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Abstract

We review theory and applications of weak gravitational lensing. After summarising
Friedmann-Lemigre cosmological models, we present the formalism of gravitational lens-
ing and light propagation in arbitrary space-times. We discuss how weak-lensing effects
can be measured. The formalism is then applied to reconstructions of galaxy-cluster mass
distributions, gravitational lensing by large-scale matter distributions, QSO-galaxy corre-
lations induced by weak lensing, lensing of galaxies by galaxies, and weak lensing of the
cosmic microwave background.

Preprint submitted to Elsevier Preprint 17 August 2000



Contents

1 INnTroaductiol

(.1 Gravitational Light Detlecuon

ea ravitational Lensing

L.o Applications of Gravitational Lensing

1.4 Structure or tnis Keview

E_Cosmological Background

2.1 Friedmann-Lem#&e Cosmological Modégls
2.2 _Density Perturbations
2.3__Relevant Properiies of Lenses and Sources

orreiation Functions, Fower spectra, an eir Projections

ravitational LIg erecugn

B1 Gravitational Lens Theagry

o] ropagation In Arpitrary spacetimes

rncipies or vvea ravitational Lensjng

4.1 INTroductiol

A2 Galaxy Shapes and Sizes, and their_Transformation

A.5 | ocal Determinafion ot the ISTorfion

A4 Magnification Effects

A5 Minimum Lens Strength for itS Weak Lensing Detedgtion

A6 Practical Consideration for Measuring Image Sllapes

VWeak Lensing by Galaxy Clusters

.1 INTroducTtiol

5.2 Cluster Mass Reconstruction from Image Distorfions

10

12

12

24

32

41

45

45

52

58

58

59

62

70

74

76

86

86

87



6.3 Aperture Mass and Mulfipole Measures 97

5.4 Applicafion to Observed Clusters 102
108
eak Cosmological Lensing 119
6.1__Light Propagation; Choice of Coordinates 120
6.2 __Light Deflection 121
6.3__Effeciive Convergence 124
6.4 Effective-Convergence Power Specirum 126
6.5 Magnification and Shear 130
F 6 Second-Order Stafistical Measures 131
6.7 _Higher-Order Stafistical Measures 146
i osSmic Shear and Biasing 150

. umerical Approacn to Cosmic ear, cosmoiliogical Farameter

[ Estimates, and Observations 153
[ QSO Magnification Bias and Large-Scale Strugture 160
160

: xpected Magnification Bias from Cosmological Density
[ Perflurbafions 162
[7-3__Theoretical EXpectatigns 167
[Z—Observafional Reslts 171
[7.5__Magnification bias of galaxies 176
76 Outlol 177
B Galaxy-Galaxy Lensing 179
179
€ Theory of Galaxy-Galaxy Lensing 180




8.3 Resiills
8.4 Galaxy-Galaxy Lensing in Galaxy Clusters

e Impact o ea ravitational Lig eriection on tne viicrowave

183

189

[ Background Radiation
9.1 Infroductiol

eak Lensing of the B

pg.o  CMbB lemperature Fluctuations

8.4~ Auto-Correlation Function of the Gravitationally Lensed CMB

p.o Deilection-Angle variangce

p.0Change of CMb lemperature Fluctuations

8./ Discussian

[[0 Summary and Outlopk

References

193

193

195

195

196

200

205

208

211

217



1 Introduction

1.1 Gravitational Light Deflection

Light rays are deflected when they propagate through an inhomogeneous gravita-
tional field. Although several researchers had speculated about such an effect well
before the advent of General Relativity (see Schneider et al. 1992 for a historical
account), it was Einstein’s theory which elevated the deflection of light by masses
from a hypothesis to a firm prediction. Assuming light behaves like a stream of
particles, its deflection can be calculated within Newton’s theory of gravitation, but
General Relativity predicts that the effect is twice as large. A light ray grazing the
surface of the Sun is deflected byrharc seconds compared to th&8DTarc sec-

onds predicted by Newton’s theory. The confirmation of the larger value in 1919
was perhaps the most important step towards accepting General Relativity as the
correct theory of gravity (Eddington 1920).

Cosmic bodies more distant, more massive, or more compact than the Sun can bend
light rays from a single source sufficiently strongly so that multiple light rays can
reach the observer. The observer sees an image in the direction of each ray arriv-
ing at their position, so that the source appears multiply imaged. In the language
of General Relativity, there may exist more than one null geodesic connecting the
world-line of a source with the observation event. Although predicted long before,
the first multiple-image system was discovered only in 1979 (Walsh et al. 1979).
From then on, the field ajravitational lensingdeveloped into one of the most ac-

tive subjects of astrophysical research. Several dozens of multiply-imaged sources
have since been found. Their quantitative analysis provides accurate masses of,
and in some cases detailed information on, the deflectors. An example is shown in
Fig. 1.

Tidal gravitational fields lead to differential deflection of light bundles. The size
and shape of their cross sections are therefore changed. Since photons are neither
emitted nor absorbed in the process of gravitational light deflection, the surface
brightness of lensed sources remains unchanged. Changing the size of the cross
section of a light bundle therefore changes the flux observed from a source. The
different images in multiple-image systems generally have different fluxes. The
images of extended sources, i.e. sources which can observationally be resolved, are
deformed by the gravitational tidal field. Since astronomical sources like galaxies
are not intrinsically circular, this deformation is generally very difficult to identify

in individual images. In some cases, however, the distortion is strong enough to be
readily recognised, most noticeably in the cas&istein rings(see Fig. 2) and
arcsin galaxy clusters (Fig. 3).

If the light bundles from some sources are distorted so strongly that their images



Fig. 1. The gravitational lens system 2237305 consists of a nearby spiral galaxy at red-
shift zy = 0.039 and four images of a background quasar with redghit 1.69. It was
discovered by Huchra et al. (1985). The image was taken b¥thsble Space Telescope

and shows only the innermost region of the lensing galaxy. The central compact source is
the bright galaxy core, the other four compact sources are the quasar images. They differ in
brightness because they are magnified by different amounts. The four images roughly fall
on a circle concentric with the core of the lensing galaxy. The mass inside this circle can be
determined with very high accuracy (Rix et al. 1992). The largest separation between the
images is 18”.

appear as giant luminous arcs, one may expect many more sources behind a cluster
whose images are only weakly distorted. Although weak distortions in individual
images can hardly be recognised, the net distortion averaged over an ensemble of
images can still be detected. As we shall describe in Sect. 2.3, deep optical expo-
sures reveal a dense population of faint galaxies on the sky. Most of these galaxies
are at high redshift, thus distant, and their image shapes can be utilised to probe the
tidal gravitational field of intervening mass concentrations. Indeed, the tidal gravi-
tational field can be reconstructed from the coherent distortion apparent in images
of the faint galaxy population, and from that the density profile of intervening clus-
ters of galaxies can be inferred (see Sect. 4).



Fig. 2. The radio source MG 11310456 was discovered by Hewitt et al. (1988) as the
first example of a so-calleBinstein ring If a source and an axially symmetric lens are
co-aligned with the observer, the symmetry of the system permits the formation of a
ring-like image of the source centred on the lens. If the symmetry is broken (as expected for
all realistic lensing matter distributions), the ring is deformed or broken up, typically into
four images (see Fig. 1). However, if the source is sufficiently extended, ring-like images
can be formed even if the symmetry is imperfect. The 6 cm radio map of MG10836

shows a closed ring, while the ring breaks up at higher frequencies where the source is
smaller. The ring diameter is?'.

1.2 Weak Gravitational Lensing

This review deals witlweak gravitational lensingThere is no generally applica-

ble definition of weak lensing despite the fact that it constitutes a flourishing area
of research. The common aspect of all studies of weak gravitational lensing is that
measurements of its effects are statistical in nature. While a single multiply-imaged
source provides information on the mass distribution of the deflector, weak lensing
effects show up only across ensembles of sources. One example was given above:
The shape distribution of an ensemble of galaxy images is changed close to a mas-
sive galaxy cluster in the foreground, because the cluster’s tidal field polarises the
images. We shall see later that the size distribution of the background galaxy pop-
ulation is also locally changed in the neighbourhood of a massive intervening mass
concentration.

Magnification and distortion effects due to weak lensing can be used to probe the
statistical properties of the matter distribution between us and an ensemble of dis-
tant sources, provided some assumptions on the source properties can be made.



Fig. 3. The cluster Abell 2218 hosts one of the most impressive collections of arcs. This
HSTimage of the cluster’s central region shows a pattern of strongly distorted galaxy im-
ages tangentially aligned with respect to the cluster centre, which lies close to the bright
galaxy in the upper part of this image. The frame measures ab6ut 860'. (courtesy of

J.-P. Kneib)

For example, if astandard candlg] at high redshift is identified, its flux can be
used to estimate the magnification along its line-of-sight. It can be assumed that
the orientation of faint distant galaxies is random. Then, any coherent alignment of
images signals the presence of an intervening tidal gravitational field. As a third ex-
ample, the positions on the sky of cosmic objects at vastly different distances from
us should be mutually independent. A statistical association of foreground objects
with background sources can therefore indicate the magnification caused by the
foreground objects on the background sources.

All these effects are quite subtle, or weak, and many of the current challenges in
the field are observational in nature. A coherent alignment of images of distant
galaxiescanbe due to an intervening tidal gravitational field, bouldalso be due

to propagation effects in the Earth’s atmosphere or in the telescope. A variation
in the number density of background sources around a foreground cbjebe

due to a magnification effect, babuld also be due to non-uniform photometry or

1 The termstandard candlés used for any class of astronomical objects whose intrin-

sic luminosity can be inferred independently of the observed flux. In the simplest case, all
members of the class have the same luminosity. More typically, the luminosity depends
on some other known and observable parameters, such that the luminosity can be inferred
from them. The luminosity distance to any standard candle can directly be inferred from the
square root of the ratio of source luminosity and observed flux. Since the luminosity dis-
tance depends on cosmological parameters, the geometry of the Universe can then directly
be investigated. Probably the best current candidates for standard candles are supernovae
of Type la. They can be observed to quite high redshifts, and thus be utilised to estimate
cosmological parameters (e.g. Riess et al. 1998).



obscuration effects. These potential systematic effects have to be controlled at a
level well below the expected weak-lensing effects. We shall return to this essential
point at various places in this review.

1.3

Applications of Gravitational Lensing

Gravitational lensing has developed into a versatile tool for observational cosmol-
ogy. There are two main reasons:

(1)

(2)

The deflection angle of a light ray is determined by the gravitational field of
the matter distribution along its path. According to Einstein’s theory of Gen-
eral Relativity, the gravitational field is in turn determined by the stress-energy
tensor of the matter distribution. For the astrophysically most relevant case of
non-relativistic matter, the latter is characterised by the density distribution
alone. Hence, the gravitational field, and thus the deflection angle, depend
neither on the nature of the matter nor on its physical state. Light deflection
probes the total matter density, without distinguishing between ordinary (bary-
onic) matter or dark matter. In contrast to other dynamical methods for probing
gravitational fields, no assumption needs to be made on the dynamical state of
the matter. For example, the interpretation of radial velocity measurements in
terms of the gravitating mass requires the applicability of the virial theorem
(i.e., the physical system is assumed to be in virial equilibrium), or knowledge
of the orbits (such as the circular orbits in disk galaxies). However, as will be
discussed in Sect. 3, lensing measures only the mass distribution projected
along the line-of-sight, and is therefore insensitive to the extent of the mass
distributionalong the light rays, as long as this extent is small compared to
the distances from the observer and the source to the deflecting mass. Keeping
this in mind, mass determinations by lensing do not depend on any symmetry
assumptions.

Once the deflection angle as a function of impact parameter is given, gravi-
tational lensing reduces to simple geometry. Since most lens systems involve
sources (and lenses) at moderate or high redshift, lensing can probe the ge-
ometry of the Universe. This was noted by Refsdal (1964), who pointed out
that lensing can be used to determine the Hubble constant and the cosmic den-
sity parameter. Although this turned out later to be more difficult than antici-
pated at the time, first measurements of the Hubble constant through lensing
have been obtained with detailed models of the matter distribution in multiple-
image lens systems and the difference in light-travel time along the different
light paths corresponding to different images of the source (e.g., Kuwdil.

1997; Schechter et al. 1997; Biggs et al. 1999). Since the volume element per
unit redshift interval and unit solid angle also depends on the geometry of
space-time, so does the number of lenses therein. Hence, the lensing proba-
bility for distant sources depends on the cosmological parameters (e.g., Press



& Gunn 1973). Unfortunately, in order to derive constraints on the cosmo-
logical model with this method, one needs to know the evolution of the lens
population with redshift. Nevertheless, in some cases, significant constraints
on the cosmological parameters (Kochanek 1993, 1996; Maoz & Rix 1993;
Bartelmann et al. 1998; Falco et al. 1998), and on the evolution of the lens
population (Mao & Kochanek 1994) have been derived from multiple-image
and arc statistics. (See also the review by Chiba & Futamase 1999.)

The possibility to directly investigate the dark-matter distribution led to substantial
results over recent years. Constraints on the size of the dark-matter halos of spiral
galaxies were derived (e.g., Brainerd et al. 1996), the presence of dark-matter ha-
los in elliptical galaxies was demonstrated (e.g., Maoz & Rix 1993; Griffiths et al.
1996), and the projected total mass distribution in many cluster of galaxies was
mapped (e.g., Kneib et al. 1996; Hoekstra et al. 1998; Kaiser et al. 1998). These
results directly impact on our understanding of structure formation, supporting hi-
erarchical structure formation in cold dark matter (CDM) models. Constraints on
the nature of dark matter were also obtained. Compact dark-matter objects, such
as black holes or brown dwarfs, cannot be very abundant in the Universe, because
otherwise they would lead to observable lensing effects (e.g., Schneider 1993; Dal-
canton et al. 1994). Galactic microlensing experiments constrained the density and
typical mass scale of massive compact halo objects in our Galaxy (seenBkiczy
1996, Roulet & Mollerach 1997 and Mao 2000 for reviews). We refer the reader
to the reviews by Blandford & Narayan (1992), Schneider (1996a) and Narayan
& Bartelmann (1999) for a detailed account of the cosmological applications of
gravitational lensing.

We shall concentrate almost entirely on weak gravitational lensing here. Hence,
the flourishing fields of multiple-image systems and their interpretation, Galactic
microlensing and its consequences for understanding the nature of dark matter in
the halo of our Galaxy, and the detailed investigations of the mass distribution in the
inner parts of galaxy clusters through arcs, arclets, and multiply imaged background
galaxies, will not be covered in this review. In addition to the references given
above, we would like to point the reader to Refsdal & Surdej (1994), Fort & Mellier
(1994), Wu (1996), and Hattori et al. (1999) for more recent reviews on various
aspects of gravitational lensing, to Mellier (1999) for a very recent review on weak
lensing, and to the monograph (Schneider et al. 1992) for a detailed account of the
theory and applications of gravitational lensing.

1.4 Structure of this Review

Many aspects of weak gravitational lensing are intimately related to the cosmo-
logical model and to the theory of structure formation in the Universe. We there-
fore start the review by giving some cosmological background in Sect. 2. After
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summarising Friedmann-Lentee-Robertson-Walker models, we sketch the the-
ory of structure formation, introduce astrophysical objects like QSOs, galaxies,
and galaxy clusters, and finish the Section with a general discussion of correla-
tion functions, power spectra, and their projections. Gravitational light deflection
in general is the subject of Sect. 3, and the specialisation to weak lensing is de-
scribed in Sect. 4. One of the main aspects there is how weak lensing effects can be
guantified and measured. The following two sections describe the theory of weak
lensing by galaxy clusters (Sect. 5) and cosmological mass distributions (Sect. 6).
Apparent correlations between background QSOs and foreground galaxies due to
the magnification bias caused by large-scale matter distributions are the subject of
Sect. 7. Weak lensing effects of foreground galaxies on background galaxies are
reviewed in Sect. 8, and Sect. 9 finally deals with weak lensing of the most distant
and most extended source possible, i.e. the Cosmic Microwave Background. We
present a brief summary and an outlook in Sect. 10.

We use standard astronomical units throughoM;, 1= 1 solar mass= 2 x 10%3g;
1Mpc= 1megaparsee 3.1 x 10%*cm.
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2 Cosmological Background

We review in this section those aspects of the standard cosmological model which
are relevant for our further discussion of weak gravitational lensing. This standard
model consists of a description for the cosmological background which is a homo-
geneous and isotropic solution of the field equations of General Relativity, and a
theory for the formation of structure.

The background model is described by the Robertson-Walker metric (Robertson
1935; Walker 1935), in which hypersurfaces of constant time are homogeneous
and isotropic three-spaces, either flat or curved, and change with time according
to a scale factor which depends on time only. The dynamics of the scale factor is
determined by two equations which follow from Einstein’s field equations given
the highly symmetric form of the metric.

Current theories of structure formation assume that structure grows via gravita-
tional instability from initial seed perturbations whose origin is yet unclear. Most
common hypotheses lead to the prediction that the statistics of the seed fluctuations
is Gaussian. Their amplitude is low for most of their evolution so that linear per-
turbation theory is sufficient to describe their growth until late stages. For general
references on the cosmological model and on the theory of structure formation,
cf. Weinberg (1972), Misner et al. (1973), Peebles (1986)nBr (1988), Padman-
abhan (1993), Peebles (1993), and Peacock (1999).

2.1 Friedmann-Leni&re Cosmological Models

2.1.1 Metric
Two postulates are fundamental to the standard cosmological model, which are:

(1) When averaged over sufficiently large scales, there exists a mean motion of
radiation and matter in the Universe with respect to which all averaged ob-
servable properties are isotropic.

(2) All fundamental observers, i.e. imagined observers which follow this mean
motion, experience the same history of the Universe, i.e. the same averaged
observable properties, provided they set their clocks suit&lgh a universe
is calledobserver-homogeneous.

General Relativity describes space-time as a four-dimensional manifold whose met-
ric tensorgyp is considered as a dynamical field. The dynamics of the metric

is governed by Einstein’s field equations, which relate the Einstein tensor to the
stress-energy tensor of the matter contained in space-time. Two events in space-
time with coordinates differing by>d are separated bysgwith ds® = Jop AX° dx®.

12



The eigentime(proper time) of an observer who travels by ahanges by 1ds,
Greek indices run over.0.3 and Latin indices run over the spatial indices.B
only.

The two postulates stated above considerably constrain the admissible form of the
metric tensor. Spatial coordinates which are constant for fundamental observers are
called comoving coordinates. In these coordinates, the mean motion is described by
dx' = 0, and hence & = ggodt2. If we require that theigentimeof fundamental
observers equal the cosmic time, this impligs = c2.

Isotropy requires that clocks can be synchronised such that the space-time compo-
nents of the metric tensor vanisig; = 0. If this was impossible, the components of

Ooi identified one particular direction in space-time, violating isotropy. The metric
can therefore be written

ds? = c?dt? 4 gj dx dx! (2.1)

whereg;j is the metric of spatial hypersurfaces. In order not to violate isotropy,
the spatial metric can only isotropically contract or expand with a scale function
a(t) which must be a function of time only, because otherwise the expansion would
be different at different places, violating homogeneity. Hence the metric further
simplifies to

ds? = c?dt? — a?(t)dI?, (2.2)

where d is the line element of the homogeneous and isotropic three-space. A spe-
cial case of the metric (2.2) is the Minkowski metric, for whichigithe Euclidean

line element andh(t) is a constant. Homogeneity also implies that all quantities
describing the matter content of the Universe, e.g. density and pressure, can be
functions of time only.

The spatial hypersurfaces whose geometry is described%yad either be flat or
curved. Isotropy only requires them to be spherically symmetric, i.e. spatial sur-
faces of constant distance from an arbitrary point need to be two-spheres. Homo-
geneity permits us to choose an arbitrary point as coordinate origin. We can then in-
troduce two angleB8, @ which uniquely identify positions on the unit sphere around
the origin, and a radial coordina® The most general admissible form for the
spatial line element is then

di? = dw? + fZ(w) (d¢? +sinf8de?) = dw? + fZ(w)dwr? . (2.3)

Homogeneity requires that the radial functibaw) is either a trigonometric, lin-
ear, or hyperbolic function of,, depending on whether the curvatites positive,

13



zero, or negative. Specifically,

N
V
(=]

K~1/2sin(KY?w) ( )
few) =< w (K=0) . (2.4)
(—K)~Y2sinh(—K)¥?w] (K < 0)

A
Il
o

Note thatfi (w) and thugK |~1/2 have the dimension of a length. If we define the
radiusr of the two-spheres bk (W) = r, the metric ¢? takes the alternative form

dr?

d2=_—__
1—Kr?

+r?dw’ . (2.5)

2.1.2 Redshift

Due to the expansion of space, photons are redshifted while they propagate from
the source to the observer. Consider a comoving source emitting a light signal at
te which reaches a comoving observer at the coordinate owginO at timet,.

Since &= 0 for light, a backward-directed radial light ray propagates according to
|cdt| = adw, from the metric. The (comoving) coordinate distance between source
and observer is constant by definition,

e to(te)
weoz/o dw = /t % = constant (2.6)

and thus in particular the derivative W, with respect tde is zero. It then follows
from eq. (2.6)

“o . 2.7)

Identifying the inverse time interva(sdte,o)_1 with the emitted and observed light
frequenciewe o, we can write

W Ve Al (2.8)

Since the redshittis defined as the relative change in wavelength, ez AoAg 1,
we find

_ato)

a(te)
This shows that light is redshifted by the amount by which the Universe has ex-
panded between emission and observation.

1+z

. (2.9)
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2.1.3 Expansion

To complete the description of space-time, we need to know how the scale func-
tion a(t) depends on time, and how the curvatifrelepends on the matter which
fills space-time. That is, we ask for the dynamics of the space-time. Einstein’s field
equations relate the Einstein tensgyp to the stress-energy tenshyp of the mat-

ter,

%Tag + A Qg - (2.10)

The second term proportional to the metric tenggy is a generalisation intro-
duced by Einstein to allow static cosmological solutions of the field equations.

is called the cosmological constant. For the highly symmetric form of the metric
given by (2.2) and (2.3), Einstein’s equations imply tiigi has to have the form

of the stress-energy tensor of a homogeneous perfect fluid, which is characterised
by its densityp(t) and its pressur@(t). Matter density and pressure can only de-
pend on time because of homogeneity. The field equations then simplify to the two
independent equations

Gap =

a 8nG Kc N
(5) “ 3P @t @11)
and
a 4 3p N

The scale factoa(t) is determined once its value at one instant of time is fixed. We
choosea= 1 at the present epoti Equation (2.11) is calleBriedmann’s equation
(Friedmann 1922, 1924). The two equations (2.11) and (2.12) can be combined to
yield theadiabatic equation

3
— [a3(t)p(t)c?] + p(t) dadt(t) =0, (2.13)

which has an intuitive interpretation. The first teadp is proportional to the energy
contained in a fixed comoving volume, and hence the equation states that the change
in ‘internal’ energy equals the pressure times the change in proper volume. Hence
eq. (2.13) is the first law of thermodynamics in the cosmological context.

A metric of the form given by egs. (2.2), (2.3), and (2.4) is called the Robertson-
Walker metric. If its scale factoa(t) obeys Friedmann’s equation (2.11) and the
adiabatic equation (2.13), it is called the Friedmann-LgmaRobertson-Walker
metric, or the Friedmann-Leritee metric for short. Note that eq. (2.12) can also
be derived from Newtonian gravity except for the pressure term in (2.12) and the
cosmological constant. Unlike in Newtonian theory, pressure acts as a source of
gravity in General Relativity.
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2.1.4 Parameters

The relative expansion raga~! = H is called theHubble parameterand its value

at the present epoch-= tg is theHubble constantH (tp) = Ho. It has the dimension
of an inverse time. The value bk is still uncertain. Current measurements roughly
fall into the rangeHo = (50— 80) km s~ Mpc—! (see Freedman 1996 for a review),
and the uncertainty ity is commonly expressed & = 100hkm s~ Mpc—1,
with h= (0.5—0.8). Hence

Hor3.2x 10 ¥hs 1~ 1.0x 10 Phyrt. (2.14)

The time scale for the expansion of the Universe is the inverse Hubble constant, or
Hy !~ 10°htyears.

The combination

3HS 2912 3
arg = Por~ 1.9x 10" h*gem (2.15)

is thecritical densityof the Universe, and the densjy in units ofp¢, is thedensity

parameterQ,

_Po
Per

If the matter density in the universe is criticph = per or Qo = 1, and if the cos-

mological constant vanisheA, = 0, spatial hypersurfaces are fl&t,= 0, which

follows from (2.11) and will become explicit in eq. (2.30) below. We further define

Qo (2.16)

N
Qrn=—=. 2.17
Thedeceleration parameterggs defined by
da
Jo = =2 (2.18)

att =tp.

2.1.5 Matter Models

For a complete description of the expansion of the Universe, we need an equation
of statep = p(p), relating the pressure to the energy density of the matter. Ordinary
matter, which is frequently calletlistin this context, hag < pc?, while p=pc?/3
for radiation or other forms of relativistic matter. Inserting these expressions into
eg. (2.13), we find

p(t)=a"(t)po, (2.19)
with

3 for dust,p=0

n= (2.20)

4 for relativistic matterp = pc?/3 '

16



The energy density of relativistic matter therefore drops more rapidly with time
than that of ordinary matter.

2.1.6 Relativistic Matter Components

There are two obvious candidates for relativistic matter today, photons and neutri-
nos. The energy density contained in photons today is determined by the temper-
ature of the Cosmic Microwave Backgrounigys = 2.73K (Fixsen et al. 1996).
Since the CMB has an excellent black-body spectrum, its energy density is given
by the Stefan-Boltzmann law,

1 1 (kTeme)?

- —34 —3
?TSWN4.5>< 10 °"gcm °. (2.21)

PcvmB =

In terms of the cosmic density paramef&j [eq. (2.16)], the cosmic density con-
tributed by the photon background is

Qcmeo=24x10°h72. (2.22)

Like photons, neutrinos were produced in thermal equilibrium in the hot early phase
of the Universe. Interacting weakly, they decoupled from the cosmic plasma when
the temperature of the Universe wiaB ~ 1 MeV because later the time-scale of
their leptonic interactions became larger than the expansion time-scale of the Uni-
verse, so that equilibrium could no longer be maintained. When the temperature
of the Universe dropped tkT ~ 0.5MeV, electron-positron pairs annihilated to
producey rays. The annihilation heated up the photons but not the neutrinos which
had decoupled earlier. Hence the neutrino temperature is lower than the photon
temperature by an amount determined by entropy conservation. The eBfropy

the electron-positron pairs was dumped completely into the entropy of the photon
backgrounds,. Hence,

(Se+ S))before= (S))after; (2.23)

where “before” and “after” refer to the annihilation time. Ignoring constant factors,
the entropy per particle speciesSg1 g T2, whereg is the statistical weight of
the species. For bosoms= 1, and for fermiongy = 7/8 per spin state. Before
annihilation, we thus hav@yefore= 4+ 7/8+ 2 = 11/2, while after the annihilation

g = 2 because only photons remain. From eq. (2.23),

Tafter ) 3 11
=" 2.24
(Tbefore 4 ( )

After the annihilation, the neutrino temperature is therefore lower than the photon
temperature by the factgi1/4)Y/3. In particular, the neutrino temperature today

17



4\ 13
Tvo= (ﬁ) Teme = 1.95K. (2.25)

Although neutrinos have long been out of thermal equilibrium, their distribution
function remained unchanged since they decoupled, except that their temperature
gradually dropped in the course of cosmic expansion. Their energy density can thus
be computed from a Fermi-Dirac distribution with temperafiyrend be converted

to the equivalent cosmic density parameter as for the photons. The result is

Qyo0=28x10"°h"2 (2.26)
per neutrino species.

Assuming three relativistic neutrino species, the total density parameter in relativis-
tic matter today is

Qro= Qcmo+3xQuo=32x10"°h"2, (2.27)

Since the energy density in relativistic matter is almost five orders of magnitude
less than the energy density of ordinary matter toda@gfis of order unity, the
expansion of the Universe today is matter-dominateg,-era—3(t)po. The energy
densities of ordinary and relativistic matter were equal when the scale &¢jor
was o

feq= % —32x107°0,h 2, (2.28)

0

and the expansion was radiation-dominated at yet earlier timesa—*po. The
epoch of equality of matter and radiation density will turn out to be important for

the evolution of structure in the Universe discussed below.

2.1.7 Spatial Curvature and Expansion

With the parameters defined previously, Friedmann’s equation (2.11) can be written

H2(t) = H3 [8_4(I)QR,O +a 3(t)Qo— a‘z(t)ﬁ—f +Qnl . (2.29)
0
SinceH (tg) = Ho, andQgr o < Qo, €q. (2.29) implies

Ho \ 2
K= (?> (Qo+Qp—1), (2.30)
and eq. (2.29) becomes
H2(t) = HE [a *(t)Qro+a 3(t)Qo+a 2(t)(1- Qo —Qp) +Qna] . (2.31)

The curvature of spatial hypersurfaces is therefore determined by the sum of the
density contributions from matte€o, and from the cosmological constafi,.
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If Qo+ Qp =1, space is flat, and it is closed or hyperboli€§ + Qa is larger

or smaller than unity, respectively. The spatial hypersurfaces of a low-density uni-
verse are therefore hyperbolic, while those of a high-density universe are closed
[cf. eq. (2.4)]. A Friedmann-Lenmte model universe is thus characterised by four
parameters: the expansion rate at present (or Hubble consi@graihd the density
parameters in matter, radiation, and the cosmological constant.

Dividing eq. (2.12) by eq. (2.11), using eq. (2.30), and setirg0, we obtain for
the deceleration parametgy

Go= " —Qn- (2.32)

The age of the universe can be determined from eq. (2.31). Sineedda ! =
da(aH)~1, we have, ignorin@r o,

1 1
to=— /O da [aleo+(1—Qo—Q/\)+aZQ,\}

_ ~1/2
= e ,

(2.33)

It was assumed in this equation thmt 0 holds for all timed, while pressure is not
negligible at early times. The corresponding error, however, is very small because
the universe spends only a very short time in the radiation-dominated phase where
p>0.

Figure 4 shows in units ofHo‘1 as a function ofg, for Qp = 0 (solid curve) and

QA = 1—Qp (dashed curve). The model universe is older for lolgrand higher

Qa because the deceleration decreases with decre&gjrand the acceleration
increases with increasir@a.

In principle,Qa can have either sign. We have restricted ourselves in Fig. 4 to non-
negativeQ, because the cosmological constant is usually interpreted as the energy
density of the vacuum, which is positive semi-definite.

The time evolution (2.31) of the Hubble functiéh(t) allows one to determine the
dependence d andQa on the scale functioa. For a matter-dominated universe,
we find

(&) = 35 —~Poa > = 20

3H2(a) a+Qo(l—a)+Qp(a®—a)’
N Qpad
~ 3H%(a) a+Qo(l-a)+Qn(at—a)’

Qa(a) (2.34)

These equations show that, whatever the valueQpandQ, are at the present
epoch,Q(a) — 1 andQa — O for a — 0. This implies that for sufficiently early
times, all matter-dominated Friedmann-Létramodel universes can be described
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Fig. 4. Cosmic agéy in units of Hgl as a function ofQg, for Qp = 0 (solid curve) and
Qp = 1—Qq (dashed curve).

by Einstein-de Sitter models, for whidt= 0 andQa = 0. Fora < 1, the right-

hand side of Friedmann’s equation (2.31) is therefore dominated by the matter and
radiation terms because they contain the strongest dependerace’s ®he Hubble
functionH(t) can then be approximated by

H(t) = Ho [Qroa *(t) + Qoa3(t)] Y .

(2.35)
Using the definition ofaeq, 854 Qro = agaQo [cf. eq. (2.28)], eq. (2.35) can be
written

H(t) = Ho QL 2a 3/ (1+ (2.36)

%) 1/2
- .
Hence,
1/2 __»o
a?(axk
H(t) = Ho Qg2 ae‘; , (8 <2 . (2.37)
a 3?2 (agg<a<l)

Likewise, the expression for the cosmic time reduces to

_ 2 V2| 32 (1 pPa Bq\l/2_ 32
t(a) = 37 %o [a (1 2 a) (1+ a) +2ag | (2.38)
or
1,12 2
~ 1 a2 (a<
o) = Lopy? ] 28 & @<y (2.39)
Ho 2a%2 (ag<a<l)
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Equation (2.36) is called the Einstein-de Sitter limit of Friedmann’s equation.
Where not mentioned otherwise, we consider in the following only cosmic epochs
at times much later thag, i.e., whena > aeq, where the Universe is dominated

by dust, so that the pressure can be neglegied.

2.1.8 Necessity of a Big Bang

Starting froma = 1 at the present epoch and integrating Friedmann’'s equation
(2.11) back in time shows that there are combinations of the cosmic parameters
such thata > 0 at all times. Such models would have no Big Bang. The neces-
sity of a Big Bang is usually inferred from the existence of the cosmic microwave
background, which is most naturally explained by an early, hot phase of the Uni-
verse. Brner & Ehlers (1988) showed that two simple observational facts suffice
to show that the Universe must have gone through a Big Bang, if it is properly de-
scribed by the class of Friedmann-Léditna models. Indeed, the facts that there are
cosmological objects at redshifts> 4, and that the cosmic density parameter of
non-relativistic matter, as inferred from observed galaxies and clusters of galaxies
is Qp > 0.02, exclude models which hawgt) > O at all times. Therefore, if we
describe the Universe at large by Friedmann-Léreanodels, we must assume a
Big Bang, ora= 0 at some time in the past.

2.1.9 Distances

The meaning of “distance” is no longer unique in a curved space-time. In contrast
to the situation in Euclidean space, distance definitions in terms of different mea-
surement prescriptions lead to different distances. Distance measures are therefore
defined in analogy to relations between measurable quantities in Euclidean space.
We define here four different distance scales, the proper distance, the comoving
distance, the angular-diameter distance, and the luminosity distance.

Distance measures relate an emission event and an observation event on two sep-
arate geodesic lines which fall on a common light cone, either the forward light
cone of the source or the backward light cone of the observer. They are therefore
characterised by the timésandt; of emission and observation respectively, and

by the structure of the light cone. These times can uniquely be expressed by the
valuesay = a(tz) anda; = a(t;) of the scale factor, or by the redshifts andz
corresponding t@, anda;. We choose the latter parameterisation because red-
shifts are directly observable. We also assume that the observer is at the origin of
the coordinate system.

The proper distance Byop(z1,22) is the distance measured by the travel time of

a light ray which propagates from a sourcezato an observer at; < z. It is

defined by ®prop= —cdt, hence @prop= —cdad ! = —cda(aH) 1. The minus

sign arises because, due to the choice of coordinates centred on the observer, dis-
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tances increase away from the observer, while the tiraed the scale factoa
increase towards the observer. We get

Cc a(z1) _ _1/2

The comoving distance 8m(z1,2) is the distance on the spatial hyper-surface

t = to between the world-lines of a source and an observer comoving with the cos-
mic flow. Due to the choice of coordinates, it is the coordinate distance between
a source ary and an observer &, dD.om = dw. Since light rays propagate with
ds= 0, we havecdt = —adw from the metric, and thereforeDdom = —a lcdt =
—cda(ad)~! = —cda(a®H)~L. Thus

c raa) ~1/2
Dcom<zl7 22) = H_o az) [aQo + a2(1 —Qo— Q/\) + a4Q,\} / da
2

=W(z1,2) . (2.41)

The angular-diameter distance {3y(z1,2,) is defined in analogy to the relation in
Euclidean space between the physical cross sed#oof an object atzo and the
solid angledw that it subtends for an observerzat Bngng: 0A. Hence,

5A 5
4Te2(z) f2[W(z1,22)] 4’

(2.42)

wherea(z,) is the scale factor at emission time afigdw(z;,2,)] is the radial coor-
dinate distance between the observer and the source. It follows

1/2
Dang(71,22) = (%) = a(z) fk[W(z,2)] - (2.43)

According to the definition of the comoving distance, the angular-diameter distance
therefore is

Dang(Z1,22) = a(22) fk [Deom(z1,22)] - (2.44)

Theluminosity distance [gm(a1,a2) is defined by the relation in Euclidean space
between the luminositl of an object akz; and the fluxSreceived by an observer
atz. Itis related to the angular-diameter distance through

a(z1) a(z1)?
a(z) a(z)
The first equality in (2.45), which is due to Etherington (1933), is valid in ar-

bitrary space-times. It is physically intuitive because photons are redshifted by
a(z1)a(z2) 71, their arrival times are delayed by another faci(r;)a(z) 1, and

2
Dum(z1,22) = { } Dang(zlazz) = fk [Deom(Z1,22)] - (2.45)
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the area of the observer’'s sphere on which the photons are distributed grows be-
tween emission and absorption in proportiofatr; )a(z») ~1]2. This accounts for

a total factor ofa(z;)a(z)~1]* in the flux, and hence for a factor [&#(z;)a(z2) ]2

in the distance relative to the angular-diameter distance.

We plot the four distanceSprop, Dcom, Dang @andDyym for z; = 0 as a function of
in Fig. 5.
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Fig. 5. Four distance measures are plotted as a function of source redshift for two cosmo-
logical models and an observer at redshift zero. These are the proper d3gapca, solid

line), the comoving distancBcom (2, dotted line), the angular-diameter distaftgg (3,
short-dashed line), and the luminosity distabgg, (4, long-dashed line).

The distances are larger for lower cosmic density and higher cosmological constant.
Evidently, they differ by a large amount at high redshift. For small redslifts 1,
they all follow the Hubble law,

distance= % +0(2) . (2.46)
0

2.1.10 The Einstein-de Sitter Model
In order to illustrate some of the results obtained above, let us now specialise

to a model universe with a critical density of du§g = 1 andp = 0, and
with zero cosmological constar® = 0. Friedmann’s equation then reduces to
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H(t) = Hpa~%/2, and the age of the Universe becorties 2(3Ho) 1. The distance
measures are

Dprop(21,22) = 32_;0 [(1+ 21732 _ (14 22)73/2] (2.47)
Doom(21,22) = f,—z [(1+ z1) - (1+ 22)*1/2]

Dang(21,22) = E'—Z 1j22 [(l+ z) Y21+ 22)71/2]

Dium(21,22) = E'—Z (11:—2212)2 [(1+Zl>—1/2 _ (1+22)—1/2} .

2.2 Density Perturbations

The standard model for the formation of structure in the Universe assumes that
there were small fluctuations at some very early initial time, which grew by gravi-
tational instability. Although the origin of the seed fluctuations is yet unclear, they
possibly originated from quantum fluctuations in the very early Universe, which
were blown up during a later inflationary phase. The fluctuations in this case are
uncorrelated and the distribution of their amplitudes is Gaussian. Gravitational in-
stability leads to a growth of the amplitudes of the relative density fluctuations. As
long as the relative density contrast of the matter fluctuations is much smaller than
unity, they can be considered as small perturbations of the otherwise homogeneous
and isotropic background density, and linear perturbation theory suffices for their
description.

The linear theory of density perturbations in an expanding universe is generally a
complicated issue because it needs to be relativistic (e.g. Lifshitz 1946; Bardeen
1980). The reason is that perturbations on any length scale are comparable to or
larger than the size of the horiZ@rat sufficiently early times, and then Newtonian
theory ceases to be applicable. In other words, since the horizon scale is compa-
rable to the curvature radius of space-time, Newtonian theory fails for larger-scale
perturbations due to non-zero spacetime curvature. The main features can never-
theless be understood by fairly simple reasoning. We shall not present a rigorous
mathematical treatment here, but only quote the results which are relevant for our
later purposes. For a detailed qualitative and quantitative discussion, we refer the
reader to the excellent discussion in chapter 4 of the book by Padmanabhan (1993).

2 |n this context, the size of the horizon is the distantby which light can travel in the
timet since the big bang.
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2.2.1 Horizon Size

The size of causally connected regions in the Universe is calletldheon size

It is given by the distance by which a photon can travel in the tisiace the Big

Bang. Since the appropriate time scale is provided by the inverse Hubble parameter
H~1(a), the horizon size ig{, = cH~1(a), and thecomovinghorizon size is

_ ¢ 1/2 1/2 Beq\ /2
= iha) = HOQO (1+ ) , (2.48)

where we have inserted the Einstein-de Sitter limit (2.36) of Friedmann’s equation.
The lengthcHy 1 —3h~1Gpc is called theHubble radius We shall see later that
the horizon size adeq plays a very importanile for structure formation. Inserting

a= agqinto eq. (2.48), yields

~1/2 aé/z

Ay (Beq) = 4 ~12(Qoh%)"tMpc, (2.49)

sz

whereagq from eq. (2.28) has been inserted.

2.2.2 Linear Growth of Density Perturbations

We adopt the commonly held view that the density of the Universe is dominated
by weakly interacting dark matter at the relatively late times which are relevant for
weak gravitational lensin@ > aeq. Dark-matter perturbations are characterised by
the density contrast _
3(%,a) = M , (2.50)
p(a)
wherep = ppa? is the average cosmic density. Relativistic and non-relativistic
perturbation theory shows that linear density fluctuations, i.e. perturbations with
0 < 1, grow like
2
5(a) Da 2= ° beforeaeg (2.51)
a afteragq
as long as the Einstein-de Sitter limit holds. For later tinges; agq, When the
Einstein-de Sitter limit no longer applies®y # 1 or Qa # 0, the linear growth of
density perturbations is changed according to

o(a) = 6033:8 =dpag(a), (2.52)

wheredy is the density contrast linearly extrapolated to the present epoch, and the
density-dependent growth functigh(a) is accurately fit by (Carroll et al. 1992)

-1
g (aQo,Qn) = gQ(a) QY7(a) - Qn(a) + (1+ @) (1+ L’;(()a))} :
(2.53)
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The dependence d@ and Q on the scale factoa is given in egs. (2.34). The
growth functionag(a; Qp, Q) is shown in Fig. 6 for a variety of paramete®y
andQn.
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Fig. 6. The growth functiomg(a) = ad(a)/d (1) given in egs. (2.52) and (2.53) f@X
between @ and 10 in steps of ®. Top panelQa = 0; bottom panelQx = 1— Qq. The
growth rate is constant for the Einstein-de Sitter mo@gl£€ 1, QA = 0), while it is higher
for a< 1 and lower fora= 1 for low-Qp models. Consequently, structure forms earlier in
low- than in highQy models.

The cosmic microwave background reveals relative temperature fluctuations of or-
der 10°° on large scales. By the Sachs-Wolfe effect (Sachs & Wolfe 1967), these
temperature fluctuations reflect density fluctuations of the same order of magnitude.
The cosmic microwave background originatechat 103 > aeq Well after the
Universe became matter-dominated. Equation (2.51) then implies that the density
fluctuations today, expected from the temperature fluctuatioas-at0 3, should

only reach a level of 10?. Instead, structures (e.g. galaxies) with> 1 are ob-
served. How can this discrepancy be resolved? The cosmic microwave background
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displays fluctuations in the baryonic matter component only. If there is an addi-
tional matter component that only couples through weak interactions, fluctuations
in that component could grow as soon as it decoupled from the cosmic plasma, well
before photons decoupled from baryons to set the cosmic microwave background
free. Such fluctuations could therefore easily reach the amplitudes observed today,
and thereby resolve the apparent mismatch between the amplitudes of the tem-
perature fluctuations in the cosmic microwave background and the present cosmic
structures. This is one of the strongest arguments for the existence of a dark matter
component in the Universe.

2.2.3 Suppression of Growth

It is convenient to decompose the density contdastto Fourier modes. In linear
perturbation theory, individual Fourier components evolve independently. A pertur-
bation of (comoving) wavelengthis said to “enter the horizon” wheh= dy(a).

If A < du(aeq), the perturbation enters the horizon while radiation is still dominat-
ing the expansion. Untdeg, the expansion time-scalgyp = H~1, is determined by

the radiation densitpg, which is shorter than the collapse time-scale of the dark
matter,tpm:

texp~ (GPr) ™2 < (Gpom) 2 ~ towm - (2.54)

In other words, the fast radiation-driven expansion prevents dark-matter perturba-
tions from collapsing. Light can only cross regions that are smaller than the hori-
zon size. The suppression of growth due to radiation is therefore restricted to scales
smaller than the horizon, and larger-scale perturbations remain unaffected. This
explains why the horizon size agq, dn(aeq), Sets an important scale for structure
growth.

Figure 7 illustrates the growth of a perturbation wkh< dy(aeg), that is small
enough to enter the horizon adnter < aeq. It can be read off from the figure that
such perturbations are suppressed by the factor

2
Ae
fsup= ( az;er) . (2.55)

It remains to be evaluated at what ti@gera density perturbation with comoving
wavelength\ enters the horizon. The condition is

c

_— . 2.56
AenterH (aenter) ( )

A = dy(@enter) =

Well in the Einstein-de Sitter regime, the Hubble parameter is given by eq. (2.37).
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Fig. 7. Sketch illustrating the suppression of structure growth during the radia-
tion-dominated phase. The perturbation grawa? beforeagq, andl a thereafter. If the
perturbation is smaller than the horizonagt, it enters the horizon aenter < @eq While
radiation is still dominating. The rapid radiation-driven expansion prevents the perturba-
tion from growing further. Hence it stalls unékq. By then, its amplitude is smaller by
fsup= (aemer/aeq)2 than it would be without suppression.

Inserting that expression into (2.56) yields

Aenter (8enter<< aeq)

A0 1/2 '
Benter (Beq < Benter< 1)

(2.57)

Let nowk = A1 be the wave number of the perturbation, agc= d;;* (aeq) the
wave number corresponding to the horizon siz&gtThe suppression factor (2.55)

can then be written
2

From eq. (2.49),

ko ~ 0.083(Qoh?) Mpc ™1 ~ 250(Qph) (Hubble radii)* . (2.59)

28



2.2.4 Density Power Spectrum

The assumed Gaussian density fluctuatidfg at the comoving positioX can
completely be characterised by their power spectRy(k), which can be defined
by (see Sect. 2.4)

~ =

<5<k)8*<R’)> — (2138 (k—K) Ps(K) , (2.60)

whereS(R) is the Fourier transform od, and the asterisk denotes complex con-
jugation. Strictly speaking, the Fourier decomposition is valid only in flat space.
However, at early times space is flat in any cosmological model, and at late times
the interesting scalds ! of the density perturbations are much smaller than the
curvature radius of the Universe. Hence, we can apply Fourier decomposition here.

Consider now the primordial perturbation spectrum at some very earlyRitke¢ =
162(K)|. Since the density contrast grows &§] a"2 [eq. (2.51)], the spectrum
grows asPs(k) O a2"=2)_ At agnier the spectrum has therefore changed to

Pented(k) 0 @me? Pi(k) Ok 4R (k) . (2.61)

where eq. (2.57) was used flors> k.

It is commonly assumed that the total power of the density fluctuatioagnat
should be scale-invariant. This implikPsnte( k) = const, or Pente(k) 0 k=3, Ac-
cordingly, the primordial spectrum has to scale whtlas P (k) O k. This scale-
invariant spectrum is called thélarrison-Zel'dovichspectrum (Harrison 1970;
Peebles & Yu 1970; Zel'dovich 1972). Combining that with the suppression of
small-scale modes (2.58), we arrive at

k fork< kg

Ps(k) O )
k=3 for k> kg

(2.62)

An additional complication arises when the dark matter consists of particles moving
with a velocity comparable to the speed of light. In order to keep them gravitation-
ally bound, density perturbations then have to have a certain minimum mass, or
equivalently a certain minimum size. All perturbations smaller than that size are
damped away by free streaming of particles. Consequently, the density perturba-
tion spectrum of such particles has an exponential cut-off at largéis clarifies

the distinction betweehot andcold dark matter: Hot dark matter (HDM) consists

of fast particles that damp away small-scale perturbations, while cold dark matter
(CDM) particles are slow enough to cause no significant damping.
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2.2.5 Normalisation of the Power Spectrum

Apart from the shape of the power spectrum, its normalisation has to be fixed.
Several methods are available which usually yield different answers:

(1)

(2)

()

Normalisation by microwave-background anisotropies: The COBE satellite
has measured fluctuations in the temperature of the microwave skyratshe
level of AT /T ~ 1.3 x 107 at an angular scale ef 7° (Banday et al. 1997).
Adopting a shape for the power spectrum, these fluctuations can be translated
into an amplitude foPs(k). Due to the large angular scale of the measurement,
this kind of amplitude determination specifies the amplitude on large physical
scales (smalk) only. In addition, microwave-background fluctuations mea-
sure the amplitude of scalandtensor perturbation modes, while the growth

of density fluctuations is determined by the fluctuation amplitude of scalar
modes only.

Normalisation by the local variance of galaxy counts, pioneered by Davis &
Peebles (1983): Galaxies are supposed to be biased tracers of underlying dark-
matter fluctuations (Kaiser 1984; Bardeen et al. 1986; White et al. 1987). By
measuring the local variance of galaxy counts within certain volumes, and
assuming an expression for the bias, the amplitude of dark-matter fluctuations
can be inferred. Conventionally, the variance of galaxy comgiguaxiesiS
measured within spheres of radiua 8 Mpc, and the result I8 galaxies~

1. The problem of finding the corresponding variamgeof matter-density
fluctuations is that the exact bias mechanism of galaxy formation is still under
debate (e.g. Kauffmann et al. 1997).

Normalisation by the local abundance of galaxy clusters (White et al. 1993;
Eke et al. 1996; Viana & Liddle 1996): Galaxy clusters form by gravitational
instability from dark-matter density perturbations. Their spatial number den-
sity reflects the amplitude of appropriate dark-matter fluctuations in a very
sensitive manner. It is therefore possible to determine the amplitude of the
power spectrum by demanding that the local spatial number density of galaxy
clusters be reproduced. Typical scales for dark-matter fluctuations collapsing
to galaxy clusters are of order B0 Mpc, hence cluster normalisation deter-
mines the amplitude of the power spectrum on just that scale.

Since gravitational lensing by large-scale structures is generally sensitive to scales
comparable tdxgl ~ 12(Qph?) Mpc, cluster normalisation appears to be the most
appropriate normalisation method for the present purposes. The solid curve in Fig. 8
shows the CDM power spectrum, linearly and non-linearly evolved+00 (or

a=1) in an Einstein-de Sitter universe wih= 0.5, normalised to the local cluster
abundance.
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Fig. 8. CDM power spectrum, normalised to the local abundance of galaxy clusters, for an
Einstein-de Sitter universe withh= 0.5. Two curves are displayed. The solid curve shows
the linear, the dashed curve the non-linear power spectrum. While the linear power spec-
trum asymptotically falls off] k=3, the non-linear power spectrum, according to Peacock

& Dodds (1996), illustrates the increased power on small scales due to non-linear effects,
at the expense of larger-scale structures.

2.2.6 Non-Linear Evolution

At late stages of the evolution and on small scales, the growth of density fluctua-
tions begins to depart from the linear behaviour of eq. (2.52). Density fluctuations
grow non-linear, and fluctuations of different size interact. Generally, the evolution
of P(k) then becomes complicated and needs to be evaluated numerically. How-
ever, starting from the boldnsatzthat the two-point correlation functions in the
linear and non-linear regimes are related by a general scaling relation (Hamilton
et al. 1991), which turns out to hold remarkably well, analytic formulae describing
the non-linear behaviour d?(k) have been derived (Jain et al. 1995; Peacock &
Dodds 1996). It will turn out in subsequent chapters that the non-linear evolution
of the density fluctuations is crucial for accurately calculating weak-lensing effects
by large-scale structures. As an example, we show as the dashed curve in Fig. 8 the
CDM power spectrum in an Einstein-de Sitter universe With 0.5, normalised to

the local cluster abundance, non-linearly evolved t00. The non-linear effects

are immediately apparent: While the spectrum remains unchanged for large scales
(k < ko), the amplitude on small scalelk $ ko) is substantially increased at the
expense of scales just above the peak. It should be noted that non-linearly evolved
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density fluctuations are no longer fully characterised by the power spectrum only,
because then non-Gaussian features develop.

2.2.7 Poisson’s Equation

Localised density perturbations which are much smaller than the horizon and whose
peculiar velocities relative to the mean motion in the Universe are much smaller
than the speed of light, can be described by Newtonian gravity. Their gravitational
potential obeys Poisson’s equation,

070’ = 4nGp , (2.63)

wherep = (1+9)p is the total matter density, arl is the sum of the potentials
of the smooth background® and the potential of the perturbatigh The gradi-
entl]; operates with respect to the physical, or proper, coordinates. Since Poisson’s
equation is linear, we can subtract the background contribaifan= 4nGp. Intro-
ducing the gradient with respect to comoving coordinatgs- all;, we can write
eg. (2.63) in the form

02 = 4G &2p3d. (2.64)
In the matter-dominated epoch= a—3po. With the critical density (2.15), Pois-
son’s equation can be re-written as

3H3
02 = —90045. 2.65
X 2a 0 ( )

2.3 Relevant Properties of Lenses and Sources

Individual reviews have been written on galaxies (e.g. Faber & Gallagher 1979;
Binggeli et al. 1988; Giovanelli & Haynes 1991; Koo & Kron 1992; Ellis 1997),
clusters of galaxies (e.g. Bahcall 1977; Rood 1981; Forman & Jones 1982; Bahcall
1988; Sarazin 1986), and active galactic nuclei (e.g. Rees 1984; Weedman 1986;
Blandford et al. 1990; Hartwick & Schade 1990; Warren & Hewett 1990; Antonucci
1993; Peterson 1997). A detailed presentation of these objects is not the purpose of
this review. It suffices here to summarise those properties of these objects that are
relevant for understanding the following discussion. Properties and peculiarities of
individual objects are not necessary to know; rather, we need to specify the objects
statistically. This section will therefore focus on a statistical description, leaving
subtleties aside.

2.3.1 Galaxies

For the purposes of this review, we need to characterise the statistical properties of
galaxies as a class. Galaxies can broadly be grouped into two populations, dubbed
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early-typeandlate-typegalaxies, oellipticals andspirals, respectively. While spi-

ral galaxies include disks structured by more or less pronounced spiral arms, and
approximately spherical bulges centred on the disk centre, elliptical galaxies exhibit
amorphous projected light distributions with roughly elliptical isophotes. There
are, of course, more elaborate morphological classification schemes (e.g. de Vau-
couleurs et al. 1991; Buta et al. 1994; Naim et al. 1995a; Naim et al. 1995b), but
the broad distinction between ellipticals and spirals suffices for this review.

