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Abstract

We describe and test a model that captures conjunctive, disjunctive, and compensatory judgment and choice strategies, as well as

selected hybrid combinations of these. This model: (a) can be estimated solely from nonexperimental outcome data, (b) remains true

to the conceptualization of noncompensatory heuristics as cognitively less demanding for decision makers, (c) is truly noncom-

pensatory and not just approximately, (d) tests for a ‘‘pervasive’’ influence of cutoffs, (e) allows for the possibility that decision

makers use different strategies across attributes, and (f) provides a more plausible account of behavior than competing models. We

show empirically that decision makers may sometimes devalue objects for almost failing a conjunctive criterion or value objects

more favorably for almost passing a disjunctive criterion—what we term a pervasive influence of a cutoff. The superiority of the

proposed model relative to two other state-of-the-art models is demonstrated using both actual admit/reject decisions of an MBA

admissions office as well as 10 simulations of various decision tasks.

� 2004 Elsevier Inc. All rights reserved.
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Introduction

It is a well-known irony in judgment and decision

making (J/DM) research that decision strategies that are
cognitively more demanding can be simpler to model

than less demanding strategies. For example, the linear

compensatory model, which implies a moderate amount

of information processing, is readily estimated by linear

regression. On the other hand, the conjunctive decision

rule, which entails rejection of any object that fails to

meet a minimum criterion on an attribute, is simpler for

decision makers to implement and yet it is harder for
researchers to model in estimable form.

A valid mathematical model of decision making is

important because it provides a precise specification of
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theory. It is also of practical importance because it allows

researchers to infer the unobserved decision strategy from

the observed decision outcomes, eliminating reliance on

self-reports (e.g., Johnson, 1987; Swait, 2001), protocol
data (e.g., Billings &Marcus, 1983; Klein & Bither, 1987;

Payne, Bettman, & Johnson, 1988), or multiple observa-

tions of intermediate steps (Levin & Jasper, 1995). This is

of value to practitioners, as well as academic researchers,

because process data are often unavailable. Process data

can also be unreliable. Self-reports are suspect because

subjects may be unaware of their own decision strategies

or unable to report them accurately (e.g., Nisbett & Wil-
son, 1977). Methods for collecting protocol data, such as

information display boards, can interfere with the deci-

sion process they measure in several ways (e.g., Billings &

Marcus, 1983; Ford, Schmitt, Schechtman, Hults, &

Doherty, 1989). For example, they may (a) induce sub-

jects to process information more carefully when their

decision process is being monitored, (b) direct subjects’

attention to attributes that would be ignored in a natu-
ralistic setting (Brucks, 1985), and/or (c) cause informa-

tion overload.

mail to: terry.elrod@ualberta.ca


1 This, according to whether they model outputs using a threshold

or sigmoid function, respectively (cf. Cherkassky & Mulier, 1998). The

open interval (0, 1), excludes its endpoints of zero and one, whereas a

closed interval, denoted [0, 1], includes them.
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Classic utility theory (Debreu, 1954; von Neumann &
Morgenstern, 1947) offers an idealized representation of

decision outcomes that is readily extended to preference

for multiattribute objects. The utility of the object is

modeled as a function of the valuations (utilities) of its

component characteristics (Lancaster, 1966). Mathe-

matical tractability in economic analysis is obtained by

assuming that the utilities of objects are compensatory;

i.e., that the valuation of every attribute affects the
utility of the object, irrespective of the valuations of the

object’s other attributes.

Theoretical critiques of classic utility theory date

back at least to Mosteller and Nogee (1951), Simon

(1955), and Luce (1956). These researchers embarked on

a search for (a) equally general models that (b) provide

more accurate accounts of human behavior while (c)

presuming less extreme complexity of evaluation. At-
taining all three goals simultaneously is no easy task,

and subsequent research has emphasized some objec-

tives more than others.

Some researchers reduced the compensatory model to

its simplest possible form. The linear compensatory (or

additive) model soon came to dominate behavioral re-

search in multiattribute evaluation and choice behavior

(Edwards & Tversky, 1967). Mosteller and Nogee (1951)
noted that observed choices at the individual level fre-

quently depart from deterministic utility theory, leading

to the addition of a random error term to utilities and

hence to random utility models (Block & Marschak,

1960; McFadden, 1974, 1987). McFadden’s (1974) con-

ditional multinomial logit model—a particular form of

linear compensatory random utility model—likely re-

mains the most often applied model of decision making
to this day (Borooah, 2002). It is easy to estimate, and

random utility models have proven hard to beat in terms

of predictive accuracy, particularly in natural settings.

Other researchers have proposed noncompensatory

rules thought to be even simpler for decision makers to

implement than the linear compensatory rule. A decision

rule is noncompensatory if a decision, determined by

some attributes of an object, cannot be reversed by other
attributes of the object (Dillon, 1998; Schoemaker, 1980).

Noncompensatory models of enduring interest include

the conjunctive and disjunctive models (Coombs & Kao,

1955; Dawes, 1964), the lexicographic semiorder (Tver-

sky, 1969), elimination by aspects (Tversky, 1972) and fast

and frugal heuristics (Gigerenzer, 2000). However, these

models also have their shortcomings. (a) They preclude

compensatory behavior, even though there is good reason
to suppose that decision makers may use both compen-

satory and noncompensatory rules on different occasions

or even at different stages in the same task (Beach, 1993;

Payne, 1976; Payne, Bettman, & Luce, 1998). (b) Statis-

tical procedures for fitting these models to nonexperi-

mental outcomes are either not provided or else are

problematic. For example, the number of parameters es-
timated by the models of Tversky (1969, 1972) and Gi-
gerenzer (2000) is not well-defined, which precludes the

statistical testing of hypotheses and hampers model as-

sessment. (c) The domain of applicability of these models

can be restrictive. For example, both fast and frugal

heuristics and elimination by aspects were developed for

binary attributes. (d) While the investigators of these

models have regularly constructed task conditions for

which noncompensatory models provide superior pre-
dictions, it is still unclear to what extent these conditions

prevail in real world settings.

Some J/DM researchers have proposed models meant

to represent noncompensatory decision strategies that

can be readily estimated from nonexperimental out-

comes (e.g., Abe, 1999; Brannick, 1986; Brannick &

Brannick, 1989; Einhorn, 1970, 1971; Ganzach &

Czaczkes, 1995; Goldberg, 1971; Mela & Lehmann,
1995; Slovic & Lichtenstein, 1971). While of value, these

models all possess at least one of several important

weaknesses: (a) they are inherently nonlinear compen-

satory models that can only approximate noncompen-

satory processes, (b) they assume that the same decision

strategy is applied to all attributes, and/or (c) they im-

plicitly represent the noncompensatory process as a

complex consideration of either attribute interactions or
of the means and variances of attribute values. Since

these models suggest significantly more, rather than less,

processing than is required by linear compensatory

models, they are unrepresentative of the simple cognitive

processes they seek to represent.

One extant type of model that can represent both

linear compensatory and noncompensatory rules exactly

is the connectionist network, or neural net (Ripley, 1996).
Researchers in behavioral decision theory have been

quick to take advantage of the flexibility of connec-

tionist networks to model decision making—examples

are to be found in Grossberg (1980), Grossberg and

Gutowski (1987), Leven and Levine (1996), and in

decision field theory (Busemeyer & Diederich, 2002;

Busemeyer & Townsend, 1993; Roe, Busemeyer, &

Townsend, 2001). However connectionist networks ei-
ther make no probabilistic predictions for observations

or else they make probabilistic predictions confined to

the open interval (0,1) for all observations.1 In the for-

mer case, they contain no error theory and so precise

statistical assessment and hypothesis testing is not pos-

sible. In the latter case, they are inconsistent with be-

havioral descriptions of noncompensatory decision

making because all object attributes affect evaluation
and no object is ever rejected or accepted with certainty.

Nevertheless these models can provide for a more ade-
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quate account of observed behavior in some settings
than the random utility model. We will return to these

models in the Discussion (Incorporation into decision

field theory).
Advantages of the proposed model

In this paper, we propose and test a model of decision
making that integrates variations of a compensatory and

two noncompensatory (i.e., conjunctive and disjunctive)

decision strategies. It is capable of providing probabi-

listic predictions for objects anywhere on the closed in-

terval [0,1].

Our model offers a number of important advantages

for decision researchers. (a) It allows for the identification

of compensatory and noncompensatory decision strate-
gies from experimental or nonexperimental choices,

eliminating the need for protocol data or self-reports. (b)

It remains true to the conceptualization of noncompen-

satory heuristics as being cognitively less demanding than

compensatory decision making. (c) It allows for the pos-

sibility that decision makers may use a compensatory

strategy for some attributes, conjunctive or disjunctive for

others, and a combination of compensatory and non-
compensatory for still other attributes, all within a single

decision. (d) It tests for a pervasive influence of cutoffs,

where objects that do not quite invoke a conjunctive or

disjunctive rule receive evaluations that are nonetheless

influenced by that rule. That is, objects that nearly fail a

conjunctive criterion may be devalued, and those that

nearly satisfy a disjunctive criterion may be valued more

highly, relative to objects that do not nearly invoke the
rule. Our empirical tests show that the decision strategies

identified by our model are more consistent with theory

andmore plausible than the accounts of behavior that are

implied by state-of-the-art alternative models.

