Cs21
Decidability and Tractability

Lecture 13
February 2, 2007

February 2, 2007 CS21 Lecture 13

Outline

e The Recursion Theorem (finishing up)

e Goddel Incompleteness Theorem

February 2, 2007 CS21 Lecture 13

The Recursion Theorem
Note: <A> = q()

A B
* output « read contents of tape
Recall: g(w) is a *apply g to it
description of a TM P, that |, prepend result to tape

prints out w and then halts.

—watch closely as TM AB runs:

—Aruns. Tape contents:

— B runs. Tape contents: q() = <AB>
— AB is our desired machine SELF.

February 2, 2007 CS21 Lecture 13

The Recursion Theorem

Theorem: Let T be a TM that computes fn:
XX XF— X
There is a TM R that computes the fn:
rx*—x*
defined as r(w) = t(w, <R>).
« This allows “obtain own description” as
valid step in TM program
— first modify TM so that it takes an additional
input (that is own description); use at will

February 2, 2007 CS21 Lecture 13

The Recursion Theorem

Theorem: Let T be a TM that computes fn:
XXX — X
There is a TM R that computes the fn:
rxx— x*
defined as r(w) = t(w, <R>).
Proof outline: TM R has 3 parts
Part A: output description of BT
Part B: prepend description of A
Part“T"runTM T

February 2, 2007 CS21 Lecture 13

The Recursion Theorem

Proof details: TM R has 3 parts
Part A: output description of BT
* <A>=((<BT>)
Part B: prepend description of A

« read contents of tape <BT>
e applyqtoit q(<BT>) = <A>
* prepend to tape <ABT>

Part “T" run TM T
« 2nd argument on tape is description of R

February 2, 2007 CS21 Lecture 13

Background

« Hilbert's program (1920’s):
— formalize mathematics in axiomatic form
— derive all true statements “mechanically” from
initial axioms
—would put mathematicians out of business!
— very influential proposal

* to start: try for all true statements about
the natural numbers (“number theory”)

February 2, 2007 CS21 Lecture 13

Background:

e Kurt Godel (1931): it is not possible!

« no formalization of number theory can
prove all true statements

* stunning result

« considered one of greatest 20" century
achievements in math.

February 2, 2007 CS21 Lecture 13

Background

* We will prove using:

— RE languages and non-RE languages
— reductions

* |dea:
— set of all theorems is RE
— set of all true statements is not RE

« This kind of proof of Gdédel’s result
attributed to Turing (1937).

February 2, 2007 CS21 Lecture 13

Number Theory

« formal language to express properties of
N={0,1,2,3,...}
« allowable symbols: parentheses, and
— variables x,y,z,... ranging over N
— operators + (addition) and * (multiplication)
— constants 0 (additive id) and 1 (mult. identity)
— relation = (equality)
— quantifiers O (for all) and O (exists)
— propositional operators O (and) O (or) = (not) =
(implies) - (iff)

February 2, 2007 CS21 Lecture 13

Number Theory

can formalize syntax of allowable formulas
(skip)
« defining comparison relations:

—xXsyslkzx+z=y

—-x<y=[kx+z=yO-(z=0)

February 2, 2007 CS21 Lecture 13 11

Number Theory

 Other natural concepts we will need:
— quotient g and remainder r when divide x by y
INTDIV(X,y, q, ") =x=qy+rQdr<y
—y divides x
DIV(y, x) = 0q INTDIV(x,y,q,0)
—Xis even
EVEN(X) = DIV(1+1, X)
— X is odd
ODD(x) = - EVEN(x)

February 2, 2007 CS21 Lecture 13

Number Theory

Other natural concepts we will need:

— X is prime

PRIME(x) =x 2 (1+1) OOy (DIV(y, x) = (y=1 0y =x))
—x is a power of 2

POWER,(x) = Oy (DIV(y, x) OPRIME(y)) =y = (1+1)
—y =2kand k" bit of x is 1

BIT(X, y) = POWER,(y) O0Oq Or (INTDIV(X, y, g,)
= ODD(q))

February 2, 2007 CS21 Lecture 13

13

Number Theory

* A sentence is a formula with no un-
guantified variables

—every number has a successor:

Oxyy=x+1
—every number has a predecessor:

Oxyx=y+1
—notasentence: x+y=1

¢ “number theory” = set of true sentences
—denoted Th(N)

February 2, 2007

CS21 Lecture 13

Number Theory

—y = 2kand kt bit of xis 1
BIT(X, y) = POWER,(y) O0Oq Or (INTDIV(X, Y, q, I)

= 0ODD(q))
y= 10000000000
X = 1010111010111001001001
q r

February 2, 2007

CS21 Lecture 13

Proof systems

 Proof system components:
— axioms (asserted to be true)

—rules of inference (mechanical way to derive
theorems from axioms)

» axioms for manipulating symbols (e.g.):
GO0 =0
= (Bx ¢(x)) = ¢(1+1+1)
—-Ox0Oy0z(x=yOy=z=x=2)
— others...

