
FLAIM: A Multi-level Anonymization
Framework for Computer and Network Logs

Adam Slagell, Kiran Lakkaraju, Katherine Luo
– NCSA, University of Illinois at Urbana-Champaign

ABSTRACT

FLAIM (Framework for Log Anonymization and Information Management) addresses two
important needs not well addressed by current log anonymizers. First, it is extremely modular and
not tied to the specific log being anonymized. Second, it supports multi-level anonymization,
allowing system administrators to make fine-grained trade-offs between information loss and
privacy/security concerns. In this paper, we examine anonymization solutions to date and note the
above limitations in each. We further describe how FLAIM addresses these problems, and we
describe FLAIM’s architecture and features in detail.

Introduction

As computer systems have become more inter-
connected and attacks have grown broader in scope,
forensic investigations of computer security incidents
have crossed more and more organizational bound-
aries [7]. This poses a difficulty for the computer secu-
rity engineer since it becomes more difficult to under-
stand attacks from the narrowing perspective they
have from the vantage point of just their own logs.
Consequently, there is an increased desire to share
logs within the security operations community.

This increased demand is clearly seen within the
community of security operations, but developers,
researchers and educators also depend upon log shar-
ing. Developers of forensic and log analysis tools need
records from real incidents to test the effectiveness of
their new tools. Networking researchers depend heav-
ily upon large and diverse data sets of network traces
[13]. Security and honeynet researchers also desire
large and diverse data sets of logs and network traces
to do their research [19]. Educators in traditional
academia as well as those that train security engineers
(e.g., the SANS Institute) depend upon real-life exam-
ples for students to analyze and incorporate into
assignments. Consequently, in step with the growth of
the computer security field, there has been an increase
in the need for sound methods of sharing log data.

While it is generally recognized that sharing logs
is important and useful [16], it is very difficult to
accomplish even among small groups. The difficulty
arises because logs are sensitive, and it is difficult to
establish high levels of trust between multiple organi-
zations – especially in a rapid manner in response to
distributed, yet related attacks. The consequences of
logs getting into the wrong hands can be severe
whether they are simply mishandled by friendly peers
or fall directly into the hands of adversaries through
public disclosure.

There are many types of potentially sensitive
information in logs, and as such, logs are like a

treasure map for would-be attackers. Access to them
can provide special views of security weaknesses not
visible from outside scans, or in the very least make
the attacker’s reconnaissance job much simpler. Logs
may reveal bottlenecks as potential DoS targets,
record plaintext login credentials, reveal security rela-
tionships between objects or reveal soft targets (e.g.,
machines already compromised and part of an existing
botnet). For these reasons, security administrators are
reluctant to share their logs with other organizations,
even if there is a potential benefit.

While a draconian vetting process for would-be
recipients and strong physical controls over the loca-
tion of log data could be used to address some of these
concerns about sharing sensitive logs, such techniques
are not flexible or scalable. Anonymization is an emi-
nently more flexible solution, and it has been increas-
ingly employed in recent years. Still, the tools and
methods to-date that anonymize logs are immature, and
log sharing has not been achieved at the levels
expected or with the ease desired. It is true that there
are log repositories out there, but they all seem to share
at least one of the following problems:

1. They do not have a wide view of the Internet,
but they are quite localized;

2. the repositories are very specific, addressing
only one or a few types of logs;

3. anonymization techniques are weak – often
nonexistent – and usually inconsistent between
submissions; or

4. they collect many logs but do not share them
with the research community [16].

Furthermore, even if someone is willing to take a risk
and submit a large number of logs for public consump-
tion, security engineers are still faced with the difficul-
ties of gathering specific logs from other organizations
during an on-going investigation.

We contend that the problem stems from the fact
that tools for log anonymization are immature and not
able to meet the many, varied needs of potential users.

20th Large Installation System Administration Conference (LISA ’06) 101

FLAIM: A Multi-level Anonymization Framework . . . Slagell, Lakkaraju, & Luo

Specifically, they have been one-size-fits-all tools,
addressing only one type of log, often anonymizing
only one field in one way. We desperately need more
flexible tools that are

1. highly extensible;
2. multi-level, supporting many options for each

field, allowing one to customize the level of
anonymization for their needs;

3. multi-log capable, being flexible enough to
support the anonymization of most security rel-
evant logs without major modification; and

4. have a rich supply of anonymization algorithms
available for use on various fields.

To meet these needs, we have developed FLAIM, the
Framework for Log Anonymization and Information
Management, a C++ based anonymization tool for
popular UNIX-like operating systems (e.g., Linux,
FreeBSD, OpenBSD, NetBSD and Mac OS X).

FLAIM strictly separates parsing from anonymi-
zation, providing an API through which run-time
dynamically loaded parsing modules can communicate
with the rest of the framework. Details such as file I/O
are abstracted away from FLAIM’s core, making it
possible to handle streamed data as easily as static
data on the disk. The anonymization engine, which
consists of a suite of anonymization primitives for
many different data types, is also separated from the
profile manager which manages the XML based anon-
ymization policies (e.g., parsing policies, validating
policies against schemas, etc.). These three compo-
nents, together, provide an extensible and modular
anonymization framework able anonymize data to
multiple levels for multiple types of logs.

While we have only talked about computer and
network logs to this point, the uses for a general
framework for anonymization extend far beyond the
sharing of network logs. In late 2004, University of
California – Berkeley researchers were denied permis-
sion to analyze a large set of personal data about par-
ticipants in a state social program after their systems
were hacked and data on approximately 1.4 million
people were breached [12].

This example highlights two points. First,
research often depends on access to large amounts of
data. The UC-Berkeley team was investigating how to
provide better care to homebound patients. Similarly,
proponents of an NSA domestic spying program have
claimed that the 9/11 hijackers could have been identi-
fied by a program that analyzed communications data
[5]. Second, there are concerns of privacy protection
on these data sets seen in the backlash against such
programs.

Anonymization potentially offers the best of both
worlds, allowing analysis while also protecting privacy.
If the UC-Berkeley data had been anonymized before
being distributed, the vulnerability to identity theft and
other misuse may have been mitigated. While we have
not created modules for these other data sets yet in

FLAIM, we have made FLAIM’s core fairly agnostic
about the data source, capable of working with any sort
of record/field formatted data. This generality opens up
many possible future applications that we have not even
considered as of yet.

The rest of this paper is structured as follows. In
the next section, we present an overview of FLAIM,
discussing its goals and functionality. We then present
a detailed description of the FLAIM architecture and
API followed by a description of the anonymization
algorithms available in FLAIM. We follow with an
extended example of their use and a discussion of
other log anonymization tools. We then conclude and
discuss future work.

Overview of FLAIM and Goals

There are four properties that an anonymization
tool must have in order to meet the varied needs of
potential users. The anonymization tool must: supply a
large and diverse set of anonymization algorithms,
support many logs, support different levels of anony-
mization for a log, and finally have an extensible,
modular architecture.

These properties are not independent but to a
large extent depend upon each other. Namely, to sup-
port multi-level anonymization of logs it is necessary
to have multiple types of anonymization algorithms.
In order to provide support for multiple types of logs it
is extremely useful to have an extensible, modular
architecture for the tool.

Utility and Strength of Anonymization Primitives

We use the term anonymization algorithm or anon-
ymization primitive to describe an algorithm that takes as
input a piece of data and modifies it so that it does not
resemble its original form. For instance, we could have
an anonymization algorithm that takes proper names,
such as ‘‘Alice’’ and ‘‘John’’ and transforms each name
by constructing an anagram (e.g., ‘‘John’’ becomes
‘‘ H o n j ’’ and ‘‘Alice’’ becomes ‘‘Cliea’’).

Clearly, anyone seeing these anonymized names
would be able to guess at the unanonymized names.
Thus, we define the strength of an anonymization
algorithm to be related to the difficulty of retrieving
information about the original values from the anony-
mized values. For instance, a black marker anonymi-
zation algorithm, which just replaces every name with
the string ‘‘NULL’’ is very strong – requiring one to
use only other identifying fields if they want to gather
information about the unanonymized value of that
field. In a similar way, we can talk about the strength
of a set of anonymization algorithms applied to sev-
eral distinct fields. For example, a scheme that only
anonymizes one field might not be strong enough, but
one that anonymizes a set of three fields together may
be much stronger.