The remainder of the Introduction expands on each

of these points as we present the derivation of our

model. We begin by characterizing in precise terms the

linear compensatory and two common noncompensa-
tory decision rules, and then show how these may be

integrated into a single model. We present and assess a

random utility implementation of this model to deci-

sions about individual objects. We show in the Discus-

sion how our core contribution—the additive GNH

model—may be employed in more flexible choice models

and more general choice tasks.
The linear compensatory model

Utility-based decision models assume that decisions

are based upon evaluations, i.e., that decisionmakers seek

options that offer high perceived utility. We will denote

the utility of the ith object byUi, and the object’s values on
the Q attributes that affect assessment by Xi1; . . . ;XiQ. We
assume that all attributes are coded to be positively val-

ued; i.e., that the expected utility of an object is mono-

tonically nondecreasing in every attribute. Negatively

valued attributes can always bemade positively valued by

multiplying their data values byminus one. Furthermore,

utility will often be latent rather than observed.

The most common representation of the decision

maker’s process of object evaluation is the linear com-
pensatory model (Brunswik, 1940):

Ui ¼ aþ
XQ
q¼1

bqXiq þ ei; ð1Þ

where a is an intercept, ei is a random error term, and bq

is the influence of the qth attribute on the utility as-

sessment.

The ability of the linear model to predict actual deci-

sions reasonably well in many (but not all) settings is well
documented (Einhorn, Kleinmuntz, &Kleinmuntz, 1979;

Slovic & Lichtenstein, 1971; Yntema&Torgerson, 1961).

Its robust performance, attributable to a combination of

completeness in its representation of attributes and sim-

plicity in its combination rule, explains why it lies at the

core of J/DM models to this day (e.g., Busemeyer &

Diederich, 2002; Busemeyer & Townsend, 1993).

The linear model has three key features well-known
to J/DM researchers. It is additive in attributes, which

means that the evaluation of the object is obtained by

simply summing the assessments of each of the attri-

butes considered individually. It is compensatory, which

implies that an object’s assessment on any attribute may

be offset by its assessment on one or more other attri-

butes. And finally, it is linear, which means that all at-

tributes are assessed in a linear manner for all objects.
Common variations on this rule relax the additivity

and/or linearity assumptions. Models that are additive

in attributes can be expressed as

Ui ¼ aþ
XQ
q¼1

Viq þ ei � V �
i þ ei; ð2Þ

where Viq � fqðXiqÞ represents the possibly nonlinear

value function for the qth attribute of object i and ei is a
random error term. It is sometimes useful to separate Ui

into its deterministic ðV �
i Þ and random (ei) components.

The linear compensatory model given by (1) is a special

case of (2) with Viq ¼ bqXiq.
Noncompensatory rules

Noncompensatory decision strategies differ from lin-
ear compensatory rules in that a decision may be de-

termined by an object’s score on a single attribute,

irrespective of its score on other attributes (e.g., Coombs

& Kao, 1955; Dawes, 1964; Pras & Summers, 1975;

Schoemaker, 1980). For example, a house that is unaf-
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fordable is rejected regardless of its features or location.
This is an example of a conjunctive decision rule, in

which an object is rejected because it fails to meet a

minimum level of desirability for at least one of its at-

tributes. Alternatively, a disjunctive rule results in ac-

ceptance of an object that surpasses a very high standard

on at least one attribute, irrespective of its values on the

other attributes. For example, one might accept the first

job offer in a specific location without regard for salary
or working conditions.

Letting Yi ¼ 2 indicate an ‘‘acceptable’’ object and

Yi ¼ 1 an ‘‘unacceptable’’ one, then the conjunctive rule

may be represented as

Yi ¼ 1 if and only if Xiq < dq for any q ¼ 1; . . . ;Q ð3Þ
and the disjunctive rule as

Yi ¼ 2 if and only if Xiq > dq for any q ¼ 1; . . . ;Q: ð4Þ
With both conjunctive and disjunctive rules, the decision

maker need only compare the object’s value on an at-

tribute to the cutoff criterion for that attribute (dq).
Noncompensatory decision making can be signifi-

cantly more efficient than full-information processing

(Payne, Bettman, & Johnson, 1993). In addition, it may

be used to reduce the number of objects to be evaluated

more carefully (Beach, 1993; Payne, 1976; Payne et al.,

1998). Processing efficiency is important to decision

makers because the number of objects and attributes

that can be considered is severely constrained by human
working memory capacity and computational ability

(e.g., Miller, 1956, Shugan, 1980).
The pervasive influence of noncompensatory cutoffs

The cutoff in conjunctive and disjunctive decision

strategies has traditionally been characterized as a single
attribute value; for example, a firm that is seeking to fill

a managerial position rejects all candidates with less

than 5 years of work experience, regardless of their ed-

ucation or other qualifications. It is assumed that the

cutoff has no effect on the evaluation of candidates with

more than 5 years of experience. In contrast, we allow

for the possibility that the cutoff may have a pervasive

influence, affecting the evaluation of objects that come
close to invoking the noncompensatory rule. For ex-

ample, candidates that nearly fail a conjunctive cutoff

(e.g., candidates with five and one-half years of experi-

ence) may be evaluated less favorably than candidates

that pass the cutoff by a comfortable margin. Similarly,

candidates that are nearly, but not quite, accepted ac-

cording to a disjunctive rule may be evaluated more

favorably, and thus be more likely chosen, than candi-
dates that do not come close to the disjunctive cutoff.

Sometimes a noncompensatory rule may be used to

reduce the number of objects to be evaluated in a linear

compensatory manner. In such cases, pervasive influ-
ence would imply that objects close to a conjunctive
(/disjunctive) cutoff would receive more unfavorable

(/favorable) evaluations than would result from linear

compensatory evaluation.

Other authors have proposed that decision makers

sometimes violate self-reported cutoffs (Green, Krieger,

& Bansal, 1988; Huber & Klein, 1991; Johnson, 1987;

Swait, 2001). Both Johnson and Swait describe models

that penalize, but do not eliminate, objects that fail to
meet a stated conjunctive cutoff. In fact, both of these

models are compensatory approximations to noncom-

pensatory behavior. Swait uses self-reported cutoffs that,

unless adhered to for every choice by every respondent,

merely serve to locate points of nonlinearity in an at-

tribute value function that is compensatory throughout

its range. Johnson handles stated cutoffs in a similar,

compensatory, manner.
On the other hand, the model proposed here relies

on observed choices and makes no use of self-reported

cutoffs. Thus any pervasive effects of cutoffs are genu-

ine and not an artifact of a self-report procedure.

Furthermore, the model treats noncompensatory cut-

offs as truly noncompensatory—objects that invoke a

conjunctive (/disjunctive) rule are still rejected (/ac-

cepted) with certainty, regardless of the other attributes
of these objects.
A new integrated model of decision strategies

Our objective is a model that (a) remains true to the

well-established belief that noncompensatory heuristics

are used by decision makers to simplify the decision
making task while (b) providing a more plausible ac-

count of behavior than closely competing models. We

accomplish this by adapting the additive model to in-

clude noncompensatory evaluation.

Noncompensatory additive models

It might appear that additive multiattribute utility
functions (cf. (2)) necessarily imply compensatory deci-

sion making, but this is not so. Consider the case of a

conjunctive rule, which implies that an object is rejected

if it fails to meet minimum cutoff(s) on any attribute(s)

regardless of its values on other attributes. This rule,

given by (3), can be represented exactly using the addi-

tive model of (2) by setting a equal to a very large po-

sitive constant (i.e., a � r, where r is the standard
deviation of the error term), letting

Viq ¼
0; Xiq P dq
�1; Xiq < dq

�
; q ¼ 1; . . . ;Q; ð5Þ

and using the binary decision rule

Yi ¼
2; Ui P 0;
1; Ui < 0:

�
ð6Þ



Fig. 1. Illustrations of crisp/pervasive conjunctive and/or linear value

functions.
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An object will be selected with certainty2 if it passes all the

criteria of (5); otherwise it will be rejected with certainty.

Similarly, the disjunctive rule results from using (2)
with a set to a very large negative constant (i.e., a � �r)
together with the binary decision rule given by (6) and

the attribute value function

Viq ¼
þ1; Xiq > dq
0; Xiq 6 dq

�
; q ¼ 1; . . . ;Q: ð7Þ

In this case, objects that exceed one or more disjunctive

criteria are selected with certainty, and the rest are re-

jected with certainty.2

Hybrid valuation

We have noted that conjunctive rules in particular

may be an effective means for reducing the number of

objects submitted to more careful (e.g., linear compen-

satory) evaluation (cf. Beach, 1993; Gensch, 1987;

Johnson, 1987; Levin & Jasper, 1995; Payne, 1976;

Payne et al., 1998; Pras & Summers, 1975; Roberts,

1988). By simply adding the term bqXiq to the conjunc-
tive value function of (5), the proposed model is able to

uncover evidence of linear compensatory processing of

objects that pass conjunctive criteria in this manner.

