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Abstract. In this paper a new word-oriented stream cipher, called SNOW,
is proposed. The design of the cipher is quite simple, consisting of a linear
feedback shift register, feeding a �nite state machine.
The design goals of producing a stream cipher signi�cantly faster than
AES, with signi�cantly lower implementation costs in hardware, and a
security level similar to AES is currently met. Our fastest C implemen-
tation requires under 1 clock cycle per running key bit. The best attacks
are generic attacks like an exhaustive key search attack.
Keywords. SNOW, Stream ciphers, summation combiner, correlation
attacks.

1 Introduction

Cipher systems are usually subdivided into block ciphers and stream ciphers.
Block ciphers tend to simultaneously encrypt groups of characters, whereas
stream ciphers operate on individual characters of a plaintext message one at a
time.

A binary additive stream cipher is a synchronous stream cipher in which
the keystream, the plaintext and the ciphertext are sequences of binary digits.
The output of the keystream generator, called the running key, z(1), z(2), . . .
is �added� symbolwise to the plaintext sequence m(1),m(2), . . ., producing the
ciphertext c(1), c(2), . . .. Each secret key k as input to the keystream generator
corresponds to an output sequence. Since the secret key k is shared between the
transmitter and the receiver, the receiver can decrypt by subtracting the output
of the keystream generator from the ciphertext, obtaining the message sequence.

The goal in stream cipher design is to e�ciently produce random-looking se-
quences that in some sense are �indistinguishable� from truly random sequences.
From a cryptanalysis point of view, a good stream cipher should be resistant
against a known-plaintext attack. In a known-plaintext attack the cryptanalyst is
? A �rst version of this paper was published in Proc. of the �rst open Nessie Work-
shop, Heverlee, Belgium, November 13�14 2000. Some time ago, the NESSIE board
invited the submitters of stream ciphers to specify a new mode of operation that
accommodates an initialization variable (IV). In this second version of the paper we
have added such a mode of operation (and corrected a few misprints).



given a plaintext and the corresponding ciphertext, and the task is to determine
the key k. For a synchronous stream cipher, this is equivalent to the problem of
�nding the key k that produced a given keystream z(1), z(2), . . . , z(N).

Apart from the security aspects, we would like our cipher to be very fast
on di�erent platforms, when implemented in software. Also, it should admit a
compact hardware implementation.

This paper contains a proposal for a new stream cipher, called SNOW. In
stream cipher design, we usually use linear feedback shift registers, LFSRs, and
the secret key is often used to provide a value for the initial state of the LFSRs.
Also SNOW is built around a LFSR, but over the alphabet F232 .

SNOW is a word-oriented stream cipher, based on ideas from the classical
summation generator. Symbols from the LFSR enters a �nite state machine,
FSM, and the output word from the FSM is bitwise added to other symbols
from the LFSR, producing the running key. It meets the security requirements
as well as being fast and fairly simple to implement in hardware.

In the description of SNOW, we specify a mode of operation, called IV mode.
This mode allows frequent rekeying through a 64 bit initialization variable (IV).
Such a mode has applications in e.g. telecommunication protocols.

Several word-oriented stream ciphers have appeared before, e.g, SEAL [9],
SOBER [2], SSC2 [23], and RC4 [20]. However, most of them do not provide full
security.

The most important general attacks on LFSR-based stream ciphers are cor-
relation attacks. If a correlation between the known output sequence and the
output of one internal LFSR can be detected, this can be used in a �divide-and-
conquer� attack on that LFSR [21, 18]. In the security analysis of SNOW, most
focus is on correlation attacks.

In Section 2 we provide a full description of SNOW. Section 3 gives some
aspect on implementations of SNOW, and Section 4 gives a short overview of
di�erent methods for cryptanalysis. In Section 5 we describe some design choices
and design goals for the cipher, before concluding.

2 A description of SNOW

The proposed stream cipher is a word oriented additive stream cipher, where a
word in the speci�cation is chosen to be 32 bits. Furthermore, we assume in the
speci�cation a �big-endian� representation for the arithmetics used in the cipher.