Outside galaxy clusters, the galaxy population consists of ab@usj@iral galaxies

and Y4 elliptical galaxies, while the fraction of ellipticals increases towards clus-
ter centres. Elliptical galaxies are typically more massive than spirals. They contain
little gas, and their stellar population is older, and thus ‘redder’, than in spiral galax-
ies. In spirals, there is a substantial amount of gas in the disk, providing the material
for ongoing formation of new stars. Likewise, there is little dust in ellipticals, but
possibly large amounts of dust are associated with the gas in spirals.

Massive galaxies have of order‘tGolar masses, or2 10**g within their visible
radius. Such galaxies have luminosities of ordel?1tines the solar luminosity.

The kinematics of the stars, gas and molecular clouds in galaxies, as revealed by
spectroscopy, indicate that there is a relation between the characteristic velocities
inside galaxies and their luminosity (Faber & Jackson 1976; Tully & Fisher 1977);
brighter galaxies tend to have larger masses.

The differential luminosity distribution of galaxies can very well be described by
the functional form

dL L\ L\ do

proposed by Schechter (1976). The parameters have been measured to be
vall, L,~11x10°., @,~15x102h*Mpc3 (2.67)

(e.g. Efstathiou et al. 1988; Marzke et al. 1994a; Marzke et al. 1994b). This dis-
tribution means that there is essentially a sharp cut-off in the galaxy population
above luminosities of L., and the mean separation betwégrgalaxies is of or-

der~ @, ~ 4h-1Mpc.

The stars in elliptical galaxies have randomly oriented orbits, while by far the most
stars in spirals have orbits roughly coplanar with the galactic disks. Stellar veloc-
ities are therefore characterised by a velocity dispersipm ellipticals, and by

an asymptotic circular velocity. in spirals]3] These characteristic velocities are

3 The circular velocity of stars and gas in spiral galaxies turns out to be fairly independent
of radius, except close to their centre. These flat rotations curves cannot be caused by the
observable matter in these galaxies, but provide strong evidence for the presence of a dark
halo, with density profilg O r 2 at large radii.
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related to galaxy luminosities by laws of the form

1/a
o _ (L) _ Ve (2.68)

Uv,* I—* VC,* ’

wherea ranges around 3 4. For spirals, eq. (2.68) is called Tully-Fisher (Tully

& Fisher 1977) relation, for ellipticals Faber-Jackson (Faber & Jackson 1976) re-
lation. Both velocity scales, . andv, , are of order 220 kmgt. Sinceve = v/20y,
ellipticals with the same luminosity are more massive than spirals.

Most relevant for weak gravitational lensing is a population of faint galaxies emit-
ting bluer light than local galaxies, the so-call@iht blue galaxie{Tyson 1988;

see Ellis 1997 for a review). There are of order-380 such galaxies per square

arc minute on the sky which can be mapped with current ground-based optical tele-
scopes, i.e. there are20,000— 40,000 such galaxies on the area of the full moon.
The picture that the sky is covered with a ‘wall paper’ of those faint and presumably
distant blue galaxies is therefore justified. It is this fine-grained pattern on the sky
that makes many weak-lensing studies possible in the first place, because it allows
the detection of the coherent distortions imprinted by gravitational lensing on the
images of the faint blue galaxy population.

Due to their faintness, redshifts of the faint blue galaxies are hard to measure spec-
troscopically. The following picture, however, seems to be reasonably secure. It
has emerged from increasingly deep and detailed observations (see, e.g. Broad-
hurst et al. 1988; Colless et al. 1991; Colless et al. 1993; Lilly et al. 1991; Lilly
1993; Crampton et al. 1995; and also the reviews by Koo & Kron 1992 and Ellis
1997). The redshift distribution of faint galaxies has been found to agree fairly well
with that expected for a non-evolving comoving number density. While the galaxy
number counts in blue light are substantially above an extrapolation of the local
counts down to increasingly faint magnitudes, those in the red spectral bands agree
fairly well with extrapolations from local number densities. Further, while there is
significant evolution of the luminosity function in the blue, in that the luminosity
scaleL, of a Schechter-type fit increases with redshift, the luminosity function of
the galaxies in the red shows little sign of evolution. Highly resolved images of
faint blue galaxies obtained with thdéubble Space Telescopee now becoming
available. In red light, they reveal mostly ordinary spiral galaxies, while their sub-
stantial emission in blue light is more concentrated to either spiral arms or bulges.
Spectra exhibit emission lines characteristic of star formation.

These findings support the view that the galaxy evolution towards higher redshifts
apparent in blue light results from enhanced star-formation activity taking place
in a population of galaxies which, apart from that, may remain unchanged even
out to redshifts oz = 1. The redshift distribution of the faint blue galaxies is then
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sufficiently well described by

p(z)dz= %22 exp [— (%)B] dz. (2.69)

This expression is normalised to0z < « and provides a good fit to the observed
redshift distribution (e.g. Smail et al. 1995b). The mean red¢jifis proportional

to zp, and the parametdt describes how steeply the distribution falls off beyond
2. Forp=15, (z) ~ 1.5zy. The parametexy depends on the magnitude cutoff and
the colour selection of the galaxy sample.

Background galaxies would be ideal tracers of distortions caused by gravitational
lensing if they were intrinsically circular. Then, any measured ellipticity would di-
rectly reflect the action of the gravitational tidal field of the lenses. Unfortunately,
this is not the case. To first approximation, galaxies have intrinsically elliptical
shapes, but the ellipses are randomly oriented. The intrinsic ellipticities introduce
noise into the inference of the tidal field from observed ellipticities, and it is impor-
tant for the quantification of the noise to know the intrinsic ellipticity distribution.
Let |¢| be the ellipticity of a galaxy image, defined such that for an ellipse with axes
aandb < a,
_a—b
E=a
Ellipses have an orientation, hence the ellipticity has two comporgatswith
le| = (2 +€3)Y/2. It turns out empirically that a Gaussian is a good description for
the ellipticity distribution,

(2.70)

exp(—|e[*/a?)
€1,€2)de der = deq dey 2.71
Pe(€1,€2) deq dep o2 [1— exp(—1/2] 10ez (2.71)
with a characteristic width ad¢ ~ 0.2 (e.g. Miralda-Escude 1991; Tyson & Seitzer
1988; Brainerd et al. 1996). We will later (Sect. 4.2) define galaxy ellipticities for
the general situation where the isophotes are not ellipses. This completes our sum-
mary of galaxy properties as required here.

2.3.2 Groups and Clusters of Galaxies

Galaxies are not randomly distributed in the sky. Their positions are correlated, and
there are areas in the sky where the galaxy density is noticeably higher or lower
than average (cf. the galaxy count map in Fig. 9). There are groups consisting of
a few galaxies, and there actusters of galaxiesn which some hundred up to a
thousand galaxies appear very close together.

The most prominent galaxy cluster in the sky covers a huge area centred on the
Virgo constellation. Its central region has a diameter of abduad its main body
extends over roughly 25< 40°. It was already noted by Sir William Herschel in
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Fig. 9. The Lick galaxy counts within S@adius around the North Galactic pole (Seldner

et al. 1977). The galaxy number density is highest at the black and lowest at the white
regions on the map. The picture illustrates structure in the distribution of fairly nearby
galaxies, viz. under-dense regions, long extended filaments, and clusters of galaxies.

the 18th century that the entire Virgo cluster covers abg8tH of the sky, while
containing about A3rd of the galaxies observable at that time.

Zwicky noted in 1933 that the galaxies in the Coma cluster and other rich clusters
move so fast that the clusters required about ten to 100 times more mass to keep the
galaxies bound than could be accounted for by the luminous galaxies themselves.
This was the earliest indication that there is invisible mass, or dark matter, in at
least some objects in the Universe.

Several thousands of galaxy clusters are known today. Abell’s (1958) cluster cata-
log lists 2712 clusters north 6f20° declination and away from the Galactic plane.
Employing a less restrictive definition of galaxy clusters, the catalog by Zwicky
et al. (1968) identifies 9134 clusters north-e8° declination. Cluster masses can
exceed 168g or 5x 101*M.,, and they have typical radii of 5 x 10?*cm or

~ 1.5Mpc.

When X-ray telescopes became available after 1966, it was discovered that clus-
ters are powerful X—ray emitters. Their X—ray luminosities fall witir0*3 —

10*®) ergs?, rendering galaxy clusters the most luminous X—ray sources in the
sky. Improved X-ray telescopes revealed that the source of X—ray emission in clus-
ters is extended rather than point-like, and that the X—ray spectra are best explained
by thermalbremsstrahlungfree-free radiation) from a hot, dilute plasma with tem-
peratures in the range0’ — 10%)K and densities of~ 10~2 particles per crh

Based on the assumption that this intra-cluster gas is in hydrostatic equilibrium
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Fig. 10. The galaxy cluster Abell 370, in which the first gravitationally lensed arc was
detected (Lynds & Petrosian 1986; Soucail et al. 1987a, 1987b). Most of the bright galaxies
seen are cluster memberszat 0.37, whereas the arc, i.e. the highly elongated feature, is
the image of a galaxy at redshift= 0.724 (Soucail et al. 1988). (courtesy of J.-P. Kneib)

with a spherically symmetric gravitational potential of the total cluster matter, the
X—ray temperature and flux can be used to estimate the cluster mass. Typical re-
sultsapproximately(i.e. up to a factor of- 2) agree with the mass estimates from
the kinematics of cluster galaxies employing the virial theorem. The mass of the
intra-cluster gas amounts to about 10% of the total cluster mass. The X—ray emis-
sion thus independently confirms the existence of dark matter in galaxy clusters.
Sarazin (1986) reviews clusters of galaxies focusing on their X—ray emission.

Later, luminous arc-like features were discovered in two galaxy clusters (Lynds &
Petrosian 1986; Soucail et al. 1987a, 1987b; see Fig. 10). Their light is typically
bluer than that from the cluster galaxies, and their length is comparable to the size
of the central cluster region. Pac¢wki (1987) suggested that themesare images

of galaxies in the background of the clusters which are strongly distorted by the
gravitational tidal field close to the cluster centres. This explanation was generally
accepted when spectroscopy revealed that the sources of the arcs are much more
distant than the clusters in which they appear (Soucail et al. 1988).

Large arcs require special alignment of the arc source with the lensing cluster. At
larger distance from the cluster centre, images of background galaxies are only
weakly deformed, and they are referred taaadets(Fort et al. 1988; Tyson et al.
1990). The high number density of faint arclets allows one to measure the coher-
ent distortion caused by the tidal gravitational field of the cluster out to fairly large
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radii. One of the main applications of weak gravitational lensing is to reconstruct
the (projected) mass distribution of galaxy clusters from their measurable tidal
fields. Consequently, the corresponding theory constitutes one of the largest sec-
tions of this review.

Such strong and weak gravitational lens effects offer the possibility to detect and
measure the entire cluster mass, dark and luminous, without referring to any equi-
librium or symmetry assumptions like those required for the mass estimates from
galactic kinematics or X—ray emission. For a review on arcs and arclets in galaxy
clusters see Fort & Mellier (1994).

Apart from being spectacular objects in their own right, clusters are also of par-
ticular interest for cosmology. Being the largest gravitationally bound entities in
the cosmos, they represent the high-mass end of collapsed structures. Their num-
ber density, their individual properties, and their spatial distribution constrain the
power spectrum of the density fluctuations from which the structure in the uni-
verse is believed to have originated (e.g. Viana & Liddle 1996; Eke et al. 1996).
Their formation history is sensitive to the parameters that determine the geometry
of the universe as a whole. If the matter density in the universe is high, clusters
tend to form later in cosmic history than if the matter density is low (first noted by
Richstone et al. 1992). This is due to the behaviour of the growth factor shown in
Fig. 6, combined with the Gaussian nature of the initial density fluctuations. Conse-
guently, the compactness and the morphology of clusters reflect the cosmic matter
density, and this has various observable implications. One method to normalise the
density-perturbation power spectrum fixes its overall amplitude such that the local
spatial number density of galaxy clusters is reproduced. This method, chittdr
normalisationand pioneered by White et al. (1993), will frequently be used in this
review.

In summary, clusters are not only regions of higher galaxy number density in
the sky, but they are gravitationally bound bodies whose member galaxies con-
tribute only a small fraction of their mass. About 80% of their mass is dark, and
roughly 10% is in the form of the diffuse, X—ray emitting gas spread throughout
the cluster. Mass estimates inferred from galaxy kinematics, X—ray emission, and
gravitational-lensing effects generally agree to within about a factor of two, typi-
cally arriving at masses of orden510'* solar masses, or $8g. Typical sizes of
galaxy clusters are of order several megaparsecsxdr@®@*cm. In addition, there

are smaller objects, calleghlaxy groupswhich contain fewer galaxies and have
typical masses of order 4®solar masses.

2.3.3 Active Galactic Nuclei

The term ‘active galactic nuclei’ (AGNSs) is applied to galaxies which show signs of
non-stellar radiation in their centres. Whereas the emission from ‘normal’ galaxies
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like our own is completely dominated by radiation from stars and their remnants,
the emission from AGNSs is a combination of stellar light and non-thermal emission
from their nuclei. In fact, the most prominent class of AGNSs, the quasi-stellar radio
sources, or quasars, have their names derived from the fact that their optical appear-
ance is point-like. The nuclear emission almost completely outshines the extended
stellar light of its host galaxy.

AGNs do not form a homogeneous class of objects. Instead, they are grouped into
several types. The main classes are: quasars, quasi-stellar objects (QSOs), Seyfert
galaxies, BL Lacertae objects (BL Lacs), and radio galaxies. What unifies them
is the non-thermal emission from their nucleus, which manifests itself in various
ways: (1) radio emission which, owing to its spectrum and polarisation, is inter-
preted as synchrotron radiation from a power-law distribution of relativistic elec-
trons; (2) strong ultraviolet and optical emission lines from highly ionised species,
which in some cases can be extremely broad, corresponding to Doppler velocities
up to~ 20,000km s, thus indicating the presence of semi-relativistic velocities in
the emission region; (3) a flat ultraviolet-to-optical continuum spectrum, often ac-
companied by polarisation of the optical light, which cannot naturally be explained
by a superposition of stellar (Planck) spectra; (4) strong X—ray emission with a
hard power-law spectrum, which can be interpreted as inverse Compton radiation
by a population of relativistic electrons with a power-law energy distribution; (5)
strong gamma-ray emission; (6) variability at all wavelengths, from the radio to
the gamma-ray regime. Not all these phenomena occur at the same level in all
the classes of AGNs. QSOs, for example, can roughly be grouped into radio-quiet
QSOs and quasars, the latter emitting strongly at radio wavelengths.

Since substantial variability cannot occur on timescales shorter than the light-travel
time across the emitting region, the variability provides a rigorous constraint on the
compactness of the region emitting the bulk of the nuclear radiation. In fact, this
causality argument based on light-travel time can mildly be violated if relativistic
velocities are present in the emitting region. Direct evidence for this comes from the
observation of the so-called superluminal motion, where radio-source components
exhibit apparent velocities in excess®fe.g. Zensus & Pearson 1987). This can
be understood as a projection effect, combining velocities close to (but of course
smaller than) the velocity of light with a velocity direction close to the line-of-sight
to the observer. Observations of superluminal motion indicate that bulk velocities
of the radio-emitting plasma components can have Lorentz factors of order 10, i.e.,
they move at- 0.99c.

The standard picture for the origin of this nuclear activity is that a supermassive
black hole (or order 1¥M.,), situated in the centre of the host galaxy, accretes
gas from the host. In this process, gravitational binding energy is released, part of
which can be transformed into radiation. The appearance of an AGN then depends
on the black-hole mass and angular momentum, the accretion rate, the efficiency of
the transformation of binding energy into radiation, and on the orientation relative
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to the line-of-sight. The understanding of the physical mechanisms in AGNs, and
how they are related to their phenomenology, is still rather incomplete. We refer
the reader to the books and articles by Begelman et al. (1984), Weedman (1986),
Blandford et al. (1990), Peterson (1997), and Krolik (1999), and references therein,
for an overview of the phenomena in AGNs, and of our current ideas on their in-
terpretation. For the current review, we only make use of one particular property of
AGNSs:

QSOs can be extremely luminous. Their optical luminosity can reach a factor of
thousand or more times the luminosity of normal galaxies. Therefore, their nuclear
activity completely outshines that of the host galaxy, and the nuclear sources appear
point-like on optical images. Furthermore, the high luminosity implies that QSOs
can be seen to very large distances, and in fact, until a few years ago QSOs held the
redshift record. In addition, the comoving number density of QSOs evolves rapidly
with redshift. It was larger than today by a factor~ofl00 at redshifts between 2

and 3. Taken together, these two facts imply that a flux-limited sample of QSOs has
a very broad redshift distribution, in particular, very distant objects are abundant in
such a sample.

However, it is quite difficult to obtain a ‘complete’ flux-limited sample of QSOs. Of

all point-like objects at optical wavelengths, QSOs constitute only a tiny fraction,
most being stars. Hence, morphology alone does not suffice to obtain a candidate
QSO sample which can be verified spectroscopically. However, QSOs are found to
have very blue optical colours, by which they can efficiently be selected. Colour
selection typically yields equal numbers of white dwarfs and QSOs with redshifts
below ~ 2.3. For higher-redshift QSOs, the strongoLgmission line moves from

the U-band filter into the B-band, yielding redderB colours. For these higher-
redshift QSOs, multi-colour or emission-line selection criteria must be used (cf. Fan
et al. 1999). In contrast to optical selection, AGNs are quite efficiently selected
in radio surveys. The majority of sources selected at centimeter wavelengths are
AGNs. A flux-limited sample of radio-selected AGNs also has a very broad red-
shift distribution. The large fraction of distant objects in these samples make AGNs
particularly promising sources for the gravitational lensing effect, as the probabil-
ity of finding an intervening mass concentration close to the line-of-sight increases
with the source distance. In fact, most of the known multiple-image gravitational
lens systems have AGN sources.

In addition to their high redshifts, the number counts of AGNs are important for
lensing. For bright QSOs with apparent B-band magnitigigsl 9, the differential
source counts can be approximated by a powerré®), 1 S-(“+1 wheren(S) dS

is the number density of QSOs per unit solid angle with flux with8otlS, anda ~

2.6. At fainter magnitudes, the differential source counts can also be approximated
by a power law in flux, but with a much flatter indexaf~ 0.5. The source counts

at radio wavelengths are also quite steep for the highest fluxes, and flatten as the
flux decreases. The steepness of the source counts will be the decisive property of
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AGNSs for the magnification bias, which will be discussed in Sect. 6.

2.4 Correlation Functions, Power Spectra, and their Projections

2.4.1 Definitions; Homogeneous and Isotropic Random Fields

In this subsection, we define the correlation function and the power spectrum of a
random field, which will be used extensively in later sections. One example already
occurred above, namely the power spectiyof the density fluctuation field.

Consider a random field(X) whose expectation value is zero everywhere. This
means that an average over many realisations of the random field should vanish,
(g(X)) =0, for allX. This is not an important restriction, for if that was not the case,
we could consider the field(X) — (g(X)) instead, which would have the desired
property. Spatial positiorg haven dimensions, and the field can be either real or
complex.

Arandom fieldg(X) is calledhomogeneous$it cannot statistically be distinguished
from the fieldg(X+Y), wherey is an arbitrary translation vector. Similarly, a ran-
dom field g(X) is calledisotropic if it has the same statistical properties as the
random fieldg(X X), wheref_is an arbitrary rotation matrix in dimensions. Re-
stricting our attention to homogeneous and isotropic random fields, we note that
thetwo-point correlation function

(9(X)g"(¥)) = Cogl[X—¥1) (2.72)

can only depend on the absolute value of the difference vector between the two
pointsX andy. Note thatCyq is real, even ifg is complex. This can be seen by
taking the complex conjugate of (2.72), which is equivalent to interchangamyl

y, leaving the right-hand-side unaffected.

We define the Fourier-transform pair@as

AR — n %K . _ dk o ixk
oK)= [ dxaw e o= [ oomeke ™ @79

We now calculate the correlation function in Fourier space,
GRGK) = [ e [ d¥e R grg ). (@74
RN RN

Using (2.72) and substituting = X+ Y, this becomes
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GRGK) = [ e [ dye I gy
= (2o (k—K) | dye Pcg ()
= (2m)"3p (k—K') Py([K|) - (2.75)

In the final step, we defined tipower spectrunof the homogeneous and isotropic
random fieldg,

Po(lK) = [ dye ECyy(13) 2.76)

which is the Fourier transform of the two-point correlation function. Isotropy of the
random field implies tha®y can only depend on the moduluslof

Gaussian random fieldsre characterised by the property that the probability dis-
tribution of any linear combination of the random figj(X) is Gaussian. More gen-
erally, the joint probability distribution of a numbét of linear combinations of
the random variablg(X;) is a multivariate Gaussian. This is equivalent to requiring
that the Fourier componen@?} are mutually statistically independent, and that
the probability densities for thg(K) are Gaussian with dispersicﬁg(|ﬁ|). Thus, a
Gaussian random field is fully characterised by its power spectrum.

2.4.2 Projections; Limber's Equation

We now derive a relation between the power spectrum (or the correlation function)
of a homogeneous isotropic random field in three dimensions, and its projection
onto two dimensions. Specifically, for the three-dimensional field, we consider the
density contrasb|fx (w)8,w], where® is a two-dimensional vector, which could

be an angular position on the sky. Hencfg(w)é andw form a local comov-

ing isotropic Cartesian coordinate system. We define two different projections of
0 along the backward-directed light cone of the observerat0, t = to,

/dwq (W)8,w] (2.77)

fori=1,2. Theqi(w) are weight functions, and the integral extends from O to
the horizonw = wy. Sinced is a homogeneous and isotropic random field, so is its
projection. Consider now the correlation function

Ci2=(01(8)g2(8")
- / oW (W / oW (W) (3] fic (W)B, ] B[ fic (W&, W]} . (2.78)

We assume that there is no power in the density fluctuations on scales larger than a
coherence scale,on. This is justified because the power spectigyeclines] k
ask — 0; see (2.62). This implies that the correlation function on the right-hand
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side of eq. (2.78) vanishes fary > |[w—WwW| > Lcon. Althoughd evolves cosmo-
logically, it can be considered constant over a time scale on which light travels
across a comoving distantg.n. We note that the second argumentdo$imul-
taneously denotes the third local spatial dimension and the cosmological epoch,
related through the light-cone condititedt| = adw. Furthermore, we assume that

the weight functionsjj(w) do not vary appreciably over a scdlev < L¢on. Con-
sequently,|lw —w| < L¢on Over the scale wher€gs is non-zero, and we can set

fk (W) = fx (w) andgz(W) = g2(w) to obtain

C12(6) = / aw g (W) Gz (W) / d(Aw) Css <\/ f%(w)GZ—l—(Aw)Z,w) . (279)

The second argument G5 now denotes the dependence of the correlation func-
tion on cosmic epoch. Equation (2.79) is one form of Limber’s (1953) equation,
which relates the two-point correlation of tpeojectedfield to that of thethree-
dimensionafield.

Another very useful form of this equation relates the projected two-point correla-
tion function to the power spectrum of the three-dimensional field. The easiest way
to derive this relation is by replacing ti¥s in (2.78) by their Fourier transforms,
where upon

d3k d3K
Clzz/dWCh(W)/d"‘/qZ(W>/W/W
x (B(K, ) &* (K, W) e ic W8 g i (W)R, 8 g ikaweikw’ (2.80)

k| is the two-dimensional wave vector perpendicular to the line-of-sight. The cor-
relator can be replaced by the power spect®uising (2.75). This introduces a
Dirac delta functiordp (k— k'), which allows us to carry out tHé-integration. Un-

der the same assumptions on the spatial variatiap(ef) and fx (w) as before, we
find

d3k o - 2
C12:/dwq1<w)q2(w)/Wpa(“‘q,W)e_lfK( )kJ- (6 G)e—|k3W

x / dw ke (2.81)

The final integral yields 85p(ks), indicating that only such modes contribute to
the projected correlation function whose wave-vectors lie in the plane of the sky
(Blandford et al. 1991). Finally, carrying out the trivigt-integration yields
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Cua®) = [ cwanwazw) [ G P w1k 282
= [ dwauwicew) [Pk Bl (w) 0. 289

The definition (2.73) of the Fourier transform, and the relation (2.76) between
power spectrum and correlation function allow us to write the (cross) power spec-
trumPyo(l) as

:/dwa(;’v)qZ(W) P5<fKIW),W> , (2.84)

which is Limber's equation in Fourier space (Kaiser 1992, 1998). We shall make
extensive use of these relations in later sections.
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3 Gravitational Light Deflection

In this section, we summarise the theoretical basis for the description of light de-
flection by gravitational fields. Granted the validity of Einstein’s Theory of General
Relativity, light propagates on the null geodesics of the space-time metric. How-
ever, most astrophysically relevant situations permit a much simpler approximate
description of light rays, which is called gravitational lens theory; we first describe
this theory in Sect. 3.1. It is sufficient for the treatment of lensing by galaxy clus-
ters in Sect. 5, where the deflecting mass is localised in a region small compared
to the distance between source and deflector, and between deflector and observer.
In contrast, mass distributions on a cosmic scale cause small light deflections all
along the path from the source to the observer. The magnification and shear effects
resulting therefrom require a more general description, which we shall develop in
Sect. 3.2. In particular, we outline how the gravitational lens approximation derives
from this more general description.

3.1 Gravitational Lens Theory

—__ T

Source plane
I

Lens plane
[

Observer

Fig. 11. Sketch of a typical gravitational lens system.
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A typical situation considered in gravitational lensing is sketched in Fig. 11, where
a mass concentration at redskaft(or angular diameter distané;) deflects the

light rays from a source at redsh# (or angular diameter distand®). If there

are no other deflectors close to the line-of-sight, and if the extent of the deflecting
mass along the line-of-sight is very much smaller than ldaghand the angular
diameter distancBgys from the deflector to the sour@&the actual light rays which

are smoothly curved in the neighbourhood of the deflector can be replaced by two
straight rays with a kink near the deflector. The magnitude and direction of this
kink is described by thdeflection angl&i, which depends on the mass distribution

of the deflector and the impact vector of the light ray.

3.1.1 The Deflection Angle

Consider first the deflection by a point mads If the light ray does not prop-
agate through the strong gravitational field close to the horizon, that is, if its
impact parameteg is much larger than the Schwarzschild radius of the lens,
£ > Rs = 2GMc 2, then General Relativity predicts that the deflection arigle
is
. 4GM
a= ZE

This is just twice the value obtained in Newtonian gravity (see the historical re-
marks in Schneider et al. 1992). According to the condi§on Rs, the deflection
angle is smallg < 1.

(3.1)

The field equations of General Relativity can be linearised if the gravitational field
is weak. The deflection angle of an ensemble of point masses is then the (vectorial)
sum of the deflections due to individual lenses. Consider now a three-dimensional
mass distribution with volume densip(r). We can divide it into cells of size\

and mass h= p(F) dV. Let a light ray pass this mass distribution, and describe
its spatial trajectory by§1(A),&2(A),r3(A)), where the coordinates are chosen such
that the incoming light ray (i.e. far from the deflecting mass distribution) propagates
alongrs. The actual light ray is deflected, but if the deflection angle is small, it can
be approximated as a straight line in the neighbourhood of the deflecting mass.
This corresponds to the Born approximation in atomic and nuclear physics. Then,
E( ) = E independent of the affine paramederNote thatE = (&1,&2) is a two-
dimensional vector. The impact vector of the light ray relative to the mass element
dmatr = (£}, &5,r4) is thent — &, independent of},, and the total deflection angle

is

4 This condition is very well satisfied in most astrophysical situations. A cluster of galax-
ies, for instance, has a typical size of a few Mpc, whereas the dist&n¢cEs, andDys are
fair fractions of the Hubble lengtbHy * = 3h~ x 10°Mpc.
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which is also a two-dimensional vector. Since the last factor in eq. (3.2) is indepen-
dent ofrj, ther}-integration can be carried out by defining theface mass density

2(8) = / drap(&1,&2,r3) (3.3)

which is the mass density projected onto a plane perpendicular to the incoming
light ray. Then, the deflection angle finally becomes
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This expression is valid as long as the deviation of the actual light ray from a
straight (undeflected) line within the mass distribution is small compared to the
scale on which the mass distribution changes significantly. This condition is satis-
fied in virtually all astrophysically relevant situations (i.e. lensing by galaxies and
clusters of galaxies), unless the deflecting mass extends all the way from the source
to the observer (a case which will be dealt with in Sect. 6). It should also be noted
that in a lensing situation such as displayed in Fig. 11, the incoming light rays
are not mutually parallel, but fall within a beam with opening angle approximately
equal to the angle which the mass distribution subtends on the sky. This angle,
however, is typicallywerysmall (in the case of cluster lensing, the relevant angular
scales are of order 1 arc min2.9 x 107%).

3.1.2 The Lens Equation

We now require an equation which relates the true position of the source to its
observed position on the sky. As sketched in Fig. 11, the source and lens planes are
defined as planes perpendicular to a straight line (the optical axis) from the observer
to the lens at the distance of the source and of the lens, respectively. The exact
definition of the optical axis does not matter because of the smallness of angles
involved in a typical lens situation, and the distance to the lens is well defined for a
geometrically-thin matter distribution. L&t denote the two-dimensional position

of the source on the source plane. Recalling the definition of the angular-diameter
distance, we can read off Fig. 11

A= —2&—Dgsd(E). (3.5)
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Introducing angular coordinates by = Dsfi andz — DgB, we can transform
eq. (3.5 to

B=08-—2G(DsB)=06-a(d), (3.6)

where we defined the scaled deflection anil@) in the last step. The interpretation

of the lens equation (3.6) is that a source with true posifiaran be seen by an
observer at angular posmoﬂsatlsfylng (3.6). If (3.6) has more than one solution
for fixed [3 a source aB has images at several positions on the sky, i.e. the lens
produces multiple images. For this to happen, the lens must be ‘strong’. This can
be quantified by the dimension-less surface mass density

>(Dg) . ¢ Ds
th So—= S
S S G DyDge

K(8) = (3.7)
whereZ is called the critical surface mass density (which depends on the redshifts
of source and lens). A mass distribution which kas 1 somewhere, i.& > 3,
produces multiple images for some source posniﬁnﬁsee Schneider et al. 1992,
Sect. 5.4.3). Henc&,, is a characteristic value for the surface mass density which
distinguishes between ‘weak’ and ‘strong’ lenses. Note khatl is sufficient but

not necessary for producing multiple images. In termg,ahe scaled deflection
angle reads

(3.8)

Equation (3.8) implies that the deflection angle can be written as the gradient of the
deflection potential

—

w(@) = / e'k(8) In[B—9, (3.9)

asd = Oy. The potentialp(é) is the two-dimensional analogue of the Newtonian
gravitational potential and satisfies the Poisson equaifap(8) = 2« (8).

3.1.3 Magnification and Distortion

The solutionsh of the lens equation yield the angular positions of the images of

a source afs. The shapes of the images will differ from the shape of the source
because light bundles are deflected differentially. The most visible consequence of
this distortion is the occurrence of giant luminous arcs in galaxy clusters. In gen-
eral, the shape of the images must be determined by solving the lens equation for
all points within an extended source. Liouville’s theorem and the absence of emis-
sion and absorption of photons in gravitational light deflection imply that lensing
conserves surface brightness (or specific intensity). Hent@,@ﬁ) is the surface
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brightness distribution in the source plane, the observed surface brightness distri-
bution in the lens plane is

-

1(8) =19[B(B)] - (3.10)

If a source is much smaller than the angular scale on which the lens properties
change, the lens mapping can locally be linearised. The distortion of images is then
described by the Jacobian matrix

ﬂ(é):a—éz 6i-—62l“(é) N (3.11)
90 ' 0608 vy 1-k+4y )

where we have introduced the components of the speay; + iy2 = |y|e??,

1
VL= E(w,ll_ P22), Y2=W12, (3.12)

andk is related tap through Poisson’s equation. Hencefifis a point within an
image, corresponding to the pofig = B(8o) within the source, we find from (3.10)
using the locally linearised lens equation

1(8) =109 [Bo+ A (Bo) - (é—éo)] . (3.13)

According to this equation, the images of a circular source are ellipses. The ratios of
the semi-axes of such an ellipse to the radius of the source are given by the inverse
of the eigenvalues ofl(6p), which are 1- k & |y|, and the ratio of the solid angles
subtended by an image and the unlensed source is the inverse of the determinant of
4. The fluxes observed from the image and from the unlensed source are given as
integrals over the brightness distributiolr(é) and|® (B), respectively, and their

ratio is themagnification I(léo)- From (3.13), we find

B 1 B 1
M= deta ~ (1—k)2—y2"

(3.14)

The images are thus distorted in shape and size. The shape distortion is due to
the tidal gravitational field, described by the shgawhereas the magnification

is caused by both isotropic focusing caused by the local matter densityd
anisotropic focusing caused by shear.

Since the shear is defined by the trace-free part of the symmetric Jacobian matrix
A4, it has two independent components. There exists a one-to-one mapping from
symmetric, trace-free 2 2 matrices onto complex numbers, and we shall exten-
sively use complex notation. Note that the shear transform&®amder rotations

of the coordinate frame, and is therefore not a vector. Equations (3.9) and (3.12)
imply that the complex shear can be written
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with D(8) = 2— 2: = i (3.15)

3.1.4 Critical Curves and Caustics

Points in the lens plane where the Jacobigis singular, i.e. where det = 0, form

closed curves, theritical curves Their image curves in the source plane are called
caustics Equation (3.14) predicts that sources on caustics are infinitely magnified;
however, infinite magnification does not occur in reality, for two reasons. First,
each astrophysical source is extended, and its magnification (given by the surface
brightness-weighted point-source magnification across its solid angle) remains fi-
nite. Second, even point sources would be magnified by a finite value since for
them, the geometrical-optics approximation fails near critical curves, and a wave-
optics description leads to a finite magnification (e.g. Ohanian 1983; Schneider
et al. 1992, Chap. 7). For the purposes of this review, the first effect always dom-
inates. Nevertheless, images near critical curves can be magnified and distorted
substantially, as is demonstrated by the giant luminous arcs which are formed from
source galaxies close to caustics. (Point) sources which move across a caustic have
their number of images changed B2, and the two additional images appear or
disappear at the corresponding critical curve in the lens plane. Hence, only sources
inside a caustic are multiply imaged.

3.1.5 An lllustrative Example: Isothermal Spheres

The rotation curves of spiral galaxies are observed to be approximately flat out to
the largest radii where they can be measured. If the mass distribution in a spiral
galaxy followed the light distribution, the rotation curves would have to decrease at
large radii in roughly Keplerian fashion. Flat rotation curves thus provide the clear-
est evidence for dark matter on galactic scales. They can be understood if galactic
disks are embedded in a dark halo with density prggilé r =2 for larger. The
projected mass density then behaves Bké. Such density profiles are obtained

by assuming that the velocity dispersion of the dark matter particles is spatially
constant. They are therefore also called isothermal profiles. We shall describe some
simple properties of a gravitational lens with an isothermal mass profile, which
shall later serve as a reference.

The projected surface mass density afragular isothermal sphers

ay

2(8) = 2GE (3.16)

where gy is the line-of-sight velocity dispersion of the ‘particles’ (e.g. stars in

50



galaxies, or galaxies in clusters of galaxies) in the gravitational potential of the
mass distribution, assuming that they are in virial equilibrium. The corresponding
dimensionless surface mass density is

2 Dds

K(0) De

where O =4 (%) (3.17)

_ e
207
is called theEinstein deflection angleAs can easily be verified from (3.8), the
magnitude of the scaled deflection angle is constant for this mass pjfite O,
and the deflection potential ip = GE|§|. From that, the shear is obtained using

(3.12°],

8) = &, 3.18
v(0) 26 (3.18)
and the magnification is
a El
He) == : (3.19)
8] — B

This shows thatf| = 6 defines a critical curve, which is called tE&nstein circle

The corresponding caustic, obtained by mapping the Einstein circle back into the
source plane under the lens equation, degenerates to a single [fﬁ)'tﬁt@atSuch
degenerate caustics require highly symmetric lenses. Any perturbation of the mass
distribution breaks the degeneracy and expands the singular caustic point into a
caustic curve (see Chapter 6 in Schneider et al. 1992 for a detailed treatment of
critical curves and caustics). The lens (3.17) produces two images with angular
separation @ for a source Withfﬂ < 1, and one image otherwise.

The mass distribution (3.17) has two unsatisfactory properties. The surface mass
density diverges fot| — 0, and the total mass of the lens is infinite. Clearly,
both of these properties will not match real mass distributions. Despite this fact,
the singular isothermal sphere fits many of the observed lens systems fairly well.
In order to construct a somewhat more realistic lens model, one can cut off the
distribution at small and large distances, e.g. by

6 6
2,/[B2+62 2,/[8+6?

K(8) = (3.20)

which has a core radiug;, and a truncation radiug;. For 8. <« \§| < 6, this
mass distribution behaves lilee1. This lens can produce three images, but only

if 8.6 (8:+ 6;)~! < B/2. One of the three images occurs near the centre of the
lens and is strongly de-magnified@f < Bg. In most of the multiple-image QSO
lens systems, there is no indication for a third central image, imposing strict upper

5 For axially-symmetric projected mass profiles, the magnitude of the shear can be cal-
culated from|y|(0) = k(8) — k(B), wherek(0) is the mean surface mass density inside a
circle of radiusd from the lens centre. Accordingly, the magnitude of the deflection angle

is [d| = BK(O).
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bounds orb;, whereas for some arc systems in clusters, a finite core size is required
when a lens model like (3.20) is assumed.

3.2 Light Propagation in Arbitrary Spacetimes

We now turn to a more rigorous description of the propagation of light rays, based
on the theory of geometrical optics in General Relativity. We then specialise the
resulting propagation equations to the case of weak gravitational fields and metric
perturbations to the background of an expanding universe. These equations contain
the gravitational lens equation discussed previously as a special case. We shall keep
the discussion brief and follow closely the work of Schneider et al. (1992, Chaps. 3
& 4), and Seitz et al. (1994), where further references can be found.

3.2.1 Propagation of Light Bundles

In Sect. 3.1.2, we have derived the lens equation (3.5) in a heuristic way. A rigorous
derivation in an arbitrary spacetime must account for the fact that distance vectors
between null geodesics are four-vectors. Nevertheless, by choosing an appropriate
coordinate system, the separation transverse to the line-of-sight between two neigh-
bouring light rays can effectively be described by a two-dimensional vécWe

outline this operation in the following two paragraphs.

We first consider the propagation of infinitesimally thin light beams in an arbitrary
space-time, characterised by the metric teggarThe propagation of a fiducial ray

Yo of the bundle is determined by the geodesic equation (e.g. Misner et al. 1973,
Weinberg 1972). We are interested here in the evolution of the shape of the bundle
as a function of the affine parameter along the fiducial ray. Consider an observer
O with four-velocity U, satlsfylngUC,UOu = 1. The physical wave vectd# of a
photon depends on the light frequency. We defihe —c 1w, kM as a past-directed
dimensionless wave vector which is independent of the frequegtgeasured by

the observer. We choose an affine paramgtef the rays passing through O such
that (1)A = O at the observer, (2) increases along the backward light cone of O,
and (3)U$‘ku —1 atO. Then, with the definition &, it follows thatk# = dx*/ dA,

and thafA measures the proper distance along light rays for events close to O.

Let y(B,\) characterise the rays of a light beam with vertex at O, suché@hat
is the angle between a ray and the fiducial ray Wﬁ(’)\) = \W(0,)). Further, let
YH(B,M) = y¥(B,A) —y(O,\) = [0y*(8, ) /36,6y denote the vector connecting the
ray characterised b§ with the fiducial ray at the same affine paramétewhere
we assumed sufficiently smaB| so thatY can be linearised if. We can then
decompos&’™ as follows. At O, the vectorg} andk* define a two-dimensional
plane perpendicular to both' and kM. This plane is tangent to the sphere of di-
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rections seen by the observer. Now choose orthonormal unit veéet@adE, to
span that plane. HencE}'Ezy = 0, E{Ey, = —1, ELk, = E{Uqu = 0, fork = 1,2.
Transporting the four vectok!, U, EY, andE} parallel along the fiducial ray de-
fines avierbeinat each event along the fiducial ray. The deviation vector can then
be decomposed into

YH(®,A) = —&1(8, M) E} — &5(8, M) EX — &o(8, M) K. (3.21)

Thus, the two-dimensional vect%(é,)\) with componentg 2(8,)) describes the
transverse separation of two light rays at affine parametehereas allows for a
deviation component along the beam direction. Due to the linearisation introduced

above & depends linearly ofl, and the choice of assures that?ii dA\(A=0) =8,
Hence, we can write the linear propagation equation

EN)=D(\)6. (3.22)

The 2x 2 matrix D satisfies the Jacobi differential equation

d?>D(N)
B vk TN) D), (3.23)
with initial conditions
D(0)=0 and %(0) =1. (3.24)

Theoptical tidal matrix‘Z'(A) is symmetric,

T(A)(f&mmmm L7 () ) 225)

OFM™]  RA)-0O[F@)]

and its components depend on the curvature of the mét(iz. and[J(z) denote
the real and imaginary parts of the complex numb&pecifically,

() = SR WROR ) (3.26)

whereRy, () is the Ricci tensor agh(A). The complex quantityF (A) is more
complicated and depends on the Weyl curvature tensigj?\at Thesource of con-
vergenceR (A) leads to an isotropic focusing of light bundles, in that a circular light
beam continues to have a circular cross section. In contrast, a nosaace of
shear¥ () causes an anisotropic focusing, changing the shape of the light bundle.
For a similar set of equations, see, e.g. Blandford et al. (1991) and Peebles (1993).

To summarise this subsection, the transverse separation ientcbwo infinitesi-
mally close light rays, enclosing an an@eat the observer, depends linearly @n
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The matrix which describes this linear mapping is obtained from the Jacobi differ-
ential equation (3.23). The optical tidal matfixcan be calculated from the metric.

This exact result from General Relativity is of course not easily applied to practical
calculations in general space-times, as one first has to calculate the null geodesic
Yh(A), and from that the components of the tidal matrix have to be determined.
However, as we shall show next, the equations attain rather simple forms in the
case of weak gravitational fields.

3.2.2 Specialisation to Weak Gravitational Fields

We shall now specialise the transport equation (3.23) to the situation of a homo-
geneous and isotropic universe, and to weak gravitational fields. In a metric of the
Robertson-Walker type (2.2, page 13), the source of sltearust vanish identi-

cally because of isotropy; otherwise preferred directions would exist. Initially cir-
cular light bundles therefore remain circular. Hence, the optical tidal mdtrix
proportional to the unit matrix7 (A\) = R (A) 1, and the solution of (3.23) must be

of the formD(A) = D(A) 1. According to (3.22), the functioD(A) is the angular-
diameter distance as a function of the affine parameter. As we shall demonstrate
next, this function indeed agrees with the angular diameter distance as defined in
(2.43, page 22).

To do so, we first have to fin® (A). The Ricci tensor deviates from the Einstein
tensor by two terms proportional to the metric tenggs, one involving the Ricci
scalar, the other containing the cosmological constant. These two terms do not con-
tribute to (3.26), sinc&" is a null vector. We can thus replace the Ricci tensor in
(3.26) by the energy-momentum tensor according to Einstein’s field equation. Since
k®=c tw= (1+2)c oy, we havek’ = —(1+2), and the spatial components of

kW are described by a direction and the constraint khas a null vector. Then, us-

ing the energy-momentum tensor of a perfect fluid with densiand pressure,

(3.26) becomes

R = —g (p+ C—‘;) (1+2)2. (3.27)
Specialising to a universe filled with dust, ig= 0, we find from (2.16, page 16)

and (2.19, page 16)

The transport equation (3.23) then transforms to
@D 3 [Hp\? .

In order to show that the solution of (3.29) with initial conditidds= 0 and d =
dA atA = 0 is equivalent to (2.43, page 22), we proceed as follows. First we note
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that (2.43) forzy = 0 can be written as an initial-value problem,

d? Dang Dang
W(a>—‘*<(a)’ (3:39)

With Dang(0) = 0 and dang= dw atw = 0, because of the properties of the func-
tion f; cf. (2.4, page 14). Next, we need a relation betwdeandw. The null
component of the photon geodesicds= c(to —t). Then, from o = kHd\, we
obtain d\ = —acdt. Using ¢ = ada, we find

a a
da_—ﬁd)\, or dz_@d)\. (3.31)

Sincec dt = —a dw for null rays, we have~lda = dt = —ac~'dw, which can be
combined with (3.31) to yield

d\ = a?dw. (3.32)

We can now calculate the analogous expression of (3.3@),for

d? D 2d 2d D 3N/ 2 1
W(a>_aa{aa(a)]_aD—aaD, (3.33)

where a prime denotes differentiation with respectAtoFrom (3.31),a =
—(ac)~ta, and

/!

1d@)? 1 d /@& 1 dH?
= =——|5]|=—=— .34

2 da 2c?da (az) 2c2 da ’ (3-34)
with H given in (2.31, page 18). Substituting (3.29) into the first term on the right-
hand side of (3.33), and (3.34) into the second term, we immediately seB that
satisfies the differential equation (3.30). Silzdas the same initial conditions as
Dang they indeed agree.

For computational convenience, we can also transform (3.29) into a differential
equation forD(z). Using (3.31) and (2.31), one finds

(1+2) [(1+Qoz)—QA(1_ 1 )} d’D

(1+22)] dz2
7 Qo 2 db 3
TQoz+ 24305 (3- -2 )| =24+ 2QyD=0. .
+[2 0z+— +3 ,\(3 (1+Z>2>] 5, 5D =0 (3.35)

We next turn to the case of a weak isolated mass inhomogeneity with a spatial extent
small compared to the Hubble distar[ﬂéo’l, like galaxies or clusters of galaxies.
In that case, the metric can locally be approximated by the post-Minkowskian line
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element ot ot
ds’ = (1+—2) c*dt®— <1— —2> e, (3.36)
C C

where & is the line element of Euclidean three-space, @nis the Newtonian
gravitational potential which is assumed to be webkg ¢?. Calculating the cur-
vature tensor of the metric (3.36), and using Poisson’s equatiah,fae find that

for a light ray which propagates into the three-direction, the sources of convergence
and shear are

4G 1 .
R=—"gp, and F=—35 (11— P22+ 2id 1) . (3.37)

Now the question is raised as to how an isolated inhomogeneity can be combined
with the background model of an expanding universe. There is no exact solution of
Einstein’s field equations which describes a universe with density fluctuations, with
the exception of a few very special cases such as the Swiss-Cheese model (Einstein
& Strauss 1945). We therefore have to resort to approximation methods which start
from identifying ‘small’ parameters of the problem, and expanding the relevant
guantities into a Taylor series in these parameters. If the length scales of density
inhomogeneities are much smaller than the Hubble leogth’, the associated
Newtonian gravitational potentiab < ¢? (note that this does not imply that the
relative density fluctuations are small!), and the peculiar velocitiesc, then an
approximate metric is

ds? = 2(1) KH ZC—CZD) 22— (1_ @) (WP + 2(w) do?) | | (3.39)

C

where d =a1dt is the conformal time element, adusatisfies Poisson’s equation
with sourceAp, the density enhancement or reduction relative to the mean cosmic
density (Futamase 1989; Futamase & Sasaki 1989; Jacobs et al. 1993).

In the case of weak metric perturbations, the sources of convergence and shear of
the background metric and the perturbations can be added. Recalling that both
and ¥ are quadratic irk" 00 (14 z), so that the expressions in (3.37) have to be
multiplied by (14 z)?, we find for the optical tidal matrix

3 (Ho\? 1+ 2)2
TiA)=—5 (?0) Qo(1+2)°8;j — ( 2 ) (20; +8ij®33) ,  (3.39)
where we have assumed that the local Cartesian coordinates are chosen such that

the light ray propagates ig-direction. The same result is obtained from the metric
(3.38).

The lens equation as discussed in Sect. 3.1 can now be derived from the previous re-
lations. To do so, one has to assume a geometrically thin matter distribution, i.e. one
approximates the density perturbatidp by a distribution which is infinitely thin
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in the direction of photon propagation. It is then characterised by its surface mass
densityZ(g). The corresponding Newtonian potentilcan then be inserted into
(3.39). The integration ove® 33 along the light ray vanishes, and (3.23) can be
employed to calculate the change abddA across the thin matter sheet (the lens
plane), whereas the components®@ffar from the lens plane are given by a lin-
ear combination of solutions of the transport equation (3.29). Continuity and the
change of derivative aty, corresponding to the lens redshift then uniquely fix

the solution. IfD(8,\s) denotes the solution at redshiff thenD (8, As) = i /90

in the notation of Sect. 3.1. Line integration of this relation then leads to the lens
equation (3.2). See Seitz et al. (1994) for details, and Pyne & Birkinshaw (1996)

for an alternative derivation.
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4 Principles of Weak Gravitational Lensing

4.1 Introduction

If the faint, and presumably distant, galaxy population is observed through the grav-
itational field of a deflector, the appearance of the galaxies is changed. The tidal
component of the gravitational field distorts thlgapesf galaxy images, and the
magnification associated with gravitational light deflection changes their apparent
brightnessif all galaxies were intrinsically circular, any galaxy image would im-
mediately provide information on the local tidal gravitational field. With galaxies
being intrinsically elliptical, the extraction of significant information from individ-
ual images is impossible, except fgiant luminous arcgsee Fig. 10, page 37, for

an example) whose distortion is so extreme that it can easily be determined.

However, assuming that the galaxies are intrinsically randomly oriEhtéue
strength of the tidal gravitational field can be inferred from a sample of galaxy
images, provided its net ellipticity surmounts the Poisson noise caused by the finite
number of galaxy images in the sample and by the intrinsic ellipticity distribution.

Since lensing conserves surface brightness, magnification increases the size of
galaxy images at a fixed surface-brightness level. The resulting flux enhancement
enables galaxies to be seen down to fainter intrinsic magnitudes, and consequently
the local number density of galaxy images above a certain flux threshold can be

altered by lensing.

In this section, we introduce the principles of weak gravitational lensing. In
Sect. 4.2, we present the laws of the transformation between source and image
ellipticities and sizes, and in particular we introduce a convenient definition of the
ellipticity of irregularly-shaped objects. Sect. 4.3 focuses on the determination of
the local tidal gravitational field from an ensemble of galaxy images. We derive
practical estimators for the shear and compare their relative merits. The effects of
magnification on the observed galaxy images are discussed in Sect. 4.4. We de-
rive an estimate for the detectability of a deflector from its weak-lensing imprint
on galaxy-image ellipticities in Sect. 4.5, and the final subsection 4.6 is concerned
with practical aspects of the measurement of galaxy ellipticities.

6 This assumption is not seriously challenged. Whereas galaxies in a cluster may have
non-random orientations relative to the cluster centre, or pairs of galaxies may be aligned
due to mutual tidal interaction, the faint galaxies used for lensing studies are distributed
over a large volume enclosed by a narrow cone with opening angle selected by the angular
resolution of the mass reconstruction (see below) and length comparable to the Hubble
radius, since the redshift distribution of faint galaxies is fairly broad. Thus, the faint galaxies
typically have large spatial separations, which is also reflected by their weak two-point
angular auto-correlation (Brainerd et al. 1995; Villumsen et al. 1997).
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4.2 Galaxy Shapes and Sizes, and their Transformation

If a galaxy had elliptical isophotes, its shape and size could simply be defined in
terms of axis ratio and area enclosed by a boundary isophote. However, the shapes
of faint galaxies can be quite irregular and not well approximated by ellipses. In ad-
dition, observed galaxy images are given in terms of pixel brightness on CCDs. We
therefore require a definition of size and shape which accounts for the irregularity
of images, and which is well adapted to observational data.

Letl (é) be the surface brightness of a galaxy image at angular po$itidfe first
assume that the galaxy image is isolated, soltikah be measured to large angular

separations from the centbeof the image,

-

6= Jd?8q ['(q]é, (4.1)
Jd?0qI(

)

6)]
whereq (1) is a suitably chosen weight function. For instancey {f) = H(I — I)
is the Heaviside step functioB, is the centre of the area enclosed by a limiting
isophotel = ly,. Alternatively, ifq (1) =1, 8 is the centre of light. As a third ex-

ample, ifg (1) = I H(I — Iy,), 6 is the centre of light within the limiting isophote
| = Iyh. Having chosen (1), we define the tensor of second brightness moments,

_ [ d?0q[1(8)] (61 —6i) (8; —6))
J8ai[1 (8)]

(e.g. Blandford et al. 1991). In writing (4.1) and (4.2), we implicitly assumed that
ai(l) is chosen such that the integrals converge. We can now defirsizéhaf an
image in terms of the two invariants of the symmetric terf@oFor example, we
can define the size by

Qij ) |7J S {17 2} ’ (42)

1/2

w= (QuQa—Q%,)"", (4.3)
so that it is proportional to the solid angle enclosed by the limiting isophafi )if
is a step function. We quantify trehapeof the image by theomplex ellipticity

Q11— Q22+ 2iQ12
Qi1+ Q22 '

If the image has elliptical isophotes with axis ratie< 1, theny = (1 —r?)(1+
r’)~Lexp(2i9), where the phase of is twice the position angl® of the major
axis. This definition assures that the complex ellipticity is unchanged if the galaxy
image is rotated by, for this rotation leaves an ellipse unchanged.