Objects that fail the conjunctive criteria are still rejected

with certainty but objects that are not eliminated receive

valuations on that attribute according to the linear

compensatory model. The same addition of the term

bqXiq to the disjunctive value function of (7) results in
linear compensatory valuation of objects that are not

accepted outright by the disjunctive rule. Since the order

of processing cannot be determined when only decision

outcomes are observed, the model can identify when

both conjunctive/disjunctive and compensatory rules are

used, but it cannot determine whether the rules are ap-

plied sequentially or simultaneously.

Illustrations of decision strategies represented by the

proposed model

Examples of conjunctive, linear, and conjunctive–

linear rules are illustrated in Fig. 1 along with two other

rules that represent a pervasive effect of a cutoff. The

choices of scale for both attribute value X and its val-

uation V are arbitrary. The linear compensatory rule is
illustrated by the line of points labeled ‘‘+.’’ The con-

junctive rule, referred to as ‘‘crisp conjunctive’’ in the

figure, is represented by the points labeled ‘‘s.’’ Ac-

cording to this rule, objects with X P 2 (in this example)

are valued at 0 on this attribute, whereas all other

objects are valued at minus infinity. The hybrid con-

junctive–linear compensatory rule, denoted ‘‘crisp con-
2 To machine precision.
junctive plus linear,’’ is simply the sum of the crisp

conjunctive and linear curves and is represented by the

thin solid line. In Fig. 2, the same symbols portray the

analogous rules for the disjunctive case.
Fig. 2. Illustrations of crisp/pervasive disjunctive and/or linear value

functions.
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The dashed line in Fig. 1 illustrates an implementation
of a pervasive conjunctive rule that retains its noncom-

pensatory characteristic. Objects that nearly fail the

conjunctive criterion are valued more negatively than

objects that easily satisfy it. The closer the object comes to

failing, the more negative the pervasive effect. The dashed

curve shown in Fig. 1 happens to be highly pervasive. An

estimated ‘‘pervasiveness’’ parameter determines the ex-

tent to which the pervasive conjunctive rule departs from
(i.e., ‘‘rounds’’) the crisp conjunctive rule.

The final rule illustrated in Fig. 1 is the pervasive

conjunctive-plus-linear rule, shown as a bold solid line.

Again, this rule is obtained by simply summing the per-

vasive-conjunctive and linear curves. The corresponding

rules for the disjunctive case are illustrated in Fig. 2.

Notice that, of the nine different curves shown in Figs. 1

and 2 (the linear rule is shown twice), only the linear
compensatory rule is compensatory for all values of X.

The general nonrectangular hyperbola

The value function discussed and tested in this paper

is sometimes referred to as the general nonrectangular

hyperbola (GNH) (Ross, 1990, p. 154), which involves

the estimation of up to three parameters for each nu-
meric variable included in the analysis. The GNH gen-

erated all of the curves displayed in Figs. 1 and 2.

The GNH for the conjunctive case may be expressed as

Viq ¼
�cq

Xiq�dq
þ bqXiq; Xiq P dq

�1; Xiq < dq

�
ð8Þ

and for the disjunctive case as

Viq ¼
�cq

Xiq�dq
þ bqXiq; Xiq 6 dq;

þ1; Xiq > dq:

�
ð9Þ

Fortunately, it is possible to combine the conjunctive

and disjunctive cases into a single rule. This saves re-

searchers the inconvenience of having to try all combi-

nations of formulae for all of the continuous variables

and also simplifies model comparison and testing. Ob-

taining a single rule is possible because both (8) and (9)

approach the linear case, even when bq ¼ 0, as dq ap-
proaches minus infinity for the conjunctive case and as

dq approaches plus infinity for the disjunctive case.

Therefore, we estimate for both rules a parameter

�16 qq 6 þ 1. Negative values of qq imply the con-

junctive case, positive values imply the disjunctive, and

the value qq ¼ 0 implies the linear case Viq ¼ bqXiq. The

GNH value function, which depends on qq, is given by

� 16 qq < 0 ) Viq given by ð8Þ with
dq ¼ 1= tanðqqp=2Þ þ Dmax;q

qq ¼ 0 ) Viq ¼ bqXiq ð10Þ
06 qq < þ1 ) Viq given by ð9Þ with
dq ¼ 1= tanðqqp=2Þ þ Dmin;q
Dmax;q is the maximum possible value for the conjunctive

cutoff, which is the minimum value of Xq among ac-

cepted observations. Similarly, Dmin;q is the minimum

possible value for the disjunctive cutoff, which is the

maximum value of Xq among rejected observations.

Thus both Dmax and Dmin are observed for all attributes.

Because the GNH value function can represent sev-

eral different strategies, the researcher need not know a

priori what decision strategy underlies the evaluation of
each attribute. However, the full generality of the three-

parameter functional form may not be appropriate for

every attribute. We specify in Table 1 special cases of the

general function that involve the estimation of fewer

parameters and represent each of the curves shown in

Figs. 1 and 2. Tests of statistical significance or a model

selection criterion may be used to determine the degree

of generality required for each attribute. The GNH

model explains object valuation (V �
i of (2)) as the sum of

an intercept (a, which may be zero) and the results of

applying the GNH value function, or special cases of it

(cf. (10) and Table 1), to each of the object’s attributes.

Modeling the observed dependent variable

The additive model’s ability to represent both com-
pensatory and noncompensatory rules exactly is due to

the distinction made between the latent evaluation of an

object (Ui) and an observed decision made pertaining to

that object (Yi). We defer until the Discussion consid-

eration of the case in which multiple objects are evalu-

ated for each decision. Here, a decision is observed for

each object. Two types of decisions are commonplace.

Binary evaluation/selection. The decision maker either
accepts (Yi ¼ 2) or rejects (Yi ¼ 1) each object in turn. The

relation between Yi and Ui for this case is given by (6).

Ordinal evaluation. Often decision makers are asked

to evaluate objects using a discrete and finite numeric

rating scale, such as assigning to each object an integer

between one and seven. The ‘‘decision’’ is choice of or-

dinal response that best reflects the evaluation. Such

data are best modeled as ordinal. Letting S denote the
number of points on the scale and using the coding

s 2 f1; . . . ; Sg for the ordinal responses, the model re-

lating decision to evaluation is given by

Yi ¼ s if and only if /s�1 6Ui < /s;

where /0 is fixed at minus infinity, /1 at zero, /S at plus

infinity, and the remaining values /2; . . . ;/S�1 (if any)

are estimated subject to the requirement

/s�1 < /s < /sþ1; s ¼ 2; . . . ; S � 1.

Modeling stochastic decision making

So far we have shown how an additive model can
exactly represent deterministic noncompensatory deci-

sion making. However, sample data are rarely deter-



Table 1

How the GNH value function represents each of nine decision rules

Rule Implementation Fixed parameters Estimated parameters

Crisp conjunctivea Eq. (8) with d ¼ Dmax c ¼ 0, b ¼ 0 q ¼ �1

Crisp conjunctivea plus linear Eq. (8) with d ¼ Dmax c ¼ 0 q ¼ �1, b > 0

Pervasive conjunctive Eq. (8) with d ¼ 1= tanðqp=2Þ þ Dmax b ¼ 0 �1 < q < 0, c > 0

Pervasive conjunctive plus linear Eq. (8) with d ¼ 1= tanðqp=2Þ þ Dmax �1 < q < 0, c > 0, b > 0

Linearb bX q ¼ 0, c ¼ 0 b > 0

Pervasive disjunctive plus linear Eq. (9) with d ¼ 1= tanðqp=2Þ þ Dmin 0 < q < þ1, c > 0, b > 0

Pervasive disjunctive Eq. (9) with d ¼ 1= tanðqp=2Þ þ Dmin b ¼ 0 0 < q < þ1, c > 0

Crisp disjunctivec plus linear Eq. (9) with d ¼ Dmin c ¼ 0 q ¼ þ1, b > 0

Crisp disjunctivec Eq. (9) with d ¼ Dmin c ¼ 0, b ¼ 0 q ¼ þ1

aCrisp rules result from setting c ¼ 0. For crisp conjunctive rules, with or without a linear term, the maximum likelihood estimator of q is )1,
which implies d ¼ Dmax in (8).

b The implementation V ¼ bX is obtained from (8) with d ¼ �1 and c ¼ 0 and also from (9) with d ¼ þ1 and c ¼ 0. Both correspond to a value

of q ¼ 0.
c Crisp rules result from setting c ¼ 0. For crisp disjunctive rules, with or without a linear term, the maximum likelihood estimator of q is +1,

which implies d ¼ Dmin in (9).
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ministic. By specifying a distribution for the error term

in (2), we can make probabilistic predictions for Y that

lie anywhere in the closed interval [0,1].3 Probabilistic

formulation of a model is essential to model estimation

and assessment. It allows us to determine those values

for the unknowns in a model that maximize agreement

between model and data (model estimation). It also

provides us with a measure of inconsistency between
model and data that permits model comparison and

hypothesis testing (model assessment).

