored in row-major or-
der, as shown in Figure 2(a). Intuitively, REC-MULT

uses the cache effectively, because once a subproblem
fits into the cache, its smaller subproblems can be solved
in cache with no further cache misses.

Theorem 1 The REC-MULT algorithm uses Θ�mnp�
work and incurs Θ�m � n � p � �mn � np� mp��L �
mnp�L

p
Z� cache misses when multiplying an m�n ma-

trix by an n� p matrix.

Proof. It can be shown by induction that the work of
REC-MULT is Θ�mnp�. To analyze the cache misses, let
α � 0 be the largest constant sufficiently small that three
submatrices of sizesm��n�, n�� p�, andm�� p�, where
maxfm��n�� p�g � α

p
Z, all fit completely in the cache.

We distinguish four cases depending on the initial size
of the matrices.
Case I: m�n� p � α

p
Z. This case is the most intuitive.

The matrices do not fit in cache, since all dimensions are
“big enough.” The cache complexity can be described
by the recurrence

Q�m�n� p�� (5)����
���

Θ��mn�np�mp��L� if m�n� p � �α
p

Z�2�α
p

Z� �
2Q�m�2�n� p��O�1� ow. if m� n andm� p �
2Q�m�n�2� p��O�1� ow. if n � m andn� p �
2Q�m�n� p�2��O�1� otherwise�

The base case arises as soon as all three submatrices fit
in cache. The total number of lines used by the three
submatrices isΘ��mn� np�mp��L�. The only cache
misses that occur during the remainder of the recursion
are theΘ��mn� np�mp��L� cache misses required to
bring the matrices into cache. In the recursive cases,
when the matrices do not fit in cache, we pay for the
cache misses of the recursive calls, which depend on the
dimensions of the matrices, plusO�1� cache misses for
the overhead of manipulating submatrices. The solution
to this recurrence isQ�m�n� p� � Θ�mnp�L

p
Z�.

Case II: (m� α
p

Z andn� p � α
p

Z) or (n� α
p

Z and
m� p�α

p
Z) or (p� α

p
Z andm�n�α

p
Z). Here, we

shall present the case wherem� α
p

Z andn� p � α
p

Z.
The proofs for the other cases are only small variations
of this proof. The REC-MULT algorithm always divides
n or p by 2 according to cases (3) and (4). At some point
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Figure 2: Layout of a16� 16 matrix in (a) row ma-
jor, (b) column major,(c) 4� 4-blocked, and(d) bit-
interleaved layouts.

in the recursion, both are small enough that the whole
problem fits into cache. The number of cache misses
can be described by the recurrence

Q�m�n� p�� (6)��
�

Θ�1�n�np�L�m� if n� p � �α
p

Z�2�α
p

Z� �
2Q�m�n�2� p��O�1� otherwise ifn� p �
2Q�m�n� p�2��O�1� otherwise ;

whose solution isQ�m�n� p� � Θ�np�L�mnp�L
p

Z�.

Case III: (n� p � α
p

Z andm � α
p

Z) or (m� p � α
p

Z
andn� α

p
Z) or (m�n� α

p
Z andp� α

p
Z). In each

of these cases, one of the matrices fits into cache, and
the others do not. Here, we shall present the case where
n� p � α

p
Z and m � α

p
Z. The other cases can be

proven similarly. The REC-MULT algorithm always di-
videsm by 2 according to case (2). At some point in the
recursion,m falls into the rangeα

p
Z�2� m � α

p
Z,

and the whole problem fits in cache. The number cache
misses can be described by the recurrence

Q�m�n�� (7)�
Θ�1�m� if m � �α

p
Z�2�α

p
Z� �

2Q�m�2�n� p��O�1� otherwise ;

whose solution isQ�m�n� p� � Θ�m�mnp�L
p

Z�.

Case IV: m�n� p � α
p

Z. From the choice ofα, all
three matrices fit into cache. The matrices are stored
onΘ�1�mn�L�np�L�mp�L� cache lines. Therefore,
we haveQ�m�n� p� � Θ�1��mn�np�mp��L�.

We require the tall-cache assumption (1) in these
analyses, because the matrices are stored in row-major
order. Tall caches are also needed if matrices are stored



in column-major order (Figure 2(b)), but the assumption
that Z � Ω�L2� can be relaxed for certain other matrix
layouts. Thes�s-blocked layout (Figure 2(c)), for some
tuning parameters, can be used to achieve the same
bounds with the weaker assumption that the cache holds
at least some sufficiently large constant number of lines.
The cache-oblivious bit-interleaved layout (Figure 2(d))
has the same advantage as the blocked layout, but no
tuning parameter need be set, since submatrices of size
O�
p

L��O�
p

L� are cache-obliviously stored onO�1�
cache lines. The advantages of bit-interleaved and re-
lated layouts have been studied in [11, 12, 16]. One of
the practical disadvantages of bit-interleaved layouts is
that index calculations on conventional microprocessors
can be costly, a deficiency we hope that processor archi-
tects will remedy.

For square matrices, the cache complexityQ�n� �
Θ�n� n2�L� n3�L

p
Z� of the REC-MULT algorithm is

the same as the cache complexity of the cache-aware
BLOCK-MULT algorithm and also matches the lower
bound by Hong and Kung [21]. This lower bound
holds for all algorithms that execute theΘ�n3� opera-
tions given by the definition of matrix multiplication

ci j �
n

∑
k�1

aikbk j �

No tight lower bounds for the general problem of matrix
multiplication are known.

