A new version of the stream cipher SNOW

Patrik Ekdahl, Thomas Johansson

Dept. of Information Technology
Lund University, P.O. Box 118, 221 00 Lund, Sweden
{patrik,thomas}@Qit.lth.se

Abstract. In 2000, the stream cipher SNOW was proposed. A few at-
tacks followed, indicating certain weaknesses in the design. In this paper
we propose a new version of SNOW, called SNOW 2.0. The new version
of the cipher does not only appear to be more secure, but its implemen-
tation is also a bit faster in software.

Keywords. SNOW, Stream ciphers, summation combiner, correlation
attacks.

1 Introduction

A stream cipher is a cryptographic primitive used to ensure privacy on a com-
munication channel. A common way to build a stream cipher is to use a pseudo-
random length-increasing function (or keystream generator) and mask the plain-
text using the output from the keystream generator. Typically, the masking
operation is the XOR operation, and the keystream output is thus used as a
one-time-pad to produce the ciphertext.

A number of stream ciphers have been proposed during the history of cryp-
tology. Most of them have been bit-oriented stream ciphers based on linear feed-
back shift registers (LFSRs). These range from the simple and very insecure
Geffe generator, nonlinear combination generators, filter generators, to the more
interesting clock-controlled generators like the (self-) shrinking generator and
the alternating step generator [13].

Apart from security, the main characteristic of a stream cipher is its per-
formance. Performance can be the speed of an implemented cipher on different
platforms, but also chip area, power consumption etc. for hardware implemen-
tations.

A general research topic for any cryptographic primitive is to try to optimize
the trade-off between security and performance. Bit-oriented stream ciphers do
not perform very well in software implementations. This is the reason why we
have recently seen word-oriented stream ciphers. A word-oriented stream cipher
outputs a sequence of words of a certain word size (like 32 bits). Such a cipher
can provide a very good performance, typically 5-10 times faster than a block
cipher in a software implementation.

Several word-oriented stream ciphers have recently been proposed, e.g., RC4 [14],
SEAL [15], different versions of SOBER [9, 10], SNOW [5], SSC2 [17], SCREAM |[2],

MUGI [16]. It can be noted that essentially all of the proposed stream ci-
phers have documented weaknesses of varying strength (this does not include
SCREAM and MUGTI that were proposed in 2002).

The purpose of this paper is to propose a new version of the SNOW cipher.
The original version, now denoted SNOW 1.0, was submitted to the NESSIE
project. It has excellent performance, several times faster than AES. However,
a few attacks have been reported. One attack is a key recovery attack requiring
a known output sequence of length 2% having expected complexity 2224 [7]. An-
other attack is a distinguishing attack [1] also requiring a known output sequence
of length 295 and about the same complexity. Although one might argue about
the relevance of such a distinguishing attacks, the attacks do demonstrate some
weaknesses in the design.

In this paper we propose a new version of SNOW, called SNOW 2.0, which
appears to be more secure. Moreover, SNOW 2.0 can be implemented even faster
than SNOW 1.0 in software. Qur optimized C implementation reports a speed
of about 5-6 clock cycles per byte.

The paper is organized as follows. In Section 2 we describe the original design,
in the sequel referred to as SNOW 1.0. In Section 3 we describe the weaknesses
found in SNOW 1.0. In Section 4 we present the new version SNOW 2.0, and in
Section 5 we discuss the design differences between the two versions. In Section 6
we then focus on implementation aspects.

2 First version of SNOW

In this section we give a short description of the original SNOW design. SNOW
1.0 is a word oriented stream cipher with a word size of 32 bits.

The cipher is described with two possible key sizes, 128 and 256 bits. As
usual, the encryption starts with a key initialization, giving the components of
the cipher their initial key values. In this description we will only concentrate
on the cipher in operation. The details of the key initialization can be found in
[5]-

The generator is depicted in Figure 1. It consists of a length 16 linear feedback
shift register over F,32, feeding a finite state machine. The FSM consists of two
32 bit registers, called R1 and R2, as well as a some operations to calculate the
output and the next state (the next value of R1 and R2).

