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Abstract

There are a countable number of experimental systems where a macroscopic quantum

order is established, such as lasers, superfluids, superconductors and Bose-Einstein

condensates of atomic vapors. Each of these systems has deepened our fundamental

understanding of many-body physics, and has led to novel research tools as well as

applications. A newcomer to the family is the unique half-light half-matter quasi-

particles in solids – the semiconductor microcavity polaritons. In this thesis, we use

microcavities with multiple GaAs-quantum wells and search for a macroscopic phase

of the polaritons at a temperature of 4 K.

We demonstrated a quantum degeneracy threshold of polaritons stemming from

the Bose final state stimulation of polaritons. The threshold density is two orders of

magnitude less than that of a photon laser and well below the electronic population

inversion condition. This result is a proof of principle that microcavity polaritons

hold promise for a new source of coherent light with high energy efficiency.

Further, many of the quantum statistical properties of polariton can be directly

measured by well-developed optical techniques. We study for the first time the time-

domain second order coherence function of the polaritons, and demonstrate that

macroscopic coherence gradually builds up in the polariton ground state above the

quantum degeneracy threshold. We measure the momentum distributions of the

polaritons, and observe a quantum degenerate Bose-Einstein distribution at the lattice

temperature, with a chemical potential close to zero. This is the first observation of

simultaneous quantum degeneracy and thermal equilibrium in a gas of quasi-particles

in solids. Polarization properties and spatial distributions of the polariton condensate

also show distinct features associated with the phase transition.
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Chapter 1

Introduction

The physical world is most studied and best understood at its two limits: the macro-

scopic limit described by Newton’s laws and Einstein’s relativistic theories, and the

microscopic limit described by quantum mechanics. Bridging these two limits are

a few examples of ’macroscopic quantum states’ – macroscopically big systems de-

scribed by the laws of quantum mechanics, exhibiting features alien to the classical

theories.

The most common example is a laser, where a macroscopically large number of

photons have almost identical energy and momentum, described by a single mode

wavefunction, can travel over thousands of miles without decoherence or divergence.

It is so common that it is often considered as a classical state despite its quantum me-

chanical origin. More exotic are some matter wave systems, such as superconductors,

superfluids, and atomic Bose-Einstein condensates.

A new emerging addition to the family is a half-matter half-light system — the

polaritons, which are quasi-particles originating from strong light and matter cou-

pling in solids. The theme of this thesis is the search for a macroscopic quantum

state of polaritons, more specifically, the dynamical condensation of semiconductor

microcavity polaritons.

1
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1.1 Phase Diagram of Polaritons

When the optical field of a semiconductor microcavity strongly couples to the excitons

in embedded quantum wells (QWs), new normal modes are formed — the lower

polariton (LP) and the upper polariton (UP) (5). A variety of quantum phases are

predicted for polaritons, including Bose-Einstein Condensation (BEC), superfluidity,

and crossover from BEC to Bardeen-Cooper-Schrieffer (BCS) states (6; 7; 1; 8; 9).

One possible phase diagram of microcavity polaritons is shown in figure 1.1. In the

low density limit (nexca
∗2 ¿ 1, nexc is the exciton density and a∗ is the exciton

Bohr radius), polaritons are well approximated as bosonic particles, and form a BEC

state below a critical temperature. Macroscopic coherence exists in the system in

both the cavity field (the photon components) and the matter media (the excitonic

components). Above a saturation density and with a low decoherence rate, excitons

dissociate while momentum-space pairing forms between an electron and a hole, like in

a BCS state, which still coherently couple to the cavity photon field. In experimental

systems available today, decoherence in the electronic media is so high that only a

laser transition is possible in the limit of high carrier densities. Hence in this thesis

we focus on the low-density regime well below the exciton saturation density (which

is about one order of magnitude below the Mott transition density), where a BEC-like

transition is expected.

1.2 Experimental Realizations of BEC

BEC is a common phenomenon in all forms of matter at all scales, including Higgs

Bosons. The more mundane systems one can manipulate in table top experiments

are mainly, atomic and solid state systems. Table 1.1 compares the basic parameters

of atomic gases to excitons and polaritons in semiconductors.

The parameter scales of these systems differ by many orders of magnitude. Even

in a common quantum phase transition, each system is expected to have its own

characteristics, to reveal particular pieces of unexplored fundamental physics, and
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Figure 1.1: Taken from reference (1), by Littlewood, et al. Sketch to demonstrate the
various crossovers in a polariton system assuming localized excitons. The vertical axis
nexca

∗2 is exciton density normalized by the exciton Bohr radius a∗. The horizontal
axis nphλ

2 is the normalized cavity photon density. λ
.
= ~2/2M∗g, where g is the

coupling strength per exciton, M∗ .
= me+mh is the exciton effective mass and me and

mh are the effective mass of electron and hole respectively. The crossover from BEC
of polaritons to an interaction-driven polariton condensate occurs when nphλ

2 ≈ 1;
the conventional BEC/BCS crossover for excitons occurs when nexca

∗ ≈ 1, and at
large photon numbers this marks the conventional point of inversion for a plasma
“laser”. The two wedges labeled BCS and exciton BEC constitute the regime where
the Coulomb interaction is the dominant coupling term. The solid lines are rough
guides to trajectories that would be followed for a fixed ratio of the coupling constants
(a∗/λ)2 = (g/Ryd.)(M∗/m) = 10, 10−1, 10−3, 10−5, where m

.
= memh

me+mh
is the exciton

reduced mass. In order for the electron-hole density to be able to reach such high
values as shown, the cavity mode frequency would need to be placed well above the
edge of the band.
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Table 1.1: Parameter Comparison of BEC Systems

systems atomic gases excitons polaritons

effective mass m∗/me 103 10−1 10−5

Bohr radius aB 10−1 Å 102 Å 102 Å

particle spacing: n−
1
d 103Å 102 Å 1 µm

critical temperature Tc 1 nK∼1 µK 1 mK∼1 K 1 K∼ >300 K

thermalization time
lifetime

1 ms/1 s 10 ps/1 ns (1∼10 ps)/(1∼10 ps)

∼ 10−3 ∼ 10−2 = 0.1∼10

to have unique applications. Most notable for the polariton system is its very light

effective mass and very short time scale. The former leads to a critical temperature

of phase transitions ranging from 1 K up to room temperature. The latter dictates

the dynamic nature of polariton phase transitions. We will leave to chapter 3 more

detailed discussions of the special properties of polaritons. Below we briefly review

the history of BEC research for the above systems.

1.2.1 BEC of Atomic Systems

Atomic BEC systems include mainly liquid-4He and 3He, spin-polarized hydrogen

gases, and dilute atomic gases. Liquid-4He has the longest history for BEC study,

since it was the first to demonstrate superfluidity, a macroscopic quantum phe-

nomenon intimately related to BEC. However, helium atoms interact strongly via

hard-core repulsion. The interaction is too strong to be treated perturbatively and

a detailed microscopic theory of helium condensation is not available. At the same

time, the strong interaction depletes the condensate ground state and renders a small

condensate fraction of < 10%. Many salient features of BEC, that are predicted

for an ideal or weakly interacting gases, are not expected for liquid helium. Conse-

quently, experimental confirmation of BEC in liquid helium has been difficult, and

interpretation of the experimental results are often model-dependent (10). Conclusive
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evidence for BEC came first from dilute atomic gases in 1995 (11; 12; 13), and later

in spin-polarized hydrogen (14) and metastable helium gases (15; 16). These systems

now provide a powerful testing ground for a wide range of fundamental problems in

many-body physics.

1.2.2 BEC in Solids

While atom BEC has been demonstrated since 1995 in various species of atomic gases

and has evolved into a rather mature sub-discipline of its own, no analogue has been

established in solid state systems. Whether or not BEC can be realized in solids

remains a most debated and intriguing problem of modern physics. Mainly due to

the slow progress in experimental work, BEC in solids is still a much less explored

field. Two outstanding problems for solid state BEC are: to have an equilibrium

system with high enough density, and to obtain clear experimental evidence in spite

of the complications of solids.

Excitons

Exciton BEC was first proposed in 1962 by Moskalenko et al. (17) and Blatt et al.

(18). A most well-known experimental system is the ortho-excitons in bulk Cu2O.

This system was considered to have shown, in the first conference on BEC held in

1995, the most convincing evidence of BEC (19). Yet it was found out later that

the auger-recombination of excitons prevented the system from reaching the critical

density of BEC (20; 21; 22). In 2002, a few macroscopic phenomena observed in

quantum-well exciton systems were again proposed to be related to BEC (23; 24).

Yet more careful analysis later concluded otherwise. Indirect evidence of quantum

degeneracy was obtained with quantum-well excitons (e.g. reference (25; 26)), yet no

evidence of a phase transition was inferred from these experiments, e.g. the coherence

properties and momentum distribution functions of the excitons. The search continues

for exciton BEC and the question remains open if BEC is ever possible in a solid state

system.
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Bulk Polaritons

In 1968, BEC was proposed to be also possible with bulk polaritons (6). However,

these polaritons are outside of the optical cone (the LP branch in figure 3.15) and

do not directly couple to light. It is very difficult to study the bulk polaritons ex-

perimentally. Moreover, the minimum energy of the bulk polariton bands are the

crystal ground state with zero excitation energy. BEC is possible only with states at

an energy-relaxation bottleneck. These states have a large degeneracy in momentum,

adding much complication to the physics. There has been no successful experimental

effort toward bulk polariton condensation.

Microcavity Polaritons

A more experimentally accessible solid-state system becomes available when the

strong-coupling regime is reached in an epitaxially grown quantum-well microcav-

ity (5). Due to confinement of both the cavity photon field and the quantum excitons

along the growth direction, translational symmetry is broken in the longitudinal direc-

tion, only the transverse wavenumber k‖ is a good quantum number for microcavity

polaritons. Hence for the relevant polariton states, there exists a one-to-one coupling

between each internal polariton mode with certain k‖ at energy ELP (k‖) and each

external photon mode with the same k‖ and ELP (k‖) emitted into certain angle θ

relative to the growth direction. The coupling rate is determined by the fixed cav-

ity photon out-coupling rate. As a result, information about the internal polaritons

can be directly obtained from the external photon emission by well developed optical

techniques.

Within a decade after the first observation of microcavity polaritons, stimulated

scattering threshold of polaritons were reported by various groups (27; 28; 29; 30).

More recently, first-order spatial coherence was studied for bottleneck polaritons

above the stimulated scattering threshold (31). Many pieces of evidence for a po-

lariton phase transition are gathered in the course of this dissertation, as will be

discussed in later chapters.
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1.3 Outline of Thesis

This thesis is an experimental study of the dynamical condensation of semiconductor

microcavity polaritons. We first introduce in chapters 2 and 3 the basic concepts of

Bose-Einstein condensation and the fundamentals of the semiconductor microcavity

system. In chapter 4 we discuss what are the experimental techniques to study the

system, and how the samples are characterized.

The first step toward polariton condensation is presented in chapter 5 — reaching

the quantum degeneracy threshold of polaritons (32). Spontaneous build-up of cir-

cular polarization of the emitted light is also observed at the threshold (4; 33). We

also make a comparison with a standard photon laser threshold to reveal the differ-

ent physical origin of the two types of the threshold, and to demonstrate, as a proof

of principle, that a polaritons condensate offers a very low threshold coherent light

source (4).

Chapter 6 contains a more in depth, and original, study of various quantum sta-

tistical properties of polariton condensation. We demonstrate that a quantum me-

chanical pure state and macroscopic coherence gradually build up in the condensate

(3). We observe a sharp shrinkage of the system size at the threshold density and

an abnormally slow growth of the system size above the threshold density (4), which

can be understood in terms of the system size dependence of the BEC critical density

in two-dimensions. Finally, the microcavity system above the quantum degeneracy

threshold — when properly tuned — evolves from a non-equilibrium gas to a quasi-

thermal equilibrium Bose gas with a high effective temperature (4), and finally to

a thermal-equilibrium gas described by a Bose-Einstein distribution with the same

temperature as the phonon bath, and with a chemical potential close to zero (34).

Correspondingly, the energy relaxation time of the system decreases to a value much

shorter than the lifetime of the polaritons.

The three samples discussed in this dissertation are listed in appendix A. Ap-

pendix B includes a discussion of the quantum statistical origin of parametric ampli-

fication with both bosons and fermions, which is rather independent of the central
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theme of the thesis.



Chapter 2

Bogoliubov Theory of BEC

BEC has been a source of imagination and innovation of physicists ever since its first

proposal by Einstein in 1925 (35). It adds to the wonder if we remember that, in 1925,

quantum theory was still at its infancy, the concepts of boson and fermion were non-

existing. In fact, that was the time when modern quantum statistics was coming into

being. The first application of BEC to a physical system was by London in 1938 (36),

right after the discovery of superfluidity in liquid helium (37; 38). Throughout the

decades, BEC has triggered intense theoretical work in the field of manybody physics,

quantum phase transitions and atom physics. It also fostered the development of

experimental techniques in quantum optics, in trapping and cooling of atoms, and

in quantum optics and in growth and fabrication of semiconductors. Almost half

a century later, in 1995, the first unambiguous realization of BEC was achieved in

dilute atomic gasses (11; 12; 13). The effort devoted to atomic systems has harvested

a modern branch of physics, ( ultra- )cold atom physics, which continues to be a

test-ground of theories and a cradle of novel applications.

In semiconductors, the grand challenge is still to obtain conclusive evidence of

BEC and phase transitions alike for excitons and polaritons, and to understand and

formulate the underlying physics appropriate for them. Before presenting our effort

along this direction in polariton systems, we first review in this chapter the basic

concepts of BEC in a very simplified form. For rigorous and comprehensive discussions

of BEC theories, many excellent review papers and books are available (39; 40).

9
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2.1 BEC of an Ideal Bose Gas

BEC of an ideal bose gas results directly from quantum statistics. In a grand canonical

ensemble, at thermal equilibrium, the probability of a configuration with Mr particles

and energy Es is given by:

Pr,s = eβ(µMr−Es)/Z(β, µ), (2.1)

where β = 1/kBT , T and µ are the temperature and chemical potential of the reser-

voir. Z(β, µ) is the grand partition function:

Z(β, µ) =
∞∑
Ni

∑
s

eβ(µMr−Es) (2.2)

Applied to an ideal gas of indistinguishable particles distributed in ‘microstates i’ of

energy εi and occupation number Ni in each state:

Z(β, µ) =
∑
Mr

e
β(µ

P
i

Ni−
P
i

εiNi)
=

∏
i

∑
Ni

eβ(µ−εi)Ni . (2.3)

In a Bose gas, Ni = 0, 1, 2, ...,

Z(β, µ) =
∏

i

(1− eβ(µ−εi)). (2.4)

Using (2.4) we obtain the Bose-Einstein distribution function fBE(εi), the total par-

ticle number N , and the total internal energy of the gas E(T, µ):

fBE(εi) = N̄i = − ∂

∂βεi

ln Z =
1

exp[β(εi − µ)]− 1
, (2.5)

N = − ∂

∂µ
(kBT ln Z) =

∑
i

1

exp[β(εi − µ)]− 1

=
∑

i

fBE(εi), (2.6)

E(T, µ) =
∑

i

εifBE(εi) =
∑

i

εi

exp[β(εi − µ)]− 1
. (2.7)
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In a Fermi gas, Ni = 0, 1, leading to the Fermi-Dirac distribution:

fFD(εi) =
1

exp[β(εi − µ)] + 1
. (2.8)

In the limit µ ¿ −kBT , e−βµ À 1, both distributions are approximated by the

Maxwell-Bolzmann distribution:

fMB(εi) = exp(βµ) exp[−βεi], (2.9)

which is the exact result calculated from (2.2) in the case of distinguishable particles.

The physical condition of Ni ≥ 0 induces a unique constraint for a bose gas:

µ ≤ ε0 (ε0 is the energy of the single-particle ground state). We also notice that fBE

monotonically increases with increasing µ. Hence, at given T , when µ approaches

ε0 from below, fBE(εi > ε0) reaches a finite maxima, while fBE(ε0) diverges. If we

rewrite (2.6) as

N = fBE(ε0, T, µ) +
∑

i6=0

fBE(εi, T, µ) = N0(T, µ) + N ′(T, µ), (2.10)

At given T , the total number of particles in all excited states can not exceed Nc(T )
.
=

N ′(T, 0). It is straightforward to show that Nc(T ) is finite in dimensions larger than

two for an infinite system, or a box with periodic boundary conditions. If N > Nc(T ),

the difference all goes to the ground state N0(T ) = N −Nc(T ).

In the thermodynamic limit, εi becomes continuous, the number density vanishes

for any excited state:

ni
.
= Ni/V = fBE(ε)

ρ(ε)dε

V
→ 0, as V → 0. (2.11)

The ground state n0 = N−Nc(T )
V

becomes finite once N > Nc(T ). In another word, a

macroscopic number of particles condense into the single microscopic ground state.

This is the phenomenon of BEC.
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Figure 2.1: Illustration of condensate density n0 and chemical potential µ v.s. tem-
perature T ,for a 3D bose gas with given density n

Take for example a free bose gas in 3D with mass m

nc(Tc) =
N ′(Tc, 0)

V
=

(
mkBTc

2π~2

) 3
2
(

2√
π

∫ ∞

0

dxx
1
2

1

ex − 1

)
, (2.12)

where we used ε = p2/2m and x = ε/kBTc. The integral is a Bose function, its

value is 2.612; the term in front of it is the inverse cube of the thermal de Broglie

wavelength:

λT (T )
.
=

√
2π~2

mkBT
. (2.13)

So we rewrite (2.12) as:

nc = 2.612/λ3
Tc

or, ncλ
3
Tc

= 2.612. (2.14)

For given n, the condensate fraction n0/n = 1 − (T/Tc)
3/2 at T < Tc, and n0/n = 0

at T ≥ Tc, as illustrated in figure 2.1

(2.14) shows that the phase transition takes place when the inter-particle spacing
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is comparable with the particle’s thermal de Broglie wavelength. In general we have

nc ∝ λT (Tc)
−d, (2.15)

where d is the dimension. Hence for given particle density n, the critical temperature

scales inversely proportional to the mass:

Tc ∝ 2π~2n−2/d
c m−1. (2.16)

2.2 The ‘Macroscopic’ Ground State

To reveal the physical significance of a macroscopic n0, we introduce the Bogoliubov

theory which laid down the framework of the modern theory of BEC (41; 42; 43; 44).

We first write down the Hamiltonian of a non-interacting bose gas in the formalism

of second quantization:

Ĥ0 =
∑

i

(εi − µ)â†i âi, (2.17)

where âi and â†i are the annihilation and creation operators a particle in state i. They

obey the boson’s commutation relations [âi, â
†
i ] = δij and [âi, âj] = 0. In the BEC

phase,

[
â0√
V

,
â†0√
V

] =
1

V

V→∞−−−→ 0,

while at the same time

〈 â0√
V
· â†0√

V
〉 =

N0

V
→ finite.
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Hence â0/
√

V and â†0/
√

V behave like c-numbers, with a finite amplitude
√

N0/V ,

and an arbitrary phase φ:

a0 ≈
√

N0e
−iφ, a†0 ≈

√
N0e

iφ.

If we operate a0 on the ground state |Ω〉:

a0|Ω〉 ≈
√

N0e
−iφ|Ω〉, a†0|Ω〉 ≈

√
N0e

iφ|Ω〉 (2.18)

It means that when there is a macroscopic number of particles condensed in the

ground state, adding or removing one particle from the condensate leaves the system

physically unchanged. Replacing the ground state operators by c-numbers as in (2.2)

is the first crucial step in Bogoliubov’s theory, it is usually called the ‘Bogoliubov

approximation’. (2.18) also implies that |Ω〉 behaves like an eigenstate of a0, i.e., a

coherent state.

2.3 The Order Parameter and Off Diagonal Long

Range Order

Formally, consider an infinite uniform system, we define the Bose field operator Ψ(r)

as the order parameter of BEC:

Ψ(r) =
1√
V

∑
i

âie
ipir =

a0e
ip0r

√
V

+
1√
V

∑

i6=0

âie
ipir

= Ψ0(r) + ΨT (r), (2.19)

where r is distance, and pi is the momentum of the state i. ΨT (r) consists of terms of

the excited states. In the thermodynamic, V →∞, ΨT (r) vanishes for r > 0. Ψ0(r)

is the ground state term. In a condensed phase, Ψ0(r) has a finite and constant

amplitude given by the square root of the condensate fraction.
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The off-diagonal element of the first reduced density matrix of Ψ(r) is:

ρ1(r, r′) =< Ψ†(r′)Ψ(r) > =< Ψ†
0(r

′)Ψ0(r) > + < Ψ†
T (r′)ΨT (r) >

=
N0

V
eip0(r−r′) +

1

V

∑

i6=0

〈â+
i âi〉eipi(r−r′). (2.20)

ρ1(r, r′) describes the correlation for generating of a particle at position r and an-

nihilation of one at r′. We again can separate it into terms of the excited states

and a term from the ground state. When |r − r′| → ∞, the phase pi(r − r′) of

the excited-state terms become random, and the summation of these terms vanishes

when V → ∞. The ground-state term, however, has a finite and constant ampli-

tude of 0 < n0 ≤ n in the BEC phase regardless of the separation |r − r′|. Hence

|ρ1(r, r′)| = n0 = |Ψ0|2 is finite and uniform even over macroscopic distances. This

character of BEC is called the off-diagonal long range order (ODLRO). It serves as a

measure of macroscopic coherence and an important criterion for BEC.