The cipher has been developed from ideas around the summation generator
[19]. Another cipher that has used such ideas is the stream cipher E0 in the
Bluetooth standard [3].

The cipher is described with two possible key sizes, 128 and 256 bits. As
usual, the encryption starts with a key initialization, giving the components of
the cipher their initial key values. For the moment, we assume that the key
initialization is done, and concentrate on the cipher in operation.

The generator is depicted in Figure 1. It consists of a length 16 linear feedback
shift register over F232 , feeding a �nite state machine. The FSM consists of two



32 bit registers, called R1 and R2, as well as a some operations to calculate the
output and the next state (the next value of R1 and R2). The FSM is shown in
Figure 2.
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Fig. 1. The generator SNOW
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Fig. 2. The Finite State Machine

The operation of the cipher is as follows. First, key initialization is done. This
procedure provides initial values for the LFSR as well as for the R1,R2 registers
in the �nite state machine. Next, the �rst 32 bits of the running key is calculated
by bitwise adding the output of the FSM and the last entry of the LFSR. After
that the whole cipher is clocked once, and the next 32 bits of the running key



is calculated by again bitwise adding the output of the �nite state machine and
the last entry of the LFSR. We clock again and continue in this fashion.

Let us give a detailed description of the generator. Returning to Figure 1,
the LFSR has a primitive feedback polynomial over F232 which is

p(x) = x16 + x13 + x7 + α−1,

where F232 is generated by the irreducible polynomial

π(x) = x32 + x29 + x20 + x15 + x10 + x + 1,

over F2, and π(α) = 0. Furthermore let s(1), s(2), . . . s(16) ∈ F232 be the state
of the LFSR. Here s(1) is associated with the leftmost memory element in Fig-
ure 1, and s(16) with the rightmost. We consider a representation of elements
in F232 , using the base {α31, . . . , α2, α, 1}, i.e., if y ∈ F232 then y is represented
by (y31, y30, . . . , y1, y0), where

y = y31α
31 + y30α

30 + · · ·+ y1α + y0.

We consider y31, y30, . . . to be the most signi�cant bits (MSB) and . . . , y1, y0 to
be the least signi�cant bits (LSB).

After the clocking, s(1) is the input to the �nite state machine. The output
of the FSM, called FSMout, is simply calculated in steps as follows.

FSMout = (s(1) ¢ R1)⊕R2.

The output of the FSM is xored with s(16) to form the running key, i.e.,

running key = FSMout ⊕ s(16).

The running key is �nally xored with the plaintext, producing the ciphertext.
Inside the FSM, the new values of R1 and R2 are given as follows,

newR1 = ((FSMout ¢ R2) ≪)⊕R1,

R2 = S(R1),
R1 = newR1.

Let us explain the notation. By x ¢ y we mean the integer addition of x and y
mod232, where (y31, y30, . . . , y1, y0) represents the element

y31 · 231 + y30 · 230 + · · ·+ y1 · 2 + y0 ∈ Z232 .

The notation x ≪ is a cyclic shift of x 7 steps to the left, i.e., x = (x31, x30, . . . , x1, x0)
is mapped to the value

x = (x24, x23, . . . x0, x31, . . . , x26, x25).

The addition sign in x⊕y represents bitwise addition (XOR) of the words x and
y.



Finally, the S-box, denoted S(x), consists of four identical 8-to-8 bit S-boxes
and a permutation of the resulting bits. It works as follows. The input x is split
into 4 bytes, from most signi�cant to least signi�cant byte. Each of the bytes
enters a nonlinear mapping from 8 bits to 8 bits.