While assuming normality for e leads to a conceptually
appealing probabilistic model of decision making, we can

employ a popular alternative that leads to simpler

formulae for probabilistic predictions. In the case of

binary or ordinal evaluation, the error term

is often assumed to have the logistic distribution. In
the ordinal case, the probability that Yi 6 s is equal

to 1=½1þ expðV �
i � /sÞ�, where V �

i is the deterministic

utility of the object (cf. (2)). Then the PrðYi ¼ sÞ ¼
PrðYi 6 sÞ � PrðYi 6 s� 1Þ. In the binary case this sim-

plifies to

PrðYi ¼ 2Þ ¼ 1=½1þ expð�V �
i Þ�: ð11Þ

Tests of the GNH model

In this section, we illustrate an application of the

GNH model and assess it using both actual and simu-
lated data. Both types of data support the superiority of

the GNH model relative to both the linear compensa-

tory model and two other additive models. ‘‘Superiori-

ty’’ is determined using both statistical and theoretical

criteria. For the simulated data sets we also compare
3 This is the random utility approach noted in the Introduction.

We consider generalizations of this approach in the Discussion.
each estimated model to the known decision strategy

used to generate the data.

Extant additive models

We compare our model with two nonlinear additive

models that we believe come closest to representing

hybrid compensatory–noncompensatory evaluation
processes and that are widely employed in other

contexts. These two models share with the GNH

model the following advantages: (a) they can be esti-

mated from decision outcomes without supplemental

data on the decision process, (b) decision makers may

apply either the same rule or different rules to the

different attributes, (c) they represent conjunctive,

linear compensatory, and disjunctive rules using a
single formula, (d) they include the linear compensa-

tory model as a special case, and (e) they avoid rep-

resenting noncompensatory heuristics as complex

manipulations of attribute means and variances or of

attribute interactions.

However, the GNH model improves upon the two

extant additive models in five respects. (a) It is de-

rived from behavioral decision theory. (b) It repre-
sents the noncompensatory conjunctive and

disjunctive decision rules [(3) and (4)] exactly, rather

than approximately, providing estimates of the cutoff

values they imply. (c) It allows for linear compensa-

tory evaluation in conjunction with noncompensatory

treatment of the same attribute as, for example, when

a conjunctive rule is used to screen out objects and a

compensatory model is applied to the resulting con-
sideration set. (d) It allows the researcher to impose

monotonicity of attribute evaluation on an attribute-

by-attribute basis. (e) It tests for the pervasive in-

fluence of cutoffs.
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Polynomials

The ability of nonlinear compensatory additive

models to mimic noncompensatory heuristics suggests

that polynomials might be used to represent nonlinear

evaluations of attributes. The polynomial value function

for an attribute can be represented as

Viq ¼
XMq

m¼1

bqmðXiqÞm; q ¼ 1; . . . ;Q; ð12Þ

where Mq is the number of polynomial terms used for

the qth attribute.

While polynomials are nonlinear in attributes, they

are linear in parameters, which means that estimation of

polynomials is available in many different data analysis

programs. The quadratic, corresponding toMq ¼ 2, may

be the most useful polynomial because it often suffices to
capture the most commonly observed nonlinearities.

However, it implies that evaluations must be non-

monotonic, although the nonmonotonicity may occur

outside the observed range of an attribute. Also, the

degree of curvature that can be represented by a qua-

dratic for monotonic attributes is limited, and mono-

tonicity cannot be guaranteed. The cubic is better able

to model differing degrees of curvature over the range of
the data, but increased flexibility and imprecision of the

estimates implies that nonmonotonicity is more likely to

be inferred simply by chance. The cubic is also more

sensitive to influential observations. That is, the shape of

the curve at any point Xq ¼ x0 is determined by all the

data, often primarily by data values far from x0. These
problems increase as more terms are used, with the re-

sult that polynomials of four or more terms are seldom
estimated.4

Smoothing splines

Another means for fitting nonlinear compensatory

models is the smoothing spline (Abe, 1999; Hastie &

Tibshirani, 1990). Ordinary (not smoothing) splines

(Schoenberg, 1946) are piecewise polynomial functions

that use regularity conditions to reduce the number of
parameters that must be estimated and increase the

smoothness of the estimated function. The most com-

mon choice of ordinary spline is the natural cubic spline,

which consists of cubic polynomials which must have

equal heights and slopes at the ‘‘knots’’ at which they

join. Splines are easy to estimate if the locations of the

knots, which are specified values of Xq, are prespecified.
4 While the variables created by (12) can and should be trans-

formed to orthogonality within attribute, correlation among attributes

can become considerable, and often the data are insufficient to allow

reliable estimation of four or more parameters per attribute (Ratkow-

sky, 1990). Furthermore, orthogonality is a least-squares property that

eliminates dependence among estimates only when the response is

amenable to analysis by ordinary regression.
However, the performance of the spline approximation
depends upon how well the knots are chosen.

Smoothing splines (Hastie & Tibshirani, 1990) solve

the problem of specifying the locations of knots for

ordinary splines by making every observed value of Xq a

knot. Such a large number of knots would allow an

ordinary spline to fit the observed data perfectly, but

would require the estimation of too many parameters

for each attribute. A smoothing spline is fit by maxi-
mizing fit to the data while minimizing the curve’s de-

parture from a straight line. Increased smoothness is

attained by increasing the penalty for curvature. Very

smooth splines fit the data less well but are penalized less

because they contain little curvature.

It is possible to obtain a good approximation of the

degrees of freedom used up by any smoothing spline

and, as implemented in S-Plus’s gam function (Insightful
Corp., 2001), the user may even specify how many de-

grees of freedom are to be used to estimate a smoothing

spline relationship between the response and any inde-

pendent variable. Thus, it is possible to use a model

selection criterion or hypothesis tests to determine the

degree of nonlinearity required to model the effect of

each attribute. In addition, smoothing splines have the

very desirable property that they are robust to influen-
tial observations—the shape of the curve at any point

Xq ¼ x0 is always determined primarily by values of Xq

close to x0.
While the smoothing spline is an excellent tool for

exploratory research, it must be regarded as a general

purpose curve fitting procedure subject to two particular

shortcomings as a tool for understanding evaluation and

decision making. First, because the model’s definition of
smoothness is based on a straight line, it will never ex-

trapolate curvature. For example, it regards a quadratic

curve as less smooth than a quadratic curve that changes

abruptly to a straight line. Second, it can provide a

predicted value Vq for any value Xq, but it cannot pro-

vide an algebraic characterization of the attribute value

function Vq ¼ fqðXqÞ.
The statistical assessments described below corrobo-

rate the superiority of the GNH model to both the

polynomial and the smoothing spline. Furthermore, the

value functions recovered by the GNH model are more

plausible and more consistent with behavioral theory.

A statistical measure of model performance

Our statistical measure of model performance is a
model selection criterion (MSC) of the form:

MSCðjÞ ¼ �2Lþ jP ; ð13Þ

where L is the maximized loglikelihood of the estimated

model, P is the number of parameters estimated, and j,
which must be positive, is the penalty incurred by a

model for each parameter estimated. Better models have
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lower MSC scores. Eq. (13) may be used to compare any
number of models estimated by maximum likelihood,

whether these models are nested or not.

Models that estimate more parameters tend to fit the

data better, resulting in a smaller value for �2L, but they
are also more heavily penalized because of the greater

number of parameters estimated. Suitable choices of the

value for j eliminate models that are too simple to fit the

data well along with unnecessarily general models that
overfit the data. The best model will provide an account

of the data that is both accurate and parsimonious.

Different model selection criteria use different values

for j. Theoretical considerations rule out values for j
that are too small or two large. HQ (Hannan & Quinn,

1979) sets j ¼ 2 lnðlnðNÞÞ, where lnðNÞ is the natural

logarithm of the sample size N . (The natural log is taken

twice.) This results in j ¼ 3:64 for the 481 observations
of our actual data set. BIC (Schwarz, 1978) uses

j ¼ lnðNÞ, which equals 6.18 for our actual data. Any

value of j between these two is equally defensible.

We chose to set j ¼ 3:84, which corresponds to esti-

mating a parameter as part of the model if and only if

the estimate’s level of statistical significance is less than

or equal to 0.05. We will denote this criterion as MSC:05.

There is value in using a criterion consistent with com-
mon statistical practice. Our choice of j imposes a

penalty intermediate to the HQ and BIC extremes.5 It is

closer to HQ than to BIC, which will eliminate param-

eters whose estimates have levels of statistical signifi-

cance as low as 0.013.