2.4 ‘Genuine’ BEC of Interacting Bosons

So far, the theory is based on a non-interacting Bose gas, it predicts a BEC transi-

tion when a macroscopic number of particles condense into the ground state. The

condensate can be described by a single-particle wavefunction, and is coherent over

macroscopic distances. However, it is not clear if the predicted BEC corresponds

to physical reality. For example, there is no physical mechanism to prevent conden-

sate fragmentation into nearly-degenerate states, or to establish correlations among

the condensed particles. These problems can be addressed when we include particle

interactions (Nozière, reference (10)).

Consider the simplest type of scalar interaction:

U =
1

2V

∑

p,k,q

Uqâ
†
p+qâ

†
k−qâkâp.

If particles condense into two nearly degenerate states with occupancies N1 and N2 =
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N −N1, we have the ground state wavefunction and energy:

|ψ0〉 =
1√

N1!N2!
(â†1

N1 â†2
N2)|vac〉

E0 =
1

2
U0[N1(N1 − 1) + N2(N2 − 1) + 2U0N1N2] + Up1−p2N1N2

=
1

2
U0N(N − 1) + U0N1N2. (2.21)

The first term in (2.21) consists of the self-interaction and Hartree forward scattering

energies, the second term comes from the exchange interaction between particles.

Note that U0 has to be a positive (i.e. repulsive) potential otherwise the system will

collapse. Hence the ground state energy is minimized when the Fock term is zero,

i.e., N1 = 0, N2 = N or vice versa. In another words, repulsive interactions prevent

condensate fragmentation. Genuine BEC takes place only in a Bose gas with repulsive

interactions.

The above analysis is the same if |ψ0〉 is written as a coherent state exp(φ â†0)|vac〉
instead of a number state, where φ =

√
N0 eiθ (Eq.(2.18)). Either way, |ψ0〉 is

the ground state wavefunction for a free bose gas. We naturally expect that the

ground state shall be modified when interactions are taken into account. As a trial

wavefunction, we consider:

|ψ0〉 = exp(φ â†0 + λp â†pâ
†
−p)|vac〉.

It includes virtual excitation of a pair of particles out of the condensate, a process

described by interaction terms like â†pâ
†
−pâ0â0 + c.c. Using (2.4) to compute E0, we

obtain the usual Hartree and Fock terms with corrections of the order U0|λp|2 and

Up|λp|2. In addition, a new macroscopic term emerges:

∆E0 =
∑

p

Up〈â†0â†0〉〈âpâ−p〉 ∼
∑

p

φ · λp (2.22)

Hence the ground state energy is lowered by an macroscopic amount of when the phase

is locked between φ and λp: ∆E0 ∼ −√N0

∑ |λp|. It is the two-body interaction that
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leads to phase locking among particles in the condensate.

2.5 BEC of a Dilute Weakly Interacting Bose Gas

The Hamiltonian including the two-body interactions is:

Ĥ =
∑

p

(εp − µ)â†pâp +
1

2V

∑

p,k,q

Uqâ
†
p+qâ

†
k−qâkâp,

where Uq is the interaction potential. Interactions involving three or more particles

are neglected under the assumption that the gas is dilute, i.e., n|a|3 ¿ 1, a defined

as the s-wave scattering length of the gas. Replacing â†0 and â0 by
√

N0 according to

the Bogoliubov approximation (2.2) and let n0 = N0/V , we obtain:

Ĥ =Ĥ0 + Ĥ1

Ĥ0 =
1

2
n2

0U0V +
∑

p 6=0

[(εp − µ) + n0U0 + n0Up]â†pâp

+
∑

p 6=0

n0Up

2
(â†pâ

†
−p + âpâ−p) (2.23)

Ĥ1 =
∑

p,q 6=0

√
n0Uq

2
√

V
(â†p+qâqâ

†
p + â†p+qâ

†
−qâp) +

∑

p,q 6=0

Uq

2V
â†p+qâ

†
k−qâkâp + · · ·

In the thermodynamic limit, V →∞, Ni/V → 0 for i 6= 0 while n0 is finite. Hence

〈Ĥ1〉 ∝ O(1/
√

V ) → 0 while 〈Ĥ0〉 ∝ O(n0), and the Hamiltonian of the BEC gas

reduces to Ĥ0. The first term in Ĥ0 is the self-energy of the particles condensed

into p0 = 0, it amounts to an offset of the ground state energy of the system. The

second term in Ĥ0 correspond to the Hartree and Fork energies due to interactions

between particles at p0 and at p 6= p0, its expectation value is of the order n0. The

third term in Ĥ0, also of the order n0, is an unconventional term unique to a BEC

gas, it violates the particle number conservation! Physically it corresponds to the

excitation/absorbtion of a pair of particles at opposite |p| from/by the condensate.

The condensate serves as a macroscopic reservoir, adding or removing a pair from the

condensate leaves it in the same state.
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Ĥ0 is quadratic in âp and â†p, it can be diagonalized by the ‘Bogoliubov transfor-

mation’:

âp = upb̂p − v∗−pb̂
†
−p, â†p = u∗pb̂

†
p − v−pb̂−p. (2.24)

If up = u−p, vp = v−p, and |up|2 − |v−p|2 = 1, the new set of operators b̂p and b̂†p also

satisfy the bose commutation relations and [b̂i, b̂j] = 0, [b̂i, b̂
†
j] = δij. The solution is

found to be:

Ĥ0 = E0 +
∑

ω(p)b̂†pb̂p, (2.25)

ω(p) =
√

ε2
p + 2n0Up εp, (2.26)

E0 =
1

2

∑
p

[ω(p)− εp − n0Up] +
n2

0U0V

2
, (2.27)

µ =
∂E0

∂N0

= n0U0, (2.28)

up =

(
εp + n0Up

2ω(p)
+

1

2

) 1
2

, (2.29)

v−p =

(
εp + n0Up

2ω(p)
− 1

2

) 1
2

. (2.30)

E0 is the energy of the true ground state |vac〉 defined by b̂p|vac〉 = 0 for any p 6= p0.

b̂†p|vac〉 creates an elementary excitation of the system with eigenenergy ω(p) given

in (2.26).

(2.26) is the famous ‘Bogoliubov dispersion’ of BEC. In a dilute gas where na3 ¿
1, most excitations are within an energy range εp ¿ n0Up. For those low energy

excitations,

ω(p) '
√

n0Up/m |p| '
√

n0U0/m |p|. (2.31)

The dispersion becomes phonon-like with a sound velocity:

uc
.
=

√
U0n0/m (2.32)
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These phonon-like modes are called the Bogoliubov quasi-particles, or, the Goldstone

modes.

2.6 BEC and Superfluidity

An important implication of the phonon-like low energy excitation is that, BEC often

exhibits superfluidity. Consider the condensate moving at a velocity vs = p0/m

relative to a wall, friction is produced if and only if spontaneous excitations of the

quasi-particles lower the energy of the BEC gas. In a reference frame that the wall

is at rest, the energy of a single excitation is given by the Galilean transformation:

ω′(p) = ω(p)+vs ·p. If ω′(p) > 0 for all p, there is no spontaneous energy dissipation

of the system, the system is a frictionless superfluid. This gives the Landau’s criterion

for superfluidity:

vs < vc = minp
ω(p)

p
(2.33)

BEC with dispersion (2.31) satisfies the above criterion when v < vc.

The BEC order parameter |Ψ0|eiθ is not invariant under the Galilean transforma-

tion due to the phase factor iθ (which breaks the gauge symmetry). In a uniform

system, the amplitude of |Ψ0| is a constant, and the phase factor transforms as (40):

S = −µt

~
→ S =

1

~

[
mvs · r −

(
1

2
mv2

s + µ

)
t

]
, (2.34)

Hence the superfluid velocity is proportional to the gradient of the phase:

vs =
~
m
∇S (2.35)

Note that although BEC often implies superfluidity and vice versa, these are two

distinct phenomena. For example, BEC in disordered materials exhibits no superflu-

idity; Kosterlitz-Thouless phase in 2D is an example of superfluidity without BEC.
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2.7 Peculiarities of 2D

In dimensions d ≤ 2, in the thermodynamic limit, the critical density defined in (2.10)

diverges when µ → 0. It was rigorously proven that in d = 2 with a constant energy

density of state, long wavelength thermal fluctuation of the phase destroys a long

range order (45; 46), and BEC is absent at any temperature T > 0. BEC does exist

at T = 0 where there is only quantum phase fluctuations.

However, phase fluctuation does not necessarily destroy superfluidity. In 2D, it’s

the thermal excitation of vortices which destroys superfluidity. This leads to a new

type of phase transition in 2D, the Kosterlitz-Thouless transition, with a critical

temperature:

kBTKT = ns
π~2

2m2
, (2.36)

where ns is the superfluid density. Equation 2.36 can also be written in terms of the

thermal de Broglie wavelength defined in (2.13): nsλ
2
Tc

=4. Above TKT , vortices are

thermally excited and produce friction, as a result, ns and the number of vortices are

exponentially small. Below TkT , single vortices are energetically costly, hence they

bind to form pairs and cluster, with a total binding number equal to zero, allowing

percolation of condensate droplets in which a phase coherent path exists between two

distant points. Hence ns jumps to a non-zero value. The superfluid is described by

the same Bogoliubov theory for weakly interacting bosons, and follow the Bogoliubov

quasi-particle dispersion ω(p) in (2.26). The superfluid density ns is related to the

normal fluid density nn and total density n by the Landau formula derived in the

framework of two-fluid model (see for example reference (47)):

n =nn + ns, (2.37)

nn =

∫
d2p ρ(p) ω(p)

[
−∂fBE(ω(p, T, µ = 0))

∂ω(p)

]
, (2.38)

where ρ(p) is the density of states.

A BEC transition at finite temperature is recovered in 2D if the bose gas in

confined by a spatially varying potential U ∼ rη. In this case, the density of states
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becomes ρ(E) ∼ ε2η, and the integral in (2.10) converges for η > 0, leading to a finite

critical temperature for BEC phase transition:

kBT 2D
c ∼ (n/m)η/(2+η). (2.39)

Practically, any experimental system is of finite size and with finite number of

particles. With discrete energy levels εi (i=1,2,...), finite total particle number N ,

and finite size S = L2, the critical condition defined in (2.12) can be modified as:

µ =ε1; (2.40)

nc =
1

S

∑
i≥2

1

eεi/kBT − 1
. (2.41)

Thus defined critical condition can be fulfilled at Tc > 0 even in a 2D box system of

size L. The critical density is:

nc =
2

λ2
t

ln(
L

λt

), (2.42)

where λt is the thermal de Broglie wavelength. If the particle number N is suffi-

ciently large, the transition shows similar features as a BEC transition defined at the

thermodynamic limit (48).

2.8 Summary

In summary, we reviewed that BEC is characterized by a macroscopic order param-

eter, and the existence of macroscopic coherence, or, off-diagonal-long-range order.

Interactions are necessary to form a genuine BEC, they establish the ODLRO, leads

to a sharply peaked distribution in the momentum-space, and phonon-like low-energy

excitations. In 2D, BEC is absent in the thermodynamic limit but survives in a finite

system. And a KT transition is predicted for 2D where a superfluid forms.

In the next chapter, we introduce the microcavity polariton system and study its

uniqueness as a system for BEC research.



Chapter 3

Microcavity Polaritons

A very elegant and unique physical entity, ‘microcavity polariton’ is a ‘quasi-particle’

resulting from ‘strong-coupling between light and matter’. ‘Quasi-particle’ is a pow-

erful concept that describes the formidable complications of the real world with mis-

leading simplicity. Light and matter coupling, enhanced and controlled by carefully

engineered cavities, marries the solid state devices to optical access and opens a world

of discovery and innovation ranging from fundamental problems in cavity quantum

electrodynamics to daily applications like laser pointers. Naturally, microcavity po-

lariton has spurred intense interest, from both scientific and application perspectives,

ever since its discovery in 1992 (5).

This chapter is to explain the question what are semiconductor excitons and po-

laritons.

3.1 Wannier-Mott Exciton

A solid consists of 1023 atoms. Instead of describing the 1023 atoms and their con-

stituents in full detail, the common approach is to treat the stable ground state of an

isolated system as a quasi-vacuum — the state with filled valence band and empty

conduction band for a semiconductor — and to introduce quasi-particles as a unit of

elementary excitation, which only weakly interact with each other. An exciton is a

typical example of such a quasi-particle, consisting of an electron and a hole bound

22
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by the Coulomb interaction. The quasi-vacuum of a semiconductor is the state with

filled valence band and empty conduction band. When an electron with charge −e

is excited from the valence band into the conduction band, the vacancy it leaves in

the valence band can be described as a quasi-particle called a ‘hole’. A hole in the

valence band has charge +e, and an effective mass defined by −(∂2E
∂p2 )−1. A hole and

an electron at p ∼ 0 interacts with each other via Coulomb interaction and form

a bound pair — an exciton — analogous to a hydrogen atom where an electron is

bound to a proton. The envelope wavefunction of an exciton is also analogous to that

of a hydrogen atom. However, due to the strong dielectric screening in solids and a

small effective mass ratio of the hole to the electron, the binding energy of an exciton

in GaAs is on the order of 10 meV, three orders of magnitude smaller than that of

hydrogen atoms, and the radius of an exciton is about 102 Å, extending over tens of

atomic sites in the crystal (Wannier-Mott exciton).

Following Hanamura and Haug (reference (49)), the Hamiltonian of the electronic

system of a direct two-band semiconductor is:

Ĥ =

∫
d3xψ̂†(x)Ĥ0(x)ψ̂†(x) +

1

2
d3xd3yψ̂†(x)ψ̂†(y)V̂(x− y)ψ̂(x)ψ̂(y), (3.1)

where Ĥ0(x) is the Hamiltonian of single electrons, V̂(x) = e2/ε|x| is the screened

Coulomb potential, and ψ is the field operator for electrons expanded in terms of the

electron eigenfunctions ψkj(x):

ψ̂(x) =
∑

j=c,v;k

âkjψkj(x)

ψkj(x) = ukj(x) exp(ik · x)/
√

N. (3.2)

Here j = c, v denotes the conduction or valence band, ukj(x) is the Bloch wavefunc-

tion and N is the number of unit cells of the lattice. âkj is the fermionic annihilation

operator for an electron. It obeys the commutation relations {âk, â†l} = δk,l and

{âkj, âlj} = 0. For the valence band, we introduce the hole creation operator b̂−k to
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replace the electron annihilation operator:

â†kv = b̂−k. (3.3)

Annihilation of a valence band electron in a state with a wavevector k, spin σ, charge

−e and kinetic energy−E(k) from the top of the valence band is equivalent to creation

of a hole in state −k with flipped spin σ, positive charge +e and kinetic energy E(k).

For the conduction band, we can now simplify the denotation as:

âkc = âk. (3.4)

Substitute (3.2) to (3.4) into (3.1), neglecting number non-conserving terms, we ob-

tain:

Ĥ =
∑

Ee(k)â†kâk +
∑

Eh(k)b̂†kb̂k

+
1

2

∑
V c

k1

c
k2

c
k3

c
k4

â†k1
â†k2

âk3 âk4 +
1

2

∑
V v
−k1

v
−k2

v
−k3

v
−k4

b̂†k1
b̂†k2

b̂k3 b̂k4

−
∑ (

V c
k1

v
k3

v
k2

c
k4
− V c

k1

v
k3

c
k4

v
k2

)
â†k1

b̂†k2
b̂k3 âk4 . (3.5)

In the effective mass approximation, Ee(k) (Eh(k)) are the kinetic energies of an

electron (a hole) with effective mass me (mh):

Ee(k) = Eg +
~2k2

2me

,

Eh(k) =
~2k2

2mh

, (3.6)

where Eg is the bandgap energy. V i
k1

j
k2

m
k3

n
k4

are the direct and exchange interactions

among electrons and holes due to the Coulomb potential V̂:

V i
k1

j
k2

m
k3

n
k4

= 〈k1i, k2j|V̂|k3m, k4n〉 (i, j, m, n = c, v), (3.7)

For Wannier-Mott excitons, the plane wave factor in (3.2) and the Coulomb potential

V̂ are slowly varying functions which change very little in one unit cell of the lattice,
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hence (3.7) can be calculated by first integrating the Bloch functions in a unit cell

Ωi, then summing over all unit cells weighted by the planar wave factors. We also

notice that:

∫

vi

d3xu∗k≈0,c(x)uk≈0,c(x) ≈ 1

∫

vi

d3xu∗k≈0,c(x)uk≈0,v(x) ≈ 0. (3.8)

And we find that (3.7) can be simplified to a form, for example:

V c
k

v
−l′

v
−k′

c
l =

1

V 2

∫
d3xd3y exp[i(l− k) · x + i(l′ − k′) · y]

e2

ε|x− y| . (3.9)

Now we consider the general wavefunction of an electron-hole state:

|p〉 =
∑

Ckk′ â†kb̂†k′ |vac〉, (3.10)

where |vac〉 is the quasi-vacuum with a full valence band and an empty conduction

band. From the eigenvalue equation H|p〉 = E|p〉, we obtain the equation for the

amplitude Ckk′ :

(Ee(k) + Eh(k
′)− E)Ckk′ −

∑

ll′
(V c

k
v
−l′

v
−k′

c
l − V c

k
v
−l′

c
−l

v
−k′)Cll′ = 0 (3.11)

Taking a Fourier transform of (3.11), using (3.7)–(3.9), we obtain the Wannier equa-

tions for an exciton (50):

Ĥexcφ(xe,xh) = Eφ(xe,xh),

Ĥexc = − ~2

2me

∇e − ~2

2mh

∇h + Eg − e2

ε|xe − xh| . (3.12)

The two particle wavefunction is related to the amplitudes Ckk′ by

φ(xe, xh) =
∑

Ckk′ exp(ik · xe + ik′ · xh). (3.13)
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We separate the center of mass motion and the relative motion by introducing the

new coordinates:

r = xe − xh, R = βexe − βhxh, (3.14)

where βe = me/M, βh = mh/M, M = me + mh. Then (3.13)become:

φ(xe, xh) = φn(r) exp(iK ·R)/
√

V , (3.15)

and the equation of relative motion is:

(
− ~2

2mr

∇r − e2

ε0r
+ εexc,n

)
φn(r) = 0, (3.16)

It has the same form as the equation of relative motion for a Hydrogen atom, but

the reduced mass mr = memh/M is normally four orders of magnitude less than

the hydrogen atom mass, and the Coulomb interaction is screened and reduced by

a factor of ε0. These lead to a much larger Bohr radius and much weaker binding

energy of an exciton compared to an hydrogen atom. The total energy of the pair is:

E(K,n) = Eg − εexc,n +
~2K2

2M
, (3.17)

The binding energy of the 1s state is:

E3D
B

.
= εexc,1 =

~2

2mra2
Bn2

, (3.18)

and the Bohr radius of the 1s exciton is:

a3D
B =

~2ε0

e2mr

. (3.19)

Now the exciton operator ê†K,n can be defined by inserting (3.13)-(3.15) into (3.10)
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and using |p〉 = ê†K,n|vac〉. We obtain:

ê†K,n =
∑

k,k′
δK,k+k′φn(βhk − βek

′)â†kb̂†k′ , (3.20)

where φn(k) is the Fourier transform of φn(x). The commutation relations of the

exciton operators are:

[êK′,n′ , êK,n] = 0

[ê†K′,n′ , ê
†
K,n] = 0

[êK′,n′ , ê
†
K,n] = δKK′δnn′ −O(nexca

3
B). (3.21)

Hence excitons can be considered as bosons in the low density regime when nexc ¿
a−3

B , or, when the exciton inter-particle spacing is much larger than its Bohr radius.

3.2 Exciton Optical Transition

The electron and hole in an exciton form a dipole which interacts with electromagnetic

fields of light. The interband optical transition matrix element is given by the Fermi’s

golden rule:

Wcv =
2π

~
∑

f,i

|〈f |ĤI |i〉|2δ(Ef − Ei − ~ω), (3.22)

where i and f denotes the initial and final states with energies Ei and Ef respectively.

~ω is the photon energy, and ĤI is the dipole interaction Hamiltonian. We first

consider an uncorrelated electron-hole pair, the matrix element is given by:

M
.
= |〈f |ĤI |i〉| = δσ,je−jh

∫

V

χ∗cke
(r)u∗cke

(r)er ·Euvkh
(r)χvkh

(r), (3.23)

where σ is the polarization of light, je and jh are the angular momenta of the electron

and hole, χcke and χvkh
are the envelope functions, and ucke and uvkh

are the Bloch

functions. Since χcke,vkh
vary little within a unit cell, while ucke and uvkh

are the same
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d

Figure 3.1: Bloch and envelope functions of electrons and holes in a QW

from cell to cell, we can rewrite the integral
∫

V
as a summation over all cells of the

integrations in each unit cell Ωi:

M ≈ δσ,je−jh

∑
Ri

∫

Ωi

dr′ [χ∗cke
(r′+ Ri)u

∗
cke

(r′+ Ri)er ·E uvkh
(r′+ Ri)χvkh

(r′+ Ri)
]

' δσ,je−jh

1

Ω

∑
Ri

Ωχ∗cke
(Ri)χvkh

(Ri)

·
[∫

Ω

dr′u∗cke
(r′)er′ ·Euckh

(r′) + eRi ·E
∫

Ω

dr′u∗cke
(r′)uckh

(r′)

]
.

