
1

Dynamic
Software Updating

Michael Hicks

Department of Computer Science
Cornell University

Non-stop Systems

Must run without interruption
◆ Telephone switches
◆ Financial transaction processors
◆ Air traffic control systems
◆ Internet servers (e.g. For e-commerce)

2

… but require upgrades

For the purpose of
◆ bug fixes
◆ functionality/performance enhancements

Example: VISAnet
◆ VISA credit card approval system
◆ Tolerates less than 0.5% downtime per year
◆ but requires up to 20,000 code updates per year

Flawed Approach

Stop and redeploy with new software
◆ But cancels current processing
◆ Loses accumulated state

Not acceptable for mission critical apps

3

Flawed Approach

Start: existing source
accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c Running system

current state

Flawed Approach

Start: existing source

Modify program as needed

accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c
dir_slave.c

Running system

4

Flawed Approach

Start: existing source

Modify program as needed
Compile it and test it

accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c
dir_slave.c

New version

Running system

Flawed Approach

Start: existing source

Modify program as needed
Compile it and test it

Halt existing system
cancels current processing

loses system state

accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c
dir_slave.c

5

Flawed Approach

Start: existing source

Modify program as needed
Compile it and test it

Halt existing system
Start new version

accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c
dir_slave.c

Running system

Our Approach

Start: existing source
accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c Running system

6

Our Approach

Start: existing source

Modify program as needed

accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c
dir_slave.c

Running system

Our Approach

Start: existing source

Modify program as needed
Compile it and test it

accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c
dir_slave.c

New version

Running system

7

Our Approach

Start: existing source

Modify program as needed
Compile it and test it

Develop dynamic patches

accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c
dir_slave.c

Running system

Our Approach

Start: existing source

Modify program as needed
Compile it and test it

Develop dynamic patches
Apply patches to running

system

accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c
dir_slave.c

Running system

8

Our Approach

Key elements:

◆ Builds on type-safe dynamic linking of native code

◆ Library implementation of updating API

◆ Generates dynamic patches mostly automatically

◆ Informed by actual use in updateable server app

FlashEd Webserver

Case study: the Flash webserver, but Editable
◆ Roughly 8,000 lines of code

Built incrementally

Version 0.1 deployed publicly Oct 12, 2000
◆ http://flashed.cis.upenn.edu/

Three major updates since then

http://flashed

9

Timeline

FlashEd v1

Oct 12

Timeline

FlashEd v1

FlashEd v2
◆ Added pathname translation caching (FlashEd v2)

Oct 27Oct 12

10

Timeline

FlashEd v1

FlashEd v2
◆ Added pathname translation caching (FlashEd v2)

FlashEd v3
◆ Added 32 MB file cache

Nov 4Oct 27Oct 12

Timeline

FlashEd v1

FlashEd v2
◆ Added pathname translation caching

FlashEd v3
◆ Added 32 MB file cache

FlashEd v4
◆ Added directory listing

Nov 4Oct 27 Feb 7Oct 12

11

DSU Evaluation
Flexibility

◆ no system-imposed restrictions on update form or timing
Robustness

◆ simple implementation
◆ patches verifiably safe
◆ automation reduces errors in update code

Low overhead
◆ less than 1% under typical conditions for sample app

Ease of use
◆ fits in typical software development process

Previous Approaches

Restrictions on change

hurts flexibility

accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c
dir_slave.c

Running system

12

Previous Approaches

Restrictions on change

May crash the system
hurts robustness

Running system

accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c
dir_slave.c

Previous Approaches

Restrictions on change

May crash the system
Hand patch generation

hurts robustness and
ease-of-use

Running system

accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c
dir_slave.c

?

13

Previous Approaches

Restrictions on change

May crash the system
Hand patch generation

High overhead
hurts performance

accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c
dir_slave.c

Running system

Previous Approaches

Restrictions on change

May crash the system
Hand patch generation

High overhead
Extra engineering

hurts robustness

Running system

accept.c
cold.c
common.c
data.c
file.c
libhttpd.c
loop.c
main.c
maint.c
match.c
name.c
nameconvert.c
readreq.c
tdate_parse.c
timer.c
dir_slave.c

14

DSU I mplementation

Source programs in Popcorn
◆ Verifiably-safe (i.e. type-safe)
◆ Procedural (i.e. C-like)
◆ May define named types (i.e. C structs)

◆ No threads

Compiled to Typed Assembly Language (TAL),
◆ variant of Proof-Carrying Code (PCC)
◆ Implementation for Intel IA32 architecture

Strategy

Dynamic patch: the unit of update

Enable a program to be dynamically patched
Mostly automatically generate dynamic patches