We do not use the so-called ‘‘hit rate,’’ which is a tally

of the number of decision outcomes correctly fitted by a

model. According to this criterion, a model is said to
correctly fit a binary decision if the fitted probability of

the observed decision is greater than one-half. This rule

is undesirable for several reasons. (a) Adding parameters

to a model can never be expected to lower the hit rate of

the model in sample. Therefore, models assessed using

hit rates must be estimated on only a portion of the data

and then their hit rates calculated for the remaining

portion. The result of this procedure depends upon how
the data happen to be divided. (b) Since the hit rate

scores all fitted probabilities in the interval (0.5, 1.0) as

‘‘correct,’’ it has little ability to distinguish among

models that differ widely in their accuracy.6 Most im-

portantly for our application, the hit rate does not dis-

tinguish a noncompensatory model predicting certain

rejection of unacceptable objects from a compensatory

model predicting these same objects have probabilities
of acceptance as high as one-half.
5 This will not be true for every dataset, since the values for HQ

and BIC both depend upon the sample size.
6 The inability of the hit rate measure to distinguish among

competing models was confirmed for our application to actual data,

described next.
The MSC criteria, given by (13), do not share in these
shortcomings. These penalized likelihood measures take

the fitted model probabilities into account along with

the number of parameters used to obtain these fits. All

available data are used both to estimate the model and

to assess its performance.

Application to actual decisions

We illustrate the application of our additive model to

actual MBA admission decisions. We have applied the

model to graduate admissions data using expert decision

makers because, as Phelps and Shanteau (1978) suggest,

expert decision makers are better able to integrate multi

attribute information. Thus, while the reliance on heu-

ristics is not restricted to laymen (Tversky & Kahneman,

1974), the expert decision maker may be better able to
trade off information in a compensatory manner and

thus provide a strong test of our model. These data have

the additional advantage that all decisions were made by

only two individuals working in concert, so false con-

clusions about decision strategies due to the aggregation

of data from heterogeneous individuals are unlikely.

The data consist of 481 records of applicants over a 2-

year period.Wemodeled the binary dependent variable—
whether each applicant was admitted—using the logit

model of (11). Five independent variables were included

in the analysis. Two of these were binary: year of appli-

cation (YEAR) and a variable indicating whether the

applicant received his or her undergraduate degree in the

US or Canada rather than in some other country (US-

CAN). The remaining three independent variables are

intervally scaled and numerous different values occur in
the data for each. These variables were the applicant’s

undergraduate grade point average, converted to the 1–9

grading scale employed by this university (GPA), score on

the Graduate Management Achievement Test (GMAT),

and years of full-time work experience in management

and/or engineering (WORKME).

The two binary variables were included additively in

the model without transformation. GMAT, GPA, and
WORKME were standardized but were otherwise left

untransformed. Based on our experience with admis-

sions, we expected that departures from the linear

model, if any, would be in the form of diminishing re-

turns—that is, low scores on GPA, GMAT or

WORKME would hurt an applicant more than high

scores would help but, ceteris paribus, higher scores al-

ways remain preferable to lower ones. We also expected
to see evidence of conjunctive or conjunctive-plus-linear

behavior for some or all of these attributes.

Model estimates and statistical assessment

All three models plus the linear compensatory model

were estimated using S-Plus (Insightful Corp., 2001).

The polynomial and smoothing spline models are both



Table 2

Estimates of all additive models, actual MBA admit/reject decisions

Attribute GNHa Polynomial (cubic)b Smoothing splinea Lineara

Fullc Finald Fullc Finald Fullc Finald Fullc Finald

Constant )1.87 +6.85 )2.31 )1.93 )1.12 )1.10 )1.13 )1.12

YEARe )0.30 )0.33 )0.32 )0.27

USCANe +0.78 +0.75 +0.69 +0.70 +0.71 +0.67 +0.70 +0.67

GMAT b ¼ þ1:79 +2.88 b1 ¼ þ4:92 +3.90 b ¼ þ3:12 b ¼ þ3:04 +3.18 +3.13

c ¼ þ2:17 b2 ¼ �2:04 )1.15 ()2 df f ) ()1 df f )

q ¼ �0:62 )1.00 b3 ¼ þ0:87

GPA b ¼ þ0:00 b1 ¼ þ1:96 +1.95 b ¼ þ1:72 b ¼ þ1:64 +1.66 +1.61

c ¼ þ2:04 34.45 b2 ¼ �0:70 )0.73 ()2 df f ) ()1 df d)

q ¼ �0:24 )0.23 b3 ¼ �0:12

WORKME b ¼ þ0:00 +1.25 b1 ¼ þ0:87 +0.77 b ¼ þ1:07 b ¼ þ0:93 +0.88 +0.84

c ¼ þ1:22 b2 ¼ �0:57 )0.70 ()2 df f ) ()1 df f )

q ¼ �0:55 b3 ¼ þ0:19

MSC:05
g 304.8 292.5 299.4 292.9 301.3 295.8 305.8 305.2

aGMAT, GPA, and WORKME were standardized.
b For GMAT, GPA and WORKME, the quadratic and cubic variables were created from orthogonal polynomials that were standardized.
c The most general form of the model estimated.
d The final form, containing only statistically significant parameters (p < :05).
eYEAR and USCAN were coded using dummy variables.
f Smoothing splines represent curvature nonparametrically. However the number of degrees of freedom lost can be calculated for any degree of

curvature.
gModel Selection Criterion—a measure of model performance, with lower values indicating superior models. Models with too many or too few

parameters will score poorly.
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implemented in S-Plus’s gam function, the linear com-

pensatory model was estimated using S-Plus’s glm

function, and the GNH model was programmed in the

S-Plus language.7

The first numerical column of Table 2 shows the es-

timates of the most general (‘‘full’’) GNH model, with

12 estimated parameters. The column to its right shows

the estimates of the ‘‘final’’ GNH model that resulted
from a forward/backward stepwise modeling procedure,

described below. The remaining columns in the table

show the results for the full and final models for the

polynomial, smoothing spline and linear regression

models, respectively. The last row of Table 2 shows the

model selection criterion MSC:05 for all models.

The full versions of the GNH, cubic polynomial and

smoothing spline models all estimated the same number
of parameters. All three of these models are superior to

the linear compensatory model. The full GNH model

has estimates of q between )1 and 0 for all three attri-

butes, implying a pervasive conjunctive plus linear rule

for each. The MSC:05 scores for the full polynomial and

smoothing spline models are better than for the full

GNH model, but both imply substantial nonmonotonic
7 Both gam and glm are also available in R, a public domain

statistical language. See http://cran.R-project.org/. gam is to be found

in the mgcv package distributed with R.
value functions for at least one attribute. Furthermore,

all four full models contain numerous statistically non-

significant parameters, indicating that the full generality

of these models are overly complex characterizations of

the decision process.

Given sufficient theoretical guidance and sufficient

data, the initial model should be the only model esti-

mated. However, these conditions are often not satisfied,
as is the case here. Therefore, we implemented the same

automated stepwise model selection procedure for each

model to eliminate from each model parameters that are

not warranted by the data. Improvement upon a full

model was sought by comparing its MSC:05 score to that

of minor variations in the model. Of these models, the

one with the best MSC:05 score is then compared to its

minor variants. The process is repeated until it results in
no further improvement. For all models, the minor

variants considered included all models that altered the

treatment of any single one of the attributes. All treat-

ments of any variable that entail estimation of one

fewer, one more, or the same number of parameters

were considered at each step.

We see from Table 2 that the stepwise procedure

improved upon the full model in every case. All pa-
rameter estimates in every final model have levels of

statistical significance less than 0.05. Every final model

retains all variables except YEAR. The best model by

http://cran.R-project.org/
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the MSC:05 criterion is the final GNH model. It treats
GPA and GMAT nonlinearly, estimating two parame-

ters for each of them, but treats WORKME linearly. It

is the best model of all shown in Table 2 according to the

HQ and BIC criteria as well.

A model that performs nearly as well as the GNH

according to MSC:05 is the final polynomial model,

which fits all three intervally scaled variables using

quadratics. The final smoothing spline model performs
less well, estimating the equivalent of one nonlinear

parameter for each of the intervally scaled variables.

The linear compensatory model performs worst of all.

Theoretical assessment: Examining the estimated value

functions

While overall measures of model performance are of

value, it is important to examine critically the decision
rules implied by each model. We examine how the four

final models of Table 2 treat each of the three numeric

variables.

GMAT. The top portion of Fig. 3 shows the esti-

mated relationship between the variable GMAT and its

valuation (V) as estimated by the linear, quadratic,

smoothing spline, and GNH final models. To facilitate

comparisons, we adjusted the intercepts so that all four
functional forms assign a utility of zero to the median

GMAT score of 560.

The bold solid line in Fig. 3 is the fit of the crisp-

conjunctive-plus-linear GNH value function. It implies

that no applicant with a GMAT below 500 would be

admitted to the program, and in fact none of the 90

applicants with GMATs below 500 (19% of the sample)

were admitted. A minimum GMAT of 500 is plausible
for this school, providing a degree of face validity. The

mean GMAT for those admitted was 615. The bottom

portion of the figure shows the frequency distribution

for the observed GMAT scores for all applicants.