February 2, 2007

CS21 Lecture 13

Peano Arithmetic

« Peano Arithmetic: proof system for
number theory. Axioms:

— 0 is not a successor
Ox=-(0=x+1)
— the successor function is one-to-one

Ox Oy (x+t1l=y+l = x=Yy)
— 0 is an identity for +

Oxx+0=x

February 2, 2007 CS21 Lecture 13 17

Peano Arithmetic

— + is associative
Ox Oy x+(y+1)=(x+y)+1
— multiplying by zero gives 0
Oxx*0=0
— *distributes over +

OxOy x*(y+1)=(x*y) +x
— induction axiom

(9(0) DOX ($(x) = ¢(x+1))) = Dx ¢(x)

February 2, 2007 CS21 Lecture 13

Peano Arithmetic

« rules of inference:

modus ponens ¢ o=u
v
generalization L
Ox ¢

February 2, 2007 CS21 Lecture 13

19

Proof systems

« a proof is a sequence of formulas

01 b2 b3 - Oy
such that each ¢, is either
—an axiom, or

— follows from formulas earlier in list from rules
of inference

» A sentence is a theorem of the proof
system if it has a proof

February 2, 2007 CS21 Lecture 13

Proof systems

* A proof system is sound if all theorems in
that proof system are true (better have this)

* Peano Arithmetic (PA) is sound.

true sentences
=Th(N)

false sentences
= co-Th(N)

theorems
of PA

February 2, 2007 CS21 Lecture 13

21

Proof systems

* A proof system is complete if all true
sentences are theorems in that proof
system

* hope to have this (recall Hilbert's program)

true sentences
=Th(N)

false sentences
=co-Th(N)
theorems of a
complete proof
system

February 2, 2007 CS21 Lecture 13

Incompleteness Theorem

Theorem: Peano Arithmetic is not complete.

(same holds for any reasonable proof
system for number theory)

Proof outline:
—the set of theorems of PA is RE
—the set of true sentences (= Th(N)) is not RE

February 2, 2007 CS21 Lecture 13 23

Incompleteness Theorem

* Lemma: the set of theorems of PA is RE.

* Proof:

— TM that recognizes the set of theorems of PA:

— systematically try all possible ways of writing
down sequences of formulas

—accept if encounter a proof of input sentence
(note: true for any reasonable proof system)

February 2, 2007 CS21 Lecture 13

Incompleteness Theorem

e Lemma: Th(N) is not RE

¢ Proof:
— reduce from co-HALT (show co-HALT <, Th(N))
—recall co-HALT is not RE

—what should f(<M, w>) produce?
— construct y such that M loops on w < yis true

February 2, 2007 CS21 Lecture 13 25

Incompleteness Theorem

—we will define
VALCOMPy, ,(y) = ... (details to come)

so that it is true iff y is a (halting) computation
history of M on input w

—then define f(<M, w>) to be:
y=- Oy VALCOMP,, (¥)
—YES maps YES?
e <M, w> [0 co-HALT = yis true = y OTh(N)
—NO maps to NO?
e <M, w> [0 co-HALT = yis false = y OTh(N)

February 2, 2007 CS21 Lecture 13 26

Expressing computation in the
language of number theory
— we’'ll write configurations over an alphabet of

size p, where p is a prime that depends on M

—yis a power of p:
POWER(y) = Uz (DIV(z, y) OPRIME(z)) = z = p

—d = p* and length of v as a p-ary string is k
LENGTH(v, d) = POWER,(d) Ov <d

February 2, 2007 CS21 Lecture 13 27

Expressing computation in the

language of number theory
—the p-ary digit of v at position y is b (assuming
y is a power of p):

DIGIT(v,y, b) =
ufa(v=a+by+upyda<yOb<p)
—the three p-ary digits of v at position y are b,c,

and d (assuming y is a power of p):

3DIGIT(v,y, b, c,d) =
Cu [a (v = a+ by + cpy + dppy + upppy
Oa<yOb<pOc<pOd<p)

February 2, 2007 CS21 Lecture 13 28

Expressing computation in the
language of number theory

— the three p-ary digits of v at position y “match”
the three p-ary digits of v at position z
according to M’s transition function (assuming
y and z are powers of p):

MATCH(v, y, z) =

D(ab’C,d’e,f) ¢ 3DIGIT(V, v, a, b, ©)
03DIGIT(v, z, d, e, f)

where C ={(a,b,c,d,e,f) : abc in config. C; can
legally change to def in config. C;,;}

February 2, 2007 CS21 Lecture 13 29

Expressing computation in the
language of number theory

— all pairs of 3-digit sequences in v up to d that
are exactly c apart “match” according to M’s
transition function (assuming c, d powers of p)

MOVE(v, ¢, d) =
Oy (POWER,(y) Oyppc < d) = MATCH(v, y, yc)

February 2, 2007 CS21 Lecture 13 30

Expressing computation in the
language of number theory

— the string v starts with the start configuration
of M on input w = w;...w,, padded with blanks
out to length c (assuming c is a power of p):

START(v, ¢) =

|:t — 0’1’2’.”’ n DIGIT(v, p!, k‘) Opn<c
00y (POWER,(y) Op"<y < ¢ = DIGIT(v, y, k)
where Kk, k,Kks...k, is the p-ary encoding of
the start configuration, and k is the p-ary
encoding of a blank symbol.