Let the input to the nonlinear mapping be w = (w7, w6, . . . , w0) and let
the output be r = (r7, r6, . . . , r0). Both vectors are considered as representing
elements in F28 using the polynomial base {β7, . . . , β, 1} generated by the irre-
ducible polynomial π(x) = x8 + x5 + x3 + x + 1 and π(β) = 0. The nonlinear
mapping is de�ned to be

r = w7 + β2 + β + 1,

where the arithmetics are in F28 .
After the mapping above has been applied to each byte, the bits in the re-

sulting word are permuted. The permutation is described by

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
3 10 20 24 0 14 17 29 7 13 18 25 5 12 23 27

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 8 21 26 4 9 19 31 2 11 16 28 6 15 22 30

which should be interpreted as the 31:st bit position is mapped to the 3:d,
the 30:th bit is mapped to the 10:th, etcetera. Using a vector notation, this can
be written as

y = (y31, y30, y29, . . . , y1, y0) → (y8, y0, y24, . . . , y15, y27).

The S-box is shown in Figure 3, where y = S(x) and γ = β2 + β + 1.

2.1 Modes of operation
Two di�erent modes of operation are speci�ed for SNOW. The two modes are
referred to as standard mode and IV mode, respectively.

Standard mode: In standard mode SNOW implements a fast cryptographic
pseudorandom number generator. This means that for each seed, which in this
case is a secret key denoted by k, SNOW outputs a pseudorandom number
sequence.

IV mode: In IV mode the generator is initialized using two variables, the
secret key k and a known initialization variable (IV). This means that for a
given secret key k, the generator now produces a set of pseudorandom number
sequences, one for each IV value. Since the produced sequences are to be indistin-
guishable from truly random sequences in all aspects, the IV mode of SNOW can
be said to implement a length-increasing pseudorandom function (from the set of
IV values to the set of possible sequences). The length of the output sequences
is usually larger than the IV length.
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Fig. 3. The S-box y = S(x).

In SNOW, the IV value is a 64 bit value, represented by the two 32 bit words
(IV2, IV1). The IV value thus range from 0 to 264 − 1, where IV2 is the most
signi�cant word and IV1 is the least signi�cant word.

Applications that use the IV mode typically do frequent reinitializations
where the key k is �xed but the IV value is changed. We can think of several
scenarios where IV mode is desirable.

� If the sender and the receiver have established a common key and wish to
communicate multiple messages, IV mode might be suitable.

� In telecommunication scenarios, it is common to divide data into shorter
frames (packets) which are sent consecutively. The frames include a frame
number. In order to recover from loss of synchronization an IV mode of
operation is necessary (or packets arriving out of order).

� In some applications it is desirable to have a stream cipher that enables it
to e�ciently seek to arbitrary locations in its keystream. This was the main
motivation behind the design of the stream cipher LEVIATHAN [17]. Here
we just want to point out that this comes for free in the IV mode. In order
to be able to e�ciently seek arbitrary positions we de�ne the keystream as
follows. We �rst �x a suitable length N . For a �xed k, we then produce N
words of output using IV=0, then another N words using IV=1, another N



words using IV=2, etc. When we want to seek a position, we simply start at
the corresponding IV value, initialize the generator, and possibly produce a
few words before we come to the desired location. The length N should be
chosen such that the frequent reinitializations only marginally decreases the
performance, but still allows a fast seeking.

Since the IV mode will use frequent reinitializations, the performance of the
key initialization will be an important performance parameter. Hence, the key
initialization in the IV mode uses less SNOW clockings than in the standard
mode (32 versus 64).

Finally, one could consider removing the de�nition of standard mode and
only use IV mode. However, since the test vectors etc. use standard mode we
choose to keep it in the description.

2.2 Key initialization
Let the secret key k be denoted by k = (k(1), k(2), k(3), k(4)) in the 128 bit case
and k = (k(1), k(2), k(3), k(4), k(5), k(6), k(7), k(8)) in the 256 bit case.