The quadratic curve illustrates the difficulty the

polynomial value function has in capturing nonlinearity

without introducing nonmonotonicity. The quadratic

cannot quite match the decline of the GNH value
function for low GMAT scores without increasing the

decline in utility for GMAT scores above 715.

The nonmonotonicity of the quadratic curve in Fig. 3

is more marked than it appears. Since in a logit model

each decline in valuation of 0.7 implies a halving of an

applicant’s odds of acceptance, the quadratic implies

that an applicant with a GMAT score of 715 would be

two and one-half times more likely to be admitted as one
with a perfect GMAT score of 800, even when holding

all other variables constant. Nonmonotonicity is not

plausible for this attribute.

Finally, the smoothing spline fit indicates that some

nonlinearity in the effect of GMAT is statistically justi-

fied. It shows a diminished effect of GMAT for high

scores. Notice that the estimated curvature is all in the
region of GMAT scores with high frequency in the data.

Smoothing splines have a bias towards assuming line-

arity in regions with few data points (Hastie & Tibsh-

irani, 1990).

GPA. We see from Fig. 4 that the differences among

models for the GMAT also hold for GPA, except that the
GNH model fits a pervasive conjunctive form for GPA

rather than crisp conjunctive plus linear. While the esti-

mated cutoff value lies well within the range of possible

GPA values, it lies below all observed GPA values, so no

applicants were rejected outright on this attribute alone.

The final polynomial model fits a quadratic to this

variable as well, and again implies a nonmonotonic re-

lationship between the attractiveness of applicants and
their GPAs over the range of the data. It can approxi-

mate the negative curvature for low values of GPA only

by inducing nonmonotonicity for high values. The

agreement between the GNH and smoothing spline

models for high values of GPA is remarkably close.

However, the smoothing spline model again returns to

linearity for low values of GPA, where there are fewer



Fig. 5. Estimated value functions for work experience, actual data.
Fig. 4. Estimated value functions for GPA, actual data.
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data points, whereas the GNH value function assumes

that the diminishing effect of higher GPA holds over the

entire range of the data.

WORKME. Some further insights into the models

result from considering how they handle the WORKME

variable (Fig. 5). Both the polynomial and smoothing

spline models find a nonmonotonic relationship between
work experience and acceptability of an applicant, even

after controlling for the effect of all other applicant

characteristics. The nonmonotonicity implied by the

polynomial model is extreme—it implies that all appli-

cants with eight or more years of work experience will be

deemed less desirable than one with seven. It seems more

likely that the polynomial model is again revealing its

inability to model nonlinearity over one region of the
data without inducing nonmonotonicity in other re-

gions. The smoothing spline also implies nonmonoto-

nicity, but to a much smaller extent.

Interestingly, the GNH model finds no statistically

significant indication of nonlinearity in the treatment of

WORKME. The detection of nonlinearity (and non-

monotonicity) for WORKME by the other two models
is likely due to WORKME’s relation to GMAT. Of the

11 applicants with more than 7 years of work experi-

ence, 45% (5 out of 11) had GMAT scores less than the

estimated cutoff of 500, compared with only 18% of the

other applicants, a difference that is marginally signifi-

cant (p ¼ :056). Since only the GNH model assigns zero

probabilities of acceptance to all applicants with
GMATs below 500, the other models may instead infer

nonmonotonicity for WORKME because of its associ-

ation with very low GMAT scores.

Overall assessment

The final GNH model provides the best character-

ization of the data according to a model selection cri-

terion. Furthermore, it agrees better with our prior
knowledge of the decision making process. Compari-

sons of models on real decisions are hampered by the

inherent unknowability of the ‘‘true’’ decision rule

employed, but the GNH result is more plausible than

those of the alternative models. Examination of the

estimated value functions of all final models reveals
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ulated data sets.
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that the smoothing spline and polynomial models im-
ply nonmonotonic valuation on one and two attributes,

respectively, that are believed to be monotonically re-

lated to an applicant’s merit. The GNH model esti-

mated conjunctive cutoffs for two attributes. Its

estimate of 500 as a minimally acceptable GMAT score

is particularly plausible and is consistent with decision

maker self-reports.

Application to simulated decisions

The analysis of actual admission decisions showed

that the GNH model produces results that characterize

the data well and are plausible in terms of theory, but it

cannot establish the model’s ability to capture the true,

unknowable, decision strategy. To test further the

GNH model’s ability to capture specific decision
strategies, we simulated ten different data sets that

contained binary decisions resulting from different de-

cision strategies applied to three attributes. We then

compared the abilities of the GNH, polynomial and

smoothing spline models to identify the strategies used.

This procedure enables us to go beyond speculation

about actual decision rules because the actual decision

rules are known.

Simulation design

The simulated data were generated by the second

author and presented to the first author for analysis.

Values for the three attributes were generated for 1000

decisions using independent standard normal distribu-

tions. In addition, binary decisions were generated us-

ing ten different rules that involved some or all of the
three attributes. The rules were implemented by a

computer program (written in BASIC) in accordance

with descriptions of the compensatory, conjunctive,

disjunctive, and hybrid decision strategies in the J/DM

literature (e.g., Billings & Marcus, 1983; Dawes, 1964)

rather than in the manner assumed by any one of the

GNH, polynomial or smoothing spline value functions.

One dataset used the linear compensatory value func-
tion for all attributes, eight datasets treated some at-

tributes in a noncompensatory manner (four as

pervasive and four as crisp), and one included a non-

monotonic attribute.

Each of the simulated datasets was analyzed using the

same model selection procedure and criterion as were

used with the graduate admissions data. Even though

this model fitting and selection process is completely
automatic, the data analyst was nonetheless kept igno-

rant, at the time of analysis, of the strategies that were

used to generate the data.

Statistical assessment

Fig. 6 portrays the performance of these models.

Since the GNH performed best in all cases but one,
Fig. 6 plots the difference between the MSC:05 for the

polynomial/smoothing spline models and the GNH

model. Since lower MSC:05 scores are better, most of

these differences are positive. These differences are sor-

ted from largest to smallest to improve readability.

The GNH model performed better than the other two

models for eight of the 10 data sets. The three models

performed identically for simulation 8 because the true
model was linear in all three attributes and all three

models correctly identified this model. The GNH per-

formed worse only for simulation 7.

The true model for simulation 7 was quadratic in the

third attribute and nonmonotonic over the range of the

data. This explains why the polynomial model per-

formed best with these data—the true model is polyno-

mial and the stepwise modeling procedure applied to the
polynomial case correctly identified the true model. This

also explains why the best smoothing spline model

performed better than the GNH—it can and did identify

the nonmonotonic effect of the third attribute. This ex-

ample is useful because it shows that the GNH model

does not automatically perform better when the data

depart from the model’s behavioral foundations. While

extant theory and empirical evidence suggest that
monotonic evaluation of attributes predominates in field

settings, researchers are free to adopt a nonmonotonic

value function such as the polynomial for some attri-

butes, when deemed appropriate, and the GNH for

others. Therefore, remaining discussion focuses on the

other nine simulations, which preserve monotonicity for

all attributes, and considers the adequacy of polynomi-

als and smoothing splines relative to the GNH in these
settings.
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Theoretical assessment: Model differences in attribute

characterizations

Each model must determine, for each simulation, how

each of the three attributes affects the response; specifi-

cally, all three models can represent an attribute effect as

either absent, linear or nonlinear. Given nine simulations

and three attributes, each model must therefore make 27

such determinations. The GNH model made only one

incorrect categorization out of 27, whereas the polyno-
mial and smoothing spline models each made three.

The nine simulations included 18 noncompensatory

attribute effects, nine crisp and nine pervasive. The

GNH model correctly classified 15 of these as crisp or

pervasive, making three errors. The smoothing spline

and polynomial models cannot identify crisp noncom-

pensatory rules but can only approximate them using

nonlinear compensatory functions; thus, they each nec-
essarily made nine errors.

Finally, all attribute effects in the nine simulations

were monotonic. While the GNH value function im-

poses monotonicity for the effect of an attribute, the

smoothing spline and polynomial models cannot. Each

of these two models inferred nonlinearity in 20 in-

stances. The smoothing spline model incorrectly inferred

nonmonotonicity over the range of the data in 60% of
these cases, and the polynomial model in 80%.

The frequent failure of the smoothing spline model to

estimate monotonicity over the range of the data is

surprising. It should tend to preserve monotonicity be-

cause it penalizes curvature, and nonmonotonic models

are more curved. The frequent findings of nonmonoto-

nicity in this case may be a result of the numerical

procedure used in estimation.8 The polynomial model’s
inherent difficulty in fitting nonlinearity without violat-

ing monotonicity was expected, but the simulation

demonstrates the extreme seriousness of this limitation.
Discussion

In this section, we describe potential uses of the GNH
model in its present form, show how it might be imple-

mentedwhen studying sequential ormultiple choice tasks,

and then consider promising extensions of the model.