X = (4.4)

If we define the centre of the sourﬁemd the tensor of second brightness moments
Qi(js) of the source in complete analogy to that of the image, i.e. Wﬁb] replaced
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by | (S)(ﬁ) in egs. (4.1) and (4.2), and employ the conservation of surface brightness
(3.10, page 49) and the linearised lens equation (3.13, page 49), we find that the
tensors of second brightness moments of source and image are related through

Q¥ =20Q4" =4aQa, (4.5)
whereq = ﬂ(é) is the Jacobian matrix of the lens equation at posifioRefining
further the complex ellipticity of the sourgg® in analogy to (4.4) in terms @,
ellipticities transform according to

y9— _X—29+ o°X*

" 1+]g?-20(g¢) (40

(Schneider & Seitz 1995; similar transformation formulae were previously derived
by Kochanek 1990 and Miralda-Escude 1991), where the asterisk denotes complex
conjugation, andj is thereduced shear

g@ =19 (4.7)

The inverse transformation is obtained by interchangirandx(® and replacing

g by —gin (4.6). Equation (4.6) shows that the transformation of image elliptici-

ties depends only on the reduced shear, and not on the shear and the surface mass
density individually. Hence, the reduced shear or functions thereof are the only
guantities accessible through measurements of image ellipticities. This can also
immediately be seen by writing as

4=(1-x) (1_91 % ) . (4.8)
-0 1+

The pre-factor(1 — k) only affects the size, but not the shape of the images. From
(4.5) and (4.3), we immediately see that the sizes of source and image are related
through

w=uB)w® . (4.9)

We point out that the dimension-less surface mass dersignd therefore also

the shear, depend not only on the redshift of the lens, but also on the redshift
of the sources, because the critical surface mass density (3.7, page 48) involves
the source redshift. More precisely, for fixed lens redshifithe lens strength is
proportional to the distance rati?ys/Ds. This implies that the transformation (4.6)
generally also depends on source redshift. We shall return to these redshift effects
in Sect. 4.3, and assume for now that the lens redghigtsufficiently small so that

the ratioDgys/Ds is approximately the same for all faint galaxy images.
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Instead ofx, we can define different ellipticity parameters (see Bonnet & Mellier
1995). One of these definitions turns out to be quite useful, namely

Q11— Q22+ 2iQ12

= Q11+ Q2+ 2(Q11Q2— Q3,)V/2’

(4.10)

which we shall also catomplex ellipticity (Since we shall use the notatigrand
€ consistently throughout this article, there should be no confusion from using the
same name for two different quantitieshas the same phaseysand for elliptical
isophotes with axis ratio< 1, || = (1 —r)(1+r)~L. € andy are related through

B X 2
TLr@-xPpT T TR

(4.11)

The transformation between source and image ellipticity in ternggofjiven by

€—g
<
1 ge for |g/ <1
e = (4.12)
1—ge*
o for |g/>1

(Seitz & Schneider 1997), and the inverse transformation is obtained by interchang-
ing € ande® and replacingy by —g in (4.12). Although the transformation ef
appears more complicated because of the case distinction, we shall see in the next
subsection that it is often useful to work in termseafather thary; cf. eq. (4.17)

below.

We note in passing that the possible polarisation of light of faint galaxies (Audit &
Simmons 1999) or faint radio sources (Surpi & Harari 1999) may offer a different
channel to detect shear. The orientation of the polarisation is unchanged in weak-
field light deflection (e.g., Schneider et al. 1992, Faraoni 1993). Gravitational shear
will turn the geometrical image, but not the polarisation of a galaxy. If the orienta-
tion of a galaxy is intrinsically strongly correlated with the direction of the polari-
sation of its light, then a mismatch of the observed directions provides information
on the lensing distortion. However, the polarisation properties of faint galaxies are
mostly unknown, and it is unclear whether such an intrinsic polarisation-orientation
correlation exists.

For the case of weak lensing, which we define for the purpose of this sectioby
1,]y| < 1, and thusg| < 1, (4.12) becomes~ &9 +g, providedje| ~ |9 < 1/2.
Likewise, eq. (4.6) simplifies tg ~ x® + 2g in this case.
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4.3 Local Determination of the Distortion

As mentioned earlier, the observed ellipticity of a single galaxy image provides
only little information about the local tidal gravitational field of the deflector, for
the intrinsic ellipticity of the source is unknown. However, based on the assumption
that the sources are randomly oriented, information on the local tidal field can be
inferred from a local ensemble of images. Consider for example galaxy images at
positionséi close enough to a fiducial poilétso that the local lens properties

andy do not change appreciably over the region encompassing these galaxies. The
expectation value of their corresponding source ellipticities is assumed to vanish,

EX®)=0=EEY). (4.13)

4.3.1 All Sources at the Same Redshift

We first consider the case that all sources are at the same redshift. Then, as men-
tioned following eq. (3.13, page 49), the ellipticity of a circular source determines
the ratio of the local eigenvalues of the Jacobian mairix his also holds for the
net image ellipticity of an ensemble of sources with vanishing net ellipticity. From
(3.11, page 49), we find for the ratio of the eigenvalued @i terms of the reduced
shearg

1719

1£|gl

Interestingly, if we replacg by 1/g*, r switches sign, bufr| and the phase of
remain unchanged. The signiotannot be determined observationally, and hence
measurements cannot distinguish betwgemd 1/g*. This is calledocal degen-
eracy Writing det4 = (1—k)?(1— |g|?), we see that the degeneracy betwgen
and I/g* means that we cannot distinguish between observed images inside a crit-
ical curve (so that det < 0 and|g| > 1) or outside. Therefore, only functions @f
which are invariant undey — 1/g* are accessible to (local) measurements, as for
instance theomplex distortion

(4.14)

29
o) . 4.15
1+ |92 (4.15)

Replacing the expectation value in (4.13) by the average over a local ensemble
of image ellipticities,(x¥) ~ E(x(¥) = 0, Schneider & Seitz (1995) showed that
(x9) = 0 is equivalent to

=0, (4.16)

where they; are weight factors depending qﬁ; —§| which can give larger weight
to galaxies closer to the fiducial point. Additionally, thecan be chosen such
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as to account for measurement uncertainties in the image ellipticities by giving
less weight to images with larger measurement error. Equation (4.16) has a unique
solutiond, so that the distortion can locally be determined. It is readily solved by a
quickly converging iteration starting frod= (x).

The d obtained from (4.16) is an unbiased estimate of the distortion. Its dispersion
about the true value depends on the dispersipof the intrinsic ellipticity distri-
bution, and on the number of galaxy images. A fairly accurate estimate ofnihie
error ofd is 05 ~ oy N~/2, whereN is the effective number of galaxies used for the

local averageN = (¥ ui)? (3 uiz)_l. This overestimates the error for large values
of |d| (Schneider & Seitz 1995). It is important to note that the expectation value of
X is not d, but differs from it by a factor which depends both|dhand the intrinsic
ellipticity distribution of the sources. In contrast to that, it follows from (4.13) and
(4.12) that the expectation value of the complex elliptieitf the imagess the re-
duced shear or its inverse(& = gif |g| <1 and Ke) = 1/g* if |g| > 1 (Schramm

& Kayser 1995; Seitz & Schneider 1997). Hence,

(g) = —zz'luj' (4.17)

is an unbiased local estimate f@or 1/g*. The ellipticity parameteg is useful ex-

actly because of this property. If one deals with sub-critical lenses (i.e. lenses which
are not dense enough to have critical curves, so thal(cﬁab 0 everywhere), or

with the region outside the critical curves in critical lenses, the degeneracy between
g and ¥/g* does not occur, an¢) is a convenient estimate for the local reduced
shear. Thems error of this estimate is approximatetyy ~ ¢ (1 — |g|?) N~/2
(Schneider et al. 2000), wheer is the dispersion of the intrinsic source ellipticity
(9. As we shall see in a moment,is the more convenient ellipticity parameter
when the sources are distributed in redshift.

The estimates fod and g discussed above can be derived without knowing the
intrinsic ellipticity distribution. If, however, the intrinsic ellipticity distribution is
known (e.g. from deeplubble Space Telescopeages), we can exploit this addi-
tional information and determin& (or g) through a maximum-likelihood method
(Gould 1995; Lombardi & Bertin 1998b). Depending on the shape of the intrin-
sic ellipticity distribution, this approach can yield estimates of the distortion which
have a smallermserror than the estimates discussed above. However, if the intrin-
sic ellipticity distribution is approximately Gaussian, ttmas errors of both meth-

ods are identical. It should be noted that the intrinsic ellipticity distribution is likely

to depend on the apparent magnitude of the galaxies, possibly on their redshifts, and
on the wavelength at which they are observed, so that this distribution is not easily
determined observationally. Knowledge of the intrinsic ellipticity distribution can
also be used to determiddrom the orientation of the images (that is, the phase of

X) only (Kochanek 1990; Schneider & Seitz 1995; Deiser 1995, unpublished). This
may provide a useful alternative to the method above since the orientation of images
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is much less affected by seeing than the modulug. &ve return to the practical
estimate of the image ellipticities and the corresponding distortion in Sect. 4.5.

In the case of weak lensing, defined by« 1 and|y| < 1, implying |g| < 1, we
find from (4.11-4.16) that

yzgzg%(a)% X (4.18)

4.3.2 Sources Distributed in Redshift

So far, we assumed that all source galaxies are at the same redshift, or more pre-
cisely, that the rati®ys/Ds between the lens-source and observer-source distances
is the same for all sources. This ratio enters into the scaling (3.7, page 48) of the
physical surface mass densHkyto the dimension-less convergenceThe deflec-

tion angle, the deflection potential, and the shear are all linearso that the dis-

tance ratioDys/Ds is sufficient to specify the lens strength as a function of source
redshift. Providedy < 0.2, this ratio is fairly constant for sources with redshift

Zs 2 0.8, so that the approximation used so far applies to relatively low-redshift de-
flectors. However, for higher-redshift lenses, the redshift distribution of the sources
must explicitly be taken into account.

For a fixed lens redshifty, the dimension-less surface mass density and the shear
depend on the source redshift. We define

liM; e Zcr(Zd,Z)
>er(Z4,2) H(z—z4)

_ TkW(z4,2)] fc[w(0, )]
f[W(0,2)] fi [W(zZg, )]

Z(2)

H(z—2). (4.19)

using the notation of Sect. 2.1 (page 12). The Heaviside step function accounts
for the fact that sources closer than the deflector are not lensed. Aften) =
Z(2)k(8), andy(8,z) = Z(2)y(8) for a source a, andk andy refer to a fictitious
source at redshift infinity. The functiofi(z) is readily evaluated for any cosmo-
logical model using (2.41, page 22) and (2.4, page 14). WeAylot for various
cosmologies and lens redshifts in Fig. 12.

The expectation value for the ellipticity of images with redshifiow becomes

([ Z(2)y

1-Z)x for p(z)>0
Ele(2)] = 9(2) = : (4.20)
1-Z(z)k
| Zoy for p(z) <0



Fig. 12. The functiorZ(z) defined in eq. (4.19) describes the relative lens strength as a
function of source redshift. We showZ(z) for three cosmological models as indicated
in the figure, and for three values for the lens redshift= 0.2,0.5,0.8. By definition,

Z(z) — 0 asz— z4, andZ(z) — 1 asz — oo. For sources close to the deflectd(z) varies
strongly in a way depending relatively weakly on cosmology.

wherep(z) is the magnification as a function of source redshift,

W2 = {[1-2@x> -2} . (4.21)

We refer tosub-criticallensing ifp(z) > 0 for all redshifts, which is equivalent to
1-k—y|>0.

Without redshift information, only the mean ellipticity averaged over all redshifts
can be observed. We first consider this case, for which the source redshift distribu-
tion is assumed to be known. We define the probabjy) dz that a galaxy image

(in the selected magnitude range) has a redshift witlzinf@d. The image redshift
distribution will in general be different from the source redshift distribution since
magnified sources can be seen to higher redshifts than unlensed ones. Therefore,
the redshift distribution will depend on the local lens parametensdy through the
magnification (4.21). If, however, the magnification is small, or if the redshift dis-
tribution depends only weakly on the flux, the simplification of identifying the two
redshift distributions is justified. We shall drop it later. Givaiiz), the expectation
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value of the image ellipticity becomes the weighted average

E(e) = [ dzp@EE@] =Xk + NV (Y] @22)
with
_ 2(z)
X = [, ) e
Y (K,Y) :/u(Z)<0 dz p(2) %ZSZ)K , (4.23)

and the integration boundaries depend on the valuesaoid|y| through the mag-
nification.

If the lens is sub-criticalpi(z) > O for all z. ThenY = 0, and only the first term in
(4.22) remains. AlsaX no longer depends onin this case, and ) = yX(k). An
accurate approximation fot(k), valid for k < 0.6, has been derived in Seitz &

Schneider (1997), ,
y= i&) <1— @K> , (4.24)

{2) (2)
where(Z") = [ dz p,(2) Z".

Specialising further to the weak-lensing regime, the expectation value of the image
ellipticity is simply

E(e) =~ (Z)y. (4.25)
Thus, in the weak-lensing case, a source redshift distribution can be collapsed on a
single redshiftz satisfyingZ(z) = (Z).

We now drop the simplification introduced above and defig(&S, z) dSdz as the
number of galaxy images per unit solid angle with flux withi@af Sand redshift

within dz of zin the absence of lensing. At a poiwith surface mass density

and sheay, the number density can be changed by magnification. Images of a fixed
set of sources are distributed over a larger solid angle, reducing the number density
by a factoru—1(z). On the other hand, the magnification allows the observation of
fainter sources. In total, the expected number density becomes

1 S

NSz = 20 No (WZ)’Z> : (4.26)

with p(z) given in (4.21). This yields the redshift distribution
no W (2)S Z]

JdZp2(Z)no[u (252

which depends on the flug and the local lens parametetsandy through the
magnification. This function can now be substitutedfg(iz) in eq. (4.22).

P(zSK,y) = 27 (4.27)
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4.3.3 Practical Estimates of the Shear

We saw before thae) = ¥ uigi/ ¥ u; is an unbiased estimate of the local reduced
shearq if all sources are at the same redshift. We now generalise this result for
sources distributed in redshift. Then, the expectation valaésafo longer a simple
function ofk andy, and therefore estimates yfor an assumed value ferwill be
derived.

We first assume that redshifts for individual galaxies are unavailable, but that only
the normalised redshift distributiqny(z) is known, or the distribution in eq. (4.27).
Replacing the expectation value of the image ellipticity by the mean, eq. (4.22)
implies that the solutiog of

v= X069 + Y2 (9] e (4.28)

provides an unbiased estimator for the shgarhis is not a particularly explicit
expression for the shear estimate, but it is still extremely useful, as we shall see in
the next section. The shear estimate considerably simplifies if we assume a sub-
critical lens. Then,

1s0 _ -1 ~ @ _ @
W (&)X (k) 2 (1 7 K), (4.29)

where we used eq. (4.24) in the second step. Specialising further to weak lensing,
the shear estimate simplifies to

Yy = (e) ()7t (4.30)

Next, we assume that the redshifts of all galaxy images are known. At first sight, this
appears entirely unrealistic, because the galaxy images are so faint that a complete
spectroscopic survey at the interesting magnitude limits seems to be out of reach.
However, it has become clear in recent years that accurate redshift estimates, the so-
called photometric redshifts, can be obtained from multi-colour photometry alone
(see, e.g., Connolly et al. 1995). The accuracy of photometric redshifts depends
on the number of wave bands for which photometry is available, the photometric
accuracy, and the galaxy type; typical errors Are~ 0.1 for faint, high-redshift
galaxies. This uncertainty is small compared to the range over which the function
Z(z) varies appreciably, so that photometric redshifts are (almost) as good as precise
spectroscopic redshifts for our purposes.

If the redshiftsz of the galaxies are known, more precise shear estimates than
before can be derived. Consider the weighted Sumy; u; [g; — E(si)|?, where the
expectation value is given by eq. (4.20), ahé- Z; = Z(z). For an assumed value

of k, an unbiased estimate pis given by they? minimising F. Due to the case
distinction in eq. (4.20), this estimator is complicated to write down analytically,
but can easily be calculated numerically.
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This case distinction is no longer necessary in the sub-critical case, for which the
resulting estimator reads

29 YiliZig(1-Zk)"
Y1259 — S w20 7w T (4.31)

In the case of weak lensing, this becomes

owl) _ 2iUZiE
Y = Sz (4.32)

We now compare the accuracy of the shear estimates with and without redshift in-
formation of the individual galaxies. For simplicity, we assume sub-critical lens-
ing and set all weight factors to unity; = 1. The dispersion of the estimate
YS9 = (N X)~1y;¢ for N galaxy images is

0? (159) = E(Iy*9P) - |y = [N X(x)] *E (zei q) ~M?. (4.33)
1]

The expectation value in the final expression can be estimated noting that the image
ellipticity is to first order given by, = si(s) -+, and that the intrinsic ellipticities
are uncorrelated. If we further assume that the redshifts of any two galaxies are

uncorrelated, we find

ok ZiZ; 2 | 5 2
=)= (Tzma=zig) W+ o0
=X2(K)|y* + & (0% V2 +02) , (4.34)

where we used the definition (4.23)%(k), and defined? (k) = (Z%(1—2Zk) ) —
X2. Angular brackets denote averages over the redshift distribytiomserting
(4.34) into (4.33) yields

02 2+0-2

Likewise, the dispersion of the estimatés is

51 2Zi(1- ZiK) 11— ZjK)E (sie))
(51 22(1— ZiK) 2]
02 0?2

TS Z2(1-2ZK) 2 NIXE(K) + 0% (k)]

o2 <y(27sc)> _

— Iy

(4.36)
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We used eq. (4.34), but noted ttats now no longer a statistical variable, so that
we can putU>2( = 0in (4.34). In the final step, we have replaced the denominator
by its expectation value under ensemble averaging. We then find the ratio of the

dispersions,
02 <¢1,sc)) 2 2
N/ 20% 9%
o2 (y2s9) <1+M 0§> (1+ Xz) : (4.37)

We thus see that the relative accuracy of these two estimates depends on the frac-
tional width of the distribution oZ /(1 — Zk), and on the ratio between the disper-
sion of this quantity and the ellipticity dispersion. Through its explicit dependence
only|?, and through the dependencesyfandX onk, the relative accuracy also de-
pends on the lens parameters. Quantitative estimates of (4.37) are given in Fig. 13.

100 |+ . B
80 -
60

40

fract. improvement [%]

20 |-

Fig. 13. The fractional accuracy gain in the shear estimate due to the knowledge of
the source redshifts is plotted, more precisely the deviation of the square root of (4.37)
from unity in per cent. The four curves shown correspond to two different values of the
mean source redshift, and to the cases without lensing 0 = y), and with lensing
(k=0.3=1y]), labelled NL and L, respectively. We assumed the redshift distribution (2.69)
with 3 = 3/2, and an Einstein-de Sitter cosmology. As expected, the higher the lens red-
shift z4, the more substantially is the shear estimate improved by redshift information, since
for low values ofzy, the functionZ(z) is nearly constant. Furthermore, the lower the mean
redshift of the source distribution, the more important the knowledge of individual redshifts
becomes, for example to distinguish between foreground and background galaxies. Finally,
redshift information is relatively more important for larger lens strength.

The figure shows that the accuracy of the shear estimate is noticeably improved, in
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particular once the lens redshift becomes a fair fraction of the mean source redshift.
The dependence of the lens strength on the deflector redshift implies that the lens
signal will become smaller for increasing deflector redshift, so that the accuracy
gained by redshift information becomes significant. In addition, the assumptions
used to derive (4.35) were quite optimistic, since we have assumed in (4.34) that
the sample of galaxies over which the average is taken is a fair representation of
the galaxy redshift distributiop,(z). Given that these galaxies come from a small
area (small enough to assume thandy are constant across this area), and that
the redshift distribution of observed galaxies in pencil beams shows strong correla-
tions (see, e.g., Broadhurst et al. 1990, Steidel et al. 1998, Cohen et al. 1999), this
assumption is not very realistic. Indeed, the strong clustering of galaxy redshifts
means that the effectivex will be considerably larger than the analytical estimate
used above. The noise in the local determination of the shear due to the correlated
galaxy redshifts does not decrease with the numbef galaxies used, and, there-
fore, its relative contribution becomes more important for larger number densities
of source galaxies (Schneider & Morales-Merino 2000). In any case, redshift in-
formation on the source galaxies will substantially improve the accuracy of weak
lensing results.

4.4 Magnification Effects

In addition to the distortion of imagehapesby which the (reduced) shear can be
measured locally, gravitational light deflection also magnifies the images, leaving
the surface brightness invariant. The magnification changes the size, and therefore
the flux, of individual galaxy images. Moreover, for a fixed set of sources, the num-
ber density of images decreases by a faptas the sky is locally stretched. Com-
bining the latter effect with the flux magnification, the lensed and unlensed source
counts are changed according to (4.26). Two strategies to measure the magnifica-
tion effect have been suggested in the literature, namely either through the change
in the local source counts, perhaps combined with the associated change (4.27) in
the redshift distribution (Broadhurst et al. 1995), or through the change of image
sizes at fixed surface brightness (Bartelmann & Narayan 1995).

4.4.1 Number Density Effect
Let ng(> S,z)dz be the unlensed number density of galaxies with redshift within

dzof zand v!ith flux larger thais. Then, at an angular positighwhere the magni-
fication isp(0, z), the number counts are changed according to (4.26),

1 S
n(>Sz = 6.2 No <> u(az),z) : (4.38)
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Accordingly, magnification can either increase or decrease the local number counts,
depending on the shape of the unlensed number-count function. This change of
number counts is calleshagnification biasand is a very important effect for grav-
itational lensing of QSOs (see Schneider et al. 1992 for referefites).

Magnification allows the observation of fainter sources. Since the flux from the
sources is correlated with their redshift, the redshift distribution is changed accord-
ingly,

o[> p(2)S 7]
JazZuHZ)no[> ut(z)S 2]’
in analogy to the redshift distribution (4.27) at fixed fl8xSince the objects of
interest here are very faint, spectroscopic redshift information is in general difficult
to obtain, and so one can only observe the redshift-integrated counts

MZ>S&WIM® (4.39)

n(>S) :/dzﬁ no (> K 1(2S2) . (4.40)

The number counts of faint galaxies are observed to very closely follow a power
law over a wide range of fluxes, and so we write the unlensed counts as

no(>S 2 =aS%po(z9), (4.41)

where the exponeiot depends on the wave band of the observation (e.g. Smail et al.
1995a), angbo(z S) is the redshift probability distribution of galaxies with fluxS.
Whereas this redshift distribution is fairly well known for brighter galaxies which
are accessible to current spectroscopy, little is known about the faint galaxies of
interest here. The ratio of the lensed and unlensed source counts is then found by
inserting (4.41) into (4.40),

:0((12) :/dzw_l(z) po(zput(2)9) . (4.42)

We should note that the lensed counts do not strictly follow a power Ig8y fior

po depends omz. Since the redshift distributiopg(z S) is currently unknown, the
change of the number counts due to the magnification cannot be predicted. For very
faint flux thresholds, however, the redshift distribution is likely to be dominated by
galaxies at relatively high redshift. For lenses at fairly small redshift £$&y0.3),

we can approximate the redshift-dependent magnificatiprby the magnification

’ Bright QSOs have a very steep number-count function, and so the flux enhancement
of the sources outweighs the number reduction due to the stretching of the sky by a large
margin. Whereas the lensing probability even for a high-redshift QSO is probably too small
to affect the overall sources counts significantly, the fraction of multiply-imaged QSOs in
flux-limited samples is increased through the magnification bias by a substantial factor
over the probability that any individual QSO is multiply imaged (see, e.g. Turner et al.
1984; Narayan & Wallington 1993 and references therein).
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p of a fiducial source at infinity, in which case

n(> S) _ ,0-1
(>S9

(4.43)

Thus, a local estimate of the magnification can be obtained through (4.43) and from
a measurement of the local change of the number density of images. If the slope
of the source counts is unitg = 1, there will be no magnification bias, while
it will cause a decrease of the local number density for flatter slopes. Broadhurst
et al. (1995) pointed out that one can immediately obtain (for sub-critical lensing,
i.e. det4 > 0) an estimate for the local surface mass density from a measurement
of the local magnification and the local reduced shgar= 1 — [u(1— |g|?)] /2.
In the absence of shape information, (4.43) can be used in the weak lensing limit
[wherek < 1, ly| < 1, so thatu~ (1+ 2k)] to obtain an estimate of the surface
mass density,

N> -—m(>9 1

no(> 9 20a—-1)"

(4.44)

4.4.2 Size Effect

Since lensing conserves surface brightness, the magnification can be obtained from
the change in galaxy-image sizes at fixed surface brightness.deesome conve-

nient measure of the surface brightness. For examplejsfthe solid angle of an
image, defined by the determinant of the tensor of second brightness moments as
in (4.3), one can sdt=S/w.

Denoting byn(w, |, z) dw the number density of images with surface brightress
redshiftz, and solid angle within @ of w, the relation between the lensed and the
unlensed number density can be written

m@ua:ém<3ha. (4.45)

For simplicity, we only consider the case of a moderately small lens redshift, so that
the magnification can be assumed to be locally constant for all images, irrespective
of galaxy redshift. We can then drop the variakleere. The mean image size
(w)(1) at fixed surface brightnedss then related to the mean image s{z&o(!)

in the absence of lensing through

(W) (1) = ww)o(l) - (4.46)

If the mean image size in the absence of lensing can be measured (e.g. by deep
HST exposures of blank fields), the local valuef the magnification can there-

fore be determined by comparing the observed image sizes to those in the blank
fields. This method has been discussed in detail in Bartelmann & Narayan (1995).
For instance, if we assume that the logarithm of the image size is distributed as a
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Gaussian with meafinw)o(l) and dispersiomw(l ), we obtain an estimate for the
local magnification from a set ™ galaxy images,

Cdnw—(nwpl) (& 1 -
Inu__: 200 (i;GZ(li)> . (4.47)

A typical value for the dispersion (1) ~ 0.5 (Bartelmann & Narayan 1995).

4.4.3 Relative Merits of Shear and Magnification Effect

It is interesting to compare the prospects of measuring shear and magnification
caused by a deflector. We consider a small patch of the sky containing an expected
numberN of galaxy images (in the absence of lensing), which is sufficiently small
so that the lens parametecgndy can be assumed to be constant. We also restrict
the discussion to weak lensing case.

The dispersion of a shear estimate from averaging over galaxy ellipticitiEg i,
so that the signal-to-noise ratio is

(§> LV (4.48)
shear

N O¢

According to (4.44), the expected change in galaxy number couldlljs= 2k|a —
1|N. Assuming Poissonian noise, the signal-to-noise ratio in this case is

<§) = 2«|a—1|VN. (4.49)
N counts

Finally, the signal-to-noise ratio for the magnification estimate (4.47) is

assuming alb(l) are equal.

Comparing the three methods, we find

(S/N)shear _ M 1 (S/N)counts:
(S/N)counts K 20¢la—1] " (S/N)size

20(1)|a — 1] . (4.51)

If the lens situation is such that ~ |y| as for isothermal spheres, the first of
egs. (4.51) implies that the signal-to-noise of the shear measurement is consid-
erably larger than that of the magnification. Even for number-count slopes as flat
asa ~ 0.5, this ratio is larger than five, witbe ~ 0.2. The second of eqgs. (4.51)
shows that the size effect yields a somewhat larger signal-to-noise ratio than the
number-density effect. We therefore conclude from these considerations that shear
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measurements should yield more significant results than magnification measure-
ments.

This, however, is not the end of the story. Several additional considerations come
into play when these three methods of measuring lensing effects are compared.
First, the shear measurement is the only one for which we know precisely what
to expect in the absence of lensing, whereas the other two methods need to com-
pare the measurements with calibration fields void of lensing. These comparisons
require very accurate photometry. Second, eg. (4.49) overestimates the signal-to-
noise ratio since we assumed Poissonian errors, while real galaxies are known to
cluster even at very faint magnitudes (e.g., Villumsen et al. 1997), and so the error
is substantially underestimated. A particularly bad example for this effect has been
found by Athreya et al. (1999) where a clusterzat 0.9 seems to be behind the
cluster (atz = 0.3) they investigated with weak-lensing techniques, as identified
with photometric redshifts. Third, as we shall discuss in Sect. 4.6, observational
effects such as atmospheric seeing affect the observable ellipticities and sizes of
galaxy images, whereas the observed flux of galaxies is much less affected. Hence,
the shear and size measurements require better seeing conditions than the number-
count method. Both the number counts and the size measurements (at fixed surface
brightness) require accurate photometry, which is not very important for the shear
measurements. As we shall see in the course of this article, most weak-lensing
measurements have indeed been obtained from galaxy ellipticities.

A more detailed study on the relative merits of shear and magnification methods has
been performed by Schneider et al. (2000). Both methods were used to determine
the parameters of mass profiles of spherically symmetric clusters. The results of
this study can be summarised as follows: The magnification in many cases yields
tighter constraints on the slope of the mass profiles, whereas the shear provides a
more accurate determination of its amplitude (or lens strength). However, for the
magnification methods to yield accurate results, the value of the unlensed number
densityng needs to be known fairly accurately. In particular, for measurements out
to large distances from the cluster centre (e.g., moreth&@ Einstein radii), even

an error of a few per cent om destroys its relative advantage in the estimate of
the shape relative to that of the shear. But, as we shall see in the next section, the
magnification effect is very important for breaking an invariance transformation in
the lens reconstruction that is permitted by shear measurements alone.

4.5 Minimum Lens Strength for its Weak Lensing Detection

After our detailed discussion of shear estimates and signal-to-noise ratios for local
lensing measurements, it is interesting to ask how strong a deflecting mass distri-
bution needs to be for a weak lensing measurement to recognise it. Our simplified
consideration here suffices to gain insight into the dependence on the lens mass
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of the signal-to-noise ratio for a lens detection, and on the redshifts of lens and
sources.

We model the deflector as a singular isothermal sphere (see Sect. 3.1.5, page 50).
Let there beN galaxy images with ellipticities; in an annulus centred on the lens

and bounded by angular radi, < 6; < Byt For simplicity, we restrict ourselves

to weak lensing, so that(E) ~ y. For an axially-symmetric mass distribution, the
shear is always tangentially oriented relative to the direction towards the mass cen-
tre, which is expressed by eq. (3.18) on page 51. We therefore consider the ellip-
ticity component projected onto the tangential direction. It is formally defined by

g = —(ce29), where¢ is the polar angle of the galaxy position relative to the
lens centre [see (3.18), page 51]. We now define an estimator for the lens strength

by

N
X = _Zai & . (4.52)

The factorsy = a(6;) are arbitrary at this point, and will be chosen later such as to
maximise the signal-to-noise ratio of the estimator (4.52). Note that the expectation
value ofX is zero in the absence of lensing, so that a significant non-zero value of
X signifies the presence of a lens. The expectation value for an isothermal sphere
is E(X) =6 5a/(26;), where we used (3.18, page 51), and

2) A 2, 05 S 5

=1

We employed Eeiigtj) = vi(6)y:(0;) + 8ij0Z/2 here, and the factor two is due to
the fact that the ellipticity dispersion only refers to one component of the ellipticity,
while o¢ is defined as the dispersion of the two-component ellipticity. Therefore,
the signal-to-noise ratio for a detection of the lens is

n-1
S_ % 3ab (4.54)

N \/_08\/5

Differentiating (S/N) with respect ta;, we find that (S/N) is maximised if the
a are choseril 81, Inserting this choice into (4.54) yields/8 = 2-%/20g0;

1/2 _
<zi ei—z) . We now replace the sum by its ensemble average over the annulus,

<zi e;2> — N(072) = 2n71In(By/Bin), Where we used = m(62,,— 62 ), with

the number density of galaxy imagas Substituting this result into (4.54), and
using the definition of the Einstein radius (3.17, page 51), the signal-to-noise ratio
becomes
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N= o V™ VINEou/6n) (4.55)
€
1/2 _1 2
_127 (#2) (%) <071>
30arc min 0.2 600kms

(")) ().

As expected, the signal-to-noise ratio is proportional the square root of the number
density of galaxies and the inverse of the intrinsic ellipticity dispersion. Further-
more, it is proportional to the square of the velocity dispersipnAssuming the
fiducial values given in eq. (4.55) and a typical value(Dfis/Ds) ~ 0.5, lenses

with velocity dispersion in excess ef 600kms* can be detected with a signal-
to-noise> 6. This shows that galaxy clusters will yield a significant weak lensing
signal, and explains why clusters have been the main target for weak-lensing re-
search up to now. Individual galaxies witl) ~ 200kms* cannot be detected with
weak-lensing techniques. If one is interested in the statistical properties of the mass
distribution of galaxies, the lensing effectsf, galaxies need to be statistically
superposed, increasing (S/N) by a factor,#Nga1. Thus, it is necessary to super-
pose several hundred galaxies to obtain a significant galaxy-galaxy lensing signal.
We shall return to this topic in Sect. 7 on page 160.

We finally note that (4.55) also demonstrates that the detection of lenses will be-
come increasingly difficult with increasing lens redshift, as the last factor is a sen-
sitive function ofzy. Therefore, most lenses so far investigated with weak-lensing
techniques have redshifts belowb0OHigh-redshift clusters have only recently be-
come the target of detailed lensing studies.

4.6 Practical Consideration for Measuring Image Shapes

4.6.1 General Discussion

Real astronomical data used for weak lensing are supplied by CCD images. The
steps from a CCD image to a set of galaxy images with measured ellipticities are
highly non-trivial and cannot be explained in any detail in the frame of this review.
Nevertheless, we want to mention some of the problems together with the solutions
which were suggested and applied.

The steps from CCD frames to image ellipticities can broadly be grouped into four
categories; data reduction, image detection, shape determination, and corrections
for the point-spread function. The data-reduction process is more or less standard,
involving de-biasing, flat-fielding, and removal of cosmic rays and bad pixels. For
the latter purpose, it is essential to have several frames of the same field, slightly
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shifted in position. This also allows the the flat field to be determined from the
images themselves (a nice description of these steps is given in Mould et al. 1994).
To account for telescope and instrumental distortions, the individual frames have
to be re-mapped before being combined into a final image. In order to do this,
the geometric distortion has to be either known or stable. In the latter case, it can
be determined by measuring the positions and shapes of stellar images (e.g., from
a globular cluster). In Mould et al. (1994), the classical optical aberrations were
determined and found to be in good agreement with the system’s specifications
obtained from ray-tracing analysis.

With the individual frames stacked together in the combined image, the next step
is to detect galaxies and to measure their shapes. This may appear simple, but is in
fact not quite as straightforward, for several reasons. Galaxy images are not neces-
sarily isolated on the image, but they can overlap, e.g. with other galaxies. Since
weak-lensing observations require a large number density of galaxy images, such
merged images are not rare. The question then arises whether a detected object is a
single galaxy, or a merged pair, and depending on the choice made, the measured
ellipticities will be much different. Second, the image is noisy because of the finite
number of photons per pixel and the noise intrinsic to the CCD electronics. Thus,

a local enhancement of counts needs to be classified as a statistically significant
source detection, and a conservative signal-to-noise threshold reduces the number
of galaxy images. Third, galaxy images have to be distinguished from stars. This is
not a severe problem, in particular if the field studied is far from the Galactic plane
where the number density of stars is small.

Several data-analysis software packages exist, such as FOCAS (Jarvis & Tyson
1981) and SExtractor (Bertin & Arnouts 1996). They provide routines, based on
algorithms developed from experience and simulated data, for objective selection of
objects and measuring their centroids, their multipole moments, their magnitudes,
and classify them as stars or extended objects. Kaiser et al. (1995) developed their
own object detection algorithm. It is based on convolving the CCD image with
two-dimensional Mexican hat-shaped filter functions of variable widtfror each

value ofBs, the maxima of the smoothed intensity map are localised. Va§ing
these maxima form curves in the three-dimensional space spannédirwes.

Along each such curve, the significance of a source detection is calculated, and
the maximum of the significance is defined as the locafiasf an object with
corresponding Siz8s.

Once an object is found, the quadrupole moments can in principle be obtained from
(4.2). In practice, however, this is not necessarily the most practical definition of the
moment tensor. The functiay (1) in (4.2) should be chosen such that it vanishes
for surface brightnesses close to and smaller than the sky brightness; otherwise,
one would sample too much noise. On the other hangl, ig cut off at too bright
values ofl, the area within which the quadrupole moments are measured becomes
too small, and the effects of seeing (see below) become overwhelming. Also, with
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a too conservative cut-off, many galaxy images would be missed. Assume, for in-
stance, thaty (1) = I H(I — I). One would then choodg, such that it is close to,

but a fewoneise above the sky background, and the quadrupole moments would
then be measured inside the resulting limiting isophote. Since this isophote is close
to the sky background, its shape is affected by sky noise. This implies that the mea-
sured quadrupole moments will depend highly non-linearly on the brightness on the
CCD:; in patrticular, the effect of noise will enter the measured ellipticities in a non-
linear fashion. A more robust measurement of the quadrupole moments is obtained
by replacing the weight functiog [ (8)] in (4.2) byl W (8), wherew/(8) explicitly
depends oM. Kaiser et al. (1995) use a Gaussian of €izas their weight function

W, i.e., the size of theiw is the scale on which the object was detected at high-
est significance. It should be noted that the quadrupole moments obtained with a
weight functionw/(8) do not obey the transformation law (4.5), and therefore, the
expectation value of the ellipticity, (E), will be different from the reduced shegr

We return to this issue further below.

Another severe difficulty for the determination of the local shear is atmospheric
seeing. Due to atmospheric turbulence, a point-like source will be seen from the
ground as an extended image; the source is smeared-out. Mathematically, this can
be described as a convolution.l(fé) is the surface brightness before passing the
Earth’s atmosphere, the observed brightness distributf8#(6) is

(053 (§) — / P91(5)PB-3), (4.56)

-

whereP(0) is the point-spread functiofPSF) which describes the brightness dis-
tribution of a point source on the CCIP(6) is normalised to unity and centred

on 0. The characteristic width of the PSF is called the size of the seeing disc. The
smaller it is, the less smeared the images are. A seeing well below 1larc second is
required for weak-lensing observations, and there are only a handful of telescope
sites where such seeing conditions are regularly met. The reason for this strong
requirement on the data quality lies in the fact that weak-lensing studies require a
high number density of galaxy images, i.e., the observations have to be extended to
faint magnitudes. But the characteristic angular size of faint galaxies is below 1arc
second. If the seeing is larger than that, the shape information is diluted or erased.

The PSF includes not only the effects of the Earth’s atmosphere, but also pointing
errors of the telescope (e.g., caused by wind shake). Therefore, the PSF will in gen-
eral be slightly anisotropic. Thus, seeing has two important effects on the observed
image ellipticities: Small elliptical images become rounder, and the anisotropy of
the PSF introduces a systematic, spurious image ellipticity. The PSF can be deter-
mined directly from the CCD once a number of isolated stellar images are identi-
fied. The shape of the stars (which serve as point sources) reflects the PSF. Note
that the PSF is not necessarily constant across the CCD. If the number density of
stellar images is sufficiently large, one can empirically describe the PSF variation
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across the field by a low-order polynomial. An additional potential difficulty is the
chromaticity of the PSF, i.e. the dependence of the PSF on the spectral energy distri-
bution of the radiation. The PSF as measured from stellar images is not necessarily
the same as the PSF which applies to galaxies, due to their different spectra. The
difference of the PSFs is larger for broader filters. However, it is assumed that the
PSF measured from stellar images adequately represents the PSF for galaxies.

In the idealised case, in which the quadrupole moments are defined with the weight
functionq (1) = I, the effect of the PSF on the observed image ellipticities can
easily be described. I%; denotes the quadrupole tensor of the PSF, defined in

complete analogy to (4.2), then the observed quadrupole tqﬁg%ﬁ' is related to

the true one b)Qi(-ObS) = B + Qj; (see Valdes et al. 1983). The ellipticigythen

j
transforms like psh
(oby _ X+ TX =7 +1TJZ(T , (4.57)

where .
7o PutPe sy _ Pu—Peat2iPi
Qu1+Qx° Pii+Pp
Thus, T expresses the ratio of the PSF size to the image size before convolution,
andx(PSP is the PSF ellipticity. It is evident from (4.57) that the smallerthe
lessx(°PS deviates frony. In the limit of very largeT, x(°°9 approacheg (PSP,
In principle, the relation (4.57) could be inverted to obtgifrom x(°°9. How-
ever, this inversion is unstable unléBss sufficiently small, in the sense that noise
affecting the measurement P is amplified by the inversion process. Unfortu-
nately, these simple transformation laws only apply for the specific choice of the
weight function. For weighting schemes that can be applied to real data, the result-
ing transformation becomes much more complicated.

(4.58)

If a galaxy image features a bright compact core which emits a significant fraction
of the galaxy’s light, this core will be smeared out by the PSF. In that ga%¥,

may be dominated by the core and thus contain little information about the galaxy
ellipticity. This fact motivated Bonnet & Mellier (1995) to define the quadrupole
moments with a weight functioW(é) which not only cuts off at large angular
separations, but which is also small nas 0. Hence, their weight functioq is
significantly non-zero in an annulus with radius and width both being of the order

of the size of the PSF.

The difficulties mentioned above prohibit the determination of the local reduced
shear by straight averaging over the directly measured image ellipticities. This av-
erage is affected by the use of a angle-dependent weight funationthe prac-

tical definition of the quadrupole moments, by the finite size of the PSF and its
anisotropy, and by noise. Bonnet & Mellier (1995) have performed detailed simula-
tions of CCD frames which resemble real observations as close as possible, includ-
ing an anisotropic PSF. With these simulations, the efficiency of object detection,
the accuracy of their centre positions, and the relation between true and measured
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image ellipticities can be investigated in detail, and so the relation between mean
ellipticity and (reduced) shear can approximately be calibrated. Wilson et al. (1996)
followed a very similar approach, except that the analysis of their simulated CCD
frames was performed with FOCAS. Assuming an isotropic PSF, the mean image
ellipticity is proportional to the reduced shege: f (€), with a correction factof
depending on the limiting galaxy magnitude, the photometric depth of the image,
and the size of the seeing disk. For a seeing.8f,(Bonnet & Mellier obtained a
correction factorf ~ 6, whereas the correction factor in Wilson et al. for the same
seeing isf ~ 1.5. This large difference is not a discrepancy, but due to the different
definitions of the quadrupole tensor. Although the correction factor is much larger
for the Bonnet & Mellier method, they show that their measured (and calibrated)
shear estimate is more accurate than that obtained with FOCAS. Kaiser et al. (1995)
used CCD frames taken with WFPC2 on boHISIT which are unaffected by atmo-
spheric seeing, sheared them, and degraded the resulting images by a PSF typical
for ground-based images and by adding noise. In this way, they calibrated their
shear measurement and tested their removal of an anisotropic contribution of the
PSF.

However, calibrations relying on simulated images are not fully satisfactory since
the results will depend on the assumptions underlying the simulations. Kaiser et al.
(1995) and Luppino & Kaiser (1997) presented a perturbative approach for correct-
ing the observed image ellipticities for PSF effects, with additional modifications
made by Hoekstra et al. (1998) and Hudson et al. (1998). Since the measurement of
ellipticities lies at the heart of weak lensing studies, we shall present this approach
in the next subsection, despite its being highly technical.

4.6.2 The KSB Method

Closely following the work by Kaiser et al. (1995), this subsection provides a re-

lation between the observed image ellipticity and a source ellipticity known to be

isotropically distributed. The relation corrects for PSF smearing and its anisotropy,
and it also takes into account that the transformation (4.5) no longer applies if the
weight factor explicitly depends di

We consider the quadrupole tensor

Qi = [ ¢0(6i—8)(8; — 81 B)W (18- 8F/0%) | (4.59)

whereW contains a typical scale, and® is defined as in (4.1), but with the new
weight function. Note that, in contrast to the definition (4.2), this tensor is no longer
normalised by the flux, but this does not affect the definition (4.4) of the complex
ellipticity.

The relation between the observed surface brighth&$s8) and the true sur-
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face brightness is given by (4.56). We assume in the following thats nearly
isotropic, so that the anisotropic part Bfis small. Then, we define the isotropic
partP's° of P as the azimuthal average oWrand decompos into an isotropic
and an anisotropic part as

P(©) = [ oa(@)P=(5—4). (4.60)

which definesq uniquely. In generalg($) will be an almost singular function,
but we shall show later that it has well-behaved moments. BSthand g are
normalised to unity and have vanishing first moments. VW, we define the
brightness profiles

1%98) = [ &1(§) P> )
198) = / 2 15(6) P°(B — §) . (4.61)

The first of these would be observed if the true image was smeared only with an

isotropic PSF, and the second is the unlensed source smeareB'SRitBoth of

these brightness profiles are unobservable, but convenient for the following discus-
sion. For each of them, we can define a quadrupole tensor as in (4.59). From each
guadrupole tensor, we define the complex elliptigity= X1 +iX2, in analogy to

(4.4).

If we define the centres of images including a spatial weight function, the property
that the centre of the image is mapped onto the centre of the source through the
lens equation is no longer strictly true. However, the deviations are expected to be
very small in general and will be neglected in the following. Hence, we choose
coordinates such th&= 0, and approximate the other centres to be at the origin
as well.

According to our fundamental assumption that the intrinsic ellipticities are ran-
domly oriented, this property is shared by the ellipticit¢@=efined in terms of°

[see (4.61)], because it is unaffected by an isotropic PSF. Therefore, we can replace
(4.13) by Ex®) = 0 in the determination a. The task is then to relate the observed
image ellipticityx°PSto x°. We break it into several steps.

From xS to x°PS.  We first look into the effect of an anisotropic PSF on the ob-
served ellipticity. According to (4.60) and (4.61),

1°58) = [ 98- 8)1*(3). (4.62)

Let f(8) be an arbitrary function, and consider
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We used the fact thatis normalised and has zero mean, and defined

+0(cP) . (4.63)

Gij = / o) did;, G=011—O22, O2=20h2. (4.64)
The tensouny; is trace-lessgi; = —0gz, following from (4.60). We consider in the
following only terms up to linear order ig. To that order, we can repla¢g® by

1°0S in the final term in (4.63), since the difference would yield a téind(q?).
Hence,

24 11SO ~ 2 obs 2 obs azf
[ 01 1(8) ~ [ EO1E)100) a0 [ FoI0@) 30 5 (@.65)

Settingoiso = Ggps = O in the definition of the quadrupole tensd@§°® and Q°"
and choosind (8) = 8;6;W(|6]?/0?), yields

Q'SO Q Z. ikl Okl (4.66)

where the Einstein summation convention was adopted, and where

()]
0009 : 0-|so .

Zijui =/d2¢|°bs(¢)
This then yields
tr(Q'°) =tr(Q%) — Xq i ,

(leo QISO) (Qobs ggﬂ —chxCIa ’ and
2Q9 = 2Q85°— Xou Ol . (4.68)

where the sums run over= 1,2 % Up to linear order irgq,

X6° = X8 °—Papds » (4.69)

with the definitions

8 We use Greek instead of Latin indicesp = 1,2 to denote that they are not tensor
indices. In particular, the componentsyofio not transform like a vector, but like the trace-
less part of a symmetric tensor.
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iso Gii,o 7
zvvl W//
o= [ 017 na(8) (23 + 5 ) (@.70)
Oiso Oiso
whered,g is the Kronecker symbol, and
N1(6) =65 —063; n2(6) =2016;. (4.71)

Psg“ was dubbedmear polarisabilityin Kaiser et al. (1995). It describes the (lin-
ear) response of the ellipticity to a PSF anisotropy. Note P@?tdepends on the
observed brightness profile. In particular, its size decreases for larger images, as
expected: The ellipticities of larger images are less affected by a PSF anisotropy
than those of smaller images.

The determination of 4. Equation (4.69) provides a relation between the el-
lipticities of an observed image and a hypothetical image smeared by an isotropic
PSF. In order to apply this relation, the anisotropy tegmeeds to be known. It

can be determined from the shape of stellar images.

Since stars are point-like and unaffected by lensing, their isotropically smeared
images have zero ellipticity*'s° = 0. Hence, from (4.69),

da = (P g X5 (4.72)
In general, the PSF varies with the position of an image. If this variation is suffi-
ciently smoothg can be measured for a set of stars, and approximated by a low-
order polynomial across the data field. As pointed out by Hoekstra et al. (1998),
the scale size in the measurement gfis best chosen to be the same as that of the
galaxy image under consideration. Hence, for each value sfich a polynomial
fit is constructed. This approach works well and provides an estimajeabthe
position of all galaxies, which can then be used in the transformation (4.69).

From x° to x'°. We now relatex's° to the ellipticity x° of a hypothetical image
obtained frory isotropig smearing of the source. To do so, we use (4.61) and (3.10)
in the forml (6) = 13(46), and consider

1159(8) — / o 15(8) P8 — §) (4.73)

_i 271S(7\pisod _ g-17\ — [/ a8
— otz | IO P2 ) =1(a8)
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The second step is merely a transformation of the integration variable, and in the
final step we defined the brightness moment

1

[(6) = / P9156)PO—F) with PO)=_"_PO(a710). (474

The functionP is normalised and has zero mean. It can be interpreted as a PSF
relatingl to I5. The presence of shear rendBranisotropic.

We next seek to find a relation between the ellipticitie§®fandi:

R A_) 2
Gy = [ BB FEW ('B'> (4.75)

. 2 =
= detq 4y 4 / d208,0, 1S°(B)W <|9| ic; ﬂa(9)> .

The relation between the two filter scales is giverdBy= (1—k)?(1+|g|?)a?, and

0 is the distortion (4.15). For small we can employ a first-order Taylor expansion
of the weight functionV in the previous equation. This results in the following
relation betweerg andy's°:

X% — %o = Caplp » (4.76)

where

ISO

Cap = 2843 — zxi;?oxig‘) + xSoL

2 2
(Qiso) '[I’(Qiso) BO‘B )
o 2 N .
BGB:_/dzellso(e) <|g| ) = na(e)ng(e>

—— [ FolpPI=o@w (ﬁ) éna@ : (4.77)

02

C is theshear polarisabilityof Kaiser et al. (1995). Where&sis defined in terms

of I'S°, owing to the assumed smallnesgjpthe difference o€ calculated witH's°
and!1°PSwould cause a second-order change in (4.76) and is neglected, so that we
can calculat€ directly from the observed brightness profile.

In analogy to (4.60), we can decompdainto an isotropic and an anisotropic part,
the latter one being small due to the assumed smallness of the shear,

PE) = [ PoP=$)a6-9). (4.78)
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Defining the brightness profile which would be otztained from smearing the source
with the isotropic PSIP'SC, [0(8) = [ d?¢ I5(§) P'S°(8 — ), one finds

6)= [ Por@)a6-9). (4.79)

Thus, the relation betwedrandi? is the same as that betwelfiSand|s°, and we
can write

X = Xa — P3p G - (4.80)
Note thatPS™ should in principle be calculated by usihinstead ofi®Sin (4.69).
However, due to the assumed smallnesg ahdq, the differences betwedPs
10 and| are small, namely of first order ig andq. Sinceqis of orderg [as is
obvious from its definition, and will be shown explicitly in (4.82)], this difference
in the calculation oP*™would be of second order in (4.80) and is neglected here.

EliminatingX from (4.76) and (4.80), we obtain
X6 = X +Capdp + P5pGg - (4.81)

Now, for stellar objects, botR® andx® vanish, which implies a relation between
g andg,

G = —(P*™) 43 ChyBy (4.82)
where the asterisk indicates ti&t" andC are to be calculated from stellar images.
Whereas the result should in principle not depend on the choice of the scale length
in the weight function, it does so in practice. As argued in Hoekstra et al. (1998),
one should use the same scale lengtPift* andC* as for the galaxy object for
which the ellipticities are measured. Defining now

Pos = Cap — Pay (P"™) 5 Csp » (4.83)
and combining (4.69) and (4.81), we finally obtain
—P3p — Py - (4.84)

This equation relates the observed ellipticity to that of the source smeared by an
isotropic PSF, using the PSF anisotropy and the reduced gh&ince the ex-
pectation value of° is zero, (4.84) yields an estimate @f The two tensor®s™

andP? can be calculated from the brightness profile of the images. Whereas the
treatment has been confined to first order in the PSF anisotropy and the shear, the
simulations in Kaiser et al. (1995) and Hoekstra et al. (1998) show that the re-
sulting equations can be applied even for moderately large shear. A numerical im-
plementation of these relations, thecat software, is provided by N. Kaiser (see
http://www.ifa.hawaii.edutkaiser). We also note that modifications of this scheme
were recently suggested (Rhodes et al. 2000, Kaiser 2000), as well as a completely
different approach to shear measurements (Kuijken 1999). Kaiser et al. (1999) pro-
vide a detailed description of the image analysis of weak-lensing data from a large
CCD-array camera.

obs
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5 Weak Lensing by Galaxy Clusters
5.1 Introduction

So far, weak gravitational lensing has chiefly been applied to determine the mass
distribution of medium-redshift galaxy clusters. The main reason for this can be
seen from eq. (4.55): Clusters are massive enough to be individually detected by
weak lensing. More traditional methods to infer the matter distribution in clusters
are (a) dynamical methods, in which the observed line-of-sight velocity distribu-
tion of cluster galaxies is used in conjunction with the virial theorem, and (b) the
investigation of the diffuse X—ray emission from the het{0’ K) intra-cluster gas
residing in the cluster potential well (see, e.g., Sarazin 1986).

Both of these methods are based on rather strong assumptions. For the dynamical
method to be reliable, the cluster must be in or near virial equilibrium, which is not
guaranteed because the typical dynamical time scale of a cluster is not much shorter
than the Hubble timédgt, and the substructure abundantly observed in clusters
indicates that an appreciable fraction of them is still in the process of formation.
Projection effects and the anisotropy of galaxy orbits in clusters further affect the
mass determination by dynamical methods. On the other hand, X—ray analyses rely
on the assumption that the intra-cluster gas is in hydrostatic equilibrium. Owing
to the finite spatial and energy resolution of existing X—ray instruments, one often
has to conjecture the temperature profile of the gas. Here, too, the influence of
projection effects is difficult to assess.

Whereas these traditional methods have provided invaluable information on the
physics of galaxy clusters, and will continue to do so, gravitational lensing offers a

welcome alternative approach, for it determines the projected mass distribution of
a cluster independent of the physical state and nature of the matter. In particular,
it can be used to calibrate the other two methods, especially for clusters showing
evidence of recent merger events, for which the equilibrium assumptions are likely
to fail. Finally, as we shall show below, the determination of cluster mass profiles

by lensing is theoretically simple, and recent results show that the observational
challenges can also be met with modern telescopes and instruments.

Both shear and magnification effects have been observed in a number of galaxy
clusters. In this chapter, we discuss the methods by which the projected mass dis-
tribution in clusters can be determined from the observed lensing effects, and show
some results of mass reconstructions, together with a brief discussion of their as-
trophysical relevance. In principle, voids could also be measured using the same
methods, but as shown in Amendola et al. (1999), their (negative) density contrast
is too small for a detection under realistic assumptions. Sect. 5.2 presents the prin-
ciples of cluster mass reconstruction from estimates of the (reduced) shear obtained
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from image ellipticities (also recently reviewed by Umetsu et al. 1999). In contrast

to the two-dimensional mass maps generated by these reconstructions, the aperture
mass methods discussed in Sect. 5.3 determine a single number to characterise the
bulk properties of the cluster mass. Observational results are presented in Sect. 5.4.
We outline further developments in the final section, including the combined anal-
ysis of shear and magnification effects, maximum-likelihood methods for the mass
reconstruction, and a method for measuring local lens parameters from the extra-
galactic background noise.

5.2 Cluster Mass Reconstruction from Image Distortions

We discussed in detail in Sect. 4 how the distortion of image shapes can be used
to determine the local tidal gravitational field of a cluster. In this section, we de-
scribe how this information can be used to construct two-dimensional mass maps
of clusters.

