

Outline

- The Recursion Theorem (finishing up)
- Gödel Incompleteness Theorem

The Recursion Theorem

Note: <A> = q ()	
- output 	B - read contents of tape
Recall: $q(w)$ is a description of a TM P_{w} that prints out w and then halts.	- apply q to it - prepend result to tape

- watch closely as TM AB runs:
- A runs. Tape contents:
- B runs. Tape contents: $\mathrm{q}(<\mathrm{B}>)<\mathrm{B}>=<\mathrm{AB}>$
$-A B$ is our desired machine SELF.

The Recursion Theorem

Theorem: Let T be a TM that computes fn:
$\mathrm{t}: \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{*}$
There is a TM R that computes the fn :

$$
\mathrm{r}: \Sigma^{*} \rightarrow \Sigma^{*}
$$

defined as $\mathrm{r}(\mathrm{w})=\mathrm{t}(\mathrm{w},<\mathrm{R}>)$.
Proof outline: TM R has 3 parts
Part A: output description of BT
Part B: prepend description of A
Part "T": run TM T

The Recursion Theorem

Proof details: TM R has 3 parts
Part A: output description of BT

- <A> = $q(<B T>)$

Part B: prepend description of A

- read contents of tape <BT>
- apply q to it
- prepend to tape

Part "T": run TM T

- $2^{\text {nd }}$ argument on tape is description of R

Background

- Hilbert's program (1920's):
- formalize mathematics in axiomatic form
- derive all true statements "mechanically" from initial axioms
- would put mathematicians out of business!
- very influential proposal
- to start: try for all true statements about the natural numbers ("number theory")

Background

- We will prove using:
- RE languages and non-RE languages
- reductions
- Idea:
- set of all theorems is RE
- set of all true statements is not RE
- This kind of proof of Gödel's result attributed to Turing (1937).

Number Theory

- can formalize syntax of allowable formulas (skip)
- defining comparison relations:

$$
\begin{aligned}
& -x \leq y \equiv \exists z x+z=y \\
& -x<y \equiv \exists z x+z=y \wedge \neg(z=0)
\end{aligned}
$$

Background:

- Kurt Gödel (1931): it is not possible!
- no formalization of number theory can prove all true statements
- stunning result
- considered one of greatest $20^{\text {th }}$ century achievements in math.
February 2, 2007

Number Theory

- formal language to express properties of

$$
\mathbf{N}=\{0,1,2,3, \ldots\}
$$

- allowable symbols: parentheses, and
- variables x, y, z, \ldots ranging over \mathbf{N}
- operators + (addition) and * (multiplication)
- constants 0 (additive id) and 1 (mult. identity)
- relation = (equality)
- quantifiers \forall (for all) and \exists (exists)
- propositional operators \wedge (and) \vee (or) \neg (not) \Rightarrow (implies) \Leftrightarrow (iff)

February 2, 2007
CS21 Lecture 13
10
\qquad

Number Theory

- Other natural concepts we will need:
- quotient q and remainder r when divide x by y $\operatorname{INTDIV}(x, y, q, r) \equiv x=q y+r \wedge r<y$
-y divides x

$$
\operatorname{DIV}(y, x) \equiv \exists q \operatorname{INTDIV}(x, y, q, 0)
$$

$-x$ is even

$$
\operatorname{EVEN}(x) \equiv \operatorname{DIV}(1+1, x)
$$

$-x$ is odd

$$
\operatorname{ODD}(\mathrm{x}) \equiv \neg \operatorname{EVEN}(\mathrm{x})
$$

February 2, 2007
CS21 Lecture 13
12

Number Theory

- Other natural concepts we will need:
-x is prime
$\operatorname{PRIME}(x) \equiv x \geq(1+1) \wedge \forall y(\operatorname{DIV}(y, x) \Rightarrow(y=1 \vee y=x))$
$-x$ is a power of 2
$\operatorname{POWER}_{2}(x) \equiv \forall y(\operatorname{DIV}(y, x) \wedge \operatorname{PRIME}(y)) \Rightarrow y=(1+1)$
$-y=2^{k}$ and $k^{\text {th }}$ bit of x is 1
$\operatorname{BIT}(x, y) \equiv \operatorname{POWER}_{2}(\mathrm{y}) \wedge \forall \mathrm{q} \forall \mathrm{r}(\operatorname{INTDIV}(\mathrm{x}, \mathrm{y}, \mathrm{q}, \mathrm{r})$ $\Rightarrow \mathrm{ODD}(\mathrm{q})$)