The strength of an anonymization algorithm is cru-
cial to making sure that private data is not retrieved
from shared logs, but this is not the sole goal of sharing

102 20th Large Installation System Administration Conference (LISA ’06)

Slagell, Lakkaraju, & Luo FLAIM: A Multi-level Anonymization Framework . . .

logs. The real purpose to sharing logs is to allow analy-
sis of your logs. To do this, one must preserve some
type of information in the logs. The utility of an anon-
ymization algorithm is related to how much informa-
tion is preserved in the anonymized value. Note that
just as we can talk about the security of an anonymi-
zation primitive, we can also talk about the utility of a
scheme or set of algorithms applied to specific fields.

Consider the proper name anonymization exam-
ple from above. The anagram anonymizer has a
greater utility than the black marker anonymization
primitive. With the anagram anonymized names, we
lose the structure of the word, but there still remains
the number of letters and the actual letters from the
unanonymized value. The black marker anonymi-
zation algorithm strips away all such information.

It is clear that the utility and strength of an anon-
ymization algorithm are strongly related. Furthermore,
these relationships are complex, since the utility and
strength are based on the type of analysis we are
doing. In our future work we plan on further exploring
the relationship between the utility and strength of var-
ious anonymization algorithms based on the task of
detecting security problems in network logs. However,
a first step to reaching this goal is creating a flexible
tool like FLAIM that allows us to make such trade-
offs in anonymization.

IP Black Marker Random Permutation Truncation Prefix Preserving

141.142.96.167 10.1.1.1 141.142.132.37 141.142 12.131.102.67

141.142.96.18 10.1.1.1 141.142.96.167 141.142 12.131.102.197

141.142.132.37 10.1.1.1 12.72.8.5 141.142 12.131.201.29

12.161.3.3 10.1.1.1 212.3.4.1 12.161 187.192.32.51

12.72.8.5 10.1.1.1 141.142.96.18 12.72 187.78.201.97

212.3.4.1 10.1.1.1 12.161.3.3 212.3 31.197.3.82

Table 1: Example of four common methods to anonymize IP addresses.

Diverse Set of Anonymization Algorithms

As we mentioned earlier, the central goal of shar-
ing network and system logs is to aid in the analysis of
security related incidents on the network. And essential
to meeting this goal for various organizations and their
unique scenarios is the ability to make trade-offs
between the utility of the anonymized log and the
strength of the anonymization scheme. A necessary con-
dition to make these trade-offs is to have a diverse set of
anonymization primitives available for the tool at hand.

Earlier, we discussed how different anonymi-
zation primitives can make different trade-offs
between security and information loss with a simple
example. Now let us examine a more complex exam-
ple with IP addresses. Table 1 shows a set of IP
addresses anonymized by various algorithms:

• Black marker anonymization, in this example,
maps all the IP addresses to the same value,
10.1.1.1. This leaves no scope for analysis on
that field.

• Random permutation maps each IP address to
another address at random. This allows some
type of analysis, as we could determine if two
hosts in different records are the same.

• Truncation, in this example, removes the last 16
bits of an IP address. This allows one to see
what the different domains are, but several
hosts are collapsed down into single values.
Thus, it becomes difficult to separate individual
hosts in the records.

• Finally, prefix-preserving anonymization maps
the IP addresses to random addresses, but it
preserves the subnet structures. In this example,
we see that the 141 class A network is consis-
tently mapped to 12, preserving the subnet
structures, but not revealing the original sub-
nets. In addition, it preserves individual hosts
like a random permutation, thus preserving
much more utility than the other methods.
However, this comes at a cost of anonymization
strength as we have shown in [16].

Similar trade-offs can be made for other fields by
having multiple anonymization algorithms available.
Even the ability to decide which fields are anony-
mized, provides a mechanism to make similar trade-
offs. However, having this vast set of anonymization
primitives is just one of the necessary conditions to
create multiple levels of anonymization, a point we
discuss further in a later part of this section.

Supporting Multiple Logs

A security incident is often only revealed in the
presence of multiple logs. Thus, proper analysis often
requires access to many different logs. Therefore, a
holistic anonymization solution should anonymize dif-
ferent types of logs. While one could write a separate
tool for each log type, this is a very inefficient
approach. This is especially apparent when we notice
that many logs share the same set of common fields
(e.g., IP address, port number, timestamp). The only
difference is often in how these fields are represented
within the logs (e.g., dotted decimal IP addresses in
netfilter logs and binary 32 bit unsigned integers in
network byte order in NetFlows).

FLAIM supports multiple logs by having many
‘‘ m o d u l e s ’’ ; each module parses one specific type of
log. New modules can be created and added to FLAIM
by merely implementing a simple interface that

20th Large Installation System Administration Conference (LISA ’06) 103

FLAIM: A Multi-level Anonymization Framework . . . Slagell, Lakkaraju, & Luo

communicates through the FLAIM API. Modules are
loaded as run-time libraries, so no recompilation of
FLAIM is necessary. This allows users to leverage the
diverse set of anonymization algorithms that FLAIM
provides by only creating a module to do the I/O and
parsing.1

Multi-level Anonymization

Security related logs often need to be shared
between several different organizations to investigate
a compromise, or even internally between different
groups within the organization. Logs could also be
shared externally with organizations providing secu-
rity out-sourcing services. The level of anonymization
to be applied to the logs changes with the recipient of
the log. For internal users, the logs may not have to be
anonymized as strongly, whereas for external users
they most likely require stronger protections.

This means that an anonymization tool must sup-
port multiple levels of anonymization. Different levels
could be used for different recipients as well as different
situations for log sharing. Having multiple anonymization
algorithms of different strengths provides the building
blocks for multi-level anonymization, but something
more is needed. There should be a system to express and
evaluate these anonymization schemes. FLAIM does this
through use of XML anonymization policies. Users cre-
ate these XML policies or use predefined ones to choose
the appropriate level of anonymization for a given log. In
particular, this policy will specify which fields are anony-
mized and in what way. Schemas built into FLAIM
check that the policies are syntactically correct and that
the options make semantic sense for the type of fields.
Since these policies are not hard coded into FLAIM, they
can be easily modified at any time.

Modularity

As we said, FLAIM supports multiple log for-
mats (e.g., netfilter, pcap, nfdump, etc.). We could
have done this with a large monolithic piece of soft-
ware code. In this case, one could use FLAIM for
many types of logs, but still only a small set of all the
logs out there, namely, the set that we saw as impor-
tant for our needs. However, we did not do this
because we wanted FLAIM to be extensible. We have,
instead, created a very modular framework with a
strict API between the separate components. Conse-
quently, anonymization, policy verification and pars-
ing have all been separated. This allows not only us,
the FLAIM developers, to add support for new types
of logs, but it makes it much easier for third party
module developers to add support for new types of
logs within FLAIM.

FLAIM Architecture

To run FLAIM, one must specify a user policy –
a description of the anonymization algorithms to be

1Note: At this time FLAIM modules exist for netfilter logs,
pcap traces and nfdump format NetFlows. More modules are
under development.

used for each field. One of the key contributions of
FLAIM is that it allows the user to specify an anony-
mization policy that can make use of a multitude of
anonymization algorithms at run-time. Another key
contribution of FLAIM is that parsing and I/O are sep-
arated to allow third parties to add support for addi-
tional logs. To achieve this, the architecture is com-
posed of two main components: FLAIM Core and
FLAIM Modules. FLAIM Core consists of a suite of
anonymization algorithms – the anonymization engine
– and the policy manager. FLAIM Core reads and
writes to records via the Module API implemented by
each I/O module. Figure 1 illustrates the overall archi-
tecture of FLAIM.

FLAIM Core

Anonymization
Engine

•

•

•

Truncation

Prefix-preserving

Etc.

FLAIM Modules
•

•

•

pcap

iptables

NetFlows

Policy Manager

Figure 1: The FLAIM Architecture.