By using an asymptotically faster algorithm, such as
Strassen’s algorithm [31] or one of its variants [37], both
the work and cache complexity can be reduced. When
multiplying n� n matrices, Strassen’s algorithm, which
is cache oblivious, requires only 7 recursive multiplica-
tions of n�2� n�2 matrices and a constant number of
matrix additions, yielding the recurrence

Q�n��
�

Θ�1�n�n2�L� if n2 � αZ �
7Q�n�2��O�n2�L� otherwise ;

(8)

whereα is a sufficiently small constant. The solution to
this recurrence isΘ�n�n2�L�nlg7�L

p
Z�.

3. Matrix transposition and FFT
This section describes a recursive cache-oblivious al-
gorithm for transposing anm� n matrix which uses
O�mn� work and incursO�1� mn�L� cache misses,
which is optimal. Using matrix transposition as a sub-
routine, we convert a variant [36] of the “six-step” fast
Fourier transform (FFT) algorithm [6] into an optimal
cache-oblivious algorithm. This FFT algorithm uses
O�n lgn� work and incurs O�1��n�L��1� logZ n��
cache misses.

The problem of matrix transposition is defined as fol-
lows. Given anm�n matrix stored in a row-major lay-
out, compute and storeAT into ann�m matrix B also

stored in a row-major layout. The straightforward algo-
rithm for transposition that employs doubly nested loops
incursΘ�mn� cache misses on one of the matrices when
m� Z�L andn� Z�L, which is suboptimal.

Optimal work and cache complexities can be ob-
tained with a divide-and-conquer strategy, however. If
n�m, the REC-TRANSPOSEalgorithm partitions

A � �A1 A2� � B �

�
B1
B2

�
and recursively executes REC-TRANSPOSE�A1�B1� and
REC-TRANSPOSE�A2�B2�. Otherwise, it divides matrix
A horizontally and matrixB vertically and likewise per-
forms two transpositions recursively. The next two lem-
mas provide upper and lower bounds on the performance
of this algorithm.

Lemma 2 The REC-TRANSPOSE algorithm involves
O�mn� work and incurs O�1�mn�L� cache misses for
an m�n matrix.

Proof. That the algorithm doesO�mn� work is straight-
forward. For the cache analysis, letQ�m�n� be the cache
complexity of transposing anm� n matrix. We as-
sume that the matrices are stored in row-major order, the
column-major layout having a similar analysis.

Let α be a constant sufficiently small such that two
submatrices of sizem�n andn�m, where maxfm�ng�
αL, fit completely in the cache even if each row is stored
in a different cache line. We distinguish the three cases.

Case I: maxfm�ng � αL. Both the matrices fit in
O�1��2mn�L lines. From the choice ofα, the number
of lines required is at mostZ�L. ThereforeQ�m�n� �
O�1�mn�L�.

Case II: m� αL� n or n� αL �m. Suppose first that
m � αL � n. The REC-TRANSPOSEalgorithm divides
the greater dimensionn by 2 and performs divide and
conquer. At some point in the recursion,n falls into the
rangeαL�2 � n � αL, and the whole problem fits in
cache. Because the layout is row-major, at this point the
input array hasn rows andm columns, and it is laid out
in contiguous locations, requiring at mostO�1�nm�L�
cache misses to be read. The output array consists ofnm
elements inm rows, where in the worst case every row
lies on a different cache line. Consequently, we incur at
mostO�m� nm�L� for writing the output array. Since
n � αL�2, the total cache complexity for this base case
is O�1�m�. These observations yield the recurrence

Q�m�n��
�

O�1�m� if n � �αL�2�αL� �
2Q�m�n�2��O�1� otherwise ;

whose solution isQ�m�n� � O�1�mn�L�.
The casen� αL � m is analogous.



Case III: m�n� αL. As in Case II, at some point in the
recursion bothn andm fall into the range�αL�2�αL�.
The whole problem fits into cache and can be solved
with at mostO�m�n�mn�L� cache misses. The cache
complexity thus satisfies the recurrence

Q�m�n���	



O�m�n�mn�L� if m�n � �αL�2�αL� �
2Q�m�2�n��O�1� if m� n �
2Q�m�n�2��O�1� otherwise;

whose solution isQ�m�n� � O�1�mn�L�.

Theorem 3 The REC-TRANSPOSEalgorithm has opti-
mal cache complexity.

Proof. For anm�n matrix, the algorithm must write to
mn distinct elements, which occupy at leastdmn�Le �
Ω�1�mn�L� cache lines.

As an example of an application of this cache-
oblivious transposition algorithm, in the rest of this sec-
tion we describe and analyze a cache-oblivious algo-
rithm for computing the discrete Fourier transform of a
complex array ofn elements, wheren is an exact power
of 2. The basic algorithm is the well-known “six-step”
variant [6, 36] of the Cooley-Tukey FFT algorithm [13].
Using the cache-oblivious transposition algorithm, how-
ever, the FFT becomes cache-oblivious, and its perfor-
mance matches the lower bound by Hong and Kung [21].

Recall that thediscrete Fourier transform (DFT) of
an arrayX of n complex numbers is the arrayY given by

Y �i� �
n�1

∑
j�0

X � j�ω�i j
n � (9)

whereωn � e2π
p�1�n is a primitive nth root of unity,

and 0� i� n. Many algorithms evaluate Equation (9) in
O�n lgn� time for all integersn [15]. In this paper, how-
ever, we assume thatn is an exact power of 2, and we
compute Equation (9) according to the Cooley-Tukey al-
gorithm, which works recursively as follows. In the base
case wheren � O�1�, we compute Equation (9) directly.
Otherwise, for any factorizationn � n1n2 of n, we have

Y �i1� i2n1� � (10)
n2�1

∑
j2�0

��
n1�1

∑
j1�0

X � j1n2� j2�ω�i1 j1
n1


ω�i1 j2

n

�
ω�i2 j2

n2
�

Observe that both the inner and outer summations in
Equation (10) are DFT’s. Operationally, the computa-
tion specified by Equation (10) can be performed by
computingn2 transforms of sizen1 (the inner sum), mul-
tiplying the result by the factorsω�i1 j2

n (called thetwid-
dle factors [15]), and finally computingn1 transforms of
sizen2 (the outer sum).