Shortly after the discovery of giant luminous arcs (Soucail et al. 1987a; Lynds &
Petrosian 1989), Fort et al. (1988) detected a number of distorted galaxy images
in the cluster A 370. They also interpreted theseletsas distorted background
galaxy images, but on a weaker level than the giant luminous arc in the same cluster.
The redshift determination of one arclet by Mellier et al. (1991) provided early
support for this interpretation. Tyson et al. (1990) discovered a coherent distortion
of faint galaxy images in the clusters A 1689 and Cl 1409+52, and constrained
their (dark) mass profiles from the observed ‘shear’. Kochanek (1990) and Miralda-
Escude (1991) studied in detail how parameterised mass models for clusters can be
constrained from such distortion measurements.

The field began to flourish after Kaiser & Squires (1993) found that the distortions
can be used for parameter-free reconstructions of cluster surface mass densities.
Their method, and several variants of it, will be described in this section. It has
so far been applied to about 15 clusters, and this number is currently limited by
the number of available dark nights with good observing conditions at the large
telescopes which are required for observations of weak lensing.

5.2.1 Linear Inversion of Shear Maps

Equation (3.15, page 50) shows that the slyasua convolution of the surface mass
densityk with the kernelD. This relation is easily inverted in Fourier space to
return the surface mass density in terms of a linear functional of the shear. Hence,
if the shear can be observed from image distortions, the surface mass density can
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directly be obtained. Let the Fourier transfornkg) be

—

R():/ PoK(8) exp(i8 1) . (5.1)
The Fourier transform of the complex kerrgldefined in (3.15, page 50) is

0 :n(lf—|§|’r|+22ill|z) | 5.2

Using the convolution theorem, eq. (3.15, page 50) can be wr&(dah_
12)(I) R(I) for I 0. Multiplying both sides of this equation with* and us-
ing D D* = TP gives

— - A~ —

k() =my()D*(I) for T#0, (5.3)

and the convolution theorem leads to the final result

K(®) —Ko—== / o268 D" (6—8)y(®)
/ ?6'0 [ (8- ) (@) (5.4)

(Kaiser & Squires 1993). The constaqin (5.4) appears because a constant sur-
face mass density does not cause any shear and is thus unconstranétdywo
expressions in (5.4) are equivalent becdﬂ@@* y) =0, as can be shown from the
Fourier transforms of equations (3.12, page 49). In applications, the second form
of (5.4) should be used to ensure tkas real. Relation (5.4) can either be applied

to a case where all the sources are at the same redshift, in whick easky are
defined as in eqgs. (3.7) and (3.12), or where the sources are distributed in redshift,
becausa& andy are interpreted as convergence and shear for a hypothetical source
at infinite redshift, as discussed in Sect. 4.3.2.

In the case of a weak leng & 1, |y| < 1), the shear map is directly obtained from
observations, cf. (5.17). When inserted into (5.4), this map provides a parameter-
free reconstruction of the surface mass density, apart from an overall additive con-
stant. The importance of this result is obvious, as it provides us with a novel and
simple method to infer the mass distribution in galaxy clusters.

There are two basic ways to apply (5.4) to observational data. Either, one can derive
a shear map from averaging over galaxy images by calculating the local shear on
a grid inB-space, as described in Sect. 4.3; or, one can replace the integral in (5.4)
by a sum over galaxy images at positicﬁns

K(é):%[ 0|0 @-8)a] . (5.5)
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Unfortunately, this estimate &fhas infinite noise (Kaiser & Squires 1993) because
of the noisy sampling of the shear at the discrete background galaxy positions.
Smoothing is therefore necessary to obtain estimatorswith finite noise. The

form of eq. (5.5) is preserved by smoothing, but the kefdé modified to another
kernelD. In particular, Gaussian smoothing with smoothing ler@ijtreads to

D(B) = [1— <1+ 'S—f) exp(-'S—f)] D(6) (5.6)

(Seitz & Schneider 1995a). Thens error of the resultingk map is of order
o:N~1/2, whereN is the number of galaxy images per smoothing windsiv;
nm®2. However, the errors will be strongly spatially correlated.

van Waerbeke (2000) showed that the covariance of a mass map obtained with the
kernel (5.6) is

Cou(k(8),k(®) = % exp(—le_mz) (5.7)
’ 4192n 262 ' '
Thus, the correlation extends to scales of order the smoothing 8¢cédee also
Lombardi & Bertin 1998a). Indeed, this result is surprising, as by reducing the
smoothing scale, the correlation length of the noise can accordingly be reduced
to small scales — although the surface mass density at each point depends on the
galaxy ellipticities at all distances. It should be noted that the covariance in (5.7)
is derived under the assumption of no lensipgs 0. In the presence of a shear —
the interesting situation of course — an additional effect contributes to the noise,
namely that the galaxy images are not uniformly, but randomly distributed. This
effect contributes shot-noise to the covariance, quadratically (@chneider &
Morales-Merino 2000). Therefore, whereas the estimate (5.5) Witeplaced by
D uses the observational data more directly than by first constructing a smoothed
shear map and applying (5.4) to it, it turns out that the latter method yields a mass
map which is less noisy than the estimate obtained from (5.5), because (5.5) con-
tains the ‘shot noise’ from the random angular position of the galaxy images (Seitz
& Schneider 1995a).

A lower bound to the smoothing lengllg follows from the spatial number density

of background galaxies, i.e. their mean separation. More realistically, a smoothing
window needs to encompass several galaxies. In regions of strong shear signals,
N ~ 10 may suffice, whereas mass maps in the outskirts of clusters where the shear
is small may be dominated by noise unléks- 100. These remarks illustrate that

a single smoothing scale across a whole cluster may be a poor choice. We shall
return to this issue in Sect. 5.5.1, where improvements will be discussed.

Before applying the mass reconstruction formula (5.4) to real data, one should be
aware of the following difficulties:
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(1) Theintegralin (5.4) extends ov&#, while real data fields are relatively small
(most of the applications shown in Sect. 5.4 are based on CCDs with side
lengths of about 7 arc min). Since there is no information on the shear outside
the data field, the integration has to be restricted to the field, which is equiva-
lent to settingy = 0 outside. This is done explicitly in (5.5). This cut-off in the
integration leads to boundary artefacts in the mass reconstruction. Depending
on the strength of the lens, its angular size relative to that of the data field, and
its location within the data field, these boundary artefacts can be more or less
severe. They are less important if the cluster is weak, small compared to the
data field, and centred on it.

(2) The shear is an approximate observable only in the limit of weak lensing. The
surface mass density obtained by (5.4) is biased low in the central region of
the cluster where the weak lensing assumption may not hold (and does not
hold in those clusters which show giant arcs). Thus, if the inversion method is
to be applied also to the inner parts of a cluster, the relation betwaed the
observabl& has to be taken into account.

(3) The surface mass density is determined by (5.4) only up to an additive con-
stant. We demonstrate in the next subsection that there exists a slightly differ-
ent general invariance transformation which is present in all mass reconstruc-
tions based solely on image shapes. However, this invariance transformation
can be broken by including the magnification effect.

In the next three subsections, we shall consider points (1) and (2). In particular, we
show that the first two problems can easily be cured. The magnification effects will
be treated in Sect. 5.4.

5.2.2 Non-Linear Generalisation of the Inversion, and an Invariance Transfor-
mation

In this section, we generalise the inversion equation (5.4) to also account for strong
lensing, i.e. we shall drop the assumptiorc 1 and|y| < 1. In this case, the shear

yis no longer a direct observable, but at best the reduced gheam general the
distortiond. In this case, the relation betwerrand the observable becomes non-
linear. Furthermore, we shall assume here that all sources are at the same redshift,
so that the reduced shear is well-defined.

Cogsider first the case that the cluster is sub-critical everywhere, i.4.dék for
all 8, which implies|g(8)| < 1. Then, the mean image ellipticityis an unbiased
estimate of the local reduced shear, so that

V@) = [1-x(®)] (£)(8). (5.8)

where the fielde)(8) is determined by the local averaging procedure described in
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Sect. 4.3.1. Inserting this into (5.4) leads to an integral equatiom(ﬁ)r,

K(6) — Ko = = / P8 [1-x@)|0[2@- O @] 9
TT JR2
(Seitz & Schneider 1995a), which is readily solved by iteration. Starting kam
0, a first estimate af(8) is obtained from (5.9), which after insertion into the right-
hand side of (5.8) yields an update \ﬂiﬁ), etc. This iteration process converges
quickly to the unique solution.

The situation becomes only slightly more complicated if critical clusters are in-
cluded. We only need to keep track of detvhile iterating, becausg must be
derived from ¥ (€)* rather than frome) where defd < 0. Hence, the local invari-
ance betweeg and 1/g* is broken due to non-local effects: A local jump fram

to 1/g* cannot be generated by any smooth surface mass density.

After a minor modificatioff], this iteration process converges quickly. See Seitz &
Schneider (1995a) for more details on this method and for numerical tests done
with a cluster mass distribution produced by a cosmolodicabdy simulation. It
should have become clear that the non-linear inversion process poses hardly any ad-
ditional problem to the mass reconstruction compared to the linear inversion (5.4).

This non-linear inversion still contains the constagtand so the result will depend

on this unconstrained constant. However, in contrast to the linear (weak lensing)
case, this constant does not correspond to adding a sheet of constant surface mass
density. In fact, as can be seen from (5.9), the transformation

—= —=

K(6) — K'()=Ak(8) +(1-A) or
1K) =2 [1-«@)] (5.10)

leads to another solution of the inverse problem for any valuke #f0. Another
and more general way to see this is that the transformationk’ changesy to
\/(9) )\y( ), cf. (3.15, page 50). Hence, the reduced sheary(1— k)1 is in-
variant under the transformation (5.10), so that the relation between intrinsic and
observed ellipticity is unchanged under theariance transformation5.10). This
is the mass-sheet degeneracy pointed out by Falco et al. (1985) in a different con-
text. We thus conclude that the degeneracy due to the invariance transformation

9 At points wherek = 1, 1/g* = 0 andE(g) = 0, while y remains finite. During the
iteration, there will be pointsé where the fieldk is very close to unity, but where

(€) is not necessarily small. This leads to large valuesy,ofvhich render the itera-
tion unstable. However, this instability can easily be removed if a damping factor like
<1+|y2(é’)|) exp(—]%(é’)]) is included in (5.4). This modification leads to fast con-
vergence and affects the result of the iteration only very slightly.
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(5.10) cannot be lifted if only image shapes are used. However, the magnification
transforms like . .

W(6) =A"2u(®), (5.11)
so that the degeneracy can be lifted if magnification effects are taken into account
(see Sect. 4.4).

The invariance transformation leaves the critical curves of the lens mapping in-
variant. Therefore, even the location of giant luminous arcs which roughly trace
the critical curves does not determine the scaling conatantaddition, the curve

K = lisinvariant under (5.10). However, there are at least two ways to constrain
First, it is reasonable to expect that on the whole the surface mass density in clus-
ters decreases with increasing separation from the cluster ‘centre’, sb that
Second, since the surface mass densiig non-negative, upper limits ok are
obtained by enforcing this condition.

5.2.3 Finite—Field Inversion Techniques

We shall now turn to the problem that the inversion (5.4) in principle requires data
on the whole sky, whereas the available data field is finite. A simple solution of this
problem has been attempted by Seitz & Schneider (1995a). They extrapolated the
measured shear field on the finite regtthoutside the data field, using a param-
eterised form for the radial decrease of the shear. From a sample of numerically
generated cluster mass profiles, Bartelmann (1995a) showed that this extrapolation
yields fairly accurate mass distributions. However, in these studies the cluster was
always assumed to be isolated and placed close to the centre of the data field. If
these two conditions are not met, the extrapolation can produce results which are
significantly off. In order to remove the boundary artefacts inherent in applying
(5.4) to a finite field, one should therefore aim at constructing an unbiased finite-
field inversion method.

The basis of most finite-field inversions is a result first derived by Kaiser (1995).
Equation (3.12, page 49) shows that shear and surface mass density are both given
as second partial derivatives of the deflection potertigdfter partially differenti-

ating (3.12, page 49) and combining suitable terms we find

+ -
o= %2 ) Za@). (5.12)

Y21—VY1.2

The gradient of the surface mass density can thus be expressed by the first deriva-
tives of the shear, hene&B) can be determined, up to an additive constant, by in-
tegrating (5.12) along appropriately selected curves. This can be done in the weak
lensing case where the observed smoothed ellipticity feltB) can be identified
withy, andciy(é) can be constructed by finite differencing. If we insest (1—K)g

into (5.12), we find after some manipulations
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—

=y(0) | (5.13)

where

K(8) =In[1—k(8)]. (5.14)
Hence, using the smoothed ellipticity figle} (6) as an unbiased estimator fy(6),
and assuming a sub-critical cluster, one can obtain the vectorug(aﬁij by finite
differencing, and thus determin’@(é) up to an additive constant from line integra-

—

tion, or, equivalently, - k(6) up to an overall multiplicative constant. This is again
the invariance transformation (5.10).

In principle, it is now straightforward to obtaiq(8) from the vector field:iy(é), or

- -

K(0) from Uy(6), simply by a line integration of the type

—

—

- = — e —
<(8.80) = (Bo) + [, o0, (5.15)
0

wherel is a smooth curve connectiffignith 8. If Ty is a gradient field, as it ideally

is, the resulting surface mass density is independent of the choice of the Eurves
However, sincel, is obtained from noisy data (at least the noise resulting from the
intrinsic ellipticity distribution), it will in general not be a gradient field, so that
(5.12) has no solution. Therefore, the various line integration schemes proposed
(Schneider 1995, Kaiser et al. 1994, Bartelmann 1995a) yield different results.

Realising that eq. (5.12) has no exact solution for an observedijelde wish to

-

find a mass distributior(8) which satisfies (5.12) ‘best’. In generél,can be split

into a gradient field and a curl component, but this decomposition is not unique.
However, as pointed out in Seitz & Schneider (1996), since the curl component
is due to noise, its mean over the data field is expected to vanish. Imposing this
condition, which determines the decomposition uniquely, they showed that

K(B)— K — /ﬂ o260/ A (8,8) -u,(8) , (5.16)

wherek is the average af(6) over the data field1, and the kernefi is the gradient

of a scalar function which is determined through a von Neumann boundary value
problem, with singular source term. This problem can be solved analytically for
circular and rectangular data fields, as detailed in the Appendix of Seitz & Schnei-
der (1996). If the data field has a more complicated geometry, an analytic solution
is no longer possible, and the boundary value problem with a singular source term
cannot be solved numerically.

An alternative method starts with taking the divergence of (5.12) and leads to the
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new boundary value problem,
[’k =0-0, with A-Ok=n-t, on 44U, (5.17)

whereni is the outward-directed normal on the boundarytbfAs shown in Seitz

& Schneider (1998), eqgs. (5.16) and (5.17) are equivalent. An alternative and very
elegant way to derive (5.17) has been found by Lombardi & Bertin (1998a). They
noticed that the ‘best’ approximation to a solution of (5.12) minimises the ‘action’

/ o268 |k (8) — 0, (8) 2. (5.18)
u

Euler's equations of the variational principle immediately reproduce (5.17). This
von Neumann boundary problem is readily solved numerically, using standard nu-
merical techniques (see Sect. 19.5 of Press et al. 1986). Lombardi & Bertin (1999a)
proposed a direct method for solving the variational principle (5.18) which, for
rectangular fields, is equivalent to Fourier methods for the solution of the Neumann
problem (5.17).

A comparison between these different finite-field inversion equations was per-
formed in Seitz & Schneider (1996) and in Squires & Kaiser (1996) by numerical
simulations. Of all the inversions tested, the inversion (5.17) performs best on all
scales (Seitz & Schneider 1996; Fig. 6 of Squires & Kaiser 1996). Indeed, Lom-
bardi & Bertin (1998a) showed analytically that the solution of eq. (5.17) provides
the best unbiased estimate of the surface mass density. The relations (5.15) through
(5.18) can be generalised to the non-weak case by replaonith K andty with

dg.

5.2.4 Accounting for a redshift distribution of the sources

We now describe how the preceding mass reconstructions must be modified if the
sources have a broad redshift distribution. In fact, only minor modifications are
needed. The relatiofe) = g for a single source redshift is replaced by eq. (4.28),
which gives an estimate for the shear in terms of the mean image ellipticities and
the surface mass density. This relation can be applied iteratively:

Begin withk(© = 0; then, eq. (4.28) yields a first guess for the sh&H(8) by
settingy = 0 on the right-hand side. From (5.16), or equivalently by solving (5.17),
the corresponding surface mass denglfy(8) is obtained. Inserting? andy

on the right-hand side of eq. (4.28), a new estiny&&6) for the shear is obtained,
and so forth.

This iteration process quickly converges. Indeed, the difficulty mentioned in foot-
note 9 (page 91) no longer occurs since the critical curves and the cutve(sare
effectively smeared out by the redshift distribution, and so the iteration converges
even faster than in the case of a single source redshift.
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Sincek (™ is determined only up to an additive constant for g, the solution of
the iteration depends on the choice of this constant. Hence, one can obtain a one-
parameter family of mass reconstructions, like in (5.10). However, the resulting
mass-sheet degeneracy can no longer be expressed analytically due to the complex
dependence of (4.28) anandy. In the case of weak lensing, it corresponds to
adding a constant, as before. An approximate invariance transformation can also
be obtained explicitly for mildly non-linear clusters with<s 0.7 and ded > 0
everywhere. In that case, eq. (4.29) holds approximately, and can be used to show
(Seitz & Schneider 1997) that the invariance transformation takes the form

K(8) — K'(8) :)\K(_é)—l—(i. (5.19)

In case of a single redshift, such tha¥Z(z) = (Z), this transformation reduces to
(5.10) for(Z)k.

We point out that the invariance transformation (5.19) in the case of a redshift dis-
tribution of sources is of different nature than that for a single source redshift. In
the latter case, the reduced shg@) is invariant under the transformation (5.10).
Therefore, the probability distribution of the observed galaxy ellipticities is invari-
ant, since it involves only the intrinsic ellipticity distribution agdFor a redshift
distribution, the invariance transformation keeps the mean image ellipticities invari-
ant, but the probability distributions are changed. Several strategies were explored
in Seitz & Schneider (1997) to utilise this fact for breaking the invariance transfor-
mation. (See also Lombardi & Bertin 1999b and Gautret et al. 2000.) While possi-
ble in principle, the corresponding effect on the observed ellipticity distribution is
too small for this approach to be feasible with existing data.

5.2.5 Breaking the Mass-Sheet Degeneracy

Equation (5.11) shows that the invariance transformation (5.10) affects the magni-
fication. Hence, the degeneracy can be lifted with magnification information. As
discussed in Sect. 4.4, two methods to obtain magnification information have been
proposed. Detections of the number-density effect have so far been reported for two
clusters (Cl 0024+16, Fort et al. 1997; Abell 1689, Taylor et al. 1998). Whereas the
information provided by the number density effect is less efficient than shear mea-
surements (see Sect. 4.4.3), these two clusters appear to be massive enough to allow
a significant detection. In fact, Taylor et al. (1998) obtained a two-dimensional mass
reconstruction of the cluster A 1689 from magnification data.

In the case of weak lensing, and thus small magnifications, the magnification can
locally be translated into a surface mass density — see (4.44). In general, the re-
lation betweeru andk is non-local, sinceu also depends on the shear. Various

attempts to account for this non-locality have been published (van Kampen 1998,
Dye & Taylor 1998). However, it must be noted that the surface mass density can-
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not be obtained from magnification alone since the magnification also depends on
the shear caused by matter outside the data field. In practice, if the data field is
sufficiently large and no mass concentration lies close to but outside the data field,
the mass reconstruction obtained from magnification can be quite accurate.

In order to break the mass-sheet degeneracy, it suffices in principle to measure one
value of the magnification: Either the magnification at one location in the cluster,
or the average magnification over a region. We shall see later in Sect. 5.5.1 how
local magnification information can be combined with shear measurements. Doing
it the naive way, expressing in terms ofy andy, is a big waste of information:
Since there is only one independent scalar field (namely the deflection potgntial
describing the lens, one can make much better use of the measuremeiatsdof

{ than just combining them locally; the relation between them should be used to
reduce the error oR.

5.2.6 Accuracy of cluster mass determinations

The mass-sheet degeneracy fundamentally limits the accuracy with which cluster
masses can be determined from shear measurements if no additional assumptions
are introduced. Furthermore, cosmologists are traditionally interested in the masses
of clusters inside spherical volumes (e.g., inside the virial radius), whereas lensing
measures the mass in cylinders, i.e., the projected mass. On the other hand, cosmo-
logical simulations show that cluster mass profiles are quite similar in shape (e.g.,
Navarro et al. 1996b). Assuming such a universal density profile, both of these
effects can approximately be accounted for.

The relation between projected mass within the virial radius and that inside a sphere
with virial radius has been investigated by Reblinsky & Bartelmann (1999a) and
Metzler et al. (1999), using numerical cluster simulations. The ratio of these two
masses is by definitiot> 1, but as these authors show, this ratio can be larger
than unity by several tens of a per cent, due to projection of additional mass in
front of or behind the cluster proper. As clusters are preferentially located inside
filaments, the largest deviations occur when the filament is oriented along the line-
of-sight to the cluster. The amplitude of this effect decreases with higher cluster
masses. The projection bias is of interest only when comparing lensing masses with
cosmological predictions of spherical masses. However, at least when cosmological
predictions are derived from numerical simulations, one can equally well extract
the projected masses; the projection bias therefore does not affect the use of cluster
mass estimates from lensing for cosmology.

Using cluster mass models obtained frdwbody simulations, Brainerd et al.
(1999) showed that, when the observed shear signal is related to the mass using
the isothermal relation (cf. Sect. 3.18)g(< r) = 4r?y(r)a., for the mass inside
spheres of radius or M,(< r) = 2rry(r) 2, for the projected mass inside= Dy6,
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fairly accurate masses of clusters can be derived from weak lensing. In particular,
the virial masses of clusters can be determined with high accuracy, provided the
shear measurements extend to such large distances. Whereas most of the previous
weak-lensing cluster studies, as described in Sect. 5.4, do not cover such large an
area, the upcoming wide-field imaging cameras will allow one to do this in the near
future. Nevertheless, the projection bias needs to be kept in mind when masses
of clusters are quoted from weak-lensing analyses using relatively small angular
fields.

5.3 Aperture Mass and Multipole Measures

Having reconstructed the mass distribution, we can estimate the local dispersion
of K (e.g., Lombardi & Bertin 1998a, van Waerbeke 2000); cf. eq. (5.7). However,
the errors at different points are strongly correlated, and so it makes little sense to
attach an error bar to each point of the mass map. Although mass maps contain
valuable information, it is sometimes preferable to reduce them to a small set of
numbers such as the mass-to-light ratio, or the correlation coefficient between the
mass map and the light distribution. One of the quantities of interest is the total
mass inside a given region. As became clear in the last section, this quantity by
itself cannot be determined from observed image ellipticities due to the invariance
transformation. But a quantity related to it,

2(6;91,92) =K(8;91) —K(8;91,92) , (5.20)

the difference between the mean surface mass densities in a circle of fadius
around® and in an annulus of inner and outer raflii and 95, respectively, can

be determined in the weak-lensing case, since then the invariance transformation
corresponds to an additive constankiwhich drops out of (5.20). We show in this
section that quantities like (5.20) can directly be obtained from the image elliptic-
ities without the need for a two-dimensional mass map. In Sect. 5.3.1, we derive a
generalised version of (5.20), whereas we consider the determination of mass mul-
tipoles in Sect. 5.3.2. The prime advantage of all these aperture measures is that the
error analysis is relatively straightforward.

5.3.1 Aperture Mass Measures

Generally, aperture mass measures are weighted integrals of the local surface mass
density,

Map(Bo) = / 20K (B)U (B—Bo) , (5.21)

-

with weight functionU (8). Assume now that the weight function is constant on
self-similar concentric curves. For example, thetatistics (5.20), introduced by
Kaiser (1995), is of the form (5.21), with a weight function that is constant on
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circles,U(9) = (192) 1 for 0< 9 <81, U(9) = [m(93—-92] L for 81 <9 < 9y,
and zero otherwise.

Let the shape of the aperture be described by a closed cikyeA € |, where
| is a finite interval, such that x €= c1¢; — cx¢p > 0 for all A € 1. We can then
uniquely define a new coordinate systém\) by choosing a centréy and defining
6 = 8o+ b&()). The weight function should be constant on the cui(@s so that
it depends only ot. In the new coordinate system, (5.21) reads

Map(B0) = /0 " db bU(b) fi o\ € x & [Bo+beE(M)] (5.22)

where the factob@ x € is the Jacobian determinant of the coordinate transforma-
tion. Equation (5.22) can now be transformed in three steps; first, by a partial inte-
gration with respect tb; second, by replacing partial derivativeskowith partial
derivatives ofy using eq. (5.12); and third by removing partial derivativey of
another partial integration. In carrying out these steps, we assume that the weight
function is compensated,

/dbbU(b) —0. (5.23)
Introducing
b
Q(b) = é /0 db'b'U (b') — U (b) (5.24)

and writing the curvee in complex notationC(A) = c1(A) +icz(A), leads to the
final result (Schneider & Bartelmann 1997)

MaglBo) = [ POQIDE) % , (5.25)

where the argumentof C is to be evaluated at positigh= 6o+ b&(\).[™° The nu-
merator in the final term of (5.25) projects out a particular component of the shear,
whereas the denominator is part of the Jacobian of the coordinate transformation.
The constraint (5.23) assures that an additive constantioes not affecva,. The
expression (5.25) has several nice properties which render it useful:

(1) Ifthe functionU (b) is chosen such that it vanishes for by, then from (5.23)
and (5.24)Q(b) = 0 for b > b,. Thus, the aperture mass can be derived from
the shear in a finite region.

(2) If U(b) = const for 0< b < by, thenQ(b) = 0 in that interval. This means
that the aperture mass can be determined solely from the shear in an annulus
b; < b < by. This has two advantages which are relevant in practice. First,
if the aperture is centred on a cluster, the bright central cluster galaxies may
prevent the detection of a large number of faint background galaxies there,

10 There are of course other ways to derive (5.25), e.g. by inserting (5.4) into (5.21). See
Squires & Kaiser (1996) for a different approach using Gauss’s law.
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so that the shear in the central part of the cluster may be difficult to measure.
In that case it is still possible to determine the total mass inside the cluster
core using (5.25) with an appropriately chosen weight functiorSecond,
although in general the shear cannot be determined directly from the image
ellipticities [but only the reduced shegfl — k)], we can choose the size

b, of the inner boundary of the annulus sufficiently large that 1 in the
annulus, and they =~ g is an accurate approximation. Hence, in that case
the mean image ellipticity directly yields an estimate of the shear. Then, the
integral (5.25) can be transformed into a sum over galaxy images lying in the
annulus, yieldindVp directly in terms of the observables. This in turn has the
great advantage that an error analysid/gf is fairly simple.

We consider circular apertures as an example, for wibch) = (6,¢) andC(¢) =

exp(i¢). Then,(C*C) =1, and

O(YC'C") = i(8;80) := — [y1c0429) + y25sin(2)] = —O[y(8+Bo)e >?]
(5.26)
\Lvhere we have defined th@ngential componeryt of the shear relative to the point
B9. Hence, for circular apertures (5.25) becomes

Mw@»:/fmm@méﬁ@ (5.27)

(Kaiser etal. 1994; Schneider 1996b). Wastatistics (5.20) is obtained from (5.27)
by settingQ(8) = 956~2 [(92 — 9%)] “for 9, < 0 <9, andQ(8) = 0 otherwise,
so that

- =

- 95 ;0
((60;91,92) = m/ dzeyt(@zo) : (5.28)

where the integral is taken over the annuiys< 6 < 9.

For practical purposes, the integral in (5.27) is transformed into a sum over galaxy
images. Recalling thatis an estimator foy in the weak-lensing case, and that the
weight function can be chosen to avoid the strong-lensing regime, we can write

Ma(Bo) = = ¥ QU[8i — Bol) e (Bo) (529

where we have defined, in analogy\ﬁothg tangential componeg of the ellip-
ticity of an image ab; relative to the poinég by

g = —(ee 2%y (5.30)

¢ is the polar angle 0b — 6y, andn is the number density of galaxy images. The
rms dispersiona(Map) of Mgy in the case of no lensing is found from the (two-
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dimensional) dispersioo; of the intrinsic ellipticity of galaxies,

1/2
0(Map) = % [Z Q*(|6 —éol)] : (5.31)

Thermsdispersion in the presence of lensing will deviate only weakly fogiviap)

as long as the assumption of weak lensing in the annulus is satisfied. ldéNligg)

can be used as an error estimate for the aperture mass and as an estimate for the
signal-to-noise ratio of a mass measurement.

This opens the interesting possibility to search for (dark) mass concentrations using
the aperture mass (Schneider 1996b). Consider a weight funétwith the shape

of a Mexican hat, and a data fiel{d on which apertures of angular siBecan be
placed. For each aperture position, one can calciaieand the dispersion. The
dispersion can be obtained either from the analytical formula (5.31), or it can be
obtained directly from the data, by randomising the position angles of all galaxy
images within the aperture. The dispersion can be obtained from many realisations
of this randomisation process. Large valued/gf, will be obtained for mass con-
centrations whose characteristic size and shape is close to that of the chosen filter
functionU. Thus, by varying the siz@ of the filter, different mass concentrations

will preferentially be selected. The aperture mass is insensitive to mass concentra-
tions of much smaller and much larger angular scales than the filter size.

We have considered in Sect. 4.5 the signal-to-noise ratio for the detection of a sin-
gular isothermal sphere from its weak lensing effect. The estimate (4.54) was ob-
tained by an optimal weighting scheme for this particular mass distribution. Since
real mass concentrations will deviate from this profile, and also from the assumed
symmetry, the filter functiokl should have a more generic shape. In that case, the
S/N will have the same functional behaviour as in (4.54), but the prefactor depends
on the exact shape &f. For the filter function used in Schneider (1996b), S/N is
about 25% smaller than in (4.54). Nevertheless, one expects that the aperture-mass
method will be sensitive to search for intermediate-redshift halos with characteris-
tic velocity dispersions above 600kms ™.

This expectation has been verified by numerical simulations, which also contained
larger and smaller scale mass perturbations. In addition, a detailed strong-lensing
investigation of the cluster MS 15352 has shown that its velocity dispersion is
very close to~ 600kms™t, and it can be seen from the weak-lensing image distor-
tion alone with very high significance (Seitz et al. 1998b), supporting the foregoing
guantitative prediction. Thus, this method appears to be a very promising way to
obtain amass-selectesample of halos which would be of great cosmological inter-
est (cf. Reblinsky & Bartelmann 1999b). We shall return to this issue in Sect. 6.7.2.
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5.3.2 Aperture Multipole Moments

Since it is possible to express the weighted mass within an aperture as an integral
over the shear, with the advantage that in the weak lensing regime this integral
can be replaced by a sum over galaxy ellipticities, it is natural to ask whether a
similar result holds for multipole moments of the mass. As shown in Schneider &
Bartelmann (1997), this is indeed possible, and we shall briefly outline the method
and the result.

Consider a circular apertUfd centred on a poirflp. LetU (|6]) be a radial weight
function, and define thi-th multipole moment by

o) 21 . _ —
Qi = / dee™1u (o) / d €0 k(B + ) . (5.32)
0 0

This can be replaced by an integral oyen two ways: (5.32) can be integrated by
parts with respect t¢ (for n £ 0), or with respect t@®, again utilising (5.12). The
resulting expressions are assumed to contain no boundary terms, which restricts
the choice for the weight functidd (6). The remaining integrals then contain par-

tial derivatives ofk with respect tap and 8, respectively. Writing (5.12) in polar
coordinates, these partial derivatives can be replaced by partial derivatives of the
shear components with respectit@nd®. Integrating those by parts with respect

to the appropriate coordinate, and enforcing vanishing boundary terms, we find two
different expressions for tH@(":

Qpo = / o200y '5(8) v(Bo+6) . (5.33)

The two expressions fai™ are formally very different, although it can be shown

that the resulting two expressions fQf" are equivalent. The two very different
equations for the same result are due to the fact that the two components of the shear
y are not mutually independent, which was not used in the derivation of (5.33).

We now have substantial freedom to choose the weight function and to select one
of the two expressions fa@@", or even to take a linear combination of them. We
note the following interesting examples:

(1) The weight functiord (8) can be chosen to vanish outside an annulus, to be
piece-wise differentiable, and to be zero on the inner and outer boundary of
the annulus. Th®" for n+ 0 can then be expressed as integrals of the shear
over the annulus, with no further restrictions dn In particular,U (6) does
not need to be a compensated weight function.

(2) U(B) can be a piece-wise differentiable weight function which is constant for
0 < 01, and decreases smoothly to zer®at 6, > 8;. Again, Q" forn# 0

1 The method is not restricted to circular apertures, but this case will be most relevant for
measuring multipole moments.
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can be expressed as an integral of the shear in the arfiyiu® < 6,. Hence,
as for the aperture mass, multipole moments in the inner circle can be probed
with the shear in the surrounding annulus.

(3) One can choose, far> 2, a piece-wise differentiable weight functioh(0)
which behaves likéd=2" for 6 > 6, and decreases to zero &t 6; < 6.
In that case, the multipole moments of the matter outside an annulus can be
probed with data inside the annulus.

For practical applications, the integral in (5.33) is replaced by a sum over galaxy
ellipticities. The dispersion of this sum is easily obtained in the absence of lensing,
with an expression analogous to (5.31). Therefore, the signal-to-noise ratio for the
multipole moments is easily defined, and thus also the significance of a multipole-
moment detection.

5.4 Application to Observed Clusters

Soon after the parameter-free two-dimensional mass reconstruction was suggested
by Kaiser & Squires (1993), their method was applied to the cluster MS 1224
(Fahlman et al. 1994). Since then, several groups have used it to infer the mass pro-
files of clusters. In parallel to this, several methods have been developed to measure
the shear from CCD data, accounting for PSF smearing and anisotropy, image dis-
tortion by the telescope, noise, blending etc. — see the discussion in Sect. 4.6. We
will now summarise and discuss several of these observational results.

Tyson et al. (1990) made the first attempt to constrain the mass distribution of
a cluster from a weak-lensing analysis. They discovered a statistically significant
tangential alignment of faint galaxy images relative to the centre of the clusters
A 1689 and Cl 1409-52. Their “lens distortion map” obtained from the image
ellipticities yields an estimate of the mass distribution in these clusters. A detailed
analysis of their method is given in Kaiser & Squires (1993). From a comparison
with numerical simulations, Tyson et al. showed that the best isothermal sphere
model for the clusters has a typical velocity dispersiompf- 1300+ 200kms™t

for both clusters. In particular, their analysis showed that diffuse dark matter in the
cluster centres is needed to account for the observed image distortions.

The inversion method developed by Kaiser & Squires (1993) provided a systematic
approach to reconstruct the mass distribution in clusters. It was first applied to
the cluster MS 122420 (Fahiman et al. 1994) at redshiff = 0.33, which had
been selected for its high X-ray luminosity. Their square data field with side-length
~ 14 was composed of several exposures, most of them with excellent seeing.
They estimated the shear from image ellipticities, corrected for the PSF anisotropy,
and applied a correction factdras defined in Sect. 4.6.1. They foufid- 1.5 in
simulations, in very good agreement with Wilson et al. (1996). The resulting shear
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pattern, obtained from 2147 galaxy images, clearly shows a circular pattern around
the cluster centre as defined by the centroid of the optical and X-ray light. Using
the Kaiser & Squires reconstruction method (5.8), Fahiman et al. produced maps
of the dimension-less surface mass denls(@), both by taking all galaxy images

into account, and after splitting the galaxy sample into a ‘brighter’ and ‘fainter’
sample of roughly equal size. Although differing in detail, the resulting mass show
an overall similarity. In particular, the position of the mass centre is very similar in

all maps.

Fahlman et al. applied the aperture mass method to determine the cluster mass —
see (5.21) and (5.29) — in an annulus centred on the cluster centre with inner radius
9, = 2.76 and an outer radius such that the annulus nearly fits into their data field.
The lower limit to the mean surface mass density in the annukiig6’) > { =
0.06+0.013. To convert this into an estimate of the physical surface mass density
and the total mass inside the aperture, the mean distanc®ggtids for the galaxy
population has to be estimated, or equivalently the mean valdesfdefined after
(5.19).

While the redshift distribution is known statistically for the brighter sub-sample
from redshift surveys, the use of the fainter galaxies requires an extrapolation of
the galaxy redshifts. From that, Fahlman et al. estimated the mass within a cylinder
of radius®, = 2.76, corresponding to.@8h~! Mpc for an Einstein-de Sitter cos-
mology, to be~ 3.5 x 101*h~1M.,. This corresponds to a mass-to-light ratio (in
solar units) oM /L ~ 800h. Carlberg et al. (1994) obtained 75 redshifts of galaxies

in the cluster field, of which 30 are cluster members. From their line-of-sight veloc-
ity dispersion, the cluster mass can be estimated by a virial analysis. The resulting
mass is lower by a factor 3 than the weak-lensing estimate. The mass-to-light
ratio from the virial analysis is much closer to typical values in lower-redshift clus-
ters like Coma, which hasl /L ~ 270h—1. The high mass estimate of this cluster
was recently confirmed in a completely independent study by Fischer (1999).

The origin of this large apparent discrepancy is not well understood yet, and sev-
eral possibilities are discussed in Kaiser et al. (1994). It should be pointed out that
lensing measures the total mass inside a cone, weighted by the redshift-dependent
factor DgDgs/Ds, and hence the lensing mass estimate possibly includes substan-
tial foreground and background material. While this may cause an overestimate of
the mass, it is quite unlikely to cause an overestimate of the mass-to-light ratio of
the total material inside the cone. Foreground material will contribute much more
strongly to the light than to the measured mass, and additional matter behind the
cluster will not be very efficient as a lens. The uncertainty in the redshift distribu-
tion of the faint galaxies translates into an uncertainty in the mass. However, all
background galaxies would have to be put at a redshit to explain the mass
discrepancy, while redshift surveys show that the brighter sub-sample of Fahiman
et al. has a mean redshift below unity. The mass estimate is only weakly dependent
on the assumed cosmological model. On the other hand, the light distribution of the
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cluster MS 1224 is not circular, and it cannot be excluded that this cluster is not in
virial equilibrium.

Two images of the cluster Cl 0024.7 were analysed by Bonnet et al. (1994). One
was centred on the cluster itself and yielded the shear in the inner part of the clus-
ter. The second image was off-centred by several arc minutes and allowed, for the
first time, a shear measurement out to large radial distances. They detected a clear
shear signal out to distancgslh~Mpc. In addition, they found an apparent dis-
tortion of the nearly circular shear pattern from the cluster which is most directly
interpreted as a mass concentration. However, it does not show an obvious con-
centration of galaxies. In fact, an X-ray observation of this cluster reveals a weak
X-ray source close to the position where the mass concentration was seen in the
shear map (Soucail et al. 2000), although with marginal significance. This cluster
(atz=0.39) hosts a giant arc system and has an Einstein radits36f'; together

with the redshift oz= 1.675 of the arc (Broadhurst et al. 2000), this indicates that
the cluster is indeed very massive. Despite that, the cluster is a comparatively faint
and cool X-ray source, indicating a clear and interesting discrepancy between mass
estimates from the X-rays and both strong and weak lensing.

Squires et al. (1996a) compared the mass profiles derived from weak lensing data
and the X-ray emission of the cluster A 2218. Under the assumption that the hot
X-ray-emitting intra-cluster gas is in hydrostatic equilibrium between gravity and
thermal pressure support, the mass profile of the cluster can be constrained. The re-
constructed mass map qualitatively agrees with the optical and X-ray light distribu-
tions. Using the aperture mass estimate, a mass-to-light ratig b= (440+80) h

in solar units is found. The radial mass profile appears to be flatter than isothermal.
Within the error bars, it agrees with the mass profile obtained from the X-ray anal-
ysis, with a slight indication that at large radii the lensing mass is larger than the
mass inferred from X-rays.

Abell 2218 also contains a large number of arcs and multiply-imaged galaxies
which have been used by Kneib et al. (1996) to construct a detailed mass model
of the cluster’s central region. In addition to the main mass concentration, there is
a secondary clump of cluster galaxies whose effects on the arcs is clearly visible.
The separation of these two mass centres’is @hereas the resolution of the weak
lensing mass map as obtained by Squires et al. is not sufficient to reveal a distinct
secondary peak, the elongation of the central density contours extend towards the
secondary galaxy clump.

General agreement between the reconstructed mass map and the distribution of
cluster galaxies and X-ray emission has also been found for the two clusters
Cl 1455+22 (z= 0.26) and Cl 0016-16 (z= 0.55) by Smail et al. (1995a). Both

are highly X-ray luminous clusters in theinsteinExtended Medium Sensitivity
Survey (EMSS; Stocke et al. 1991). The orientation and ellipticity of the central
mass peak is in striking agreement with those of the galaxy distribution and the X-
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ray map. However, the authors find some indication that the mass is more centrally
condensed than the other two distributions. In addition, given the finite angular res-
olution of the mass map, the core size derived from weak lensing is most likely
only an upper bound to the true value, and in both clusters the derived core size is
significantly larger than found in clusters with giant luminous arcs (see, e.g., Fort
& Mellier 1994).

The mass-to-light ratios for the two clusters ar&000h and~ 740h, respectively.
However, at least for Cl 001616, the mass scale is fairly uncertain, owing to the
high cluster redshift and the unknown redshift distribution of the faint galaxies. The
mean value oDys/Ds must be estimated from an assumed distribup@z).

The unprecedented imaging quality of the refurbisitable Space Telescope
(HST) can be used profitably for weak lensing analyses. Images taken with the
Wide Field Planetary Camera@VFPC2) have an angular resolution of ordet’Q
limited by the pixel size. Because of this superb resolution and the lower sky back-
ground, the number density of galaxy images for which a shape can reliably be
measured is considerably larger than from the ground, so that higher-resolution
mass maps can be determined. The drawback is the small field covered by the
WFPC2, which consists of 3 CCD chips with"8§ide-length each. Using the first
publicly available deep image of a cluster obtained with the WFPC2, Seitz et al.
(1996) have constructed a mass map of the cluster CI-0939z = 0.41). Fig-

ure 14 clearly shows a mass peak near the left boundary of the frame shown. This
maximum coincides with the cluster centre as determined from the cluster galaxies
(Dressler & Gunn 1992). Furthermore, a secondary maximum is clearly visible in
the mass map, as well as a pronounced minimum. When compared to the optical
image, a clear correlation with the bright (cluster) galaxies is obvious. In particular,
the secondary maximum and the minimum correspond to the same features in the
bright galaxy distribution. A formal correlation test confirms this similarity. Apply-

ing the maximume-likelihood mass reconstruction technique (Seitz et al. 1998c; see
Sect. 5.4) to the same HST image, Geiger & Schneider (1999) constructed a higher-
resolution map of this cluster. The angular resolution achieved is much higher in
the cluster centre, predicting a region in which strong lensing effects may occur.
Indeed, Trager et al. (1997) reported on a highly elongated arc and a triple image,
with both source galaxies having a redshif 3.97.

The X-ray map of this cluster (Schindler & Wambsganss 1997) shows that the two
mass peaks are also close to two X-ray components. The determination of the total
mass inside the WFPC2 frame is difficult, for two reasons: First, the high redshift of
the cluster implies that the mean valuelnfs/Ds depends quite sensitively on the
assumed redshift distribution of the background galaxies. Second, the small field of
the WFPC2 precludes the measurement of the surface mass density at large distance
wherek tends to zero, and thus the mass-sheet degeneracy implies a considerable
uncertainty in the mass scale. Attempting to lift the mass sheet degeneracy with
the number-density effect — see Sect. 4.4.1 —, a mass-to-light ratid26Dh was
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Fig. 14.Left panelWFPC2 image of the cluster Cl0984713 (A 851); North is at the bot-

tom, East to the right. The cluster centre is located at about the upper left corner of the left
CCD, a secondary maximum of the bright (cluster) galaxies is seen close to the interface of
the two lower CCDs, and a minimum in the cluster light is at the interface between the two
right CCDs. In the lensing analysis, the data from the small CCD (the Planetary Camera)
were not usedRight panelThe reconstructed mass distribution of A 851, assuming a mean
redshift of theN = 295 galaxies with 24 R < 255 of (z) = 1. (from Seitz et al. 1996)

derived within the WFPC2 aperture. This value is also affected by the unknown
fraction of cluster members in the catalog of faint galaxies. Seitz et al. (1996) as-
sumed that the spatial distribution of faint cluster galaxies follows that of brighter
cluster galaxies. The striking difference between MhA ratios for this and the
other clusters described above may be related to the fact that Ch@d93@ the
highest-redshift cluster in the Abell catalog (A 851). Hence, it was selected by its
high optical luminosity, whereas the previously mentioned clusters are all X-ray
selected. The X-ray luminosity of Cl 093947 is fairly small for such a rich cluster
(Schindler & Wambsganss 1996). Since X-ray luminosity and cluster mass are gen-
erally well correlated, the smalll /L-ratio found from the weak lensing analysis is

in agreement with the expectations based on the high optical flux and the low X-
ray flux. Note that the large spread of mass-to-light ratios as found by the existing
cluster mass reconstructions is unexpected in the frame of hierarchical models of
structure formation and thus poses an interesting astrophysical problem.

Hoekstra et al. (1998) reconstructed the mass distribution in the cluster
MS 1358+62 from a mosaic of HST images, so that their data field in substantially
larger than for a single HST pointing (about>88'). This work uses the correc-

tion method presented in Sect. 4.6.2, thus accounting for the relatively strong PSF
anisotropy at the edges of each WFPC2 chip. A weak-lensing signal ol&Npt

is found. The X-ray mass is found to be slightly lower than the dynamical mass
estimate, but seems to agree well with the lensing mass determination.
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Luppino & Kaiser (1997) found a surprisingly strong weak-lensing signal in the
field of the high-redshift cluster MS 105403 (z = 0.83). This implies that the
sheared galaxies must have an appreciably higher redshift than the cluster, thus
strongly constraining their redshift distribution. In fact, unless the characteristic
redshift of these faint background galaxieszisl.5, this cluster would have an
unrealistically large mass. It was also found that the lensing signal from the bluer
galaxies is stronger than from the redder ones, indicating that the characteristic
redshift of the bluer sample is higher. In fact, the mass estimated ass{mgirg

1.5 agrees well with results from analyses of the X-ray emission (Donahue et al.
1998) and galaxy kinematics (Tran et al. 1999).

Using an HST mosaic image in two filters, Hoekstra et al. (2000a) also studied
MS 1054. They found a tangential distortion which is smaller than that obtained
by Luppino & Kaiser (1997) by about a factor of 1.5, but fairly well in agree-
ment with that obtained by Clowe et al. (2000) from Keck imaging. They esti-
mated the redshift distribution of the background galaxies from the photometric
redshifts obtained in the Hubble Deep Fields, both as a function of magnitude and
of colour. This enabled them to study the relative lensing strefitlas a func-

tion of these two observables, finding, as expected, the lensing strength increasing
towards fainter magnitudes and, in agreement with Luppino & Kaiser (1997) and
Clowe et al. (2000), with bluer colour. The estimated mass is in very good agree-
ment with that obtained from the X-ray temperature of this cluster. The mass map
shows three distinct peaks which are in good correspondence with the observed dis-
tribution of cluster galaxies. Clowe et al. (1998) derived weak lensing maps for two
additional clusters &~ 0.8, namely MS 113766 atz= 0.783 and RXJ 171667
atz=0.813.

The large-format CCD cameras allow weak-lensing studies of low-redshift clusters
which subtend a larger solid angle on the sky. As a first example, Joffre et al. (2000)
obtained the mass map for the cluster Abell 3687 (0.055). Investigations of
low-redshift clusters are particularly useful since for them more detailed X-ray and
optical information is available than for higher-redshift ones.

The mass distribution in the supercluster MS 08Q@Z atz = 0.42 was recon-
structed by Kaiser et al. (1998) in a wide-field image of sizZ&0'. The supercluster
consists of three clusters which are very close together on the sky and in redshift.
The image contains about 30,000 galaxies from which a shear can be measured.
This shear was found to correlate strongly with the distribution of the early-type
(foreground) galaxies in the field, provided that the overall mass-to-light ratio is
about 250. Each of the three clusters, which are also seen in X-rays, is recov-
ered in the mass map. The ratios between mass and light or X-ray emission differ
slightly across the three clusters, but the differences are not highly significant.

A magnification effect was detected from the depletion of the number counts (see
Sect. 4.4.1) in two clusters. Fort et al. (1997) discovered that the number den-
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sity of very faint galaxies drops dramatically near the critical curve of the cluster
Cl 0024+16, and remains considerably lower than the mean number density out to
about twice the Einstein radius. This is seen in photometric data with two filters.
Fort et al. (1997) interpret this broad depletion curve in terms of a broad redshift
distribution of the background galaxies, so that the location of the critical curve of
the cluster varies over a large angular scale. A spatially-dependent number deple-
tion was detected in the cluster A 1689 by Taylor et al. (1998).

These examples should suffice to illustrate the current status of weak lensing clus-
ter mass reconstructions. For additional results, see Squires et al. (1996b), Squires
et al. (1997), Fischer et al. (1997), Fischer & Tyson (1997), and Athreya et al.
(1999). Many of the difficulties have been overcome; e.g., the method presented in
Sect. 4.6.2 appears to provide an accurate correction method for PSF effects. The
quantitative results, for example for tMe/L-ratios, are somewhat uncertain due to

the lack of sufficient knowledge on the source redshift distribution, which applies

in particular to the high-redshift clusters.

Further large-format HST mosaic images either are already or will soon become
available, e.g. for the clusters A 2218, A 1689, and MS 10B3. Their analysis

will substantially increase the accuracy of cluster mass determinations from weak
lensing compared to ground-based imaging.

5.5 Outlook

We have seen in the preceding subsection that first results on the mass distribution
in clusters were derived with the methods described earlier. Because weak lensing
is now widely regarded as the most reliable method to determine the mass distri-
bution of clusters, since it does not rely on assumptions on the physical state and
symmetries of the matter distribution, further attempts at improving the method are
in progress, and some of them will briefly be outlined below.

In particular, we describe a method which simultaneously accounts for shear and
magnification information, and which can incorporate constraints from strong-
lensing features (such as arcs and multiple images of background sources). A
method for the determination of the local shear is described next which does not
rely on the detection and the quadrupole measurement of individual galaxies, and
instead makes use of the light from very faint galaxies which need not be individu-
ally detected. We will finally consider the potential of weak lensing for determining
the redshift distribution of galaxies which are too faint to be investigated spectro-
scopically, and report on first results.
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5.5.1 Maximum-Likelihood Cluster Reconstructions

The mass reconstruction method described above is a direct method: The locally
averaged observed image ellipticitiés are inserted into an inversion equation
such as (5.10) to find the mass ma@). The beauty of this method is its sim-
plicity and computational speed. Mass reconstructions from the observed image
ellipticities are performed in a few CPU seconds.

The drawback of this method is its lack of flexibility. No additional information can
be incorporated into the inversion process. For example, if strong-lensing features
like giant arcs or multiple galaxy images are observed, they should be included in
the mass reconstruction. Since such strong-lensing features typically occur in the
innermost parts of the clusters (@t30” from cluster centres), they strongly con-
strain the mass distribution in cluster cores which can hardly be probed by weak
lensing alone due to its finite angular resolution. A further example is the incorpora-
tion of magnification information, as described in Sect. 4.4, which can in principle
not only be used to lift the mass-sheet degeneracy, but also provides local informa-
tion on the shape of the mass distribution.

An additional problem of direct inversion techniques is the choice of the smoothing
scale which enters the weight factaxsn (5.16). We have not given a guideline on
how this scale should be chosen. Ideally, it should be adapted to the data. In regions
of strong shear, the signal-to-noise ratio of a shear measurement for a fixed number
of galaxy images is larger than in regions of weak shear, and so the smoothing scale
can be smaller there.

Recently, these problems have been attacked with inverse methods. Suppose the
mass distribution of a cluster is parameterised by a set of model parameters
These model parameters could then be varied until the best-fitting model for the
observables is found. Considering for example the observed image elliptgities
and assuming a non-critical cluster, the expectation valgeistthe reduced shear

g at the image position, and the dispersion is determined (mainly) by the intrinsic
dispersion of galaxy ellipticitiese. Hence, one can definexd-function

N Z 075 (5.34)

and minimise it with respect to tha,. A satisfactory model is obtained £ is of
orderNg at its minimum, as long as the number of parameters is much smaller than
Ngy. If the chosen parameterisation does not achieve this minimum value, another
one must be tried. However, the resulting mass model will depend on the parameter-
isation which is a serious drawback relative to the parameter-free inversion methods
discussed before.

This problem can be avoided with ‘generic’ mass models. For instance, the deflec-
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tion potentiahp(é) can be composed of a finite sum of Fourier modes (Squires &
Kaiser 1996), whose amplitudes are the paramaigls| The number of Fourier
modes can be chosen such that the resujtfhger degree of freedom is approxi-
mately unity. Additional modes would then start to fit the noise in the data.

Alternatively, the values of the deflection potentjabn a (regular) grid can be used

as thepy. Bartelmann et al. (1996) employed the locally averaged image ellipticities
and the size ratio&w) /(w)o — see (4.47) —on a grid. The corresponding expectation
values of these quantities, the reduced slyesard the magnificatiop, were calcu-

lated by finite differencing of the discretised deflection poteniiéince bottyand

k, and thugy, are unchanged under the transformatig®) — Y (8) + Yo+ a- 6,

the deflection potential has to be kept fixed at three grid points. If no magnification
information is used, the mass-sheet degeneracy allows a further transformation of
Y which leaves the expected image ellipticities invariant, and the potential has to
be kept fixed at four grid points.

A x2-function was defined using the local dispersion of the image ellipticities and
image sizes relative to unlensed sizes of galaxies with the same surface brightness,
and it was minimised with respect to the valuespodn the grid points. The grid
spacing was chosen such that the resulting minimgéimas approximately the cor-

rect value. Tests with synthetic data sets, using a numerically generated cluster mass
distribution, showed that this method reconstructs very satisfactory mass maps, and
the total mass of the cluster was accurately reproduced.

