
1

February 2, 2007 CS21 Lecture 13 1

CS21
Decidability and Tractability

Lecture 13
February 2, 2007

February 2, 2007 CS21 Lecture 13 2

Outline

• The Recursion Theorem (finishing up)

• Gödel Incompleteness Theorem

February 2, 2007 CS21 Lecture 13 3

The Recursion Theorem

– watch closely as TM AB runs:
– A runs. Tape contents:
– B runs. Tape contents: q() = <AB>
– AB is our desired machine SELF.

A

• output

B

• read contents of tape

• apply q to it

• prepend result to tape

Note: <A> = q()

Recall: q(w) is a
description of a TM Pw that
prints out w and then halts.

February 2, 2007 CS21 Lecture 13 4

The Recursion Theorem

Theorem: Let T be a TM that computes fn:
t:

�
* x

�
* �

�
*

There is a TM R that computes the fn:
r:

�
* �

�
*

defined as r(w) = t(w, <R>).
• This allows “obtain own description” as

valid step in TM program
– first modify TM so that it takes an additional

input (that is own description); use at will

February 2, 2007 CS21 Lecture 13 5

The Recursion Theorem

Theorem: Let T be a TM that computes fn:
t:

�
* x

�
* �

�
*

There is a TM R that computes the fn:
r:

�
* �

�
*

defined as r(w) = t(w, <R>).
Proof outline: TM R has 3 parts

Part A: output description of BT
Part B: prepend description of A
Part “T”: run TM T

February 2, 2007 CS21 Lecture 13 6

The Recursion Theorem

Proof details: TM R has 3 parts
Part A: output description of BT

• <A> = q(<BT>)

Part B: prepend description of A
• read contents of tape <BT>
• apply q to it q(<BT>) = <A>
• prepend to tape <ABT>

Part “T”: run TM T
• 2nd argument on tape is description of R

2

February 2, 2007 CS21 Lecture 13 7

Background

• Hilbert’s program (1920’s):
– formalize mathematics in axiomatic form
– derive all true statements “mechanically” from

initial axioms
– would put mathematicians out of business!
– very influential proposal

• to start: try for all true statements about
the natural numbers (“number theory”)

February 2, 2007 CS21 Lecture 13 8

Background:

• Kurt Gödel (1931): it is not possible!

• no formalization of number theory can
prove all true statements

• stunning result

• considered one of greatest 20th century
achievements in math.

February 2, 2007 CS21 Lecture 13 9

Background

• We will prove using:
– RE languages and non-RE languages

– reductions

• Idea:
– set of all theorems is RE

– set of all true statements is not RE

• This kind of proof of Gödel’s result
attributed to Turing (1937).

February 2, 2007 CS21 Lecture 13 10

Number Theory

• formal language to express properties of
N N = {0, 1, 2, 3, …}

• allowable symbols: parentheses, and
– variables x,y,z,… ranging over NN
– operators + (addition) and * (multiplication)
– constants 0 (additive id) and 1 (mult. identity)
– relation = (equality)
– quantifiers ∀ (for all) and ∃ (exists)
– propositional operators ∧ (and) ∨ (or) ¬ (not) �

(implies) ⇔ (iff)

February 2, 2007 CS21 Lecture 13 11

Number Theory

• can formalize syntax of allowable formulas
(skip)

• defining comparison relations:

– x � y ≡ ∃z x + z = y

– x < y ≡ ∃z x + z = y ∧ ¬ (z = 0)

February 2, 2007 CS21 Lecture 13 12

Number Theory

• Other natural concepts we will need:
– quotient q and remainder r when divide x by y

INTDIV(x, y, q, r) ≡ x = qy + r ∧ r < y
– y divides x

DIV(y, x) ≡ ∃ q INTDIV(x,y,q,0)
– x is even

EVEN(x) ≡ DIV(1+1, x)
– x is odd

ODD(x) ≡ ¬ EVEN(x)

3

February 2, 2007 CS21 Lecture 13 13

Number Theory

• Other natural concepts we will need:
– x is prime
PRIME(x) ≡ x � (1+1) ∧ ∀y (DIV(y, x) � (y = 1 ∨ y = x))