We choosen1 to be 2dlgn�2e andn2 to be 2blgn�2c. The
recursive step then operates as follows:

1. Pretend that input is a row-majorn1�n2 matrix A.
TransposeA in place, i.e., use the cache-oblivious
REC-TRANSPOSEalgorithm to transposeA onto an
auxiliary arrayB, and copyB back ontoA. Notice
that if n1 � 2n2, we can consider the matrix to be
made up of records containing two elements.

2. At this stage, the inner sum corresponds to a DFT
of then2 rows of the transposed matrix. Compute
thesen2 DFT’s of sizen1 recursively. Observe that,
because of the previous transposition, we are trans-
forming a contiguous array of elements.

3. Multiply A by the twiddle factors, which can be
computed on the fly with no extra cache misses.

4. TransposeA in place, so that the inputs to the next
stage are arranged in contiguous locations.

5. Computen1 DFT’s of the rows of the matrix recur-
sively.

6. TransposeA in place so as to produce the correct
output order.

It can be proven by induction that the work com-
plexity of this FFT algorithm isO�n lgn�. We now an-
alyze its cache complexity. The algorithm always op-
erates on contiguous data, by construction. Thus, by
the tall-cache assumption (1), the transposition oper-
ations and the twiddle-factor multiplication require at
mostO�1� n�L� cache misses. Thus, the cache com-
plexity satisfies the recurrence

Q�n��
�	



O�1�n�L�� if n� αZ �
n1Q�n2��n2Q�n1� otherwise ;

�O�1�n�L�
(11)

whereα � 0 is a constant sufficiently small that a sub-
problem of sizeαZ fits in cache. This recurrence has
solution

Q�n� � O�1��n�L��1� logZ n�� �

which is optimal for a Cooley-Tukey algorithm, match-
ing the lower bound by Hong and Kung [21] whenn is
an exact power of 2. As with matrix multiplication, no
tight lower bounds for cache complexity are known for
the general DFT problem.

4. Funnelsort
Cache-oblivious algorithms, like the familiar two-way
merge sort, are not optimal with respect to cache misses.
The Z-way mergesort suggested by Aggarwal and Vit-
ter [3] has optimal cache complexity, but although it ap-
parently works well in practice [23], it is cache aware.
This section describes a cache-oblivious sorting algo-
rithm called “funnelsort.” This algorithm has optimal



L1

k-merger

R

buffers

Lpk

Figure 3: Illustration of ak-merger. Ak-merger is built
recursively out of

p
k “left”

p
k-mergersL1, L2, � � �, Lp

k,
a series of buffers, and one “right”

p
k-mergerR.

O�n lgn� work complexity, and optimalO�1��n�L��1�
logZ n�� cache complexity.

Funnelsort is similar to mergesort. In order to sort
a (contiguous) array ofn elements, funnelsort performs
the following two steps:

1. Split the input inton1�3 contiguous arrays of size
n2�3, and sort these arrays recursively.

2. Merge then1�3 sorted sequences using an1�3-
merger, which is described below.

Funnelsort differs from mergesort in the way the
merge operation works. Merging is performed by a de-
vice called ak-merger, which inputsk sorted sequences
and merges them. Ak-merger operates by recursively
merging sorted sequences which become progressively
longer as the algorithm proceeds. Unlike mergesort,
however, ak-merger suspends work on a merging sub-
problem when the merged output sequence becomes
“long enough” and resumes work on another merging
subproblem.

This complicated flow of control makes ak-merger
a bit tricky to describe. Figure 3 shows a representa-
tion of ak-merger, which hask sorted sequences as in-
puts. Throughout its execution, thek-merger maintains
the following invariant.

Invariant Each invocation of a k-merger outputs the
next k3 elements of the sorted sequence obtained by
merging the k input sequences.

A k-merger is built recursively out of
p

k-mergers in
the following way. Thek inputs are partitioned into

p
k

sets of
p

k elements, which form the input to the
p

kp
k-mergersL1�L2� � � � �Lp

k in the left part of the figure.
The outputs of these mergers are connected to the inputs

of
p

k buffers. Each buffer is a FIFO queue that can
hold 2k3�2 elements. Finally, the outputs of the buffers
are connected to the

p
k inputs of the

p
k-mergerR in

the right part of the figure. The output of this final
p

k-
merger becomes the output of the wholek-merger. The
intermediate buffers are overdimensioned, since each
can hold 2k3�2 elements, which is twice the numberk3�2

of elements output by a
p

k-merger. This additional
buffer space is necessary for the correct behavior of the
algorithm, as will be explained below. The base case of
the recursion is ak-merger withk � 2, which produces
k3 � 8 elements whenever invoked.

A k-merger operates recursively in the following way.
In order to outputk3 elements, thek-merger invokes
R k3�2 times. Before each invocation, however, thek-
merger fills all buffers that are less than half full, i.e.,
all buffers that contain less thank3�2 elements. In order
to fill buffer i, the algorithm invokes the corresponding
left mergerLi once. SinceLi outputsk3�2 elements, the
buffer contains at leastk3�2 elements afterLi finishes.

It can be proven by induction that the work com-
plexity of funnelsort isO�n lgn�. We will now analyze
the cache complexity. The goal of the analysis is to
show that funnelsort onn elements requires at mostQ�n�
cache misses, where

Q�n� � O�1��n�L��1� logZ n�� �

In order to prove this result, we need three auxiliary lem-
mas. The first lemma bounds the space required by a
k-merger.