If a finer grid is used, the model for the deflection potential will reproduce noise
features in the data. On the other hand, the choice of a relatively coarse grid which
yields a satisfactory? implies that the resolution of the mass map is constant over
the data field. Given that the signal increases towards the centre of the cluster, one
would like to use a finer grid there. To avoid over-fitting of noise, the maximum-
likelihood method can be complemented by a regularisation term (see Press et al.
1986, Chap. 18). As shown by Seitz et al. (1998c), a maximum-entropy regulari-
sation (Narayan & Nityananda 1986) is well suited for the problem at hand. As in
maximum-entropy image restoration (e.g., Lucy 1994), a prior is used in the en-
tropy term which is a smoothed version of the current density field, and thus is
being adapted during the minimisation. The relative weight of the entropy term is
adjusted such that the resulting minimy#is of order unity per degree of freedom.

In this scheme, the expectation values and dispersions of the individual image el-
lipticities and sizes are found by bi-linear interpolatiork@ndy on the grid which

121t is important to note that the deflection potentjatather than the surface mass density

K (as in Squires & Kaiser 1996) should be parameterised, because shear and surface mass
density depend on the local behaviourynfwhile the sheacannotbe obtained from the

local k, and not even fronk on a finite field. In addition, the local dependencexa@ndy

on Y is computationally much more efficient than calculatyigy integrating ovek as in

Bridle et al. (1998).
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themselves are obtained by finite differencing of the potential. When tested on syn-
thetic data sets, this refined maximum-likelihood method produces mass maps with
considerably higher resolution near the cluster centre without over-fitting the noise
at larger cluster-centric distances. The practical implementation of this method is
somewhat complicated. In particular, if critical clusters are studied, some modifi-
cations have to be included to allow the minimisation algorithm to move critical
curves across galaxy images in the lens plane. However, the quality of the recon-
struction justifies the additional effort, especially if high-quality data from HST
images are available. A first application of this method is presented by Geiger &
Schneider (1999).

Inverse methods such as the ones described here are likely to become the stan-
dard tool for cluster mass profile reconstruction, owing to their flexibility. As men-
tioned before, additional constraints from strong lensing signatures such as arcs and
multiply-imaged sources, can straightforwardly be incorporated into these meth-
ods. The additional numerical effort is negligible compared to the efforts needed to
gain the observational data. Direct inversion methods will certainly retain an impor-
tant role in this field, to obtain quick mass maps during the galaxy image-selection
process (e.g., cuts in colour and brightness can be applied). Also, a mass map ob-
tained by a direct method as a starting model in the inverse methods reduces the
computational effort.

5.5.2 The Auto-Correlation Function of the Extragalactic Background Light

So far, we described how shear can be determined from ellipticities of individual
galaxy images on a CCD. In that context, a galaxy image is a statistically significant
flux enhancement on the CCD covering several contiguous pixels and being more
extended than the PSF as determined from stars. Reducing the threshold for the
signal-to-noise per object, the number density of detected galaxies increases, but
so does the fraction of misidentifications. Furthermore, the measured ellipticity of
faint galaxies has larger errors than that of brighter and larger images. The detection
threshold therefore is a compromise between high number density of images and
significance per individual object.

Even the faintest galaxy images whose ellipticity cannot be measured reliably still
contain information on the lens distortion. It is therefore plausible to use this in-
formation, by ‘adding up’ the faintest galaxies statistically. For instance, one could
co-add their brightness profiles and measure the shear of the combined profiled.
This procedure, however, is affected by the uncertainties in defining the centres of
the faint galaxies. Any error in the position of the centre, as defined in (5.1), will
affect the resulting ellipticity.

To avoid this difficulty, and also the problem of faint object definition at all, van
Waerbeke et al. (1997) have suggested considering the auto-correlation function
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(ACF) of the ‘background’ light. Most of the sky brightness is due to atmospheric
scattering, but this contribution is uniform. Fluctuations of the brightness on the
scale of arc seconds is supposedly mainly due to very faint galaxies. Therefore,
these fluctuations should intrinsically be isotropic. If the light from the faint galax-
ies propagates through a tidal gravitational field, the isotropy will be perturbed, and
this provides a possibility to measure this tidal field.

-

Specifically, ifl (8) denotes the brightness distribution as measured on a CCD, and
| is the brightness averaged over the CCD (or a part of it, see below), the auto-
correlation functiorg,(0) of the brightness is defined as

z(é):<(|(§)—|j (|(§+é)—|j>5, (5.35)

where the average is performed over all pairs of pixels with separétiGmom

the invariance of surface brightness (3.10, page 49) and the locally linearised lens
mapping/ (8) = 1(9(28), one finds that the observed ACF is related to the intrinsic
ACF &9, defined in complete analogy to (5.35), by

£(6) =£9(a6). (5.36)

Thus the transformation from intrinsic to observed ACF has the same functional
form as the transformation of surface brightness. In analogy to the definition of the
guadrupole tensd for galaxy images — see (5.2) — the tensor of second moments
of the ACF is defined as

R HELET:
' JdeE®)

The transformation between the observed quadrupole te¥sand the intrinsic
one, M9, is the same as for the moment tensor of image ellipticities, (345, =
AM A. As shown by van Waerbeke et al. (1997), the terfdodirectly determines
the distortiond,

(5.37)

Ma1— Moo+ 2iM12
M+ Moy

Henced is related toM in the same way as the complex ellipticjtyis related to

Q. In some sense, the ACF plays the role of a single ‘equivalent’ image from which

the distortion can be determined, instead of an ensemble average over individual

galaxy ellipticities.

5= (5.38)

Working with the ACF has several advantages. First, centres of galaxy images do
not need to be determined, which avoids a potential source of error. Second, the
ACF can be used with substantial flexibility. For instance, one can use all galaxy
images which are detected with high significance, determine their ellipticity, and
obtain an estimate @ from them. Sulfficiently large circles containing these galax-
ies can be cut out of the data frame, so that the remaining frame is reminiscent of
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a Swiss cheese. The ACF on this frame provides another estimatenbiich is
independent information and can statistically be combined with the estimate from
galaxy ellipticities. Or one can use the ACF only on galaxy images detected within
a certain magnitude range, still avoiding the need to determine centres.

Third, on sufficiently deep images with the brighter objects cut out as just described,
one might assume that the intrinsic ACF is due to a very large number of faint
galaxies, so that the intrinsic ACF becomes a universal function. This function can
in principle be determined from deep HST images. In that case, one also knows the
width of the intrinsic ACF, as measured by the trace or determinaft pdnd can
determine the magnification from the width of the observed ACF, very similar to
the method discussed in Sect. 4.4.2, but with the advantage of dealing with a single
‘universal source’.

If this universal intrinsic ACF does exist, corrections of the measuvedor a

PSF considerably simplify compared to the case of individual image ellipticities,
as shown by van Waerbeke et al. (1997). They performed several tests on synthetic
data to demonstrate the potential of the ACF method for the recovery of the shear
applied to the simulated images. van Waerbeke et al. determined shear fields of two
clusters, with several magnitude thresholds for the images which were punched out.
A comparison of these shear fields with those obtained from the standard method
using galaxy ellipticities clearly shows that the ACF method is at least competitive,
but since it provides additional information from those parts of the CCD which
are unused by the standard method, it should in be employed any case. The optimal
combination of standard method and ACF still needs to be investigated, but detailed
numerical experiments indicate that the ACF may be the best method for measuring
very weak shear amplitudes (L. van Waerbeke & Y. Mellier, private communica-
tion).

5.5.3 The Redshift Distribution of Very Faint Galaxies

Galaxy redshifts are usually determined spectroscopically. A successful redshift
measurement depends on the magnitude of the galaxy, the exposure time, and the
spectral type of the galaxy. If it shows strong emission or absorption lines, as star-
forming galaxies do, a redshift can much easier be determined than in absence of
strong spectral features. The recently completed Canadian-French Redshift Survey
(CFRS) selected 730 galaxies in the magnitude intervdl £1 < 22.5 (see Lilly

et al. 1995 and references therein). For 591 of them (81%), redshifts were secured
with multi-slit spectroscopy on a 3.6m telescope (CFHT) with a typical exposure
time of ~ 8 hours. Whereas the upcoming 10m-class telescopes will be able to
perform redshift surveys to somewhat fainter magnitude limits, it will be difficult to
secure fairly complete redshift information of a flux-limited galaxy sample fainter
thanl ~ 24. In addition, it can be expected that many galaxies in a flux-limited
sample with fainter threshold will have redshifts betweet.2 and~ 2.2, where
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the cleanest spectral features, the OIl emission line-at3727 nm and the\ =
400 nm break are shifted beyond the region where spectroscopy can easily be done
from the ground.

As we have seen, the calibration of cluster mass distributions depends on the as-
sumed redshift distribution of the background galaxies. Most of the galaxies used
for the reconstruction are considerably fainter than those magnitude limits for
which complete redshift samples are available, so that this mass calibration re-
guires an extrapolation of the redshift distribution from brighter galaxy samples.
The fact that lensing is sensitive to the redshift distribution is not only a source of
uncertainty, but also offers the opportunity to investigate the redshift distribution of
galaxies too faint to be investigated spectroscopically. Several approaches towards
a redshift estimate of faint galaxies by lensing have been suggested, and some of
them have already shown spectacular success, as will be discussed next.

First of all, a strongly lensed galaxy (e.g. a giant luminous arc) is highly magnified,
and so the gravitational lens effect allows to obtain spectra of objects which would
be too faint for a spectroscopic investigation without lensing. It was possible in this
way to measure the redshifts of several arcs, e.g., the giant arc in A 3720724
(Soucail et al. 1988), the arclet A 5 in A 370 at= 1.305 (Mellier et al. 1991),

the giant arc in Cl 224402 atz = 2.237 (Mellier et al. 1991), and the ‘straight
arc’ in A 2390 atz= 0.913 (Pello et al. 1991). For a more complete list of arc
redshifts, see Fort & Mellier (1994). A fair fraction of galaxies with redshif 4

have been found behind clusters, for example two arclet sourezes 405 behind

A 2390 (Frye & Broadhurst 1998, Péllet al. 1999b), two sources atz 3.97
behind Cl 0939-4713 (Trager et al. 1997), and two sources behind MS 1823
which for a few months held the redshift recordzet 4.92 (Franx et al. 1997).

If the cluster contains several strong-lensing features, the mass model can be suffi-
ciently well constrained to determine the arc magnifications (if they are resolved in
width, which has become possible only from imaging with the refurbished HST),
and thus to determine the unlensed magnitude of the source galaxies, some of which
are fainter thaB ~ 25.

Some clusters, such as A 370 and A 2218, were observed in great detail both from
the ground and with HST, and show a large number of strongly lensed images. They
can be used to construct very detailed mass models of the cluster centre (e.g., Kneib
etal. 1993; Kneib et al. 1996). An example is A 2218, in which at least five multiply
imaged systems were detected (Kneib et al. 1996), and several giant arcs were
clearly seen. Refining the mass model for A 2218 constructed from ground-based
data (Kneib et al. 1995) with the newly discovered or confirmed strong lensing
features on the WFPC2 image, a strongly constrained mass model for the cluster
can be computed and calibrated by two arc redshifts (a five-image systes at
0.702, and az = 1.034).
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Up to now, the deepest HST image taken in the direction of a cluster was on A 1689,
perhaps the strongest lensing cluster yet detected (HST proposal number 6004, Pl
J. A. Tyson). This impressive image provides a wealth of strong-lensing features
which should allow the construction of a very detailed mass model for its central
region. In addition, a large-scale, though fairly shallow, image mosaic has been
obtained with HST (HST proposal number 5993, PI N. Kaiser). These two data
sets will yield the most detailed mass profile currently obtainable.

Visual inspection of the WFPC2 image immediately shows a large number of ar-
clets in A 2218, which surround the cluster centre in a nearly perfect circular pat-
tern. These arclets have very small axis ratios, and most of them are therefore highly
distorted. The strength of the distortion depends on the redshift of the correspond-
ing galaxy. Assuming that the sources have a considerably smaller ellipticity than
the observed images, one can then estimate a redshift range of the galaxy.

To be more specific, lgp® (¢(9) be the probability density of the intrinsic source
ellipticity, assumed for simplicity to be independent of redshift. The corresponding
probability distribution for the image ellipticity is then

p(e) = p® (a(s)(£)> det(%ﬁj) , (5.39)

where the transformatiogf® (¢) is given by eq. (4.12, page 61), and the final term

is the Jacobian of this transformation. For each arclet near the cluster centre where
the mass profile is well constrained, the value of the reduced ghsaetermined

up to the unknown redshift of the source — see eq. (4.20, page 64).

One can now try to maximisp(g) with respect to the source redshift, and in that

way find the most likely redshift for the af€] Depending on the ellipticity of the

arclet and the local values of shear and surface mass density, three cases have to be
distinguished: (1) the arclet has the ‘wrong’ orientation relative to the local shear,
i.e., if the source lies behind the cluster, it must be even more elliptical than the
observed arclet. For the arclets in A 2218, this case is very rare. (2) The most prob-
able redshift is ‘at infinity’, i.e., even if the source is placed at very high redshift,

the maximum ofp(g) is not reached. (3)(¢) attains a maximum at a finite redshift.

This is by far the most common case in A 2218.

This method, first applied to A 370 (Kneib et al. 1994), was used to estimate the
redshifts of~ 80 arclets in A 2218 brighter thdR~ 25. Their typical redshifts are
estimated to be of order unity, with the fainter sub-sample RI< 25 extending to
somewhat higher redshifts. For one of them, a redshift raryg 2 < 3.3 was es-
timated, and a spectroscopic redshifzef 2.515 was later measured (Ebbels et al.

13 This simplified treatment neglects the magnification bias, i.e. the fact that at locations of
high magnification the redshift probability distribution is changed — see Sect. 4.3.2.
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1996), providing spectacular support for this method. Additional spectroscopic ob-
servations of arclets in A 2218 were conducted and further confirmed the reliability
of the method for the redshift estimates of individual arclets (Ebbels et al. 1998).

Another success of this arclet redshift estimate was recently achieved in the cluster
A 2390, which can also be modelled in great detail from HST data. There, two
arclets with very strong elongation did not fit into the cluster mass model unless
they are at very high redshift. Spectroscopic redshiftg €f4.05 were recently
measured for these two arclets (Frye & Broadhurst 19980 RekI. 1999a).

However, several issues should be kept in mind. First, the arclets for which a reli-
able estimate of the redshift can be obtained are clearly magnified, and thus the
sample is magnification biased. Since it is well known that the galaxy number
counts are considerable steeper in the blue than in the red (see, e.g., Smail et al.
1995a), blue galaxies are preferentially selected as arclets — see eq. (4.42). This
might also provide the explanation why most of the giant arcs are blue. Therefore,
the arclets represent probably a biased sample of faint galaxies. Second, the redshift
dependence gb(e) enters through the ratibys/Ds. For a cluster at relatively low
redshift, such as A 221&{ = 0.175), this ratio does not vary strongly with redshift
once the source redshift is larger tharl. Hence, to gain more accurate redshift
estimates for high-redshift galaxies, a moderately-high redshift cluster should be
used.

The method just described is not a real ‘weak lensing’ application, but lies on the
borderline between strong and weak lensing. With weak lensing, the redshifts of
individual galaxy images cannot be determined, but some statistical redshift esti-
mates can be obtained. Suppose the mass profile of a cluster has been reconstructed
using the methods described in Sect. 5.2 or Sect. 5.5.1, for which galaxy images
in a certain magnitude range were used. If the cluster contains strong-lensing fea-
tures with spectroscopic information (such as a giant luminous arc with measured
redshift), then the overall mass calibration can be determined, i.e., the {@gter

see Sect. 4.3.2 — can be estimated, which provides a first integral constraint on the
redshift distribution.

Repeating this analysis with several such clusters at different redshifts, further esti-
mates of(Z) with differentDy are obtained, and thus additional constraints on the
redshift distribution. In addition, one can group the faint galaxy images into sub-
samples, e.g., according to their apparent magnitude. Ignoring for simplicity the
magnification bias (which can safely be done in the outer parts of clusters), one can
determine(Z) for each magnitude bin. Restricting our treatment to the regions of
weak lensing only, such tha] < 1,k < 1, the expectation value of the ellipticity

&; of a galaxy at positiord; is (Z)y(6;), and so an estimate ¢&) for the galaxy
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sub-sample under consideration is

50 (vB)e )
G

In complete analogy, Bartelmann & Narayan (1995) suggested the ‘lens parallax
method’, an algorithm for determining mean redshifts for galaxy sub-samples at
fixed surface brightness, using the magnification effect as described in Sect. 4.4.2.
Since the surface brightnekss most likely much more strongly correlated with
galaxy redshift than the apparent magnitude (due t¢1hez)~* decrease of bolo-
metric surface brightness with redshift), a narrow bih will probably correspond

to a fairly narrow distribution in redshift, allowing to relatg) of a surface bright-

ness bin fairly directly to a mean redshift in that bin, whil® in magnitude bins

can only be translated into redshift information with a parameterised model of the
redshift distribution. On the other hand, apparent magnitudes are easier to measure
than surface brightness and are much less affected by seeing.

(Z)= (5.40)

Even if a cluster without strong lensing features is considered, the two methods just
described can be applied. The mass reconstruction then gives the mass distribution
up to an overall multiplicative constant. We assume here that the mass-sheet degen-
eracy can be lifted, either using the magnification effect as described in Sect. 5.4,
or by extending the observations so sufficiently large distances s& thdl near

the boundary of the data field. The mass scale can then be fixed by considering the
brightest sub-sample of galaxy images for which a shear signal is detected if they
are sufficiently bright for their redshift probability distribution to be known from
spectroscopic redshift surveys (Bartelmann & Narayan 1995).

Whereas these methods have not yet rigorously been applied, there is one observa-
tional result which indicates that the faint galaxy population has a relatively high
median redshift. In a sequence of clusters with increasing redshift, more and more
of the faint galaxies will lie in the foreground or very close behind the cluster and
therefore be unlensed. The dependence of the observed lensing strength of clusters
on their redshift can thus be used as a rough indication of the median redshift of the
faint galaxies. This idea was put forward by Smail et al. (1994), who observed three
clusters with redshiftz = 0.26, z= 0.55 andz = 0.89. In the two lower-redshift
clusters, a significant weak lensing signal was detected, but no significant signal in
the high-redshift cluster. From the detection, models for the redshift distribution of
faint | <25 can be ruled out which predict a large fraction to be dwarf galaxies at
low redshift. The non-detection in the high-redshift cluster cannot easily be inter-
preted since little information (e.g., from X-ray maps) is available for this cluster,
and thus the absence of a lensing signal may be due to the cluster being not massive
enough.

However, the detection of a strong shear signal in the cluster MS-1054t
z=0.83 (Luppino & Kaiser 1997) implies that a large fraction of galaxies with
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| < 25.5 must lie at redshifts larger than~ 1.5. They split their galaxy sample

into red and blue sub-samples, as well as into brighter and fainter sub-samples, and
found that the shear signal is mainly due to the fainter and the blue galaxies. If all
the faint blue galaxies have a redshift= 1.5, the mass-to-light ratio of this cluster

is estimated to b&1 /L ~ 580h, and if they all lie at redshifts = 1, M/L exceeds

~ 1000h. This observational result, which is complemented by several additional
shear detections in high-redshift clusters, one of them-at0.82 (G. Luppino,
private communication), provides the strongest evidence for the high-redshift pop-
ulation of faint galaxies. In addition, it strongly constrains cosmological models;
an Qg = 1 cosmological model predicts the formation of massive clusters only at
relatively low redshifts (e.g., Richstone et al. 1992; Bartelmann et al. 1993) and has
difficulties to explain the presence of strong lensing clusters at redshif.8.

Recently, Lombardi & Bertin (1999c) and Gautret et al. (2000) suggested that weak
lensing by galaxy clusters can be used to constrain the cosmological para@weters
andQx. Both of these two different methods assume that the redshift of background
galaxies can be estimated, e.g. with sufficiently precise photometric-redshift tech-
nigues. Owing to the dependence of the lensing strength on the angular-diameter
distance ratidDys/Ds, sufficiently detailed knowledge of the mass distribution in
the lens and of the source redshifts can be employed to constrain these cosmologi-
cal parameters. Such a determination through purely geometrical methods would be
very valuable, although the observational requirements for applying these methods
appear fairly demanding at present.
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6 Weak Cosmological Lensing

In this section, we review how weak density perturbations in otherwise homoge-
neous and isotropic Friedmann-Leitne model universes affect the propagation

of light. We first describe how light propagates in the homogeneous and isotropic
background models, and then discuss how local density inhomogeneities can be
taken into account. The result is a propagation equation for the transverse separa-
tion between the light rays of a thin light bundle.

The solution of this equation leads to the deflection amgle weakly deflected

light rays. In close analogy to the thin-lens situation, half the divergence of the
deflection angle can be identified with an effective surface-mass deqsityihe

power spectrum e is closely related to the power spectrum of the matter fluctu-
ations, and it forms the central physical object of the further discussion. Any two-
point statistics of cosmic magnification and cosmic shear can then be expressed in
a fairly simple manner in terms of the effective-convergence power spectrum.

We discuss several applications, among which are the uncertainty in brightness de-
terminations of cosmologically distant objects due to cosmic magnification, and
several measures for cosmic shear, one of which is particularly suited for deter-
mining the effective-convergence power spectrum. At the end of this chapter, we
turn to higher-order statistical measures of cosmic lensing effects, which reflect the
non-Gaussian nature of the non-linearly evolved density perturbations.

When we give numerical examples, we generally employ four different model uni-
verses. All have the CDM power spectrum for density fluctuations, but different
values for the cosmological parameters. They are summarised in Tab. 1. We choose
two Einstein-de Sitter models, SCDM amDM, normalised either to the local
abundance of rich clusters or &g = 1, respectively, and two low-density models,
OCDM andACDM, which are cluster normalised and either open or spatially flat,
respectively.

Table 1
Cosmological models and their parameters used for numerical examples

Model | Qg Qa h Normalisation og
SCDM | 1.0 0.0 05 cluster 05
oCDM |10 00 05 os 10
OCDM | 0.3 00 0.7 cluster 085
ACDM | 0.3 07 0.7 cluster 9

Light propagation in inhomogeneous model universes has been the subject of nu-
merous studies. Among them are Zeldovich & Ya.B. (1964), Dashevskii et al.
(1965), Kristian & Sachs (1966), Gunn (1967), Jaroszynski et al. (1990), Babul
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& Lee (1991), Bartelmann & Schneider (1991), Blandford et al. (1991), Miralda-
Escua (1991), and Kaiser (1992). Non-linear effects were included analytically by
Jain & Seljak (1997), who also considered statistical effects of higher than second
order, as did Bernardeau et al. (1997). A particularly suitable measure for cosmic
shear was introduced by Schneider et al. (1998a).

6.1 Light Propagation; Choice of Coordinates

As outlined in Sect. 3.2.1 (page 52), the governing equation for the propagation of
thin light bundles through arbitrary space times is the equation of geodesic devia-
tion (e.g. Misner et al. 1973,11; Schneider et al. 1992,3.5), or Jacobi equation
(3.23, page 53). This equation implies that the transverse physical sepirbtien
tween neighbouring rays in a thin light bundle is described by the second-order
differential equation

#E_ g (6.1)

dA\2 ’ '
whereT is theoptical tidal matrix(3.25, page 53) which describes the influence
of space-time curvature on the propagation of light. The affine paramétas to
be chosen such that it locally reproduces the proper distance and increases with
decreasing time, hence\é& —cadt. The elements of the matriX then have the
dimension [lengthj?.

We already discussed in Sect. 3.2.1 that the optical tidal matrix is proportional to
the unit matrix in a Friedmann-Leritee universe,

T=R1, (6.2)

where the factoR is determined by the Ricci tensor as in eq. (3.26, page 53). For
a model universe filled with a perfect pressure-less fl&d;an be written in the
form (3.28, page 54).

It will prove convenient for the following discussion to replace the affine parameter
A in eq. (6.1) by the comoving distanee which was defined in eq. (2.3, page 13)
before. This can be achieved using egs. (3.31) and (3.32) together with the defini-
tion of Hubble’s parameteH (a) = aa~L. Additionally, we introduce theomoving
separation vectot= a*lg. These substitutions leave the propagation equation (6.1)
in the exceptionally simple form

d?x S

Y +KX=0, (6.3)
whereK is the spatial curvature given in eq. (2.30, page 18). Equation (6.3) has
the form of an oscillator equation, hence its solutions are trigonometric or hyper-
bolic functions, depending on whethers positive or negative. In the special case
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of spatial flatnessK = 0, the comoving separation between light rays is a linear
function of distance.

6.2 Light Deflection

We now proceed by introducing density perturbations into the propagation equa-
tion (6.3). We assume throughout that the Newtonian potedtia these inhomo-
geneities is small®| < ¢?, that they move with velocities much smaller than the
speed of light, and that they are localised, i.e. that the typical scales over @hich
changes appreciably are much smaller than the curvature scale of the background
Friedmann-Lemidre model. Then, there exists a local neighbourhood around each
density perturbation which is large enough to contain the perturbation completely
and still small enough to be considered flat. Under these circumstances, the metric
is well approximated by the first post-Newtonian order of the Minkowski metric
(3.36, page 56). It then follows from eq. (3.36) that the effective local index of
refraction in the neighbourhood of the perturbation is

dl 20

dt_n_l Z (6.4)
Fermat’s principle (e.g. Blandford & Narayan 1986; Schneider 1985) demands that
the light travel time along actual light paths is stationary, hence the variation of
/' ndl must vanish. This condition implies that light rays are deflected locally ac-
cording to

2

%z—C—ZZDLCD. (6.5)
In weakly perturbed Minkowski space, this equation describes hoactuallight
ray is curved away from a straight line in unperturbed Minkowski space. It is there-
fore appropriate for describing light propagation through e.g. the Solar system and
other well-localised mass inhomogenetities.

This interpretation needs to be generalised for large-scale mass inhomogeneities
embedded in an expanding cosmological background, since the meaning of a
“straight” fiducial ray is then no longer obvious. In general, any physical fiducial
ray will also be deflected by potential gradients along its way. We can, however,
interpretX as the comoving separation vector between an arbitrarily chosen fidu-
cial light ray and a closely neighbouring light ray. The right-hand side of eq. (6.5)
must then contain thdifferenceA(0,; ®) of the perpendicular potential gradients
between the two rays to account for tie¢ative deflection of the two rays.

Let us therefore imagine a fiducial ray starting at the obsewer Q) into direction

6 =0, and a neighbouring ray starting at the same point but into direbtigrd.

Let furtheri(é,w) describe the comoving separation between these two light rays at
comoving distancev. Combining the cosmological contribution given in eq. (6.3)
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with the modified local contribution (6.5) leads to the propagation equation

2

a2 _gA{DL‘D[Y(éaW),W]} : (6.6)

The notation on the right-hand side indicates that the difference of the perpendic-
ular potential gradients has to be evaluated between the two light rays which have
comoving separatior(6, w) at comoving distance from the observer.

Linearising the right-hand side of eq. (6.6)¥nmmediately returns the geodesic
deviation equation (6.1) with the full optical tidal matrix, which combines the ho-
mogeneous cosmological contribution (3.28, page 54) with the contributions of
local perturbations (3.37, page 56).

Strictly speaking, the comoving distanageor the affine parametey, are changed

in the presence of density perturbations. Here, we assume that the global properties
of the weakly perturbed Friedmann-Letma models remain the same as in the
homogeneous and isotropic case, and under this assumption the comoving distance
w remains the same as in the unperturbed model.

To solve eq. (6.6), we first construct a Green’s funct®gw,w'), which has to
be a suitable linear combination of either trigonometric or hyperbolic functions
since the homogeneous equation (6.6) is an oscillator equation. We further have to
specify two boundary conditions. According to the situation we have in mind, these
boundary conditions read
S dx =

x=0, =0 (6.7)
atw = 0. The first condition states that the two light rays start from the same point,
so that their initial separation is zero, and the second condition indicates that they
set out into directions which differ bg.

The Green’s function is then uniquely determined by

: (6.8)

Gww) = fu(w—w) for w>w
0 otherwise

with fk (w) given in eq. (2.4, page 14). As a function of distamcehe comoving
separation between the two light rays is thus
S S 2 (W S
X(8,w) = fi(w)s— 5 / dw fi(w—w)a {0, ox@W) W] . (6.9)
0

The perpendicular gradients of the Newtonian potential are to be evaluated along
the true paths of the two light rays. In its exact form, eq. (6.9) is therefore quite
involved.
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Assuming that the change of the comoving separation vetbmtween the two
actualrays due to light deflection is small compared to the comoving separation of
unperturbedays,
(6, W) — f (W)8)
| fi (W)8)

we can replac&(8,w) by fx(W)6 in the integrand to arrive at a much simpler
expression which corresponds to the Born approximation of small-angle scattering.
The Born approximation allows us to replace the difference of the perpendicular
potential gradients with the perpendicular gradient of the potential difference. Tak-
ing the potential difference then amounts to adding a term to the potential which
depends on the comoving distangefrom the observer only. For notational sim-
plicity, we can therefore rename the potential differeAdebetween the two rays

to &.

<1, (6.10)

It is an important consequence of the Born approximation that the Jacobian matrix
of the lens mapping (3.11, page 49; 6.28 below) remains symmetric even in the
case of cosmological weak lensing. In a general multiple lens-plane situation, this
is not the case (Schneider et al. 1992, chapter 9).

If the two light rays propagated through unperturbed space-time, their comoving
separation at distan@ewould simply bex' (8, w) = fx (w)8, which is the first term

on the right-hand side of eq. (6.9). The net deflection angle at distahetween

the two rays is the difference betwegnandX, divided by the angular diameter
distance taw, hence

L fewB—xBw) 2 /OW aw KWW lfewW)B.W] . (6.11)

aBw === (W)
Again, this is the deflection angle of a light ray that starts out at the observer
into direction® relative to a nearby fiducial ray. Absolute deflection angles can-
not be measured. All measurable effects of light deflection therefore only depend
onderivativesof the deflection angle (6.11), so that the choice of the fiducial ray is
irrelevant for practical purposes. For simplicity, we @B, w) the deflection angle

at distancew of a light ray starting into directio on the observer's sky, bearing

in mind that it is the deflection angle relative to an arbitrarily chosen fiducial ray,
so thatdi (6, w) is far from unique.

In an Einstein-de Sitter universéq(w) = w. Definingy = w /w, eq. (6.11) simpli-
fies to

GBw) = [ dy(1—y) 0 owbwy). (6.12)
Clearly, the deflection ang& depends on the directidhon the sky into which the
light rays start to propagate, and on the comoving distantmethe sources.

Recall the various approximations adopted in the derivation of eq. (6.11): (i) The
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density perturbations are well localised in an otherwise homogeneous and isotropic
background, i.e. each perturbation can be surrounded by a spatially flat neighbour-
hood which can be chosen small compared to the curvature radius of the back-
ground model, and yet large enough to encompass the entire perturbation. In other
words, the largest scale on which the density fluctuation sped®uik) has appre-
ciable power must be much smaller than the Hubble rad)itdy. (i) The Newto-

nian potential of the perturbations is sma< c?, and typical velocities are much
smaller than the speed of light. (iii) Relative deflection angles between neighbour-
ing light rays are small enough so that the difference of the transverse potential
gradient can be evaluated at the unperturbed path sepafa(wbﬁ rather than the
actual one. Reassuringly, these approximations are very comfortably satisfied even
under fairly extreme conditions. The curvature radius of the Universe is of order
cHy 1 — 3000h~1Mpc and therefore much larger than perturbations of even several
tens of Mpc's in size. Typical velocities in galaxy clusters are of ordékads ™,

much smaller than the speed of light, and typical Newtonian potentials are of order
®<10°°¢

6.3 Effective Convergence

6.3.1 Definition and Derivation
In the thin-lens approximation, convergencand deflection anglé are related by

o1 _ . 1000
((8) = 5T-a(8) = 5 20

where summation overis implied. In exact analogy, an effective convergence
Keff(W) can be defined for cosmological weak lensing,

(6.13)

1

Keif(6, W) = 5o a(e,w)
B 1w fk (w—w) f (W) 02 -
-3 /0 aw ) O[fkW)Bw].  (6.14)

Had we not replaced(8,w) by fx(w)8 following eq. (6.9), eq. (6.14) would

have contained second and higher-order terms in the potential derivatives. Since
eg. (6.9) is a Volterra integral equation of the second kind, its solution (and deriva-
tives thereof) can be expanded in a series, of which the foregoing expression for
Keff IS the first term. Equation (6.16) below shows that this term is of the order
of the line-of-sight average of the density contradstThe next higher-order term,
explicitly written down in the Appendix of Schneider et al. (1998a), is determined
by the producd(w') d(w”’), averaged along the line-of-sight ower < w’. Analo-

gous estimates apply to higher-order terms. Whereas the density contrast may be
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large for individual density perturbations passed by a light ray, the averalyes of
small compared to unity for most rays, hengg < 1, and higher-order terms are
accordingly negligible.

The effective convergenegs in eq. (6.14) involves the two-dimensional Laplacian

of the potential. We can augment it §°®,/0x3) which involves only derivatives
along the light path, because these average to zero in the limit to which we are
working; the validity of this approximation has been verified with numerical sim-
ulations by White & Hu (2000). The three-dimensional Laplacian of the potential
can then be replaced by the density contrast via Poisson’s equation (2.65, page 32),

3HZQo
O (6.15)

Hence, we find for the effective convergence,

AD =

5 3H2§20/ WAL fK(w w) o[f (W)é,vx/]_ (6.16)

Keff(B,W) = — 5 (W) a(w)

The effective convergence along a light ray is therefore an integral over the density
contrast along the (unperturbed) light path, weighted by a combination of comoving
angular-diameter distance factors, and the scale factbhe amplitude oKe is
proportional to the cosmic density parame@zt

Expression (6.16) gives the effective convergence for a fixed source redshift corre-
sponding to the comoving source distaneé/When the sources are distributed in
comoving distanceieﬁ(é,w) needs to be averaged over the (normalised) source-
distance distributio(w),

Re(8) = [ AW Ken(B.m) (6.17)

whereG(w) dw = p,(z) dz. Suitably re-arranging the integration limits, we can then
write the source-distance weighted effective convergence as

Kert () = 3;' 2 /™ 0 " dwW(w) mew, (6.18)
where the weighting functiow/ (w) is now
_ WH fie (W —
Ww) = [ MG(W)%. (6.19)

The upper integration boundany is the horizon distance, defined as the comoving
distance obtained for infinite redshift. In fact, it is easily shown that the effective
convergence can be written as

4T[GD Dgs dD
et = [ dz Ty~ SR () (6.20)
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and the weighting functiolV is the distance rati@Dys/Ds), averaged over the
source distances at fixed lens distance. Naively generalising the definition of the
dimension-less surface-mass density (3.7, page 48) to a three-dimensional matter
distribution would therefore directly have led to the cosmologically correct expres-
sion for the effective convergence.

6.4 Effective-Convergence Power Spectrum

6.4.1 The Power Spectrum from Limber’'s Equation

Here, we are interested in the statistical properties of the effective convenggnce
especially its power spectruRy(l). We refer the reader to Sect. 2.4 (page 41) for
the definition of the power spectrum. We also note that the expressi@gd) is

of the form (2.77, page 42), and so the power specthJ(h) is given in terms of
Ps(k) by eq. (2.84, page 44), if one sets

_ ~3HE w5 fr(W)
du(W) = d2(W) = 52 QoW(w) aw) - (6.21)
We therefore obtain
_OHFQZ e W2 (w) |
PK(l) =4 0 dw aZ(W) Ps ( fK(W) ,W) , (6.22)

with the weighting functionV given in eq. (6.19). This power spectrum is the
central quantity for the discussion in the remainder of this chapter.

Figure 15 show® (1) for five different realisations of the CDM cosmogony. These
are the four models whose parameters are detailed in Tab. 1, all with non-linearly
evolving density power spectrui, using the prescription of Peacock & Dodds
(1996), plus the SCDM model with linearly evolviriy. Sources are assumed to

be at redshiftzs = 1. Curves 1 and 2 (solid and dotted; SCDM with linear and
non-linear evolution, respectively) illustrate the impact of non-linear density evolu-
tion in an Einstein-de Sitter universe with cluster-normalised density fluctuations.
Non-linear effects set in on angular scales below a few timésab@ increase the
amplitude ofP () by more than an order of magnitude on scales«df’. Curve

3 (short-dashedyCDM), obtained for CDM normalised tog = 1 rather than the
cluster abundance, demonstrates the potential influence of different choices for the
power-spectrum normalisation. Curves 4 and 5 (dashed-dotted and long-dashed,;
OCDM and/ACDM, respectively) show(l) for cluster-normalised CDM in an
open universe@p = 0.3, Qp = 0) and in a spatially flat, low-density universe
(Qo=0.3,Qp =0.7). Itis a consequence of the normalisation to the local cluster
abundance that the vario®s(l) are very similar for the different cosmologies on
angular scales of a few arc minutes. For the low-density universes, the difference
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between the cluster- and timg normalisation is substantially smaller than for the
Einstein-de Sitter model.
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Fig. 15. Five effective-convergence power spe&d) are shown as functions of the an-
gular scale &1 ~1, expressed in arc minutes. All sources were assumed to lig=atl.

The five curves represent the four realisations of the CDM cosmogony listed in Tab. 1, all
with non-linearly evolving density-perturbation power spe&saplus the SCDM model

with linearly evolvingPs. Solid curve (1): Linearly evolving SCDM model; dotted curve
(2): non-linearly evolving SCDM; short-dashed curve (3): non-linearly evola@G@®M;
dashed-dotted and long-dashed curves (4 and 5): non-linearly evolving OC DM,
respectively.

Figure 16 gives another representation of the curves in Fig. 15. There, we plot
I2P(1), i.e. the total power in the effective convergence per logarithniiter-

val. This representation demonstrates that density fluctuations on angular scales
smaller than~ 10 contribute most strongly to weak gravitational lensing by large-
scale structures. On angular scales smaller thdf the curves level off and then
decrease very gradually. The solid curve in Fig 16 shows that, when linear den-
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sity evolution is assumed, most power is contributed by structures on scales above
10, emphasising that it is crucial to take non-linear evolution into account to avoid
misleading conclusions.
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Fig. 16. Different representation of the curves in Fig. 15. We plot HeRg(l ), representing

the total power in the effective convergence per logarithmiderval. See the caption of

Fig. 15 for the meaning of the different line types. The figure demonstrates that the total

power increases monotonically towards small angular scales when non-linear evolution is
taken into account (i.e. with the exception of the solid curve). On angular scales still smaller
than~ 1/, the curves level off and decrease very slowly. This shows that weak lensing by

cosmological mass distributions is mostly sensitive to structures smallerthiéin

6.4.2 Special Cases
In the approximation of linear density evolution, applicable on large angular scales

2 30, the density contrast grows in proportion wilg(a), as described following
eq. (2.52) on page 25. The power spectrum of the density contrast then evolves
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0 a’g?(a). Inserting this into eq. (6.22), the squared scale faafow) cancels,
and we find

402  rwy _
PK(I)zgj%?O 5 dw g?[a(w)]W?(w) P§ (ﬁ) (6.23)

Here, Pg(k) is the density-contrast power spectrum linearly extrapolated to the
present epoch.

In an Einstein-de Sitter universe, the growth functgga) is unity sincePs grows
like the squared scale factor. In that special case, the expression for the power spec-
trum of Keg further reduces to

OHy (W — |
Pll) = 52 [ " GWW2(w) P <V—V> , (6.24)

and the weight functiowV simplifies to
/ dw G(w) (1- —) (6.25)

In some situations, the distance distribution of the sources can be approximated by
a delta peak at some distaneg G(w) = dp (W — Ws). A typical example is weak
lensing of the Cosmic Microwave Background, where the source is the surface of
last scattering at redshift ~ 1000. Under such circumstances,

W(w) = <1— Wﬂs) H(Ws —w) , (6.26)

where the Heaviside step function>H expresses the fact that sourcesvatare
only lensed by mass distributions at smaller distanc€or this specific case, the
effective-convergence power spectrum reads

4 1
Ru) = e [ eya-y7R8 (o) ©6:27)

wherey = w/ws is the distance ratio between lenses and sources. This equation
illustrates that all density-perturbation modes whose wave numbers are larger than
Kmin = ngl contribute taP (1), or whose wavelengths are smaller thgapx = wsB.

For example, the power spectrum of weak lensing on angular scafes Gy on
sources at redshiftg; ~ 2 originates from all density perturbations smaller than

~ 7h~1Mpc. This result immediately illustrates the limitations of the foregoing
approximations. Density perturbations on scales smaller than a few Mpc become
non-linear even at moderate redshifts, and the assumption of linear evolution breaks
down.
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6.5 Magnification and Shear

In analogy to the Jacobian matri® of the conventional lens equation (3.11,
page 49), we now form the matrix

A@w) = 1 aa((i,w) _ 1 GX(GJW) '
08 fk(w) 06
The magnification is the inverse of the determinantdofsee eq. 3.14, page 49).

To first order in the perturbations, we obtain for the magnification of a source at
distancew seen in directior®

(6.28)

. 1 L .
W) =—5— =~ 1+0g-G(6,Ww) =1+ 2Kes(O,W
H(8,w) detaB.w) 6-0(6,w) eff(6, W)
=1+3u(B,w) . (6.29)

In the weak-lensing approximation, the magnification fluctuadjois simply twice
the effective convergenaes, just as in the thin-lens approximation.

We emphasise again that the approximations made imply that the ragigym-
metric. In general, when higher-order terms in the Newtonian potential are con-
sidered,4 attains an asymmetric contribution. Jain et al. (2000) used ray-tracing
simulations through the density distribution of the Universe computed in very high
resolutionN-body simulations to show that the symmetryis satisfied to very

high accuracy. Only for those light rays which happen to propagate close to more
than one strong deflector can the deviation from symmetry be appreciable. Fur-
ther estimates of the validity of the various approximations have been carried out
analytically by Bernardeau et al. (1997) and Schneider et al. (1998a).

Therefore, as in the single lens-plane situation, the anisotropic deformation, or
shear, of a light bundle is determined by the trace-free part of the matrix

(cf. eq. 3.11, page 49). As explained there, the shear makes elliptical images from
circular sources. Led andb be the major and minor axes of the image ellipse of a
circular source, respectively, then the ellipticity is

a?—b?

= 5——5~2 6.30
XI= e~ 2V (6.30)
where the latter approximation is valid for weak lensiiyg< 1; cf. eq. (4.18). The
guantity & was sometimes callegolarisationin the literature (Blandford et al.
1991, Miralda-Escugl 1991, Kaiser 1992).

In the limit of weak lensing which is relevant here, the two-point statistical prop-
erties ofdp and of 2 are identical (e.g. Blandford et al. 1991). To see this, we
first note that the first derivatives of the deflection angle occurring in eqgs. (6.29)
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can be written as second derivatives of an effective deflection potgntidlich is
defined in terms of the effective surface mass densiyin the same way as in
the single lens-plane case; see (3.9, page 48). We then imaginguthady are
Fourier transformed, whereupon the derivatives with respe@t &me replaced by
multiplications with components of the wave vectaronjugate tob. In Fourier
space, the expressions for the averaged quant@i@s and 4(|y|?) differ only by
the combinations df, andl, which appear under the average. We have

(124+12)% =i} for (Jp)
(12-12)° 44122 =11 for 4(y2) =402+

and hence the two-point statistical propertie®and 2y agree identically. There-
fore, the power spectra of effective convergence and shear agree,

(6.31)

(Reft(1Ren (1) = (MDY (
Thus we can concentrate on the statistics of either the magnification fluctuations or

the shear only. Sincéu = 2kefr, the magnification power spectruR is 4P, and
we can immediately employ the convergence power spedgum

|—)

o= B()=R(). (6.32)

6.6 Second-Order Statistical Measures

We aim at the statistical properties of the magnification fluctuation and the shear. In
particular, we are interested in the amplitude of these quantities and their angular
coherence. Both can be described by their angular auto-correlation functions, or
other second-order statistical measures that will turn out to be more practical later.
As long as the density fluctuation fiefdremains Gaussian, the probability distri-
butions ofdu andy are also Gaussians with mean zero, and two-point statistical
measures are sufficient for their complete statistical description. When non-linear
evolution of the density contrast sets in, non-Gaussianity develops, and higher-
order statistical measures become important.

6.6.1 Angular Auto-Correlation Function

The angular autocorrelation functidiy(g) of some isotropic quantityy(8) is

the Fourier transform of the power spectruy(l) of q(é). In particular, the
auto-correlation function of the magnification fluctuatigp(¢), is related to the
effective-convergence power spectrétl ) through

— —

E(®) = (Bu( e>6u<é ) = 4(Keif(B)Keir (6 + @) = 4(y(B)y" (6 + @)

—4/ dz 1) exp(—iT-§) = 4/°°@PK ) %(9) | (6.33)
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where@is a vector with normyp. The factor four in front of the integral accounts for
the fact thadu = 2Kkef in the weak-lensing approximation. For the last equality in
(6.33), we integrated over the angle encloseti &yde, leading to the zeroth-order
Bessel function of the first kindg(x). Equation (6.33) shows that the magnification
(or shear) auto-correlation function is an integral over the power spectrum of the
effective convergenceg, filtered by the Bessel functionX). Since the latter is

a broad-band filter, the magnification auto-correlation function is not well suited
for extracting information o . It would be desirable to replaég (@) by another
measurable quantity which involves a narrow-band filter.

Nonetheless, inserting eq. (6.22) into eq. (6.33), we obtain the expression for the
magnification auto-correlation function,

42 WH _
@) =52 [ dw W)W ) a 2w
"X patkow) ol e (wik (6.34)

The magnification autocorrelation function therefore turns out to be an integral over
the density-fluctuation power spectrum weighted b-apace window function
which selects the contributing density perturbation modes.

The correlation function of the image ellipticity (or the shear) is tkemi) (@) =

&y(@) = &u(@)/4. Since the ellipticity has two components, one can define and cal-
culate the corresponding correlations functions as well: Any pair of galaxy images
defines the directioth of their separation vector. With respect to this direction, one
can define in complete analogy to (5.31) the tangential and cross-components of
the ellipticities,g; ande. = —O(eexp(—2id)), respectively. One then finds (Kaiser
1992) that

(et&r) (@) Loeld g Jo(19) + (1)

=2 [ =R , (6.35)
(exex)(@) ] 270 2T " Jo(19) — h(19)

and (&g« ) (@) = 0. The latter expression can be used to estimate systematic errors
on a given data set from which the correlation functions are calculated.

6.6.2 Special Cases and Qualitative Expectations

In order to gain some insight into the expected behaviour of the magnification auto-
correlation functiorg,(¢), we now make a number of simplifying assumptions.
Let us first specialise to linear density evolution in an Einstein-de Sitter universe,
and assume sources are at a single distagc&quation (6.34) then immediately
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simplifies to

4 1 00
0 = oo [ a2 [TEER bl (6.30)

2m
with y = wg w.

We now introduce two model specl?@(k), one of which has an exponential cut-off
above some wave numbley, while the other falls off likek—3 for k > kg. For small
k, both spectra increase lilke They approximately describe two extreme cases of
popular cosmogonies, the HDM and the CDM model. We choose the functional
forms y o

I:)fg)),HDM = Akexp(—%) ’ Pg,CDM = Akﬁ s (637)
whereA is the normalising amplitude of the power spectra. The numerical coeffi-
cients in the CDM model spectrum are chosen such that both spectra peak at the
same wave numbér= kg. Inserting these model spectra into eq. (6.36), perform-
ing thek integration, and expanding the result in a power serieg Wwe obtain
(Bartelmann 1995b)

3A oA
& HDM (@) = ﬁ(wsko)S - @[(WskO)SQJz*' o(¢")
£ucon(®) = 25 (wko)? ~ 272 (viko) 9. O(P), 639

whereA' = (Hoc™1)*A. We see from eq. (6.38) that the magnification correlation
function for the HDM spectrum is flat to first order g while it decreases linearly

with @for the CDM spectrum. This demonstrates that the shape of the magnification
autocorrelation functiofy (@) reflects the shape of the dark-matter power spectrum.
Motivated by the result of a large number of cosmological studies showing that
HDM models have the severe problem of structure on small scales forming at times
much later than observed (see e.g. Peacock 1999), we now neglect the HDM model
and focus on the CDM power spectrum only.

We can then exped,(9) to increase linearly witlp as¢ goes to zero. Although

we assumed linear evolution of the power spectrum to achieve this result, this qual-
itative behaviour remains valid when non-linear evolution is assumed, because for
large wave numbers the non-linear CDM power spectra also asymptotically fall
off O k3 for largek.

Although the model spectra (6.37) are of limited validity, we can extract some
useful information from the small-angle approximations given in eq. (6.38). First,
the correlation amplitud&,(0) scales with the comoving distance to the sources
ws aswg. In the Einstein-de Sitter case, for which eq. (6.38) was deriwgds
(2¢/Ho) [1— (14 z5)~ /2. For low source redshiftss < 1, ws ~ (¢/Hg)zs, SO
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that §,(0) O zfs’ Forzs> 1, ws — (2¢/Hp), and&,(0) becomes independent of
source redshift. For intermediate source redshifts, progress can be made by defining
(s =In(z) and expanding Iw[exp({s)] in a power series ifs. The result is an
approximate power-law expression(zs) 0 Z, valid in the vicinity of the zero
point of the expansion. The exponenthanges fromx 0.6 atzs ~ 1 to~ 0.38 at

~ 3.

Second, typical source distances are of order 2Gpc. &nethe wave number
corresponding to the horizon size when relativistic and non-relativistic matter had
equal densitiesky ' = dy(aeq) = 12(Qoh?)~*Mpc. Thereforewsko ~ 150. Typi-
cally, the spectral amplitud&’ ranges between 16-10-°. A rough estimate for

the correlation amplitudg,(0) thus ranges between 19-103 for ‘typical’ source
redshiftszs 2> 1.

Third, an estimate for the angular scglgof the magnification correlation is ob-
tained by determining the angle whefg(¢) has dropped to half its maximum.
From the small-angle approximation (6.38), we figd= 11v/3(12wsko) 2. Insert-
ing as beforawskg ~ 150, we obtainpy ~ 10, decreasingwith increasing source
redshift.

Summarising, we expeéf,(@) in a CDM universe to

(1) startat 10°—10 2 at@= 0 for source redshiftss ~ 1;
(2) decrease linearly for smaplon an angular scale @gf ~ 10; and
(3) increase with source redshift roughly@g2® aroundzs = 1.

6.6.3 Realistic Cases

After this digression, we now return to realistic CDM power spectra normalised to
fit observational constraints. Some representative results are shown in Fig. 17 for
the model parameter sets listed in Tab. 1.

The figure shows that typical values ﬁ;ﬂ]/z(cp) in cluster-normalised CDM models
with non-linear density evolution are 6% at@~ 1, quite independent of the cos-
mological model. The effects of non-linear evolution are considerable. Non-linear
evolution increases ttﬁ/z by factors of three to four. The uncertainty in the nor-
malisation is illustrated by the two curves for the Einstein-de Sitter model, one of
which was calculated with the cluster-, the other one withoigie- 1 normalisation,
which yields about a factor of two larger results Etﬁ/z For the other cosmolog-
ical models (OCDM and\CDM), the effects of different normalisations (cluster
vs. COBE) are substantially smaller.
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Fig. 17. Four pairs of magnification auto-correlation functions are shown for the cosmo-
logical model parameter sets listed in Tab. 1, and for an assumed source regshift

For each pair, plotted with the same line type, the curve with lower amplitude at small an-
gular scale was calculated assuming linear, and the other one non-linear density evolution.
Solid curves: SCDM; dotted curvesCDM; short-dashed curve: OCDM; and long-dashed
curve: ACDM. Non-linear evolution increases the amplitudeEﬂﬁQ((p) on small angular
scales by factors of three to four. The results for the cluster-normalised models differ fairly
little. At @~ 1/, Eﬂ/z((p) ~ 6% for non-linear density evolution. For the Einstein-de Sitter

models, the difference between cluster- agd= 1 normalisation amounts to about a factor
of two in Eﬁ/z((p).

6.6.4 Application: Magnification Fluctuations

At zero lag, the magnification autocorrelation function reads

£u(0) = <[u<é> E 1]2> = (8) . (6.39)

which is the variance of the magnification fluctuatiu Consequently, thems
magnification fluctuation is

Stwms = (842)"* = £l/%(0) . (6.40)

Figure 18 shows,msas a function of source redshift for four different realisations
of the CDM cosmogony. For cluster-normalised CDM models rthemagnifica-
tion fluctuation is of orde®ums ~ 20% for sources ats ~ 2, and increases to
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Oms ~ 25% forzs =~ 3. The strongest effect occurs for open CDM (OCDM) be-
cause there non-linear evolution sets in at the highest redshifts.
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Fig. 18. Theemsmagnification fluctuatiodpms is shown as a function of source redshift

for non-linearly evolving density fluctuations in the four different realisations of the CDM
cosmogony detailed in Tab. 1. Solid curve: SCDM; dotted cuo@DM; short-dashed
curve: OCDM; and long-dashed curveCDM. Except for theaCDM model, typicalrms
magnification fluctuations are of order 20%zat= 2, and 25% fors = 3.

The results shown in Fig. 18 indicate that for any cosmological source, gravita-
tional lensing causes a statistical uncertainty of its brightness. In magnitudes, a
typical effect atzs ~ 2 is dm~ 2.5 x log(1.2) ~ 0.2. This can be important for

e.g. high-redshift supernovae of type la, which are used as cosmological standard
candles. Their intrinsic magnitude scatter is of or8er~ 0.1 — 0.2 magnitudes

(e.g. Phillips 1993; Riess et al. 1995, 1996; Hamuy et al. 1996). Therefore, the
lensing-induced brightness fluctuation is comparable to the intrinsic uncertainty at
redshiftszs 2 2 (Frieman 1997; Wambsganss et al. 1997; Holz 1998; Metcalf &
Silk 1999).

Since the magnification probability can be highly skewed,rtwest probableob-
served flux of a high-redshift supernova can deviate fromntleanflux at given
redshift, even if the intrinsic luminosity distribution is symmetric. This means that
particular care needs to be taken in the analysis of future large SN surveys. How-
ever, if SNe la are quasi standard candles also at high redshifts, with an intrinsic
scatter ofAL = 4mDZ, . (2)AS(z) around the mean luminosity = 4TD3, () S(2),

lum
then it is possible to obtawolume-limited samplgg contrast to flux-limited sam-
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ples) of them.