Notice that for the lowest energy interband transition ucke has s-wave symmetry

while uvkh
has p-wave symmetry (figure 3.1), we obtain:

M '
[∫

V

drχ∗cke
(r)χvkh

(r)

]
δσ,je−jh

[
1

Ω

∫

Ω

dr′ u∗cke
(r′) uckh

(r′)er′ · e
]

(
2πω

ε~V
)1/2,

(3.24)
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The first term is an overlap integral of the envelope functions of an electron and a

hole. Without a confinement potential,

χcke(r) = exp(ike · r) (3.25)

χvkh
(r) = exp(ikh · r) (3.26)

Then the overlap integral reduces to δ(ke−kh). This is the momentum conservation

condition, since the photon’s momentum is negligible compared to excitons.

The second term in equation (3.24) stems from angular momentum conservation,

it means that for heavy holes, only the pair jhh = 3/2, je = 1/2 and jhh = −3/2, je =

−1/2 are optical active. The third term is the projection of exciton dipole moment

on the light polarization

When an electron and a hole are bound by the Coulomb interaction to form an

exciton, the exciton’s envelop function consists of a plane wave for the center of

mass motion with momentum K, and the bound relative motion. Hence the momen-

tum conservation condition becomes K = 0, and the overlap integral is enhanced

by
√

V/a3
B. Unlike an un-correlated electron and hole which move independently

throughout the volume V , the electron and hole in an exciton move together with

an average relative separation aB, increasing the probability of an optical transition.

This effect is often called the mesoscopic enhancement.

Due to the conservation of angular momentum discussed above, only heavy hole

excitons with j = ±1 can interact with photons which are circularly polarized, hence

they are called the bright excitons. Heavy hole excitons with j = ±2 are called dark

excitons for which light emission and absorption are forbidden.

Oscillator Strength of Excitons

A convenient material parameter that characterizes the exciton-photon coupling is

the exciton oscillator strength f defined analogous to the atomic oscillator strength
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as:

f =
2m∗ω
~

|〈uv|r · e|uc〉|2 V

πa3
B

(3.27)

The optical transition matrix element M can be expressed in terms of f as:

M =

√
πe2f

εm∗V
Γ (3.28)

Γ are the first three terms in equation (3.24) which depends on the selection rules

and geometric properties of the semiconductor.

3.3 Quantum-Well Exciton

3.3.1 Quantum Confinement

With the advance of epitaxial growth techniques of molecular beam epitaxy (MBE)

and metal organic vapor phase epitaxy, semiconductor materials can be fabricated to

atomic monolayer precision, giving birth to novel quantum structures, such as two-

dimensional (2D) quantum wells (QWs), 1D quantum wires, and 0D quantum dots.

A QW is a thin layer of narrow bandgap semiconductor sandwiched between two

barrier layers of wider bandgaps materials (figure 3.2). The quantum well thickness

is comparable to the exciton Bohr radius, hence the motion of the electrons and holes

are confined perpendicular to the QW plane (which is also the growth direction, and is

defined as the z-direction in this thesis), and their energy levels are quantized. Their

energy-momentum dispersion have a set of bands (figure 3.3). The energy density of

states (DOS) change accordingly from ∝ E1/2 in 3D to step functions in 2D, as shown

in figure 3.4.

The quantum confinement also modifies the valence band structure significantly, as

illustrated in figure 3.5(a). Take GaAs for example, the hole has a p-like wavefunction

with orbital angular momentum L = ±1 and spin S = ±1
2
. In bulk, holes form

two degenerate light hole bands and two degenerate heavy hole bands, and they
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Figure 3.3: Discrete energy bands in a QW

are four-fold degeneracy at k = 0. Light holes have a a total angular momentum

J = ±1/2 and a lighter mass of m3D
lh = me/(γ1 + 2γ2), while the heavy holes have

J = ±3/2 and a heavier mass of m3D
hh = me/(γ1 − 2γ2) (γ1 and γ2 are the Luttinger

parameters (51)). In a QW where the translational symmetry is broken in the growth

direction, the degeneracy between light and heavy holes at k = 0 is lifted, the heavy-

hole bands become closer to the conduction band with a lighter in-plane mass of

mhh‖ = me/(γ1 − γ2) near k = 0 (figure 3.5(b)).

In our experiments, the QW confinement is strong enough so that intra-band

mixing is negligible. We only consider the lowest electron band and the heavy hole

band, which from the lowest exciton band. The center of mass motion of these

excitons are described by 2D plane-wave wavefunctions.
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Figure 3.4: Energy density of states in 3D and 2D.

3.3.2 Quantum Well Exciton Binding Energy

In the limit of an exact 2D gas, the Bohr radius of an exciton becomes half of the

corresponding 3D value given by equation (3.19), and the binding energy is increased

by a factor of four compared to the 3D value in equation (3.18). More accurate values

of a2D
B and E2D

B can be obtained by taking into account the finite QW thickness

(52; 2; 53). Normally, we are interested in strongly confined excitons, and are only

interested in excitons with relatively small momenta. Hence we make the following

approximations:

1. The electron and hole are confined in the z-direction by square well potential

Ve and Vh, respectively.

2. Conduction and valence bands are treated as parabolic.

3. There is no mixing with higher valence bands.

4. There is no mixing among electron or hole sub-bands.

Then we decompose the wavefunction of exciton’s internal motion as:

φ(re, rh) = fe(ze)fh(zh)g(r, Z), Z = |ze − zh|. (3.29)

Here fe(ze), fh(zh) and g(r, Z) are respectively the electron’s transverse wavefunction,

hole’s transverse wavefunction, and the pair’s in-plane wavefunction. They satisfy the
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Figure 3.5: Band structures for III-V semiconductors in (a) bulk and (b) QW.

following equations of motion:

[
−~

2

2

d

dze

(
1

me⊥

d

dze

)
+ Ve(ze)

]
fe(ze) = εefe(ze), (3.30)

[
−~

2

2

d

dzh

(
1

mh⊥

d

dzh

)
+ Vh(zh)

]
fh(zh) = εhfh(zh), (3.31)

[
− ~

2

2u‖

1

r

d

dr

(
r

d

dr

)
− e2

ε0(r2 + Z2)1/2

]
g(r, Z) = εr(Z)g(r, Z), (3.32)

and the binding energy of the exciton is approximately

E2D
B =

∫
dzedzh|fe(ze)|2|fh(zh)|2εr(ze − zh). (3.33)

Here εr(ze − zh) is the binding energy of a 2D exciton with the electron and hole

confined at z = ze and z = zh respectively. E2D
B is an average of εr(ze − zh) over the

(ze, zh) configuration space weighted by the probability of electron at ze and a hole

at zh.
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Figure 3.6: fe(z) and fh(z) for GaAs/AlAs QWs.

Solutions of fe in (3.30) and fh in (3.31) can be found in standard quantum

mechanics textbooks. Figure 3.6 gives a few examples for GaAs QW in and AlAs

barrier layers. It shows that with decreasing QW thickness d, the electron and hole

at first become more and more tightly confined by the QW. When d is too thin,

however, the wavefunction starts to spread outside of the QW, and electrons are

delocalized much more than the holes. A plane-wave solution is recovered in both

limits of d → 0 and d →∞.

g(r, Z) can be solved via variational methods. Following Leavitt and Little (ref-

erence (52)), a reasonably good and easy to calculate ansatz is:

g(r, Z) = 4g0 exp

{
η

√
r2 + Z2 − Z

a3D
B

}
, (3.34)

where η is the variational parameter, g0 is a normalization factor, and a3D
B is the Bohr

radius of 1s exciton in bulk. Let ν = Z/a2D
B , from (3.34) and (3.32) we have:

〈ε(ν, η)〉 = E3D
B

[
−η2 +

4η + 4η4ν2E12ην exp(2ην)

1 + 2ην

]
. (3.35)

E1(x) =
∫∞

x
(e−t/t)dt is the exponential integral, E3D

B is the binding energy of 1s

exciton in bulk. η takes the value that minimizes (〈ε(ν, η)〉) for given ν. Then the QW
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(b)

Figure 3.7: Binding energy of 1s exciton in GaAs/AlxGaAs QWs (a) Calculated using
equation (3.35) and (3.33). (b) From Greene et al. (reference (2)).
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exciton binding energy can be calculated using (3.33). Figure 3.7(a) shows the result

for GaAs QW with AlAs and Al0.3GaAs, AlAs, and infinite potential barrier layers.

Figure 3.7(b) shows the results calculated by Greene et al. (2). When d decreases,

E2D
B first increases from the bulk limit to an optimal QW thickness dopt ∼ 3 nm,

corresponding to the decrease of Bohr radius aB with tighter confinement. When d

is too thin, as shown in figure 3.6, overlap between fe and fh decreases while the

average |ze − zh| increases, hence E2D
B decreases.

3.3.3 Optical Transition of QW Excitons

A most important effect of quantum confinement is manifested in the optical transi-

tions of excitons in a QW compared to in bulk.

Firstly, the requirement of the momentum conservation condition in the optical

transition matrix element (equation (3.24)) is different. Due to QW confinement, the

z-direction and in-plane motion of the electron and hole are decoupled, the envelope

wavefunction of the electron and hole become,

χcke(r) = fe(z) exp(ike‖ · r‖) (3.36)

χvkh
(r) = fh(z) exp(ikh‖ · r‖) (3.37)

And the first term in equation (3.24) becomes:

∫

V

drχ∗cke
(r)χvkh

(r) =

∫

z

dzf ∗e (z)fh(z)

∫

S

dr‖ exp[i(kh‖ − ke‖) · r‖]. (3.38)

The first integral on the righthand side dictates that an optical transition only takes

place between electron and hole z-subbands with the same parity, such as the two

lowest energy bands (figure 3.6). The second integral requires momentum conser-

vation in the QW plane. Thus excitons in a QW couple to light with the same

in-plane wavenumber k‖ and arbitrary transverse wavenumber k⊥. QWs are much

more optically accessible than bulk materials.

Secondly, heavy holes in a QW only have inplane orbital angular momenta, hence
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conservation of the angular momentum means that heavy hole excitons always couple

to TE modes. Light hole excitons have one third of probability coupling to TE modes

and two thirds of probability to TM modes. The possible transitions which satisfy

the angular momentum conservation are summarized in figure 3.8

Figure 3.8: Optical transitions between electrons and holes that conserve total angular
momentum.

Finally, the exciton Bohr radius is reduced in 2D compared to 3D, leading to an

enhancement of the oscillator strength by (a3D
B /a2D

B )3.

This enhancement is often offset by a reduction in the overlap between the light

field and the exciton, because the longitudinal coherence length of a TE-mode photon

field is usually much longer than the QW thickness. To achieve stronger exciton-

photon coupling, it is necessary to also confine the photon field in the z-direction by

introducing a microcavity.

3.4 Semiconductor Microcavity

Figure 3.9 shows a typical structure of a semiconductor microcavity consisting of a

λc/2 cavity layer sandwiched between two distributed Bragg reflectors (DBRs). A

DBR is made of layers of alternating high and low refraction indices, each layer with

an optical thickness of λ/4. Light reflected from each interface destructively interfere,

creating a stop-band for transmission. Hence the DBR acts as a high-reflectance

mirror (Figure 3.10 (a)) when the wavelength of the incident light is within the
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Figure 3.9: Sketch of a semiconductor λ/2 microcavity.

stopband. The left-side DBR (or, bottom DBR) in figure 3.9 consists of 2N layers

with alternating refraction indices of n1 and n2, the first layer with refraction index n1

is next to a cavity layer with refraction index nc, while the last layer with refraction

index n2 is next to the substrate with reflection nt. For incident light from the cavity

side, the maximum reflectivity is at the center of the stopband (54) :

R2N
max =

(
1− nc

nt
(n2

n1
)2N

1 + nc

nt
(n2

n1
)2N

)2

. (3.39)

If the DBR has N + 1 layers with refraction index n1 and N layers with n2, such as

the right-side DBR (or, top DBR) in figure 3.9, then:

R2N+1
max =

(
1− nc

n1

nt

n1
(n2

n1
)2N

1 + nc

n1

nt

n1
(n2

n1
)2N

)2

. (3.40)

Rmax always increases with N and increases with the refraction index contrast of the

pair. If nc < n1 or n2 and nt > n1 or n2, as is often the case for a bottom DBR, the

maximum reflection is achieved with a DBR of 2N layers and with n1 > n2. In case

of a top DBR, light transmits into air which has nt = 1 < n1 or n2, then maximum

reflection is obtain with a DBR of 2N + 1 layers and with n1 > n2. If 1 − R ¿ 1,
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Rmax is approximated by:

R2N
max ' 1− 4nc

nt

(
n2

n1

)2N

R2N+1
max ' 1− 4ncnt

n2
1

(
n2

n1

)2N . (3.41)

Shown in figure 3.10(b) is the change of R2N+1
max with N for two different values of

n1/n2.
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Figure 3.10: (a) Reflection spectra of a typical DBR. (b) R2N
max vs. N . Crosses are

for a Al0.2GaAs/AlAs DBR with n1 = 3.43, n2 = 2.97, nc = 2.97 and nt = 3.6, at
the stopband center wavelength λ = 767.3 nm. Circles are for a YF3/ZnS DBR with
n1 = 2.43, n2 = 1.50, nc = 2.74 and nt = 3.6, at λ = 500 nm. The inset is 1−R vs.
N .

When two such high-reflectance DBRs are attached to a layer with an optical

thickness integer times of λc/2 (λc ≈ λ), a cavity resonance is formed at λc, leading

to a sharp increase of the transmission T at λc:

T =
(1−R1)(1−R2)

[1−√R1R2]2 + 4
√

R1R2 sin2(φ/2)
. (3.42)

where φ is the cavity round-trip phase shift of a photon at λc. If R1 ≈ R2 = R,

(1−R
2

)2 ≤ T ≤ 1 depending on φ. One characteristic parameter of the cavity quality
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is the cavity quality factor Q defined as:

Q
.
=

λc

∆λc

' π(R1R2)
1/4

1− (R1R2)1/2
, (3.43)

where ∆λc is the width of the resonance. An ideal cavity has Q = ∞. If the cavity

length is λ/2, Q is the average number of round trips a photon travels inside the

cavity before it escapes. Figure 3.11(a) give an example of the reflection spectrum of

a cavity with Q ' 4000. Figure 3.11(b) shows the field intensity distribution |E(z)|2

of a resonant TE-mode. The field is concentrated around the center of the cavity, its

intensity is amplified ∼20 times compared to the free space value. Yet unlike in a

metallic cavity, the field penetration depth into the DBRs is much larger. So effective

cavity length is extended in a semiconductor microcavity as:

Leff = Lc + LDBR

LDBR ≈ λc

2nc

n1n2

|n1 − n2| . (3.44)

The planar DBR-cavity confines the photon field in the z-direction but not in

plane, incident light from a slant angle θ relative to the z-axis has a resonance at

λc/ cos θ. As a result, the cavity has an energy dispersion vs. the inplane wavenumber

k‖:

Ecav =
~c
nc

√
k2
⊥ + k2

‖, (3.45)

where k⊥ = nc
2π
λc

. And there is a one-to-one correspondence between the incidence

angle θ and each resonance mode with inplane wavenumber k‖:

k‖ = nc
2π

λc

tan[sin−1(
sin θ

nc

)] (3.46)

k‖¿k⊥≈ 2π

λc

θ
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Figure 3.11: (a) Reflectance of an empty λ/2 microcavity. (b) The cavity structure
and field intensity distribution |Ez|2 of the resonant TE mode.
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Figure 3.12: (a) Incidence angle θ dependence of the cavity reflectance. (b) Cavity
dispersion Ecav vs. k‖ or θ
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In the region k‖ ¿ k⊥, we have:

Ecav ≈ ~c
nck⊥

(1 +
k2
‖

2k2
⊥

)

=Ecav(k‖ = 0) +
~2k2

‖
2(2π~/λcc)

=Ecav0 +
~2k2

‖
2mcav

. (3.47)

Thus the cavity photon acquires an effective mass of

mcav =
2π~
λcc

(3.48)

Figure 3.12 gives a numerical example of the angle-tuning, or energy and inplane

wavenumber dispersion of the cavity resonance.

3.5 Qunatum-Well Microcavity Polariton

When the GaAs QWs are placed at the antinodes of a semiconductor microcavity,

the J = 1 heavy hole exciton doublet strongly interacts with the confined optical

field of the cavity. If the rate of energy exchange between the cavity field and the

excitons becomes much faster than the decay and decoherence rates of both the cavity

photons and the excitons, an excitation in the system is stored in the combined system

of photon and exciton. Thus the elementary excitations of the system are no longer

exciton or photon, but a new type of quasi-particles called the polaritons.

Using the rotating wave approximation, the linear Hamiltonian of the system is

written in the second quantization form as:

Ĥpol = Ĥcav + Ĥexc + ĤI

=
∑

Ecav(k‖, kc)â
†
k‖ âk‖ +

∑
Eexc(k‖)ê

†
k‖ êky +

∑
~Ω(â†k‖,kc

êk‖ + âk‖ ê
†
k‖).

(3.49)

Here â†k‖ is the photon creation operator with inplane wavenumber k‖ and longitudinal
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wavenumber kc = k · ẑ determined by the cavity resonance. ê†k‖ is the exciton creation

operators with inplane wavenumber k‖. ~Ω is the exciton-photon dipole interaction

given by the exciton optical transition matrix element M (equation (3.28)), and we

used the condition that M is non-zero only between modes with the same k‖. The

above Hamiltonian can be diagonalized by the transformation:

p̂k‖ = Xk‖ êk‖ + Ck‖ âk‖ (3.50)

q̂k‖ = −Ck‖ êk‖ + Xk‖ âk‖ , (3.51)

And Ĥpol becomes:

Ĥpol =
∑

ELP (k‖)p̂
†
k‖ p̂k‖ +

∑
EUP (k‖)q̂

†
k‖ q̂k‖ . (3.52)

The new operators (p̂k‖ ,p̂
†
k‖) and (q̂k‖ ,q̂

†
k‖) are the new quasi-particles, or, eigen

modes, of the system. They are called the lower (LP) and upper polaritons (UP),

corresponding to the lower and upper branches of the eigen energies. A polariton is

a linear superposition of an exciton and a photon with the same inplane wavenumber

k‖. Since both excitons and photons are bosons, so are the polaritons. The exciton

and photon fractions in each lower polariton (and vice versa for upper polaritons) are

given by the amplitude squared of Xk‖ and Ck‖ which are referred to as the Hopfield

coefficients (55), they satisfy:

|Xk‖|2 + |Ck‖|2 = 1. (3.53)

Let ∆E(k‖) = Eexc(k‖)− Ecav(k‖, kc), Xk‖ and Ck‖ are given by:

|Xk‖|2 =
1

2
(1 +

∆E(k‖)√
∆E(k‖)2 + 4~2Ω2

),

|Ck‖|2 =
1

2
(1− ∆E(k‖)√

∆E(k‖)2 + 4~2Ω2
), (3.54)

At ∆E = 0, |X|2 = |C|2 = 1
2
, LP and UP are exactly half photon half exciton.
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Figure 3.13: Anti-crossing of LP and UP energy levels when tuning the cavity energy
across the exciton energy by transfer matrix calculation.

The energies of the polaritons, which are the eigen energies of the Hamiltonian

(3.52), are deduced from the diagonalization procedure as:

ELP,UP (k‖) =
1

2

[
Eexc + Ecav ±

√
4~2Ω2 + (Eexc − Ecav)2

]
, (3.55)

When the un-coupled exciton and photon are at resonance, Eexc = Ecav, lower and

upper polariton energies have the minimum separation EUP − ELP = 2~Ω, which is

often called the ‘Rabi splitting’ in analogy to the atomic cavity Rabi splitting. Due

to the coupling between the exciton and photon modes, the new polariton energies

anti-cross when the cavity energy is tuned across the exciton energy. This is one

of the signatures of ’strong coupling’ (figure 3.13). When |Ecav − Eexc| À ~Ω, the

polariton energies reduce to the same as photon and exciton energies due to the very

large detuning between the two modes, and polariton is no longer a useful concept.

So the detuning is assumed to be comparable to or less than the coupling strength in

our discussions unless specified.
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We use ∆ as the exciton and photon energy detuning at k‖ = 0:

∆
.
= Ecav(k‖ = 0)− Eexc(k‖ = 0), , (3.56)

and define

k‖c
.
=

√
nckc

2Ω

c
, (3.57)

for which Ecav(k‖c) − Ecav(0) ∼ ~Ω. Given ∆, equation (3.55) gives the polari-

ton energy-momentum dispersions. At k‖ ¿ kc‖, the dispersions are approximately

parabolic:

ELP, UP (k‖) ' ELP, UP (0) +
~2k2

‖
2mLP, UP

. (3.58)

The polariton effective mass is the weighted harmonic mean of the mass of its exciton

and photon components:

1

mLP

=
|X|2
mexc

+
|C|2
mcav

, (3.59)

1

mUP

=
|C|2
mexc

+
|X|2
mcav

, , (3.60)

where X and C are the exciton and photon fractions given by (3.54). mexc is effective

exciton mass of its center of mass motion, and mcav is the effective cavity photon

masses given by (3.48). Since mcav is much smaller than mexc,

mLP (k‖ ∼ 0) 'mcav/|C|2 ∼ 10−4mexc,

mUP (k‖ ∼ 0) 'mcav/|X|2. (3.61)

The very small effective mass of LPs at k‖ ∼ 0 determines the very high critical

temperature of phase transitions for the system. At large k‖ À kc‖, Ecav(k‖) −
Eexc(k‖) À ~Ω, dispersions of the LP and UP converge to the exciton and photon

dispersions respectively, and LP has an effective mass mLP (k‖ À kc‖) ∼ mexc. Hence
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the LP’s effective mass changes by four order of magnitude from k‖ ∼ 0 to large k‖.