Lemma 4 A k-merger can be laid out in O�k2� contigu-
ous memory locations.

Proof. A k-merger requiresO�k2� memory locations
for the buffers, plus the space required by the

p
k-

mergers. The spaceS�k� thus satisfies the recurrence

S�k�� �
p

k�1�S�
p

k��O�k2� �

whose solution isS�k� � O�k2�.
In order to achieve the bound onQ�n�, the buffers

in a k-merger must be maintained as circular queues of
size k. This requirement guarantees that we can man-
age the queue cache-efficiently, in the sense stated by
the next lemma.

Lemma 5 Performing r insert and remove operations
on a circular queue causes in O�1� r�L� cache misses
as long as two cache lines are available for the buffer.

Proof. Associate the two cache lines with the head and
tail of the circular queue. If a new cache line is read
during a insert (delete) operation, the nextL� 1 insert
(delete) operations do not cause a cache miss.

The next lemma bounds the cache complexity of a
k-merger.



Lemma 6 If Z � Ω�L2�, then a k-merger operates with
at most

QM�k� � O�1� k� k3�L� k3 logZ k�L�

cache misses.

Proof. There are two cases: eitherk � α
p

Z or k �
α
p

Z, whereα is a sufficiently small constant.

Case I: k � α
p

Z. By Lemma 4, the data structure
associated with thek-merger requires at mostO�k2� �
O�Z� contiguous memory locations, and therefore it fits
into cache. Thek-merger hask input queues from
which it loadsO�k3� elements. Letri be the number
of elements extracted from theith input queue. Since
k � α

p
Z and the tall-cache assumption (1) implies that

L � O�
p

Z�, there are at leastZ�L � Ω�k� cache lines
available for the input buffers. Lemma 5 applies, whence
the total number of cache misses for accessing the input
queues is

k

∑
i�1

O�1� ri�L� � O�k� k3�L� �

Similarly, Lemma 4 implies that the cache complexity
of writing the output queue isO�1� k3�L�. Finally, the
algorithm incursO�1�k2�L� cache misses for touching
its internal data structures. The total cache complexity is
thereforeQM�k� � O�1� k� k3�L�.

Case I: k � α
p

Z. We prove by induction onk that
wheneverk � α

p
Z, we have

QM�k�� ck3 logZ k�L�A�k� � (12)

whereA�k� � k�1�2c logZ k�L� � o�k3�. This particular
value ofA�k� will be justified at the end of the analysis.

The base case of the induction consists of values of
k such thatαZ1�4 � k � α

p
Z. (It is not sufficient only

to considerk � Θ�
p

Z�, sincek can become as small as
Θ�Z1�4� in the recursive calls.) The analysis of the first
case applies, yieldingQM�k� � O�1� k � k3�L�. Be-
causek2 � α

p
Z � Ω�L� and k � Ω�1�, the last term

dominates, which impliesQM�k� � O�k3�L�. Conse-
quently, a big enough value ofc can be found that satis-
fies Inequality (12).

For the inductive case, suppose thatk � α
p

Z. The
k-merger invokes the

p
k-mergers recursively. Since

αZ1�4 �
p

k � k, the inductive hypothesis can be used to
bound the numberQM�

p
k� of cache misses incurred by

the submergers. The “right” mergerR is invoked exactly
k3�2 times. The total numberl of invocations of “left”
mergers is bounded byl � k3�2�2

p
k. To see why, con-

sider that every invocation of a left merger putsk3�2 el-
ements into some buffer. Sincek3 elements are output
and the buffer space is 2k2, the boundl � k3�2 � 2

p
k

follows.

Before invokingR, the algorithm must check every
buffer to see whether it is empty. One such check re-
quires at most

p
k cache misses, since there are

p
k

buffers. This check is repeated exactlyk3�2 times, lead-
ing to at mostk2 cache misses for all checks. These
considerations lead to the recurrence

QM�k��
�

2k3�2�2
p

k
�

QM�
p

k�� k2 �

Application of the inductive hypothesis and the choice
A�k� � k�1� 2c logZ k�L� yields Inequality (12) as fol-
lows:

QM�k��
�

2k3�2�2
p

k
�

QM�
p

k�� k2

� 2
�

k3�2�
p

k
��ck3�2 logZ k

2L
�A�

p
k�

�
� k2

� ck3 logZ k�L� k2�1� c logZ k�L�

�
�

2k3�2�2
p

k
�

A�
p

k�

� ck3 logZ k�L�A�k� �

Theorem 7 To sort n elements, funnelsort incurs O�1�
�n�L��1� logZ n�� cache misses.

Proof. If n � αZ for a small enough constantα, then
the algorithm fits into cache. To see why, observe that
only onek-merger is active at any time. The biggest
k-merger is the top-leveln1�3-merger, which requires
O�n2�3� � O�n� space. The algorithm thus can operate
in O�1�n�L� cache misses.

If N � αZ, we have the recurrence

Q�n� � n1�3Q�n2�3��QM�n1�3� �

By Lemma 6, we haveQM�n1�3� � O�1�n1�3�n�L�
n logZ n�L�.

By the tall-cache assumption (1), we haven�L �

Ω�n1�3�. Moreover, we also haven1�3 �Ω�1� and lgn�

Ω�lgZ�. Consequently,QM�n1�3� � O�n logZ n�L�
holds, and the recurrence simplifies to

Q�n� � n1�3Q�n2�3��O�n logZ n�L� �

The result follows by induction onn.
This upper bound matches the lower bound stated

by the next theorem, proving that funnelsort is cache-
optimal.