Make sure updates are well-timed

15

Dynamic Patch

Reflects changes to per-module
◆ code
◆ state
◆ type definitions

Patch has form (f,S) where
◆ f is the new module
◆ S is a state transformer function to migrate old

state to the new implementation

Dynamic Patches
f
static int num = 0;
typedef struct {

int a; int b;
} t;
int f(t T) {

num++;
return T.a+T.b;

}

16

Dynamic Patches
f
static int num = 0;
typedef struct {

int a; int b;
} t;
int f(t T) {

num++;
return T.a+T.b;

}

f’ (new f)
static int num = 0;
typedef struct {

int a; int b;
int c;

} t;
int f(t T) {

num++;
return T.a*T.b*T.c;

}

Dynamic Patches
f
static int num = 0;
typedef struct {

int a; int b;
} t;
int f(t T) {

num++;
return T.a+T.b;

}

f’ (new f)

Dynamic Patch

void init() {
f’::num = f::num;

}

state transformer

static int num = 0;
typedef struct {

int a; int b;
int c;

} t;
int f(t T) {

num++;
return T.a*T.b*T.c;

}

17

Strategy

Dynamic patch: the unit of update

Enable a program to be dynamically patched
Generate dynamic patches mostly automatically

Make sure updates are well-timed

I mplementing Patching

Based on dynamic loading/linking

◆ Dynamically load and verify the patch

◆ “Fix up” the running program to use the new code

◆ Run the state transformer

◆ Proceed with the program

18

I mplementing Patching

Module to update

A running program

I mplementing Patching

Load patchA running program

19

I mplementing Patching

Load patch
Run state transformer

I mplementing Patching

Load patch
Run state transformer
Fix up program

20

I mplementing Patching

Load patch
Run state transformer
Fix up program

•Can test off- line

I mplementing Patching

Load patch
Run state transformer
Fix up program

•Can test off- line
•Old code runs with new

21

Enabling Dynamic Updates

Updating code and data. Two possibilities
◆ Code relinking
◆ Reference Indirection

Updating type definitions …

Code Relinking

extern int bfunc();
int afunc() {

return bfunc();
}

A
int bfunc() {

return 1;
}

B

Before

22

Code Relinking

extern int bfunc();
int afunc() {

return bfunc();
}

A
int bfunc() {

return 1;
}

B

int bfunc() {
return 2;

}

new B

After

Reference I ndirection

extern int bfunc();
int afunc() {

return bfunc();
}

A
int bfunc() {

return 1;
}

B

Indirection table

Before

23

Reference I ndirection

extern int bfunc();
int afunc() {

return bfunc();
}

A
int bfunc() {

return 1;
}

B

int bfunc() {
return 2;

}

new B

Indirection table

After

Relinking vs. I ndirection

Performance
◆ No extra indirection

Complexity (Robustness)
◆ Must track existing code to relink it
◆ But ensures all clients of global data are updated

Flexibility
◆ Does not deal with pointerful data; must use state

transformer

24

Enabling Dynamic Updates

Updating type definitions. Two choices:
◆ Type replacement
◆ Type renaming

Updating Type Definitions

Type Replacement. Replace existing definition with
new one; requires
◆ updating the type-checking context;
◆ updating all instances of the old type;
◆ user must update all clients of the old type.

Type Renaming.
◆ When a type changes, rename it.

25

Type Replacement

t aelem = typedef struct t {
int a;

} t;
t a = 1

A B

t → struct { int a; }

typechecking context

Before

Type Replacement

t aelem = typedef struct t {
int a;

} t;
t a = 1
b = 0

A B

typechecking context typedef struct t {
int a;
int b;

} t;

new B

After

t → struct { int a; }
t → struct {

int a;
int b;

}

26

Type Renaming

t aelem = typedef struct t {
int a;

} t;
a = 1

A B

t → struct { int a; }

typechecking context

Before

Type Renaming

t aelem = typedef struct t {
int a;

} t;
a = 1

A B

t → struct { int a; }
t2 → struct {

int a;
int b;

}

typechecking context typedef struct t2 {
int a;
int b;

} t2;

new B

After

27

Renaming vs. Replacement

Flexibility
◆ Type renaming does not allow replacing old types

Robustness
◆ Replacement requires a complex implementation
◆ Renaming good enough; much simpler

Strategy

Dynamic patch: the unit of update

Enable a program to be dynamically patched
Generate dynamic patches mostly automatically

Make sure updates are well-timed

28

Generating Patches

Development Process for Updateable Software
◆ Make changes
◆ Identify which files changed and how
◆ Construct patches