FLAIM modules consist of libraries of methods to
parse various types of logs. A single module is nor-
mally used to parse a single type of log file. Every mod-
ule is compiled as a dynamically linked library which
loads at runtime. Each module must implement the
Module API which defines a set of methods necessary
for FLAIM Core to get records to process and return
them to the module to be reassembled and written out.

In understanding the design of FLAIM, it is useful
to distinguish between three different actors that play a
role in the development and use of FLAIM. We have
alluded to them before, but define them formally below.

• LAIM Group: This refers to the Log Anony-
mization and Information Management group at
the NCSA. We developed FLAIM, both FLAIM
Core and the first FLAIM Modules.

• Module Developers: These people have devel-
oped or are interested in developing log parsing
modules that implement the Module API.

• FLAIM Users: These people are interested in
using FLAIM to anonymize a set of logs using
existing modules.

The basic workflow for FLAIM is as follows:
1. FLAIM is called with parameters that specify

the input/output data, the user policy, and the
modules needed to parse the input/output data.

104 20th Large Installation System Administration Conference (LISA ’06)

Slagell, Lakkaraju, & Luo FLAIM: A Multi-level Anonymization Framework . . .

2. The policy manager parses the user policy and
determines the anonymization algorithms that will
be applied to each field of the data. In addition to
parsing, it uses schemas to validate the policy.

3. A record is ‘‘requested’’ by FLAIM Core via
the Module API.

4. The record is anonymized based on the user
policy.

5. The anonymized record is sent back via the
Module API and written out.

6. The last three steps are repeated for all records.

Figure 2: A Module schema written in the Module Schema Language.

In the rest of this section, we describe the Policy
Manager and the Module API. Also, at the heart of
FLAIM Core is the Anonymization Engine which is
basically a set of anonymization algorithms. The
anonymization engine was developed by the LAIM
group and is being continually extended. Currently,
there are eight different types of anonymization algo-
rithms implemented that differ based on their strength.
Section IV describes the various anonymization algo-
rithms in detail, and thus we defer further discussion
of the anonymization engine till the next section.

Policy Manager

The policy manager ensures that the anonymi-
zation policy specified by the user is valid – that is, it
specifies a known anonymization algorithm with valid
options for a data type that makes sense. For example, it
would not allow prefix-preserving IP address anonymi-
zation to be specified for a timestamp field. The anony-
mization policy must be validated with both the FLAIM
schema and the Module schema to be accepted.

The FLAIM schema details what anonymization
algorithms are available as well as options for those
algorithms. As new versions of FLAIM are released,
new anonymization methods will be included in the
anonymization engine. The set of anonymization
methods currently available is listed in the FLAIM
schema. The FLAIM schema is maintained by the
FLAIM developers.

The module schema indicates which anonymi-
zation methods are appropriate for the specific fields
in the log. As the developers of FLAIM, we can spec-
ify to what data types a particular anonymization algo-
rithm can be applied. However, we cannot anticipate
the names or handles that a module developer will use
for those fields. These names are not only used in the
anonymization policy, but also in the meta-format that
the module uses to send records to FLAIM. In
essence, FLAIM Core simply sees a record as a list of
tuples of the form < FieldName,FieldValue > FLAIM
Core then matches the field name with the options
specified for the field name in the policy to determine
how to anonymize it.

We could construct a list of valid field names
from which the module developer could choose
names. This would allow FLAIM Core to recognize
the data type and make sure the algorithm being
applied makes semantic sense for that field. However,
we could hardly anticipate the needs for any type of
log. For example, we could specify ‘‘IP1’’ and ‘‘IP2’’
as valid names, however, a log that we do not antici-
pate may have four distinct IP addresses per record. It
could also have fields of types we did not expect, but
need to be passed to the anonymization engine to be
kept with the records if they are being reordered.

Consequently, we do not restrict the set of field
names that the parser could use when sending records,
i.e., the same field names specified in the user’s policy.
So to make sure that an algorithm is applied to the cor-
rect data type, the module developer creates a schema
using a very simple syntax that specifies what algorithms
can be used with what field names or handles. Being the
only one who knows the data type that corresponds to
the field names, this must be done by the module devel-
oper. We will distribute header files for the anonymi-
zation algorithms so that module developers know the
data type expected by an anonymization algorithm.

The module schema is written in XML and must
conform to our definition of a ‘‘Module Schema

20th Large Installation System Administration Conference (LISA ’06) 105

FLAIM: A Multi-level Anonymization Framework . . . Slagell, Lakkaraju, & Luo

Language.’’ For module developers who have experi-
ence with Schematron, the module schema may be
written in Schematron. We use an XSLT stylesheet to
translate the Module schemas written in a simple Mod-
ule Schema Language to Schematron stylesheets. Fig-
ure 2 shows an example module schema written in the
Module Schema Language.

Figure 3: A simple anonymization policy.

We see that, together, validation against both the
FLAIM schema and the module schema ensures that the
user ’s anonymization policy uses anonymization algo-
rithms that are supported by FLAIM, with appropriate
options, and are applied to fields in a semantically
sound manner (e.g., so an algorithm that only makes
sense for timestamps is not applied to IP addresses).

Thus, the policy manager’s role is twofold:
1. Validate the user’s policy against the FLAIM

schema and the module schema.
2. Parse the user policy file into an internal format

to be used by the anonymization engine.

Figure 3 is an example of part of a sample user
policy.

I/O Modules

The I/O library reads and parses an input file or
stream. A module library’s purpose is to abstract away
from FLAIM the task of physically manipulating the
medium which contains the data. All modules must
implement the module API that is defined by the
LAIM developers. The API allows FLAIM to access
the module schema, described above, as well as pro-
vides methods to access the data. Modules are respon-
sible for handling storage, retrieval and parsing of the
data. Of these data, there are two important types:
static files or streams.

Static files are ordinary files to which FLAIM has
random access – the key distinction from streams
being random access. However, it is not always practi-
cal to store all the data in static files. Rather, real-time
anonymization may be done on the data as it is col-
lected, perhaps even before it is written to disk. Data
that can only be accessed once is called ‘‘streaming
data,’’ a particular data source being called a ‘‘stream.’’

Handling a stream can be quite different from a
static file. For example, an anonymization algorithm
may require scanning the log twice and hence the abil-
ity to go back to the beginning of the data source. This
can be problematic for streams, of course. As such,
there are mechanisms in the FLAIM API to let the
module know if one of the anonymization algorithms
chosen will need random access. It is up to the module
developer to decide whether or not to support such
algorithms and how to do so.

The Module API

The module interface has been designed to be as
simple as possible. It consists of five functions that a
module must implement. These functions control the
input and output of records as well as resetting the
counter in the file. Procedures that need to be imple-
mented are listed below:
// Returns the filename containing the module schema
char* getModuleSchema()

// Communicate to the module the command
// line parameters passed into FLAIM
void setDataSets(char* inputfilename,

char* outputfilename)

// Return a single record
Record getRecord()

// Get the current location of the record counter.
int getCntrValue()

// reset the record counter
bool resetCntrValue();

// return true if this is the last record
bool atEnd();

// Write a single record
int putRecord(Record r)

Summary of the Architecture

The architecture of FLAIM is designed to satisfy
the properties stated in the previous section. The
Anonymization Engine in FLAIM Core contains a
diverse set of anonymization algorithms for many dif-
ferent data types. The Policy Manager component of
FLAIM Core allows users to easily provide many dif-
ferent levels of anonymization to logs by utilizing the

106 20th Large Installation System Administration Conference (LISA ’06)

Slagell, Lakkaraju, & Luo FLAIM: A Multi-level Anonymization Framework . . .

many algorithms in the Anonymization Engine. Users
can easily change the anonymization of a log by speci-
fying a new user policy in the simple XML language
specified by FLAIM. Users can create anonymization
polices tailored to the log and situation in which the
log is being distributed.