The key initialization is done as follows. The LFSR is �rst initialized with
the key. In the 128 bit case, the LFSR initialization is

s(1) = k(1)⊕ IV1, s(2) = k(2), s(3) = k(3), s(4) = k(4)⊕ IV2,
s(5) = k(1)⊕ 1, s(6) = k(2)⊕ 1, s(7) = k(3)⊕ 1, s(8) = k(4)⊕ 1,

and for the second half,

s(9) = k(1), s(10) = k(2), s(11) = k(3), s(12) = k(4),
s(13) = k(1)⊕ 1, s(14) = k(2)⊕ 1, s(15) = k(3)⊕ 1, s(16) = k(4)⊕ 1,

where 1 denotes the all one vector (32 bits).
In the 256 bit case, the LFSR initialization is correspondingly,

s(1) = k(1)⊕ IV1, s(2) = k(2), s(3) = k(3), s(4) = k(4)⊕ IV2,
s(5) = k(5), s(6) = k(6), s(7) = k(7), s(8) = k(8),
s(9) = k(1)⊕ 1, . . . , s(16) = k(8)⊕ 1.

In standard mode, we assume IV1 = IV2 = 0. After the LFSR has been initial-
ized, R1 and R2 are both set to zero.

Then the cipher is clocked exactly v times without producing any running
key. Instead, the output of the �nite state machine is fed back into the feedback
loop of the LFSR, as shown in Figure 4. In standard mode v = 64, and in IV
mode v = 32. In one clock cycle, the next value of s(1), here called newS(1), is
given by

newS(1) = α(s(7)⊕ s(13)⊕ s(16)⊕ FSMout).
After v clockings, the LFSR and the two registers R1, R2 have received its
values from the initialization phase. The �rst 32 bits of the running key are now
available as FSMout ⊕ s(16).
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Fig. 4. The key initialization

The maximum allowed length of the running key (output sequence) is set to
250 words. Then the cipher must be rekeyed. This limit is mainly set to provide
a maximum length in cryptanalysis. Generating a running key of length greater
than 250 words in practice is quite unlikely to happen.

Finally, we note that with very small modi�cations, one could allow a variable
key size in SNOW. The key size could be in the range 128-256 bits, but should
not be signi�cantly larger than 256 bits. This because the state space of the
cipher has been chosen to match a maximum key size of 256 bits.

3 Implementation

The design of the cipher is chosen such that the implementation is simple and
fast. The implementation of the �nite state machine is more of a straight-forward
kind, whereas the implementation of the LFSR may be done in several ways. Let
us �rst focus on a software implementation.

3.1 Fast software implementations

We mention three di�erent ways to implement the LFSR sequence generation.

1. �Adding and shifting�
2. �Pointer and circular bu�er�
3. �Hardcoded LFSR in the program code�

In 1., we simply calculate the next value for s(1), and shift all the other
values in the array representing the LFSR states. This is not e�cient in software
and we do not recommend to implement in this way.

The approach in 2. is based on the idea of having a pointer pointing at the
beginning of the LFSR in memory. When we clock the LFSR once we do not
shift all the values one step in memory, but rather, we only move the pointer one
position. This gives a compact code description of the LFSR sequence generation,
faster than the approach in 1. The drawback is the overhead that comes from
handling the pointer and the circular bu�er.



The third approach is the one we suggest to use for fast implementations.
The idea is essentially the same as in 2., but here we do not use pointer(s).
Instead, we �hardcode� the LFSR sequence generation in the program code.
This will increase the size of the code, but will be much faster. Let us provide
an illustrating example of how this is coded. Assume that we have 16 words
(variables) in memory representing the LFSR in a circular manner, declared
as s1,s2,...s16. Let FSM(s) be a function producing the output of the �nite
state machine with input s, using two global variables R1, R2. The program
code would be of the form

key1 = FSM(s1)⊕s16;
s16 = (s16⊕s13⊕s7)·α;
key2 = FSM(s16)⊕s15;
s15 = (s15⊕s12⊕s6)·α;
...
key16 = FSM(s2)⊕s1;
s1 = (s1⊕s14⊕s8)·α;

The code would produce 16 words of the running key, key1,key2,...,key16.
We further note that the multiplication by α above, described as x·α, is easily

implemented in software. Let x ∈ F232 , x = (x31, x30, . . . , x0). Then

αx = (x30, x29, . . . , x0, 0)⊕ x31 · (00100000000100001000010000000011).