This peculiar shape has important implications in the energy relaxation dynamics of

polaritons, as will be discussed in chapter 5 and 6. A few examples of the polariton

dispersion with different ∆ are given if figure 3.14.

When taking into account the finite lifetime of the cavity photon and QW exciton,

the eigen-energy equation (3.55) is modified as:

ELP,UP (k‖) =
1

2
[Eexc + Ecav + i(γcav + γexc)

±
√

4~2Ω2 + [Eexc − Ecav + i(γcav − γexc)]2
]
. (3.62)

Here γcav is the out-coupling rate of a cavity photon due to imperfect mirrors, and

γexc is the non-radiative decay rate of an exciton. Thus the coupling strength must

be larger than half of the difference in decay rates to exhibit anti-crossing, i.e., to

have polaritons as the new eigen modes. In another word, an excitation must be

able to coherently transfer between a photon and an exciton at least once. When

~Ω À (γcav−γexc)/2, we call the system in the strong coupling regime. In the opposite

limit when excitons and photons instead are the eigen modes, the system is called to

be in the weak coupling regime, and the radiative decay rate of an exciton is given

by the optical transition matrix element. We are mostly interested in microcavities

with γexc ¿ γcav ¿ ~Ω, then equation (3.55) gives an accurate approximation of the

polariton energies.

As a linear superposition of an exciton and a photon, the lifetime of the polaritons

is directly determined by γexc and γcav as:

γLP = |X|2γexc + |C|2γcav, (3.63)

γUP = |C|2γexc + |X|2γcav. (3.64)

In current semiconductor samples, we have γcav = 1 ∼ 10 ps and γexc ∼1 ns, hence the

polariton lifetime is mainly determined by the cavity photon lifetime: γLP ' |C|2γcav.

Polariton decays in the form of emitting a photon with the same k‖ and total energy



CHAPTER 3. MICROCAVITY POLARITONS 48

-5 0 5

1.62

1.64

1.66

e
n
e
rg

y
 (

e
V

)

dispersions

-5 0 5
0

0.5

1
Hopfield coefficients

-5 0 5

1.62

1.64

1.66

e
n
e
rg

y
 (

e
V

)

-5 0 5
0

0.5

1

-5 0 5

1.6

1.62

1.64

e
n
e
rg

y
 (

e
V

)

k
||

(mm
-1

)

-5 0 5
0

0.5

1

|C(k
||
)|

2

|X(k
||
)|

2
E

UP
(k

||
)

E
LP

(k
||
)

E
cav

(k
||
)

E
exc

(k
||
)

(a)

(c)

(b)

k
||

(mm
-1

)

Figure 3.14: Polariton dispersions and corresponding Hopfield coefficients at (a) ∆ =
2~Ω, (b) ∆ = 0, and (c) ∆ = −2~Ω.
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~ω = ELP, UP . The one-to-one correspondence between the internal polariton mode

and the external out-coupled photon mode lends great convenience to experimental

access to the system. The external emitted photon field carry direct information

of the internal polaritons, such as the energy dispersion, population per mode, and

statistics of the polaritons. It is mainly through the emitted photons that we study

the internal polaritons.

Comparison to Bulk Polaritons

In bulk semiconductors, due to the full overlap of the cavity and exciton envelop

wavefunctions (both are plane waves), the coupling strength is relatively large, and

polaritons are often eigen modes of the system. For GaAs, we have 2~Ω ∼ 8 meV.

However, in bulk with 3D translation symmetry, a polariton has the same wavenumber

as that of its exciton and photon constituents: k ∼ nbulkEexc/~c ∼ kc, rather than

k‖ ∼
√

k2 − k2
c ¿ kc in case of a QW polariton. Hence a bulk polariton (in the region

|Ecav−Eexc| comparable to ~Ω) always has large phase velocity and kinetic energy. It

is vulnerable to various dephasing channels in a solid. And the thermal equilibrium

state of the system (if assuming infinite lifetime) consist of mostly k ∼ 0 photon-like

modes, rather than k‖ ∼ 0 LPs in case of a QW-microcavity. Furthermore, a bulk

polariton does not couple out of the system till it hits the surface of the crystal. It is

subject to scattering by crystal defects and impurities as well as other excitons and

polaritons. Hence the ’lifetime’ of a polariton or exciton inside the crystal depends

on the distribution and density of the polaritons, photoluminescence from the crystal

carry only indirect information of the polaritons inside. Moreover, inside the bulk,

the LP branch is outside of the optical cone (figure 3.15) and do not directly couple

to light. It is in general very difficult to study a bulk system in experiments.

Although the field-exciton overlap in z-direction is small for a QW, the field in-

tensity of the cavity mode can be amplified by the cavity confinement. Moreover, the

decreased exciton Bohr radius in 2D leads to a larger mesoscopic enhancement effect

of (a3D
B /aQW

B )3/2. As a typical example, a 20 nm wide GaAs QW in a λ/2 cavity with

Q ∼ 2000 has a field-exciton overlap of ∼ 0.2, and an observed 2~Ω = 4 meV. By



CHAPTER 3. MICROCAVITY POLARITONS 50

k

E

optical

cone UP

LP

Eexc

E=0
kz

Figure 3.15: Illustration of the dispersions of bulk upper (UP) and lower polaritons
(LP), using parameters for GaAs and a coupling strength (hence the UP-LP splitting)
50 times larger than the actual value. With an actual coupling strength, the LP-UP
splitting would be barely visible in the current scale.

using thinner QWs to take advantage of a smaller Bohr radius, and using multiple

QWs to increase the field overlap, 2~Ω = 15 meV was measured in a λ/2 cavity with

twelve 7-nm wide GaAs QWs. The coupling strength is even larger than in the bulk

case.

Finally, QW-microcavity systems are more flexible than bulk system with a few

very useful tuning parameters such as the QW thickness, number and position, and

the cavity length.

3.6 Very Strong Coupling Regime

The definition of polariton operators by equations (3.49) to (3.52) follows the proce-

dure that first diagonalizes the electron-hole Hamiltonian by exciton operators, and

then diagonalizes the exciton-photon Hamiltonian by polariton operators, treating

the excitons as structure-less quasi-particles. When the exciton-photon coupling is so

strong as to become comparable to exciton binding energy, the question arises whether

or not the above procedure is still valid. More rigorous is to treat the electron, hole
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and photon on equal footing (56; 57), and one finds that the LPs then consists of

excitons with an even smaller effective Bohr radius and larger binding energy, while

the opposite holds for UPs. This named the very strong coupling effect. It can also

be understood as a consequence of sub-band mixing of excitons (mixing between 1s,

2s, 2p... exciton levels).

Following Khurgin (56), the Hamiltonian of the system is written as:

Ĥ = Ĥk + Ĥeh + Ĥeh−p + Ĥp. (3.65)

It consists of the kinetic energy term of the electron-hole pair Ĥk, the Coulomb

attraction between the electron and hole Ĥeh, the coupling between the electron-hole

pair and photon Ĥeh−p and the photon energy Ĥp:

Ĥk =
~2

2mr

∇re−h
+
~2

2M
(3.66)

Ĥeh = − e2

εre−h

(3.67)

Ĥeh−p = − ep̂

m0

√
~/2εωV

(âk‖ + â†k‖) (3.68)

Ĥp = ~ω(k‖)â
†
k‖ âk‖ . (3.69)

Here V = d ·S is the effective volume of the cavity, k‖ is the inplane wavenumber

of the photon mode and the center of mass motion of the electron-hole pair, kz

is the resonance wavenumber of the cavity: kz ∼ 2π/Lc, and the photon energy

is ~ω(k‖) = ~c(k2
z + k‖

2)1/2. The polariton wavefunction |Ψpol〉 to diagonalize the

Hamiltonian is still a linear superposition of an exciton and a photon, yet the exciton

wavefunction takes the variational form:

φ0(r) =

√
2

π

λ

aB

e−λr/aB =
1

S

∑

kr

Akre
ikr·r, (3.70)

with λ as the variational parameter. The corresponding effective Bohr radius becomes

aB/λ. Here aB is the 2D exciton Bohr radius aB = ~2ε0/(2e
2mr) and kr is the
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wavenumber of the relative motion of the electron and hole. Then we have:

|ψpol〉 = X
∑

kr

1

S
Akr |kr, k‖〉+ C|k‖, kz〉, (3.71)

|X|2 + |C|2 = 1.

And:

E = 〈ψpol|Ĥ|ψpol〉
= Eb0[α

2λ2 − 2α2λ− αβγλ + β2∆(0) + ∆(k‖)]. (3.72)

Here Eb0 = ~2/(2mra
2
B) is the binding energy of a 2D exciton, γ

.
= ~Ω/Eb0, and

∆(k‖)
.
= ~ω(k‖)/Eb0 is the ratio of the coupling strength to the bare exciton binding

energy. The bandgap energy Eg is used as the energy zero reference. Minimizing

E with λ, we obtain the effective Bohr radius aB/λ and the LP or UP energies E

depending on X > 0 or X < 0.

As an example, we use the parameter for S-GaAs-I to calculate λ for various

coupling strength, and plot in figure 3.16 the resulting a∗B = aB/λ and ELP and

EUP . The exciton Bohr radius a∗B shrinks in the LP branch while increases in the UP

branch. Both ELP and EUP are lowered compared to the value without taking into

account the very strong coupling effect.

3.7 Polaritons for BEC Study

3.7.1 Uniqueness of Polaritons

As composite bosons with not only fermionic but also photonic constituents, polari-

tons are a unique system for exploring both cavity QED and many particle physics. A

variety of quantum phases are predicted for polaritons, including BEC, superfluidity,

crossover from BEC to Bardeen-Cooper-Schrieffer states (6; 7; 1; 8; 9). Compared

to other BEC systems, such as atomic gases and excitons, polaritons have vastly
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different length, energy and time scales. (section 1.2, table 1.1). Beside as an essen-

tially different system of fundamental interest, polaritons also possess many unique

advantages for BEC research.

First of all, the critical temperature of polariton condensation ranges from a few

kelvin to above room temperature, which is four order of magnitude higher than that

of excitons and eight orders of magnitude higher than that of atoms. It originates

from the very light effective mass of polaritons due to the mixing with cavity photons

((2.16) and (3.59)).

From the experimental viewpoints, the microcavity polariton is a most accessible

system. There exists a one-to-one correspondence between an internal polariton in

mode k‖ and an external photon with the same energy and inplane-wavenumber, prop-

agating at an angle θ from the growth direction. The polariton is coupled to this pho-

ton via its the photonic component with a fixed coupling rate (3.64). Hence informa-

tion of the internal polaritons can be directly measured from the external photon field

by standard quantum optical techniques, including the polaritons’ energy-momentum

dispersions, populations per mode, distribution functions, and correlation functions.

Conversely, polaritons are conveniently excited, resonantly or non-resonantly, by op-

tical pumping. The excitation density spans the whole density range of interest.

A major enemy against quantum phase transitions in solids is the unavoidable

compositional and structural disorders. By dressing the excitons with the microcav-

ity vacuum field, extended coherence is maintained in the combined excitation in

a microcavity polariton system, and the detrimental effects of disorders are largely

suppressed.

Saturation and phase space filling pose another obstacle against BEC of composite

boson in solids. In a microcavity system, multiple QWs can be used to distribute the

exciton density for a given total polariton density: nQW
exc = nLP /NQW , where NQW is

the number of QWs.

The main challenge for realizing of a thermodynamic phase transition and sponta-

neous coherence has always been efficient cooling of hot particles. It is particularly so

for relatively short lived quasi-particles, excitons and polaritons, in solids. The small
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effective mass hence small energy density of states of polaritons comes to rescue here.

Due to the small DOS, a quantum degenerate seed of low energy polaritons is rel-

atively easy to achieve. Hence bosonic final state stimulation effect is pronounced,

which greatly accelerates energy relaxation of the polaritons.

Finally, the microcavity system of a given composition has two very useful ad-

justable parameters: the number of QWs NQW and the cavity-exciton detuning ∆.

For example, NQW changes the exciton-photon coupling strength Ω ∝ √
NQW as

well as the polariton-polariton scattering rate ∝ nQW
exc NQW . When Ω is increased to

become comparable with the exciton binding energy, the very strong coupling effect

further reduces exciton Bohr radius in the LP branch and increases the exciton sat-

uration density. Detuning ∆ is very conveniently changed due to the taper of the

cavity thickness across each wafer. It tunes the exciton and photon fractions in the

LPs, hence the dispersions and lifetimes of the LPs. It has important implications in

LP equilibration which will be discussed in chapter 6.

3.7.2 Critical Densities of 2D Microcavity Polaritons

Microcavity polariton as a 2D system does not have a BEC transition at finite tem-

perature in the thermodynamic limit. Yet BEC exists if we impose a spatially varying

in-plane confinement potential or if the system size is finite (section 2.7). The former

will be discussed briefly in chapter 7, while the latter is usually the scenario in this

thesis. In figure 3.17, we compare the critical density of KT transition of LPs and

quasi-BEC in a finite-size system calculated following Kavokin et al. (58).

3.7.3 BEC-BCS Crossover

An important parameter missing in the table 1.1 is the particle-particle interaction

strength, or, the scattering length a. For bosonic atom gases, a is usually much

less than the particle spacing, satisfying the diluteness condition. In di-atomic gases

where each di-atomic molecule consists of two fermionic atoms, a can be defined

for the interaction between two fermi-atoms. a has a hyperbolic dependence on an
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twelve QWs (the upper one). Parameters of S-GaAs-I are used.

external magnetic field which tunes a from a small negative value (a < 0, kf |a| ¿
1, kf is the wave-vector at the Fermi surface) to a very large negative or positive

value at the unitary condition (kf |a| À 1) near the Feshbach resonance and to a

small positive value (59). Correspondingly, below a critical temperature, the system

exhibits a crossover from a degenerate fermi gas described by standard BCS theory

to a degenerate bose gas with a BEC phase.

A similar BEC to BCS crossover also exists in exciton and polariton systems (7; 1).

Here the pairing is between an electron and a hole, and the crossover is controlled by

the inter-particle spacing n−1/d, which is in turn controlled by the external pumping
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density. The exciton (polariton) gas behaves as a weakly interacting Bose gas when

the density is low (nexc ¿ nMott), with the scattering length approximated by the

exciton Bohr radius aB. Increasing the exciton density to around nMott, aB becomes

comparable to particle spacing and the system is in the BEC-BCS crossover regime.

At high densities, we have an electron and hole plasma with screened Coulomb inter-

actions, which coherently couple to a cavity photon field.

In the current thesis, however, we focus on the BEC regime of polaritons, where the

excitation density is below the exciton saturation density, and the bosonic description

of polaritons and excitons are valid.

3.8 Summary

In summary, we reviewed in this chapter the definition and properties of quantum-well

microcavity polaritons, and their uniqueness for BEC research. In the next chapter,

we explain the actual samples used for this thesis and how they are characterized

experimentally.



Chapter 4

Experimental Systems

4.1 Sample Materials and Structures

An optimal microcavity system for polariton BEC shall have:

1. High quality cavity, hence long cavity photon and polariton lifetime.

2. Large polariton-phonon and polariton-polariton scattering cross-section, hence

efficient polariton thermalization.

3. Small exciton Bohr radius and large exciton binding energy, hence high exciton

saturation density.

4. Strong exciton-photon coupling, hence small decoherence rate. It requires both

large exciton oscillator strength and large overlap of the photon field and the

QWs.

To address these issues, a careful choice of material is important. For given mate-

rial, the exciton saturation density and exciton-photon coupling also depend on the

structure design.

58



CHAPTER 4. EXPERIMENTAL SYSTEMS 59

4.1.1 Choice of Material

The choice of direct bandgap semiconductor depends first on the epitaxial growth

technology – that is, whether or not a high quality quantum structure can be fabri-

cated. The best fabrication quality of both quantum well and microcavity has been

achieved with AlxGaAs (0 ≤ x ≤ 1), due to the close match of their lattice con-

stants and relatively large bandgap difference: at 4 K, GaAs has alat =5.64 Åand

Eg =1.519 eV, AlAs has alat =5.65 Åand Eg =3.099 eV. Nearly strain and defect free

GaAs QWs are now conventionally grown between AlxGaAs with inhomogeneous

broadening of exciton energy limited mainly by mono-layer QW thickness fluctua-

tion. Nearly defect-free microcavity structures are grown with ∼30 AlAs/GaAs pairs

in DBRs and cavity Q ∼ 2× 104.

One limitation on a higher Q is the number of layers in the DBR. It is difficult

to grow a large number of layers in a structure, because growth conditions vary with

time, also because effects of strain and defects in lower layers (layers grown earlier)

accumulate and propagate to later grown upper layers. Another constraint on Q is

the relatively small refraction index contrast between GaAs and AlAs (section 3.4).

If GaAs QWs are used in a microcavity, DBRs must be made of AlAs/AlxGaAs with

a large enough x so that the DBRs are not absorptive at the polariton energies.

x ≤ 0.15 is often used with n1/n2 ∼ 1.17 for the DBR layers.

An alternative is to use InxGaAs QWs instead, and use GaAs/AlAs DBRs. InAs

has alat = 6.05 Å, Eg = 0.417 eV . With 0.03 < x < 0.1, there is enough QW

confinement and tolerable strain. However, InxGaAs has a larger Bohr radius and

smaller oscillator strength, rendering it less suitable for BEC study than GaAs-QW

microcavities.

Another popular choice is the CdTe-based II-IV system, with CdTe QWs and

MgxCdTe and MnxCdTe barrier and DBR layers. The larger lattice mismatch is com-

pensated by larger binding energy and larger oscillator strength (hence more tolerant

for inhomogeneous broadening), as well as larger refraction index contrast (hence less

layers needed in DBRs). The smaller Bohr radius of CdTe excitons also allows a
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larger saturation density. The problem with this material system is the less efficient

polariton-phonon scattering. Thus a pronounced energy relaxation bottleneck often

persists, which prevents condensation in the LP ground state (30; 31).

More recently, a lot of efforts are devoted to developing GaN and ZnSe based

material systems with small lattice constants. They have a much larger exciton

binding energy and bandgap, hence promise room temperature operation at visible or

ultra-violet wavelengths. Yet the growth and fabrication techniques are still far from

mature, and samples in the strong-coupling regime are rarely available at present.

In summary, we choose GaAs-based samples for studying fundamental properties

of microcavity polaritons, mainly based on the following two considerations:

1. Best growth quality of the microcavity and quantum well – due to good lattice

matching between AlAs and GaAs and well developed fabrication techniques.

2. Efficient energy relaxation to branch-bottom – due to relatively large Bohr

radius and scattering cross-sections.

The compromise is a relatively low saturation density and small oscillator strength

compared to systems with smaller Bohr radii. Fortunately, multiple narrow QWs can

be used to alleviate these problems without much sacrifice in the sample quality.

Table 4.1 compares the most relevant parameters of these various materials, they

are used for all calculations in this thesis.

4.1.2 Structure Design Considerations

Since the exciton-photon coupling scales as the square root of the field amplitude and

field-exciton overlap, to achieve maximum exciton-photon coupling, a short cavity is

preferred with narrow QWs placed at its antinode(s). A λ/2 cavity gives the largest

field amplitude at the cavity center for given reflectance of the DBRs. A narrow QW in

general leads to smaller Bohr radius and enhanced oscillator strength (section 3.3.2

and figure 3.7). To increase the field-exciton overlap, one can use multiple closely

spaced narrow QWs, and even put QWs in the two antinodes next to the central one
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Table 4.1: Comparison of Material Parameters

0.78--0.40.111
heavy hole in-plane

mass mhh|| (me)

~20~20~25~10
binding energy

EB (meV)

2-32-387
QW thickness

d (nm)

2.82.443.263.60
refraction index

n (at Eexc)

0.56770.31890.64820.5642
lattice constant

a (nm)

1011~12

--

~3

2.670

ZnSe

1011~12

--

~3

3.507

GaN

74.3

single-QW
Rabi splitting

W (meV)

~5/2.8~15/9
Bohr radius aB (nm)

(bulk/QW)

1.601.519band gap Eg (eV)

5 x 10114 x 1010
exciton saturation
density per QW

I (cm-2)

CdTeGaAs

--
-plane

||

E ( )

2.670

-QW

B

( )

10

-2)

• Temperature used is 4 K for GaAs and CdTe, and 300 K for GaN and ZnSe.

• A value is not quoted when no accurate value available.
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— so long as the field amplitude is more or less uniform at all QW positions. The

difference in field amplitude E at each QW has an effect similar to inhomogeneous

broadening of the QW exciton linewidth (60). Using multiple and narrow QWs has

another important benefit — an increased total saturation density of excitons, which

scales with N/a2
B. It becomes critical when studying the nonlinear properties of

polaritons.

Details of the structure and compositions of samples used in this thesis are given

in appendix A, including: S-CdTe, a double-CdTe QW λ/2 microcavity, and S-GaAs-

I and S-GaAs-II, two sample both with twelve-GaAs QW in a λ/2 microcavity. Most

studies are carried out with S-GaAs-I and S-GaAs-II, the structure is depicted in

figure A.1. To maximize the overlap of the photon field and excitons, we use a λ/2-

cavity and distribute the QWs among the three central anti-nodes of the cavity field.