Finally, FLAIM is designed in a modular fashion
to be highly extensible to many types of logs. Log
parsing modules can be dynamically loaded into
FLAIM at runtime. This allows new logs to be added
without changing the anonymization engine or the pol-
icy manager. We defined a simple API that all log
parsing modules must implement. FLAIM Core will
interact with the log parsing module via this API. The
API is simple, giving module developers much flexi-
bility. Taken as a whole, these components and the
modules we have created make FLAIM the first exten-
sible, multi-level, multi-log anonymization tool with
the largest set of anonymization primitives of which
we are aware.

Anonymization Algorithms for FLAIM

FLAIM implements many types of anonymization
algorithms. A few are coupled very tightly with the data
type being anonymized, but many can be applied to mul-
tiple fields. However, the default values and other config-
uration options may be affected by the data type. For
example, while truncation can be applied to almost any
field, it makes sense to truncate a MAC address by 40
bits but not to do the same to a 32 bit IPv4 address.
Below we discuss the different classes of anonymization
algorithms FLAIM supports, and in the following section
we go into an extensive example of how they are used.

Black Marker

Black marker anonymization – a term we coined
in [15] – is equivalent, from an information theoretic
point of view, to printing out a log and going over
each value of a sensitive field with a black marker.
This analog variant is often seen in sensitive docu-
ments retrieved from the government. We simply
implement a digital equivalent.

In our implementation, the entire field or just
part of it can be ‘‘blacked out.’’ So IP addresses could
have just the last octet ‘‘blacked out,’’ (e.g., 192.
168.77.99 could go to 192.168.77.0). In this case, we
have replaced the last eight bits of the IP address with
0’s (Though some would call this truncation). How-
ever, we did not have to choose to use 0’s. In fact, we
allow the user to choose the constant with which to
overwrite values. For example, we could anonymize
the hostnames by replacing every hostname in a log
with host@example.net.

Truncation

Truncation works by taking a field and selecting
a point after which all bits are annihilated. For a string
value, one chooses some middle point – not necessar-
ily defined as a fixed number of characters from the

beginning – and cuts the string off after that point. For
example, one could truncate the domain information
from e-mail address so that ‘‘user@example.net’’ is
replaced with simply ‘‘user ’’.

Truncation will shorten strings, but this is a prob-
lem for fixed length binary values. One could simply
replace all trailing values with 0’s, but we have called
this black marker anonymization. Keeping with the
idea that truncating is shortening a value, we pick a
point for truncation and right shift until all bits to the
right of this point are shifted off the end. For example,
consider IP addresses as a binary 32 bit unsigned inte-
ger. The IP address 192.168.77.88 could have the last
16 bits truncated which would result in 0.0.192.168.
Sometimes, we do not want to work on a number as
binary when truncate. Take the decimal number
11977. We could truncate the last two digits, instead of
bits, and come up with 119.

Note that truncation and black marker still are
not 100 percent mutually exclusive. For example,
truncating all 32 bits and replacing all IP’s with the
constant address of 0.0.0.0 will have the same result.

Permutation

In the most general sense, a permutation is a
one-to-one and onto mapping on a set. Thus, even a
block cipher is a type of permutation. There are many
ways that permutations can be used. For larger binary
fields, it usually makes sense to use a strong, crypto-
graphic block cipher. Thus, if one wishes to use the
same mapping later, they just save the key. This is
excellent for fields like the 128 bit IPv6 address. How-
ever, there are no strong 32 bit block ciphers to do the
same for IPv4 addresses. Using a larger block would
require padding, and the output of the anonymization
function would be larger than the input. In these cases,
one can use tables to create random permutations. The
problem is, of course, that one cannot save these tables
as easily as a cryptographic key to keep mappings
consistent between logs anonymized at different times.

In addition to random permutations that are cryp-
tographically strong, there is sometimes a need to use
structure preserving permutations for certain types of
data. When differences between values must be pre-
served – often the case with timestamps – a simple
shift can be used. Shifting all values by a certain num-
ber may be an acceptable way to permute values in
some instances. For IP addresses, the subnet structure
may need to be preserved without knowing the actual
subnets (e.g., when analyzing router data). Prefix-pre-
serving pseudonymization is appropriate here. This is
a type of permutation uniquely applied to IP
addresses, and we discuss it in detail in an example of
anonymizing netfilter logs in the next section.

Hash

Cryptographic hash functions can be useful for
anonymization of both text and binary data. The prob-
lem with binary data, of course, is that one must often
truncate the result of a hash function to the shorter

20th Large Installation System Administration Conference (LISA ’06) 107

FLAIM: A Multi-level Anonymization Framework . . . Slagell, Lakkaraju, & Luo

length of the field. This avoids breaking log analysis
tools that operate on those logs. This also means that
the hash function is weaker and has more collisions.
For fields 32 bits or smaller, dictionary attacks on
hashes become very practical. For example, it is well
within the capability of a modern adversary to create a
table of hashes for every possible IPv4 address. The
space of possible values being hashed is too small.
Thus, hash functions must be used carefully and only
when the possibility of collision in the mappings is
acceptable. Often, it is better to use a random permuta-
tion. For string values, FLAIM outputs the hash in an
ASCII representation of the hexadecimal value.

HMAC

HMACs (Hash Message Authentication Codes)
are essentially hashes seeded with some secret data.
Adversaries cannot compute the HMAC themselves
without access to the key, and thus they cannot perform
the dictionary attacks that they could on simple hashes.
In cases where hashes are vulnerable to such attacks,
HMACs make sense. However, HMACs, like hashes,
are inappropriate when collisions are unacceptable.

Partitioning

Partitioning is just what it sounds like. The set of
possible values is partitioned into subsets – possibly by
a well-defined equivalence relation – and a canonical
example for each subset is chosen. Then, the anonymi-
zation function replaces every value with the canonical
value from the subset to which it belongs. Black marker
anonymization and truncation are really just special
cases of partitioning. For example, say that the last eight
bits of IPv4 addresses are ‘‘blacked out’’ with 0’s. Then
the set of IP addresses is being partitioned into class C
networks. Furthermore, the canonical representation is
simply the network address of the class C subnet. How-
ever, partitioning is not always so simplistic, and our
next type of anonymization algorithm is a very unique
type of partitioning for timestamps.

Time Unit Annihilation

Time unit annihilation is a special type of parti-
tioning for time and date information. Timestamps can
be broken down into year, month, day, hour, minute
and second subfields. When this is done, one can anni-
hilate any subset of these time units by replacing them
with 0. For instance, if she annihilates the hour,
minute and second information, the time has been
removed but the date information retained – actually, a
type of black marker. If she wipes out the year, month
and day, the date information is removed but the time
is unaffected. It is clear that this is a very general type
of partitioning, but it still cannot partition in arbitrary
ways. For instance, it cannot break time up into 10
minute units.

Enumeration

Enumeration can be very general, though
FLAIM currently uses it as just an option for time-
stamps. However, enumeration would work on any

well-ordered set. Enumeration will first sort the records
based on this field, choose a value for a first record, and
for each successive record, it will choose a greater
value. This preserves the order but removes any specific
information. When applied to timestamps, it preserves
the sequence of events, but it removes information
about when they started or how far apart two events are
temporally. A straightforward implementation could
sort, choose a random starting time, and space all dis-
tinct timestamps apart by one second. Note that the out-
put doesn’t actually have to be reordered records. For
example, the set {1.2,5.6, 7,0.3,9.3,4.8} could be enu-
merated with the elements left in place as follows
{2,4,5,1,6,3}. However, sorting on the anonymized and
unanonymized field values would produce the same
result as order is preserved by enumeration.

Netfilter Anonymization: An Extended Example

In this section, we look at how we have applied
the various anonymization algorithms described above
to netfilter logs – the first type of log we supported
with FLAIM. Since all of these fields are also found in
pcap traces, we can apply these same algorithms to
pcap logs. We describe which algorithms make sense
for each field and how they are uniquely adapted to
each data type (e.g., how default values change).

Time Stamps

FLAIM supports three methods of timestamp
anonymization. As with any data type, we must choose
a canonical form for the field. We are using the tradi-
tional UNIX epoch format, i.e., the number of seconds
since Jan 1st 1970. This is fastest for two of the three
applicable anonymization algorithms. Because time-
stamps often occur in pairs, with a starting and ending
time, we optionally allow a handle to a secondary
timestamp field to be specified in the anonymization
policy. If the secondary timestamp is specified in the
anonymization options, it is adjusted with the first
timestamp so that the difference between the two val-
ues remains the same. For example, this could be used
to keep flow duration the same in NetFlows.