The �nite state machine FSM(s) is implemented straight-forward. The op-
eration that will be the most expensive is the S-box operation. We suggest to
construct four 256 word tables T1, T2, T3, T4 which contain the result of each
of the nonlinear mappings after the permutation. Then the result of the S-box
can be obtained by addressing the four tables with the corresponding byte of
the input, and then xoring the four resulting words.

temp = (s¢R1)⊕R2;
tempR1 = ((R2¢temp)�7)⊕R1;
R2 = T1[R1&377]⊕T2[(R1�8)&377]⊕T3[(R1�16)&377]⊕T4[(R1�24)&377];
R1 = tempR1;
return temp;

Here x � y means a left cyclic shift of x by y steps, and similar for the right
shift x � y, not necessarily cyclic.

We note that the generation of the next symbol of the LFSR sequence and
the generation of the FSM output are independent. Hence, these things can be
done totally in parallel, if the processor allows it.

There are also other possibilities to improve the performance in various sit-
uations. We might for example use a larger memory size for the LFSR sequence
generation, and produce a large number of LFSR output symbols stored in mem-
ory. Then we apply the FSM to them one by one and produce the running key.



In the S-box, we may generate two tables of size 216 each instead of the four
tables given before. This would increase performance if memory access to the
tables is fast.

In Table 1 we give some performance values for di�erent platforms. The C
program giving these values is based on approach 3. in Section 3.1. Handoptimiz-
ing this program is expected to provide some additional improvements. Since the

Processor/Speed
Operating system/ Pentium II Pentium III UltraSPARC
Compiler 400MHz 500MHz 400Mhz
Linux/gcc 420 610 -
WinNT/Microsoft C++ 430 520 -
Solaris 2.7/gcc 450 - 430

Table 1. Encryption speed (Mbits/s) on various platforms.

key initialization in IV mode consists of clocking the cipher 32 times, the time
to do key initialization in IV mode is roughly the time this takes. Our current
implementation makes key setup in 3µs on a Pentium III 500MHz, but a fast
implementation is expected to take about 2µs.

3.2 Hardware implementation

An evaluation of a hardware implementation has not been done, but we note
that the cipher has very few components, allowing a compact hardware imple-
mentation. The implementation cost will be dominated by the implementation
of the 512 bit LFSR, the integer additions, and the S-box. Furthermore, the
critical path will be short, including mainly the two integer additions.

The nonlinear mapping in the S-box can be quite e�ciently implemented
in hardware. The mapping x → x7 over F28 can be split into x → x4x2x,
where x4, x2, x are all linear mappings. Hence, we �rst implement y = x4x2

and then in another level implementing yx, giving the desired result. Since each
implementation level will have terms of degree at most two, the number of gates
will be small.

The integer additions could be implemented in standard way, using carry-
look-ahead.

4 Security of the cipher

The most important aspect for the cipher is its resistance against di�erent at-
tacks. The design goal has been to provide a security level similar to what is
used in block cipher design. In particular, this means that there should not exist
an attack signi�cantly faster than an exhaustive key search.



We consider some general attacks on stream ciphers:
Exhaustive key search: This is the most e�cient way of attacking SNOW.

We exhaustively search the key space of the 128 bit key, or the 256 bit key,
respectively.

Time-memory trade-o� attacks: This kind of attacks can be applied if
the state space of the cipher is too small. It has been a successful way of attacking
for example A5 in the GSM standard [8, 1]. Basically, the procedure is as follows.
Assume that the cipher is in a certain state, i.e., a certain value for all memory
elements in the cipher. Calculate a number of output bits and put the pair
(output,state) in a sorted list. Then we scan a received output sequence, hoping
to �nd one of the stored output sequences in the received output sequence. If
this occurs, the ciphers state just before producing the found output sequence
can also be found in the list, hopefully leading to a successful recovery of the
key.