If, for a given redshift, the sensitivity limit is chosen to 8gin < Hmin (S — 3AS),

one can be sure to find all SNe la at the redshift considered. Hgreis the
minimum magnification of a source at the considered redshift. Since no source can
be more de-magnified than one that is placed behind a hypothetical empty cone (see
Dyer & Roder 1973 and the discussion in Sect. 4.5 of Schneider et al. 1992),

is not much smaller than unity. Flux conservation (e.g. Weinberg 1976) implies
that the mean magnification of all sources at given redshift is ufjifg)) = 1,

and so the expectation value of the observed flux at given redshift is the unlensed
flux, (S(z)) = S(2). It should be pointed out here that a similar relation for the
magnitudes doesot hold, since magnitude is a logarithmic measure of the flux,
and so(m(z)) # my(z). This led to some confusing conclusions in the literature
claiming that lensing introduces a bias in cosmological parameter estimates from
lensing, but this is not true: One just has to work in terms of fluxes rather than
magnitudes.

However, a broad magnification probability distribution increases the confidence
contours foiQg andQn (e.g. Holz 1998). If the probability distribution was known,
more sensitive estimators of the cosmological model than the mean flux at given
redshift could be constructed. Furthermore, if the intrinsic luminosity distribution
of the SNe was known, the normalisation of the power spectrum as a function of
Qo andQp could be inferred from the broadened observed flux distribution (Met-
calf 1999). If part of the dark matter is in the form of compact objects with mass
> 10"°M., these objects can individually magnify a SN (Schneider & Wagoner
1987), additionally broadening the magnification probability distribution and thus
enabling the nature of dark matter to be tested through SN observations (Metcalf &
Silk 1999, Seljak & Holz 1999).

6.6.5 Shear in Apertures

We mentioned below eq. (6.33) that measures of cosmic magnification or
shear other than the angular auto-correlation function which filter the effective-
convergence power spectria with a function narrower than the Bessel function
Jo(x) would be desirable. In practice, a convenient measure would be the variance
of the effective convergence within a circular aperture of ra@il4/ithin such an
aperture, the averaged effective convergence and shear are

Sd?p_ - o o -
al®) = [ aRen(® . Val®= [ T V@. (6.4
and their variance is
0 g2 0 g2 I,
(G0 = [ 98 [* ST (K @Ren@) = (vl (®). (6.42)
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The remaining average is the effective-convergence auto-correlation function
& (|o— @), which can be expressed in terms of the power specBurihe final

equality follows froméx = &y. Inserting (6.42) and performing the angular integrals
yields

00 2
wa)@ =zn[“1ar) 20| —(wl©), 64

where J(x) is the first-order Bessel function of the first kind. Results forrine
shear in apertures of varying size are shown in Fig. 19 (cf. Blandford et al. 1991,
Kaiser 1992, Jain & Seljak 1997).
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Fig. 19. Thermsshearyms(0) in circular apertures of radiuis plotted as a function of

0 for the four different realisations of the CDM cosmogony detailed in Tab. 1, where all
sources are assumed to be at redghift 1. A pair of curves is plotted for each realisation,
where for each pair the curve with lower amplitude at sr@ad for linearly, the other one

for non-linearly evolving density fluctuations. Solid curves: SCDM; dotted cuc€BM,;
short-dashed curves: OCDM; and long-dashed cu&€£M. For the cluster-normalised
models, typicafms shear values are: 3% for 8 ~ 1. Non-linear evolution increases the
amplitude by about a factor of two @t~ 1’ over linear evolution.

6.6.6 Aperture Mass

Another measure for the effects of weak lensing, typeerture mass I(6)
(cf. Sect. 5.3.1), was introduced for cosmic shear by Schneider et al. (1998a) as
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0 }
Mep() = [ U (¢) Ke(@). (6.44)

where the weight functiobl (¢) satisfies the criterion

0
/0 odeU () — 0. (6.45)

In other wordsl (¢) is taken to be @ompensatedadial weight function across the
aperture. For such weight functions, the aperture mass can be expressed in terms of
the tangential component of the observable shear relative to the aperture centre,

9 -
Mao(6) = | QO () . (6.46)

whereQ() is related tdJ (@) by (5.24) Mgpis a scalar quantity directly measurable
in terms of the shear. The varianceMf, reads

o) 0 2
) —2n [“1ap) | [Cedu x00) . 647)

Equations (6.43) and (6.47) provide alternative observable quantities which are re-
lated to the effective-convergence power spectRrthrough narrower filters than

the auto-correlation functio&. TheMyp statistic in particular permits one to tune

the filter function through different choices Bf(¢) within the constraint (6.45).

It is important thatM,, can also be expressed in terms of the shear [see eq. (5.27,
page 99)], so tha¥l,, can directly be obtained from the observed galaxy elliptici-
ties.

Schneider et al. (1998a) suggested a family of radial filter functibfg, the sim-
plest of which is

U0 - gz 10 (3-9) . QO-@-R).  (649)

wherex0 = . With this choice, the varianc@/lgpﬂe) becomes

(MZ)(6) = 21 /0 ldiP(1)3%(18) (6.49)
with the filter function 12
J(n) = WJ“(H) : (6.50)

where J(n) is the fourth-order Bessel function of the first kind. Examples for the
rmsaperture masaprms(8) = (M3,)*/2(8), are shown in Fig. 20.

The curves look substantially different from those shown in Figs. 17 and 19. Unlike
there, the aperture mass does not increase monotonically-a®, but reaches a
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Fig. 20. Therms aperture massVapms(0), is shown in dependence of aperture radius
0 for the four different realisations of the CDM cosmogony detailed in Tab. 1 where all
sources are assumed to be at redghift 1. For each realisation, a pair of curves is plotted:;
one curve with lower amplitude for linear, and the second curve for non-linear density
evolution. Solid curves: SCDM; dotted curvesCDM; short-dashed curves: OCDM; and
long-dashed curvegiCDM. Non-linear evolution has a pronounced effect: The amplitude
is approximately doubled, and the peak shifts from degree- to arc-minute scales.

maximum at finited and drops for smaller angles. When non-linear evolution of the
density fluctuations is assumed, the maximum occurs at much sratean for
linear evolution: Linear evolution predicts the peak at angles of order one degree,
non-linear evolution around’ 1 The amplitude 0fMapms(8) reaches~ 1% for
cluster-normalised models, quite independent of the cosmological parameters.

Some insight into the expected amplitude and shap(e/lép(e) can be gained by
noting thatJ?(n) is well approximated by a Gaussian,

01|

52 (6.51)

J’(n) ~ Aexp {—
with meanng ~ 4.11, amplitudeA ~ 4.52 x 103, and widtho ~ 1.24. At aperture
radii of 8 ~ 1/, the peakng ~ 4.11 corresponds to angular scales of 2* ~ 1.6/,
where the total powd?Px (1) in the effective convergence is close to its broad max-
imum (cf. Fig. 16). The filter functiod?(n) is therefore fairly narrow. Its relative
width corresponds to drrange ofdl /I ~ a/no ~ 0.3. Thus, the contributing range
of moded in the integral (6.49) is very small. Crudely approximating the Gaussian
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by a delta distribution,
J?(n) ~ AV2mo dp(n —No) , (6.52)

we are led to

2\ iz _ (2W32Ac no\2 Moy 22
(ME) = (NiZ) = === = (€> Pe (3) ~2.15% 107 212P(lo), (6.53)
with Ip = ng®~1. Hence, the mean-square aperture mass is expected to directly
yield the total power in the effective-convergence power spectrum, scaled down by
a factor of~ 2.15x 1072, We saw in Fig. 16 thafPx(l) ~ 3x 103 for 2 ~1 ~ 1/

in cluster-normalised CDM models, so that

(M2)12~08% at 6~1 (6.54)

for sources at redshift unity. We compal,nms(6) and the approximation
I\7Iamms(9) in Fig. 21. Obviously, the approximation is excellent fbp> 10, but
even for smaller aperture radii ef 1’ the relative deviation is less than5%. At

this point, the prime virtue of the narrow filter functid(n) shows up most promi-
nently. Up to relatively small errors of a few per cent, thes aperture mass very
accurately reflects the effective-convergence power spedduihn. Observations

of Maprms(0) are therefore most suitable to obtain information on the matter power
spectrum (cf. Bartelmann & Schneider 1999).

6.6.7 Power Spectrum and Filter Functions

The three statistical measures discussed above, the magnification (or, equivalently,
the shear) auto-correlation functi@p, the mean-square shear in apertufgs,

and the mean-square aperture m(MéF), are related to the effective-convergence
power spectrunPy in very similar ways. According to egs. (6.33), (6.43), and
(6.49), they can all be written in the form

Q(6) = ZTI/OOO | dIPc(1)E(18) (6.55)
where the filter function& (n) are given by
( JOT(Q) for Q=¢,
Ji(n) ? _
F=1 | m for Q=(va) . (6.56)
12 2
\ { ril](zn)] for Q= (M

Figure 22 shows these three filter functions as functiong ef 18. Firstly, the
curves illustrate that the amplitude &f; is largest (owing to the factor of four
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Fig. 21. Therms aperture mas$lanms(8) is shown together with the approximation
Maprms(e) of eq. (6.53). The three curves correspond to the three cluster-normalised cosmo-
logical models (SCDM, OCDM andCDM) introduced in Tab. 1 for non-linearly evolving
matter perturbations. All sources were assumed to be at redshiftL. Clearly, therms
aperture mass is very accurately approximatecﬂlgn,(rmS on angular scale8 > 10, and

even for smaller aperture sizes of orderl’ the deviation between the curves is smaller
than= 5%. The observablansaperture mass therefore provides a very direct measure for
the effective-convergence power spectriggl).

relative to the definition ofy), and that of<M§p> is smallest because the amplitudes

of the filter functions themselves decrease. Secondly, it becomes evident that, for
given 6, the range of modes of the effective-convergence power spectRih)
convolved into the weak-lensing estimator is largesg&fpand smallest fo(M§p>.
Thirdly, the envelope of the filter functions for largedecreases most slowly for

&u and most rapidly for(Mgp). Although the aperture mass has the smallest signal
amplitude, it is a much better probe for the effective-convergence power spectrum
Px(l) than the other measures because it picks up the smallest rahgmdés and

most strongly suppresses thmodes smaller or larger than its peak location.

We can therefore conclude that, while the strongest weak-lensing signal is picked
up by the magnification auto-correlation functigp, the aperture mass is the
weak-lensing estimator most suitable for extracting information on the effective-
convergence power spectrum.
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Fig. 22. The three filter functions(n) defined in eq. (6.56) are shown as functions of
n = 16. They occur in the expressions for the magnification auto-correlation funégion,
(solid curve), the mean-square shear in aperty@s(dotted curve), and the mean-square
aperture masgl\/lgp) (dashed curve).

6.6.8 Signal-to-Noise Estimate of Aperture-Mass Measurements

The question then arises whether the aperture mass can be measured with suffi-
cient significance in upcoming wide-field imaging surveys. In pracg,is de-

rived from observations of image distortions of faint background galaxies, using
eg. (5.27, page 99) and replacing the integral by a sum over galaxy ellipticities.
If we considerNyp independent apertures witly galaxies in tha-th aperture, an
unbiased estimator @3, is

T[92)2 Nap 1 N
1j QikEij Eik 6.57
Nap i; Ni(Ni —1) J;(Q'JQIK tij Etjik ( )

whereQjj is the value of the weight function at the position of théh galaxy in
thei-th aperture, ane jj is defined accordingly.

af =

The noise properties of this estimator were investigated in Schneider et al. (1998a).
One source of noise comes from the fact that galaxies are not intrinsically circular,
but rather have an intrinsic ellipticity distribution. A second contribution to the
noise is due to the random galaxy positions, and a third one to cosmic (or sampling)
variance. Under the assumptions that the number of gal&kigsthe apertures is
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large,N; > 1, it turns out that the second of these contributions can be neglected
compared to the other two. For this case, and assuming for simplicity tiztaak
equal,N; = N, the signal-to-noise of the estimatdf becomes

-1

(M3 2 602 :
= o(M) Nap™ | Ma+ (\/é—i- m) ) (6.58)

Zlwn

whereo; ~ 0.2 (e.g. Hudson et al. 1998) is the dispersion of the intrinsic galaxy
ellipticities, andus = (M3,)/(M3,)? — 3 is the curtosis oMap, Which vanishes for

a Gaussian distribution. The two terms of (6.58) in parentheses represent the noise
contributions from Gaussian sampling variance and the intrinsic ellipticity distri-
bution, respectively, angy accounts for sampling variance in excess of that for

a Gaussian distribution. On angular scales of a few arc minutes and smaller, the
intrinsic ellipticities dominate the noise, while the cosmic variance dominates on
larger scales.

Another convenient and useful property of the aperture riveggollows from its

filter function being narrow, namely thadap is a well localised measure of cos-

mic weak lensing. This implies thi,p measurements in neighbouring apertures
are almost uncorrelated even if the aperture centres are very close (Schneider et al.
1998a). It is therefore possible to gain a large number of (almost) indepevigdgnt
measurements from a single large data field by covering the field densely with aper-
tures. This is a significant advantage over the other two measures for weak lensing
discussed above, whose broad filter functions introduce considerable correlation
between neighbouring measurements, implying that for their measurement imag-
ing data on widely separated fields are needed to ensure statistical independence.
Therefore, a meaningful strategy to measure cosmic shear consists in taking a large
data field, covering it densely with apertures of varying ra@iuand determining

(M§p> in them via the ellipticities of galaxy images. Figure 23 shows an example for
the signal-to-noise ratio of such a measurement that can be expected as a function
of aperture radiu$.

Computing the curves in Fig. 23, we assumed that a data field of Sizeb5is
available which is densely covered by apertures of raéljuseence the number of
(almost) independent aperturedNg, = (300/26)2. The number density of galax-

ies was taken as 30 arcmify and the intrinsic ellipticity dispersion was assumed to
be o; = 0.2. Evidently, high signal-to-noise ratios of 10 are reached on angular
scales ofx~ 1’ in cluster-normalised universes quite independent of the cosmolog-
ical parameters. The decline of IS for large 8 is due to the decreasing number
of independent apertures on the data field, whereas the decline forGmalle

to the decrease of the sigr‘(a}'lgp% as seen in Fig. 20. We also note that for cal-
culating the curves in Fig. 23, we have put= 0. This is likely to be an overly
optimistic assumption for small angular scales where the density field is highly
non-linear. Unfortunatelyy cannot easily be estimated analytically. It was numer-
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Fig. 23. The signal-to-noise ratig/8(8) of measurements of mean-square aperture masses
<M§p> is plotted as a function of aperture raditigor an experimental setup as described

in the text. The curtosis was set to zero here. The four curves are for the four different
realisations of the CDM cosmogony listed in Tab. 1. Solid curve: SCDM,; dotted curve:
oCDM,; short-dashed curve: OCDM; and long-dashed cuf&DM. Quite independently

of the cosmological parameters, the signal-to-noise rathd &aches values af 10 on
scalesof~ 1 — 2.

ically derived from ray-tracing througN-body simulations of large-scale matter
distributions by Reblinsky et al. (1999). The curtosis exceeds unity even on scales
as large as IQdemonstrating the highly non-Gaussian nature of the non-linearly
developed density perturbations.

Although the aperture mass is a very convenient measure of cosmic shear and pro-
vides a localised estimate of the projected power specByim [see (6.53)], it is

by no means clear that it is an optimal measure for the projected power spectrum.
Kaiser (1998) considered the case of a square-shaped data field and employed the
Fourier-transformed Kaiser & Squires inversion formula, eq. (5.3, page 88). The
Fourier transform of the shear is then replaced by a sum over galaxy elliptgities

so thatke(1) is expressed directly in terms of the The squaréRe(1)|? yields an
estimate for the power spectrum which allows a simple determination of the noise
coming from the intrinsic ellipticity distribution. As Kaiser (1998) pointed out that,
while this noise is very small for angular scales much smaller than the size of the
data field, the sampling variance is much larger, so that different sampling strate-
gies should be explored. For example, he suggests to use a sparse sampling strategy.
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Seljak (1998) developed an estimator for the power spectrum which achieves mini-

mum variance in the case of a Gaussian field. Since the power spegtfLindevi-

ates significantly from its linear prediction on angular scales below one degree, one
expects that the field attains significant non-Gaussian features on smaller angular
scales, so that this estimator does no longer need to have minimum variance.

6.7 Higher-Order Statistical Measures

6.7.1 The Skewness

As the density perturbation fiellgrows with time, it develops non-Gaussian fea-
tures. In particula®) is bounded by-1 from below and unbounded from above, and
therefore the distribution ob is progressively skewed while evolution proceeds.
The same then applies to quantities like the effective convergegaterived from

0 (cf. Jain & Seljak 1997; Bernardeau et al. 1997; Schneider et al. 1998a). Skewness
of the effective convergence can be quantified by means of the three-point correlator
of Kefr. IN order to compute that, we use expression (6.18), Fourier transform it, and
also express the density contrdsh terms of its Fourier transform. Additionally,

we employ the same approximation used in deriving Limber’s equation in Fourier
space, namely that correlations of the density conalsig the line-of-sight are
negligibly small. After carrying out this lengthy but straightforward procedure, the
three-point correlator of the Fourier transformigk reads (suppressing the sub-
script ‘eff’ for brevity)

e 2THSQS /WH W3(w) © dkg .
= dwi/ —— exp(iksw
8¢t Jo ad(w) fE(w) J-e 2m Plikew)

(o Nef B Nsf B
()52 0)3( ) - 550

Hats on symbols denote Fourier transforms. Note the fairly close analogy between
(6.59) and (6.22): The three-point correlatoriofs a distance-weighted integral
over the three-point correlator of the Fourier-transformed density cordtrdste

fact that the three-componegt of the wave vectok appears only in the first factor

0 reflects the approximation mentioned above, i.e. that correlatiodsling the
line-of-sight are negligible.

Suppose now that the density contrésts expanded in a perturbation series,
5=y 8 suchthad!) = O([3M)]"), and truncated after the second order. The three-
point correlator 0Bl vanishes becaugaemains Gaussian to first perturbation or-
der. The lowest-order, non-vanishing three-point correlat@razn therefore sym-

bolically be written(3V&13(2)), plus two permutations of that expression. The
second-order density perturbation is related to the first order through (Fry 1984;
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Goroff et al. 1986; Bouchet et al. 1992)

R . 31/ . A L I
52 w) =02 (w) [ 58 K8 KR FRE-K).  (660)

Whereé(()l) is the first-order density perturbation linearly extrapolated to the present
epoch, andD, (w) is the linear growth factoD (w) = a(w)g[a(w)] with g(a)
defined in eq. (2.52) on page 25. The functiofX,y) is given by

5 11 1 2 (%-9)2
Fy)= <|z|2+|>7|2) AR T (6.61)

Relation (6.60) implies that the lowest-order three-point correl&ioi 51 5(2))
involves four-point correlators @Y. For Gaussian fields lik&Y), four-point cor-
relators can be decomposed into sums of products of two-point correlators, which

can be expressed in terms of the linearly extrapolated density power spé?éﬂ)um
This leads to

(819 (k)8 (k)3 (Ks)) = 2(2m° D} (w) Py (k1) Py (ke)
x 8p (K1 + ko + ka) F (Kg, ko) . (6.62)

The complete lowest-order three-point correlatordof a sum of three terms,
namely the left-hand side of (6.62) and two permutations thereof. Each permutation
yields the same result, so that the complete correlator is three times the right-hand
side of (6.62). We can now work our way back, inserting the three-point density
correlator into eq. (6.59) and Fourier-transforming the result with resp@ghtp

The three-point correlator of the effective convergence so obtained can then in a
final step be used to compute the third moment of the aperture mass. The result is
(Schneider et al. 1998a)

 8IHSQS vT/3(W)D4 (w)

/d2| P ( )> 32(116)

/d2| P ( )> 20,0 (L +T0)F(Lly),  (6.63)

with the filter functionJ(n) defined in eq. (6.50). Commonly, third-order moments
are expressed in terms of the skewness,

(M3:(6))

5(8) M2,0))2 (6.64)
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where(Mgp(e)) is calculated with the linearly evolved power spectrum. As seen
earlier in eq. (6.49)<M§p) scales with the amplitude of the power spectrum, while
(M§p> scales with the square of it. In this approximation, the skewg8$ is
therefore independent of the normalisation of the power spectrum, removing that
major uncertainty and leaving cosmological parameters as primary degrees of free-
dom. For instance, the skewneg®) is expected to scale approximately Wity L

Figure 24 shows three examples.

T T |

200 -

S(0)

100 -

80 -

60 -

1 10 100
O[arc min.]

Fig. 24. The skewnes$(8) of the aperture madda,p(0) is shown as a function of aperture
radius® for three of the realisations of the cluster-normalised CDM cosmogony listed in
Tab. 1: SCDM (solid curve); OCDM (dotted curve); ah@DM (dashed curve). The source
redshift was assumed to be=1.

As expected, lower values @) yield larger skewness, and the skewness is re-
duced whem, is increased keepinQg fixed. Despite the sensitivity of(0) to

the cosmological parameters, it should be noted that the source redshift distribu-
tion [entering througW(w)] needs to be known sufficiently well before attempts

can be made at constraining cosmological parameters through measurements of the
aperture-mass skewness. However, photometric redshift estimates are expected to
produce sufficiently well-constrained redshift distributions in the near future (Con-
nolly et al. 1995; Gwyn & Hartwick 1996; Hogg et al. 1998).

We have confined the discussion of the skewness to the aperture madd gjirca

scalar measure of the cosmic shear which can directly be expressed in terms of the
observed image ellipticities. One can of course also consider the skewness directly

148



in terms ofk, sincek can be obtained from the observed image ellipticities through

a mass reconstruction algorithm as described in Sect. 5. Analytical and numerical
results for this skewness have been presented in, e.g., Bernardeau et al. (1997), van
Waerbeke et al. (1999b), Jain et al. (2000) and Reblinsky et al. (1999). We shall
discuss some of their results in Sect. 6.9.1.

As pointed out by Bernardeau (1998), the fact that the source galaxies are clus-
tered in three-dimensional space, and therefore also in redshift space, generates
an additional contribution to the skewness. This effect is more important than the
contributions by the approximations made in the light propagation equations; in
fact, Bernardeau (1998) estimated that the skewness can chang2%% due to
source clustering. Whereas the expectation values of second-order statistics of cos-
mic shear is unaffected by this clustering, the dispersion of any estimator increases.
Of course, if the redshifts of the source galaxies are known, these effects can be
avoided by suitably defining estimators for the quantities under consideration.

In the regime of small angular scales, where the relevant density contrast is highly
nonlinear, different approximations apply for calculating higher-order statistical
guantities. One of them is based on the so-called stable-clusinsegz which
predicts a scaling relation for thepoint correlation function of the density con-
trast (Peebles 1980). Based on this assumption, and variants thereof, higher-order
moments of cosmic-shear measures can be derived (e.g., Hui 1999a, Munshi &
Coles 2000, Munshi & Jain 1999a), as well as approximations to the probability
distribution forkeg itself and filtered (smoothed) versions thereof (Valageas 2000Db,
Munshi & Jain 1999b, Valageas 2000a). The resulting expressions, when compared
to numerical simulations of light propagation through large-scale structures, are
surprisingly accurate.

6.7.2 Number density of (dark) halos

In Sect. 5.3.1, we discussed the possibility to detect mass concentrations by their
weak lensing effects on background galaxies by means of the aperture mass. The
number density of mass concentrations that can be detected at a given threshold
of Map depends on the cosmological model. Fixing the normalisation of the power
spectrum so that the the local abundance of massive clusters is reproduced, the
evolution of the density field proceeds differently in different cosmologies, and so
the abundances will differ at redshifts- 0.3 where the aperture-mass method is
most sensitive.

The number density of halos above a given thresholMgf0) can be estimated
analytically, using two ingredients. First, the spatial number density of halos at
redshiftz with massM can be described by the Press-Schechter theory (Press &
Schechter 1974), which numerical simulations (Lacey & Cole 1993, Lacey & Cole
1994) have shown to be a fairly accurate approximation. Second, in a series of very
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largeN-body simulations, Navarro et al. (1996a, 1997) found that dark matter halos
have a universal density profile which can be described by two parameters, the halo
mass and a characteristic scale length, which depends on the cosmological model
and the redshift. Combining these two results from cosmology, Kruse & Schneider
(1999b) calculated the number density of halos exceebligg Using the signal-
to-noise estimate eq. (6.58), a threshold valuBgfcan be directly translated into

a signal-to-noise threshof. For an assumed number densitynef 30 arcmin 2

and an ellipticity dispersioge = 0.2, one findsS; =~ (6/1arcmin (Map(6)/0.016).

For the redshift distribution (2.69, page 35) wih= 3/2 andz, = 1, the number
density of halos withs. > 5 exceeds 10 per square degree for cluster-normalised
cosmologies, across angular scales, B < 10, and these halos have a broad red-
shift distribution which peaks & ~ 0.3. This implies that a wide-field imaging
survey should be able to detect a statistically interesting sample of medium redshift
halos, thus allowing the definition ofraass-selectesiample of halos. Such a sam-

ple will be of utmost interest for cosmology, since the halo abundance is considered
to be one of the most sensitive cosmological probes (e.g., Eke et al. 1996, Bahcall
& Fan 1998). Current attempts to apply this tool are hampered by the fact that ha-
los are selected either by the X-ray properties or by their galaxy content. These
properties are much more difficult to predict than the dark matter distribution of
halos which can directly be determined from cosmologidbody simulations.
Thus, these mass-selected halos will provide a much closer link to cosmological
predictions than currently possible. Kruse & Schneider (1999b) estimated that an
imaging survey of several square degrees will allow one to distinguish between the
cosmological models given in Table 1, owing to the different number density of ha-
los that they predict. Using the aperture-mass statistics, Erben et al. (2000) recently
detected a highly significant matter concentration on two independent wide-field
images centred on the galaxy cluster A 1942. This matter concentratBouh of

A 1942 is not associated with an overdensity of bright foreground galaxies, which
sets strong lower limits on the mass-to-light ratio of this putative cluster.

6.8 Cosmic Shear and Biasing

Up to now, we have only considered the mass properties of the large-scale structure
and tried to measure them with weak lensing techniques. An interesting question
arises when the luminous constituents of the Universe are taken into account. Most
importantly, the galaxies are supposed to be strongly tied to the distribution of
dark matter. In fact, this assumption underlies all attempts to determine the power
spectrum of cosmic density fluctuations from the observed distribution of galaxies.
The relation between the galaxy and dark-matter distributions is parameterised by
the so-called biasing factdr(Kaiser 1984), which is defined such that the relative
fluctuations in the spatial number density of galaxieddmmes the relative density
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fluctuationsd,

9= _ pa(x 6.65
where(n) denotes the mean spatial number density of galaxies at the given redshift.
The bias factob is not really a single number, but generally depends on redshift,
on the spatial scale, and on the galaxy type (see, e.g., Efstathiou 1996, Peacock
1997, Kauffmann et al. 1997, Coles et al. 1998). Typical values for the bias factor
are assumed to de~ 1— 2 at the current epoch, but can increase towards higher
redshifts. The clustering properties of UV dropout galaxies (Steidel et al. 1998)
indicate thab can be as large as 5 at redsh#ts 3, depending on the cosmology.

The projected surface mass densxigyf(é) should therefore be correlated with the
number density of (foreground) galaxies in that direction. Ggtw) be the distri-
bution function of a suitably chosen population of galaxies in comoving distance
(which can be readily converted to a redshift probability distribution). Then, assum-
ing thatb is independent of scale and redshift, the number density of the galaxies
is

ng(8) = (ng) {1+b / dw Gg(W) 8( fx (W)8,w) | , (6.66)

where (ng) is the mean number density of the galaxy population. The distribu-
tion functionGg(w) depends on the selection of galaxies. For example, for a flux-
limited sample it may be of the form (2.69). Narrower distribution functions can
be achieved by selecting galaxies in multi-colour space using photometric redshift
techniques. The correlation function betwewey(6) ancikeﬁ(é) can directly be ob-
tained from eq. (2.83) by identifying; (w) = 3HZQoW (w) fx (w)/[2c?a(w)] [see

eq. (6.18)], andp(w) = (ng)bGg(w). It reads

) _
£6x(8) = (NGKefr) (8) = 32%?" b(ng) / MVWGG(W)
x / %(Pé(k,w)%(fK(w)ek). (6.67)

Similar equations were derived by, e.g., Kaiser (1992), Bartelmann (1995b), Dolag
& Bartelmann (1997), Sanz et al. (1997).

One way to study the correlation between foreground galaxies and the projected
density field consists in correlating the aperture mdgg8) with a similarly fil-
tered galaxy number density, defined as

A(8) = [ 9 U(S])ne(®) (6.68)

with the same filter functiotJ as inMap. The correlation betweeNap(8) and
AN (0) then becomes
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£(6)= (Map(0)2((8)) = [ 9 U(IS]) [ P9 V(918 -F')  (6.69)

gm(?) Qob(nG /dw \‘I’VVGCZ\(,‘\:‘)’ /dIIP5< )32(|e),

where we used eq. (2.83) for the correlation funcgrin the final step. The filter
functionJ is defined in eq. (6.50). Note that this correlation function filters out the
power spectruniy at redshifts where the foreground galaxies are situated. Thus,
by selecting galaxy populations with narrow redshift distribution, one can study the
cosmological evolution of the power spectrum or, more accurately, the product of
the power spectrum and the bias factor.

The convenient property of this correlation function is that one can define an unbi-
ased estimator fdf in terms of observables. N, galaxies are found in an aperture

of radius8 at positions3; with tangential ellipticitye;;, andN; foreground galaxies

at positionsp;, then

~ T[92 Np N
=T 2, Qe 3 Vi) (6.70)

is an unbiased estimator f§(8). Schneider (1998) calculated the noise properties

of this estimator, concentrating on an Einstein-de Sitter model and a linearly evolv-
ing power spectrum which can locally be approximated by a power lakv &

more general and thorough treatment is given in van Waerbeke (1998), where var-
ious cosmological models and the non-linear power spectrum are considered. van
Waerbeke (1998) assumed a broad redshift distribution for the background galax-
ies, but a relatively narrow redshift distribution for the foreground galaxies, with
0z4/24 ~ 0.3. For an open model witkg = 0.3, (8) declines much faster with

0 than for flat models, implying that open models have relatively more power on
small scales at intermediate redshift. This is a consequence of the behaviour of the
growth factorD_ (w); see Fig. 6 on page 26. For foreground redslzftg 0.2, the
signal-to-noise ratio of the estimator (6.70) for a single aperture is roughly constant
for 8 > 5, and relatively independent of the exact valugpbver a broad redshift
interval, with a characteristic value ef0.4.

van Waerbeke (1998) also considered the ratio

_ &)
—(N3(9))

and found that it is nearly independent@fThis result was shown in Schneider
(1998) to hold for linearly evolving power spectra with power-law shape, but sur-
prisingly it also holds for the fully non-linear power spectrum. Indeed, var@ing
between 1and 100, R varies by less than 2% for the models considered in van
Waerbeke (1998). This is an extremely important result, in that any observed varia-
tion of Rwith angular scale indicates a corresponding scale dependence of the bias

(6.71)
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factorb. A direct observation of this variation would provide valuable constraints
on the models for the formation and evolution of galaxies.

We point out that the rati®k depends, in the linear regime, on the combination
Qp/b, independent of the normalisation of the power spectrum. This is to be com-
pared with the combinatio@8~6/b determined by peculiar motions of galaxies
(e.g., Strauss & Willick 1995 and references therein). Since these combinations of
the two parameters differ, one might hope that they can be derived separately by
combining them.

6.9 Numerical Approach to Cosmic Shear, Cosmological Parameter Estimates,
and Observations

6.9.1 Cosmic Shear Predictions from Cosmological Simulations

So far, we have treated the lensing effect of the large-scale structure with analytic
means. This was possible because of two assumptions. First, we considered only the
lowest-order lensing effect, by employing the Born approximation and neglecting
lens-lens coupling in going from eq. (6.9) to eq. (6.11). Second, we used the pre-
scription for the non-linear power spectrum as given by Peacock & Dodds (1996),
assuming that it is a sufficiently accurate approximation. Both of these approxi-
mations may become less accurate on small angular scales. Providing a two-point
guantity, the analytic approximation Bf is applicable only for two-point statistical
measures of cosmic shear. In addition, the error introduced with these approxima-
tions cannot be controlled, i.e., we cannot attach ‘error bars’ to the analytic results.

A practical way to avoid these approximations is to study the propagation of light
in a model universe which is generated by cosmological structure-formation simu-
lations. They typically provide the three-dimensional mass distribution at different
redshifts in a cube whose side-length is much smaller than the Hubble radius. The
mass distribution along a line-of-sight can be generated by combining adjacent
cubes from a sequence of redshifts. The cubes at different redshifts should either
be taken from different realisations of the initial conditions, or, if this requires too
much computing time, they should be translated and rotated such as to avoid pe-
riodicity along the line-of-sight. The mass distribution in each cube can then be
projected along the line-of-sight, yielding a surface mass density distribution at
that redshift. Finally, by employing the multiple lens-plane equations, which are a
discretisation of the propagation equation (6.9; Seitz et al. 1994), shear and magni-
fication can be calculated along light rays within a cone whose size is determined
by the side length of the numerical cube. This approach was followed by many
authors (e.g., Jaroszynski et al. 1990, Jaroszynski 1991, Bartelmann & Schneider
1991, Blandford et al. 1991, Waxman & Miralda-Eséu®95), but the rapid devel-
opment ofN-body simulations of the cosmological dark matter distribution render
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the more recent studies particularly useful (Wambsganss et al. 1998, van Waerbeke
et al. 1999b, Jain et al. 2000).

As mentioned below eq. (6.30), the Jacobian mafixs generally asymmetric
when the propagation equation is not simplified to (6.11). Therefore, the degree
of asymmetry of4 provides one test for the accuracy of this approximation. Jain
et al. (2000) found that the power spectrum of the asymmetric component is at
least three orders of magnitude smaller than that.gf For a second test, we have
seen that the power spectrumiqfs should equal that of the shear in the frame
of our approximations. This analytic prediction is very accurately satisfied in the
numerical simulations.

Jain et al. (2000) and Reblinsky et al. (1999) found that analytic predictions of
the dispersions af andMgp respectively, are very accurate when compared to nu-
merical results. For both cosmic shear measures, however, the analytic predictions
of the skewness are not satisfactory on angular scales beld®. This discrep-

ancy reflects the limited accuracy of the second-order Eulerian perturbation theory
employed in deriving the analytic results. Hui (1999b) showed that the accuracy
of the analytic predictions can be much increased by using a prescription for the
highly-nonlinear three-point correlation function of the cosmic density contrast, as
developed by Scoccimarro & Frieman (1999). On larger angular scales, the predic-
tions from perturbation theory as described in Sect. 6.7.1 are accurate, as shown by
Gaztanaga & Bernardeau (1998).

The signal-to-noise ratio of the dispersion of the cosmic shear, given explicitly for
Mapin eq. (6.58), is determined by the intrinsic ellipticity dispersion of galaxies and
the sampling variance, expressed in terms of the curtosis. As shown by van Waer-
beke et al. (1999b), Reblinsky et al. (1999), and White & Hu (2000), this curtosis
is remarkably large. For instance, the curtosis of the aperture mass exceeds unity
even on scales larger than’ 1fevealing non-Gaussianity on such large scales. Un-
fortunately, this large sampling variance implies not only that the area over which
cosmic shear needs to be measured to achieve a given accuracy for its dispersion
must be considerably larger than estimated for a Gaussian density field, but also
that numerical estimates of cosmic shear quantities need to cover large solid angles
for an accurate numerical determination of the relevant quantities.

From such numerical simulations, one can not only determine moments of the shear
distribution, but also consider its full probability distribution. For example, the pre-
dictions for the number density of dark matter halos that can be detected through
highly significant peaks o5, — see Sect. 6.7.2 — have been found by Reblinsky
et al. (1999) to be fairly accurate, perhaps surprisingly so, given the assumptions
entering the analytic results. Similarly, the extreme tail (say more than 5 standard
deviations from the mean) of the probability distribution Mg, calculated ana-
Iytically in Kruse & Schneider (1999a), does agree with the numerical results; it
decreases exponentially.
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6.9.2 Cosmological Parameter Estimates

Since the cosmic shear described in this section directly probes the total matter
content of the universe, i.e., without any reference to the relation between mass and
luminosity, it provides an ideal tool to investigate the large-scale structure of the
cosmological density field. Assuming the dominance of cold dark matter, the sta-
tistical properties of the cosmic mass distribution are determined by a few param-
eters, the most important of which af®), Qa, the shape parameter of the power
spectrum/[’, and the normalisation of the power spectrum expressed in terms of
og. For each set of these parameters, the corresponding cosmic shear signals can
be predicted, and a comparison with observations then constrains the cosmological
parameters.

Furthermore, since weak lensing probes the shape of the projected power spectrum,
modifications of the CDM power spectrum by a contribution from hot dark matter
(such as massive neutrinos) may be measurable; e.g., Cooray (1999a) estimated
that a deep weak-lensing survey of 100 square degrees may yield a lower limit on
the neutrino mass of 3.5 eV.

Several approaches to this parameter estimation have been discussed in the liter-
ature. For example, van Waerbeke et al. (1999b) used numerical simulations to
generate synthetic cosmic shear data, fixing the normalisation of the density fluctu-
ations toog Qg = 0.6, which is essentially the normalisation by cluster abundance.

A moderately wide and deep weak-lensing survey, covering 25 square degrees and
reaching a number density of 30 galaxies per arémiith characteristic redshift

Zs ~ 1, will enable the distinction between an Einstein-de Sitter model and an open
universe withQqg = 0.3 at the 6o level, though each of these models is degener-
ate in theQg vs. Qa plane. For this conclusion, only the skewness of the recon-
structed effective surface mass density or the aperture mass was used. Kruse &
Schneider (1999a) instead considered the highly non-Gaussian tail of the aperture
mass statistics to constrain cosmological parameters, whereas Kruse & Schneider
(1999Db) considered the abundance of highly significant peak&gés a probe of

the cosmological models. The peak statistics of reconstructed surface density maps
(Jain & van Waerbeke 2000) also provides a valuable means to distinguish between
various cosmological models.

Future work will also involve additional information on the redshifts of the back-
ground galaxies. Hu (1999) pointed out that splitting up the galaxy sample into
several redshift bins substantially increases the ability to constrain cosmological
parameters. He considered the power spectrum of the projected density and found
that the accuracy of the corresponding cosmological parameters improves by a fac-
tor of ~ 7 for Qa, and by a factor of 3 for Qg, estimated for a median redshift of
unity.

All of the quoted work concentrated mainly on one particular measure of cosmic
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shear. One goal of future theoretical investigations will certainly be the construc-
tion of a method which combines the various measures into a ‘global’ statistics,
designed to minimise the volume of parameter space allowed by the data of future
observational weak lensing surveys. Future, larger-scale numerical simulations will
guide the search for such a statistics and allow one to make accurate predictions.

In addition to a pure cosmic shear investigation, cosmic shear constraints can be
used in conjunction with other measures of cosmological parameters. One impres-
sive example has been given by Hu & Tegmark (1999), who showed that even a
relatively small weak lensing survey could dramatically improve the accuracy of
cosmological parameters measured by future Cosmic Microwave Background mis-
sions.

6.9.3 Observations

One of the first attempts to measure cosmic shear was reported in Mould et al.
(1994), where the mean shear was investigated across a field| &f®6’, observed

with the Hale 5-meter Telescope. The image is very deep and has good quality (i.e.,
a seeing of B7” FWHM). It is the same data as used by Brainerd et al. (1996)
for the first detection of galaxy-galaxy lensing (see Sect. 8). The mean ellipticity
of the 4363 galaxies within a circle of& radius with magnitudes 28 r < 26

was found to bg0.5+ 0.5)%. A later, less conservative reanalysis of these data
by Villumsen (unpublished), where an attempt was made to account for the seeing
effects, yielded a 3 detection of a non-vanishing mean ellipticity.

Following the suggestion that the observed large-angle QSO-galaxy associations
are due to weak lensing by the large-scale structure in which the foreground galax-
ies are embedded (see Sect. 7), Fort et al. (1996) searched for shear around five
luminous radio quasars. In one of the fields, the number density of stars was so
high that no reasonable shear measurement on faint background galaxies could be
performedX? In the remaining four QSO fields, they found a shear signal on a scale
of ~ 1’ for three of the QSOs (those which were observed with SUSI, which has

a field-of-view of ~ 2.2'), and on a somewhat larger angular scale for the fourth
QSO. Taken at face value, these observations support the suggestion of magnifica-
tion bias caused by the large-scale structure. A reanalysis of the three SUSI fields
by Schneider et al. (1998b), considering thes shear over the fields, produced a
positive value for(|y|?) at the 99% significance level, as determined by numerous
simulations randomising the orientation angles of the galaxy ellipticities. The am-
plitude of thermsshear, when corrected for the dilution by seeing, is of the same
magnitude as expected from cluster-normalised models. However, if the magnifi-
cation bias hypothesis is true, these three lines-of-sight are not randomly selected,

14 This field was subsequently used to demonstrate the superb image quality of the SUSI
instrument on the ESO NTT.
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and therefore this measurement is of no cosmological use.

Of course, one or a few narrow-angle fields cannot be useful for a measurement
of cosmic shear, owing to cosmic variance. Therefore, a meaningful measurement
of cosmic shear must either include many small fields, or must be obtained from
a wide-field survey. Using the first strategy, several projects are under way: The
Hubble Space Telescope has been carrying out so-called parallel surveys, where
one or more of the instruments not used for primary observations are switched on
to obtain data of a field located a few arc minutes away from the primary pointing.
Over the past few years, a considerable database of such parallel data sets has ac-
cumulated. Two teams are currently analysing parallel data sets taken with WFPC2
and STIS, respectively (see Seitz et al. 1998a, Rhodes et al. 2000). In addition, a
cosmic-shear survey is currently under way, in which randomly selected areas of
the sky are mapped with the FORS instrument(7’ x 6.7") on the VLT. Some of

these areas include the fields from the STIS parallel survey.

The alternative approach is to map big areas and measure the cosmic shear on a
wide range of scales. The wide-field cameras currently being developed and in-
stalled are ideally suited for this purpose, and several groups are actively engaged
in this work (see the proceedings of the Boston lens conference, July 1999).

Very recently, four groups have independently and almost simultaneously reported
statistically significant detections of cosmic shear. In alphabetic order: Bacon et al.
(2000) used 14 independent fields of siZze86 obtained with the WHT to mea-

sure themsshear in squares of & 8. Kaiser et al. (2000b) used six independent
images taken with the UH8K camera on CFHT, each-380 in size, to measure

the cosmic shear on scales betweearzl 30. van Waerbeke et al. (2000) observed
eight independent fields with the UH8K and UH12K (335) cameras at CFHT

and measured theensshear on scales belowS8since they avoided measurements

in apertures crossing chip edges. Finally, Wittman et al. (2000) took three inde-
pendent fields of size 4% 43 with the BTC at CTIO to measure the two-point
correlation function of galaxy ellipticities on scales betweémardd 30. All four
groups discuss their statistical and systematic uncertainties in detail and employ
various tests to convincingly demonstrate the physical reality of the signal. In par-
ticular, they show that remaining systematics most probably contribute to the shear
signal at a level below 1%, i.e. much less than the measured signal on Sciles

15. The results of these groups are presented in Fig. 25. The yet unpublished result
by Maoli et al. is not included. It was obtained from 45 images taken with the
FORSL1 instrument (8 x 6.7") on UT1 of VLT. Evidently, the results of the var-

ious groups are in excellent agreement despite the data being taken with different
optical filters, different cameras, different telescopes, and reduced with different
data analysis techniques. This provides additional evidence for the reality of the
cosmic-shear signal. The significance of the results extends up ) &ependent

of course on the total size of the fields used for the respective analyses. Since, ex-
cept for the VLT data, the number of independent fields used for these studies is
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small, the error is entirely dominated by cosmic variance.

These impressive results prove the power of cosmic-shear measurements as a novel
tool for probing the statistical properties of large-scale structures on small scales
and at late times in the universe. In the near future, such measurements will become
comparably important, and will provide complementary cosmological information
to that obtained from CMB experiments.
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Fig. 25. Compilation of the results of four different measurements of the cosmic-shear dis-
persion (with the two-point shear correlation function of Wittman et al. 2000 transformed
into an equivalent dispersion for comparison). Open triangle: Bacon et al. (2000); filled
squares: Kaiser et al. (2000b); open squares: van Waerbeke et al. (2000); crosses: Wittman
et al. (2000). The error bars include both statistical errors and cosmic variance. Points from
the same group at different angular scales are not statistically independent. The dotted
curves are predictions for a cluster-normaliggdDM model with effective source red-

shifts ofz; = 1 (lower curve) ands = 2 (upper curve), taken from Jain & Seljak (1997).
(adapted from Kaiser et al. 2000b)

There is nothing special about weak lensing being carried out predominantly in
the optical wavelength regime, except that the optical sky is full of faint extended
sources, whereas the radio sky is relatively empty. The FIRST radio survey cov-
ers at present about 4200 square degrees and contaii®™sources, i.e., the
number density is smaller by about a facterl000 than in deep optical images.
However, this radio survey covers a much larger solid angle than current or fore-
seeabladeepoptical surveys. As discussed in Refregier et al. (1998), this survey
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may yield a significant measurement of the two-point correlation function of image
ellipticities on angular scalez 10. On smaller angular scales, sources with intrin-

sic double-lobe structure cannot be separated from individual independent sources.
The Square Kilometer Array (van Haarlem & van der Hulst 1999) currently being
discussed will yield such a tremendous increase in sensitivity for cm-wavelength
radio astronomy that the radio sky will then be as crowded as the current optical
sky. Finally, the recently commissioned Sloan telescope will map a quarter of the
sky in five colours. Although the imaging survey will be much shallower than cur-
rent weak-lensing imaging, the huge area surveyed can compensate for the reduced
galaxy number density and their smaller mean redshift Stebbins et al. (1996). In-
deed, first weak-lensing results were already reported at the Boston lensing confer-
ence (July 1999) from commissioning data of the telescope (see also Fischer et al.
1999).
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7 QSO Magnification Bias and Large-Scale Structure

7.1 Introduction

Magnification by gravitational lenses is a purely geometrical phenomenon. The
solid angle spanned by the source is enlarged, or equivalently, gravitational focus-
ing directs a larger fraction of the energy radiated by the source to the observer.
Sources that would have been too faint without magnification can therefore be seen
in a flux-limited sample. However, these sources are now distributed over a larger
patch of the sky because the solid angle is stretched by the lens, so that the number
density of the sources on the sky is reduced. The net effect on the number density
depends on how many sources are added to the sample because they appear brighter.
If the number density of sources increases steeply with decreasing flux, many more
sources appear due to a given magnification, and the simultaneous dilution can be
compensated or outweighed.

This magnification bias was described in Sect. 4.4.1 (page 70) and quantified in
eq. (4.38). As introduced there, letf) denote the magnification into directiéh
on the sky, andig(> S) the intrinsic counts of sources with observed flux exceed-
ing S. In the limit of weak Iensingu(é) 2 1, and the flux will not change by a
large factor, so that it is sufficient to know the behavioumgf> S) in a small
neighbourhood of. Without loss of generality, we can assume the number-count
function to be a power law in that neighbourhoog(> S) 0 S . We can safely
ignore any redshift dependence of the intrinsic source counts here because we aim
at lensing effects of moderate-redshift mass distributions on high-redshift sources.
Equation (4.43, page 72) then applies, which relates the cumulative source counts
n(>S 6) observed in directioB to the intrinsic source counts,

n(>S8)=p" @) no(>9). (7.1)

Hence, ifa > 1, the observed number density of objects is increased by lensing, and
reduced ifa < 1. This effect is callednagnification bia®r magnification anti-bias
(e.g. Schneider et al. 1992).

The intrinsic number-count function of QSOs is well fit by a broken power law with

a slope ofa ~ 0.64 for QSOs fainter than- 19th blue magnitude, and a steeper
slope ofa ~ 2.52 for brighter QSOs (Boyle et al. 1988; Hartwick & Schade 1990;
Pei 1995). Faint QSOs are therefore anti-biased by lensing, and bright QSOs are
biased. In the neighbourhood of gravitational lenses, the number density of bright
QSOs is thus expected to be higher than average, in other words, more bright QSOs
should be observed close to foreground lenses than expected without lensing. Ac-
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cording to eq. (7.1), the overdensity factor is

q(®) = % @) (7.2)

If the lenses are individual galaxies, the magnificaﬂmfé) drops rapidly with in-
creasing distance from the lens. The natural scale for the angular separation is the
Einstein radius, which is of order an arc second for galaxies. Therefore, individ-
ual galaxies are expected to increase the number density of bright QSOs only in a
region of radius a few arc seconds around them.

Fugmann (1990) reported an observation which apparently contradicts this ex-
pectation. He correlated bright, radio-loud QSOs at moderate and high redshifts
with galaxies from the Lick catalogue (Seldner et al. 1977) and found that there
is a significant overdensity of galaxies around the QSOs of some of his sub-
samples. This is intriguing because the Lick catalogue contains the counts of galax-
ies brighter than~ 19th magnitude in square-shaped cells with di@le length.
Galaxies of< 19th magnitude are typically at much lower redshifts than the QSOs,
z< 0.1-0.2, so that the QSOs with redshifts> 0.5— 1 are in the distant back-
ground of the galaxies, with the two samples separated by hundreds of mega-
parsecs. Physical correlations between the QSOs and the galaxies are clearly ruled
out. Can the observed overdensity be expected from gravitational lensing? By con-
struction, the angular resolution of the Lick catalogue is of ordéy éxteeding

the Einstein radii of individual galaxies by more than two orders of magnitude.
The result that Lick galaxies are correlated with bright QSOs can thus neither be
explained by physical correlations nor by gravitational lensing due to individual
galaxies.

On the other hand, the angular scale-of0 is on the right order of magnitude for
lensing by large-scale structures. The question therefore arises whether the magnifi-
cation due to lensing by large-scale structures is sufficient to cause a magnification
bias in flux-limited QSO samples which is large enough to explain the observed
QSO-galaxy correlation. The idea is that QSOs are then expected to appear more
abundantly behind matter overdensities. More galaxies are expected where the mat-
ter density is higher than on average, and so the galaxies would act as tracers for
the dark material responsible for the lensing magnification. This could then cause
foreground galaxies to be overdense around background QSOs. This exciting pos-
sibility clearly deserves detailed investigation.

Even earlier than Fugmann, Tyson (1986) had inferred that galaxies apparently
underwent strong luminosity evolution from a detection of significant galaxy over-
densities on scales of 3@round 42 QSOs with redshifts<1z < 1.5, assuming

that the excess galaxies were at the QSO redshifts. In the light of later observations
and theoretical studies, he probably was the first to detect weak-lensing induced
associations of distant sources with foreground galaxies.
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7.2 Expected Magnification Bias from Cosmological Density Perturbations

To estimate the magnitude of the effect, we now calculate the angular cross-
correlation functionéoc(@) between background QSOs and foreground galax-
ies expected from weak lensing due to large-scale structures (Bartelmann 1995b;
Dolag & Bartelmann 1997; Sanz et al. 1997). We employ a simple picture for the
relation between the number density of galaxies and the density contrast of dark
matter, the linear biasing scheme (e.g. Kaiser 1984; Bardeen et al. 1986; White
et al. 1987). Within this picture, and assuming weak lensing, we shall immediately
see that the desired correlation functis is proportional to the cross-correlation
functiong s between magnificatiop and density contragt The latter correlation

can straightforwardly be computed with the techniques developed previously.

7.2.1 QSO-Galaxy Correlation Function

The angular cross-correlation functiqac(¢) between galaxies and QSOs is de-
fined by

£0l®) = oo ([e® - o) [re@+d - (na)]) . 79)

where(ng ) are the mean number densities of QSOs and galaxies averaged over
the whole sky. Assuming isotrop§oc() does not depend on the direction of the

lag angle@. All number densities depend on flux (or galaxy magnitude), but we
leave out the corresponding arguments for brevity.

We saw in eq. (7.1) in the introduction thag(8) = p®~1(8) (ng). Since the mag-
nification expected from large-scale structures is srpa#, 1+ du with |dp| < 1,
we can expan@®~! ~ 1+ (a — 1)du. Hence, we can approximate

-

n —(n -
10O =10  (q—1)5u(8) . (7.4)

(nQ)

so that the relative fluctuation of the QSO number density is proportional to the
magnification fluctuation, and the factor of proportionality quantifies the magnifi-
cation bias. Again, foo = 1, lensing has no effect on the number density.

The linear biasing model for the fluctuations in the galaxy density asserts that the
relative fluctuations in the galaxy number counts are proportional to the density
contras®, .
ne(0) — (ne) =b3(0), (7.5)
(nG)
Whereé(é) is the line-of-sight integrated density contrast, weighted by the galaxy
redshift distribution, i.e. thew-integral in eq. (6.66), page 151. The proportionality
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factorb is the effective biasing factor appropriately averaged over the line-of-sight.
Typical values for the biasing factor are assumed tb pel — 2. Both the relative
fluctuations in the galaxy number density and the density contrast are bounded by
—1 from below, so that the right-hand side should be replaced bybdidy, —1]

in places Wher(é(é) < —b~L. For simplicity we use (7.5), keeping this limitation

in mind.

Using egs. (7.4) and (7.5), the QSO-galaxy cross-correlation function (7.3) be-
comes

€Qa(@) = (0 —1)b(ou(6)3(6 + @) . (7.6)
Hence, it is proportional to the cross-correlation functigg between magnifica-
tion and density contrast, and the proportionality factor is given by the steepness
of the intrinsic QSO number counts and the bias factor (Bartelmann 1995b). As
expected from the discussion of the magnification bias, the magnification bias is
ineffective fora = 1, and QSOs and galaxies are anti-correlatecofer 1. Fur-
thermore, if the number density of galaxies does not reflect the dark-matter fluc-
tuations,b would vanish, and the correlation would disappear. In order to find the
QSO-galaxy cross-correlation function, we therefore have to evaluate the angular
cross-correlation function between magnification and density contrast.

7.2.2 Magnification-Density Correlation Function

We have seen in Sect. 6 that the magnification fluctuation is twice the effective
convergence(8) = 2k (8) in the limit of weak lensing, see eq. (6.29, page 130).
The latter is given by eq. (6.19, page 125), in which the average over the source-
distance distribution has already been performed. Therefore, we can immediately

write down the source-distance averaged magnification fluctuation as

_ . 3HZQp e 5[ fi (W), W]
H(6) = =5, /0 (W) i (w) 2 (7.7)
Here,VVQ(w) is the modified QSO weight function
- _ Wh fK(V\/—W)
Wo(w) = /W W Golw) LT (7.8)

andGg(w) is the normalised QSO distance distribution.