The operation of the cipher is as follows. First, key initialization is done. This
procedure provides initial values for the LFSR as well as for the R1,R2 registers
in the finite state machine. Next, the first 32 bits of the keystream is calculated
by bitwise adding the output of the FSM and the last entry of the LFSR. After
that the whole cipher is clocked once, and the next 32 bits of the keystream is
calculated by again bitwise adding the output of the finite state machine and
the last entry of the LFSR. We clock again and continue in this fashion.

Returning to Figure 1, the LFSR has a primitive feedback polynomial over
Fss2 which is

p(.Z') — .Z'16 +.Z'13 +.’L’7 +O[—17

a4
A
4

é) s(1) 8(2) ... A 5(16)

L

} running key

Y
LY
Y

—» | R1 »@_» R2
| l

D—F<<—H~—

<

Fig. 1. A schematic picture of SNOW 1.0

where Fys2 is generated by the irreducible polynomial
’/T(."L') =£L'32 +.Z'29 +.Z'20+.’E15 +.’E10 +£17+1,

over Fy, and m(a) = 0. Furthermore let s(1),5(2),...5(16) € Fys2 be the state
of the LFSR.
The output of the FSM, called F'SM ¢, is calculated as follows.

FSMqyyt = (s(1) B R1) ® R2.
The output of the FSM is XORed with s(16) to form the keystream, i.e.,
running key = FSMq,¢ @ s(16).

The keystream is finally XORed with the plaintext, producing the ciphertext.
Inside the FSM, the new values of R1 and R2 are given as follows,

newR1 = ((FSMy, B R2) «) @ R1,
R2 = S(R1),
R1 = newR1.
By the notation z By, we mean the integer addition of z and y mod232. The

notation r < is a cyclic shift of x 7 steps to the left, and the addition sign in
x @ y represents bitwise addition (XOR) of the words z and y.

Finally, the S-box, denoted S(z), consists of four identical 8-to-8 bit S-boxes
and a permutation of the resulting bits. The input z is split into 4 bytes, each
byte enters a nonlinear mapping from 8 bits to 8 bits. After this mapping, the
bits in the resulting word are permuted to form the final output of the S-box.
A comprehensive description of the original design, including the key setup and
modes of operation can be found in [5].

3 Weaknesses in SNOW 1.0

In this section we describe the weaknesses found in the original construction.
In February 2002, Hawkes and Rose described a guess-and-determine attack on
SNOW 1.0 [7,8]. The attack has data complexity of 2°° words and a process
complexity of 2224 operations. Apart from some clever initial choices made by
Hawkes and Rose, basically two properties in SNOW 1.0 are used to reduce the
complexity of the attack below exhaustive key search. First, the fact that the
FSM has only one input s(1). This enables an attacker to invert the operations
in the FSM and derive more unknowns from only a few guesses. The second
property is an unfortunate choice of feedback polynomial in SNOW 1.0. The
linear recurrence equation is given by

St+16 = (S¢49 + Se43 + 5¢)- (1)

There is a distance of 3 words between s; and s¢4+3 and a distance of 6 = 2-3
between s;43 and sg49. Thus, by squaring (1)

St432 = @ (St418 + St46 + St) (2)

we see that (si4;® s¢+it+6) can be considered as a single input to either equation.
Hence, the attacker does not need to determine both s¢4; and s¢4;46 explicitly,
but only the XOR sum to use in (1) and (2).

A second weakness in the choice of the feedback polynomial emerges when
considering bitwise linear approximations. Using the same technique as in [6], we
can take the 232th power of the feedback polynomial p(z) = z'¢+z'3+274+a~ ! €
Fys2 [z], giving us

p232 (z) = o162 4 132 4 T2 12 Fys2 [z]. (3)
Since a € Fys2 we have a2 = a1, and summation of p(z) + p** (z) yields
2162 +$13-232 +x7'232 g Cpt g g (4)

Dividing (4) with 27 gives us a linear recurrence equation satisfying
St116-232—7 + Sg413.232 7 + Sgq7.282 7 + St49 + St46 + 5t =0 (5)

In (5) we have derived a linear recurrence equation that holds for each single bit
position. Hence, any bitwise correlation found in the FSM can be turned into a

distinguishing attack. In a recent paper by Coppersmith, Halevi and Jutla [1],
they find such a correlation and for the resulting distinguishing attack they need
about 2% words of output and the computational complexity is about 2'°°. By
computer search we have also found other smaller correlations, often involving
similar bit positions. The strong correlations seem to be caused by an interaction
between the permutation in the S-box and the cyclic shift by 7 in the FSM.