– x is a power of 2

POWER2(x) ≡ ∀y (DIV(y, x) ∧ PRIME(y)) � y = (1+1)

– y = 2k and kth bit of x is 1

BIT(x, y) ≡ POWER2(y) ∧ ∀q ∀r (INTDIV(x, y, q, r)
� ODD(q))

February 2, 2007 CS21 Lecture 13 14

Number Theory

– y = 2k and kth bit of x is 1

BIT(x, y) ≡ POWER2(y) ∧ ∀q ∀r (INTDIV(x, y, q, r)
� ODD(q))

y = 10000000000
x = 1010111010111001001001

q r

February 2, 2007 CS21 Lecture 13 15

Number Theory

• A sentence is a formula with no un-
quantified variables
– every number has a successor:

∀x ∃y y = x + 1
– every number has a predecessor:

∀x ∃y x = y + 1
– not a sentence: x + y = 1

• “number theory” = set of true sentences
– denoted Th(NN)

true

false

February 2, 2007 CS21 Lecture 13 16

Proof systems

• Proof system components:
– axioms (asserted to be true)
– rules of inference (mechanical way to derive

theorems from axioms)

• axioms for manipulating symbols (e.g.):
– (ϕ ∧ ψ) � ϕ
– (∀x ϕ(x)) � ϕ(1+1+1)
– ∀x ∀y ∀z (x = y ∧ y = z � x = z)

– others…

February 2, 2007 CS21 Lecture 13 17

Peano Arithmetic

• Peano Arithmetic: proof system for
number theory. Axioms:
– 0 is not a successor

∀x ¬ (0 = x + 1)
– the successor function is one-to-one

∀x ∀y (x+1 = y+1 � x = y)

– 0 is an identity for +

∀x x + 0 = x

February 2, 2007 CS21 Lecture 13 18

Peano Arithmetic

– + is associative

∀x ∀y x + (y + 1) = (x + y) + 1
– multiplying by zero gives 0

∀x x*0 = 0
– * distributes over +

∀x ∀y x * (y + 1) = (x * y) + x
– induction axiom

(ϕ(0) ∧ ∀x (ϕ(x) � ϕ(x+1))) � ∀x ϕ(x)

4

February 2, 2007 CS21 Lecture 13 19

Peano Arithmetic

• rules of inference:

ϕ ϕ � ψ
ψ

ϕ
∀x ϕ

modus ponens

generalization

February 2, 2007 CS21 Lecture 13 20

Proof systems

• a proof is a sequence of formulas

ϕ1, ϕ2, ϕ3, …, ϕn

such that each ϕi is either
– an axiom, or

– follows from formulas earlier in list from rules
of inference

• A sentence is a theorem of the proof
system if it has a proof

February 2, 2007 CS21 Lecture 13 21

Proof systems

• A proof system is sound if all theorems in
that proof system are true (better have this)

• Peano Arithmetic (PA) is sound.

true sentences
= Th(NN)

false sentences
= co-Th(NN)

theorems
of PA

February 2, 2007 CS21 Lecture 13 22

Proof systems

• A proof system is complete if all true
sentences are theorems in that proof
system

• hope to have this (recall Hilbert’s program)

true sentences
= Th(NN)

false sentences
= co-Th(NN)

theorems of a
complete proof

system

February 2, 2007 CS21 Lecture 13 23

Incompleteness Theorem

Theorem: Peano Arithmetic is not complete.

(same holds for any reasonable proof
system for number theory)

Proof outline:
– the set of theorems of PA is RE
– the set of true sentences (= Th(NN)) is not RE

February 2, 2007 CS21 Lecture 13 24

Incompleteness Theorem

• Lemma: the set of theorems of PA is RE.

• Proof:
– TM that recognizes the set of theorems of PA:

– systematically try all possible ways of writing
down sequences of formulas

– accept if encounter a proof of input sentence
(note: true for any reasonable proof system)

5

February 2, 2007 CS21 Lecture 13 25

Incompleteness Theorem

• Lemma: Th(NN) is not RE

• Proof:
– reduce from co-HALT (show co-HALT � m Th(NN))

– recall co-HALT is not RE

– what should f(<M, w>) produce?