NQW = 12 QWs are used, so the oscillator strength Ω is increased by a factor of

∼ √
12 to Ω = 7.5 meV. Ω becomes comparable to the binding energy of a bare

exciton Eb ≈ 10 meV, thus the effect of ’very strong coupling’ is expected to further

enhance the exciton-photon coupling and shrink the exciton Bohr radius. Moreover,

using twelve QWs also reduces the exciton density per QW by a factor of 12 for a

given total polariton density. This helps to avoid exciton saturation before reaching

the polariton phase transition threshold.

4.2 Reflection Measurement

One first experiments to carry out with a sample are to find its eigen modes, such as

by a reflection measurement. Reflection measurement with low-intensity input light

is a passive measurement which gives the eigen modes of the undisturbed system, as

shown by the transfer matrix calculation results (section 3.4 and 3.5).

4.2.1 The Setup

Figure 4.1 shows two experimental setups for measuring reflectance of a microcavity

sample at low temperature. The sample is attached to a copper sample holder in a
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Figure 4.1: Setup for reflection measurement, (a) using an aspheric lens with a large
diameter, (b) using an objective lens.

vacuum chamber by indium solder or vacuum grease, the sample holder is cooled by

continuous flow liquid Helium.

The setup in figure 4.1 (a) uses a large diameter aspheric lens as both focusing and

collection lens. An input beam is aligned parallel to the the optical optical axis with

a displacement ∆x, and is focused onto a spot ∼ 100 µm in diameter on the sample

surface with an incident angle θ ∼ arctan(∆x/f) (f is the focal length of the lens).

The reflected beam is picked up by a thin mirror or a beam splitter and sent into a

spectrometer which records its I(λ). If the sample is replaced by a reference mirror

with reflectance Rref , then the ratio of the two reflected intensities corrected by Rref

gives the reflectance of the sample. This setup is relatively simple and angle-resolved

reflectance is conveniently measured for θ < 20◦ with a resolution ∆θ ∼ 6◦. θ and ∆θ

are limited mainly by the input beam width (∼ 4 mm) and effective lens diameter

(∼ 30 mm). This setup is most suitable when the sample surface is relatively far

away from the cryostat’s front window and there is no small-structures on the sample

surface (such as steep change of cavity length or pillar structures, etc.). We normally

use a 200 W halogen lamp as the input light, which has a relatively flat spectral
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Figure 4.2: (a) Measured reflectance of sample S-CdTe-I. (b) Raw reflection spectra
from the sample and from the reference mirror, corresponding to the bottom spectrum
in (a).

distribution and supplies sufficient intensity at the near-infrared spectral region of

interest.

Figure 4.2 (a) shows a set of reflection spectra measured for S-CdTe with this

setup at detuning ∆ ∼ 0 and θ = 0. The dips at the resonances are deep and broad,

indicating large linewidth of the uncoupled exciton and photon modes. Figure 4.2

(b) gives an example of the raw reflection spectra from the sample and from the

reference mirror, the latter is a product of the white light spectral distribution and

the spectrometer response function.

The setup in figure 4.1 (b) works in the same way except that an objective lens is

used in place of the aspheric lens. An objective lens in general has a short working

distance and small aperture, hence the sample surface needs to be very close to the
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Figure 4.3: Reflectance spectra of sample S-GaAs-III at different temperatures, mea-
sured with different NA of the collection optics: (a) NA ∼ 0.5, (b) NA ∼ 0.2, (c) NA
< 0.1.

window (∼ 1 mm for Janis ST-500 cryostat), and angle-resolved measurement is

difficult. The upside is that the input beam can be focused to a very tight spot by

using a near-Gaussian input beam and an objective with a large numerical aperture

(NA). Sample surface illumination and imaging are also conveniently integrated with

this setup. Hence it is most useful when one wants to closely monitor the position of

the spot on the sample surface.

With a proper choice of the objective’s NA and a pinhole in the reflection path, ∆θ

can be controlled accurately. Smaller ∆θ can be achieved at the expanse of collection

efficiency and is only limited by the signal-to-noise ratio of the measured reflectance

spectra. Figure 4.3 compares how the data quality is influence by NA (or, ∆θ) of the

collection optics. With increasing NA, the resonance dip is broadened by contribution

from modes with k‖ > 0, due to the relatively steep increase of LP energy with in-

plane wavenumber.When too large a NA is used, shallow resonances are even masked

by noise (such as the resonance at the shorter wavelength in the top of Figure 4.3 (a)).
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4.2.2 Cavity Tuning

These reflection spectra reveal a few pieces of importation information about the

sample. Firstly, we notice that, in figure 4.2 (a) and figure 4.4 (a), the double reso-

nances tune with the position on the sample. This is because there is a natural wedge

of the cavity length by growth, and the cavity resonance is tuned across the sample

while the QW exciton resonance is constant within its linewidth. Anti-crossing of

the double resonances vs. position on the sample clearly confirms that the sample is

in the strong coupling regime. By fitting the tuning curves, we can find the exciton

resonance and the normal mode splitting at zero detuning, as illustrated in figure 4.4

(b). Finally, the depth and width of the resonance dips are indicators of the quality

of the microcavity. At a large negative detuning, the linewidth of a dip corresponding

to the photon-like mode gives a good estimate of the linewidth, hence the lifetime, of

the uncoupled cavity mode.

4.3 Photoluminescence Measurement

As discussed in section 3.5, an internal polariton of certain k decay with a fixed

rate γLP (k) to an external photon mode at certain angle θ with the same energy

ELP (k) and inplane wavenumber k. Hence dynamical and statistical properties of

polaritons are directly conveyed to the external photon flux; polaritons are directly

and conveniently studied by their photoluminescence (which should be distinguished

from the conventional photoluminescence due to radiative recombination of a quasi-

particle). Conversely, polaritons can be resonantly pumped to a chosen state by a

laser. In all the experiments discussed here, we use a mode-locked Ti-Sapphire laser

with a pulse duration of ∼ 3 ps and a repetition rate of 78 MHz.

4.3.1 Momentum Space Mapping

Figure 4.6 shows a typical setup for angle-resolved photoluminescence measurements.

A doublet lens focuses the incident pump beam from a slant angle to a spot 15 to
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Figure 4.6: Illustration of the experimental setup for angle-resolved photolumines-
cence measurement.

50 µm in diameter on the sample. The emission is collected by a fiber-coupled lens

with an angular resolution of 0.5◦ − 1◦ which is in turn connected to a spectrometer.

Both pump and collection optics are on the extended rails of a goniometer centered

at the sample. In this way, a wide range of incidence and collection angles can be

accessed corresponding to different momentum states of polaritons.

Figure 4.7 (a) shows a 2D plot of a serial of recorded spectra from S-GaAs-II at zero

detuning. The collection angle θ is scanned from −30◦ to +30◦ with 1◦ increment.

Pump is resonant with the bare exciton energy at 1.597 eV and arrives from 45◦

relative to the sample growth direction. UP is not populated (EUP −ELP ∼ 50kBT )

and only the LP emission is detected. From the LP peak position at each angle, we

map out the LP energy dispersion vs. the LP in-plane wavenumber k‖ and compare it

to the calculated ones. By integrating over each LP peak and taking into the account
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Figure 4.7: (a) A 2D plot of the photoluminescence intensity from S-GaAs-II at ∆ = 0
vs. energy and in-plane wavenumber. The crosses are emission peak positions, the
solid line is the calculated LP dispersion, and the dashed line is the calculated cavity
dispersion with its origin off set to compare with the LP dispersion. (b) The LP
momentum distribution obtained from (a).

the LP DOS, the momentum distribution of LPs is obtained as shown in (b).

If serials of angle-scanned spectra are taken at different positions on the sample,

we obtain a set of dispersion curves measured by photoluminescence. We can fit these

curves with the LP dispersion in equation (3.55). The exciton resonance Eexc and LP-

UP splitting 2~Ω are two common fitting parameters for all the curves, and detuning

∆ at k‖ = 0 is a curve dependent fitting parameter. Good agreement between fitting

and experimental curves are obtain as shown in figure 4.8, thus obtained Eexc and

2~Ω are also consistent with results from the reflection measurement.

4.3.2 Real Space Imaging

Complimentary to the momentum-space mapping, the setup in figure 4.9 images the

real-space polariton distribution using an objective lens with a large NA (0.55–0.65).

The image is recorded by a charge-coupled camera. The overall resolution is 1–2µm.
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The incident pump beam in this setup can arrive either from a large θin > 50◦ or from

z−direction at θin = 0◦. The former case allows resonant pumping of corresponding

polariton modes. The latter case allows a tightly focused pump spot down to 2µm

in diameter, yet the objective also collects intense back reflected and scattered pump

light and the pump wavelength often needs to be far off the signal’s wavelength.

Figure 4.10 (a)–(c) show three recorded luminescence images from of S-GaAs-I at

zero-detuning position, pumped resonantly from θin = 50◦. Both the scattered pump

and PL signals are detected in (a). A narrow bandpass filter in the collection path

can be used to filter out either the scattered pump (in (b)) or the LP signal (in (c)).

At a higher pump level, the LP signal grows to much stronger than the scattered

pump, and only the LP signal is detected within the dynamic range of the streak

camera, as illustrated in (d).

If a pinhole is placed at the image plane of the sample, it serves as a spatial filter

for measuring photoluminescence from selected regions on the sample surface.
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4.3.3 Time Resolved Measurement

If the collected light is sent to a streak camera, time resolved photoluminescence

is measured. We use a Hamamatsu Streak Camera with a time resolution < 2 ps.

A 50 cm monochromator is attached to the front of the streak camera which may

degrade the time resolution. When using the lowest grating of the spectrometer with

100-grooves per millimeter and a spectral resolution of ∼ 1 nm, the time resolution

increases to ∼ 3 ps. The streak camera is triggered by the same mode-locked Ti-

Sapphire laser used for pumping. Instability of the mode-locked laser operating in

the pico-second mode causes time jitters of the streak signal, hence in practice, with

an average integration time of about one minute per spectrum, the time resolution is

4 to 5 ps.
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Figure 4.11 shows a few examples of the measured, angle-resolved and time-

resolved spectra. The first panel is in the spectral window near the pump energy,

and a faint scattered pump signal is recorded, which serves as the time-zero in pulsed

experiments.

4.3.4 Intensity Correlation Measurement

If the collected light is sent into a Hanbury Brown-Twiss (HB-T) type setup, the time

domain auto-correlation g(2) of the emission measured. Figure 4.12 illustrates one HB-

T setup we used. Emission light collected by a multi-mode fiber is sent to a 50/50

beam splitter and to two EG&G single-photo-counters-modules (SPCMs) consisting

of low noise photo avalanche diodes. The output of the SPCMs are then sent to

a time-to-amplitude converter (TAC) which is in turn connected to a multi-channel

analyzer (MCA). The MCA records a histogram of the time intervals τ = t1 − t2

between the detection of one photon at t1 by a first SPCM (the one labeled as ’start’)

and the detection of a second photon at t2 by the second SPCM (the one labeled as

’end’).

Monocromator

beam
splitter

single photon
counter

PL signal

start

stop

Time Interval
Counter

mirror

10-nm
bandpass

filter

output

input

self-correlation

cross-correlation

Figure 4.12: A realization of Hanbury Brown-Twiss measurement with single photon
counters. For auto-correlation measurement, use a single-core fiber, the beam splitter
and the mirror (red solid path). For cross-correlation, use a double-core fiber bundle
to carry the two input and output signals (blue dashed path).
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Figure 4.13: Histograms corresponding to g̃(2)(0) = 1 and g̃(2)(0) = 1.5.

We shielded the setup as well as the fibers with black flock paper and tape, and

measured dark counts of the SPCMs are 150 ∼ 300 s−1 which sets the lower bound of

the measurable intensity of the photon flux. After each detection event, the SPCM

has a dead time of about 50 ns before it can detects a second event, hence the photon

flux should be attenuated when necessary to keep a count rate well below ten million

per second. The time resolution of the SPCMs are about Tr ∼ 0.5 ns.

In our pulsed experiments, Tr ∼ 0.5 ns is much shorter than the pulse repetition

period Trep = 13 ns, but much longer than the emission pulse width. Hence the

recorded histograms consist of equally spaced peaks separated by Trep, with the width

of each peak determined by Tr. In between pulses, there is no photon flux, and

only dark counts contribute to a non-zero floor of the histogram. A couple example

histograms and corresponding g̃(2)(0) are shown in figure 4.13.

If we collect light from two different modes of the LPs, and send them into the

SPCMs without passing the beam splitter (the blue dashed path in figure 4.12), we

measure instead the cross-correlation function of the two modes.
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4.4 Summary

In this chapter, we first reviewed a few important considerations for choosing a ma-

terial system and designing a sample structure for microcavity polariton research.

Given QW-microcavity, the very first sample characterization is to find out wether

or not strong-coupling regime is reached, by a measuring the anti-crossing behavior of

resonance modes in the system, and the characteristic dispersions of the polaritons.

Both can be measured by reflection or photoluminescence measurements. Photo-

luminescence measurement is a particularly powerful tool for microcavity polariton

systems because the emitted photons carry direct and mode-specific information of

the internal polaritons.

In the next chapters, we use the experimental tools introduced here to study the

dynamical and statistical properties of the multiple-QW microcavities.



Chapter 5

Quantum Degeneracy Threshold

In previous chapters, we reviewed the basics of Bose-Einstein condensation and mi-

crocavity polaritons, discussed the advantages of polariton for BEC study, and intro-

duced the experimental techniques for studying a polariton system. In this chapter

and the next, we continue with an experimental exploration of polariton condensa-

tion. First and foremost: can we reach a quantum degeneracy threshold in a polariton

gas?

5.1 Population Dynamics of LPs

To answer this question, we first look into the population dynamics of a microcavity

polariton system. In general, hot polaritons are excited by a pumping laser at certain

energy ELP (k‖) and wavenumber k‖, they thermalize among all states with the same

|k‖| and ELP in sub-picosecond time scale via elastic Rayleigh scattering at weak

disorder potentials. This momentum relaxation happens much faster than energy

relaxation and decay of the LPs, hence we often consider the momentum relaxation

as instantaneous and assume cylindrical symmetry of the system. Then these hot

LPs thermalize to states with lower energies by phonon scattering and higher order

scattering processes, while at the same time decay out of the system by the out-

coupling of the photon component.

78
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Rate Equation for LP Energy Relaxation

Assuming instant momentum relaxation and cylindrical symmetry, the polarization-

independent dynamics of LPs can be described by the following semiclassical Maxwell-

Boltzmann rate equations:

dNk‖

dt
=Pk‖ −

Nk‖

τk‖
−

∑

k‖′
Wk‖,k′‖

Nk‖(Nk‖′ + 1) +
∑

k′‖

Wk′‖,k‖
Nk‖′(Nk‖ + 1)

−
∑

k‖1,k′‖,k
′
‖1

Ykk1,k′‖k
′
‖1

Nk‖Nk‖1(Nk‖′ + 1)(Nk‖1′ + 1)

+
∑

k‖1,k′‖,k
′
‖1

Yk′‖k
′
‖1,kk1

Nk′‖
Nk‖1′(Nk‖ + 1)(Nk‖1 + 1), (5.1)

where the subscript k‖ denotes the mode of inplane wavenumber k‖, Nk‖ is the LP

population per mode, Pk‖ is the pumping at each mode, τk‖ is the LP decay rate,

Wk‖,k′‖
is the acoustic phonon scattering coefficient from mode k‖ to k′‖, and Ykk1,k′‖k

′
‖1

is the LP-LP scattering coefficient from initial states k‖ and k‖1 to final states k′‖ and

k′‖1.

It is through the exciton component that LPs scatter with phonons and other LPs.

The scattering coefficients for both processes are computed using the Fermi’s Golden

Rule. The LP-phonon scattering is mainly mediated by the deformation potential

(61), it conserves the energy and in-plane wavenumber. kz, however, is not conserved,

due to the confinement in the z−direction. Hence phonon scattering is much stronger

in a QW than in bulk. LP-LP scattering, or, exciton-exciton scattering weighted by

the exciton fraction of the LPs, results from mainly the exchange Coulomb interaction

of the electron and hole constituents in excitons, and the excitation saturation effect

due to the Pauli exclusion principles. Normally the Coulomb exchange interaction

is larger than the exciton saturation, both are of the order (E2
Ba4

B)/L4. The total

scattering rate is quadratic with the exciton density, for given nQW
exc per QW, it scales

with the number of QWs NQW . In contrast, the phonon scattering rate is linear with

the exciton density and stays the same for any NQW .
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Figure 5.1: Evolution of LP population distribution NLP (k‖) showing showing the
energy relaxation bottleneck at k‖ ∼ 2 µm−1. Used detuning ∆ = −4.3 meV.

Bottleneck Effect at Low Densities

When pumping density is relatively low, commonly observed is an energy relaxation

bottleneck as shown in figure 5.1.

It can be understood in light of the peculiar dispersion of the LPs. Above the

bottleneck region, LPs are mostly exciton-like, lifetime is long, energy DOS is large,

the change of energy with k‖ is gradual – these exciton-like LPs are efficiently ther-

malized by phonon scattering. Below the bottleneck region, the LP energy DOS

drops by four orders of magnitude (due to the decrease of the LP effective mass, see

section 3.5), while their lifetime also shorten by two orders of magnitude to 1 ∼ 10 ps.

At the same time, the LP energy decreases by 10 to 20 times the phonon energy at

the temperature of 4.2 K. Hence when Nk‖ ¿ 1, the phonon scattering, at a rate of

about once per pico-second, becomes insufficient to thermalize the LPs before they

decay. Detailed numerical and experimental studies of the bottleneck effect have been

carried out by many groups (62; 63; 64; 30).
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Stimulated Scattering at Higher Densities

When the pumping density increases, the dynamics changes drastically. Once Nk‖

becomes non-negligible, the LP-LP scattering and the Bose statistics become impor-

tant (65; 30). LP-LP scattering, which conserves the energy and momentum among

the initial and final states of LPs, can transport a LP in the bottleneck region into

the bottom of the branch in a single scattering event (while at the same time trans-

porting a bottleneck LP to an exciton-like state at a higher energy). Hence it is a

particularly efficient for overcoming the bottleneck effect. It increases quadratically

with Nk‖ and quickly becomes the dominant relaxation channel. At the same time,

both LP-LP scattering and LP-phonon scattering are enhanced by the Bose final state

stimulation effect (the scattering rate is enhanced from ∝ 1 to ∝ (1+Nk‖), where Nk‖

is the final state population). Since the energy DOS of LPs decreases steeply with

decreasing energy, the Bose final state stimulation leads to a much larger probability

for scattering high energy LPs into low energy states than the reverse process.

These nonlinear effects at higher pumping densities accelerate LP energy relax-

ation, as demonstrated by the time evolution of the ground state LPs in figure 5.2,

and by the disappearance of bottleneck in figure 5.3

5.2 The Experimental Strategy

The LP-LP scattering combined with the Bose final state stimulation give rise to very

large nonlinearity in the microcavity system. To utilize this large nonlinearity and

observe novel phenomena of polaritons, three strategies are generally adopted. The

first strategy is to exploit directly the stimulated LP-LP scattering via a resonant

parametric amplification scheme (65; 29). A coherent population of polaritons are

built up in the signal and idler mode with the coherence inherited from the pump laser

and seeded by the probe laser, analogous to the process of coherent four-wave mixing

in nonlinear optics. It is a driven non-equilibrium transition with interesting potential

applications for polariton-optics. The second strategy is to use a system with high

exciton saturation density, so as to reach quantum degeneracy in the bottleneck states
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th

Figure 5.2: (a) The time evolution of the k‖ = 0 LP emission intensity. (b) Pulse
FWHM ∆Tp vs. pump intensity P/Pth. (c) Turn-on delay time of the emission pulse
vs. pump intensity P/Pth. From reference (3).

(30; 31). Excitations are created at energies well above a target mode, so that the

pumped mode can not be scattered into the target mode with a single phase-coherent

scattering event, instead, non-coherent energy relaxations are necessary to populate

the target mode, such as multiple phonon emissions. Hence the pumping process

can be described as the injection of incoherent hot excitons or even electron-hole

plasma. LPs in the target mode acquire coherence only by stimulated scattering

or spontaneous symmetry breaking at a phase transition threshold. The coherence is

then carried into the light field when the photon component of the polaritons leaks out

of the system. Degenerate population (Huang et al. (30)) and first-order coherence

(Richard et al. (31)) were observed for a bottleneck polariton laser. However, the

system is always far from equilibrium, there is a large degeneracy (in |k‖|) in the
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Figure 5.3: Evolution of LP population distribution NLP (k‖) above the stimulated
scattering threshold. Most LPs relax to and decay from the low energy LP states
rather than from a bottleneck. Used S-GaAs-II, ∆ = 6.7 meV.

lasing modes at the bottleneck, and it is difficult to characterize the thermodynamic

properties of the degenerate LP gas. The third strategy is similar to the second

strategy, but the system is optimized such that quantum degeneracy is first reached

in the the k‖ = 0 LP state (the LP ground state), thus thermal equilibrium of the

quasi-particles may be established under proper experimental conditions and a closer

comparison to BEC transition is possible. This thesis adopts the third strategy.