Time Unit Annihilation

FLAIM can use time unit annihilation, as
described in the previous section, to anonymize time-
stamps. Timestamps are converted in the anonymi-
zation engine from the canonical format to an internal
structure to perform this type of anonymization. Then
they are converted back.

Random Shift

In some situations it may be important to know
how far apart two events are temporally without
knowing exactly when they happened. For this reason,
a log or set of logs can be anonymized at once such
that all timestamps are shifted by the same random
number, in seconds. We call this method of anonymi-
zation a Random Time Shift. As noted in the previous
section, this is a special type of permutation.

108 20th Large Installation System Administration Conference (LISA ’06)

Slagell, Lakkaraju, & Luo FLAIM: A Multi-level Anonymization Framework . . .

We allow a lower and upper bound for the ran-
dom number to be set for two reasons. First, an upper
bound can prevent a shift so far into the future that it
overflows the 32 bit timestamp field and events wrap-
around back to Jan. 1st 1970. Second, by setting the
lower and upper bound equal, you can control exactly
how much the time stamps shift. This allows you to
keep the anonymization mapping consistent between
different runs of FLAIM.

Enumeration

We implement the enumeration method of anony-
mization described in general terms earlier in this sec-
tion. FLAIM chooses a random starting time for the
first record, and each subsequent timestamp – if differ-
ing from the previous – is one second later. The end
result is that one can tell if two records happened at the
same time or one before the other, but they can know
nothing else. Implementing the enumeration algorithm
exactly as described does pose one problem, however.
The presorting can be slow on even medium sized logs
and nearly impossible with streamed data. Though logs
are not always presorted, they are often close to being
in order. Often they are simply out of order because of
clock skew between different data sources.

In our implementation, we exploit the fact that
timestamps are often just slightly out of order (e.g.,
NetFlows are nearly in order by ending timestamp)
and buffer events to sort locally. This buffer is used
like a sliding window in which only events within the
window can be sorted. Events before the window are
written out already, and events after window have not
yet been read. Since events are usually not terribly dis-
ordered, this sorts records with great accuracy often
when using a small window. The size of the window is
user-selectable. Larger windows must be used for logs
that are more disordered. We have found this to be a
useful way to allow users to select a level of compro-
mise between efficiency and accuracy.

IP Addresses

We have implemented four types of IP address
anonymization in FLAIM: truncation, black marker,
prefix-preserving, and random permutation. Nearly all
of the log anonymization tools out there use one of
these algorithms or hashing – which can be easily
brute-forced on the small 32 bit space for IPv4
addresses. Others are slight variations, such as permu-
tations that fix a hard-coded set of internal IP
addresses. In FLAIM, the canonical form for an IPv4
address is a 32 bit unsigned integer.

Truncation and Black Marker

FLAIM will truncate IP addresses from 1 to 32
least significant bits. Similarly, one can black out any
number of least significant bits and replace those bits
with any constant.

Random Permutation

We also support anonymization by creating ran-
dom permutations on the set of possible IP addresses.

This permutation is then applied to each IP address in
the log. We implement this algorithm through use of
two hash tables for efficient lookup. One hash table is
used to store mappings from unanonymized to anony-
mized IP addresses. The other hash table is used to
store all of the anonymized addresses so we can check
if an address has already been used when creating a
new mapping. Because the first table is indexed by
unanonymized addresses, the whole table would have
to be searched for a free anonymized address if we did
not use a second hash table. In this way, we trade a lit-
tle storage for a large computational speed-up. For
even higher space efficiency we could use a Bloom
filter [3] to store the set of used IP addresses. Since
Bloom filters never give a false negative, we would
not map two distinct IP addresses to the same value,
and thus our function would remain injective.

Sometimes it is desirable to fix certain elements
within the permutation. Say that an organization wants
all external IP addresses to remain unchanged. This
sort of less random permutation can be implemented
by simply pre-filling the tables with entries that fix
this subset of elements. Future versions of FLAIM
may allow one to specify a CIDR addressed subnet to
fix in the permutation.

Prefix-preserving Permutation

Prefix-preserving pseudonymization uses a spe-
cial type of permutation that has a unique structure
preserving property. The property is that two anony-
mized IP addresses match on a prefix of n bits if and
only if the unanonymized addresses match on n bits.
This preserves subnet structures and is often preferred
to random permutations, but the simple fact that there
are many times fewer permutations of this type makes
it weaker.

As a general principle, cryptographic algorithms
that preserve structure are more open to attack, and
this algorithm is not an exception. For example, an
adversary that injects traffic to be recognized later not
only gleans information about the addresses she
specifically attacked, but she also learns many of the
unanonymized bits of addresses that share prefixes
with the addresses she attacks. For this type of anony-
mization we implemented the Crypto-PAn [20, 21]
algorithm and generate keys by hashing a passphrase
the user provides. In this way, tables are not used, and
logs can more easily be anonymized in parallel across
different locations. This is a sensible choice when an
injection attack is unlikely to be effective (e.g., a one-
time release of logs with a particular key) and the sub-
net structure is very important.

MAC Addresses

MAC addresses have traditionally been globally
unique, and the first three of six bytes are usually
indicative of the network card manufacturer. As such
they are somewhat sensitive. However, proliferation of
virtualization means that MAC addresses are not

20th Large Installation System Administration Conference (LISA ’06) 109

FLAIM: A Multi-level Anonymization Framework . . . Slagell, Lakkaraju, & Luo

always globally unique now. In addition, many hard-
ware devices allow you to change the MAC (e.g.,
SOHO routers). FLAIM supports three types of anon-
ymization for MAC addresses and uses a six byte
unsigned char array as the canonical representation.

Truncation and Black Marker

FLAIM will truncate or black out any number of
least significant bits. This could allow one to remove
all identifying information but the manufacturer or
allow one to obscure the entire address.

Random Permutation

It may be important to distinguish network inter-
faces within a log, but not to know the specific MAC.
In fact, this is often the case since knowing the spe-
cific MAC usually does not get you any information
except for the manufacturer unless you have access to
special outside knowledge (e.g., access to ARP or
DHCP logs). For this reason we have an algorithm
that creates a random permutation of MAC addresses.
It is implemented in the same manner as the random
permutation of IP addresses.

Hostnames

FLAIM can also anonymize hostnames that are
both local and fully qualified with domain names. The
canonical form of a hostname is a string. If there are
periods in the hostname, the host part is to the left of
the first period and the domain name is the part to the
right of the first period. Whether or not the hostname
is fully qualified, can make a difference in the anony-
mization function.

Black Marker

Black marker anonymization replaces fields with
constants. In the context of hostnames, FLAIM can be
configured to black marker anonymize just the host
part or the entire name. If it is configured to black
marker anonymize just the host part, the host part of the
name is replaced with the string ‘‘host’’. If the hostname
is fully qualified, the domain name is left untouched. For
example, a hostname of ‘‘vorlon’’ would be replaced
with ‘‘host’’. A hostname of ‘‘vorlon.ncsa.uiuc.edu’’
would be replaced with ‘‘host.ncsa.uiuc.edu’’.

Black marker anonymization can also be config-
ured to replace the entire hostname. If the hostname is
fully qualified, it is replaced with ‘‘host.network.net’’,
otherwise it is simply replaced with ‘‘host’’. In addition
to setting the black marker anonymization to the host
or full name, one can specify the constant strings with
which to replace the names.

Hash

Another anonymization algorithm available for
hostnames is a simple hash converted into ASCII out-
put. While we could hash just the host part and leave
the network part alone, this is not very useful since the
valid hostnames on a given network can be easily enu-
merated in most cases, and thus the hash function
could be brute-forced by a simple dictionary attack.
Therefore, we only hash the entire string.

HMACs

As noted earlier in this section, HMACs can be
used instead of hashes when there is concern of brute-
force attacks. Future revisions of FLAIM will add sup-
port for using HMACs to anonymize hostnames.