We note that these kind of attacks do not seem to be applicable to SNOW.
The state space is simply too large (2512+64) compared to the key size.

Guess-and-Determine attacks: The basic idea is to guess the value of
some unknown variables in the cipher, and from the guessed values deduce the
value of other unknown variables. Such an attack was for example applied on
(alleged) RC4 in [14]. Also here we have found no such attacks on the proposed
cipher.

Time-memory trade-o� with huge precomputation: Here we just want
to point out that if we allow the precomputation complexity to be larger than the
complexity of exhaustive key search, it is possible to have time-memory trade-o�
attacks faster than exhaustive key search, see for example [22]. This is valid for
any cipher.

Correlation attacks:

Correlation attacks is a very powerful class of attacks, and probably the most
serious threat against the security of the cipher. The basic idea is very simple.
We try to determine a correlation between the running key and di�erent linear
combinations of the secret key bits. This correlation is then used in a decoding
procedure, to recover the secret key. A lot of work has been done on these kind of
attacks, see [21, 18, 6, 7, 10, 11, 5, 12, 4]. We should note that almost all this work
has been directed towards practical attacks (attacks that could be simulated on
a computer), and have mainly considered attacking LFSRs of length less than
100. In this analysis we will be concerned with complexities of up to 2256, and
there is no possibility to simulate the performance of di�erent attacks. Hence,
we will instead rely on the rather few theoretical results in [18, 13, 5] to calculate
the performance.

Now let us examine the proposed cipher in a correlation attack. Our study
will be focused on the �nite state machine. Denote by

u = u(1), u(2), u(3), . . .



an input sequence to the FSM, and denote by

v = v(1), v(2), v(3), . . .

the corresponding output of the FSM. The goal for us is to �nd a correlation
between u and v. This correlation could be of any type. We �rst focus on a
binary relation.

Let u(i) = (u31(i), u30(i), . . . , u0(i)), and the same for v(i), i = 1, 2, . . .. By
a binary correlation we mean a linear combination of input and output

n∑

i=1

31∑

j=0

bijuj(i) +
n∑

i=1

31∑

j=0

cijvj(i),

for some constants bij , cij ∈ F2, i = 1, 2, . . . , n, j = 0, 1, . . . , 31, which is nonuni-
formly distributed, i.e.,

P (
n∑

i=1

31∑

j=0

bijuj(i) +
n∑

i=1

31∑

j=0

cijvj(i) = 0) =
1
2

+ ε, (1)

where ε > 0 is called the correlation probability. If we can identify a large enough
correlation, we can turn the key recovery problem into a decoding problem, and
use known algorithms to solve it.

At a certain moment, let the unknown value in R1 be denoted by r and the
unknown value in R2 be denoted by r̂. In order to �nd correlations of the form
(1), we must remove the in�uence of r, r̂. Write up a �rst equation of the form

v(1) = (u(1) ¢ r)⊕ r̂. (2)

Let us introduce the notation x′ by which we mean x rotated 7 steps to the
left. Furthermore, let c(i) denote the carry bits in the integer addition in (2),
allowing us to express u(i) ¢ r as u(i) ¢ r = u(i)⊕ r⊕ c(i) . The equation (2) is
rewritten as

v(1) = (u(1)⊕ r ⊕ c(1))⊕ r̂. (3)
Next, R1 is updated, given the value (v(1)¢ r̂)′⊕ r, and R2 gets the value S(r).
Again we introduce ĉ(i) to denote the carry bits in the integer addition above.
Then R1 will get the value

v(1)′ ⊕ r̂′ ⊕ ĉ(1)′ ⊕ r.