To ensure condensation in the LP ground state, we use a GaAs-based system

which has relatively large scattering cross sections. To address the relatively low

saturation density, 12 QWs are included in the structure. Multiple QWs on one hand

reduced the exciton density per QW for a given total LP density, on the other hand

increased the exciton-photon coupling to reach the very strong coupling regime (56),

which leads to reduced exciton Bohr radius for the LP branch hence further increased

exciton saturation density. The experimental scheme is depicted in figure 5.4. A

laser pump resonantly excites hot LPs at k‖ = 5 ∼ 6 µm−1, so as to minimize the
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Figure 5.4: Schematics of the experimental principle for LP condensation.

excitation of free electrons and holes, which usually increase the exciton decoherence

rate. The k‖ = 5 ∼ 6 µm−1 is well above the inflection point of k‖ ∼ 2µm−1 so that

the coherent LP amplification is avoided.

5.3 Quantum Degeneracy in the LP Ground State

In the experimental scheme described above, using S-GaAs-II, we measure the pump

power dependence of the ground state LP emission and observe a sharp super-linear

increase of the emission intensity with the pump rate (figure 5.5).

The emission intensity is proportional to the LP population NLP (k‖) in the corre-

sponding k‖ mode and is estimated by taking into account the collection efficiency of

the optical setup. NLP (0) is of the order unity at the threshold. This indicates that

the nonlinear threshold in the input-output relation originates from the onset of the

stimulated scattering of LPs into the k‖ ∼ 0 LP state.

The threshold pump power density is Pth ∼ 300W/cm2. The corresponding in-

jected carrier density per QW nQW can be estimated using the following parameters:
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Figure 5.5: Number of LPs and cavity photons per mode vs. injected carrier density
for a polariton condensate (triangles, the scheme in figure 5.4 and in the left panel
of figure 5.8) and a photon laser (circles, the scheme in the right panel of figure 5.8),
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to 15 meV above the band edge.
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the number of pump photons per pulse is ∼ 5× 107, the net absorption of the micro-

cavity system is ∼ 0.12% calculated by the transfer matrix method, and the number

of QWs is NQW =12. For a spot of D ≈ 15µm in diameter, nQW ≈ 3× 109 cm−2 per

pulse per QW. It is a factor of thirty smaller than the saturation density and two

orders of magnitude smaller than the Mott density (n∼ 1/πa2
B) and the transparency

condition of ∼ 1011 cm−2 electron-hole pairs per QW. The total LP population is

nLP = 12nQW ∼ 4× 1010 cm−2 per pulse.

5.3.1 Dispersion Characteristics

As a further confirmation that LPs are the normal modes of the nonlinear system,

we measure its energy dispersion versus the transverse wavenumber k‖ by angle re-

solved PL measurement (section 4.3.1), with an angular resolution of 0.5◦. It agrees

very well with the LP dispersion curve calculated with the transfer matrix method

(figure 5.6(a,b,c)). Below the polariton laser threshold, the energy of the LP photolu-

minescence is shifted slightly below the calculated dispersion curve (figure 5.6(a)) due

to the Stokes shift of QW excitons. The shift is more noticeable at larger emission

angles where the LP inhomogeneous linewidth is wider due to an increasing fraction

of the exciton component and larger TE-TM splitting of the cavity modes (66). The

blue-shift of the whole dispersion curve with increasing pump rate reflects that the

LP nonlinearities stem from the Coulomb interaction and Pauli exclusion principle

of the constituent fermions. As seen in figure 5.6(b), blueshifted and non-shifted dis-

persions coexist, which is mainly due to the non-uniform spatial distribution of the

injected carriers. As will be discussed in section 6.2, the spatial distribution of the

LPs changes abruptly at the threshold, leading to a high concentration of LPs in the

center of the laser spot, surrounded by a broad distribution of LPs at a lower density.

The blueshifted dispersion corresponds to the central region and the non-shifted dis-

persion corresponds to the peripheral, non-lasing region. Well above the threshold,

the non-shifted dispersion is no longer seen, because the intensity of the blueshifted

LP emission dominates the light emission (Figure 5.6(c)). And the measured disper-

sion follows unambiguously the calculated LP dispersion which takes into account the
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blueshift of the excitons.
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Figure 5.6: Comparison of the measured and calculated dispersion curves. (a),(b),(c)
Measured LP dispersion curves (circles) and calculated cavity photon (dotted line),
unshifted LP (dash-dot line), and blue shifted LP (dash line) dispersion curves in
scheme I, Pth=300 W/cm2. Origin of the cavity photon dispersion is artificially
shifted for comparison. (d) Measured (diamonds) and calculated (dotted line) cavity
photon dispersion curves, P ′

th=2 KW/cm2.

5.3.2 Polarization Dependence

In the above experiment, the pump is linearly polarized since this configuration ren-

ders the lowest threshold density, a factor of two smaller than that of a circularly

polarized pump (figure. 5.7 (a) and (b)). A straightforward interpretation follows

from the fact that the cavity resonances are different for TE and TM polarized light,

thus a linearly polarized pump light is more efficiently absorbed than a circularly
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polarized pump light.

Using a quarter-wave plate and a polarizer, we collected separately the left- and

right-circularly polarized components of the emission, denoted as σ1 and σ2 hereafter.

We define the degree of circular polarization η =
Iσ1−Iσ2

Iσ1+Iσ2
to describe the difference

between their intensities Iσ1 and Iσ2 . According to the selection rule, the pump light

with polarizations σ1 or σ2 excite the spin-up or spin-down LPs. Below threshold, the

thermalization time is longer than the spin relaxation time. Hence, equal populations

of spin-up and spin-down LPs are formed at k‖ = 0, and thus random polarization

was observed regardless of the polarization of the pump. With increasing pump

rate, the thermalization process is accelerated. Under the pumping of left-circularly

polarized light, the LP population corresponding to Iσ1 accumulates faster than that

corresponding to Iσ2 , leading to an increase in η. As a result, stimulated LP-LP

scattering and dynamic condensation occur first for co-polarized LPs, η escalating to

larger than 0.9, as shown in Figure 5.5(a), while Iσ2 continues to grow linearly.

Under the pumping of linearly polarized light, the initial spin-up LP population

corresponding to Iσ1 was barely larger than Iσ2 . Yet still Iσ1 rapidly overwhelms Iσ2

by spontaneous symmetry breaking when reaching the threshold Pth. At a pump

density approximately three times Pth, the spin-down LP population corresponding

to Iσ2 also reaches its threshold and increases nonlinearly. Resultantly, a fast increase

of σ around Pth is followed by a sharp decrease around 3Pth. The result indicates that

spin flip relaxation between LPs is slow compared to the stimulated LP-LP scattering.

Therefore, the two kinds of LPs independently relax, condense, and decay. A more

complicated yet quantitative explanation may also be possible. For example, in a

rate equation model by A. Kavokin et.al. (58; 33), TE-EM splitting of LPs is taken

into account, which causes coherent oscillation of circular polarizations, in addition

to the dephasing of the polarization due to LP-phonon scattering. The model also

predicts a lower threshold for linearly polarized pumping and gives numerical results

qualitatively in agreement with the data shown in figure 5.7.
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Figure 5.7: Polarization properties of LP emission. Emission intensity of LPs near
k‖ = 0 vs. pump power under (a) circularly polarized pump, and (b) linearly polarized
pump. The two circular-polarization components of the emission and the their total
intensity are plotted. (c) depicts the circular degree of polarization vs. pump power
with circularly polarized (triangles) and linearly polarized (circles) pumps.

5.4 Comparison with a Photon Laser

Since the sample’s cavity layer thickness is tapered by growth, detuning of the cavity

resonance relative to the exciton resonance changes across the sample. We can com-

pare the LP quantum degeneracy threshold to a conventional photon laser threshold

using the same sample and experimental setup. We focus the pump laser to a po-

sition on the sample, where the cavity mode is blue-detuned to 15 meV above the

band edge. The pump energy was tuned accordingly to be resonant with the cavity

mode energy at k‖ = 5.33× 104 cm−1. Emission detected from the normal direction
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is at the cavity resonance, a photon lasing threshold is observed. The experimental

scheme is depicted in the right panel of figure 5.8.

Photon Lasing Threshold

A threshold behavior is also observed in this case, and is compared to the LP con-

densation case in figure 5.5. Here the injected carrier density at threshold is about

n′QW = 3× 1011 cm−2 per pulse per QW, which is approximately the density required

for electronic population inversion at 15 meV above the band edge. This result is in

agreement with the standard laser mechanism. That is, when the active volume of
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the laser is large compared to its optical mode volume, the threshold of a semiconduc-

tor laser is solely determined by the electronic inversion condition (67). The cavity

photon number per mode is estimated to be of the order of unity at threshold. This

indicates that the nonlinear increase in the input-output relation originates from the

onset of the stimulated emission of photons into the k‖ = 0 cavity photon mode.

Photon Laser Dispersion

The energy dispersion versus the transverse wavenumber is also measured for the

photon laser, as shown in figure 5.6(d). The measured dispersion curve agrees very

well with the bare cavity mode dispersion except for a redshift of the lasing modes

at k‖ ∼ 0 due to the mode-pulling effect in semiconductor lasers (68). The emission

energies are mainly determined by the cavity resonance, while the electronic popula-

tion inversion with a maximum gain at a lower energy pulls the lasing energy slightly

toward the gain maximum.

The difference in the dispersion characteristics shown in figure. 5.6 (c) and (d)

again confirms that the two nonlinear thresholds seen in figure. 5.5 correspond to a

LP quantum degeneracy threshold and a photon lasing threshold, respectively.

5.5 Summary

In this chapter, we studied the energy relaxation of polaritons, we show that the

polariton gas reaches a quantum degeneracy threshold at a density that LP-LP scat-

tering and Bose final state stimulation are important.

We also compared the degenerate polariton gas to a conventional semiconductor

laser. A photon laser results from the phenomenon of stimulated ‘emission’ of pho-

tons into photon modes with an occupation number larger than one. The quantum

degeneracy threshold of polaritons is triggered by the same principle of bosonic final

state stimulation, yet the physical process is different – it is stimulated ‘scattering’ of

massive quasi-particles (the LPs) from non-lasing modes into the degenerate mode(s).
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The nonlinear increase of the photon flux is a natural outcome of thermodynamic en-

ergy relaxation of the LPs. Hence the observed threshold of the polariton system

requires no electronic population inversion. The threshold density is two orders of

magnitude lower than that of a photon laser threshold. It serves as a proof-of-principle

demonstration for polaritons as a new energy efficient source of coherent light.

Above the quantum degeneracy threshold, a macroscopic population of LPs spon-

taneously built up in the LP ground state, resembling Bose-Einstein condensation

(BEC). To elucidate the physics of the degenerate polariton gas, we investigate its

quantum statistical properties in the next chapter.



Chapter 6

Quantum Statistics of Condensed

Polaritons

In Chap. 5, we show that stimulated scattering of LPs overcomes the bottleneck

effect above a threshold pumping density, the population in the ground state increases

nonlinearly with the pump and quickly builds up to be much larger than one, crossing

the quantum degeneracy threshold. Quantum degeneracy is often associated with a

transition to a macroscopic quantum state, such as a BEC state. To search for direct

manifestation of such a phase transition, we study the quantum statistics of the

polariton gas in this chapter.

6.1 Coherence Properties

In a condensate, thermal fluctuations are suppressed and the macroscopic population

in the ground state can be described by a single-particle wavefunction. The distinction

between a thermal mixture and a quantum mechanical pure state is best manifested

in the second-order and higher-order coherence functions.

93
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6.1.1 Definition of g(2)(0)

The time-domain second order coherence function g(2)(τ) is defined as:

g(2)(τ) =
〈Ê(−)(t)Ê(−)(t + τ)Ê(+)(t + τ)Ê(+)(t)〉

〈Ê(−)(t)Ê(+)(t)〉2 , (6.1)

where Ê(−)(t) and Ê(+)(t) are the negative and positive frequency parts of the electric

field operator at time t, respectively (69). g(2)(τ) measures how the state at t is

correlation with the state at t + τ . If Ê(t) and Ê(t + τ) are uncorrelated,

g(2)(τ) =
〈Ê(−)(t)Ê(+)(t)〉〈Ê(−)(t + τ)Ê(+)(t + τ)〉

〈Ê(−)(t)Ê(+)(t)〉2 = 1.

If Ê(t) is multi-mode, the ensemble average in (6.1) again gives g(2)(τ) = 1. For

a single mode state, g(2)(τ) ≡ 1 when τ → ∞, while the maximum correlation (or

anti-correlation) is measured by g(2)(τ = 0) which has the following property:

g(2)(0) = 2, thermal state

g(2)(0) = 1− 1

n
, number state|n〉

g(2)(0) = 1, coherent state

6.1.2 g(2)(0) of the LP Ground State

g(2)(τ) is conventionally measured by a Hanbury Brown-Twiss setup discussed in

section 4.3.4 (a sketch of the HB-T setup in figure 4.12 is reproduced in figure 6.1).

The pulsed LP emission centered at ELP (k = 0) was collected in the direction

normal to the sample surface and filtered by a monochromator with a resolution of

∆λ=0.1 nm, resulting in a pulse with a coherence time of ∆τc =
√

8 ln 2 λ2/(c ∆λ) ∼
4 ps. The filtered pulse is then sent to the HB-T setup. Since the polariton dynamics

is much faster than the time resolution of the photon counters, we essentially measure

the area under each peak of the recorded histogram, which gives the numerator in
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Figure 6.1: A realization Hanbury Brown-Twiss measurement with single photon
counters. For auto-correlation measurement, use a single-core fiber, beam splitter
and mirror (red solid path). For cross-correlation, use a double-core fiber bundle to
carry the two input and output signals (blue dashed path).

the following equation:

g(2)(j) =
〈n1(i) n2(i + j)〉i

〈n1〉〈n2〉 , (6.2)

where n1(i) and n2(i+j) are the photon numbers detected by the two photon counters

in pulses i and i + j respectively. In the limit of low average count rates ( < 0.01

per pulse in our experiment), g(2)(j) approximates g(2)(τ) time averaged over each

pulse. For j 6= 0, coincidence counts are recorded from adjacent pulses which are

uncorrelated and have g(2)(j) ≡ 1. Assuming same statistical properties of all pulses,

the area of these peaks at j 6= 0 gives the denominator in equation (6.2).

Below threshold, the emission is expected to be in a thermal state, for which

g(2)(0) = 2 and g(2)(τ À ∆τc) = 1 (70). The FWHM temporal width of the pulse

is about 350 ps below threshold (Figure 5.2), much longer than the coherence time

of the pulse ∆τc ∼ 4 ps. Since the measured g(2)(0) is an integration of g(2)(0) over

the whole pulse as given in equation (6.2), and g(2)(τ) ≈ 1 during most of the pulse,

g(2)(0) is also close to 1. At threshold, the pulse width shortens to ∼8 ps and becomes

comparable to ∆τc. Hence g(2)(0) becomes a good approximation of g(2)(0). Here,

we observed bunching of the emitted photons, with a maximum g(2)(0) of 1.77 at
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P/Pth ∼ 1.1. This bunching effect, which is obscured by the time integration effect

below threshold, is expected for a thermal state. Far above threshold, the pulse width

only decreases further, therefore g(2)(0) remains a good estimate for g(2)(0). However

the g(2)(0) measured in this region decreases, demonstrating the formation of second-

order coherence in the system, or in other words, the polariton gas starts to acquire

macroscopic coherence.

g(2)(0) decreases only very slowly with increasing density above threshold, indi-

cating a relatively small condensate fraction which builds up only very gradually with

increasing total density of LPs. This is typical of two-dimension systems with rela-

tively strong interactions, where there is large quantum depletion of the condensate.

Due to the dynamical nature of the current experiments, the condensate fraction may

also be evolving with time within the pulse.
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6.2 Spatial Distributions

The presence of a condensate is expected to change the spatial distribution in char-

acteristic ways. If there is a harmonic potential, the spatial distribution features a

Thomas-Fermi profile, and the width of the distribution scales inversely proportional

to the width in the momentum space. In the current microcavity without intentional

in-plane confinement potential, the spatial properties are governed by two factors: a

non-uniform spatial distribution due to the Gaussian profile of the excitation laser

— characterized by a full-width half-maximum (FWHM) ωp ∼20 µm, and the finite

extension of the macroscopic coherence as a 2D system — characterized by the size ωc

of the condensate. Neglecting diffusion, LPs exist only within the excitation spot. A

complete quasi-BEC means that macroscopic coherence extends to comparable to the

excitation spot size. The excitation density is highest at the center of the spot, hence

the central part reaches the degeneracy threshold first, and form a quasi-condensate

with a spatial extension ωc << ωp. With increasing excitation density, the condensate

grows to a larger size, also requiring a larger threshold density nc(ωc) (section 2.7).

To study this behavior, we measure the real space distribution of the LPs as shown

in figure 6.3. A two-dimensional Gaussian profile of the LP population is observed

below threshold with a FWHM spot size ω ≈ 15 µm. Due to the steep incidence-

angle of the pump laser, the spot is slightly elliptical, i.e., wider along the pump

incidence direction x and narrower along the orthogonal direction y (figure 6.3(a)

and figure 6.4(a)). Close to threshold, a sharp peak emerges at the center of the

spot, reducing the spot size to a minimum value: min(ω) = 3 µm at P/Pth ∼ 1

(figure 6.3(b)).

Increasing the pump rate above threshold, the emission spot size increases gradu-

ally. A trivial explanation of the increase is that, with increasing pump rate, a larger

and larger area has a local density above the stimulated scattering threshold. This

interpretation is express by the following equation assuming a fixed threshold density:

ω′ = ωp

√
1− log2(1 +

1

p
), (6.3)
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Figure 6.3: Spatial profiles of LPs at (a) P/Pth = 0.8 and (b) P/Pth = 1.

where p = P/Pth is the pump rate normalized by threshold pump power Pth, ωp

is an effective pump spot size including the carrier diffusion. Using ωp as a fitting

parameter, the best least-square fitting of the data is shown in figure 6.4 (c), the

deviation is obvious, the measured spot size increases much slower than predicted by

equation (6.3).

Alternatively, we may assume that the observed spot size above threshold reflects

the size of the condensate in which macroscopic coherence is established. In 2D, the

critical density of BEC nc(ω) depends on the size of the system ω. nc(ω) increases

with ω as given by equation 6.5, hence the region above threshold grows slower than

modeled by (6.3). Taking into account this effect, (6.3) is modified as:

ω(p) = ωp

√
1− log2(1 +

1

p

nc(ω(p))

nc(ωc)
). (6.4)

Here ωc
.
= ω(p = 1) is the FWHM of the condensate when it first appears, and

corresponds to the smallest measured size. As a coarse estimate, we assume the

system size is L = 2ω, and use nc(ω) for a boson gas with fixed mass m = 2mcav,
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Figure 6.4: (a) and (b) depicts the spatial profiles of LPs and lasing cavity mode at
1.4 times the threshold pump powers, respectively. (c) compares the expansion of the
spot-size vs. pump rate for the LP condensate (circles) and the photon laser (stars).
The red dashed line is fitting by (6.4), with ωp = 16.5 µm, ωc = 2.8 µm. The green
dotted lines are fitting by (6.3) assuming a pump spot size of ωp = 9 µm for the LP
condensate and ωp = 23 µm for the photon laser.
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then we have (see section 2.7, equation (2.42)):

nc(ω) =
2

Λ2
t

ln(
L

Λt

), (6.5)

Λt =
2π~2

mkBT
.

Λt is the LP de Broglie wavelength. Substitute (6.5) to (6.4), we obtain:

ω = ωp

√
1− log2

[
1 +

1

p

ln(2ω/Λt)

ln(2ωc/Λt)

]
. (6.6)

Using ωp and ωc as fitting parameters, we obtain fairly good agreement between data

and the above equation (figure 6.4 (c)). It suggests that the slow increase of the

observed spot size may be a signature of a coherent quasi-condensate of LPs.

Comparison to a Photon Laser

For comparison, we also measure the spatial profile of a photon laser (section 5.4, the

right-panel scheme in figure 5.8).

A reduction in the spot size is also observed at the lasing threshold, with a mini-

mum diameter of 7 µm. In sharp contrast to the polariton condensation, the increase

of the spot size above threshold is much faster and is very well explained by the clas-

sical local oscillator model of equation (6.3) (figure 6.4 (c)). It confirms that when

the system is operated as a conventional photon laser, gain is determined by local

density of the electron-hole pairs with a threshold density independent of the system

size.

Moreover, there are multiple transverse modes in the spatial profile above thresh-

old (Figure 6.4(b)), as is typical in large-area vertical cavity surface emitting lasers.

Coherence in this case is present only in the photon field but not in the electronic

media. In the case of polariton condensation, however, a uniform Gaussian profile is

maintained up to very high pump rates, without obvious multiple transverse modes

(Figure 6.4(a)), which again indicates coherence among the polaritons above the con-

densation threshold.



CHAPTER 6. QUANTUM STATISTICS OF CONDENSED POLARITONS 101

6.3 Momentum Distribution

Another direct and important measure of the quantum statistics of a system is its

distribution function in momentum space. As discussed in section 3.5, microcavity

system has the unique advantage that LP’s momentum distribution can be directly

measured via angle-resolved PL measurement.

6.3.1 Time Integrated Momentum Distribution

We first measure the time integrated momentum distribution of LPs at zero detuning.