Port Numbers

We have implemented three methods of anonymi-
zation for port numbers in FLAIM. The canonical repre-
sentation for port numbers is a 16 bit unsigned integer.

Black Marker

FLAIM supports black marker anonymization of
this field, replacing every port number with port 0.

Bilateral Classification

We call the second method of port number anon-
ymization we implement bilateral classification. This
is really just a special type of partitioning. Often the
port number is useless unless one knows the exact port
number to correlate with a service. However, there is
one important piece of information that does not
require one to know the actual port number: whether
or not the port is ephemeral. In this way ports can be
classified as being below 1024 or greater than or equal
to 1024. The canonical value for privileged ports is 0,
and the canonical value for ephemeral ports is 65535.

Random Permutation

In some cases it may not be necessary to know
what the port is, but only that some ports are seeing par-
ticular traffic patterns. Such is the case in detecting
worms and P2P traffic. Such traffic has unique charac-
teristics, and knowing the exact port number may not
even be that useful. For example, a new worm may
appear on an unexpected port. If you are just counting
on the port number, you will not recognize this new
worm. However, if you look for worm-like behaviors
appearing on a fixed port, you can detect the worm [22].
Similarly, knowing the specific port of a piece of P2P
software is becoming less useful, as the ports are becom-
ing dynamic. On a particular machine the port will be
fixed for a while, but that particular machine often
chooses a random port. Thus, detection must depend on
elements other than knowing the specific port number.

Randomly permuting the port numbers does not
affect the ability to detect worms or P2P traffic using
these more advanced methodologies since such ser-
vices do not always use the same predictable port
numbers. However, bilateral classification or black
marker anonymization may affect such methodologies
as it is no longer easy to separate the traffic from dif-
ferent applications on the same machine. For example,
a machine may have a P2P application on port 7777
and a web server on port 8080. Depending on the log
and the specific behavior of the P2P application, it
may be difficult to detect the P2P application as all of
its traffic is aggregated with the legitimate web server.
In this situation, a random permutation provides the
maximum amount of anonymization possible to com-
plete the analysis.

110 20th Large Installation System Administration Conference (LISA ’06)

Slagell, Lakkaraju, & Luo FLAIM: A Multi-level Anonymization Framework . . .

Network Protocol

FLAIM supports black marker anonymization of
the protocol field. The canonical form of this field is
an unsigned eight bit integer corresponding to the val-
ues assigned by IANA [6] (e.g., TCP is 6, UDP is 17,
ICMP is 1). If this field is anonymized, all protocols
are replaced with 255, the IANA reserved protocol
number. For many network logs it makes no sense to
anonymize this field alone. For example, in a pcap log
the TCP headers will give away the protocol even if
the protocol field is eliminated in the IP header.

IP ID Number

We support black marker anonymization of ID
numbers because their use is moderately sensitive to
passive OS fingerprinting. All ID’s are replaced with 0
in this case. The canonical form of this field is an
unsigned 16 bit integer.

IP Options

We support black marker anonymization of IP
options because their use is moderately sensitive to
passive OS fingerprinting and because they can carry
significant information in covert channels. Specifi-
cally, we can see their usefulness in data injection and
probing attacks. The canonical form for this field is a
string in the same format that iptables uses to repre-
sent this variable length field. If black marker anony-
mization is chosen, FLAIM replaces the string with
the null string.

Misc IP Fields

We support black marker anonymization of
Type-of-Service and Time-to-Live IP fields because
their use is very sensitive to passive OS fingerprinting.
Their canonical form is the same as the protocol field,
and we replace all values with 255 when performing
this type of anonymization.

Don’t Fragment Bit

We support black marker anonymization of
Don’t-Fragment bits because this field is very sensi-
tive to passive OS fingerprinting. Nothing smaller
than a byte is sent to FLAIM, so any flags or boolean
values have the canonical form of an unsigned char. If
the value is non-zero, it is treated as if the bit is set to
true. If the value is zero, it is interpreted that bit is not
set or set to false. Thus, when FLAIM anonymizes this
field, it simply replaces instances of the field with 0.

TCP Window Size

We support black marker anonymization of the
TCP window size because its use is very susceptible to
passive OS fingerprinting. The canonical form of this
field is a 16 bit unsigned integer. If anonymization of
this field is done, all window sizes are set to 0.

Initial TCP Sequence Number

The canonical form of this field is an unsigned 16
bit integer. Because initial TCP sequence numbers are
moderately sensitive to passive OS fingerprinting, FLAIM

can be used to black marker anonymize TCP sequence
numbers, replacing all sequence numbers with 0.

While doing this is not syntactically breaking
logs, it will lead to semantically nonsensical values.
Log analyzers should not break while parsing logs
anonymized in this way, but their output could be quite
unpredictable when fields like this are anonymized in
such a manner. More complex anonymization algo-
rithms that try to identify when packets are part of the
same flow could be used, instead. Their drawback is
that the anonymization of one field becomes depen-
dent on other fields within a record. FLAIM is cer-
tainly general enough to do this, and we do in fact han-
dle relations between timestamp fields within a record.
However, for a field that has seen lesser demand for
anonymization, we have chosen to perform a simpler
type of anonymization in this first instance of FLAIM.
User demand will determine if more complex solu-
tions are desired for some of these fields.

TCP Options

We support black marker anonymization of TCP
options because their use is moderately sensitive to
passive OS fingerprinting and because they can carry
significant information in covert channels. Specifi-
cally, we can see their usefulness in data injection and
probing attacks. The canonical form for this field is a
string in the same format that iptables uses to repre-
sent this variable length field. If black marker anony-
mization is chosen, FLAIM replaces the string with
the null string.

ICMP Codes and Types

NetFlow records and firewall logs can indicate
both the ICMP code and type without the packet data.
Tr u n c a t i o n makes no sense since there is no structure to
the specific code and type numbers. Permutations and
hashing seem to offer no utility over simple black
marker anonymization. Thus, FLAIM currently sup-
ports just black marker anonymization of these fields.
The canonical form for these fields is the unsigned char.
The value with which these fields are replaced is 0.

Figure 4 summarizes the anonymization methods
that can be applied to the fields in the IP table logs.

Related Work

While there have been several anonymization
tools created for specific logs, they have not been very
flexible to date. The anonymization primitives used
have mostly been simplistic, and anonymization is
typically done on only one field with no options as to
what anonymization algorithm is used. Thus, in the
current state of matters, we have a collection of ad hoc
tools created for the specific needs of individual orga-
nizations, rather than flexible tools used by many.

One of the major results in log anonymization –
one that changed how a lot of tools anonymize data –
was the development of prefix-preserving IP address

20th Large Installation System Administration Conference (LISA ’06) 111

FLAIM: A Multi-level Anonymization Framework . . . Slagell, Lakkaraju, & Luo

anonymization. The most commonly anonymized field
in security and network relevant logs is the IP address.
It was long desired to both preserve the subnet struc-
ture like truncation, and also have a one-to-one map-
ping between anonymized and unanonymized
addresses. The solution was to create prefix-preserv-
ing permutations on IP addresses. Mathematically, we
define such a mapping as follows. Let τ be a permuta-
tion on the set of IP addresses, and let Pn() be the
function that truncates an IP address to n bits. Then τ

is a prefix-preserving permutation of IP addresses if
∀ 1 ≤ n ≤ 32:

� T i m e U n i t A n n i h i l a t i o n� R a n d o m S h i f t� E n u m e r a t i o n
� T r u n c a t i o n� B l a c k M a r k e r� P r e fi x � P r e s e r v i n g� R a n d o m P e r m u t a t i o n
� T r u n c a t i o n� B l a c k M a r k e r� R a n d o m P e r m u t a t i o n� B l a c k M a r k e r� H a s h� H M A C

� B l a c k M a r k e r� B i l a t e r a l� R a n d o m P e r m u t a t i o n� B l a c k M a r k e r� B l a c k M a r k e r� B l a c k M a r k e r � B l a c k M a r k e r

� B l a c k M a r k e r� B l a c k M a r k e r� B l a c k M a r k e r
� B l a c k M a r k e r

� B l a c k M a r k e r
Figure 4: NetFilter Anonymization Options with FLAIM.