Investigating substantive issues

By enabling J/DM researchers to identify decision

strategies from outcome data, the GNHmodel eliminates
the need to study decision makers in a laboratory rather

than in the midst of the distractions and incentives of the

real world. The ability to study the prevalence of various
8 The gam function in S-Plus uses an iterative ‘‘local scoring’’

estimation procedure for smoothing splines that compromises preci-

sion in order to reduce estimation time (Hastie & Tibshirani, 1990).
decision strategies under naturalistic conditions would
constitute an important extension of the literature on

strategy selection (e.g., Broeder, 2003; Payne et al., 1993).

The GNH model has been investigated in detail here

only for independent binary decision making. Even

within this context, the model may be used to answer

interesting substantive questions.

How prevalent are each of the nine rules listed in Table

1? How does choice of rule vary with the characteristics of

the task and of the decision maker? The GNH model can

contribute to the substantial literature regarding this

question by enabling researchers to examine actual

choices made outside the laboratory.

Do decision makers tend to use the same rule on all at-

tributes, or does rule usage vary systematically with attri-

bute characteristics? We have seen that some JD/M

researchers regard decision strategies as being object-
specific but not attribute-specific. For example, decision

makers using a conjunctive strategy are assumed to em-

ploy the conjunctive rule for all attributes. The GNH

model may be used to test this assumption, since it allows

decision makers to process different attributes differently.

Alternatively, rule usage may vary by attribute in un-

predictable ways. For example, decision makers may use

cognitively more demanding rules for themore important
attributes (i.e., those attributes that explain most of the

variability in their decisions). We would expect that the

complexity of the rules of Table 1 adhere to the partial

ordering: {crisp conjunctive/disjunctive}< {linear, per-

vasive conjunctive/disjunctive, and crisp conjunctive/dis-

junctive plus linear}< {pervasive conjunctive/disjunctive

plus linear}, but empirical investigation is required.

Modeling sequential decision making

In sequential decision making, the decision maker

examines objects one at a time until an acceptable object

is found and selected. The researcher observes the at-

tributes of all Nt objects that were examined, and that

the Ntth one was chosen. Then we know that

Uti ¼ aþ
XQ
q¼1

Vtiq þ eti ð14Þ

is negative for i ¼ 1; . . . ;Nt � 1 and positive for i ¼ Nt.

Note that the intercept a is included for all examined

objects. Reliable estimation of any multi attribute choice

model, including the GNH, would require multiple (i.e.,

t ¼ 1; . . . ; T ) decisions of this nature.

Modeling multiple choice tasks

Sometimes a decision maker must choose one alter-

native from a set of N .9 In such cases, we observe a
9 N may vary from one multiple choice set to the next, i.e. we may

replace N with Nt, provided that it is exogenously determined.
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11 A variance parameter must be fixed, without loss of generality,

in order to identify probit models.
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single choice from each of T choice sets, t ¼ 1; . . . ; T .
The utility of alternative i in choice set t may be

denoted Uti, and Yt ¼ i if and only if Uti ¼ max

fUt1; . . . ;UtNg. The random utility model of (1) is

readily adapted to this case. Utility is now represented

as Uti ¼ V �
ti þ eti, where V �

ti represents the deterministic

utility of alternative i in choice set t. We briefly discuss

two different types of multiple choice tasks: forced

choice of an object, where all N alternatives in the
choice set are objects, and optional choice of an object,

where one of the alternatives is ‘‘choose none’’, which

allows no choice of any of the N � 1 objects in the

choice set.

Forced choice of an object

If all of the alternatives are objects, then decision

makers are forced to always choose an object from each
set. Deterministic utility for all alternatives is given by

V �
ti ¼

XQ
q¼1

Vtiq; i ¼ 1; . . . ;N ; ð15Þ

where Vtiq � fqðXtiqÞ represents the possibly nonlinear

value function for attribute q of object i in choice set t.
Notice that the intercept a found in (1) is missing from

(15). This is necessarily so because choice from a set of

objects provides information only about the relative
utility of the objects. Notice also that the value function

fqðXtiqÞ may differ across attributes but it remains the

same for all objects and choice sets. The result of the

function will change as Xtiq changes, but only one

function must be estimated for each attribute. When

there are only two objects in the choice set, then the

probability of the second being chosen simplifies to

Yt ¼ 2 if and only if

Ut ¼ ðV �
t2 � V �

t1Þ þ ðet2 � et1Þ � V �
t þ et > 0: ð16Þ

Optional choice of an object

We can avoid forced choice of an object by making

the first alternative ‘‘choose none.’’ Decision makers still

make a forced choice from the set of N alternatives but

may avoid choice of an unacceptable object by choosing

alternative 1. Therefore this case may still be represented

as Yt ¼ i if and only if Uti ¼ maxfUt1; . . . ;UtNg. Yt will
equal one whenever the utilities of all N � 1 objects in
the choice set are lower than the minimum acceptable

utility.

The deterministic utility of ‘‘choose none’’ does

not arise from evaluation of the attributes of this

alternative—it has none—but is simply an unknown

constant. This unknown constant may be denoted �a
or, equivalently, the deterministic utility of the first

alternative may be fixed at zero and an intercept a
may be included in the deterministic utilities of all

N � 1 objects in the choice set. This latter approach

results in
Ut1 ¼ 0þ et1;

Uti ¼ aþ
XQ
q¼1

Vtiq þ eti; i ¼ 2; . . . ;N :
ð17Þ

When N ¼ 2 we have unforced choice of a single object

and (17) simplifies further to give

Yt ¼ 2 if and only if Ut ¼ ðV �
t2 � V �

t1Þ þ ðet2 � et1Þ

� V �
t þ et � aþ

XQ
q¼1

Vtq > 0: ð18Þ

Since there is only one real object in each choice set, the

distinction between object and choice set disappears,

and Vt2q � Vtq.

Error term distributions

Random utility models are not consistent with all

possible observed outcomes. While the constraints im-

posed on choice probabilities inherent to random utility

models—nonnegativity of the Block–Marschak func-

tions (Block & Marschak, 1960; Falmagne, 1978)—are

relatively weak, particularly for binary choices (Iverson

& Luce, 1998), they are still violated in some situations,

and the choice of distribution for the random error
terms leads to additional restrictions.

The popular (multinomial) logit model is the most re-

strictive in common use, implying independence from ir-

relevant alternatives and strong stochastic transitivity.

Numerous theoretical and empirical studies have shown

that these properties do not hold in some settings (cf.

Busemeyer & Diederich, 2002; Busemeyer & Townsend,

1993). More complex treatments of the error terms in the
multinomial case are possible and, in many settings, de-

sirable.

We note two common choices of distributions for the

error terms when modeling multiple choice. The simplest

is to assume that the errors et1; . . . ; etN are independently

and identically distributed according to the double-ex-

ponential distribution.10 This results in the (conditional)

multinomial logit model, with

PrðYt ¼ iÞ ¼ expðV �
ti Þ

XN
i0¼1

expðV �
ti0 Þ

,
: ð19Þ

When N ¼ 2, the error term et in (16) and (18) has the
logistic distribution. When N ¼ 2 and choice of object is

optional, then the probability of choice is given by (11).

The multinomial logit model assumes that the ran-

dom error terms for the different objects in the choice set

are independently and identically distributed. A natural

alternative is the multinomial probit, which allows the

error terms to have a general multivariate normal dis-

tribution that is estimated from the data.11 It implies the
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less stringent properties of moderate stochastic transi-
tivity and regularity (Fishburn, 1998; Busemeyer &

Diederich, 2002; Halff, 1976).

When N ¼ 2, the multinomial probit model reduces

to the simple probit model, which is empirically indis-

tinguishable from the logit model except in exteremely

large samples (Chambers & Cox, 1967). However, re-

peated choices from more than two alternatives often

reveal the inflexibility of the multinomial logit model, in
which case a multinomial probit specification for the

GNH model would be worthwhile.

Noncompensatory rules and multiple choice tasks

Justification for noncompensatory rules such as the

conjunctive has generally been offered in two predomi-

nant settings: in sequential decision making where the
first acceptable object is chosen, and in two-stage deci-

sion making in which a noncompensatory rule is used to

reduce the set of objects to be considered more carefully.

In multiple choice settings, however, one and only one

alternative can be selected, and it is worth considering

what sorts of rules ought to apply in such settings.

Clearly, straightforward application of deterministic

conjunctive or disjunctive rules will not automatically
yield exactly one selected alternative from every imag-

inable choice set, and strict application of noncompen-

satory rules may be seen less often in such settings. We

offer here some conjectures about the kinds of rules that

might be expected, and indicate how they would be

represented by the GNH model. We consider both op-

tional and forced choice of an object in a multiple choice

task.