Now a second equation can be written as

v(2) = (u(2)⊕ v(1)′ ⊕ r̂′ ⊕ ĉ(1)′)⊕ c(2)⊕ S(r). (4)

Since we have two unknown variables r, r̂, we need a third equation. Updating
R1, R2 we get that R1 next gets the value

v(2)′ ⊕ S(r)′ ⊕ ĉ(2)′ ⊕ v(1)′ ⊕ r̂′ ⊕ ĉ(1)′ ⊕ r,



and R2 the value
S(v(1)′ ⊕ r̂′ ⊕ ĉ(1)′ ⊕ r).

Finally, the third equation is given by

v(3) = u(3)⊕v(2)′⊕S(r)′⊕ĉ(2)′⊕v(1)′⊕r̂′⊕ĉ(1)′⊕r⊕c(3)⊕S(v(1)′⊕r̂′⊕ĉ(1)′⊕r).
(5)

Summarizing, we have three equations in two unknowns,

v(1) = u(1)⊕ r ⊕ c(1)⊕ r̂. (6)
v(2) = u(2)⊕ v(1)′ ⊕ r̂′ ⊕ ĉ(1)′ ⊕ c(2)⊕ S(r). (7)
v(3) = u(3)⊕ v(2)′ ⊕ S(r)′ ⊕ ĉ(2)′ ⊕ v(1)′ ⊕ r̂′ ⊕ ĉ(1)′ ⊕ r

⊕c(3)⊕ S(v(1)′ ⊕ r̂′ ⊕ ĉ(1)′ ⊕ r). (8)

The S-box can also be approximated by a linear expression, S(x) = Ax+ψ, where
Ax denotes a linear transformation of x and ψ denotes the �noise� introduced
by the linear approximation.

We have elaborated with the equations in (6)-(8), and removed the in�uence
from r, r̂ in order to obtain correlations. However, no correlations of signi�cant
size have been found. By signi�cant we mean a binary linear combination of
input and output bits from the FSM which equals zero with a probability, say,
at least

1/2 + 2−20.

Such a correlation would not break the cipher faster than exhaustive key search,
but would be a correlation that is stronger than expected by the authors.

Let us now turn the question around, and give the correlation probability
that is necessary for a correlation attack faster than exhaustive key search. Here
we note that many of the proposed methods for fast correlation attacks are
based only on simulations and guesses of performance. However, a few papers
do present also asymptotic results, and we focus on the work in [5]. We consider
only the key size 256 bits.

We refer to [5] for details on the attack. Here we just review the basic results.
With a given LFSR length l, algorithm parameters k, t, the required length N
of the running key z for the algorithm in [5] to succeed is

N ≈ 1/4 · (2kt! ln 2)1/t · ε−2 · 2 l−k
t , (9)

when the correlation probability is 1/2 + ε.
The algorithm collects a number of parity checks in a precomputation phase.

These must be stored. The complexity of this precomputation phase is approxi-
mately Nd(t−1)/2e and requires memory Nb(t−1)/2c. The memory can be reduced
by increasing the computational complexity. Furthermore, the number of par-
ity checks that need to be stored is roughly N t/t! · 2−(l−k), and the decoding
complexity is 2k times the number of parity checks.

In our case l = 512 and the maximum length is N = 250. Table 2 demon-
strates the required correlation to perform an attack faster than exhaustive key



Value Precomp. Precomp. Number of parity Required
of t time memory checks to be stored correlation
2 250 - 0 -
3 2100 250 0 -
...

...
...

...
...

7 2200 2150 240 1/2 + 0.115 (k = 215)
8 2200 2200 263 1/2 + 0.050 (k = 190)
9 2250 2200 288 1/2 + 0.025 (k = 168)
10 2250 2250 2111 1/2 + 0.015 (k = 145)
...

...
...

...
...

16 2400 2400 2244 1/2 + 0.0029 (k = 12)

Table 2. The required correlation for an attack faster than exhaustive key search

search for di�erent values of the parameter t in the algorithm. Also the precom-
putation time and memory is given. For t > 16, the number of stored parity
checks will be larger than 2256, which makes the attack void.