Both the average density contr@saind the average magnification fluctuatim

are weighted projections of the density fluctuations along the line-of-sight, which
is assumed to be a homogeneous and isotropic random field. As in the derivation
of the effective-convergence power spectrum in Sect. 6, we can once more employ
Limber’s equation in Fourier space to find the cross power specBh) for
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projected magnification and density contrast,

_ 3H2Qo MM Wo(w)Ga(w) |
Pusll) = = /0 W e o) P5(fK(W)). (7.9)

The cross-correlation function between magnification and density contrast is ob-
tained from eq. (7.9) via Fourier transformation, which can be carried out and sim-
plified to yield

2 Wiy —
Eusl@) = 50 [ A fc(w)Vi(W) Go(w) 2w
’ %(Pe;(k,V\/)Jo[fK(V\/)kcp] . (7.10)

Quite obviously, there is a strong similarity between this equation and that for the

magnification autocorrelation function, eq. (6.34, page 132). We note that eq. (7.10)
automatically accounts for galaxy autocorrelations through the matter power spec-
trum P5(k)

We point out that the dependence of the QSO-galaxy correlation function scales like
&oc 1 bQoPs(kefr, Wherekett is the comoving wave number determined by the peak

of the redshift distribution of the foreground galaxies and the angular separation

¢ considered. On the other hand, the auto-correlation function of the foreground
galaxies behaves likégg [ b2P5(keff), which implies that the rati§oc/¢cc U

Q/b, the same dependence as already stressed earlier (Sect. 6.8, page 150). Again,
this ratio is nearly independent of the normalisation of the power spectrum, and
therefore a convenient measure of the ré&jt (Beritez & Sanz 1999).

7.2.3 Distance Distributions and Weight Functions

The QSO and galaxy weight functio c(w) are normalised representations of
their respective redshift distributions, where the redshift needs to be transformed to
comoving distancev.

The redshift distribution of QSOs has frequently been measured and parameterised.
Using the functional form and the parameters determined by Pei (1995), the mod-
ified QSO weight functiol\g(w) has the shape illustrated in the top panel of
Fig. 26. It is necessary for our present purposes to be able to impose a lower red-
shift limit on the QSO sample. Since we want to study lensing-induced correlations
between background QSOs and foreground galaxies, there must be a way to ex-
clude QSOs physically associated with galaxy overdensities. This is observation-
ally achieved by choosing a lower QSO redshift cut-off high enough to suppress any
redshift overlap between the QSO and galaxy samples. This procedure must be re-
produced in theoretical calculations of the QSO-galaxy cross-correlation function.
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This can be achieved by cutting off the observed redshift distribu@grbelow
some redshifty, re-normalising it, and putting the result into eq. (7.8) to filtgl

The five curves shown in the top panel of Fig. 26 are for cut-off redshiftscreas-
ing from Q.0 (solid curve) to 2 in steps of (. Obviously, the peak i shifts to
largerw for increasingz.

Fig. 26. QSO and galaxy weight functior\A_/Q(w) and Gg(w), respectively. Top panel:
Wo(w) for five different choices of the lower cut-off redshiffimposed on the QSO sam-
ple; zp increases from .0 (solid curve) to D in steps of (6. The peak irVT/Q(W) shifts to
larger distances for increasiag Bottom panelGg(w) for five different galaxy magnitude
limits my, increasing from 1% to 225 (solid curve) in steps of one magnitude. The peak in
the galaxy distance distribution shifts towards larger distances with increaging. with
decreasing brightness of the galaxy sample.

Galaxy redshift distribution§&sg can be obtained by extrapolating local galaxy
samples to higher redshifts, adopting a constant comoving number density and a
Schechter-type luminosity function. For the present purposes, this is a safe proce-
dure because the galaxies to be correlated with the @G8@ddbe at sufficiently
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lower redshifts than the QSOs to avoid overlap between the samples. Thus the ex-
trapolation from the local galaxy population is well justified. In order to convert
galaxy luminosities to observed magnitudks;orrections need to be taken into
account. Conveniently, the resulting weight functions should be parameterised by
the brightness cut-off of the galaxy sample, in practice by the maximum galaxy
magnitudemy (i.e. the minimum luminosity) required for a galaxy to enter the
sample. The five representative curves@g(w) in the lower panel of Fig. 26 are

for mg increasing from 1% to 225 (solid curve) in steps of one magnitude.

band magnitudes are assumed. For increasing cut-off magmiigdes. for fainter
galaxy samples, the distributions broaden, as expected. The correlation amplitude
as a function ofmg peaks ifmg is chosen such that the median distance to the
galaxies is roughly half the distance to the bulk of the QSO population considered.

7.2.4 Simplifications

It turns out in practice that the exact shapes of the QSO and galaxy weight functions
Wo(w) andGg(w) are of minor importance for the results. Allowing inaccuracies
of order 10%, we can replace the functidBdg g(w) by delta distributions centred

on typical QSO and galaxy distanogg andwg < wgq. Then, from eq. (7.8),

— f (Wg —w)

Wo (W) = T (Wo) H(wg —w), (7.112)

where HX) is the Heaviside step function, and the line-of-sight integration in
eg. (7.7) becomes trivial. It is obvious that matter fluctuations at redshifts higher
than the QSO redshift do not contribute to the cross-correlation fungtigip):
Inserting (7.11) together witg = (W — W) into eq. (7.10), we find 5(¢) =0

if wg > wq, as it should be.

The expression for the magnification-density cross-correlation function further sim-

plifies if we specialise to a model universe with zero spatial curvakure 0, such
that fx (w) = w. Then,

Wo(w) = (1—W—V‘('g) H(wg —w) , (7.12)

and the cross-correlation functi@ps() reduces to

Eué((p) =

3HgQO Wg Wg o kdk
-2 a(we) (1_W_Q) o Folkwe) b(weke) - (7.13)

for wg > wg, and§5(¢) = 0 otherwise.
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7.3 Theoretical Expectations

7.3.1 Qualitative Behaviour

Before we evaluate the magnification-density cross-correlation function fully nu-
merically, we can gain some insight into its expected behaviour by inserting the
CDM and HDM model spectra defined in eq. (6.37, page 133) into eq. (7.10) and
expanding the result into a power seriespiBartelmann 1995b). As in the case

of the magnification auto-correlation function before, the two model spectra pro-
duce qualitatively different results. To first order g & 5(9) decreases linearly

with increasingyp for CDM, while it is flat for HDM. The reason for this different
appearance is the lack of small-scale power in HDM, and the abundance thereof
in CDM. The two curves shown in Fig. 27 illustrate this for an Einstein-de Sitter
universe with Hubble constaht= 0.5. The underlying density-perturbation power
spectra were normalised by the local abundance of rich clusters, and linear density
evolution was assumed.

Thelinear correlation amplitudeg,(0), for CDM is of order 3x 10-3, and about

a factor of five smaller for HDM. The magnification-density cross-correlation func-
tion for CDM drops to half its peak value within a few times 10 arc minutes. This,
and the monotonic increase §fs towards smaltp, indicate that density perturba-
tions on angular scales below’Xbntribute predominantly t§, 5. At typical lens
redshifts, such angular scales correspond to physical scales up to a few Mpc. Ev-
idently therefore, the non-linear evolution of the density perturbations needs to be
taken into account, and its effect is expected to be substantial.

7.3.2 Results

Figure 28 confirms this expectation; it shows magnification-density cross-
correlation functions for the four cosmological models detailed in Tab. 1 on
page 119. Two curves are shown for each model, one for linear and the other for
non-linear density evolution. The two curves of each pair are easily distinguished
because non-linear evolution increases the cross-correlation amplitude apbgnall
about an order of magnitude above linear evolution, quite independent of the cos-
mological model. At the same time, the angular cross-correlation scale is reduced
to a few arc minutes. At angular scal€s80, the non-linear cross-correlation func-
tions are above the linear results, falling below at larger scales. The correlation
functions for the three cluster-normalised models (SCDM, OCDM AGDM;

see Tab. 1 on page 119) are very similar in shape and amplitude. The curve for
the cCDM model lies above the other curves by a factor of about five, but for
low-density universes, the influence of different power-spectrum normalisations are
much less prominent.

The main results to be extracted from Fig. 28 are that the amplitude of the

167



0.003 -

0.002

€,5(9)

0.001 |-

¢[degrees]

Fig. 27. Cross-correlation functions between magnification and density corsst),

are shown for an Einstein-de Sitter universe witk- 0.5, adopting CDM (solid curve)

and HDM (dotted curve) density fluctuation spectra. Both spectra are normalised to the
local cluster abundance, and linear density evolution is assumed. The lower cut-off redshift
of the QSOs iy = 0.3, the galaxy magnitude limit iy = 20.5. In agreement with the
expectation derived from the CDM and HDM model spectra (6.37, page 133), the CDM
cross-correlation function decreases linearly with increagifog small@, while it is flat to

first order ing for HDM. The small-scale matter fluctuations in CDM compared to HDM
causet (@) to increase more steeply @s- 0.

magnification-density cross-correlation functidf,s(0), reaches approximately
5x 1072, and thaté s drops by an order of magnitude within about’.20his
behaviour is quite independent of the cosmological parameters if the density-
fluctuation power spectrum is normalised by the local abundance of rich galaxy
clusters. More detailed results can be found in Dolag & Bartelmann (1997) and
Sanz et al. (1997).

7.3.3 Signal-to-Noise Estimate

The QSO-galaxy correlation functidiiyc(@) is larger tharg (@) by the factor

(a —1)b. The value of the bias factdris yet unclear, but it appears reasonable to
assume that it is between 1 and 2. For optically selected Q8@&s2.5, so that

(a —1)b~ 2— 3. Combining this with the correlation amplitude for CDM read off
from Fig. 28, we can expeéhg(0) S 0.1.
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Fig. 28. Angular magnification-density cross-correlation functigggép) are shown for the

four cosmological models specified in Table 1 on page 119. Two curves are shown for each
cosmological model; those with the higher (lower) amplitude at0 were calculated with

the non-linearly (linearly) evolving density-perturbation power spectra, respectively. The
models are: SCDM (solid curvesyCDM (dotted curves), OCDM (short-dashed curves),
and/ACDM (long-dashed curves). Obviously, non-linear evolution has a substantial effect.
It increases the correlation amplitude by about an order of magnitude. The Einstein-de Sit-
ter model normalised tog = 1 has a significantly larger cross-correlation amplitude than
the cluster-normalised Einstein-de Sitter model. For the low-density models, the difference
is much smaller. The curves for the cluster-normalised models are very similar, quite inde-
pendent of cosmological parameters.

Given the meaning ofqc(®), the probability to find a foreground galaxy close to
a background QSO is increased by a factoflof {oc(9)] < 1.1 above random.

In a small solid angle @ around a randomly selected background QSO, we thus
expect to find

Ne ~ [1+&qc(0)] (ne) d*w = [1+&qa(0)] (Na) (7.14)
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galaxies, wheréNg) is the average number of galaxies within a solid angle’os. d
In a sample ofNg fields around randomly selected QSOs, the signal-to-noise ratio
for the detection of a galaxy overdensity is then

S _No(Ne—(Ng)) _
N~ ?NQ<GNG>)1(/32 = (No(Na))?€qa(0) - (7.15)

Typical surface number densities of reasonably bright galaxies are of mgder

10 per square arc minute. Therefore, there should be of dMigr~ 30 galaxies
within a randomly selected disk of one arc minute radius, in which the QSO-galaxy
cross correlation is sufficiently strong. If we require a certain minimum signal-to-
noise ratio such that/8l > (S/N)o, the number of QSO fields to be observed in
order to meet this criterion is

2
No> (7). B0 e

- (3) e o g2o e
20 FS/;\')OF {(a _41) b} - (Egéég)yz (%) , (7.16)

where we have inserted typical numbers in the last step. This estimate demon-
strates that gravitational lensing by non-linearly evolving large-scale structures in
cluster-normalised CDM can produce correlations between background QSOs and
foreground galaxies at thes3evel on arc minute scales in samplesp20 QSOs.

The angular scale of the correlations is expected to be of order 1 to 10 arc min-
utes. Equation (7.16) makes it explicit that more QSO fields need to be observed
in order to establish the significance of the QSO-galaxy correlations if (i) the QSO
number count function is shallova (close to unity), and (ii) the galaxy bias factor

b is small. In particular, no correlations are expected # 1, because then the
dilution of the sources and the increase in QSO number exactly cancel. Numerical
simulations (Bartelmann 1995b) confirm the estimate (7.16).

Fugmann’s (1990) observation was also tested in a numerical model universe based
on the adhesion approximation to structure formation (Bartelmann & Schneider
1992). This model universe was populated with QSOs and galaxies, and QSO-
galaxy correlations on angular scales on the order a0 were investigated us-

ing Spearman’s rank-order correlation test (Bartelmann & Schneider 1993a). Light
propagation in the model universe was described with the multiple lens-plane ap-
proximation of gravitational lensing. In agreement with the analytical estimate pre-
sented above, it was found that lensing by large-scale structures can indeed ac-
count for the observed correlations between high-redshift QSOs and low-redshift
galaxies, provided the QSO number-count function is steep. Lensing by individual
galaxies was confirmed to be entirely negligible.
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7.3.4 Multiple-Waveband Magnification Bias

The magnification bias quantified by the number-count stopan be substantially
increased if QSOs are selected in two or more mutually uncorrelated wave bands
rather than one (Borgeest et al. 1991). To see why, suppose that optically bright
andradio-loud QSOs were selected, and that their fluxes in the two wave bands are
uncorrelated. Le§, » be the flux thresholds in the optical and in the radio regimes,
respectively, andy » the corresponding number densities of either optically bright
or radio-loud QSOs on the sky. As in the introduction, we assumenihyatan be
written as power laws i%; , with exponentsx ,.

In a small solid angle 4o, the probability to find an optically brighdr radio-loud
QSO s therp;(S) = ni(S) d?w, and the joint probability to find an optically bright
andradio-loud QSO is the product of the individual probabilities, or

P(SL.S2) = pa(S1) P2(S) = [M(S) ()] Pw D S 1S, 2 dPw,  (7.17)

provided there is no correlation between the flu8gsso that the two probabilities
are independent. Suppose now that lensing produces a magnificatiorpyfactoss
d?w. The joint probability is then changed to

ay az 42

Therefore, the magnification bias in the optically brightd radio-loud QSO sam-
ple is as efficient as if the number-count function had a sloge-efa1 + a5>.

More generally, the effective number-count slope for the magnification bias in a
QSO sample that is flux limited im mutually uncorrelated wave bands is

o= iai , (7.19)

whereq; are the number-count slopes in the individual wave bands. Then, the QSO-
galaxy cross-correlation function is

€qa(@) = <i aj — 1) b&s(9) , (7.20)

and can therefore be noticeably larger than for a QSO sample which is flux limited
in one wave band only.

7.4 Observational Results

After this theoretical investigation, we turn to observations of QSO-galaxy cross-
correlations on large angular scales. The existence of QSO-galaxy correlations was
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tested and verified in several studies using some very different QSO- and galaxy
samples.

Bartelmann & Schneider (1993b) repeated Fugmann’s analysis with a well-defined
sample of background QSOs, namely the optically identified QSOs from the 1-
Jansky catalogue (r et al. 1981; Stickel et al. 1993; Stickel &UKr 1993).
Optically identified QSOs with measured redshifts need to be bright enough for
detection and spectroscopy, hence the chosen sample is implicitly also constrained
by an optical flux limit. Optical and radio QSO fluxes are generally not strongly
correlated, so that the sample is affected by a double-waveband magnification bias,
which can further be strengthened by explicitly imposing an optical flux (or mag-
nitude) limit.

Although detailed results differ from Fugmann’s, the presence of the correlation is
confirmed at the 98% confidence level for QSOs with redshifs75 and brighter

than 18th magnitude. The number of QSOs matching these criteria is 56. The cor-
relation significance decreases both for lower- and higher-redshift QSO samples,
and also for optically fainter ones. This is in accordance with an explanation in
terms of a (double-waveband) magnification bias due to gravitational lensing. For
low-redshift QSOs, lensing is not efficient enough to produce the correlations. For
high-redshift QSOs, the most efficient lenses are at higher redshifts than the galax-
ies, so that thebservedyalaxies are uncorrelated with the structures which mag-
nify the QSOs. Hence, the correlation is expected to disappear for increasing QSO
redshifts. For an optically unconstrained QSO sample, the effective slope of the
number-count function is smaller, reducing the strength of the magnification bias
and therefore also the significance of the correlation.

With a similar correlation technique, correlations between the 1-Jansky QSO sam-
ple and IRAS galaxies (Bartelmann & Schneider 1994) and diffuse X-ray emis-
sion (Bartelmann et al. 1994; see also Cooray 1999b) were investigated, leading
to qualitatively similar results. IRAS galaxies are correlated with optically bright,
high-redshiftz > 1.5 1-Jansky sources at the.8% confidence level. The higher
QSO redshift for which the correlation becomes significant can be understood if the
IRAS galaxy sample is deeper than the Lick galaxy sample, so that the structures
responsible for the lensing can be traced to higher redshift.

Bartsch et al. (1997) re-analysed the correlation between IRAS galaxies and 1-
Jansky QSOs using a more advanced statistical technique which can be optimised
to the correlation function expected from lensing by large-scale structures. In agree-
ment with Bartelmann & Schneider (1994), they found significant correlations be-
tween the QSOs and the IRAS galaxies on angular scales5bfbut the correla-

tion amplitude is higher than expected from large-scale structure lensing, assuming
linear evolution of the density-perturbation power spectrum. Including non-linear
evolution, however, the results by Bartsch et al. (1997) can well be reproduced
(Dolag & Bartelmann 1997).
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X—ray photons from the ROSAAII-Sky Surveye.g. Voges 1992) are correlated
with optically bright 1-Jansky sources both at low5& z < 1.0) and at high red-
shifts (15 < z< 2.0), but there is no significant correlation with QSOs in the inter-
mediate redshift regime. A plausible explanation for this is that the correlation of
X—ray photons with low-redshift 1-Jansky QSOs is due to hot gas which is phys-
ically associated with the QSOs, e.g. which resides in the host clusters of these
QSOs. Increasing the source redshift, the flux from these clusters falls below the
detection threshold of thall-Sky Surveyhence the correlation disappears. Upon
further increasing the QSO redshift, lensing by large-scale structures becomes effi-
cient, and the X—ray photons trace hot gas in the lenses.

Rodrigues-Williams & Hogan (1994) found a highly significant correlation be-
tween optically-selected, high-redshift QSOs and Zwicky clusters. Their cluster
sample was fairly bright, which indicates that the clusters are in the foreground
of the QSOs. This rules out that the clusters are physically associated with the
QSOs and thus exert environmental effects on them which might lead to the ob-
served association. Rodrigues-Williams & Hogan discussed lensing as the most
probable reason for the correlations, although simple mass models for the clus-
ters yield lower magnifications than required to explain the significance of the
effect. Seitz & Schneider (1995b) repeated their analysis with the 1-Jansky sam-
ple of QSOs. They found agreement with Rodrigues-Williams & Hogan’s result
for intermediate-redshifiz(~ 1) QSOs, but failed to detect significant correlations
for higher-redshift sources. In addition, a significant under-density of low-redshift
QSOs close to Zwicky clusters was found, for which environmental effects like
dust absorption are the most likely explanation. A variability-selected QSO sample
was correlated with Zwicky clusters by Rodrigues-Williams & Hawkins (1995).
They detected a significant correlation between QSOs widh<0z < 2.2 with
foreground Zwicky clusters (witkiz) ~ 0.15) and interpreted it in terms of grav-
itational lensing. Again, the implied average QSO magnification is substantially
larger than that inferred from simple lens models for clusters with velocity disper-
sions of~ 10° kms. Wu & Han (1995) searched for associations between distant
1-Jansky and 2-Jansky QSOs and foreground Abell clusters. They found no cor-
relations with the 1-Jansky sources, and a marginally significant correlation with
2-Jansky sources. They argue that lensing by individual clusters is insufficient if
cluster velocity dispersions are of ordePI@ns !, and that lensing by large-scale
structures provides a viable explanation.

Beritez & Marfinez-Gonalez (1995) found an excess of red galaxies from the
APM catalog with moderate-redshift ¢ 1) 1-Jansky QSOs on angular scale¥

at the 991% significance level. Their colour selection ensures that the galaxies are
most likely at redshifts @ < z< 0.4, well in the foreground of the QSOs. The am-
plitude and angular scale of the excess is compatible with its originating from lens-
ing by large-scale structures. The measurements bjt&e& Martinez-Gonalez
(1995) are plotted together with various theoretical QSO-galaxy cross-correlation
functions in Fig. 29, which clearly shows that the QSO-galaxy cross-correlation
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Fig. 29. QSO-galaxy cross-correlation measurements are plotted together with theoreti-
cal cross-correlation function&g(@) for various cosmological models as indicated by
line type. The CDM density-perturbation power spectrum was cluster-normalised, and
non-linear evolution was taken into account. The figure shows that the measurements fall
above the theoretical predictions at small angular scglgs2'. This excess can be at-
tributed to gravitational lensing by individual galaxy clusters (see the text for more de-
tail). The theoretical curves depend on the Hubble constmiough the shape parameter

Ir = Qoh, which determines the peak location of the power spectrum.

measurements agree quite well with the cross-correlation funcigagp), but

they fall above the range of theoretical predictions at small angular sgafeg,.

This can be attributed to the magnification bias due to gravitational lensing by in-
dividual clusters. Being based on the weak-lensing approximation, our approach
breaks down when the magnification becomes comparable to uniyi.5, say.

This amount of magnification occurs for QSOs closer tha Einstein radii to
cluster cores. Depending on cosmological parameters, QSO and galaxy redshifts,
~ 3 Einstein radii correspond to 1’ — 2. Hence, weexpecthe theoretical expec-
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tations from lensing by large-scale structures alone to fall below the observations
on angular scalep< 1 — 2.

Norman & Impey (1999) took wide-field R-band images centred on a subsample
of 1-Jansky QSOs with redshifts between 1 and 2. They searched for an excess of
galaxies in the magnitude range.2% R < 21 on angular scales ¢f 10 around

these QSOs and found a correlation at the 99% significance level. The redshift
distribution of the galaxies is likely to peak aroumd- 0.2. The angular cross-
correlation function between the QSOs and the galaxies agrees well with the theo-
retical expectations, although the error bars are fairly large.

All these results indicate that there are correlations between background QSOs and
foreground ‘light’, with light either in the optical, the infrared, or the (soft) X—ray
wave bands. The angular scale of the correlations is compatible with that expected
from lensing by large-scale structures, and the amplitude is either consistent with
that explanation or somewhat larger. Wu & Fang (1996) discussed whether the
autocorrelation of clusters modelled as singular isothermal spheres can produce
sufficient magnification to explain this result. They found that this is not the case,
and argued that large-scale structures must contribute substantially.

If lensing is indeed responsible for the correlations detected, other signatures of
lensing should be found in the vicinity of distant QSOs. Indeed, Fort et al. (1996)
searched for the shear induced by weak lensing in the fields of five luminous QSOs
with z~ 1 and found coherent shear signals in four of them (see also Schneider et al.
1998b). In addition, they detected galaxy groups in three of their fields. Earlier,
Bonnet et al. (1993) had found evidence for coherent weak shear in the field of
the potentially multiply-imaged QSO 234907, which was later identified with a
distant cluster (Mellier et al. 1994, Fischer et al. 1994).

Bower & Smail (1997) searched for weak-lensing signals in fields around eight
luminous radio sources at redshiftsl. They confirmed the coherent shear detected
earlier by Fort et al. (1996) around one of the sources (3C336=a0.927), but
failed to find signatures of weak lensing in the combined remaining seven fields.

A cautionary note was recently added to this discussion by Williams & Irwin (1998)
and Norman & Williams (2000). Cross-correlating LBQS and 1-Jansky quasars
with APM galaxies, they claimed significant galaxy overdensities around QSOs
on angular scales of order one degree. As discussed above, lensing by currently
favoured models of large-scale structures is not able to explain such large correla-
tion scales. Thus, if these results hold up, they would provide evidence that there is
a fundamental difficulty with the current models of large-scale structure formation.
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7.5 Magnification bias of galaxies

The investigation of the angular correlation between QSOs and foreground galaxies
was motivated by observational evidence of this effect, as described in the previous
subsection. However, the magnification bias generates a similar correlation func-
tion between foreground galaxies and different classes of background sources, pro-
vided the latter have a slope of the cumulative sources counts different from unity.
QSOs are particularly convenient due to their steep number counts and their high
redshift. Moessner et al. (1998) and Moessner & Jain (1998) studied the angular
correlation between two different populations of galaxies. If, for example, the two
populations of galaxies were selected by their apparent magnitude, the fainter one
will on average be more distant than the brighter one; therefore, matter traced by
the brighter galaxies magnifies the fainter population of galaxies. Unfortunately,
owing to the broad redshift distribution of galaxies at fixed apparent magnitude,
there will be a significant overlap in redshift between these two populations. Since
galaxies are auto-correlated, this intrinsic clustering contribution is likely to swamp
any lensing-induced correlation. Note that, owing to the high-redshift cut used for
the QSO samples considered in the previous subsection, this intrinsic correlation is
of little or no importance there.

However, if the foreground and background populations can be better separated, the
lensing effect may be stronger than the intrinsic correlation. For example, by using
photometric redshift estimates, the two galaxy populations may be nicely separated
in their redshift distribution. In that case, the cross-correlation function will take
the form

€12(9) = (02— )&, 5(9) + &' (@) , (7.21)

where the first term is the contribution due to the magnification and has the same
form as that derived for the QSO-galaxy correlation in the the previous subsection,
and &’ is the intrinsic cross-correlation function coming from imperfect redshift
separation of the two galaxy populations. Note thais the number-count slope

of the background galaxies, abgd the bias factor of the foreground population. If

&,5 and¢’ have different functional forms with respectgpthese two contributions

to the cross-correlation function may be separable.

From early commissioning data of the Sloan Digital Sky Survey, covering 100
square degrees in five passbands, Jain et al. (1999) attempted to detect this mag-
nification bias-induced cross-correlation between two galaxy populations. From
their photometric redshift estimates for the galaxies, they define the foreground
and background galaxy samples by ®; < 0.15 and 035 < z < 0.45, together

with a magnitude cut at < 20.5. The large gap between the two redshift ranges
accounts for the fact that photometric redshifts have an uncertainty of slightly less
thatAz= 0.1, so that this conservative cut should minimise the overlap between the
two populations. At the magnitude cut, the so-defined background sample exhibits
an effective slope oft ~ 0.5, so that lensing should produce an anti-correlation. In
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fact, Jain et al. (1999) found th&t, is negative forp > 1/, but slightly positive for
smaller angular separations. Note that this behaviour is expected from eq. (7.21),
since the positive correlation at small angles is due to the prevalence of the intrin-
sic cross-correlation owing to the redshift overlap of the two samples. In order to
strengthen their interpretation of this result, Jain et al. (1999) split their background
sample into a red and a blue half. The number-count slope of these two subsamples
of background galaxies at the magnitude cut is 0 anda ~ 1, respectively. Cor-
respondingly, they find thd;» calculated with the blue subsample shows no sign

of an anti-correlation at any angular separation, whereas the red subsample shows
a stronger anti-correlation than for the total sample of background galaxies. Hence,
it seems that the magnification bias of galaxies has been measured; given that the
data on which this result is based constitutes onl{% of the total imaging data

the Sloan Survey will accumulate, it is clear that the correlation funétiowill be
measurable with high precision out to large angular separations, providing a very
convenient handle o /b, and the scale dependencebddt redshiftsz ~ 0.1.

7.6 Outlook

Cross correlations between distant QSOs and foreground galaxies on angular scales
of about ten arc minutes have been observed, and they can be attributed to the
magnification bias due to gravitational lensing by large-scale structures. Coherent
shear patterns have been detected around QSOs which are significantly correlated
with galaxies. The observations so far are in reasonable agreement with theoretical
expectations, except for the higher observed signal in the innermost few arc min-
utes, and the claimed correlation signal on degree scales. While the excess cross-
correlation on small scales can be understood by the lensing effects of individual
galaxy clusters, correlations on degree scales pose a severe problem for the lensing
explanation if they persist, because the lensing-induced cross-correlation quickly
dies off beyond scales of approximately .10

QSO-galaxy cross-correlations have the substantial advantage over other diagnos-
tics of weak lensing by large-scale structures that they do not pose any severe ob-
servational problems. In particular, it is not necessary to measure either shapes or
sizes of faint background galaxies accurately, because it is sufficient to detect and
count comparatively bright foreground galaxies near QSOs. However, such count-
ing requires homogeneous photometry, which is difficult to achieve in particular on
photographic plates, and requires careful calibration.

Since the QSO-galaxy cross-correlation function involves filtering the density-
perturbation power spectrum with a fairly broad function, the zeroth-order Bessel
function $(x) [cf. eq. (7.10)], these correlations are not well suited for constrain-
ing the power spectrum. If the cluster normalisation is close to the correct one, the
QSO-galaxy cross-correlation function is also fairly insensitive to cosmological pa-

177



rameters.

Rather, QSO-galaxy cross correlations are primarily important for measuring the
bias parameten. The rationale of future observations of QSO-galaxy correlations
should therefore be to accurately measure the correlation amplitude on scales be-
tween a few and 10 arc minutes. On smaller scales, the influence of individual
galaxy clusters sets in, and on larger scales, the correlation signal is expected to be
weak. Once it becomes possible to reliably constrain the density-fluctuation power
spectrum, such observations can then be used to quantify the bias parameter, and
thereby provide most valuable information for theories of galaxy formation. A pos-
sible dependence of the bias parameter on scale and redshift can also be extracted.

Sufficiently large data fields for this purpose will soon become available, in partic-
ular through wide-field surveys like the 2dF Survey (Colless 1998) and the Sloan
Digital Sky Survey (Gunn & Knapp 1993, Loveday & Pier 1998). It therefore ap-
pears feasible that within a few years weak lensing by large-scale structures will
be able to quantify the relation between the distributions of galaxies and the dark
matter.
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8 Galaxy-Galaxy Lensing
8.1 Introduction

Whereas the weak lensing techniques described in Sect. 5 are adequate to map the
projected matter distribution of galaxy clusters, individual galaxies are not suffi-
ciently massive to show up in the distortion of the images of background galaxies.
From the signal-to-noise ratio (4.55, page 76) we see that individual isothermal ha-
los with a velocity dispersion in excess €f600kms ! can be detected at a high
significance level with the currently achievable number densities of faint galaxy
images. Galaxies have halos of much lower velocity dispersion: The velocity dis-
persion of arL, elliptical galaxy is~ 220kms %, that of arL, spiral~ 145kms .

However, if one is not interested in the mass properties of individual galaxies, but
instead in the statistical properties of massive halos of a population of galaxies, the
weak lensing effects of several such galaxies can statistically be superposed. For
example, if one consideby identical foreground galaxies, the signal-to-noise ratio

of the combined weak lensing effect increaseﬁxlé/sz, so that for a typical ve-

locity dispersion for spiral galaxies of, ~ 160kmst, a few hundred foreground
galaxies are sufficient to detect the distortion they induce on the background galaxy
images.

Of course, detection alone does not yield new insight into the mass properties of
galaxy halos. A quantitative analysis of the lensing signal must account for the
fact that ‘identical’ foreground galaxies cannot be observed. Therefore, the mass
properties of galaxies have to be parameterised in order to allow the joint analysis
of the foreground galaxy population. In particular, one is interested in the velocity
dispersion of a typicall(., say) galaxy. Furthermore, the rotation curves of (spiral)
galaxies which have been observed outt80h~! kpc show no hint of a truncation

of the dark halo out to this distance. Owing to the lack of dynamical tracers, with the
exception of satellite galaxies (Zaritsky & White 1994), a direct observation of the
extent of the dark halo towards large radii is not feasible with conventional methods.
The method described in this section uses the light bundles of background galaxies
as dynamical tracers, which are available at all distances from the galaxies’ centres,
and are therefore able, at least in principle, to probe the size (or the truncation
radius) of the halos. Methods for a quantitative analysis of galaxy halos will be
described in Sect. 8.2.

The first attempt at detecting this galaxy-galaxy lensing effect was reported by

Tyson et al. (1984), but the use of photographic plates and the relatively poor seeing
prevented them from observing a galaxy-galaxy lensing signal. The first detection

was reported by Brainerd et al. (1996), and as will be described in Sect. 8.3, several
further observational results have been derived.
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Gravitational light deflection can also be used to study the dark matter halos of
galaxies in clusters. The potential influence of the environment on the halo proper-
ties of galaxies can provide a strong hint on the formation and lifetimes of clusters.
One might expect that galaxy halos are tidally stripped in clusters and therefore
physically smaller than those of field galaxies. In Sect. 8.4, we consider galaxy-
galaxy lensing in clusters, and report on some first results.

Intermediate in mass between clusters and galaxies are groups of galaxies. With a
characteristic velocity dispersion ef 300km/s, they are also not massive enough

to be detected individually with weak lensing techniques. For them, the foregoing
remarks also apply: As galaxies, groups can be statistically superposed to investi-
gate the statistical properties of their mass profile. Hoekstra et al. (2000b) describe
a first application of this technique, finding a highly significant shear signal in a
sample of 59 groups detected by spectroscopic methods, which yields an average
velocity dispersion of- 320km/s and a mass-to-light ratio ©f25ch—1,

8.2 The Theory of Galaxy-Galaxy Lensing

A light bundle from a distant galaxy is affected by the tidal field of many foreground
galaxies. Therefore, in order to describe the image distortion, the whole population
of foreground galaxies has to be taken into account. But first we shall consider the
simple case that the image shape is affected (mainly) by a single foreground galaxy.
Throughout this section we assume that the shear is weak, so that we can replace
(4.12, page 61) by

e® =g—vy. (8.1)

Consider an axi-symmetric mass distribution for the foreground galaxy, and back-
ground images at separatifrfrom its centre. The expectation value of the image
ellipticity then is the shear & which is oriented tangentially. ti(¢) andp(® ()
denote the probability distributions of the image and source ellipticities, then ac-
cording to (8.1),

p(e) = PIE—y) = pI(E) —Ya e P (e) 8.2)

deq

where the second equality applies fgr< 1. If ¢ is the angle between the major
axis of the image ellipse and the line connecting source and lens centre, one finds
the probability distribution o by integrating (8.2) over the modulus gf

p(6) = [ diellel p(e) = -~ vicos20) [ el pO(e), (83
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where ¢ ranges within[0, 2r7. Owing to the symmetry of the problem, we can
restrictd to within 0 andrt/2, so that the probability distribution becomes

p(0) = 2 [1-w( ) cosan)] ©4

i.e., the probability distribution is skewed towards values larger tfydn showing
preferentially a tangential alignment.

Lensing by additional foreground galaxies close to the line-of-sight to the back-
ground galaxy does not substantially change the probability distribution (8.4). First
of all, since we assume weak lensing throughout, the effective shear acting on a
light bundle can well be approximated by the sum of the shear contributions from
the individual foreground galaxies. This follows either from the linearity of the
propagation equation in the mass distribution, or from the lowest-order approxima-
tion of multiple-deflection gravitational lensing (e.g., Blandford & Narayan 1986;
Seitz & Schneider 1992). Second, the additional lensing galaxies are placed at ran-
dom angles around the line-of-sight, so that the expectation value of their com-
bined shear averages to zero. Whereas they slightly increase the dispersion of the
observed image ellipticities, this increase is negligible since the dispersion of the
intrinsic ellipticity distribution is by far the dominant effect. However, if the lens
galaxy under consideration is part of a galaxy concentration, such as a cluster, the
surrounding galaxies are not isotropically distributed, and the foregoing argument
is invalid. We shall consider galaxy-galaxy lensing in clusters in Sect. 8.4, and as-
sume here that the galaxies are generally isolated.

For an ensemble of foreground-background pairs of galaxies, the probability distri-
bution for the angl& simply reads

p(0) = 2|1 ) (55 yeos20)] ®5)

Tt

where(y;) is the mean tangential shear of all pairs considered. The funptiphis

an observable. A significant deviation from a uniform distribution signals the pres-
ence of galaxy-galaxy lensing. To obtain quantitative information on the galaxy
halos from the amplitude of the cosine term, one needs to kiige/¥). It can
directly be derived from observations because the weak shear assumed here does
not significantly change this average between source and image ellipticities, from
a parameterised relation between observable galaxy properties, and from the mean
shear(y;). Although in principle fine binning in galaxy properties (like colour, red-
shift, luminosity, morphology) and angular separation of foreground-background
pairs is possible in order to probe the shear as a function of angular distance from
a well-defined set of foreground galaxies and thus to obtain its radial mass pro-
file without any parameterisation, this approach is currently unfeasible owing to
the relatively small fields across which observations of sufficient image quality are
available.
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A convenient parameterisation of the mass profile is the truncated isothermal sphere
with surface mass density

o; g
Z(&) = 2GE (1— \/ﬁ) ] (8.6)

wheresis the truncation radius. This is a special case of the mass distribution (3.20,
page 51). Brainerd et al. (1996) showed that this mass profile corresponds to a
physically realisable dark-matter particle distributiiiThe velocity dispersion is
assumed to scale with luminosity according to (2.68, page 34), which is supported
by observations. A similar scaling sfwith luminosity L or velocity dispersioroy

is also assumed,
2 2/a
Oy L
= - — 8.7
> Sk(0\/,*) S*(L*) ’ (6.7)

where the choice of the exponent is largely arbitrary. The scaling in (8.7) is such that
the ratio of truncation radius and Einstein radius at fixed redshift is independent of
L. If, in addition,a = 4, the total mass-to-light ratio is identical for all galaxies. The
fiducial luminosityL, may depend on redshift. For instance, if the galaxies evolve
passively, their mass properties are unaffected, but aging of the stellar population
cause them to become fainter with decreasing redshift. This effect may be important
for very deep observations, such as the Hubble Deep Field (Hudson et al. 1998), in
which the distribution of lens galaxies extends to high redshifts.

The luminositylL of a lens galaxy can be inferred from the observed flux and an as-
sumed redshift. Since the scaling relation (2.68) applies to the luminosity measured
in a particular waveband, the calculation of the luminosity from the apparent mag-
nitude in a specified filter needs to account for the k-correction. If data are avail-
able in a single waveband only, an approximate average k-correction relation has
to be chosen. For multi-colour data, the k-correction can be estimated for individ-
ual galaxies more reliably. In any case, one assumes a relation between luminosity,
apparent magnitude, and redshift,

L=L(mz2). (8.8)

The final aspect to be discussed here is the redshift of the galaxies. Given that a
galaxy-galaxy analysis involves at least several hundred foreground galaxies, and
even more background galaxies, one cannot expect that all of them have spectro-
scopically determined redshifts. In a more favourable situation, multi-colour data
are given, from which a redshift estimate can be obtained, using the photometric
redshift method (e.g., Connolly et al. 1995; Gwyn & Hartwick 1996; Hogg et al.

15t is physically realisable in the sense that there exists an isotropic, non-negative particle

distribution function which gives rise to a spherical density distribution corresponding to
(8.6).
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1998). These redshift estimates are characteristically accurAre~t®.1, depend-

ing on the photometric accuracy and the number of filter bands in which photomet-
ric data are measured. For a single waveband only, one can still obtain a redshift
estimate, but a quite unprecise one. One then has to use the redshift distribution of
galaxies at that particular magnitude, obtained from spectroscopic or multi-colour
redshift surveys in other fields. Hence, one assumes that the redshift probability
distributionp,(z, m) as a function of magnitudes is known sufficiently accurately.

Suppose for a moment that all galaxy redshifts were known. Then, one can predict
the effective shear for each galaxy, caused by all the other galaxies around it,

J

whereyjj is the shear produced by theh galaxy on the-th galaxy image, which
depends on the angular separation and the mass propertiesjehtigalaxy. From

its magnitude and redshift, the luminosity can be inferred from (8.8), which fixes
oy and the halo size through the scaling relations (2.68) and (8.7). Of course, for

z <zj,Yj = 0. Although the sum in (8.9) should in principle extend over the whole
sky, the lensing effect of all foreground galaxies with angular separation larger than
someBmax Will average to zero. Therefore, the sum can be restricted to separations
< Bmax- We shall discuss the value 6,4« further below.

In the realistic case of unknown redshifts, but known probability distribution
pz(zzm), the sheary; cannot be determined. However, by averaging (8.9) over
pz(z,m), the mean and dispersiofy;) and ay;, of the shear for thé-th galaxy

can be calculated. Instead of performing the high-dimensional integration explic-
itly, this averaging can conveniently be done by a Monte-Carlo integration. One
can generate multiple realisations of the redshift distribution by randomly drawing
redshifts from the probability density,(z;m). For each realisation, thg can be
calculated from (8.9). By averaging over the realisations, the mygaand disper-
sionaoy; of y; can be estimated.

8.3 Results

The first attempt at detecting galaxy-galaxy lensing was made by Tyson et al.
(1984). They analysed a deep photographic survey consisting of 35 prime-focus
plates with the 4-meter Mayall Telescope at Kitt Peak. An area of 36 (arcmin.)
on each plate was digitised. After object detectien12 000 ‘foreground’ and

~ 47,000 ‘background’ galaxies were selected by their magnitudes, such that the
faintest object in the ‘foreground’ class was one magnitude brighter than the bright-
est ‘background’ galaxy. This approach assumes that the apparent magnitude of an
object provides a good indication for its redshift, which seems to be valid, although
the redshift distributions of ‘foreground’ and ‘background’ galaxies will substan-
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tially overlap. There were- 28,000 foreground-background pairs wilt9 < 63’

in their sample, but no significant tangential alignment could be measured. By
comparing their observational results with Monte-Carlo simulations, Tyson et al.
concluded that the characteristic velocity dispersion of a foreground galaxy in their
sample must be smaller than about 120kt his limit was later revised upwards

to ~ 230kms ! by Kovner & Milgrom (1987) who noted that the assumption made
in Tyson et al.’s analysis that all background galaxies are at infinite distance (i.e.,
Dgs/Ds = 1) was critical. This upper limit is fully compatible with our knowledge

of galaxy masses.

This null-detection of galaxy-galaxy lensing in a very large sample of objects ap-
parently discouraged other attempts for about a decade. After the first weak-lensing
results on clusters became available, it was obvious that this method requires deep
data with superb image quality. In particular, the non-linearity of photographic
plates and mediocre seeing conditions are probably fatal to the detection of this ef-
fect, owing to its smallness. The shear’affdm anL, galaxy witho, = 160kms !

is less than 5%, and pairs with smaller separations are very difficult to investigate
as the bright galaxy will affect the ellipticity measurement of its close neighbour
on ground-based images.

Using a single %' x 9.6’ blank field, with a total exposure time of nearly seven
hours on the 5-meter Hale Telescope on Mount Palomar, Brainerd et al. (1996)
reported the first detection of galaxy-galaxy lensing. Their co-added image had
a seeing of 7’ at FWHM, and the 97% completeness limit was- 26. They
considered ‘foreground’ galaxies in the magnitude rangeg 20< 23, and several
fainter bins for defining the ‘background’ population, and investigated the distribu-
tion function p(¢) for pairs with separation”5< A8 < 34”. The most significant
deviation ofp(¢) from a flat distribution occurs for ‘background’ galaxies in the
range 23X r < 24. For fainter (and thus smaller) galaxies, the accuracy of the shape
determination deteriorates, as Brainerd et al. explicitly show. The number of ‘fore-
ground’ galaxies, ‘background’ galaxies, and pairsNis= 439, N, = 506, and
Npairs = 3202. The binned distribution for this ‘background’ sample is shown in
Fig. 30, together with a fit according to (8.5). A Kolmogorov-Smirnov test rejects
a uniform distribution ofp(¢) at the 99.9% level, thus providing the first detection

of galaxy-galaxy lensing.

Brainerd et al. performed a large number of tests to check for possible systematic
errors, including null tests (e.qg., replacing the positions of ‘foreground’ galaxies by
random points, or stars), splitting the whole sample into various subsamples (e.g.,
inner part vs. outer part of the image, upper half vs. lower half etc.), and these tests
were passed satisfactorily. Also a slight PSF anisotropy in the data, or contam-
ination of the ellipticity measurement of faint galaxies by brighter neighbouring
galaxies, cannot explain the observed relative alignment, as tested with extensive
simulations, so that the detection must be considered real.

184



(@) 23<r,<24

.75

P,(®

.65

.55

e b b e b by e by By
0 2 A4 .6 .8 1 1.2 14 1.6

¢

Fig. 30. The probability distributiorp(¢) for the 3202 foreground-background pairs
(20<r <23 and 23< r < 24, respectively) with 5< AB < 34" in the sample used by
Brainerd et al. (1996), together with the best fit according to (8.5). The observed distribu-
tion is incompatible with a flat distribution (dotted line) at a high confidence level of 99.9%
(from Brainerd et al.).

Brainerd et al. then quantitatively analysed their observed alignment, using the
model outlined in Sect. 8.2, witth = 4. The predictions of the model were inferred
from Monte-Carlo simulations, in which galaxies were randomly distributed with
the observed number density, and redshifts were assigned according to a probabil-
ity distribution p,(z m), for which they used a slight extrapolation from existing
redshift surveys, together with a simple prescription for the k-correction in (8.8)
to assign luminosities to the galaxies. The ellipticity for each background galaxy
image was then obtained by randomly drawing an intrinsic ellipticity, adding shear
according to (8.9). The simulated probability distributiof®) was discretised into
several bins in angular separatify, and compared to the observed orientation dis-
tribution, usingx2-minimisation with respect to the model parametsys ands,.

The result of this analysis is shown in Fig. 31. The shape offheontours is char-
acteristic in that they form a valley which is relatively narrow in the-direction,

but extends very far out into th&-direction. Thus, the velocity dispersian,,

can significantly be constrained with these observations, while only a lower limit
ons, can be derived. Formal 90% confidence limitsapn are~ 100kms* and

~ 210kms?, with a best-fitting value of about 160 km’ whereas the 1- and @-
lower limits ons, are 25~ kpc and~ 10h~1 kpc, respectively.
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Fig. 31. Contours of constang in theV.-hs. parameter plane, whek& = /20y, ob-
tained from a comparison of the observed tangential alignrgntvith the distribution
found in Monte-Carlo simulations. The solid contours range from 0.8 (innermost) to 8 per
degree of freedom; the dotted curve displgys= 1 per degree of freedom. (from Brainerd

et al. 1996).

Finally, Brainerd et al. studied the dependence of the lensing sigrjabn the

colour of their ‘background’ sample, by splitting it into a red and a blue half.
The lensing signal of the former is compatible with zero on all scales, while the
blue sample reveals a strong signal which decreases with angular separation as ex-
pected. This result is in accordance with that discussed in Sect. 5.5.3, where the
blue galaxies showed a stronger lensing signal as well, indicating that their redshift
distribution extends to larger distances.

We have discussed the work of Brainerd et al. (1996) in some detail since it pro-
vided the first detection of galaxy-galaxy lensing, and since it was the only one
obtained from the ground until recently. Also, their careful analysis exemplifies the
difficulties in deriving a convincing result.

Griffiths et al. (1996) analysed the images from tHabble Space Telescope
Medium Deep Survey (MDS) in terms of galaxy-galaxy lensing. The MDS is an
imaging survey, using parallel data obtained with the WFPC2 camera on-board
HST. They identified 1600 ‘foreground’ (15 | < 22) and 14000 ‘background’
(22 < | < 26) galaxies. Owing to the spatial resolution of the HST, a morpholog-
ical classification of the foreground galaxies could be performed, and spiral and
elliptical galaxies could separately be analysed. They considered the mean orien-
tation angle(¢) = /4 + 10 1(y;)(1/|e¥|) as a statistical variable, and scaled the
truncation radius in their mass models in proportion to the half-light radius. They
found thatoy . = 220kms ! ando,. = 160kms* are compatible with their shear
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data for elliptical and spiral galaxies, respectively. For their sample of elliptical
foreground galaxies, they claim that the truncation radius must be more than ten
times the half-light radius to fit their data, and that a de Vaucouleurs mass profile is
excluded. Unfortunately, no significance levels are quoted.

A variant of the method for a quantitative analysis of galaxy-galaxy lensing was
developed by Schneider & Rix (1997). Instead gf%aanalysis of(y;) in angular
separation bins, they suggested a maximume-likelihood analysis, using the individ-
ual galaxy images. In their Monte-Carlo approach, the galaxy positions (and mag-
nitudes) are kept fixed, and only the redshifts of the galaxies are drawn from their
respective probability distributiop,(z; m), as described at the end of Sect. 8.2. The
resulting log-likelihood function

o= _ 2122+ Z'”[ +oy,], (8.10)

wherep is the dispersion of intrinsic ellipticity distribution, here assumed to be a
Gaussian, can then be maximised with respect to the model parameters, €.9.,
ands,. Extensive simulations demonstrated that this approach, which utilises all
of the information provided by observations, yields an unbiased estimate of these
model parameters. Later, Erben (1997) showed that this remains valid even if the
lens galaxies have elliptical projected mass profiles.

This method was applied to the deep multi-colour imaging data of the Hubble Deep
Field (HDF; Williams et al. 1996) by Hudson et al. (1998), after Dell’Antonio &
Tyson (1996) detected a galaxy-galaxy lensing signal in the HDF on an angular
scale of< 5”. The availability of data in four wavebands allows an estimate of
photometric redshifts, a method demonstrated to be quite reliable by spectroscopy
of HDF galaxies (e.g., Hogg et al. 1998). The accurate redshift estimates, and the
depth of the HDF, compensates for the small field-of-view&arcmirf. A similar

study of the HDF data was carried out by the Caltech group (see Blandford et al.
1998).

In order to avoid k-corrections, using the multi-colour photometric data to relate all
magnitudes to the rest-frame B-band, Hudson et al. considered lens galaxies with
redshiftz < 0.85 only, leaving 208 galaxies. Only such source-lens pairs for which
the estimated redshifts differ by at least 0.5 were included in the analysis, giving
about 10 foreground-background pairs. They adopted the same parameterisation
for the lens population as described in Sect. 8.2, except that the depth of the HDF
suggests that the fiducial luminosity should be allowed to depend on redshift,

L. O (14 2)%. Assuming no evolution{ = 0, and a Tully-Fisher index of /i =

0.35, they foundoy. = (160+ 30)kms 1. Various control tests were performed

to demonstrate the robustness of this result, and potential systematic effects were
shown to be negligible.

As in the previous studies, halo sizes could not be significantly constrained. The
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lensing signal is dominated by spiral galaxies at a redshi#t-0f0.6. Comparing

the Tully-Fisher relation at this redshift to the local relation, the lensing results
indicate that intermediate-redshift galaxies are fainter than local spiralsHfy6l
magnitudes in the B-band, at fixed circular velocity.

Hence, all results reported so far yield compatible values,@f but do not allow
upper bounds on the halo size to be set. The flatness of the likelihood surface in
thes,-direction shows that a measuremensofequires much larger samples than
used before. We can understand the insensitivitg.ton the published analyses

at least qualitatively. The shear caused by a galaxy at a distance of, say, 100kpc
is very small, of order 1%. This implies that the difference in shear caused by
galaxies with truncation radius of 20kpc asé- 100kpc is very small indeed. In
addition, there are typically other galaxies closer to the line-of-sight to background
galaxies which produce a larger shear, making it more difficult to probe the shear
of widely separated foreground galaxies. Hence, to probe the halo size, many more
foreground-background pairs must be considered. In addition, the angular scale
Bmax Within which pairs are considered needs to be larger than the angular scale of
the truncation radius at typical redshifts of the galaxies, and on the otherand,
should be much smaller than the size of the data field available. Hence, to probe
large scales of the halo, wide-field imaging data are needed.

There is a related problem which needs to be understood in greater detail. Since
galaxies are clustered, and probably (biased) tracers of an underlying dark matter
distribution (e.g., most galaxies may live in groups), it is not evident whether the
shear caused by a galaxy at a spatial separation of, say, 100kpc is caused mainly by
the dark matter halo of the galaxy itself, or rather by the dark-matter halo associated
with the group. Here, numerical simulations of the dark matter may indicate to
which degree these two effects can be separated, and observational strategies for
this need to be developed.

In fact, the two points just mentioned were impressively illustrated by a galaxy-
galaxy lensing analysis of early commissioning imaging data from the Sloan Digital
Sky Survey (Fischer et al. 1999), covering 225 square degrees. The separation be-
tween foreground and background galaxies was based on apparent magnitude, with
an estimated mean redshift of the foreground samplg©f~ 0.17. Fischer et al.
(1999) used data in three optical filters for their analysis; the number of foreground
(background) galaxies in each filteris28000 (14 x 10F). The galaxy-galaxy lens-

ing signal is seen out te 10 in all three filters, and the mean tangential shear in
the annulus 170< 8 < 10 is ~ 6 x 10~4. With an assumed redshift distribution of
foreground and background galaxies, the characteristic velocity dispersion could be
estimated to be, = 170+ 20kms ! at 95% confidence. Even at the large angular
separation probed by this data set, no sign of a cut-off radius of the galaxy halos
is seen, and a lower limit af, > 2751 *kpc can be derived. At such scales, the
shear is probably no longer dominated by the foreground galaxy used as the ori-
gin for the definition of tangential shear, but by neighbouring galaxies and/or dark
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matter correlated with the galaxy. Therefore, the results of such a study may best
be interpreted as a galaxy-mass correlation function (Kaiser 1992), which brings us
back to the issue of biasing discussed in Sect. 6.8. A preliminary analysis presented
in Fischer et al. (1999) yield@q/b ~ 0.3, if a linear biasing factob is assumed.

At least as important as the quantitative results from the Sloan Survey is the fact
that they demonstrate the enormous potential of this method — this analysis used
about 2% of the imaging data the full Sloan Survey will provide, and did not yet
utilise photometric redshift information which, as mentioned before, will increase
the accuracy of the physical parameters derived.

8.4 Galaxy-Galaxy Lensing in Galaxy Clusters

An interesting extension of the work described above aims at the investigation of

the dark-matter halo properties of galaxies within galaxy clusters. In the hierarchi-

cal model for structure formation, clusters grow by mergers of less massive halos,
which by themselves formed by merging of even smaller substructures. Tidal forces
in clusters, possible ram-pressure stripping by the intra-cluster medium, and close
encounters during the formation process, may affect the halos of galaxies, most
of which presumably formed at an early epoch. Therefore, it is unclear at present
whether the halo properties of galaxies in clusters are similar to those of field galax-
ies.