Development Process for Updateable Software
◆ Make changes
◆ Identify which files changed and how
◆ Construct patches

◆ Benefits to Robustness and Ease-of-Use

Generating Patches

Can do (mostly) automatically

29

Automatic Patch Generation

Compares files syntactically, informed by types

Identifies and acts on changed definitions
◆ For types, a new name is generated (MD5 hash of

definition) and the mapping noted. Type
conversion function also created

Generates state transformer function
leaves placeholder when action not known

FlashEd Patches

991214120.4

991261140.3

481324160.2

by handauto
total

patches
to

version
patch LOC

By hand patch generation: 6.5% total LOC

30

Strategy

Dynamic patch: the unit of update

Enable a program to be dynamically patched
Generate dynamic patches mostly automatically

Make sure updates are well-timed

Controlling Update timing

Properly time patch to avoid race conditions

Two models:
◆ Interrupt model
◆ Invoke model

31

Update Timing

program

update

time

interrupt
conditions

met
possible

transition
?

resume

relink and transform state

Interrupt model

Update Timing

program

update

time

interrupt

notify

conditions
met

call updater return

possible
transition

?
resume

well-defined
transition

program

update

relink and transform state

relink and transform state

Interrupt model

Invoke model

32

Comparing Models

Interrupt model enforces timing at runtime
◆ Complicates the implementation
◆ Hard to use correctly

Invoke enforces timing at development time
◆ Applications perform their own updating. Simpler

implementation, more assurances of correctness

FlashEd Update Timing

Structure amenable to invoke model
◆ Toplevel event loop
◆ Updates occur as events

Many server applications structured in this way

33

Summary of Approach

Dynamic loading of patches
◆ Patches are verified as safe before they are linked

Code/data updates by code relinking

Type updates by type renaming

Mostly automatic generation of patches

Timing ensured at software development time

I mplementation Summary

Trustworthy dynamic linking for TAL

Popcorn source-to-source translation to enable
linking and updating

Popcorn library for updating; based on C Dlopen

34

Verifiable Native Code

verifierparser

code

trusted

verifiably
safe

proof

runtime system

Compare to JVM

verifierparser

JVM bytecode

trusted

runtime system

JIT
compiler

verifiably
safe

35

loader

Dynamic Linking in VNC

naïve
approach

linker

symbol manager

runtime system

verifierparser

loader

Dynamic Linking in VNC

linker

symbol manager

our
approach

verifiably
safe

runtime system

verifierparser

36

Dynamic Updating in VNC

our
approach

linker

symbol manager verifiably
safe

loader

runtime system

verifierparser

Trusted Part

load primitive

◆ performs loading and verification

To implement linking and symbol management:
◆ runtime term representations for types
◆ checked_cast primitive

◆ existential types

37

Untrusted Part

Files compiled to have:
◆ indirection table (GOT) for external references

Library implements program interface:
◆ Initiates loading, unloading, linking, and updating
◆ Manages type-safe dynamic symbol-table

Updating Performance

Run-time overhead
◆ One extra indirection per external reference,

inherited from dynamic linking
◆ Loaded code stored in the heap; may result in

more frequent GC and different cache locality

Load-time overhead
◆ TAL verification and dynamic linking

38

FlashEd Performance

0.1 0.2 0.3 C

S e rv e r Ve rs ion

70

75

80

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Log-ba s e d te s t

s ta tic
updateable
updated

FlashEd Performance

0.1 0.2 0.3 C

S e rv e r Ve rs ion

1100

1200

1300

1400

T
h

ro
u

g
h

p
u

t
(C

o
n

n
s

/s
)

URL /file 1k.htm l

s ta tic
updateable
updated

39

Loading/ Verification Times

50000 100000 150000

file s ize (B)

1

2

3
ti

m
e

(s
)

other
cons is tency checking
dis as s embly

Total time: 16 secs

Related Work

Updating by state transfer
◆ PolyLith, Gupta et al, Argus, ...
◆ Checkpointing and general-purpose persistence

Updating by dynamic linking
◆ Dynamic ML, Dynamic C++, Dynamic Java, ...
◆ Extensible systems and `adaptive software’
◆ Active networks

40

Future Work

New contexts
◆ Functional & object-oriented languages
◆ Distributed systems

✦ Software Routers

New features

Formalize update timing constraints

Conclusions

Developed a general-purpose dynamic updating
system that is
◆ Flexible
◆ Robust
◆ Low overhead
◆ Easy to use

Validated by a realistic, non-stop application

41

For more information

Project Homepage

http://www.cis.upenn.edu/~mwh/flashed.html

Source code available

See thesis or papers in PLDI 2001, TIC 2000,
IWAN 2000

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