Even if this indeed is a security flaw unpredicted by the authors, one could
argue about the relevance of such a distinguishing attack. Using e.g. AES (or
any other block cipher with block length 128 bits) in counter mode, there is
an almost trivial distinguishing attack after seeing about 2%* ciphertext blocks.
However, as we regard security as the outmost important design criteria, we
addressed all known weaknesses in SNOW 1.0 and propose a slightly modified
design, SNOW 2.0.

4 SNOW 2.0

As we now turn to describe the new version SNOW 2.0, we want to emphasize
that the notations from the previous sections are no longer valid and will be
redefined in the following. The new version is schematically a small modification
of the original construction, see Figure 2. The word size is unchanged (32 bits)
and the LFSR length is again 16, but the feedback polynomial has been changed.
The Finite State Machine (FSM) has two input words, taken from the LFSR,
and the running key is formed as the XOR between the FSM output and the
last element of the LFSR, as done in SNOW 1.0. The operation of the cipher is
as follows. First, a key initialization is performed. This operation provides the
LFSR with a starting state as well as giving the internal FSM registers R1 and
R2 there initial values. Next the cipher is clocked once and the first keystream
symbol is read out!. Then the cipher is clocked again and the second keystream
symbol is read, etcetera.

Let us give a detailed description of the cipher, starting with the LFSR.
The main reason for the specific feedback polynomial chosen in SNOW 1.0,
was to have a fast realization in software. By choosing a multiplication with
the same primitive element as the base is constructed from, we can realize the
multiplication with just one left shift and a possible XOR with a known pattern.
However, this choice opens up possible weaknesses, as discussed in Section 3. In
SNOW 2.0, we have two different elements involved in the feedback loop, a and
a~ !, where a now is a root of a primitive polynomial of degree 4 over Fys. To
be more precise, the feedback polynomial of SNOW 2.0 is given by

7(z) = az'® + 2" + o~ '2® + 1 € Fyo: [1], (6)

where a is a root of z* + 823z + 24532 + B8z + 239 € Fys[x],
and f3 is a root of 2® + 27 + 2° + 2% + 1 € By [x].

! Observe the change from the original version where the first symbol was read out
before the cipher was clocked.

D

A
>0
A

Y

»
%)
»

|
@ @
—

P15 st+14 t+11 t+5 42

e [Y

T\ ! running key
> '\ij e @_’

\

A
[y
)
N

Fig. 2. A schematic picture of SNOW 2.0

Let the state of the LFSR at time ¢ > 0 be denoted (s¢115, St4-145 - - - 5 5¢), St €
Fys2, 4 > 0. The element s; is the rightmost element (or first element to exit) as
indicated in Figure 2, and the sequence produced by the LFSR is (sg, 51, 82, - . .)-
By time ¢ = 0, we mean the time instance directly after the key initialization.
Then the cipher is clocked once before producing the first keystream symbol, i.e.,
the first keystream symbol, denoted 2z, is produced at time ¢ = 1. The produced
keystream sequence is denoted (z1, 22, 23, - - .)-

The Finite State Machine (FSM) has two registers, denoted R1 and R2, each
holding 32 bits. The value of the registers at time ¢ > 0 is denoted R1; and R2;
respectively. The input to the FSM is (s¢115, st+5) and the output of the FSM,
denoted Fj, is calculated as

F; = (St+15 H R].t) ®R2,, t>0 (7)
and the keystream is given by
ZtZFt@St, tZ 1. (8)

Here we use the notation B for integer addition modulo 23? and @ for bitwise
addition (XOR). The registers R1 and R2 are updated with new values according

to

R1t+1 St+5 H R2t and (9)
R2441 = S(RL,) t>0. (10)