Optional choice of an object using a rule with conjunctive

characteristics

In this task, the decision maker may choose either

zero or one object from a choice set. Here we consider

the GNH model with conjunctive characteristics, i.e.,

the value functions generated by (10) with �16 q6 0

illustrated in Fig. 1. Conjunctive elimination of all ob-
jects is a viable result for this task, but selection of more

than one object must be avoided.

How might a decision maker choose among two or

more objects that meet a noncompensatory criterion?

Three possibilities are represented by the GNH value

function exactly: (a) the remaining objects are evaluated

in a linear compensatory manner (resulting in the con-

junctive-plus-linear rule); (b) the object that most deci-
sively meets the conjunctive criterion is chosen

(pervasive conjunctive rule); and (c) choice among the

remaining alternatives is random (conjunctive plus

random error rule). In fact, the GNH model handles any

combination of these three possibilities exactly. A fourth

possibility is that choice is made in a sequential manner

but the researcher does not know which objects were
examined and rejected and which were simply never
examined. In this case, which of the numerous accept-

able objects happened to be examined first and hence

chosen is, from the researcher’s perspective, random and

can be modeled as such (as in (c)).

Forced choice of an object using a rule with conjunctive

characteristics

Here choice of an object from the set is required. The
GNH model can represent conjunctive evaluation in

forced choice of an object as pervasive conjunctive or

pervasive conjunctive plus linear. Either of these models

may be deterministic or may contain random error.

Using a rule with disjunctive characteristics

This case applies to the GNH model with disjunctive

characteristics, i.e., the value functions generated by (10)
with 06 q6 þ 1 illustrated in Fig. 2. Regardless of

whether choice of an object is optional or forced, both

the pervasive disjunctive and pervasive disjunctive-plus-

linear value functions can account for observed choices

matching the task requirements, either with or without

random error.

Bayesian estimation

Estimating all parameters of flexible value functions

(such as the three-parameter GNH) for all attributes by

maximum likelihood can be expected to result in some

uncertain estimates. (This problem arose with all full

models estimated on the actual data set.) Two tech-

niques are available to deal with this problem.

1. Selected parameters may be fixed at known values (as
shown in the third column of Table 1). We have illus-

trated the use of a model selection criterion to iden-

tify statistically insignificant parameters that may be

fixed at known values without appreciable loss of

model fit.

2. Equality constraints may be imposed on functions of

subsets of the parameters. The identity constraint is

most often used. For example, we might force the es-
timated value of qq of (10) to be equal across all Q at-

tributes. Note that the first technique is a special case

of this one.

Bayesian estimation (Denison, Holmes, Mallick, &

Smith, 2002) allows use of an additional tool for stabi-

lizing the estimates of models containing many param-

eters—distributions may be estimated for any subsets of

parameters. For example, we might assume that the
values of q1; . . . ; qQ for the Q different attributes are

drawn from a some common distribution, and estimate

the parameters of this distribution. Typically, the esti-

mated distributions of parameters will be unimodal,

which implies that the parameters themselves (in this

example, q1; . . . ; qQ) are neither completely unrelated

nor exactly equal. Alternatively, predicted values for the
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parameters might be an estimated function of observed
characteristics of the attributes, in which case the esti-

mated common distribution would apply to random

departures of the parameters from their predicted val-

ues.

Bayesian estimation does have drawbacks which

should be acknowledged. It requires specialized software

and in-depth knowledge of statistics. Estimation is typ-

ically slow, which hampers model selection, and classical
hypothesis tests are unavailable.

Modeling unexplained heterogeneity in decision making

In many settings, we wish to understand decisions by

numerous decision makers who are not necessarily act-

ing in concert. In other settings, the same decision

makers may use somewhat different rules over time. In
either case, it is straightforward to allow parameters to

be estimated functions of observed characteristics of

decision makers and/or of the decision context. Allow-

ing GNH model parameters to also vary randomly

across decision makers or decision contexts (reflecting

the influence of unobserved decision maker character-

istics) is practicable, especially with Bayesian estimation

(Denison et al., 2002). The result may be viewed as an
extension of the wandering vector model (Carroll, 1980,

Carroll & De Soete, 1991).

Incorporation into decision field theory

In the Introduction, we briefly mentioned use of con-

nectionist models by J/DM researchers. Developers of

decision field theory (Busemeyer & Diederich, 2002;
Busemeyer &Townsend, 1993;Roe et al., 2001) have used

specialized connectionist models for the decision making

process that reflect a growing understanding of the op-

eration of the human mind. In particular, this literature

includes implementation of dynamic stochastic models of

evaluation and choice. For each choice occasion, the as-

sessment of the alternatives varies randomly about ex-

pected values that depend upon object attributes,
immediately previous assessments andalso, possibly, time

trends. These models may be estimated from information

on choices and optionally on decision times (Diederich &

Busemeyer, 2003). They have been shown to explain in

plausible terms previously unexplained violations of

common assumptions of choice models such as strong

stochastic transitivity and regularity.

To date, applications of decision field theory have
used the linear compensatory model to combine object

attributes into object assessments, and the probabilistic

formulation used by these models has precluded any

object from being rejected or accepted with certainty as

the result of application of a noncompensatory rule.

Incorporation of the GNH model could relax these as-

sumptions while retaining the virtues of the decision
field theory. The resultant model, while very general,
need not always be estimated in its most general form.

Comparison to Gilbride and Allenby (in press)

A forthcoming paper (Gilbride & Allenby, in press)

estimates models of hybrid noncompensatory-compen-

satory decision making from experimental multiple

choice data. Gilbride and Allenby compare the linear
compensatory model and four hybrid models. Only one

of their hybrid models can represent decisions as re-

sulting from object valuation using a single additive

multi attribute utility function (cf. (2)). This model—

equivalent to a special case of the GNH model in which

a crisp-conjunctive plus linear value function is applied

to all attributes—performed best of all.

Gilbride andAllenby assume that a decisionmakerwill
use the same decision strategy (e.g., crisp-conjunctive plus

linear) for all attributes, and they do not allow for a per-

vasive effect of cutoffs. However, since they use Bayesian

simulation to estimate their model, they can and do allow

the conjunctive cutoffs and linear coefficients to vary from

one decision maker to the next. As noted in the Bayesian

estimation section, this important advantage of Bayesian

estimation extends to the GNH model.
Conclusion

We have proposed and tested a new model of decision

making that enables us to identify compensatory, con-

junctive, disjunctive, and hybrid decision strategies from

naturally occurring outcome data, thus eliminating the
need for self-reports or process data (including multiple

observations of intermediate steps in the decision process

a la Levin and Jasper, 1995). This is a significant advan-

tage for researchers who do not have access to process or

self-report data, and for those who are concerned about

the accuracy of such data. Furthermore, thismodel allows

for decision strategies to differ across attributes, in con-

trast to most previously published approaches.
Our empirical tests compared the new model to two

extant additive models applicable to decision making—

polynomials and smoothing splines—that share some of

these advantages; i.e., they may be estimated solely from

object descriptions and decision/evaluation outcomes

and they allow for different decision rules for different

attributes. Furthermore, none of these models assumes

that decision makers evaluate more than one attribute at
a time, making them more consistent with theory than

nonadditive noncompensatory models (e.g., Brannick &

Brannick, 1989; Ganzach & Czaczkes, 1995).

However, these two extant additive models can only

approximate noncompensatory rules using nonlinear

compensatory functions (i.e., they cannot identify

noncompensatory cutoffs), and they cannot ensure that
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attribute value functions are monotonic. The general
nonrectangular hyperbola (GNH) value function used

here embodies noncompensatory and compensatory

rules as special cases and, unlike the other two models, it

can detect the sharp discontinuities of attribute evalua-

tion implied by noncompensatory models while ensuring

monotonicity in the evaluation of attributes. Further-

more, the GNH model allows noncompensatory cutoffs

to have a pervasive effect.
These three additive models are compared on their

fits to and characterizations of one actual and 10 sim-

ulated data sets. All models outperformed the linear

model, even after taking into account the extra param-

eters that must be estimated. The GNH model is better

suited to the data than the polynomial or smoothing

spline models, which appeared to underfit nonlinearity

in attribute evaluation where it arose and frequently
inferred nonmonotonicity when it was absent. Further-

more, the GNH model is more consistent with J/DM

theory and provides a more plausible account of be-

havior compared to the other models.

In addition, we find some empirical support for a

pervasive effect of noncompensatory cutoffs on decision

making. This finding is consistent with introspective

reports and some empirical evidence based on self-re-
ported cutoffs, but to our knowledge it is the first

demonstration of pervasive cutoffs that is based on ob-

served choices and is not potentially confounded by

asking decision makers about their cutoffs before they

make their decisions.

We investigate, and demonstrate the usefulness of,

the GNH model using a simple random utility specifi-

cation. Because the GNH value function subsumes lin-
ear compensatory and two noncompensatory rules, it

might be usefully introduced into other types of models

that presently make more restrictive assumptions about

how object attributes are evaluated to produce object

assessments but less restrictive assumptions about how

object assessments affect decisions.
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