Theorem 8 The cache complexity of any sorting algo-
rithm is Q�n� � Ω�1��n�L��1� logZ n��.

Proof. Aggarwal and Vitter [3] show that there is an
Ω��n�L� logZ�L�n�Z�� bound on the number of cache
misses made by any sorting algorithm on their “out-of-
core” memory model, a bound that extends to the ideal-
cache model. The theorem can be proved by apply-
ing the tall-cache assumptionZ � Ω�L2� and the trivial
lower bounds ofQ�n� � Ω�1� andQ�n� � Ω�n�L�.



5. Distribution sort

In this section, we describe another cache-oblivious op-
timal sorting algorithm based on distribution sort. Like
the funnelsort algorithm from Section 4, the distribution-
sorting algorithm usesO�n lgn� work to sortn elements,
and it incursO�1��n�L��1� logZ n�� cache misses.
Unlike previous cache-efficient distribution-sorting al-
gorithms [1, 3, 25, 34, 36], which use sampling or other
techniques to find the partitioning elements before the
distribution step, our algorithm uses a “bucket splitting”
technique to select pivots incrementally during the dis-
tribution step.

Given an arrayA (stored in contiguous locations) of
lengthn, the cache-oblivious distribution sort operates
as follows:

1. PartitionA into
p

n contiguous subarrays of sizep
n. Recursively sort each subarray.

2. Distribute the sorted subarrays intoq buckets
B1� � � � �Bq of sizen1� � � � �nq, respectively, such that

1. maxfx j x � Big � minfx j x � Bi�1g for i �
1�2� � � � �q�1.

2. ni � 2
p

n for i � 1�2� � � � �q.

(See below for details.)

3. Recursively sort each bucket.

4. Copy the sorted buckets to arrayA.

A stack-based memory allocator is used to exploit spatial
locality.

The goal of Step 2 is to distribute the sorted subarrays
of A into q bucketsB1�B2� � � � �Bq. The algorithm main-
tains two invariants. First, at any time each bucket holds
at most 2

p
n elements, and any element in bucketBi is

smaller than any element in bucketBi�1. Second, every
bucket has an associated pivot. Initially, only one empty
bucket exists with pivot∞.

The idea is to copy all elements from the subarrays
into the buckets while maintaining the invariants. We
keep state information for each subarray and bucket. The
state of a subarray consists of the indexnext of the next
element to be read from the subarray and the bucket
numberbnum where this element should be copied. By
convention,bnum � ∞ if all elements in a subarray have
been copied. The state of a bucket consists of the pivot
and the number of elements currently in the bucket.

We would like to copy the element at positionnext of
a subarray to bucketbnum. If this element is greater than
the pivot of bucketbnum, we would incrementbnum un-
til we find a bucket for which the element is smaller than
the pivot. Unfortunately, this basic strategy has poor
caching behavior, which calls for a more complicated
procedure.

The distribution step is accomplished by the recur-
sive procedure DISTRIBUTE�i� j�m� which distributes
elements from theith through�i � m� 1�th subarrays
into buckets starting fromB j. Given the precondition
that each subarrayi� i�1� � � � � i�m�1 has itsbnum� j,
the execution of DISTRIBUTE�i� j�m� enforces the post-
condition that subarraysi� i�1� � � � � i�m�1 have their
bnum � j �m. Step 2 of the distribution sort invokes
DISTRIBUTE�1�1�

p
n�. The following is a recursive im-

plementation of DISTRIBUTE:

DISTRIBUTE�i� j�m�
1 if m � 1
2 then COPYELEMS�i� j�
3 else DISTRIBUTE�i� j�m�2�
4 DISTRIBUTE�i�m�2� j�m�2�
5 DISTRIBUTE�i� j�m�2�m�2�
6 DISTRIBUTE�i�m�2� j�m�2�m�2�

In the base case, the procedure COPYELEMS�i� j�
copies all elements from subarrayi that belong to
bucket j. If bucket j has more than 2

p
n elements af-

ter the insertion, it can be split into two buckets of size
at least

p
n. For the splitting operation, we use the deter-

ministic median-finding algorithm [14, p. 189] followed
by a partition.

Lemma 9 The median of n elements can be found
cache-obliviously using O�n� work and incurring O�1�
n�L� cache misses.

Proof. See [14, p. 189] for the linear-time median find-
ing algorithm and the work analysis. The cache com-
plexity is given by the same recurrence as the work com-
plexity with a different base case.

Q�m� �

�	



O�1�m�L� if m� αZ �
Q�dm�5e��Q�7m�10�6� otherwise ;

� O�1�m�L�

whereα is a sufficiently small constant. The result fol-
lows.

In our case, we have buckets of size 2
p

n�1. In ad-
dition, when a bucket splits, all subarrays whosebnum
is greater than thebnum of the split bucket must have
theirbnum’s incremented. The analysis of DISTRIBUTE

is given by the following lemma.

Lemma 10 The distribution step involves O�n� work,
incurs O�1� n�L� cache misses, and uses O�n� stack
space to distribute n elements.

Proof. In order to simplify the analysis of the work
used by DISTRIBUTE, assume that COPYELEMS uses
O�1� work for procedural overhead. We will account for
the work due to copying elements and splitting of buck-
ets separately. The work of DISTRIBUTE is described by



the recurrence

T �c� � 4T �c�2��O�1� �

It follows thatT �c� �O�c2�, wherec�
p

n initially. The
work due to copying elements is alsoO�n�.

The total number of bucket splits is at most
p

n. To
see why, observe that there are at most

p
n buckets at the

end of the distribution step, since each bucket contains at
least

p
n elements. Each split operation involvesO�

p
n�

work and so the net contribution to the work isO�n�.
Thus, the total work used by DISTRIBUTE is W �n� �
O�T �

p
n���O�n��O�n� � O�n�.