4.1 The S-box

The S-box, denoted by S(w), is a permutation on Zss2 based on the round
function of Rijndael [4]. Let w = (w3, w2, w1, wy) be the input to the S-box,
where w;,4 = 0...3 is the four bytes of w. Assume w3 to be the most significant
byte. Let

wo
_|w
w= |, (11)

w3

be a vector representation of the input to the S-box. First we apply the Rijndael
S-box, denoted Sg to each byte, giving us the vector

2
R|W1
Snlws] | (12)
Srlws]

In the MixColumn transformation of Rijndael’s round function, each 4 byte word
is considered a polynomial in y over Fys, defined by the irreducible polynomial
28 + 21+ 23 + x4+ 1 € F: [z]. Each word can be represented by a polynomial of at
most degree 3. Next we consider the vector in (12) as representing a polynomial
over Fys and multiply with a fixed polynomial c(y) = (z+1)y3+y* +y+z € Fas[y]
modulo y* +1 € Fys [y]. This polynomial multiplication can (as done in Rijndael)
be computed as a matrix multiplication,

o z xz+1 1 1 Sr[wo]

| 1 r xz+1 1 SR[U)1] (13)
re | 1 1 z z+1 Srlw2] |’

r3 z+1 1 1 z Sg[ws]

where (r3,r2,71,70) are the output bytes from the S-box. These bytes are con-
catenated to form the word output from the S-box, r = S(w).

4.2 Key initialization

SNOW 2.0 takes two parameters as input values; a secret key of either 128 or
256 bits and a publicly known 128 bit initialization variable IV. The IV value
is considered as a four word input IV = (IV3, IV,, IV, IVy), where IV} is the
least significant word. The possible range for IV is thus 0...2'2® — 1. This

means that for a given secret key K, SNOW 2.0 implements a pseudo-random
length-increasing function from the set of I'V values to the set of possible output
sequences. The use of a I'V value is optional and applications requiring a I'V value
typically reinitialize the cipher frequently with a fixed key but the IV value is
changed. This could be the case if two parties agreed on a common secret key but
wish to communicate multiple messages, e.g. in a frame based setting. Frequent
reinitialization could also be desirable from a resynchronization perspective in
e.g. a radio based environment.

The key initialization is done as follows. Denote the registers in the LFSR
by (s15,514,---,50) from left to right in Figure 2. Thus, s15 corresponds to
the element holding s¢415 during normal operation of the cipher. Let the se-
cret key be denoted by K = (ks, ko, k1,ko) in the 128 bit case and by K =
(k7, ke, ks, kq, ks, ko, k1, ko) in the 256 bit case, where each k; is a word and kg is
the least significant word. First, the shift register is initialized with K and IV
according to

s15 = k3 ® IVy, s14 = ko, s13 = ki, s12 =ko ® IVq,
51:=k3®1, s10=ko@1@IV2, 59=k1 ®1DIV3, s3=koD1,

and for the second half,

S7 = k’3, Sg = kz, S5 = kl, S4 :ko,
s3=k3 D1, So=ko D1, s1 =k &1, So = ko ®1,

where 1 denotes the all one vector (32 bits).
In the 256 bit case, the LFSR initialization is correspondingly,

s15 = k7 ® IVh, 814 = K, s13 = ks, s12 =ks ® IV7,
s11 = ks, si0=hky ®IVa, s9=k1 ®IV3, s5= ko,
S7=k7@1, s¢e = ke ®1 e so=ko®1.

After the LFSR has been initialized, R1 and R2 are both set to zero. Now,
the cipher is clocked 32 times without producing any output symbols. Instead,
the output of the FSM is incorporated in the feedback loop, see Figure 3. Thus,
during the 32 clocks in the key initialization, the next element to be inserted
into the LFSR is given by

St+16 = a_lst+11 @ Str2 @ asy @ F;. (14)

After the 32 clockings the cipher is shifted back to normal operation (Figure 2)
and clocked once before the first keystream symbol is produced. The maximum
number of keystream words allowed is set to 2%°, then the cipher must be re-
keyed. This limit provides a bound for cryptanalysis and implies no practical
limits to the operation of the cipher. The need for producing more than 250
words using the same key, is quite unlikely.