– construct γ such that M loops on w ⇔ γ is true

February 2, 2007 CS21 Lecture 13 26

Incompleteness Theorem

– we will define
VALCOMPM,w(y) ≡ … (details to come)

so that it is true iff y is a (halting) computation
history of M on input w

– then define f(<M, w>) to be:
γ ≡ ¬ ∃y VALCOMPM,w(y)

– YES maps YES?
• <M, w> ∈ co-HALT � γ is true � γ ∈Th(NN)

– NO maps to NO?
• <M, w> ∉ co-HALT � γ is false � γ ∉Th(NN)

February 2, 2007 CS21 Lecture 13 27

Expressing computation in the
language of number theory

– we’ll write configurations over an alphabet of
size p, where p is a prime that depends on M

– y is a power of p:

POWERp(y) ≡ ∀z (DIV(z, y) ∧ PRIME(z)) � z = p

– d = pk and length of v as a p-ary string is k

LENGTH(v, d) ≡ POWERp(d) ∧ v < d

February 2, 2007 CS21 Lecture 13 28

Expressing computation in the
language of number theory

– the p-ary digit of v at position y is b (assuming
y is a power of p):

DIGIT(v, y, b) ≡
∃u ∃a (v = a + by + upy ∧ a < y ∧ b < p)

– the three p-ary digits of v at position y are b,c,
and d (assuming y is a power of p):

3DIGIT(v, y, b, c, d) ≡
∃u ∃a (v = a + by + cpy + dppy + upppy

∧ a < y ∧ b < p ∧ c < p ∧ d < p)

February 2, 2007 CS21 Lecture 13 29

Expressing computation in the
language of number theory

– the three p-ary digits of v at position y “match”
the three p-ary digits of v at position z
according to M’s transition function (assuming
y and z are powers of p):

MATCH(v, y, z) ≡

∨(a,b,c,d,e,f) ∈ C 3DIGIT(v, y, a, b, c)
∧ 3DIGIT(v, z, d, e, f)

where C = {(a,b,c,d,e,f) : abc in config. Ci can
legally change to def in config. Ci+1}

February 2, 2007 CS21 Lecture 13 30

Expressing computation in the
language of number theory

– all pairs of 3-digit sequences in v up to d that
are exactly c apart “match” according to M’s
transition function (assuming c, d powers of p)

MOVE(v, c, d) ≡
∀y (POWERp(y) ∧ yppc < d) � MATCH(v, y, yc)

6

February 2, 2007 CS21 Lecture 13 31

Expressing computation in the
language of number theory

– the string v starts with the start configuration
of M on input w = w1…wn padded with blanks
out to length c (assuming c is a power of p):

START(v, c) ≡

∧i = 0,1,2,…, n DIGIT(v, pi, ki) ∧ pn < c

∧ ∀y (POWERp(y) ∧ pn < y < c � DIGIT(v, y, k))

where k0k1k2k3…kn is the p-ary encoding of
the start configuration, and k is the p-ary
encoding of a blank symbol.

February 2, 2007 CS21 Lecture 13 32

Expressing computation in the
language of number theory

– string v has a halt state in it somewhere
before position d (assuming d is power of p):

HALT(v, d) ≡

∃y (POWERp(y) ∧ y < d ∧ ∨a∈HDIGIT(v,y,a))

where H is the pair of p-ary digits
corresponding to states qaccept and qreject.