For the cache analysis, we distinguish two cases. Let
α be a sufficiently small constant such that the stack
space used fits into cache.
Case I, n � αZ: The input and the auxiliary space of
size O�n� fit into cache usingO�1� n�L� cache lines.
Consequently, the cache complexity isO�1�n�L�.
Case II, n � αZ: Let R�c�m� denote the cache misses
incurred by an invocation of DISTRIBUTE�a�b�c� that
copiesm elements from subarrays to buckets. We first
prove thatR�c�m� � O�L� c2�L�m�L�, ignoring the
cost splitting of buckets, which we shall account for sep-
arately. We argue thatR�c�m� satisfies the recurrence

R�c�m��
�	



O�L�m�L� if c� αL �
4

∑
i�1

R�c�2�mi� otherwise ;
(13)

where∑4
i�1 mi � m, whose solution isR�c�m� � O�L�

c2�L�m�L�. The recursive casec � αL follows im-
mediately from the algorithm. The base casec �
αL can be justified as follows. An invocation of
DISTRIBUTE�a�b�c� operates withc subarrays andc
buckets. Since there areΩ�L� cache lines, the cache can
hold all the auxiliary storage involved and the currently
accessed element in each subarray and bucket. In this
case there areO�L�m�L� cache misses. The initial ac-
cess to each subarray and bucket causesO�c� � O�L�
cache misses. Copying them elements to and from con-
tiguous locations causesO�1�m�L� cache misses.

We still need to account for the cache misses caused
by the splitting of buckets. Each split causesO�1�p

n�L� cache misses due to median finding (Lemma 9)
and partitioning of

p
n contiguous elements. An addi-

tionalO�1�
p

n�L� misses are incurred by restoring the
cache. As proven in the work analysis, there are at mostp

n split operations. By addingR�
p

n�n� to the split
complexity, we conclude that the total cache complexity
of the distribution step isO�L�n�L�

p
n�1�

p
n�L�� �

O�n�L�.

The analysis of distribution sort is given in the next
theorem. The work and cache complexity match lower
bounds specified in Theorem 8.

Theorem 11 Distribution sort uses O�n lgn� work and
incurs O�1��n�L��1� logZ n�� cache misses to sort n
elements.

Proof. The work done by the algorithm is given by

W �n� �
p

nW �
p

n��
q

∑
i�1

W �ni��O�n� �

where eachni � 2
p

n and∑ni � n. The solution to this
recurrence isW �n� � O�n lgn�.

The space complexity of the algorithm is given by

S�n�� S�2
p

n��O�n� �

where theO�n� term comes from Step 2. The solution to
this recurrence isS�n� � O�n�.

The cache complexity of distribution sort is described
by the recurrence

Q�n��
�	



O�1�n�L� if n� αZ �p
nQ�

p
n��∑q

i�1 Q�ni� otherwise ;
�O�1�n�L�

whereα is a sufficiently small constant such that the
stack space used by a sorting problem of sizeαZ, in-
cluding the input array, fits completely in cache. The
base casen � αZ arises when both the input arrayA
and the contiguous stack space of sizeS�n� � O�n� fit
in O�1� n�L� cache lines of the cache. In this case,
the algorithm incursO�1� n�L� cache misses to touch
all involved memory locations once. In the case where
n � αZ, the recursive calls in Steps 1 and 3 cause
Q�
p

n� � ∑q
i�1 Q�ni� cache misses andO�1� n�L� is

the cache complexity of Steps 2 and 4, as shown by
Lemma 10. The theorem follows by solving the recur-
rence.

6. Theoretical justifications for the ideal-
cache model

How reasonable is the ideal-cache model for algorithm
design? The model incorporates four major assumptions
that deserve scrutiny:
� optimal replacement,
� exactly two levels of memory,
� automatic replacement,
� full associativity.

Designing algorithms in the ideal-cache model is easier
than in models lacking these properties, but are these
assumptions too strong? In this section we show that
cache-oblivious algorithms designed in the ideal-cache
model can be efficiently simulated by weaker models.

The first assumption that we shall eliminate is that
of optimal replacement. Our strategy for the simula-
tion is to use an LRU (least-recently used) replacement
strategy [20, p. 378] in place of the optimal and om-
niscient replacement strategy. We start by proving a



lemma that bounds the effectiveness of the LRU simu-
lation. We then show that algorithms whose complex-
ity bounds satisfy a simple regularity condition (includ-
ing all algorithms heretofore presented) can be ported to
caches incorporating an LRU replacement policy.

Lemma 12 Consider an algorithm that causes
Q��n;Z�L� cache misses on a problem of size n using
a �Z�L� ideal cache. Then, the same algorithm incurs
Q�n;Z�L� � 2Q��n;Z�2�L� cache misses on a �Z�L�
cache that uses LRU replacement.

Proof. Sleator and Tarjan [30] have shown that the
cache misses on a�Z�L� cache using LRU replacement
are �Z�L����Z � Z���L � 1�-competitive with optimal
replacement on a�Z��L� ideal cache if both caches start
empty. It follows that the number of misses on a�Z�L�
LRU-cache is at most twice the number of misses on a
�Z�2�L� ideal-cache.

Corollary 13 For any algorithm whose cache-
complexity bound Q�n;Z�L� in the ideal-cache model
satisfies the regularity condition

Q�n;Z�L� � O�Q�n;2Z�L�� � (14)

the number of cache misses with LRU replacement is
Θ�Q�n;Z�L��.

Proof. Follows directly from (14) and Lemma 12.