D

15 s[+14 St+11 =5 St+2 t

Y

FSM

Fig. 3. Cipher operation during key initialization.

5 Design differences from SNOW 1.0

In this section we highlight the differences between SNOW 2.0 and SNOW 1.0
and their expected security improvements. We start with the choice of feedback
polynomial. In SNOW 1.0 the multiplication could be implemented by a single
left shift of the word followed by a possible XOR with a known pattern of weight
6. This means that the resulting word was in many positions only a shift of the
original word. In SNOW 2.0 we define Fys2 as an extension field over Fys and
each of the two multiplications can be implemented as a byte shift together with
a unconditional XOR with one of 256 possible patterns. This results in a better
spreading of the bits in the feedback loop, and improves the resistance against
certain correlation attack, as discussed in [6]. The use of two constants in the
feedback loop also improves the resistance against bitwise linear approximation
attacks, as discussed in Section 3. To the authors, there is no known method
to manipulate the feedback polynomial such that the resulting linear recurrence
hold for each bit position and have reasonably low weight. The unconditional
XOR also seems to improve speed, by removing the possible branch prediction
error in a pipelined processor.

The FSM in SNOW 2.0 now takes two inputs. This makes a guess-and-
determine type of attack more difficult. Given the output of the FSM, together
with R1 and R2 it is no longer possible to deduce the next FSM state directly.
The update of R1 does not depend on the output of the FSM, but on a word
taken from the LFSR. This also suggests that similar correlations as those found
in [1] would be much weaker.

The S-box in SNOW 1.0 was also byte oriented but the final bit permutation

did not diffuse as much as the new design. In SNOW 1.0, each input byte to
the S-box affected only 8 bits of the output word. The choice of the new S-box,

based on the round function of Rijndael, provides a much stronger diffusion.
Each output bit now depends on each input bit.

6 Implementation aspects

The design of SNOW 2.0 was done with a fast software implementation in mind.
We have chosen a minimum number of different operations; XOR, integer addi-
tion, byte shift of a word, and table lookups, all available on modern processors.
Even though there are many possible tradeoffs in a software implementation, we
will discuss some of the design aspects which have high impact in software.

We start with the LFSR. The field Fys2 is defined as an extension field over
Fys, with a € Fys2 being the root of the degree 4 polynomial

ot + 2% + g2 4 B82 4 B9 € Fys [] (15)
Hence, we have the degree reduction of a given by

a4 — ﬂ23a3 + ﬂ245a2 + 1348(1 + ﬂ239 (16)

In the feedback loop, multiplication with @ and a~! can be implemented as a
simple byte shift plus an additional XOR with one of 256 possible patterns. This
can be seen from the representation of a word as a polynomial in Fys[z] using

(a3,a?,a,1) as base. Thus, any element w in Fys2 can be written as
w=c30® + 0’ +ca+ Co, (17)

where (cs3,ca,¢1,¢0) are the bytes of w, ¢g being the least significant byte. Mul-
tiplying w with «, will yield a reduction according to (16) as follows

aw = ezat + e20® + c1a? + ¢ (18)
= (03523 + CQ)a3 + (03,8245 + cl)oz2 + (03,348 +co)a + 38?0, (19)

Similar calculations can be done for the multiplication with a~!. Thus, to get a
fast implementation of the LFSR feedback, one can use precomputed tables

MULq[c] = (cB%%,cB**?,¢B*®, c5*?) (20)
MULg-1[c] = (c8"%,¢8%,¢8%,¢8%), (21)

where ¢ runs through all elements in Fss . The pseudo-code for the multiplication
would be

// Multiplication w*alpha ("<<" is left shift, ">>" is right shift)
result=(w<<8) XOR MUL_al[w>>24];

// Multiplication w*alpha~-1

result=(w>>8) XOR MUL_ainverse[w and Oxff];

The S-box are implemented using the same techniques as done in Rijndael [4]
and SCREAM [2]. Recall the expression for the S-box, r = S(w)

To z xz+1 1 1 Sr[wo]
re| 1 z z+1 1 Sr[wi] (22)
ry | T 1 1 z z+1 Sr[ws]
r3 z+1 1 1 T Sr[ws]