February 2, 2007 CS21 Lecture 13 33

Expressing computation in the
language of number theory

– string v is a valid (halting) computation history
of machine M on string w:

VALCOMPM,w(v) ≡
∃c ∃d (POWERp(c) ∧ c < d ∧ LENGTH(v, d) ∧

START(v, c) ∧ MOVE(v, c, d) ∧ HALT(v, d))

– M does not halt on input w:

¬ ∃v VALCOMPM,w(v)

February 2, 2007 CS21 Lecture 13 34

Incompleteness Theorem

v = 136531362313603131031420314253

VALCOMPM,w(v) ≡
∃c ∃d (POWERp(c) ∧ c < d ∧ LENGTH(v, d) ∧

START(v, c) ∧ MOVE(v, c, d) ∧ HALT(v, d))

February 2, 2007 CS21 Lecture 13 35

Incompleteness Theorem

v = 136531362313603131031420314253
d = 1000000000000000000000000000000

VALCOMPM,w(v) ≡
∃c ∃d (POWERp(c) ∧ c < d ∧ LENGTH(v, d) ∧

START(v, c) ∧ MOVE(v, c, d) ∧ HALT(v, d))

d = pk and length of v as a p-ary string is k

LENGTH(v, d) ≡ POWERp(d) ∧ v < d

February 2, 2007 CS21 Lecture 13 36

Incompleteness Theorem

v = 136531362313603131031420314253
c = 100000

VALCOMPM,w(v) ≡
∃c ∃d (POWERp(c) ∧ c < d ∧ LENGTH(v, d) ∧

START(v, c) ∧ MOVE(v, c, d) ∧ HALT(v, d))

v starts with the start configuration of M on input w
padded with blanks out to length c:

START(v, c) ≡ ∧i = 0,…, n DIGIT(v, pi, ki)∧ pn < c ∧
∀y (POWERp(y) ∧ pn < y < c � DIGIT(v, y, k))

kkn…k2k1k0

pn=1000

7

February 2, 2007 CS21 Lecture 13 37

Incompleteness Theorem

v = 136531362313603131031420314253
yc = 100000

VALCOMPM,w(v) ≡
∃c ∃d (POWERp(c) ∧ c < d ∧ LENGTH(v, d) ∧

START(v, c) ∧ MOVE(v, c, d) ∧ HALT(v, d))

all pairs of 3-digit sequences in v up to d exactly c
apart “match” according to M’s transition function

MOVE(v, c, d) ≡ ∀y (POWERp(y) ∧ yppc < d)
� MATCH(v, y, yc)

y =1

February 2, 2007 CS21 Lecture 13 38

Incompleteness Theorem

v = 136531362313603131031420314253
yc = 1000000

VALCOMPM,w(v) ≡
∃c ∃d (POWERp(c) ∧ c < d ∧ LENGTH(v, d) ∧

START(v, c) ∧ MOVE(v, c, d) ∧ HALT(v, d))

all pairs of 3-digit sequences in v up to d exactly c
apart “match” according to M’s transition function

MOVE(v, c, d) ≡ ∀y (POWERp(y) ∧ yppc < d)
� MATCH(v, y, yc)

y =10

February 2, 2007 CS21 Lecture 13 39

Incompleteness Theorem

v = 136531362313603131031420314253
yc = 10000000

VALCOMPM,w(v) ≡
∃c ∃d (POWERp(c) ∧ c < d ∧ LENGTH(v, d) ∧

START(v, c) ∧ MOVE(v, c, d) ∧ HALT(v, d))

all pairs of 3-digit sequences in v up to d exactly c
apart “match” according to M’s transition function

MOVE(v, c, d) ≡ ∀y (POWERp(y) ∧ yppc < d)
� MATCH(v, y, yc)

y =100

February 2, 2007 CS21 Lecture 13 40

Incompleteness Theorem

v = 136531362313603131031420314253
y = 1000000000000000000000000000

VALCOMPM,w(v) ≡
∃c ∃d (POWERp(c) ∧ c < d ∧ LENGTH(v, d) ∧

START(v, c) ∧ MOVE(v, c, d) ∧ HALT(v, d))

string v has a halt state in it before pos’n d:

HALT(v, d) ≡ ∃y (POWERp(y) ∧ y < d ∧

∨a∈H DIGIT(v,y,a))

halt state

February 2, 2007 CS21 Lecture 13 41

Incompleteness Theorem

• Lemma: Th(NN) is not RE

• Proof:
– reduce from co-HALT (show co-HALT � m Th(NN))

– recall co-HALT is not RE

– constructed γ such that

M loops on w ⇔ γ is true