The second assumption we shall eliminate is the as-
sumption of only two levels of memory. Although mod-
els incorporating multiple levels of caches may be nec-
essary to analyze some algorithms, for cache-oblivious
algorithms, analysis in the two-level ideal-cache model
suffices. Specifically, optimal cache-oblivious algo-
rithms also perform optimally in computers with mul-
tiple levels of LRU caches. We assume that the caches
satisfy theinclusion property [20, p. 723], which says
that the values stored in cachei are also stored in cache
i� 1 (where cache 1 is the cache closest to the proces-
sor). We also assume that if two elements belong to
the same cache line at leveli, then they belong to the
same line at leveli�1. Moreover, we assume that cache
i�1 has strictly more cache lines than cachei. These as-
sumptions ensure that cachei�1 includes the contents
of cachei plus at least one more cache line.

The multilevel LRU cache operates as follows. A hit
on an element in cachei is served by cachei and is not
seen by higher-level caches. We consider a line in cache
i�1 to bemarked if any element stored on the line be-
longs to cachei. When cachei misses on an access, it
recursively fetches the needed line from cachei�1, re-
placing the least-recently accessed unmarked cache line.
The replaced cache line is then brought to the front of
cache�i�1�’s LRU list. Because marked cache lines are

never replaced, the multilevel cache maintains the inclu-
sion property. The next lemma, whose proof is omitted,
asserts that even though a cache in a multilevel model
does not see accesses that hit at lower levels, it neverthe-
less behaves like the first-level cache of a simple two-
level model, which sees all the memory accesses.

Lemma 14 A �Zi�Li�-cache at a given level i of a mul-
tilevel LRU model always contains the same cache lines
as a simple �Zi�Li�-cache managed by LRU that serves
the same sequence of memory accesses.

Lemma 15 An optimal cache-oblivious algorithm
whose cache complexity satisifies the regularity condi-
tion (14) incurs an optimal number of cache misses on
each level3 of a multilevel cache with LRU replacement.

Proof. Let cachei in the multilevel LRU model be a
�Zi�Li� cache. Lemma 14 says that the cache holds ex-
actly the same elements as a�Zi�Li� cache in a two-level
LRU model. From Corollary 13, the cache complex-
ity of a cache-oblivious algorithm working on a�Zi�Li�
LRU cache lower-bounds that of any cache-aware algo-
rithm for a�Zi�Li� ideal cache. A�Zi�Li� level in a mul-
tilevel cache incurs at least as many cache misses as a
�Zi�Li� ideal cache when the same algorithm is executed.

Finally, we remove the two assumptions of automatic
replacement and full associativity. Specifically, we shall
show that a fully associative LRU cache can be main-
tained in ordinary memory with no asymptotic loss in
expected performance.

Lemma 16 A �Z�L� LRU-cache can be maintained us-
ing O�Z� memory locations such that every access to a
cache line in memory takes O�1� expected time.

Proof. Given the address of the memory location to
be accessed, we use a 2-universal hash function [24,
p. 216] to maintain a hash table of cache lines present
in the memory. TheZ�L entries in the hash table
point to linked lists in a heap of memory that contains
Z�L records corresponding to the cache lines. The 2-
universal hash function guarantees that the expected size
of a chain isO�1�. All records in the heap are organized
as a doubly linked list in the LRU order. Thus, the LRU
policy can be implemented inO�1� expected time using
O�Z�L� records ofO�L� words each.

3Alpern, Carter and Feig [5] show that optimality on each level of
memory in the UMH model does not necessarily imply global optimal-
ity. The UMH model incorporates a single cost measure that combines
the costs of work and cache faults at each of the levels of memory. By
analyzing the levels independently, our multilevel ideal-cache model
remains agnostic about the various schemes by which work and cache
faults might be combined.



Theorem 17 An optimal cache-oblivious algorithm
whose cache-complexity bound satisfies the regularity
condition (14) can be implemented optimally in expec-
tation in multilevel models with explicit memory man-
agement.

Proof. Combine Lemma 15 and Lemma 16.

Corollary 18 The recursive cache-oblivious algorithms
for matrix multiplication, matrix transpose, FFT, and
sorting are optimal in multilevel models with explicit
memory management.

Proof. Their complexity bounds satisfy the regularity
condition (14).

It can also be shown [26] that cache-oblivous algo-
rithms satisfying (14) are also optimal (in expectation)
in the previously studied SUMH [5, 34] and HMM [1]
models. Thus, all the algorithmic results in this paper
apply to these models, matching the best bounds previ-
ously achieved.

Other simulation results can be shown. For example,
by using the copying technique of [22], cache-oblivious
algorithms for matrix multiplication and other problems
can be designed that are provably optimal on direct-
mapped caches.

7. Related work
In this section, we discuss the origin of the notion of
cache-obliviousness. We also give an overview of other
hierarchical memory models.

Our research group at MIT noticed as far back as
1994 that divide-and-conquer matrix multiplication was
a cache-optimal algorithm that required no tuning, but
we did not adopt the term “cache-oblivious” until 1997.
This matrix-multiplication algorithm, as well as a cache-
oblivious algorithm for LU-decomposition without piv-
oting, eventually appeared in [9]. Shortly after leaving
our research group, Toledo [32] independently proposed
a cache-oblivious algorithm for LU-decomposition with
pivoting. Forn� n matrices, Toledo’s algorithm uses
Θ�n3� work and incursΘ�1� n2�L � n3�L

p
Z� cache

misses. More recently, our group has produced an FFT
library called FFTW [18], which in its most recent incar-
nation [17], employs a register-allocation and schedul-
ing algorithm inspired by our cache-oblivious FFT al-
gorithm. The general idea that divide-and-conquer en-
hances memory locality has been known for a long
time [29].