The matrix multiplication can be split up into a linear combinations of the
columns

) T z+1
r x
7‘; = SR[wo] 1 +SR[11)1] 1 +
T3 z+1 1
1 1
z+1
SR[U)Q] z + SR[U)3] sl
1 T
By using four tables of words, each of size 256, defined by
zSrla] (z 4+ 1)Srla]
_ Srla] _ xSr[a]
Bll=1 spal PR sl |
(x + 1)Sg]a] Srla]
SR[G] SR [a]
_ | (&+1)Skld] _ Srla]
Blal= 1" sspa) | B = | @+ 1)Skla |
Srla] xSg[a]

we can easily implement the S-box by addressing the tables with the bytes
(w3, wa, w1, we) of the input word w. In pseudo-code we can write

// Calculate r=S-box(w)
r=TO[byteO(w)] XOR T1[bytel(w)] XOR T2[byte2(w)] XOR T3[byte3(w)];

where byte0(w) means the least significant byte of w, etcetera.

We have two different C implementations, both using tables for feedback
multiplication and S-box operations. The first version (version I) implements
the LFSR with an array using the sliding window technique, see e.g. [10]. This
version is considered an "easy to read" standard reference version. The second
version (version 2) implements the cipher with "hard coded" variables for the
LFSR. This version produces 16 - 32 = 512 bits of keystream in each procedure
call, corresponding to 16 consecutive clockings. Table 1 indicates the speed of
the two implementations versions. For the key setup in SNOW 1.0, the IV mode
is used as reference, since it also uses 32 clockings in the initialization phase.
This accounts for a more reasonable comparison. The tests where run on an PC

Operation SNOW 1.0 SNOW 2.0
version 1|version 2|version 1|version 2
Key setup 925 - 937 -
Keystream generation 47 34 38 18
Table 1. Number of cycles needed for key setup and cycles per word for keystream
generation on a Pentium 4 @Q1.8GHz.

with Intel 4 processor running at 1.8GHz, 512 Mb of memory. Each program was
compiled using gce with optimization parameter "-O3" and inline directives in
the code.

7 Conclusions

We have proposed a new stream cipher SNOW 2.0. The design is based on the
NESSIE proposal SNOW 1.0 and addresses all weaknesses found in the original
construction. The implementation is easier and encryption is faster than SNOW
1.0. Typical encryption speed is over 3Gbits/sec on a Intel Pentium 4 running
at 1.8GHz.

A complete description of SNOW 2.0 was given and the design differences
from SNOW 1.0 and how they apply to the known attacks were discussed. Some
implementation aspects of the new design were discussed, in particular how to
get a fast implementation of the LFSR and the S-box.

References

1. D. Coppersmith, S. Halevi, C. Jutla, "Cryptanalysis of stream ciphers with linear
masking", To appear in Advances in Cryptology - CRYPTO 2002, Lecture Notes
in Computer Science, Springer, 2002.

2. D. Coppersmith, S. Halevi, C. Jutla, "Scream: a software-efficient stream cipher",
In Fast Software Encryption (FSE) 2002, Lecture Notes in Computer Science, vol.
2365, Springer 2002, 195-209.

3. D. Coppersmith, P. Rogaway, “Software-efficient pseudorandom function and the
use thereof for encryption”, US Patent 5,454,039, 1995.

4. J. Daemen, V. Rijmen, "The design of Rijndael", Springer Verlag Series on Infor-
mation Security and Cryptography, Springer Verlag, 2002, ISBN 3-540-42580-2.

5. P. Ekdahl, T. Johansson, "SNOW - a new stream cipher", Proceedings of first
NESSIE Workshop, Heverlee, Belgium, 2000.

6. P. Ekdahl, T. Johansson, "Distinguishing attacks on SOBER", In Fast Software
Encryption (FSE) 2002, Lecture Notes in Computer Science, vol. 2365, Springer
2002, 210-224.

7. P. Hawkes, "Guess-and-determine attacks on SNOW", private correspondence,
2002.

8. P. Hawkes, G. Rose, "Guess-and-determine attacks on SNOW" Preproceedings of
Selected Areas in Cryptography (SAC), August 2002, St John’s, Newfoundland,
Canada.