February 2, 2007

Number Theory

- A sentence is a formula with no unquantified variables
- every number has a successor: $\forall x \exists y y=x+1$
- every number has a predecessor: $\forall x \exists y x=y+1$
- not a sentence: $x+y=1$

- "number theory" = set of true sentences
- denoted $\operatorname{Th}(\mathbf{N})$

Number Theory

$-y=2^{k}$ and $k^{\text {th }}$ bit of x is 1
$\operatorname{BIT}(\mathrm{x}, \mathrm{y}) \equiv \operatorname{POWER}_{2}(\mathrm{y}) \wedge \forall \mathrm{q} \forall r(\operatorname{INTDIV}(\mathrm{x}, \mathrm{y}, \mathrm{q}, \mathrm{r})$ \Rightarrow ODD(q))
$y=\quad 10000000000$
$x=1010111010111001001001$

February 2, 2007
CS21 Lecture 13
14

Proof systems

- Proof system components:
- axioms (asserted to be true)
- rules of inference (mechanical way to derive theorems from axioms)
- axioms for manipulating symbols (e.g.):
$-(\varphi \wedge \psi) \Rightarrow \varphi$
$-(\forall x \varphi(x)) \Rightarrow \varphi(1+1+1)$
$-\forall x \forall y \forall z(x=y \wedge y=z \Rightarrow x=z)$
- others...

February 2, 2007
CS21 Lecture 13
16

Peano Arithmetic

- Peano Arithmetic: proof system for number theory. Axioms:
-0 is not a successor

$$
\forall x \neg(0=x+1)
$$

- the successor function is one-to-one
$\forall x \forall y(x+1=y+1 \Rightarrow x=y)$
-0 is an identity for +

$$
\forall x x+0=x
$$

Peano Arithmetic

-+ is associative
$\forall x \forall y x+(y+1)=(x+y)+1$

- multiplying by zero gives 0

$$
\forall x x^{*} 0=0
$$

- * distributes over +
$\forall \mathrm{x} \forall \mathrm{y} \mathrm{x}^{*}(\mathrm{y}+1)=(\mathrm{x} * \mathrm{y})+\mathrm{x}$
- induction axiom

$$
(\varphi(0) \wedge \forall x(\varphi(x) \Rightarrow \varphi(x+1))) \Rightarrow \forall x \varphi(x)
$$

February 2, 2007
CS21 Lecture 13
18

Proof systems

- a proof is a sequence of formulas

$$
\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots, \varphi_{n}
$$

such that each φ_{i} is either

- an axiom, or
- follows from formulas earlier in list from rules of inference
- A sentence is a theorem of the proof system if it has a proof

Proof systems

- A proof system is sound if all theorems in that proof system are true (better have this)
- Peano Arithmetic (PA) is sound.

Incompleteness Theorem

Theorem: Peano Arithmetic is not complete.
(same holds for any reasonable proof system for number theory)

Proof outline:

- the set of theorems of PA is RE
- the set of true sentences $(=\operatorname{Th}(\mathbf{N}))$ is not RE

Incompleteness Theorem

- Lemma: the set of theorems of PA is RE.
- Proof:
- TM that recognizes the set of theorems of PA:
- systematically try all possible ways of writing down sequences of formulas
- accept if encounter a proof of input sentence (note: true for any reasonable proof system)

Incompleteness Theorem

- Lemma: $\operatorname{Th}(\mathbf{N})$ is not RE
- Proof:
- reduce from co-HALT (show co-HALT $\leq_{m} T h(\mathbf{N})$)
- recall co-HALT is not RE
- what should $\mathrm{f}(<\mathrm{M}, \mathrm{w}>$) produce?
- construct γ such that M loops on $w \Leftrightarrow \gamma$ is true

February 2, 2007
CS21 Lecture 13
25

Incompleteness Theorem

- we will define

$\operatorname{VALCOMP}_{\mathrm{M}, \mathrm{w}}(\mathrm{y}) \equiv \ldots$ (details to come)
so that it is true iff y is a (halting) computation
history of M on input w

- then define $\mathrm{f}(<\mathrm{M}, \mathrm{w}>)$ to be:

$$
\gamma \equiv \neg \exists \mathrm{y} \text { VALCOMP }_{\mathrm{M}, \mathrm{w}}(\mathrm{y})
$$

- YES maps YES?
$\cdot<\mathrm{M}, \mathrm{w}>\in \mathrm{co}-\mathrm{HALT} \Rightarrow \gamma$ is true $\Rightarrow \gamma \in \operatorname{Th}(\mathbf{N})$
- NO maps to NO?
$\cdot<\mathrm{M}, \mathrm{w}>\notin \mathrm{co}-\mathrm{HALT} \Rightarrow \gamma$ is false $\Rightarrow \gamma \notin \mathrm{Th}(\mathbf{N})$
February 2, 2007
CS21 Lecture 13
26