Previous theoretical work on understanding hierar-
chical memories and the I/O-complexity of algorithms
has been studied in cache-aware models lacking an auto-
matic replacement strategy, although [10, 28] are recent
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Figure 4: Average time to transpose anN �N matrix,
divided byN2.

exceptions. Hong and Kung [21] use the red-blue peb-
ble game to prove lower bounds on the I/O-complexity
of matrix multiplication, FFT, and other problems. The
red-blue pebble game models temporal locality using
two levels of memory. The model was extended by
Savage [27] for deeper memory hierarchies. Aggarwal
and Vitter [3] introduced spatial locality and investigated
a two-level memory in which a block ofP contiguous
items can be transferred in one step. They obtained tight
bounds for matrix multiplication, FFT, sorting, and other
problems. The hierarchical memory model (HMM) by
Aggarwal et al. [1] treats memory as a linear array,
where the cost of an access to element at locationx is
given by a cost functionf �x�. The BT model [2] extends
HMM to support block transfers. The UMH model by
Alpern et al. [5] is a multilevel model that allows I/O at
different levels to proceed in parallel. Vitter and Shriver
introduce parallelism, and they give algorithms for ma-
trix multiplication, FFT, sorting, and other problems in
both a two-level model [35] and several parallel hierar-
chical memory models [36]. Vitter [33] provides a com-
prehensive survey of external-memory algorithms.

8. Conclusion
The theoretical work presented in this paper opens two
important avenues for future research. The first is to
determine the range of practicality of cache-oblivious
algorithms, or indeed, of any algorithms developed in
the ideal-cache model. The second is to resolve, from a
complexity-theoretic point of view, the relative strengths
of cache-oblivious and cache-aware algorithms. To con-
clude, we discuss each of these avenues in turn.

Figure 4 compares per-element time to transpose a
matrix using the naive iterative algorithm employing a
doubly nested loop with the recursive cache-oblivious
REC-TRANSPOSEalgorithm from Section 3. The two
algorithms were evaluated on a 450 megahertz AMD
K6III processor with a 32-kilobyte 2-way set-associative
L1 cache, a 64-kilobyte 4-way set-associative L2 cache,
and a 1-megabyte L3 cache of unknown associativ-
ity, all with 32-byte cache lines. The code for REC-
TRANSPOSEwas the same as presented in Section 3, ex-
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matrices, divided byN3.

cept that the divide-and-conquer structure was modified
to produce exact powers of 2 as submatrix sizes wher-
ever possible. In addition, the base cases were “coars-
ened” by inlining the recursion near the leaves to in-
crease their size and overcome the overhead of proce-
dure calls. (A good research problem is to determine
an effective compiler strategy for coarsening base cases
automatically.)

Although these results must be considered prelimi-
nary, Figure 4 strongly indicates that the recursive al-
gorithm outperforms the iterative algorithm throughout
the range of matrix sizes. Moreover, the iterative al-
gorithm behaves erratically, apparently due to so-called
“conflict” misses [20, p. 390], where limited cache asso-
ciativity interacts with the regular addressing of the ma-
trix to cause systematic interference. Blocking the itera-
tive algorithm should help with conflict misses [22], but
it would make the algorithm cache aware. For large ma-
trices, the recursive algorithm executes in less than 70%
of the time used by the iterative algorithm, even though
the transpose problem exhibits no temporal locality.

Figure 5 makes a similar comparison between the
naive iterative matrix-multiplication algorithm, which
uses three nested loops, with theO�n3�-work recur-
sive REC-MULT algorithm described in Section 2. This
problem exhibits a high degree of temporal locality,
which REC-MULT exploits effectively. As the figure
shows, the average time used per integer multiplication
in the recursive algorithm is almost constant, which for
large matrices, is less than 50% of the time used by the
iterative variant. A similar study for Jacobi multipass
filters can be found in [26].

Several researchers [12, 16] have also observed that
recursive algorithms exhibit performance advantages
over iterative algorithms for computers with caches. A
comprehensive empirical study has yet to be done, how-
ever. Do cache-oblivious algorithms perform nearly as
well as cache-aware algorithms in practice, where con-
stant factors matter? Does the ideal-cache model cap-
ture the substantial caching concerns for an algorithms
designer?

An anecdotal affirmative answer to these questions is
exhibited by the popular FFTW library [17, 18], which

uses a recursive strategy to exploit caches in Fourier
transform calculations. FFTW’s code generator pro-
duces straight-line “codelets,” which are coarsened base
cases for the FFT algorithm. Because these codelets are
cache oblivious, a C compiler can perform its register
allocation efficiently, and yet the codelets can be gen-
erated without knowing the number of registers on the
target architecture.

To close, we mention two theoretical avenues
that should be explored to determine the complexity-
theoretic relationship between cache-oblivious algo-
rithms and cache-aware algorithms.

Separation: Is there a gap in asymptotic complexity
between cache-aware and cache-oblivious algorithms?
It appears that cache-aware algorithms should be able to
use caches better than cache-oblivious algorithms, since
they have more knowledge about the system on which
they are running. Do there exist problems for which this
advantage is asymptotically significant, for example an
Ω�lgZ� advantage? Bilardi and Peserico [8] have re-
cently taken some steps in proving a separation.

Simulation: Is there a limit as to how much better a
cache-aware algorithm can be than a cache-oblivious
algorithm for the same problem? That is, given a class
of optimal cache-aware algorithms to solve a single
problem, can we construct a good cache-oblivious al-
gorithm that solves the same problem with only, for
example,O�lgZ� loss of efficiency? Perhaps simula-
tion techniques can be used to convert a class of effi-
cient cache-aware algorithms into a comparably efficient
cache-oblivious algorithm.
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