We make two observations of the time evolution of the ground state LP population

in section 5.1 (figure 5.2). Firstly, the energy relaxation time of the LPs is longer

than or comparable to the ground state LP lifetime, thus the LP distribution does

not change significantly within LP’s lifetime. Secondly, the duration of the emission

pulse of the ground state LPs is comparable to its lifetime. Hence the instantaneous

distribution function of the LPs, when at the peak density of the ground state LP,

may be estimated by a time integrated measurement.

We convert the time-integrated intensity of the angle-resolved LP emission into the

number density of LPs by taking into account the k‖-dependent density of states and

the radiative lifetime of the LPs. In Figure 6.5(a), the LP number density vs. in-plane

wavenumber k‖ is compared with the classical Maxwell-Boltzmann (MB) distribution,

N(E) ∝ exp(−ELP(k‖)
kBTLP

), and the quantum mechanical Bose-Einstein (BE) distribution,

N(E) ∝ 1/[exp(
ELP(k‖)−µ

kBTLP
) − 1], where kB is the Boltzmann constant, and the LP

ground state energy is used as the energy zero reference: ELP(k‖ = 0) = 0. Fitting

parameters are the effective polariton temperature TLP, the chemical potential µ,

and an overall scaling factor. The dimensionless chemical potential is defined as

α = −µ/kBTLP. A lowest k‖ = ∆k ≡ 0.2 × 104 cm−1 is used, corresponding to a

quantization area of L2 = (15 µm)2, which is approximately the pump spot size. ∆k

also corresponds to an experimental angular resolution of about 0.3◦.

Below threshold, neither distribution fits the data well, probably because most

of the polaritons decay radiatively before the system can reach thermal equilibrium
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Figure 6.5: Momentum space distribution of LPs. (a) The measured LP population
per state vs. k‖ (stars), compared with BE (solid line) and MB (dotted line) distribu-
tion functions at pump rates P/Pth = 1.5 and P/Pth = 0.6 (inset). At P/Pth = 0.6,
the fitted BE and MB distribution curves almost overlap. (b) The dimensionless
chemical potential α vs. pump rate P/Pth, and the fitted effective LP temperature
TLP vs. pump rate (inset). The dashed lines are a guide for the eye. From reference
(4).
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(inset of figure 6.5(a)). Close to threshold, the BE distribution fits the data reasonably

well, with a fitted TLP ∼50 K, µ ∼ −4.4 meV, and thus α ∼ 1. This marks the

transition to a quantum degenerate gas. Also there is an extra peak above the thermal

BE distribution appearing at k‖ ∼ 0. This implies that LPs start to accumulate in

states with small k‖, and hence the dynamic condensation of LPs is accelerated.

Above threshold, surprisingly good agreement with a BE distribution is obtained,

except for the extra population in the condensed k‖ ∼ 0 state (Figure 6.5(a)). α

decrease rapidly near the threshold and reaches a minimum of α ∼0.02 at P/Pth=1.7

(figure 6.5(b)). This demonstrates that the LPs form a degenerate Bose gas, and

establish quasi-equilibrium among themselves via the very efficient stimulated LP-LP

scattering.

The fitted LP effective temperature TLP is higher than the lattice temperature of

4 K, and it increases with increasing pump rate (inset of figure 6.5(b)). This implies

that the LP-phonon scattering does not provide sufficient cooling to the injected hot

excitons, and thermal equilibrium with the phonon bath is not reached. The high

effective temperature of the LPs also suggests that the polariton condensate may

survive at lattice temperatures higher than 4 K. Note that when α < 1, the fitting

of TLP bears a much larger error compared to µ, because the total population is

also a fitting parameter and the shape of the curve becomes rather insensitive to the

temperature.

Far above threshold, the LP-LP interaction becomes strong. Therefore the con-

densate begins to be depleted. At the same time, the dynamics becomes faster and

the time integrated data is no longer a good approximation of the instantaneous

distribution.
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6.4 From Quasi LP-Equilibrium to Thermal Equi-

librium with Lattice

6.4.1 Time Constants of the Dynamical Processes

Whether or not LPs can be sufficiently cooled to reach thermal equilibrium with the

phonon bath requires further investigation of the dynamical processes of the system.

As discussed in section 5.1, there are mainly three dynamical processes of the LP

system:

1. LP decay via the out-coupling of its photon component,

2. LP-LP scattering,

3. LP-phonon scattering.

LP decay is characterized by the decay time τLP = τcav/Ck‖ , where Ck‖ is the photon

fraction of the LP defined in (3.54). The cavity lifetime is τcav = 1 ∼ 10 ps. For

a given cavity, τLP increases with decreasing photon fraction. τLP is the shortest

timescale for most microcavities at low pumping densities, leaving the system is in

non-equilibrium, sometimes with a pronounced bottleneck.

LP-LP scattering is a nonlinear process, its timescale τLP−LP shortens with in-

creasing LP density. When τLP−LP becomes shorter than τLP , LPs overcome the

energy relaxation bottleneck and reach quantum degeneracy threshold. Due to the

very efficient LP-LP scattering among states below the bottleneck, these LPs ther-

malize among themselves before they decay, and form degenerate BE distribution

as observed in the previous section. However, LP-LP scattering conserves the total

energy and momentum of the LPs, hence does not reduce the temperature of the LP

gas. And a TLP À Tlat is observed.

The only mechanism to cool the LPs is the LP-phonon scattering. The linear

LP-phonon scattering is a rather slow energy relaxation process at low densities with

a more or less fixed timescale τphonon = 10 ∼ 50 ps. Fortunately, when nk‖∼0 > 1 in a

degenerate gas, LP-phonon scattering can be significantly enhanced by the Bose final
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Figure 6.6: Time Constants and Equilibrium Conditions

state stimulation effect. If τphonon shortens to less than τLP , LPs may have enough

time to reach thermal equilibrium with the phonon bath within their lifetime.

Chart 6.6 summarizes the crossover from a non-equilibrium regime to a thermal

equilibrium regime, depending on the timescales of the different dynamic process of

the system.

To go from a quasi-LP equilibrium to a thermal-equilibrium with the lattice, we

need faster LP-phonon scattering and slower LP decay. For this purpose, there exists

a simple and useful controlling parameter for the microcavity system: the detuning

∆ = Ecav−Eexc. At positive ∆, the excitonic fraction Xk‖ increases, the LP effective

mass is heavier and the energy density of states ρ(E) ∝ (1−|Xk‖ |2)−1 increases. Hence

LP-phonon scattering rates to low energy states (∝ Xk‖,iXk‖∼0 ρ(Ei)) as well as LP-LP

scattering rates to low energy states (∝ Xk‖,i1Xk‖,i2Xk‖,f1Xk‖∼0 ρ(Ei1)ρ(Ei2)ρ(Ef1))

become larger. The flatter dispersion also requires less phonon scattering events to

thermalize the LPs below bottleneck. At the same time, the LP lifetime τLP ≈
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τcav/(1 − |Xk‖|2) becomes longer. All these are favorable for LPs to reach thermal

equilibrium.

The compromise is a higher critical density, stronger exciton localization, and

shorter dephasing time of the LPs. At very large positive detunings, these detrimental

effects prevent clear observations polariton condensation.

Hence the pre-requisite for thermal equilibrium LP condensation is that: LPs can

reach quantum degeneracy threshold in a certain range of ∆ > 0, and the correspond-

ing LP energy relaxation time τrelax(∆) is shorter than τLP (∆). If both conditions

can be satisfied, we confirm the establishment of thermal equilibrium by time-resolved

momentum distribution, and compare the effective LP temperature TLP with Tlat.

S-GaAs-II is used for this experiment, pump is linearly polarized and focused

to a 50 µm-diameter spot on the sample. The emitted light is collected with an

angular resolution of 0.5◦ in air by an optical fiber and sent to a spectrometer with

an energy resolution of < 0.1 meV, or a streak camera with a time resolution of

∼ 4 ps. The instantaneous LP number density NLP (k‖, t) is converted from the count

rate Nc(θ(k‖), t) according to: Nc(θ(k‖), t) = ηfpNLP (k‖, t)M(θ(k‖))/τLP (k‖), where

θ(k‖) is the far field emission angle of LPs. τLP (k‖) is the radiative lifetime of the

LPs. M(θ(k‖)) is the number of transverse states at k‖ subtended by the acceptance

angle of the detector ∆θ ≈ 0.01. fp = 78 MHz is the repetition rate of the pumping

laser.

6.4.2 Quantum Degeneracy Threshold at ∆ > 0

We first study the detuning dependence of the quantum degeneracy threshold. As

shown in figure 6.7, while the lowest threshold density is at ∆ ≈ 0, a clear threshold

exists for all ∆ > 0 up to ∆ ∼ 10 meV. The mean-field blueshift of the LP energy at

k‖ = 0 is less than 1 meV in these measurement, dispersions are also measured below

and above threshold to confirm that the system is in the strong coupling regime. At

large positive detunings ∆ > 10 meV , the blueshift of ELP (k‖ = 0) is relatively

large, the LP dispersion becomes less distinct from a flat exciton dispersion, and it

is difficult to distinguish LP condensation from lasing of localized excitons. Hence
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Figure 6.7: LP number per pulse ILP (k‖ ≈ 0) vs. pump power at different detunings.
No threshold is observed for ∆ = −7.3 meV.

we focus on ∆ < 10 meV. At negative detunings, quantum degeneracy is reached at

bottleneck region first, and a clear threshold is absent in the LP ground state, the

system stays in a highly non-equilibrium state.

6.4.3 τrelax vs. τLP

Next we study the LP energy relaxation time τrelax vs. the LP lifetime τLP for the LP

ground state by time resolved measurement. Figure. 6.8 (a) shows the time evolution

of NLP (k = 0). To estimate τrelax, we model the system with two coupled modes,

the kk‖ ≈ 0 LP ground state and a hot LP reservoir state. The dynamics is then

described by the following two coupled rate equations:

∂NR

∂t
= P (t)− NR

τR

− NR

τrelax

∂N0

∂t
= −N0

τ0

+
NR

τrelax

. (6.7)

Here NR and N0 are the hot LP reservoir and LP ground state populations, respec-

tively. P (t) is an external pump represented by a Gaussian pulse, centered at t = 0
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with a pulse width of 3 ps. τrelax is the thermalization time from the reservoir to the

ground state. τR and τ0 are the lifetime of the LPs in the reservoir and the ground

state, respectively. τ0 can be determined from the cavity lifetime of τcav = 1.5 ps and

the detuning-dependent photon fraction C∆ of the LP ground state: τ0 = τcav/|C∆|2.
We use the normalized N0(t) to fit the experimental curve. τR is much longer than

τ0 and τrelax, we found it to have little influence on the fitting, so we set τR to infin-

ity. τrelax is the single fitting parameter. Despite the simplicity of the model, good

agreement between data and the fitting curve is obtained as shown in figure. 6.8 (b).

In figure. 6.8 (b), we plot the normalized LP relaxation time τrelax/τ0. For all

detunings there is a steep decrease of τrelax near the quantum degeneracy threshold,

reflecting the onset of stimulated scattering into the LP ground state. At a positive

detuning of ∆ = 6.7 meV, τrelax shortens from more than 20τ0 below threshold to

around τ0 near threshold, and saturates at about 0.1τ0 well above threshold. We

expect that thermal equilibrium with the phonon bath may therefore be established

above threshold with a quantum degenerate LP population in the ground state. For

negative detunings, τrelax/τ0 saturates above unity and the system is expected to stay

in non-equilibrium.

6.4.4 Time-Resolved Momentum Distribution

Finally to study if thermal equilibrium is formed when τrelax < τLP , we measure the

time-resolved momentum distribution of LPs. Figure 6.9 are contour plots of the

time evolution of N(k, t). At a positive detuning of ∆ = 6.7 meV (figure 6.9 (a)),

LPs quickly concentrate to lower k‖ states and mostly decay from there, as show

by the bright emission at k‖ ∼ 0 and the absence of a detectable bottleneck at all

times. Peaked at k‖ ∼ 0, the distribution is smooth at all times in the range of k‖ we

measured, showing that energy relaxation is fast compared to LP decay. In contrast,

at a negative detuning of ∆ = −4.3 meV (Figure 6.9 (a)), strong bottlenecks are

present at early times after the pump pulse. Though the population is gradually

transported to lower k‖ states, homogeneous k-distribution is hardly ever formed.

This is because of the slow energy relaxation by inefficient LP-LP and LP-phonon
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scattering. Particularly interesting is the case of a small |∆|. As show in figure 6.10,

bottlenecks exist at an early time soon after the arrival of the pump, when there is

not enough LP population in states with smaller k‖ to trigger stimulated scattering.

After about 10 ps, most of the injected population are still in the system and some

population are accumulated in states with small k‖, bottleneck disappear due to

enhance LP-LP scattering into the k‖ ∼ 0 states. At a still later time, most LPs

decay out of the system and the stimulated scattering diminishes, since the k‖ ∼ 0

LPs have a shorter lifetime than LPs at larger k‖, bottleneck appears again.

Next we compare the instantaneous momentum distribution with BE and MB

distributions. The collection efficiency η for this experiment is calibrated by replac-

ing the sample with a fiber tip. Hence TLP and NLP (0, t) are the only two fitting

parameters:

NMB(k‖) = N0 exp(−ELP(k‖)
kBTLP

),

NBE(k‖) = 1/[exp(
ELP(k‖)
kBTLP

)(1 + N−1
0 )− 1]. (6.8)

The normalized chemical potential α is defined as:

α = −µ/kBTLP = ln(1 + N−1
0 ). (6.9)

At positive detunings ∆ > 1 meV, no bottleneck is observed at any pump level.

Above threshold, about 30 ps after the pump pulse, the experimental data are very

well described by a BE distribution, but not at all by a MB distribution, as shown

in figure 6.11 (a). From BE distribution fitting, we obtain a TLP close to the lattice

temperature Tlat, and a normalized chemical potential α = 0.01 — 0.5. Note that

quantum degeneracy threshold N0 = 1 is reached at α = ln 2 ≈ 0.7. The results

indicate that LPs are well thermalized with the phonon bath, forming a quantum

degenerate Bose-Einstein distribution at the lattice temperature. This is consistent

with the observation that τrelax ¿ τ0 at these positive detunings above threshold.

At small detunings |∆| < 1 meV, although a bottleneck exists at most pump levels,



CHAPTER 6. QUANTUM STATISTICS OF CONDENSED POLARITONS 111

k
||
 (µm−1)

tim
e 

(p
s)

∆=−4.3 meV, P=80 mW

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

0

10

20

30

40

50

60 20

40

60

80

100

120

140

160

180

200

k
||
 (µm−1)

tim
e 

(p
s)

∆=6.7 meV, P=30 mW

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

0

10

20

30

40

50

60 10

20

30

40

50

60

70

80

90

Figure 6.9: N(k‖, t) at (a) ∆ = 6.7 meV, P=30 meV; (b) ∆ = −4.3 meV, P=80 meV
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quantum degeneracy threshold is still achieved at k‖ ≈ 0. The momentum distribution

in the region |k‖| < 0.4—1µm−1 agrees well with BE distribution (Figure 6.11 (b)).

However, the fitted TLP is larger than 3Tlat. This suggests that LPs with small

k‖ can temporarily reach quasi-equilibrium among themselves via efficient LP-LP

scattering, yet decay out of the system before they can be sufficiently cooled by

phonon emission. It agrees qualitatively with the time integrated data before. At

large negative detunings ∆ < −1 meV, a strong bottleneck prevents the system from

reaching thermal equilibrium (Figure 6.11 (c)).

In figure 6.13 we plot the time evolution of the fitted LP temperature TLP and

normalized chemical potential α. For detunings ∆ = 6.7 and 9.0 meV, at 30—40 ps

after the arrival of the pump pulse, phonon-scattering cools the system to a lowest

temperature of Tmin ≈ Tlat with a fitted chemical potential α ≈ 0.1. The quantum

degenerate LP gas remains in thermal equilibrium at Tlat for a duration of about

20 ps. At the tail of the pulse, the LP population largely decays out of the system, µ

increases to about kBTLP and stimulated scattering diminishes. Since LPs at small

k‖ decay faster than those at larger k‖, the temperature of the system starts to rise.

The smallest chemical potential α = 3 × 10−3—10−1 is found at 10—20 ps after the

pump pulse when NLP (t) is at its peak. For smaller detunings, Tmin is higher than

Tlat, so thermal equilibrium is not reached.

Note that the BE fitting is not as good at the beginning the very tail of the pulse,

when TLP is not close to its minimum value. TLP and µLP obtained in these cases

do not correspond to an actual temperature or chemical potential, since equilibrium

is not fully established in the system. However, these TLP and µLP still suggest a

qualitative trend how the system evolves. For example, a higher fitted temperature

always corresponds to broader distribution, and a more negative fitted chemical po-

tential corresponds to a smaller occupancy per state, or vice versa. So we included

in figure 6.13 the fitted TLP and µLP from the beginning of the pulse as a reference

to help understand the dynamics.

We choose a time 5—10 ps after the LP temperature reaches Tmin, when the BE

distribution agrees very well with the data, and plot the pump power dependence
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of TLP and α in figure 6.14. α decreases with increasing pump level, crossing the

quantum degeneracy threshold α = 0.7 at P ≈ Pth. This is because the stimulated

scattering into the LP ground state becomes prominent when the LPs are quantum

degenerate. In Figure 6.14 (a), TLP drops to a minimum value at P =2—4Pth.

At approximately the same pump level, the thermalization time τrelax reaches its

minimum (Figure 6.8 (c)). At high pump levels, we notice that TLP increases, possibly

because Tlat increases due to insufficient heat dissipation of the sample to the copper

cold finger.

6.4.5 Discussion

Momentum distribution provides insight to the quantum statistics of the LP system

and reveals competition between the LP thermalization and decay. By adjusting the

detuning ∆, we can control the lifetime and thermalization time of the LPs, hence

the formation an equilibrium phase, as summarized in figure 6.6 and figure 6.15. At

positive detunings and at pump levels above the quantum degeneracy threshold, the

relaxation time τrelax of the system is one tenth of the lifetime τLP (0) of the LP

ground state, thermal equilibrium with the phonon bath is established for a period

of about 20 ps, with a chemical potential µLP of about −0.1kBT . Near resonance

(|∆| < 1 meV), τrelax is comparable to τLP (0). stimulated LP-LP scattering is still

effective to achieve a quasi-equilibrium BE distribution among LPs in k‖ < 1 µm−1

at a temperature TLP significantly higher than the lattice temperature Tlat with a

chemical potential µLP = −0.01 to −0.1kBT . At large negative detunings, τrelax is

longer than τLP (0), so the system never reaches equilibrium.

6.5 Summary

In this chapter, we focus on the GaAs-based multiple-QW microcavity system to study

the quantum statistical properties of polariton condensation. We found a decrease of

the second order coherence of the ground state LPs, which indicates the formation

of macroscopic coherence in the system. We observed a slow increase of the size of
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the condensate as a result of its low dimensionality. And we measured a quantum

degenerate BE distribution of the LPs above the quantum degeneracy threshold.

These results all suggest that a phase transition has taken place in the system with

a finite condensate fraction.

By controlling the detuning of the photon resonance relative to the exciton reso-

nance, we can tune the energy relaxation dynamics, and observed a decrease of the

LP effective temperature to the phonon bath temperature. Thermal equilibrium with

the lattice is established in the condensed LP gas at positive detunings. A degenerate

LP system, capable of reaching thermal equilibrium, is also valuable for studying the

evolution from non-equilibrium to equilibrium phases, the distinction between clas-

sical and quantum systems, and the formation and dynamics of the order parameter

of a quantum phase.
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Quantitative dynamical models including LP-LP interactions will help to further

elucidate the physics behind the data. It will also be interesting to evaluate how

the quantum statistical properties of such a highly degenerate system are influenced

by the finite energy linewidth of the LP modes, the non-uniformity of the spatial

distribution, and the rather high group velocity of the LPs.



Chapter 7

Conclusion

In search of a phase transition in solids, we focus on GaAs-based twelve-QW micro-

cavities in this thesis, and obtained the following results:

1. We observed a quantum degeneracy threshold of ground state LPs, at a density

below the electronic population inversion density and two orders of magnitude

lower than that of a photon laser realized in the same system.

2. At the quantum degeneracy threshold, we observed spontaneous build-up of a

circular polarization of the emission of the LPs.

3. We demonstrated the formation of macroscopic coherence in the degenerate

ground state by the measurement of the time-domain second order coherence

function.

4. We observed an abnormal shrinkage of the spot-size of the emission, possibly

explained by the system-size dependent critical density of BEC in two dimen-

sions.

5. We measured an energy relaxation time τrelax shorter than the lifetime τLP of

the LPs in a range of positive detunings.

6. We observed thermal equilibrium condensation of the LPs when τrelax < τLP .

121
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The LP gas forms a quantum degenerate Bose-Einstein distribution at the lat-

tice temperature for a duration of a few times of τLP . The corresponding chem-

ical potential is close to zero.

Since the quantum degeneracy threshold is reached well below the electronic pop-

ulation inversion density, and it originates from a physical mechanism fundamentally

different from that of a conventional photon laser, the microcavity polariton system

promises a new source of coherent light with a fundamentally lower threshold than

existing sources.

To make it into a practical device, however, one would prefer discrete mode struc-

tures which leads to clean single mode coherent emission, and most desirable is a

system that survives at room temperature. Some preliminary efforts along these lines

were also started in this thesis.