Hence we can conclude the following. In order to perform a binary correlation
attack faster than exhaustive key search, one needs to �nd a correlation between
input and output sequences of the FSM, larger than the value 1/2+0.0029. Still,
such an attack would only be academic, requiring around 2400 precomputation
memory and complexity.

Other binary correlation attacks have appeared, but in an asymptotic be-
havior they do not perform di�erently. Another approach would be to consider
correlations over a larger �eld, in our case F28 or F232 could be possible choices.

Distinguishing Attacks:

We mention the possibility of a �distinguishing attack�. The attacker is successful
if he can distinguish the generated pseudo-random sequences from truly random
sequences. From the fact that we add an element of the LFSR sequence, before
producing the running key, we believe that it is quite unlikely to �nd statistical
weaknesses that can be exploited. A possibility would be to �nd a weakness in
the key initialization, that would enable such an attack. No such weaknesses
have been found.

An important type of distinguishing attacks that must be considered in IV
mode is what is referred to as distinguishability in polynomial sampling [15]. Ba-
sically, we consider a large number of generated sequences, one for each IV value,
and try to establish some kind of bias or dependence between them (anything
that distinguishes them from a set of mutually independent random sequences).
This type of attack is wonderfully demonstrated in [15], where a bias in the
second output word of RC4 is found.

Returning our attention to SNOW, no distinguishability in polynomial sam-
pling has been found.



5 Design choices and design goals

Here we give a summary of the design choices and design goals. Let us start with
the latter.

The design goals have been to produce a stream cipher signi�cantly faster
than AES, with signi�cantly lower implementation costs in hardware. Most im-
portantly, the security must be maximum, i.e., on a level similar to AES.

Since any block cipher can be used in �stream cipher mode�, a proposed
stream cipher must be superior in speed and implementation compared to the
block cipher. We choose to compare with the upcoming AES. In software, we have
demonstrated a speed at least 2-10 times faster than AES (depending on which
of the �ve remaining candidates we compare with). A hardware implementation
has not been evaluated, but is expected to be signi�cantly simpler than the AES
candidates.

From security point of view, the security is set to maximum. This means
in particular, that the best attacks are generic attacks like an exhaustive key
search attack. Any proposed stream cipher will have a di�culty in obtaining the
same public con�dence as a block cipher like AES. However, we hope that the
simplicity of the design will motivate research which in turn will increase the
con�dence.

Now let us give some comments on design choices. The general construction
method, as given in Figure 1, was chosen due to the fact that adding the LFSR
symbol with the FSM output before producing the running key provides nice
statistical properties for the running key. Also, similar ideas have appeared be-
fore, but mainly for a binary alphabet. The alphabet size of (at least) 232 was
necessary to meet the design goals. The connection polynomial p(x) is primitive
and was chosen to support a fast implementation.

Inside the FSM, the use of integer addition and bitwise addition was in-
�uenced by the classical summation combiner. However, since we have a large
alphabet size, a lot of dependence between consecutive bits in the words occur.
This is e�ectively taken care of by the S-box, which not only introduce additional
nonlinearity, but most importantly, permute the positions of the resulting word.
The nonlinear mappings in the S-box was chosen as power functions over a �nite
�eld, similar to the selection of S-boxes in MISTY [16].

The S-box was chosen to support a simple implementation in both software
and hardware, which is the motivation for choosing four 8-to-8 bit S-boxes. In
software, using table lookup, each byte will address a table. This can sometimes
be more e�ciently implemented than 9-to-9 bit S-boxes, etc. The permutation
was chosen to spread two bits of each input byte to each of the resulting bytes.

6 Conclusions

The paper has presented the new stream cipher SNOW. A complete description
of SNOW, estimates of software performance, and an overview of possible attacks
have been given. Several properties of SNOW have not yet been considered, for



example hardware implementations, handoptimized code in software, and a more
exhaustive treatment of the security. We hope to �ll some of these gaps in the
near future.
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