Pn(x) = Pn(y) if and only if Pn(τ(x)) = Pn(τ(y)).

In recent years, several tools have been made
that make use of this newer, structure preserving form
of IP address anonymization. Many are based on
tcpdpriv, a free program that performs prefix-preserv-
ing pcap trace anonymization using tables. Because of
the use of tables, it is difficult to process logs in paral-
lel with this tool. In [20, 21], Xu, et al., created a pre-
fix-preserving IP pseudonymizer that overcomes this
limitation by eliminating the need for centralized
tables to be shared and edited by multiple entities.
Instead, with their algorithm Crypto-PAn, one only
needs to distribute a short key between entities that
wish to pseudonymize consistently with each other.
Their work made prefix-preserving pseudonymization
much more practical. In [14], we used Crypto-PAn
with our own key generator to perform prefix-preserv-
ing IP address pseudonymization on a particular for-
mat of NetFlow logs. We later implemented Crypto-
PAn in Java as part of a more advanced NetFlow
anonymizer we call CANINE [17]. CANINE supports
several NetFlow formats and anonymizes the eight
most common fields within NetFlows.

In [18], Sobirey, et al., first suggested privacy-
enhanced intrusion detection using pseudonyms and
provided the motivation for the work of Biskup, et al.,
in [1, 2]. While the work in [9, 1, 2] does deal with log
data and anonymization, their goals are significantly
different than ours. All three works deal specifically
with pseudonymization in Intrusion Detection Systems
(IDSs). The adversary in their model is the system
administrator, and the one requiring protection is the
user of the system. In our case, we instead assume that
the system/network administrators have access to raw
logs, and we are trying to protect the systems from
those who would see the shared logs. To contrast how
this makes a difference, consider that in their scenario
the server addresses and services running are not even
sensitive – just information that could identify clients
of the system. Furthermore, we do not require the abil-
ity to reverse pseudonyms.

However, since the system/network administra-
tors in their scenario do not have raw data, the privacy
officer must help the system security officer reverse
pseudonyms if alerts indicate suspicious behavior. In
[1, 2], they take this further and try to support auto-
matic re-identification if a certain threshold of events
is met. In that way, their pseudonymizer must be intel-
ligent, like an IDS, predicting when re-identification
may be necessary and thus altering how it pseudony-
mizes data. They also differ from us in that they create
transactional pseudonyms, so a pseudonym this week
might map to a different entity the next week. We,
however, desire consistency with respect to time for
logs to be useful. Lastly, all of the anonymizing solu-
tions in these papers filter log entries and remove them
if they are not relevant to the IDS; we endeavor to dis-
pose of no entries because completeness is very

112 20th Large Installation System Administration Conference (LISA ’06)

Slagell, Lakkaraju, & Luo FLAIM: A Multi-level Anonymization Framework . . .

important for logs released to the general research
populace. All-in-all, we are looking at the more gen-
eral problem of sharing arbitrary logs, rather than
hooking anonymization into IDS’s or other tools for
very specific purposes.

In [4], Flegel takes his previous work in privacy
preserving intrusion detection [1, 2] and changes the
motivation slightly. Here, he imagines a scenario of web
servers volunteering to protect the privacy of visitors
from themselves, and he believes IP addresses of visi-
tors need pseudonymization. However, to a web server
IP addresses already act as a pseudonym protecting the
client’s identity, since ISPs rarely volunteer IP-to-per-
son mappings to non-government entities. Though the
motivation differs slightly, the system described is the
same underlying threshold based pseudonymization
system, and the focus of this paper is really about the
implementation and performance of the system. As
such, the results of [4] can be applied to [1, 2].

In [10], Pang, et al., developed a new packet
anonymizer that anonymizes packet payloads as well
as transactional information, though their methodol-
ogy only works with application level protocols that
their anonymizer understands: HTTP, FTP, Finger,
Ident and SMTP. The process can also alter logs sig-
nificantly, losing fragmentation information, the size
and number of packets and information about retrans-
missions; thus skewing timestamps, sequence numbers
and checksums. While their anonymizer is limited in its
capabilities, it is fail-safe because it only leaves infor-
mation in the packets that it can parse and understand.
Further, they create a classification of anonymization
techniques and a classification of attacks against anony-
mization schemes that we found useful. We use a simi-
lar classification which is based off of their work.

Lincoln, et al., [8] proposed a log repository
framework that enables community alert aggregation
and correlation, while maintaining privacy for alert
contributors. However, the anonymization scheme in
the paper is partially based on hashing IP addresses.
Such a scheme is always vulnerable to dictionary
attacks. Moreover, their scheme mixes the hashes with
HMACs and truncates the hashes/MACs to 32 bits,
both actions which result in more hash collisions and
inconsistent mappings. Finally, their suggested use of
re-keying by the repository destroys the correlation
between repositories and therefore limits the view to a
single repository.

Most recently, Pang, et al., have taken a new
approach to packet trace anonymization, ignoring
packet data [11]. Their new tool anonymizes many
fields in pcap logs, more than any other tool to date.
The algorithm options to anonymize these fields are
very customized to their specific needs which they
describe through the paper much like a case study.
However, they leave hooks into the software that
would allow someone to create new algorithms to

anonymize any TCP/IP fields in new ways. The differ-
ence between our work is that theirs is (1) restricted to
pcap headers, (2) is not a modular framework with a
clean API, and (3) not many options are available for
any particular field, though the ability for someone
else to code another algorithm is there. Another way
to look at the difference is that they just look at pcap
headers and leave open the ability for others to add
anonymization algorithms to their parser. We create a
suite of anonymization algorithms with a policy man-
ager, and recognizing that many logs share common
fields, we leave open the ability to add new parsers.

Software Availability

FLAIM software is available at http://flaim.ncsa.
uiuc.edu for download. This software is released open
source under the University of Illinois open source
license. The license and contact information can also
be found on the FLAIM web site.

Conclusions and Future Work

As we can see, the ability to share logs can vastly
improve the detection of zero-day exploits and other
network attacks. In addition, the sharing of network
traces will allow multiple organizations to pursue
research on real-life examples, instead of simulations.
The main problem with sharing logs is to make sure
that sensitive data is not compromised by sharing the
logs. But while we should make sure sensitive infor-
mation is not distributed, we must also make sure
enough information is retained for analysis. We pro-
pose that anonymization can be used to sanitize the
sensitive information in a log while keeping enough
information for analysis. Our goal is to explore the
trade-offs between the strength of an anonymization
algorithm (the amount of information it hides) and its
utility (the usefulness of the log after anonymization).
We have developed a tool, the Framework for Log
Anonymization and Information Management
(FLAIM), which we will use to explore these issues.

Log anonymization tools to date have been cre-
ated in an ad hoc manner for the specific needs of
individual organizations. FLAIM is immanently more
flexible than the log anonymization tools to date.
FLAIM is extensible, supports multi-level anonymi-
zation with a rich supply of anonymization algorithms
and supports multiple log formats. We have discussed
its goals and architecture in depth, and found it to per-
form well at anonymizing large log files (over 40,000
records per second2). With the release of FLAIM,
organizations are now able to leverage our work to
address their unique log sharing needs.

FLAIM was developed with the purpose of aid-
ing security engineers in safely sharing security related
data with other professionals. While this is still the

2Tests were performed on a machine with four 3.0 GHz
Xeon CPUS and 2 GB of RAM against an nfdump log with
5 million flows.

20th Large Installation System Administration Conference (LISA ’06) 11 3

FLAIM: A Multi-level Anonymization Framework . . . Slagell, Lakkaraju, & Luo

main goal of FLAIM, it is important to note that
FLAIM can be used on any type of data, provided a
module is written for it. We have seen that there is a
need for anonymization to allow the further progress
of science. Because of FLAIM’s separation of the file
I/O from the actual anonymization, FLAIM can pro-
vide a general framework for anonymization of any
data. Any developer can make use of the diverse set of
anonymization algorithms we provide to anonymize
their data. By releasing FLAIM as an open source tool,
and by creating a simple module API, we hope that
many professionals will build modules for FLAIM.