Transversely Confined Microcavity Polaritons

We imposed transverse optical trapping of the LPs by fabricating small pillar struc-

tures. Although discrete modes of LPs were observed, no clear evidence of quantum

degeneracy threshold was obtained. This is partly because the cavity degrades in

a pillar structure, leading to larger decoherence. In addition, when the laser pump

arrives from a slant angle (to resonantly pump the high energy LPs), much of the

light enters from the side wall of the pillar and induces excessive free electrons and

holes. Consequently, a transition to the weak coupling regime took place before the

LPs reach the quantum degeneracy threshold.

Surface passivation may help to resolve these problems. Alternatively, a new

structure became available recently with built in optical-trapping by growth (71),

and avoids both of the aforementioned problems.

Room Temperature Polaritons

Exciton binding energy imposes an upper bound on the host lattice temperature of a

polariton system: kBT < EB. To have polaritons at room temperature, we look into
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materials with large exciton binding energy, hence small Bohr radius and often large

bandgap (in the visible to violet spectral region). We collaborated with a group which

reported room temperature polaritons in a ZnSe-based quantum well microcavity in

2002, Pawlis et al. (72). Unfortunately the growth and fabrication process is still

very difficult and not easily repeatable. We have not been able to observe polaritons

again in this material system.

Other interesting candidates include GaN (73; 74) and ZnO. The common diffi-

culty of these new systems is the lack of lattice-matched substrate and mirror ma-

terials. Thus the main challenge remains in fabrication of high quality samples with

smaller inhomogeneous broadening, longer non-radiative lifetime, and with minimal

build-in piezo-electric field that separates the electron and hole and reduces the exci-

ton oscillator strength.

From a fundamental viewpoint, it will be interesting to directly measure the first

and second order spatial coherence of a polariton condensate. A quantitative dynam-

ical model is still in need which includes the LP-LP interaction, the finite lifetime of

the LPs and the non-uniform spatial distributions. The thermal equilibrium conden-

sate of LPs will be useful for further studies to elucidate the physics behind collective

phenomena of polaritons, such as what is the exact ground state of the system, if

a phase mode and superfluidity exist, and how the macroscopic coherence is estab-

lished out of an original non-equilibrium gas, etc. Finally, the experimental challenge

remains in accessing the part of the phase diagram at high polariton density with low

decoherence rate (1), and to demonstrate, for example, the predicted BEC to BCS

crossover.



Appendix A

Sample List

The samples discussed in this dissertation include:

1. S-CdTe,

2. S-GaAs-I,

3. S-GaAs-II.

A.1 S-CdTe

Sample S-CdTe is provided by Regis André at Dépt. de Recherche Fondamentale sur

la Matire Condensée, CEA Centre d’Etudes de Grenoble, France. It consists of two

QWs in a λ/2 cavity on CdTe substrate. The QWs 8 nm wide and made of CdTe.

The cavity layer is Cd0.6Mg0.4Te. The top (air-side)DBR consists of 16.5 pairs of λ/4

Cd0.75Mn0.25Te and Cd0.6Mg0.4Te layers, with Cd0.75Mn0.25Te layers at both the air

and cavity interfaces. The bottom (substrate-side) DBR consists of 20 pairs of λ/4

Cd0.75Mn0.25Te and Cd0.6Mg0.4Te, with λ/4 Cd0.75Mn0.25Te at the cavity interface.

At 4 K, the bare cavity lifetime is measured to be ∼ 2 ps, the heavy hole exciton

resonance is at 1.647 eV, and the normal mode splitting is 8.4 meV.
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A.2 S-GaAs-I

Sample S-GaAs-I is provided by Jacqueline Bloch at CNRS, Paris, France. It consists

of twelve QWs in a λ/2 cavity on GaAs substrate. The QWs are 7 nm wide and

made of GaAs, separated by 3 nm AlAs barrier layers. The twelve QWs are grouped

into three stacks, four in each stack, and placed at the central three anti-nodes of

the cavity field: the center of the cavity, and the center of the first DBR pairs next

to the cavity. The cavity layer is AlAs. The top DBR consists of 17.5 pairs of λ/4

Ga0.8Al0.2As and AlAs layers, with Ga0.8Al0.2As layers at both the air and cavity

interfaces. The bottom DBR consists of 21 pairs of λ/4 Ga0.8Al0.2As and AlAs layers,

with Ga0.8Al0.2As layers at the cavity interfaces. At 4 K, the bare cavity lifetime is

measured to be ∼ 2 ps, the heavy hole exciton resonance is at 1.615 eV, and the

normal mode splitting is 14.9 meV.

A sketch of the sample is shown in figure A.1 with the design-thickness of each

layer labeled.

A.3 S-GaAs-II

Sample S-GaAs-II is provided by Rudolph Hey at Germany. It has the same structure

as S-GaAs-I except that:

1. The λ/4 Ga0.8Al0.2As layers in the DBRs are replaced by λ/4 Ga0.85Al0.15As

layers.

2. The QW layer thickness is 6.8 nm and the barrier layer thickness is 2.7 nm.

3. At 4 K, the bare cavity lifetime is ∼ 1.5 ps, the heavy hole exciton resonance is

at 1.597 eV, and the normal mode splitting is 14.4 meV.

A sketch of the sample is shown in figure A.2 with the design-thickness of each

layer labeled.
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Figure A.1: Sketch of S-GaAs-I
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Figure A.2: Sketch of S-GaAs-II



Appendix B

Interference in matter-wave

amplification

We investigate the quantum interference effects in two types of matter-wave mixing

experiments: one with initial matter waves prepared in independent Fock states (type

I) and the other with each individual particle prepared in a same coherent superposi-

tion of states (type II). In the type I experiment, a symmetric wavefunction of bosons

leads to constructive quantum interference and shows final state stimulation, while an

anti-symmetric wavefunction of fermions results in destructive quantum interference

and inhibited matter wave mixing. In the type II experiment, a coherent superpo-

sition state leads to constructive quantum interference and enhanced matter wave

mixing for both bosons and fermions, independent of their quantum statistics.

With the realization of Bose-Einstein condensation (BEC) in atoms, bosonic final

state stimulation involving atom condensates has been studied in superradiance of

atoms (75) , four-wave mixing (FWM) (76) , and matter wave amplification (77; 78).

Following these work, it was pointed out that these phenomena are not unique in

boson systems but also possible in fermion systems (79; 80). In these experiments (

(75)- (78)), the input matter waves, characterized by their momenta, are all prepared

from a same condensate by a coherent partition process of each individual particle.

Hence the observed nonlinearity can be understood as collective enhancement effect,

analogous to super-radiance in an ensemble of two-level atoms in Dicke state or Bloch
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(scattering matrix element: SA) (scattering matrix element: SB )

1 

Figure B.1: Illustration of the two scattering processes (A) and (B) in FWM experi-
ments.

state (81; 82), and does not depend on the quantum statistics of the particles. We

call such experiments type II in this paper. In another kind of experiment, which

we call type I here, all input matter waves consist of independent real populations

of the particle. In this case, final state stimulation occurs in a boson system, while

inhibition of matter-wave mixing is expected in a fermion system. Type I experiment

has not yet been performed with atomic BECs, but has been recently demonstrated

with exciton-polaritons in semiconductors (65; 30).

In this paper, We investigate the two types of matter-wave mixing in terms of

the quantum interference among different paths, naturally originating from the sym-

metrization (anti-symmetrization) procedure for type I, or artificially created from

the coherent superposition state for type II. Figure B.2 shows a model FWM exper-

iment where two input states |φ〉 and |ψ〉 elastically scatter into two output states

|u〉 and |v〉 via the two possible processes (A) and (B), with scattering amplitudes

SA and SB, respectively (83). The scattering processes are governed by a unitary
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operator Ûint, s.t.,

SA = 2〈u|1〈v|Ûint(t)|φ〉1|ψ〉2 = 2〈v|1〈u|Ûint(t)|ψ〉1|φ〉2, (B.1)

SB = 2〈v|1〈u|Ûint(t)|φ〉1|ψ〉2 = 2〈u|1〈v|Ûint(t)|ψ〉1|φ〉2. (B.2)

B.1 Type I experiment

In type I experiment, the four initial matter waves have definite populations (Fock

states). Let’s first consider the case where there is one particle in each of the two

input states and one particle in one output state, with the initial state of the system:

|iI〉 =
∑

i6=j

P̂ij[|φ〉1|v〉2|ψ〉3]

=
1√
6
[|φ〉1|v〉2|ψ〉3 ± |v〉1|φ〉2|ψ〉3 ± |ψ〉1|v〉2|φ〉3

+ |v〉1|ψ〉2|φ〉3 ± |φ〉1|ψ〉2|v〉3 + |ψ〉1|φ〉2|v〉3], (B.3)

where P̂ij is the symmetrization or anti-symmetrization operators (83). The up-

per sign is for bosons, and the lower sign is for fermions, in accordance with sym-

metrization postulate for bosons and fermions, respectively. Scattering results in final

states with two particles in state |v〉 and one particle in state |u〉. Take a final state

|v〉1|v〉2|u〉3 as an example (figure B.2(a)), it can be reached by scattering (A) or (B)

from each of the first four terms in the initial state |iI〉. The corresponding scattering

amplitudes for the four paths are SAC, ±SAC, ±SBC, and SBC, where C is a real

normalization factor, C = 1/
√

6 in this example. Thus the total scattering amplitude

for bosons adds up to 2(SA + SB)C as a result of constructive quantum interference;

while for fermions it is suppressed to zero due to destructive quantum interference.

This illustrates how quantum interference leads to final state stimulation for bosons,

and inhibited FWM for fermions.

In general, if the initial matter waves of a boson system consists of n1 particles in

|φ〉, n2 particles in |ψ〉, n3 particles in |v〉, and n = n1 +n2 +n3 particles in total, the



APPENDIX B. INTERFERENCE IN MATTER-WAVE AMPLIFICATION 131

(1‹–›3)

(1‹–›2)

(a) Type  I  experiment

initial state scattering final state

+|φ›1|v›2|ψ›3

+|v›1|φ›2|ψ›3

+|ψ›1|v›2|φ›3

+|v›1|ψ›2|φ›3

|v›1|v›2|u›3

SA

(1‹–›2, 2‹–›3)

_

_

(b) Type  II  experiment (i)

initial state scattering final state

coherent

superposition

(c) Type  II  experiment (ii)

initial state scattering final state

+|φ›1|φ›2|ψ›3

+|φ›1|ψ›2|φ›3

coherent

superposition

+|φ›1|v›2|ψ›3

+|v›1|φ›2|ψ›3

+|ψ›1|v›2|φ›3

+|v›1|ψ›2|φ›3

|v›1|v›2|u›3

|φ›1|v›2|u›3

SA

SB

SB

SA

SA

SB

SB

SA

SB

total scattering  amplitude : 2(SA + SB)     bosons or fermions

total scattering  amplitude : (SA + SB)      bosons or fermions  

total scattering  amplitude :
2(SA + SB)      bosons 

0                     fermions

2

Figure B.2: Possible paths of scattering leading to the final state (a) |v〉1|v〉2|u〉3 in
type I experiment, (b) |v〉1|v〉2|u〉3 in type II experiment, and (c) |φ〉1|v〉2|u〉3 in type
II experiment. In (a), the upper sign is for bosons, the lower sign is for fermions.
The total scattering amplitudes is enhanced for bosons, and is suppressed to zero for
fermions in this type I experiment. In (b) and (c), the scattering amplitudes are the
same for both bosons and fermions. It is enhanced in (c), but there is no interference
leading to enhanced or suppressed scattering in (c)

.
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initial-state is:

|i〉IB =
1√
N

[

n1∏
i=1

|φ〉i
n1+n2∏

j=n1+1

|ψ〉j
n∏

k=n1+n2+1

|v〉k

+ permutation terms due to

symmetrization postulate ]. (B.4)

All the permutations add to a total number of N = (n
n1

)(n−n1
n2

) different terms in the

bracket. Any one of the n1 particles in |φ〉 and any one of the n2 particles in |ψ〉
can scatter into |v〉 and |u〉 via the two processes (A) and (B). Process (A) results in

a total of N2 = N(n1
1 )(n2

1 ) terms in the final state |f̃〉IB = Ûint|i〉IB. Each of these

terms has one particle in |u〉, n1 − 1 particles in |φ〉, n2 − 1 particles in |ψ〉, and

n3 + 1 particles in |v〉. Hence there are only N3 = (n
1 )(n−1

n1−1)(
n−n1
n2−1 ) physically distinct

terms in the final state. Due to the symmetry property of the initial state (B.4), all

these N3 terms have the identical probability amplitude SAcIB = SA(N2

N3
)/
√

N . Same

analysis applies to the process (B) except that the probability amplitude of each term

is SBcIB = SB(N2

N3
)/
√

N . The normalized final state is |f〉IB = |f̃〉IB/
√

IB〈f̃ |f̃〉IB.

The scattering amplitude is:

aIB =IB〈f |Ûint|i〉IB =IB 〈f |f̃〉IB =

√
IB〈f̃ |f̃〉IB

=
√

N3c2
IB|SA + SB|

=
√

n1n2(n3 + 1)|SA + SB|. (B.5)

It shows that the scattering rate is proportional to the product of the numbers of

particles (n1 and n2) in the input states and is enhanced by the initial occupancy n3

of the output state |v〉.
In the case of a fermion system, the initial state is:

|i〉IF =
1√
n!

[|φ(1)〉1|φ(2)〉2...|φ(n1)〉n1|ψ(1)〉n1+1...|ψ(n2)〉n1+n2|v(1)〉n1+n2+1...|v(n3)〉n

+ permutation terms due to anti-symmetrization postulate], (B.6)
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Here the superscripts (1), (2), ... are labels of another quantum number q, which is

conserved during the scattering processes. Thus, for example, the n1 particles occupy

nearly degenerate but distinct states |φ(1)〉1, |φ(2)〉2, etc. Scattering is only among the

four states with identical quantum number q (from |φq〉 and |ψq〉 to |uq〉 and |vq〉),
all scattering governed by the same unitary matrix Ûint. This also implies the same

energy spacing between states (p, q1) and (p, q2) for p = φ, ψ, u and v. Thus states

such as (|ψq1〉+ |φq1〉+ |vq1〉) and (|ψq2〉+ |φq2〉+ |vq2〉) evolve in the same way.

In the state B.6, there are a total of n! physically distinct terms in the bracket.

Due to the anti-symmetrized form of the initial state, scattering amplitude cancel

out exactly between different paths if they lead to a final state with two particles in

a same state |v〉. For a scattering process in which two particles are scattered into

initially unoccupied |v〉 and |u〉, there is no other paths interfering with it. Explicitly,

the total scattering amplitude IF 〈f |Ûint|i〉IF is:

aIF =





0, if n3 ≥ n1, n2,√
(n1 − n3)n2|SA|, if n1 > n3 ≥ n2,√
(n2 − n3)n1|SB|, if n2 > n3 ≥ n1,

[(n1 − n3)n2|SA|2 + (n2 − n3)n1|SB|2

+2(n2 − n3)(SAS∗B + S∗ASB)]1/2, if n1 > n2 > n3,

[(n1 − n3)n2|SA|2 + (n2 − n3)n1|SB|2

+2(n1 − n3)(SAS∗B + S∗ASB)]1/2, if n2 > n1 > n3.

(B.7)

It shows that if there are initially more particles in an ensemble of nearly degenerate

states |v〉 than in |φ〉 and |ψ〉, the scattering into |v〉 and |u〉 is completely suppressed.

Otherwise, the amplitude is non-zero but still suppressed by the increase of n3.

B.2 Type II experiment

In contrast to the type I experiment, each particle in the initial matter waves of a

type II experiment is in a same coherent superposition of the states |φ〉, |ψ〉, and |v〉.
In a boson system, if there are n particles in total, and each particle prepared in an
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identical superposition state, the initial-state wavefunction of bosons is:

|i〉IIB =
n∏

i=1

(

√
1− ε

2
|φ〉i +

√
1− ε

2
|ψ〉i +

√
ε|v〉i) (B.8)

The expansion of (B.8) consists of a total of 3n different terms. There are Nmk =

(n
m)(n−m

k ) terms which have m particles in |φ〉, k particles in |ψ〉 and (n-m-k) particles

in |v〉. Here m takes values from 0 to n, for each m, k takes values from 0 to n-m.

We call this group of Nmk terms as (m,k) group. All terms in the same (m,k) group

have the same probability amplitude c0
mk = (1−ε

2
)n/2η

n−m−k
2 , where η = 2ε

1−ε
. It is

obvious from the expansion that |i〉IIB is already fully symmetric, and no additional

symmetrization procedure is necessary.

For each (m,k) group, possible scattering of a pair of |φ〉i and |ψ〉j into |v〉i|u〉j via

process (A) results in a total of N ′
2 = mkNmk terms, each of which has one particle

in |u〉, (m-1) particles in |φ〉, (k-1) particles in |ψ〉 and (n-m-k+1) particles in |v〉.
However, there are only N ′

3 = (n
1 )(n−1

m−1)(
n−m
k−1 ) physically distinct terms. Since the

initial state is symmetric, the initial group (m,k) is scattered into N ′
3 different terms,

all with the same probability amplitude SAc′mk = SAc0
mk

N ′
2

N ′
3

= c0
mk · 2(n−m− k + 1).

Similarly, scattering via process (B) contributes SBc′mk to the probability amplitude.

The final state |f̃〉IIB = Ûint|i〉IIB is a sum of terms scattered from all (m,k) groups.

Hence the total scattering amplitude is:

aIIB =

√
IIB〈f̃ |f̃〉IIB

=

√√√√
n−1∑
m=1

n−m∑

k=1

N ′
3(m, k)(c′mk|SA + SB|)2

=

√
[
1− ε

2
n][

1− ε

2
(n− 1)][ε(n− 2) + 1]|SA + SB|. (B.9)

When n À 1, the scattering rate is again proportional to the product of the average

numbers of particles in the two input states (the first two terms in the last line of

(B.9) corresponding to n1 and n2 in type I experiment), and is enhanced by the final

state population by a factor ε(n − 2) + 1, where ε(n − 2), the average population in
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|v〉, corresponds to n3 in the type I experiment.

For type II experiment, a fermion system has exactly the same scattering ampli-

tude. The initial state for fermions is

|i〉IIF =
1

N ′ [(
1− ε

2
)n/2

n∏
i=1

(|φ(i)〉i + |ψ(i)〉i +
√

η|v(i)〉i)

+ permutation terms due to anti-symmetrization postulate]., (B.10)

where N ′ is a normalization factor. Since each particle has a different quantum

number q, and q is conserved under the operation of Ûint, terms in the expansions

of different anti-symmetrization groups do not interfere with each other, even after

scattering. At the same time, all anti-symmetrization groups have identical scattering

characteristics. Therefore it is sufficient to consider only the first line of (B.10), set-

ting N ′ = 1. In another word, symmetrization postulate and thus quantum statistics

does not affect the scattering amplitude in type II experiment. Moreover, the label

for quantum number q in (B.10) has a one to one correspondence to the label of the

particle number, so the label for quantum number q can be suppress and (B.10) is

reduced to the same form as (B.8), leading to aIIF = aIIB. This collective enhance-

ment effect for fermion matter waves is analogous to the super-radiance of two level

atoms prepared in a Bloch state (82). The field in the vacuum state and an atom in

the excited state (corresponding to particles in |φ〉 and |ψ〉) interact and transform

into the field in one-photon state and the atom in the ground state (corresponding

to particles in |u〉 and |v〉). Super-radiance, or enhanced transition rate, is expected

if atoms are prepared in Bloch state, i.e., if each atom is in a coherent superposition

of the excited state and the ground state through the interaction with highly excited

coherent light.

We again consider a simple case of three particles, each particle occupying the

three states |φ〉, |ψ〉 and |v〉 with equal probability. Then the initial state of bosons
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and the reduced initial state of fermions has the same form:

|i >=(|φ〉1 + |ψ〉1 + |v〉1)⊗ (|φ〉2 + |ψ〉2 + |v〉2)
⊗ (|φ〉3 + |ψ〉3 + |v〉3)

To reach a final state |v〉1|v〉2|u〉3, there are four possible paths, as illustrated in fig-

ure B.2 (b). The corresponding four terms in the initial state |i〉 originate from a

coherent superposition state instead of the symmetrization or anti-symmetrization

procedure. Therefore paths from each process are additive for both bosons and

fermions. The constructive interference between different paths leads to enhanced

scattering amplitude. To have an intuitive picture of the enhancement by the final

state occupancy (corresponding to the ε(n − 2) term in (B.9)), we consider the case

where there are no particle in |v〉 before scattering. Then only two paths are possible,

as shown in figure B.2 (c), and no interference terms to lead to enhancement in this

case.

As discussed above, type II experiment will produce identical enhancement in

scattering amplitude for both boson and fermion systems, given that the initial state

of the system is prepared as a coherent superposition of all three states |φ〉, |ψ〉 and

|v〉. The enhancement comes from constructive multi-particle interference, where the

different paths are created by preparing the initial state in a coherent superposition-

state. Type I experiment, however, will reveal final state stimulation for bosons and

inhibited-FWM for fermions (Pauli blocking). The enhancement and inhibition in

this case come from constructive and destructive multi-particle interference, where

the different paths stem from the symmetrization and anti-symmetrization postulate.

So only type I experiment tests the true quantum statistics of the system. The final

state stimulation (65), matter wave amplification (30) and condensation of exciton po-

laritons (84) have been demonstrated in this type of experiment, but the counterpart

experiments in atomic systems are yet to be observed.
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