10.

11.

12.

13.

14.
15.

16.

17.

P. Hawkes, G. Rose "Primitive Specification and supportion documentation for
SOBER-t16 submission to NESSIE", Proceedings of first NESSIE Workshop, Hev-
erlee, Belgium, 2000.

P. Hawkes, G. Rose "Primitive Specification and supportion documentation for
SOBER-t32 submission to NESSIE", Proceedings of first NESSIE Workshop, Hev-
erlee, Belgium, 2000.

L. Knudsen, W. Meier, B. Preneel, V. Rijmen, S. Verdoolaege, “Analysis methods
for (alleged) RC4”, Lecture Notes in Computer Science, vol. 1514 , pp. 327-341.,
(Asiacrypt’98).

I. Mantin, A. Shamir, “A practical attack on RC4”, In Fast Software Encryption
(FSE) 2001, Lecture Notes in Computer SCience, vol. 2355, Springer 2002.

A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997.

R. Rivest, “The RC4 encryption algorithm” RSA Data Security, Inc. Mar. 1992.
P. Rogaway, D. Coppersmith, "A software optimized encryption algorithm". Jour-
nal of Cryptology, 11(4):273-287, 1998.

D. Watanabe, S. Furuya, H. Yoshida, B. Preneel, "A new keystream generator
MUGI", In Fast Software Encryption (FSE) 2002, Lecture Notes in Computer
Science, vol. 2365, Springer 2002, 179-194.

M. Zhang, C. Caroll, A. Chan, “The software-oriented stream cipher SSC2”, In Fast
Software Encryption (FSE) 2000, Lecture Notes in Computer Science, vol. 1978,
Springer 2001, 31-48.

8 Appendix A. Test vectors

Test vectors for SNOW 2.0, 128 bit key
Each key is given in bigendian format (MSB...LSB) in hexadecimal

(Iv3,I1V2,IV1,IV0)=(0,0,0,0)
key=80000000000000000000000000000000
Keystream output 1...5:

keystream=8D590AE9
keystream=A74A7D05
keystream=6DCOCA74
keystream=B72D1A45
keystream=99B0A083

(Iv3,1v2,IV1,1v0)=(0,0,0,0)
key=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Keystream output 1...5:

keystream=E00982F5
keystream=25F02054
keystream=214992D8
keystream=706F2B20
keystream=DA585ELB

(1v3,1v2,1V1,IV0)=(4,3,2,1)
key=80000000000000000000000000000000
Keystream output 1...5:

keystream=D6403358
keystream=E0354A69
keystream=57F43FCE
keystream=44B4B13F
keystream=F78E24C2

(1v3,1v2,1V1,IV0)=(4,3,2,1)
key=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Keystream output 1...5:
keystream=C355385D
keystream=B31D6CBD
keystream=F774AF53
keystream=66C2E877
keystream=4DEADAC7
=========== End of test vectors =========

Test vectors for SNOW 2.0, 256 bit key
Each key is given in bigendian format (MSB...LSB) in hexadecimal

(1v3,1v2,1V1,1IV0)=(0,0,0,0)
key=
8000
Keystream output 1...5:

keystream=0B5BCCE2

keystream=0323E28E

keystream=0FC20380

keystream=9C66AB73

keystream=CA35A680

(1v3,1v2,1V1,1V0)=(0,0,0,0)
key=
AA
Keystream output 1...5:

keystream=D9CC22FD

keystream=861492D0

keystream=AE6F43FB

keystream=0F072012

keystream=078C5AEE

(1v3,1V2,1V1,1IV0)=(4,3,2,1)
key=
8000
Keystream output 1...5:

keystream=7861080D

keystream=5755E90B

keystream=736F1091

keystream=6ED519B1

keystream=2C1A3A42

(1v3,1V2,1V1,1IV0)=(4,3,2,1)
key=
AA
Keystream output 1...5:

keystream=29261FCE

keystream=5ED03820

keystream=1D6AFAF8

keystream=B87E74FE

keystream=D49ECB10
=========== End of test vectors =========