While FLAIM is a capable tool, there are always
enhancements that can be made. New parsing modules
may be written for parsing additional log types (We
intend to create new modules for more types of system
logs and the IDMEF IDS format). These parsing mod-
ules can also be enhanced to support streaming or real-
time anonymization. We also foresee interest in a dae-
mon mode for FLAIM that would make it easier to
integrate with web services and other online tools.
Most interesting to us, is the creation of a tool to help
generate anonymization policies. It is always challeng-
ing to determine how best to anonymize the data for a
particular application. We envision a tool that asks
users a series of questions to determine how to anony-
mize a log, and then it would output a valid XML pol-
icy for FLAIM. As we receive feedback from users,
we expect to have a more solid grasp of which fea-
tures are most useful.

Author Biographies

Adam Slagell received a B.S. and M.S. in mathe-
matics at Northern Illinois University. Afterwards, he
received an M.S. in computer science at the University of
Illinois at Urbana-Champaign in 2003. After obtaining his
second masters degree, he joined the security research
group at the National Center for Supercomputing Applica-
tions where he is still employed. He can be reached elec-
tronically at slagell@ncsa.uiuc.edu .

Kiran Lakkaraju is a Ph.D. student in the Com-
puter Science Department at the University of Illinois
at Urbana-Champaign. He has been working for the
National Center for Supercomputing Applications for
four years on projects involving security visualization
and anonymization. His other research interests include
multi-agent systems and language evolution. He can be
reached electronically at kiran@ncsa.uiuc.edu .

Katherine (Xiaolin) Luo is currently studying for
her masters degree in the general engineering depart-
ment at the University of Illinois at Urbana-Cham-
paign. She is also working as a graduate research
assistant for the LAIM group at the NCSA, and is one
of the main developers of the FLAIM tool.

Acknowledgments

This material is based, in part, upon work sup-
ported by the National Science Foundation under

Grant No. 0524643, and the Office of Naval Research
through the National Center for Advanced Secure Sys-
tems Research (NCASSR). Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessar-
ily reflect the views of the National Science Founda-
tion or the Office of Naval Research.

We would like to thank Greg Colombo, Vikram
Dhar and Yifan Li who have contributed their pro-
gramming skills to the development of FLAIM. We
would also like to thank Jun Wang for his help review-
ing this paper before submission, and Bill Yurcik for
help in various ways.

Bibliography

[1] Biskup, J., and Flegel, U., ‘‘On Pseudony-
mization of Audit Data for Intrusion Detection,’’
USENIX Workshop on Design Issues in
Anonymity and Unobservability, Jul., 2000.

[2] Biskup, J., and Flegel, U., ‘‘Transaction-Based
Pseudonyms in Audit Data for Privacy Respect-
ing Intrusion Detection,’’ Third International
Workshop on the Recent Advances in Intrusion
Detection (RAID 2000), Toulouse, France, Oct.,
2000.

[3] Bloom, B. H., ‘‘Space/Time Trade-offs in Hash
Coding with Allowable Errors,’’ Communica-
tions of the ACM, Vol. 13, Num. 7, pp. 422-426,
1970.

[4] Flegel, U., ‘‘Pseudonymizing UNIX Log Files,’’
Infrastructure Security, International Conference
(InfraSec 2002), Bristol, UK, Oct, 2002.

[5] Gorman, S., ‘‘NSA Killed System that Sifted
Phone Data Legally,’’ The Baltimore Sun, May
17, 2006.

[6] IANA IPv4 Protocol Numbers Assignment, http://
www.iana.org/assignments/protocol-numbers, Mar.,
2006.

[7] Markoff, J., and Bergman, L., ‘‘Internet Attack is
called Broad and Long Lasting,’’ New York
Times, Sec. A, Col. 1, p. 1, May 10, 2005.

[8] Lincoln, P., Porras, P., and Shmatikov, V., ‘‘Pri-
vacy-Preserving Sharing and Correlation of
Security Alerts,’’ 13th USENIX Security Sympo-
sium, San Diego, CA, Aug., 2004.

[9] Lundin, E., and Jonsson, E., ‘‘Privacy vs Intru-
sion Detection Analysis,’’ Second International
Wo r k s h o p on the Recent Advances in Intrusion
Detection (RAID ’99), West Lafayette, IN, Sep.,
1999.

[10] Pang, R., and Paxson, V., ‘‘A High-Level Pro-
gramming Environment for Packet Trace Anony-
mization and Transformation,’’ ACM SIGCOMM
Conference, Karlsruhe, Germany, Aug., 2003.

[11] Pang, R., Allman, M., Paxson, V., and Lee, J.,
‘‘The Devil and Packet Trace Anonymization,’’
ACM SIGCOMM Computer Communications
Review, Vol. 36, Num. 1, pp. 29-38, Jan., 2006.

114 20th Large Installation System Administration Conference (LISA ’06)

Slagell, Lakkaraju, & Luo FLAIM: A Multi-level Anonymization Framework . . .

[12] Poulsen, K., ‘‘California Reports Massive Data
Breach,’’ SecurityFocus News, http://www.
securityfocus.com/, October 19, 2004.

[13] Shannon, C., Moore, D., and Keys, K., ‘‘The
Internet Measurement Data Catalog,’’ ACM SIG-
COMM Computer Communications Review, Vol.
35, Num. 5, pp. 97-100, Oct., 2005.

[14] Slagell, A., Wang, J., and Yurcik, W., ‘‘Network
Log Anonymization: Application of Crypto-PAn
to Cisco NetFlows,’’ Wo r k s h o p on Secure Knowl-
edge Management, Buffalo, NY, Sep., 2004.

[15] Slagell, A., and Yurcik, W., ‘‘Sharing Compuer
and Network Logs for Security and Privacy: A
Motivation for New Methodologies of Anonymi-
zation,’’ ACM Computing research Repository
(CoRR), Technical Report cs.CR/0409005; Sep.,
2004.

[16] Slagell, A., and Yurcik, W., ‘‘Sharing Computer
Network Logs for Security and Privacy: A Moti-
vation for New Methodologies of Anonymi-
zation,’’ SECOVAL: The Workshop on the Value
of Security through Collaboration, Athens,
Greece, Sep., 2005.

[17] Slagell, A., Li, Y., and Luo, K., ‘‘Sharing Net-
work Logs for Computer Forensics: A New tool
for the Anonymization of NetFlow Records,’’
Computer Network Forensics Research Work-
shop, Athens, Greece, Sep., 2005.

[18] Sobirey, M., Fischer-Hubner, S., and Rannen-
burg, K., ‘‘Pseudonymous Audit for Privacy
Enhanced Intrusion Detection,’’ IFIP TC11 13th

International Conference on Information Secu-
rity, Copenhagen, Denmark, May, 1997.

[19] Vrable, M., Ma, J., Chen, J., Moore, D., Van-
dekieft, E., Snoeren, A., Voelker, G., and Savage,
S., ‘‘Scalability, Fidelity and Containment in the
Potemkin Virtual Honeyfarm,’’ 20th ACM Sym-
posium on Operating Systems Principles (SOSP
2005), Brighton, UK, Oct., 2005.

[20] Xu, J., Fan, J., Ammar, M. H., and Moon, S. B.,
‘‘On the Design and Performance of Prefix-Pre-
serving IP Traffic Trace Anonymization,’’ ACM
SIGCOMM Internet Measurement Workshop,
San Francisco, CA, Nov., 2001.

[21] Xu, J., Fan, J., Ammar, M. H., and Moon, S. B.,
‘‘Prefix-Preserving IP Address Anonymization:
Measurement-based Security Evaluation and a
New Cryptography-based Scheme,’’ 10th IEEE
International Conference on Network Protocols,
Paris, France, Nov., 2002.

[22] Yin, X., Yurcik, W., and Slagell, A., ‘‘The Design
of VisFlowConnect-IP: a Link Analysis System
for IP Security Situational Awareness,’’ First
International Workshop on Information Assurance
(IWIA), College Park, MD, Mar., 2005.

20th Large Installation System Administration Conference (LISA ’06) 115