Expressing computation in the language of number theory

- we'll write configurations over an alphabet of size p, where p is a prime that depends on M
$-y$ is a power of p :
$\operatorname{POWER}_{\mathrm{p}}(\mathrm{y}) \equiv \forall \mathrm{z}(\operatorname{DIV}(\mathrm{z}, \mathrm{y}) \wedge \operatorname{PRIME}(\mathrm{z})) \Rightarrow \mathrm{z}=\mathrm{p}$
$-d=p^{k}$ and length of v as a p-ary string is k $\operatorname{LENGTH}(\mathrm{v}, \mathrm{d}) \equiv \operatorname{POWER}_{\mathrm{p}}(\mathrm{d}) \wedge \mathrm{v}<\mathrm{d}$

Expressing computation in the language of number theory

- the p-ary digit of v at position y is b (assuming y is a power of p):

$$
\operatorname{DIGIT}(v, y, b) \equiv
$$

$\exists u \exists a(v=a+b y+u p y \wedge a<y \wedge b<p)$

- the three p-ary digits of v at position y are b, c, and d (assuming y is a power of p):

$$
\text { 3DIGIT(v, y, b, c, d) } \equiv
$$

$\exists \mathrm{u} \exists \mathrm{a}(\mathrm{v}=\mathrm{a}+\mathrm{by}+\mathrm{cpy}+\mathrm{dppy}+$ upppy

$$
\wedge a<y \wedge b<p \wedge c<p \wedge d<p)
$$

Expressing computation in the language of number theory

- the three p-ary digits of v at position y "match" the three p-ary digits of v at position z according to M's transition function (assuming y and z are powers of p):

MATCH $(v, y, z) \equiv$
$V_{(a, b, c, d, e, f) \in C}{ }^{3 \operatorname{DIGIT}(v, y, a, b, c)}$
\wedge 3DIGIT(v, z, d, e, f)
where $C=\left\{(a, b, c, d, e, f): a b c\right.$ in config. C_{i} can legally change to def in config. $\left.\mathrm{C}_{\mathrm{i}+1}\right\}$

Expressing computation in the language of number theory

- all pairs of 3 -digit sequences in v up to d that are exactly c apart "match" according to M's transition function (assuming c, d powers of p)
$\operatorname{MOVE}(\mathrm{v}, \mathrm{c}, \mathrm{d}) \equiv$
$\forall y\left(\operatorname{POWER}_{\mathrm{p}}(\mathrm{y}) \wedge \mathrm{yppc}<\mathrm{d}\right) \Rightarrow \operatorname{MATCH}(\mathrm{v}, \mathrm{y}, \mathrm{yc})$

Expressing computation in the language of number theory

- the string v starts with the start configuration of M on input $w=w_{1} \ldots w_{n}$ padded with blanks out to length c (assuming c is a power of p):

$$
\operatorname{START}(\mathrm{v}, \mathrm{c}) \equiv
$$

$$
\wedge_{i}=0,1,2, \ldots, n^{\operatorname{DIGIT}\left(v, p^{i}, k_{i}\right) \wedge p^{n}<c}
$$ $\wedge \forall y\left(\operatorname{POWER}_{\mathrm{p}}(\mathrm{y}) \wedge \mathrm{p}^{\mathrm{n}}<\mathrm{y}<\mathrm{c} \Rightarrow \operatorname{DIGIT}(\mathrm{v}, \mathrm{y}, \mathrm{k})\right)$ where $k_{0} k_{1} k_{2} k_{3} \ldots k_{n}$ is the p-ary encoding of the start configuration, and k is the p-ary encoding of a blank symbol.