Galaxy-galaxy lensing offers an exciting opportunity to probe the dark galaxy halos
in clusters. There are several differences between the investigation of field and of
cluster galaxies. First, the number of massive galaxies in a cluster is fairly small,
so the statistics for a single cluster will be limited. This can be compensated by
investigating several clusters simultaneously. Second, the image distortion is de-
termined by the reduced shegr= y/(1—K). For field galaxies, where the shear
and the surface mass density is small, one cam sety, but this approximation

no longer holds for galaxies in clusters, where the cluster prowdrgstantially
above zero. This implies that one needs to know the mass distribution of the clus-
ter before the statistical properties of the massive galaxy halos can be investigated.
On the other hand, it magnifies the lensing signal from the galaxies, so that fewer
cluster galaxies are needed to derive significant lensing results compared to field
galaxies of similar mass. Third, most cluster galaxies are of early type, and thus
their oy, — and consequently, their lensing effect — is expected to be larger than for
typical field galaxies.

In fact, the lensing effect of individual cluster galaxies can even be seen from strong
lensing. Modelling clusters with many strong-lensing constraints (e.g., several arcs,
multiple images of background galaxies), the incorporation of individual cluster
galaxies turns out to be necessary (e.g., Kassiola et al. 1992; Wallington et al. 1995;
Kneib et al. 1996). However, the resulting constraints are relevant only for a few
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cluster galaxies which happen to be close to the strong-lensing features, and mainly
concern the mass of these galaxies withidOh~1 kpc.

The theory of galaxy-galaxy lensing in clusters was developed in Natarajan &
Kneib (1997) and Geiger & Schneider (1998), using several different approaches.
The simplest possibility is related to the aperture mass method discussed in
Sect. 5.3.1. Measuring the tangential shear within an annulus around each cluster
galaxy, perhaps including a weight function, permits a measurement of the aper-
ture mass, and thus to constrain the parameters of a mass model for the galaxies.
Provided the scale of the aperture is sufficiently small, the tidal field of the cluster
averages out to first order, and the local influence of the cluster occurs through the
local surface mass density In particular, the scale of the aperture should be small
enough in order to exclude neighbouring cluster galaxies.

A more sophisticated analysis starts from a mass model of the cluster, as ob-
tained by one of the reconstruction techniques discussed in Sect. 5, or by a pa-
rameterised mass model constructed from strong-lensing constraints. Then, pa-
rameterised galaxy models are added, again with a prescription similar to that of
Sect. 8.2, and simultaneously the mass model of the cluster is multiplied by the
relative mass fraction in the smoothly distributed cluster mass (compared to the to-
tal mass). In other words, the mass added by inserting galaxies into the cluster is
subtracted from the smooth density profile. From the observed galaxy ellipticities,
a likelihood function can be defined and maximised with respect to the parameters
(Oy, S:) of the galaxy model.

Natarajan et al. (1998) applied this method to WFPC2 images of the cluster AC 114
(zg = 0.31). They concluded that most of the mass of a fiduciatluster galaxy

is contained in a radius ef 15kpc, indicating that the halo size of galaxies in this
cluster is smaller than that of field galaxies.

Using their HST mosaic image, Hoekstra et al. (2000a) also detected galaxy-galaxy
lensing in the high-redshift cluster MS10583 atz = 0.83. Avoiding the densest

part of the cluster in selecting their foreground galaxies, they investigated the av-
erage tangential shear around them, after subtracting the shear from the cluster
as determined from the mass reconstruction (see Sect. 5.3, page 97), also using
the scaling (2.68). The galaxy-galaxy lensing signal is seen at the 99.8% confi-
dence level. Using the redshift distribution of background galaxies as determined
from photometric redshift estimates in the Hubble Deep Fields, their lensing signal
yieldso, ~ 200+ 35kms* for the cluster galaxies. Not unexpectedly, this value is
larger than those obtained from field galaxies, since the cluster preferentially hosts
early-type galaxies for whictr, is known to be larger than for spirals. It is indeed
encouraging that this method is able to measure the mass of high-redshift galaxies.

Once the mass contained in the cluster galaxies is a significant fraction of the to-
tal mass of the cluster, this method was found to break down, or give strongly
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biased results. Geiger & Schneider (1999) modified this approach by performing
a maximume-likelihood cluster mass reconstruction for each parameter set of the
cluster galaxies, allowing the determination of the best representation of the global
underlying cluster component that is consistent with the presence of the cluster
galaxies and the observed image ellipticities of background galaxies.

This method was then applied to the WFPC-2 image of the cluster CI098E3,
already described in Sect. 5.4. The entropy-regularised maximume-likelihood mass
reconstruction of the cluster is very similar to the one shown in Fig. 14 (page 106),
except that the cluster centre is much better resolved, with a peak very close to
the observed strong lensing features (Trager et al. 1997). Cluster galaxies were
selected according to their magnitudes, and divided by morphology into two sub-
samples, viz. early-type galaxies and spirals. In Fig. 32 we show the likelihood
contours in thes,—oy . plane, for both subsets of cluster galaxies. Whereas there is
no statistically significant detection of lensing by spiral galaxies, the lensing effect
of early-type galaxies is clearly detected. Although no firm upper limit of the halo
sizes, can be derived from this analysis owing to the small angular field of the im-
age (the maximum of the likelihood function occurs &t-8kpc, and a 1s upper

limit would be~ 50h~1kpc), the contours ‘close’ at smaller valuesspEompared

to the results obtained from field galaxies. By statistically combining several cluster
images, a significant upper limit on the halo size can be expected.

The maximum-likelihood estimate o6, for the early-type galaxies isv
200kms?, in agreement with that found by Hoekstra et al. (2000a).

It should be noted that the results presented above still contain some uncertain-
ties, most notably the unknown redshift distribution of the background galaxies
and the mass-sheet degeneracy, which becomes particularly severe owing to the
small field-of-view of WFPC2. Changing the assumed redshift distribution and the
scaling parametek in (5.10, page 91) shifts the likelihood contours in Fig. 32

up or down, i.e., the determination of,. is affected. As for galaxy-galaxy lens-

ing of field galaxies, the accuracy can be increased by using photometric redshift
estimates. Similarly, the allowed range of the mass-sheet transformation can be
constrained by combining these small-scale images with larger scale ground-based
images, or, if possible, by using magnification information to break the degeneracy.
Certainly, these improvements of the method will be a field of active research in the
immediate future.
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Fig. 32. Results of applying the entropy-regularised maximum-likelihood method for
galaxy-galaxy lensing to the WFPC2 image of the cluster CI@9BAL3. The upper and

lower panels correspond to early-type and spiral galaxies, respectively. The solid lines are
confidence contours at 68.3%, 95.4% and 99.7%, and the cross marks the maximum of the
likelihood function. Dashed lines correspond to galaxy models with equal aperture mass
M.(< 8h~1kpc) = (0.1,0.5,1.0) x 10'*h—1 M. Similarly, the dotted lines connect mod-

els of constant total mass for &n-galaxy, ofM, = (0.1,0.5,1.0,5.0,10) x 10**h~*M,,

which corresponds to a mass fraction contained in galaxi€8.t5,0.75,1.5,7.5,15)%,
respectively (from Geiger & Schneider 1999).
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9 The Impact of Weak Gravitational Light Deflection on the Microwave
Background Radiation

9.1 Introduction

The Cosmic Microwave Background originated in the hot phase after the Big Bang,
when photons were created in thermal equilibrium with electromagnetically inter-
acting particles. While the Universe expanded and cooled, the photons remained
in thermal equilibrium until the temperature was sufficiently low for electrons to
combine with the newly formed nuclei of mainly hydrogen and helium. While the
formation of atoms proceeded, the photons decoupled from the matter due to the
rapidly decreasing abundance of charged matter. Approximately080G/ears af-

ter the Big Bang, corresponding to a redshiftzof 1,000, the universe became
transparent for the radiation, which retained the Planck spectrum it had acquired
while it was in thermal equilibrium, and the temperature decreased in propor-
tion with the scale factor as the Universe expanded. This relic radiation, cooled
to T = 2.73K, forms the Cosmic Microwave Background (hereafter CMB). Pen-
zias & Wilson (1965) detected it as an “excess antenna temperature”, and Fixsen
et al. (1996) used the COBE-FIRAS instrument to prove its perfect black-body
spectrum.

Had the Universe been ideally homogeneous and isotropic, the CMB would have
the intensity of black-body radiation atZ3 K in all directions on the sky, and would
thus be featureless. Density perturbations in the early Universe, however, imprinted
their signature on the CMB through various mechanisms, which are thoroughly
summarised and discussed in Hu (1995). Photons in potential wells at the time of
decoupling had to climb out, thus losing energy and becoming slightly cooler than
the average CMB. This effect, now called tBachs-Wolfe effeatias originally
studied by Sachs & Wolfe (1967), who found that the temperature anisotropies in
the CMB trace the potential fluctuations on the ‘surface’ of decoupling. CMB fluc-
tuations were first detected by the COBE-DMR experiment (Smoot et al. 1992) and
subsequently confirmed by numerous ground-based and balloon-borne experiments
(see Smoot 1997 for a review).

The interplay between gravity and radiation pressure in perturbations of the cos-
mic ‘fluid’ before recombination gave rise to another important effect. Radiation
pressure is only effective in perturbations smaller than the horizon. Upon entering
the horizon, radiation pressure provides a restoring force against gravity, leading
to acoustic oscillations in the tightly coupled fluid of photons and charged parti-
cles, which cease only when radiation pressure drops while radiation decouples.
Therefore, for each physical perturbation scale, the acoustic oscillations set in at
the same time, i.e. when the horizon size becomes equal the perturbation size, and
they end at the same time, i.e. when radiation decouples. At fixed physical scale,
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these oscillations are therefore coherent, and they show up as distinct peaks (the so-
calledDoppler peaksand troughs in the power spectrum of the CMB fluctuations.
Perturbations large enough to enter the horizon after decoupling never experience
these oscillations. Going through the CMB power spectrum from large to small
scales, there should therefore be a ‘first’ Doppler peak at a location determined by
the horizon scale at the time of decoupling.

A third important effect sets in on the smallest scales. If a density perturbation is
small enough, radiation pressure can blow it apart because its self-gravity is too
weak. This effect is comparable to the Jeans’ criterion for the minimal mass re-
quired for a pressurised perturbation to collapse. It amounts to a suppression of
small-scale fluctuations and is call&lk dampingleading to an exponential de-
cline at the small-scale end of the CMB fluctuation power spectrum.

Other effects arise between the ‘surface’ of decoupling and the observer. Rees &
Sciama (1968) pointed out that large non-linear density perturbations between the
last-scattering surface and us can lead to a distinct effect if those fluctuations change
while the photons traverse them. Falling into the potential wells, they experience a
stronger blue-shift than climbing out of them because expansion makes the wells
shallower in the meantime, thus giving rise to a net blue-shift of photons. Later, this
effect was re-examined in the framework of the ‘Swiss-Cheese’ (Dyer 1976) and
‘vacuole’ (Nottale 1984) models of density perturbations in an expanding back-
ground space-time. The masses of such perturbations have to be very large for this
effect to become larger than the Sunyaev-Zel'dovich €f@ctue to the hot gas
contained in them; Dyer (1976) estimated that masses beyorid/10would be
necessary, a value four to five orders of magnitude larger than that of typical galaxy
clusters.

The gravitational lens effect of galaxy clusters moving transverse to the line-of-
sight was investigated by Birkinshaw & Gull (1983) who found that a cluster with
~ 10®M,, and a transverse velocity ef 6000kms* should change the CMB
temperature bye 10~#K. Later, Gurvits & Mitrofanov (1986) re-investigated this
effect and found it to be about an order of magnitude smaller.

Cosmic strings as another class of rapidly moving gravitational lenses were studied
by Kaiser & Stebbins (1984) who discussed that they would give rise to step-like
features in the CMB temperature pattern.

16 The (thermal) Sunyaev-Zel'dovich effect is due to Compton-upscattering of CMB pho-
tons by thermal electrons in the hot plasma in galaxy clusters. Since the temperature of
the electrons is much higher than that of the photons, CMB photons are effectively re-
distributed towards higher energies. At frequencies lower th@ii2 GHz, the CMB inten-

sity is thus decreased towards galaxy clusters; in effect, they cast shadows on the surface of
the CMB.
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9.2 Weak Lensing of the CMB

The introduction shows that the CMB is expected to display distinct features in

a hierarchical model of structure formation. The CMB power spectrum should be
featureless on large scales, then exhibit pronounced Doppler peaks at scales smaller
than the horizon at the time of decoupling, and an exponential decrease due to
Silk damping at the small-scale end. We now turn to investigate whether and how
gravitational lensing by large-scale structures can alter these features.

The literature on the subject is rich (see Blanchard & Schneider 198 bnGsyal.

1993b, Cagn et al. 1993a, Cole & Efstathiou 1989, Fukugita et al. 1992, Kash-
linsky 1988, Linder 1988, Linder 1990a, Linder 1990b, Nizz-Gonalez et al.

1990, Sasaki 1989, Tomita 1989, Watanabe & Tomita 1991), but different authors
have sometimes arrived at contradicting conclusions. Perhaps the most elegant way
of studying weak lensing of the CMB is the power-spectrum approach, which was
most recently advocated by Seljak (1994, 1996).

We should like to start our discussion by clearly stating two facts concerning the ef-
fect of lensing on fluctuations in the Cosmic Microwave Background which clarify
and resolve several apparently contradictory discussions and results in the litera-
ture.

(1) If the CMB was completely isotropic, gravitational lensing would have no
effect whatsoever because it conserves surface brighingbss case, lensing
would only magnify certain patches in the sky and de-magnify others, but
since it would not alter the surface brightness in the magnified or de-magnified
patches, the temperature remained unaffected. An analogy would be observers
facing an infinitely extended homogeneously coloured wall, seeing some parts
of it enlarged and others shrunk. Regardless of the magnification, they would
see the same colour everywhere, and so they would notice nothing despite the
magnification.

(2) Itis not the absolute value of the light deflection due to lensing which matters,
but the relative deflection of neighbouring light rayshagine a model uni-
verse in which all light rays are isotropically deflected by the same arbitrary
amount. The pattern of CMB anisotropies seen by an observer would then be
coherently shifted relative to the intrinsic pattern, but remain unchanged oth-
erwise. It is thus merely thdispersionof deflection angles what is relevant
for the impact of lensing on the observed CMB fluctuation pattern.

9.3 CMB Temperature Fluctuations

In the absence of any lensing effects, we observe at the sky poéithm intrin-

— —

sic CMB temperaturd (0). There are fluctuatiomr&T (0) in the CMB temperature
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about its average valud') = 2.73K. We abbreviate the relative temperature fluc-
tuations by
AT(®) -
——2=1(0) (9.2)
(T)
in the following. They can statistically be described by their angular auto-
correlation function

&r(9) = (1®) 18 +9)) . ©.2)

with the average extending over all positicﬁlsDue to statistical isotrop¥t ()
depends neither on the positiémor on the direction of, but only on the absolute
separationp of the correlated points.

Commonly, CMB temperature fluctuations are also described in terms of the coef-
ficientsay, of an expansion into spherical harmonics,

o |
0,0) = Y0, ) , 9.3
1(8,9) I;mzz_lal 1(6,9) (9.3)

and the averaged expansion coefficients constitute the angular power sp€ctrum
of the CMB fluctuations,

Ci = (Jaml?) - (9.4)
It can then be shown that the correlation functarie) is related to the power-
spectrum coefficient§; through

Cw=%fdmsmmnﬂ@w&m€d®, (9.5)

with the Legendre function8 (cosy).

9.4 Auto-Correlation Function of the Gravitationally Lensed CMB

9.4.1 Definitions

If there are any density inhomogeneities along the line-of-sight towards the last-
scattering surface at~ 1,000 (the ‘source plane’ of the CMB), a light ray starting
into direction® at the observer will intercept the last-scattering surface at the de-
flected position

B=6-d(), (9.6)

wherea(é) is the (position-dependent) deflection angle experienced by the light
ray. We will therefore observe, at positiénthe temperature of the CMB at position

B, or

-

TR =T®)=TE-a®). 9.7)
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The intrinsic temperature autocorrelation function is thus changed by lensing to

—~
Dl

& (0) = (16— a@®)t@+9 -d@+9)) . 9.8)

For simplicity of notation, we further abbreviai¢8) = & anddi (6 + @) = @’ in the
following.

9.4.2 Evaluation

In this section we evaluate the modified correlation function (9.8) and quantify
the lensing effects. For this purpose, it is convenient to decompose the relative
temperature fluctuation(8) into Fourier modes,

= ——

.
T(8) = /(;—nl)zf( ) explil®) . 9.9)

—

The expansion of(8) into Fourier modes rather than into spherical harmonics is
permissible because we do not expect any weak-lensing effects on large angular
scales, so that we can considgiB) on a plane locally tangential to the sky rather
than on a sphere.

We insert the Fourier decomposition (9.9) into the expression for the correlation
function (9.8) and perform the average. We need to average over ensembles and
over the random angle between the wave velctdthe temperature modes and the
angular separatiop of the correlated points. The ensemble average corresponds
to averaging over realisations of the CMB temperature fluctuations in a sample of
universes or, since we focus on small scales, over a large number of disconnected
regions on the sky. This average introduces the CMB fluctuation spe&fdm

which is defined by

<f(*)f*(|7)> = (2m28@ ([T -T)Pr(l). (9.10)

Averaging over the angle betwekand the position angkggives rise to the zeroth-
order Bessel function of the first kincy(X). These manipulations leave eq. (9.8) in

the form
© |dl

&)= [ 5 Prl) (exp[iT(@-a)]) (o). (9-11)

0

The average over the exponential in eq. (9.11) remains to be performed. To do so,
we first expand the exponential into a power series,

<exp(iraa)> - i@ : (9.12)
P2 .
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wheredd = d — d’ is the deflection-angle difference between neighbouring light
rays with initial angular separatiam We now assume that the deflection angles are
Gaussian random fields. This is reasonable because (i) deflection angles are due to
Gaussian random fluctuations in the density-contrast field as long as the fluctuations
evolve linearly, and (ii) the assumption of linear evolution holds well for redshifts
where most of the deflection towards the last-scattering surface occurs. Of course,
this makes use of the commonly held view that the initial density fluctuations are
of Gaussian nature. Under this condition, the odd moments in eq. (9.12) all vanish.
It can then be shown that

<exp(irasa)> - exp(—%lzoz((p)> (9.13)

holds exactly, where?(g) is the dispersion of one component of the deflection-
angle,

o2 () = % (@-a)?) . (9.14)

Even if the assumption thadi is a Gaussian random field fails, eq. (9.13) still holds
approximately. To see this, we note that the CMB power spectrum falls sharply on
scaled > I =~ (10 Q(l)/z)—l. The scald. is set by the width of the last-scattering
surface at redshift ~ 1,000. Smaller-scale fluctuations are efficiently damped by
acoustic oscillations of the coupled photon-baryon fluid. Typical angular Scdles

in the CMB fluctuations are therefore considerably larger than the difference be-
tween gravitational deflection angles of neighbouring ragis so that (6 — d’) is

a small number. Hence, ignoring fourth-order termiSi, the remaining exponen-

tial in (9.11) can bepproximatedoy

<exp(i Tesa)> ~1— :—ZLIZOZ((p) A~ exp {—:—ZLIZGZ((p) (9.15)

Therefore, the temperature auto-correlation function modified by gravitational lens-
ing can safely be written,

€0 = [ Pl exp| - 51%0%(0)| (1o (9.16)

This equation shows that the intrinsic temperature-fluctuation power spectrum is
convolved with a Gaussian function in wave numbetth dispersioro—%(¢). The
effect of lensing on the CMB temperature fluctuations is thus to smooth fluctuations
on angular scales of order or smaller tiep).

9.4.3 Alternative Representations

Equation (9.16) relates the unlensed CMB power spectrum to the lensed tempera-
ture auto-correlation function. Noting thig(l) is the Fourier transform df7 (o),
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Pr(l) = [ dotr(@) exp(=iTg) = 2n [ gdgEr(@) Hle),  (917)

we can substitute one for the other. Isotropy permitted us to perform the integration
over the (random) angle betwekandgin the last step of (9.17). Inserting (9.17)
into (9.16) leads to

&(0) = [ i (@K@ d) . (9-18)
The kerneK (@, ¢) is given by

K(0.0)= |10 300 b1 exp| - 5120%(@

_¢>2+<d1 |9
202(¢) o2()

where b(x) is the modified zeroth-order Bessel function. Equation (6.663.2) of
Gradshteyn & Ryzhik (1994) was used in the last step. As will be shown below,
o(@) < @, so that the argument of Is generally a very large number. Noting that
lo(X) &~ (2rx) ~1/2exp(x) for x — o0, we can write eq. (9.18) in the form

1 (cp—cd)z} .
(2rp)t/20(9) 20%(¢)
Like eq. (9.16), this expression shows that lensing smoothes the intrinsic tempera-

ture auto-correlation functiogr (¢) over angular scales @f(@). Note in particular
that, if a(@) — 0, the exponential in (9.20) tends towards a Dirac delta distribution,

exp , (9.19)

~ 0%(g)

Eh(g) ~ [ d09?2e1(¢) exp (9.20)

- (e—9)*] o
oo -0 V2T0() oxp| Gzt | =309, 620

so that the lensed and unlensed temperature auto-correlation functions agree,

E1(9) =& (9).

Likewise, one can Fourier back-transform eq. (9.16) to obtain a relation between
the lensed and the un-lensed CMB power spectra. To evaluate the resulting integral,
it is convenient to assume(@) = €@, with € being either a constant or a slowly
varying function ofg. This assumption will be justified below. One then finds

P{(I’):/OOO%PT(I)exp(—%> lo (Sl—zfl) : (9.22)

Fore <« 1, this expression can be simplified to

© _1"\2
i) = [T e -] 0.23)
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9.5 Deflection-Angle Variance

9.5.1 Auto-Correlation Function of Deflection Angles

We proceed by evaluating the dispersiof(g) of the deflection angles. This is
conveniently derived from the deflection-angle auto-correlation function,

Ea(@) = (ad’) . (9.24)

Note that the correlation function dfis the sum of the correlation functions of the
components of,

&a = <aa/> = <G1(Xé|_> + <GZG/2> = EOll +EO(2 . (9.25)

In terms of the autocorrelation function, the dispersiBfyp) can be written

2(0) =5 ([0~ &)%) = £(0) ~ &) (9.26)

The deflection angle is given by eq. (6.11) on page 123 in terms of the Newtonian
potential® of the density fluctuationd along the line-of-sight. For lensing of the
CMB, the line-of-sight integration extends along the (unperturbed) light ray from
the observer av = 0 to the last-scattering surfaceniz~ 1000); see the derivation

in Sect. 6.2 leading to eq. (6.11, page 123).

We introduced the effective convergence in (6.14, page 124) as half the divergence
of the deflection angle. In Fourier space, this equation can be inverted to yield the
Fourier transform of the deflection angle,

—’__ZiReff()"
e e . (9.27)

Ql>

The deflection-angle power spectrum can therefore be written as

Pa(®) = Pl (9.28)

The deflection-angle autocorrelation function is obtained from eq. (9.28) via
Fourier transformation. The result is

21 0
£4(0) :/%Pa(l) exp(—il9) :21'[/0 i PK(|)J(°T([1';'2 , (9.29)

similar to the form (6.59, page 146), but here the filter function is no longer a
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function of theproduct kp only, but ofl andg separately,

F(l,@ = I(p <sz° “p (9.30)

We plotg2F (1, @) in Fig. 33. For fixedp, the filter function suppresses small-scale
fluctuations, and it tends towarésl, @) — (md)~2 for | — 0.

FrrT ! T T T ! T T T ! L B
10" ¢ E

¢-2F(1,9)

0.1 1 10 100
oy

Fig. 33. The filter functiorF (I, @) as defined in eq. (9.30), divided lyf, is shown as a
function ofl¢. Compare Fig. 22 on page 143. For fixgdthe filter function emphasises
large-scale projected density perturbations (i.e. structures with §mall

InsertingPx(I) into (9.29), we find the explicit expression for the deflection-angle
auto-correlation function,

ta@)= 5% [ qwweww)a2w)
X A Zi:(Pé(kV\/)Jo[ k(W)kq] . (9.31)

Despite the obvious similarity between this result and the magnification auto-
correlation function (6.34 on page 132), it is worth noting two important differ-
ences. First, the weighting of the integrand along the line-of-sight differs by a fac-
tor of f}%(V\/) because we integrate deflection-angle components rather than the
convergence, i.e. first rather than second-order derivatives of the poten@ain-
sequently, structures near the observer are weighted more strongly than for mag-
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nification or shear effects. Secondly, the wave-number integral is weightkd'by
rather thark, giving most weight to the largest-scale structures. Since their evolu-
tion remains linear up to the present, it is expected that non-linear density evolution
is much less important for lensing of the CMB than it is for cosmic magnification
or shear.

9.5.2 Typical Angular Scale

A typical angular scaley for the coherence of gravitational light deflection can be

obtained as
1 (|10%a0)] \]
‘pg:[aam)( o7 Lo)] ‘ 952

As eq. (9.31) shows, the deflection-angle auto-correlation function depengls on
only through the argument of the Bessel functigfxjl. For small arguments, the
second-order derivative of thg(X) is approximately g’ (x) ~ — Jy(x) /2. Differen-
tiating &5 (@) twice with respect tap, and comparing the result to the expression for
the magnification auto-correlation functi@p(¢) in eq. (6.34, page 132), we find

0% 1
L ] 933)
and thus
& (0)
~2 ) 9.34
%~ 2% 0 (9:34)

We shall estimatey later after giving a simple expression &(¢). The angleg
gives an estimate of the scale over which gravitational light deflection is coherent.

9.5.3 Special Cases and Qualitative Expectations
We mentioned before that it is less critical here to assume linear density evolu-
tion because large-scale density perturbations dominate in the expressigtor

Specialising further to an Einstein-de Sitter universe sowihat2c/Ho, eq. (9.31)
simplifies to

9 4 1 o dk
(@) = ow [ a2 [T Dk, (935)

with wy=w'.

Adopting the model spectra for HDM and CDM specified in eq. (6.37, page 133)

202



and expandingg (@) in a power series ip, we find, to second order ip,

23 {1— ;pz—o(wlq))z} for HDM
Ea () = A wko ST\[@ 37 (9.36)
5 {1— 4—0(w|<0)2} for CDM

Combining these expressions with egs. (9.34) and (6.38, page 133), we find for the
deflection-angle coherence scaige

@y~ 3(wko) T (9.37)

It is intuitively clear thatgy should be determined bfwky) 2. Sinceky? is the
typical length scale of light-deflecting density perturbations, it subtends an angle
(wko)~! at distancew. Thus the coherence angle of light deflection is given by
the angle under which the deflecting density perturbation typically appears. The
source distance in the case of the CMB is the comoving distancezte 1,000.

In the Einstein-de Sitter case, = 2 in units of the Hubble length. Hence, with
kal ~ 12(Qoh?) Mpc [cf. eq. (2.49), page 25], we hawkg ~ 500. Therefore, the
angular scale of the deflection-angle auto-correlation is of order

G~ 6x103~20. (9.38)
To lowest order inp, the deflection-angle dispersion (9.26) reads

o?(¢) O (who)® 7 . (9.39)

The dispersiomw () is plotted in Fig. 34 for the four cosmological models specified
in Tab. 1 on page 119 for linear and non-linear evolution of the density fluctuations.

The behaviour ob(@) expressed in eq. (9.39) can qualitatively be understood de-
scribing the change in the transverse separation between light paths as a random
walk. Consider two light paths separated by an amgéeich that their comoving
transverse separation at distamcis we. Letk—! be the typical scale of a potential
fluctuation®. We can then distinguish two different cases depending on whether
w@is larger or smaller thak 2. If wg > k=1, the transverse separation between the
light paths is much larger than the typical potential fluctuations, and their deflection
will be incoherent. It will be coherent in the opposite case, i.eugift k1.

When the light paths are coherently scattered passing a potential fluctuation, their
angular separation changes &g ~ woO, (2k—10, ®/c?), which is the change

in the deflection angle acrossp. If we replace the gradients by the inverse of the
typical scalek, we havedg, ~ 2wekd/c?. Along a distancav, there areN ~ kw

such potential fluctuations, so that the total change in angular separation is expected
to bedp~ N/25q;.
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In case of incoherent scattering, the total deflection of each light path is expected
to bedp~ N2 (2k~10, ®/c?) ~ NY/22d/c?, independent of. Therefore,

o2(g) ~ NS = (29/c?)? (wk)3 ¢? for @< (wk)~? | (0.40)
N (2d/c?)? ~ (2d/c?)? (wk) for @> (wk)~t

This illustrates that the dependenceas{@) on (wk)3¢? for small @ is merely a
consequence of the random coherent scattering of neighbouring light rays at po-
tential fluctuations. For large, o(@) becomes constant, and s¢p)@* — 0. As

Fig. 34 shows, the dispersiari@) increases linearly witkpfor small@ and flattens
gradually forg > @y ~ (10— 20)" as expected, becaugg divides coherent from
incoherent scattering.

9.5.4 Numerical Results

The previous results were obtained by specialising to linear evolution of the den-

sity contrast in an Einstein-de Sitter universe. For arbitrary cosmological parame-

ters, the deflection-angle dispersion has to be computed numerically. We show in
Fig. 34 examples foo (@) numerically calculated for the four cosmological mod-

els detailed in Tab. 1 on page 119. Two curves are plotted for each model. The

somewhat steeper curves were obtained for linear, the others for non-linear density
evolution.

Figure 34 shows that typical values for the deflection-angle variance in cluster-
normalised model universes are of ordgK) ~ (0.03— 0.1) on angular scales
betweenp= (1— 10)". While the results for different cosmological parameters are
fairly close for cluster-normalised CDMjy() is larger by about a factor of two

for CDM in an Einstein-de Sitter model normalisedag= 1. For the other cos-
mological models, the differences between different choices for the normalisation
are less pronounced. The curves shown in Fig. 34 confirm the qualitative behaviour
estimated in the previous section: The variao¢e) increases approximately lin-
early with @ as long asp is small, and it gradually flattens off at angular scales
P> @y~ 20.

In earlier chapters, we saw that non-linear density evolution has a large impact on
weak gravitational lensing effects, e.g. on the magnification auto-correlation func-
tion &,(@). As mentioned before, this is not the case for the deflection-angle auto-
correlation functiorfg (@) and the variance (@) derived from it, because the filter
functionF (I, @) relevant here suppresses small-scale density fluctuations for which
the effect of non-linear evolution are strongest. Therefore, non-linear evolution is
expected to have less impact here. Only on small angular sgdtesfilter function
extends into the sufficiently non-linear regime. The curves in Fig. 34 confirm and
quantify this expectation. Only on scales@f 10, the non-linear evolution does
have some effect. Obviously, non-linear evolution increases the deflection-angle
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Fig. 34. The deflection-angle variancgg) is shown for the four cosmological models
specified in Tab. 1 on page 119. Two curves are shown for each model, one for linear
and one for non-linear evolution of the density fluctuations. Solid curves: SCDM; dotted
curve:oCDM,; short-dashed curves: OCDM; and long-dashed cuk€DM. The some-

what steeper curves are for linear density evolution. Generally, the deflection-angle variance
increases linearly witlp for small @, and flattens gradually fap > 20. At @~ 10, o()
reachesz 0.1, or =~ 0.01¢, for the cluster-normalised model universes (all excegpbM;

dotted curves). As expected, the effect of non-linear density evolution is fairly moderate,
and most pronounced on small angular scape§,10'.

variance in a manner quite independent of cosmology. At angular sgalds, the
increase amounts to roughly a factor of two above the linear results.

9.6 Change of CMB Temperature Fluctuations

9.6.1 Summary of Previous Results

We are now ready to justify assumptions and approximations made earlier, and to
guantify the impact of weak gravitational lensing on the Cosmic Microwave Back-
ground. The main assumptions were that (i) the deflection-angle var@Epsas

small, and (ii)o(¢) ~ €@, with € a (small) constant or a function slowly varying
with @. The results obtained in the previous section show tt{g) is typically

about two orders of magnitude smaller thgrconfirminge <« 1. Likewise, Fig. 34
shows that the assumptiari@) O @is valid on angular scales smaller than the co-

205



herence scale for the deflectigpg @y ~ 20'. As we have seen, this proportionality

is a mere consequence of random coherent scattering of neighbouring light rays
in the fluctuating potential field. For angles larger thgno(¢) gradually levels

off to become constant, so that the ratio betweép) and@ tends to zero whilep
increases further beyong. We can thus broadly summarise the numerical results
on the deflection-angle variance by

0.01¢p f <20
0(>~{ AR (9.41)

07  for @>20

which is valid for cluster-normalised CDM quite independent of the cosmological
model; in particularg(g) < 1’ ~ 3 x 10~*radians for alkp.

9.6.2 Simplifications

Accordingly, the argument of the exponential in eq. (9.16) is a truly small number.
Even for largd ~ 103, 1%0%(@) < 1. We can thus safely expand the exponential into
a power series, keeping only the lowest-order terms. Then, eq. (9.16) simplifies to

o |3
(@)= Er(0)~0%@) [ Prll) b(19), (9.42)
0 TtU

where we have used that the auto-correlation funcgigip) is the Fourier trans-
form of the power spectrun®r(l). Employing again the approximate relation
Jo” (X) &~ — Jy(x) /2 which holds for smalk, we notice that

o |3 2
[P 19~ -2 (9.43)

We can introduce a typical angular scalefor the CMB temperature fluctuations
in the same manner as for light deflection in eq. (9.32). We defirty

1 0%1(g)

2= , 9.44
TG0 0 o 049
so that, up to second order@eg. (9.42) can be approximated as
G2
)~ &0 - Z 2 r(0). (9.45)

%

We saw earlier that(@) ~ €@ for ¢ < @y. Equation (9.45) can then further be
simplified to read
i

E1(@) ~ &r(9) —€?&7(0) o (9.46)
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In analogy to eq. (9.26), we can write the mean-square temperature fluctuations of
the CMB between two beams separated by an apgke

o3(9) = ([1(6) ~ 1B+ 9J?) =2 [&r(0) ~&r(@)] - (9.47)
Weak gravitational lensing changes this relative variance to

of =2[&1(0) ~&r(9)] - (9.48)
Using eg. (9.46), we see that the relative varianéedeasedby the amount

@

Ao% (@) = oF(9) — 05 () ~ €2€7(0) @ (9.49)

Now, the auto-correlation function at zero I&g(0), is the temperature-fluctuation
variancep%. Hence, we have for thenschange in the temperature variation

[20F(9)] vz _ eoT% . (9.50)

Weak gravitational lensing thus changes the CMB temperature fluctuations only by
a very small amount, of order~ 1072 for ¢~ .

9.6.3 The Lensed CMB Power Spectrum

However, we saw in eq. (9.23) that the gravitationally lensed CMB power spectrum
is smoothed compared to the intrinsic power spectrum. Modes on an angular scale
¢ are mixed with modes on angular scatgs o(g), i.e. the relative broadening
d@/@ is of order 2(¢)/@. For @ < @y ~ 20, this relative broadening is of order

2e ~ 2 x 1072, while it becomes negligible for substantially larger scales because
o(@) becomes constant. This effect is illustrated in Fig. 35, where we show the
unlensed and lensed CMB power spectra for CDM in an Einstein-de Sitter universe.

The figure clearly shows that lensing smoothes the CMB power spectrum on
small angular scales (largg, while it leaves large angular scales unaffected.
Lensing effects become visible b 500, corresponding to an angular scale of

¢ < (11/500)rad ~ 20, corresponding to the scale where coherent gravitational
light deflection sets in. An important effect of lensing is seen at the highof the

power spectra, where the lensed power spectrum falls systematically above the un-
lensed one (Metcalf & Silk 1997). This happens because the Gaussian convolution
kernel in eq. (9.23) becomes very broad for very ldrgso that the lensed power
spectrum at’ can be substantially increased by intrinsic power from significantly
smallerl. In other words, lensing mixes power from larger angular scales into the
otherwise feature-less damping tailRf(1).
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Fig. 35. The CMB power spectrum coefficiehts+ 1)C; are shown as a function bfThe

solid line displays the intrinsic power spectrum, the dotted line the lensed power spectrum
for an Einstein-de Sitter universe filled with cold dark matter. Evidently, lensing smoothes
the spectrum at small angular scales (ld)gevhile it has no visible effect on larger scales.
The curves were produced with th¥Bfast code, see Zaldarriaga & Seljak (1998).

9.7 Discussion

Several different approximations entered the preceding derivations. Firstly, the
deflection-angle variance(@) was generally assumed to be small, and for some
expressions to be proportional gowvith a small constant of proportionaligy The
numerical results showed that the first assumption is very well satisfied, and the
second assumption is valid frs ¢y, the latter being the coherence scale of grav-
itational light deflection.

We further assumed the deflection-angle field to be a Gaussian random field, the
justification being that the deflecting matter distribution is also a Gaussian random
field. While this fails to be exactly true at late stages of the cosmic evolution, we
have seen that the resulting expression can also be obtainedafpeis small

andd is not a Gaussian random field; hence, in practice this assumption is not a
limitation of validity.

A final approximation consists in the Born approximation. This should also be a
reasonable assumption at least in the case considered here, where we fstzis on
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tistical properties of light propagation. Even if the light rays would be bent consid-
erably, the statistical properties of the potential gradient along their true trajectories
are the same as along the approximated unperturbed rays.

Having found all the assumptions made well justifiable, we can conclude that the
random walk of light rays towards the surface of recombination leads to smoothing
of small-scale features in the CMB, while large-scale features remain unaffected.
The border line between small and large angular scales is determined by the angular
coherence scale of gravitational light deflection by large-scale matter distributions,
which we found to be of ordegy ~ 20, corresponding tdy = Zmpgl ~ 1,000.

For the smallest angular scales, well into the damping tail of the intrinsic CMB
power spectrum, this smoothing leads to a substantial re-distribution of power,
which causes the lensed CMB power spectrum to fall systematically above the
unlensed one dt> 2000, org < 2r ! ~ 10. Future space-bound CMB obser-
vations, e.g. by the Planck Surveyor satellite, will achieve angular resolutions of
order> 5, so that the lensed regime of the CMB power spectrum will be well ac-
cessible. Highly accurate analyses of the data of such missions will therefore need
to take lensing effects by large-scale structures into account.

One of the foremost goals of CMB observations is to derive cosmological param-
eters from the angular CMB power spectr@m Unfortunately, there exists a pa-
rameter degeneracy in the sense that for any given set of cosmological parameters
fitting a given CMB spectrum, a whole family of cosmological models can be found
that will fit the spectrum (almost) equally well (Zaldarriaga et al. 1997). Metcalf &
Silk (1998) and Stompor & Efstathiou (1999) showed that the rise in the damping-
tail amplitude due to gravitational lensing of the CMB can be used to break this
degeneracy once CMB observations with sufficiently high angular resolution be-
come available.

We discussed in Sect. 4.2 how shapes of galaxy images can be quantified with the
tensorQjj of second surface-brightness moments. Techniques for the reconstruc-
tion of the intervening projected matter distribution are then based on (complex)
ellipticities constructed fron@;j, e.g. the quantitk defined in (4.4). Similar re-
construction techniques can be developed by constructing quantities comparable to
X from the CMB temperature fluctuatioméﬁ). Two such quantities were suggested
in the literature, namely

14 -15+2i11T, (9.51)
(Zaldarriaga & Seljak 1999) and

T11—T22+2iT 12 (9.52)

(Bernardeau 1997). As usual, comma-preceded indidesote differentiation with
respect td;.

The transformation of the tensart; between the lensed and unlensed CMB
anisotropy distribution is mediated by the effective surface mass distribution
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Keif(0), defined as in (6.16) witlhw set to the comoving distance to the last-
scattering surface ai~ 1000. As shown by Zaldarriaga & Seljak (1999) and Seljak

& Zaldarriaga (1999), one can reconstruct the power spectrum of the projected sur-
face density from the observed statistical properties jofj; in fact, this power
spectrum can be obtained either from the trace-part of this tensor, corresponding to
Kefr itself, or from the trace-free part, corresponding to the power spectrum of the
shear which, as was shown earlier, is the same as thatofn contrast to similar
studies based on the distortion of faint galaxies, the power-spectrum estimate from
the CMB has the advantage that the redshift of the source is known. Furthermore,
the power spectrum of the projected matter distribution can be obtained over a wide
range of angular scales, corresponding to a wide range of spatial scales.

Even if the temperature anisotropies are intrinsically Gaussian, lensing will induce
non-Gaussian features of the measured temperature map (e.g., Winitzki 1998).
Hence, measurements of non-Gaussian temperature fluctuations must be inter-
preted with care. However, the lensing-induced non-Gaussian features on small
angular scales are correlated with large-scale temperature gradients (Zaldarriaga
1999), thus providing a signature of the presence of lensing effects in the maps.

Lensing of the CMB can also be correlated with lensing effects of faint galaxies

at lower redshift. The shear acting on these galaxies is part of the shear acting on
the CMB, the difference being due to the different redshift of galaxies and the last
scattering surface. Hence, one expects a correlation between these two shears (van
Waerbeke et al. 1999a), as can be measured by correlating galaxy ellipticities with
either of the quantities (9.51) or (9.52).

Finally, it is worth noting that gravitational lensing mixes different types of CMB
polarisation (the “electric” and “magnetic”, & andB modes, respectively) and
can thus creatB-type polarisation even when onB+type polarisation is intrinsi-
cally present (Zaldarriaga & Seljak 1998). This effect, however, is fairly small in
typical cosmological models and will only marginally affect future CMB polarisa-
tion measurements.
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10 Summary and Outlook

We have summarised the basic ideas, theoretical developments, and first applica-
tions of weak gravitational lensing. In particular, we showed how the projected
mass distribution of clusters can be reconstructed from the image distortion of
background galaxies, using parameter-free methods, how the statistical mass distri-
bution of galaxies can be obtained from galaxy-galaxy lensing, and how the larger-
scale mass distribution in the Universe affects observations of galaxy shapes and
fluxes of background sources, as well as the statistical properties of the CMB. Fur-
thermore, weak lensing can be used to construct a mass-selected sample of clusters
of galaxies, making use only of their tidal gravitational field which leaves an im-
print on the image shapes of background galaxies. We have also discussed how the
redshift distribution of these faint and distant galaxies can be derived from lens-
ing itself, well beyond the magnitude limit which is currently available through
spectroscopy.

Given that the first coherent image alignment of faint galaxies around foreground
clusters was discovered only a decade ago (Fort et al. 1988; Tyson et al. 1990), the
field of weak lensing has undergone a rapid evolution in the last few years, for three
main reasons: (i) Theoreticians have recognised the potential power of this new
tool for observational cosmology, and have developed specific statistical methods
for extracting astrophysically and cosmologically relevant information from astro-
nomical images. (ii) Parallel to that effort, observers have developed new observing
strategies and image analysis software in order to minimise the influence of instru-
mental artefacts on the measured properties of faint images, and to control as much
as possible the point-spread function of the resulting image. It is interesting to note
that several image analysis methods, particularly aimed at shape measurements of
very faint galaxies for weak gravitational lensing, have been developed by a co-
herent effort of theoreticians and observers (Bonnet & Mellier 1995; Kaiser et al.
1995; Luppino & Kaiser 1997; van Waerbeke et al. 1997; Kaiser 2000; Rhodes et al.
2000; Kuijken 1999), indicating the need for a close interaction between these two
groups which is imposed by the research subject.

(iif) The third and perhaps major reason for the rapid evolution is the instrumen-
tal development that we are witnessing. Most spectacular was the refurbishment of
the Hubble Space Telescope (HST) in Dec. 1993, after which this telescope pro-
duced astronomical images of angular resolution unprecedented in optical astron-
omy. These images have not only been of extreme importance for studying multiple
images of galaxy-scale lens systems (where the angular separation is of order one
arc second) and for detailed investigations of giant arcs and multiple galaxy im-
ages in clusters of galaxies, but also for several of the most interesting results of
weak lensing. Owing to the lack of atmospheric smearing and the reduced sky back-
ground from space, the shape of fainter and smaller galaxy images can be measured
on HST images, increasing the useful number density of background galaxies, and
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thus reducing the noise due to the intrinsic ellipticity distribution. Two of the most
detailed mass maps of clusters have been derived from HST data (Seitz et al. 1996;
Hoekstra et al. 1998), and all but one published results on galaxy-galaxy lensing
are based on data taken with the HST. In parallel to this, the development of as-
tronomical detectors has progressed quickly. The first weak-lensing observations
were carried out with CCD detectors of 1,000 pixels, covering a fairly small
field-of-view. A few years ago, the fir§8 K)?> camera was used for astronomical
imaging. Its 30x 30 field can be used to map the mass distribution of clusters at
large cluster-centric radii, to investigate the potential presence of filaments between
neighbouring clusters (Kaiser et al. 1998), or simply to obtain high-quality data on
a large area. Such data will be useful for galaxy-galaxy lensing, the search for ha-
los using their lensing properties only, for the investigation of cosmic shear, and
for homogeneous galaxy number counts on large fields, needed to obtain a better
guantification of the statistical association of AGNs with foreground galaxies.

Itis easy to foresee that the instrumental developments will remain the driving force
for this research field. By now, several large-format CCD cameras are either being
built or already installed, including three cameras with a one square degree field-of-
view and adequate sampling of the PSF (MEGAPRIME at CFHT, MEGACAM at
the refurbished MMT, and OMEGACAM at the newly built VLT Support Telescope

at Paranal; see the recent account of wide-field imaging instruments in Arnaboldi
et al. 1998). Within a few years, more than a dozen 8- to 10-meter telescopes will
be operating, and many of them will be extremely useful for obtaining high-quality
astronomical images, due to their sensitivity, their imaging properties and the high
guality of the astronomical site. In fact, at least one of them (SUBARU on Mauna
Kea) will be equipped with a large-format CCD camera. One might hypothesise
that weak gravitational lensing is one of the main science drivers to shift the em-
phasis of optical astronomers more towards imaging, in contrast to spectroscopy.
For example, the VLT Support Telescope will be fully dedicated to imaging, and
the fraction of time for wide-field imaging on several other major telescopes will
be substantial. The Advanced Camera for Surveys (ACS) is planned to be installed
on the HST in 2001. Its larger field-of-view, better sampling, and higher quantum
efficiency — compared to the current imaging camera WFPC2 — promises to be
particularly useful for weak lensing observations.

Even more ambitious ground-based imaging projects are currently under discus-
sion. Funding has been secured for the VISTA pr¢idaf a 4 m telescope in
Chile with a field-of-view of at least one square degree. Another@ank Matter
Telescopeawith a substantially larger field-of-view (nine square degrees) is being
discussed specifically for weak lensing. Kaiser et al. (2000a) proposed a new strat-
egy for deep, wide-field optical imaging at high angular resolution, based on an
array of relatively smalll@ ~ 1.5 m) telescopes with fast guiding capacity and a
“rubber” focal plane.

17 see http://lwww-star.gmw.ac.ukjpe/vista/
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Associated with this instrumental progress is the evolution of data-analysis ca-
pabilities. Whereas a small-format CCD image can be reduced and analysed ‘by
hand’, this is no longer true for the large-format CCD images. Semi-automatic
data-reduction pipelines will become necessary to keep up with the data flow. These
pipelines, once properly developed and tested, can lead to a more ‘objective’ data
analysis. In addition, specialised software, such as for the measurement of shapes
of faint galaxies, can be implemented, together with tools which allow a correction
for PSF anisotropies and smearing.

Staying with instrumental developments for one more moment, the two planned
CMB satellite missions (MAP and Planck Surveyor) will provide maps of the CMB

at an angular resolution and a signal-to-noise ratio which will most likely lead to the
detection of lensing by the large-scale structure on the CMB, as described in Sect. 9.
Last but not least, the currently planned Next Generation Space Telescope (NGST,
Kaldeich 1999), with a projected launch date of 2008, will provide a giant step in
many fields of observational astronomy, not the least for weak lensing. It combines
a large aperture (of order eight meters) with a position far from Earth to reduce sky
background and with large-format imaging cameras. Even a relatively short expo-
sure with the NGST, which will be optimised for observations in the near-infrared,
will return images with a number density of several hundred background galaxies
per square arc minute, for which a shape can be reliably measured; more accurate
estimates are presently not feasible due to the large extrapolation into unknown
territory. Comparing this number with the currently achievable number density in
ground-based observations of about 30 per square arc minute, NGST will revolu-
tionise this field®¥| In addition, the corresponding galaxies will be at much higher
mean redshift than currently observable galaxy samples. Taken together, these two
facts imply that one can detect massive halos at medium redshifts with only half
the velocity dispersion currently necessary to detect them with ground-based data,
or that the investigations of the mass distribution of halos can be extended to much
higher redshifts than currently possible (see Schneider & Kneib 1998). The ACS
on board HST will provide an encouraging hint of the increase in capabilities that
NGST has to offer.

Progress may also come from somewhat unexpected directions. Whereas the Sloan
Digital Sky Survey (SDSS; e.g. Szalay 1998) will be very shallow compared to
more standard weak-lensing observations, its huge angular coverage may compen-
sate for it (Stebbins 1996). The VLA-FIRST survey of radio sources (White et al.
1997) suffers from the sparsely populated radio sky, but this is also compensated

18 Whereas with the 8- to 10-meter class ground-based telescopes deeper images can be
obtained, this does not drastically affect the ‘useful’ number density of faint galaxy images.
Since fainter galaxies also tend to become smaller, and since a reliable shape estimate of a
galaxy is feasible only if its size is not much smaller than the size of the seeing disk, very
much deeper images from the ground will not yield much larger number densities of galaxy
images which can be used for weak lensing.
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by the huge sky coverage (Refregier et al. 1998). The use of both surveys for weak
lensing will depend critically on the level down to which the systematics of the
instrumental image distortion can be understood and compensated for.

Gravitational lensing has developed from a stand-alone research field into a versa-
tile tool for observational cosmology, and this also applies to weak lensing. But,
whereas the usefulness of strong lensing is widely accepted by the astronomical
community, weak lensing is only beginning to reach that level of wide apprecia-
tion. Part of this difference in attitude may be due to the fact that strong-lensing
effects, such as multiple images and giant arcs, can easily be seen on CCD images,
and their interpretation can readily be explained also to the non-expert. In contrast,
weak lensing effects are revealed only through thorough statistical analysis of the
data. Furthermore, the number of people working on weak lensing on the level of
data analysis is still quite small, and the methods used to extract shear from CCD
data are rather intricate. However, the analysis of CMB data is certainly more com-
plicated than weak lensing analyses, but there are more people in the latter field,
who checked and cross-checked their results; also, more people implies that much
more development has gone into this field. Therefore, what is needed in weak lens-
ing is a detailed comparison of methods, preferably by several independent groups,
analysing the same data sets, together with extensive work on simulated data to
investigate down to which level a very weak shear can be extracted from them. Up
to now, no show-stopper has been identified which prohibits the detection of shear
at the sub-percent level.

Weak-lensing results and techniques will increasingly be combined with other
methods. A few examples may suffice to illustrate this point. The analysis of galaxy
clusters with (weak) lensing will be combined with results from X-ray measure-
ments of the clusters and their Sunyaev-Zel'dovich decrement. Once these meth-
ods are better understood, in particular in terms of their systematics, the question
will no longer be, “Are the masses derived with these methods in agreement?”, but
rather, “What can we learn from their comparison?” For instance, while lensing
is insensitive to the distribution of matter along the line-of-sight, the X—ray emis-
sion is, and thus their combination provides information on the depth of the cluster
(see, e.g., Zaroubi et al. 1998). Joint analyses of weak-lensing, X—ray and Sunyaev-
Zel'dovich data on galaxy clusters promise to substantially improve determinations
of the baryonic-matter fraction in clusters and of the structure and distribution of
cluster-galaxy orbits.

One might expect that clusters will continue for some time to be main targets for
weak-lensing studies. In addition to clusters selected by their emission, mass con-
centrations selected only by their weak-lensing properties shall be investigated in
great detail, both with deeper images to obtain a more accurate measurement of the
shear, and by X-ray, IR, sub-mm, and optical/IR multi-colour techniques. It would
be spectacular, and of great cosmological significance, to find mass concentrations
of exceedingly high mass-to-light ratio (well in excess @30 in solar units), and
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it is important to understand the distribution of M/L for clusters. A first example
may have been found by Erben et al. (2000).

As mentioned before, weak lensing is able to constrain the redshift distribution of
very faint objects which do not allow spectroscopic investigation. Thus, lensing
can constrain extrapolations of talistribution, and the models for the redshift
estimates obtained from multi-colour photometry (‘photometric redshifts’). On the
other hand, photometric redshifts will play an increasingly important role for weak
lensing, as they will allow to increase the signal-to-noise ratio of local shear mea-
surements. Furthermore, if source galaxies at increasingly higher redshifts are con-
sidered (as will be the case with the upcoming giant telescopes, cf. Clowe et al.
1998), the probability increases that more than one deflector lies between us and
this distant screen of sources. To disentangle the corresponding projection effects,
the dependence of the lensing strength on the lens and source redshift can be em-
ployed. Lenses at different redshifts cause different source-redshift dependences
of the measured shear. Hence, photometric redshifts will play an increasingly im-
portant role for weak lensing. Whereas a fully three-dimensional mass distribution
will probably be difficult to obtain using this relatively weak redshift dependence,

a separation of the mass distribution into a small number of lens planes appears
feasible.

Combining results from cosmic-shear measurements with the power spectrum of
the cosmic density fluctuations as measured from the CMB will allow a sensitive
test of the gravitational instability picture for structure formation. As was pointed
out by Hu & Tegmark (1999), cosmic-shear measurements can substantially im-
prove the accuracy of the determination of cosmological parameters from CMB
experiments, in particular by breaking the degeneracies inherent in the latter (see
also Metcalf & Silk 1998). The comparison between observed cosmic shear and
theory will at least partly involve the increasingly detailed numerical simulations
of cosmic structure evolution, from which predictions for lensing observations can
directly be obtained. For example, if the dark matter halos in the numerical simula-
tions are populated with galaxies, e.g., by using semi-empirical theories of galaxy
evolution (Kauffmann et al. 1997), detailed prediction for galaxy-galaxy lensing
can be derived and compared with observations, thus constraining these theories.
The same numerical results will predict the relation between the measured shear
and the galaxy distribution on larger scales, which can be compared with the ob-
servable correlation between these quantities to investigate the scale- and redshift
dependence of the bias factor.

The range of applications of weak lensing will grow in parallel to the new instru-
mental developments. Keeping in mind that many discoveries in gravitational lens-
ing were not really expected (like the existence of Einstein rings, or giant luminous
arcs), it seems likely that the introduction and extensive use of wide-field cameras
and giant telescopes will give rise to real surprises.
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