February 2, 2007 CS21 Lecture 13 31

Expressing computation in the
language of number theory

— string v has a halt state in it somewhere
before position d (assuming d is power of p):

HALT(v, d) =
Oy (POWER,(y) Oy <d 0 LL ;DIGIT(v,y,a))

where H is the pair of p-ary digits
corresponding to states Juccept AN Grgject-

February 2, 2007 CS21 Lecture 13 32

Expressing computation in the
language of number theory

—string v is a valid (halting) computation history
of machine M on string w:

VALCOMP,, (V) =

[t [d (POWER,(c) Oc < d DLENGTH(v, d) O
START(v, ¢) O MOVE(v, ¢, d) OHALT(v, d))

— M does not halt on input w:
- [V VALCOMP, (V)

February 2, 2007 CS21 Lecture 13 33

Incompleteness Theorem

v = 136531362313603131031420314253

VALCOMP,, (V) =

[c (i (POWER,(c) Oc < d OLENGTH(v, d) O
START(v, ¢) O MOVE(v, ¢, d) DHALT(v, d))

February 2, 2007 CS21 Lecture 13 34

Incompleteness Theorem

v = 136531362313603131031420314253
d = 1000000000000000000000000000000
VALCOMP,, (V) =

[t [(POWER,(c) Oc <d DLENGTH(v, d) O
START(v, ¢) O MOVE(v, ¢, d) O HALT(v, d))

d = pk and length of v as a p-ary string is k
LENGTH(v, d) = POWER,(d) Ov <d

February 2, 2007 CS21 Lecture 13 35

Incompleteness Theorem
I
v= 136531362313603131031420314253
¢ = 100000
VALCOMP, () = p"=1000

[c (i (POWER,(c) Oc < d OLENGTH(v, d) O
START(v, ¢) OMOVE(v, ¢, d) DHALT(v, d))

v starts with the start configuration of M on input w
padded with blanks out to length c:

START(v, ¢) = [- DIGIT(v, pi, k)[Ip" <c [I
Oy (POWER(y) Op"<y < ¢ = DIGIT(v, y, k))

February 2, 2007 CS21 Lecture 13 36

Incompleteness Theorem

v= 136531362313603131031420314253
yc = 100000
VALCOMP,, (V) = y=1

[t [d (POWER,(c) Oc <d DLENGTH(v, d) O
START(v, ¢) O MOVE(V, ¢, d) O HALT(v, d))

all pairs of 3-digit sequences in v up to d exactly ¢
apart “match” according to M’s transition function
MOVE(v, ¢, d) = Oy (POWER(y) Oyppc < d)
= MATCH(v, y, yc)

February 2, 2007 CS21 Lecture 13 37

Incompleteness Theorem

v= 136531362313603131031420314253
yc = 1000000
VALCOMP,, (V) = y=10

[c [(POWER,(c) D¢ < d OLENGTH(v, d) O
START(v, ¢) OMOVE(v, ¢, d) OHALT(v, d))

all pairs of 3-digit sequences in v up to d exactly ¢
apart “match” according to M’s transition function
MOVE(v, ¢, d) = Oy (POWER(y) Dyppc < d)
= MATCH(v, y, yc)

February 2, 2007 CS21 Lecture 13 38

Incompleteness Theorem

v= 136531362313603131031420314253
yc = 10000000
VALCOMP,, (V) = y =100

[t [(POWER,(c) Oc <d DLENGTH(v, d) O
START(v, ¢) D MOVE(v, ¢, d) 0 HALT(v, d))

all pairs of 3-digit sequences in v up to d exactly ¢
apart “match” according to M’s transition function
MOVE(v, ¢, d) = 0y (POWER,(y) Oyppc < d)
= MATCH(v, y, yc)

February 2, 2007 CS21 Lecture 13 39

Incompleteness Theorem
[hatstate |
v= 136531362313603131031420314253
y = 1000000000000000000000000000
VALCOMP, (V) =

[c (i (POWER,(c) Oc < d OLENGTH(v, d) O
START(v, ¢) MOVE(v, ¢, d) DHALT(v, d))

string v has a halt state in it before pos'n d:
HALT(v, d) = Oy (POWER(y) Oy <d O
[L,qy DIGIT(v,y,))

February 2, 2007 CS21 Lecture 13 40

Incompleteness Theorem

¢ Lemma: Th(N) is not RE

e Proof:
—reduce from co-HALT (show co-HALT <, Th(N))
—recall co-HALT is not RE

— constructed y such that
M loops on w < yis true

February 2, 2007 CS21 Lecture 13 41