February 2, 2007
CS21 Lecture 13

Expressing computation in the language of number theory

- string v is a valid (halting) computation history of machine M on string w :

$$
\operatorname{VALCOMP}_{\mathrm{M}, \mathrm{w}}(\mathrm{v}) \equiv
$$

$\exists c \exists d\left(\right.$ POWER $_{p}(\mathrm{c}) \wedge \mathrm{c}<\mathrm{d} \wedge \operatorname{LENGTH}(\mathrm{v}, \mathrm{d}) \wedge$ START(v, c) ^ MOVE(v, c, d) ^ HALT(v, d))
-M does not halt on input w:
$\neg \exists \mathrm{v} \mathrm{VALCOMP}_{\mathrm{M}, \mathrm{w}}(\mathrm{v})$

Incompleteness Theorem

$v=136531362313603131031420314253$
$d=1000000000000000000000000000000$
$\operatorname{VALCOMP}_{\mathrm{M}, \mathrm{w}}(\mathrm{v}) \equiv$
$\exists c \exists d\left(P^{2}\right)$
$\operatorname{START}(\mathrm{v}, \mathrm{c}) \wedge \operatorname{MOVE}(\mathrm{v}, \mathrm{c}, \mathrm{d}) \wedge \operatorname{HALT}(\mathrm{v}, \mathrm{d}))$
$d=p^{k}$ and length of v as a p-ary string is k LENGTH $(v, d) \equiv$ POWER $_{p}(d) \wedge v<d$

Expressing computation in the language of number theory

- string v has a halt state in it somewhere before position d (assuming d is power of p):
$\operatorname{HALT}(v, d) \equiv$
$\exists y\left(\operatorname{POWER}_{p}(\mathrm{y}) \wedge \mathrm{y}<\mathrm{d} \wedge V_{\left.\mathrm{a} \in \mathrm{H}^{\operatorname{DIGIT}}(\mathrm{v}, \mathrm{y}, \mathrm{a})\right)}\right.$
where H is the pair of p -ary digits corresponding to states $q_{\text {accept }}$ and $q_{\text {reject }}$.

February 2, 2007
CS21 Lecture 13
32

Incompleteness Theorem
$v=136531362313603131031420314253$
$\operatorname{VALCOMP}_{\mathrm{M}, \mathrm{w}}(\mathrm{v}) \equiv$
$\exists c \exists d\left(\operatorname{POWER}_{\mathrm{p}}(\mathrm{c}) \wedge \mathrm{c}<\mathrm{d} \wedge \operatorname{LENGTH}(\mathrm{v}, \mathrm{d}) \wedge\right.$ START(v, c) ^MOVE(v, c, d) ^ HALT(v, d))

Incompleteness Theorem

v=136531362313603131031420314253
v=136531362313603131031420314253
yc = 100000
yc = 100000
VALCOMP }\mp@subsup{M}{M,w}{(v) \equiv
VALCOMP }\mp@subsup{M}{M,w}{(v) \equiv
y =1
y =1
$\exists c \exists d\left(\operatorname{POWER}_{\mathrm{p}}(\mathrm{c}) \wedge \mathrm{c}<\mathrm{d} \wedge \operatorname{LENGTH}(\mathrm{v}, \mathrm{d}) \wedge\right.$
$\operatorname{START}(\mathrm{v}, \mathrm{c}) \wedge \operatorname{MOVE}(\mathrm{v}, \mathrm{c}, \mathrm{d}) \wedge \operatorname{HALT}(\mathrm{v}, \mathrm{d}))$
all pairs of 3-digit sequences in v up to d exactly c
apart "match" according to M's transition function
$\operatorname{MOVE}(v, c, d) \equiv \forall y\left(\right.$ POWER $\left._{p}(\mathrm{y}) \wedge \mathrm{yppc}<\mathrm{d}\right)$
\Rightarrow MATCH $(v, y, y c)$
February 2, 2007 CS21 Lecture 13 37

Incompleteness Theorem

```
v=136531362313603131031420314253
    yc}=1000000
                        y=100
    VALCOMP  \(y=100\)
```

$\exists c \exists d($ POWER $(c) \wedge c<d \wedge \operatorname{LENGTH}(\mathrm{v}, \mathrm{d}) \wedge$ START(v, c) ^MOVE(v, c, d) ^HALT(v, d))
all pairs of 3-digit sequences in v up to d exactly c apart "match" according to M's transition function $\operatorname{MOVE}(\mathrm{v}, \mathrm{c}, \mathrm{d}) \equiv \forall \mathrm{y}\left(\right.$ POWER $\left._{\mathrm{p}}(\mathrm{y}) \wedge \mathrm{yppc}<\mathrm{d}\right)$ \Rightarrow MATCH $(\mathrm{v}, \mathrm{y}, \mathrm{yc})$

February 2, 2007 CS21 Lecture 13 39

Incompleteness Theorem

- Lemma: $\operatorname{Th}(\mathbf{N})$ is not RE
- Proof:
- reduce from co-HALT (show co-HALT $\leq_{m} \mathrm{Th}(\mathbf{N})$)
- recall co-HALT is not RE
- constructed γ such that

$$
\text { M loops on } w \Leftrightarrow \gamma \text { is true }
$$

