

Unlocking FileVault
An analysis of Apple's disk

encryption system

Jacob Appelbaum <jacob@appelbaum.net>
Ralf-Philipp Weinmann <ralf@coderpunks.org>

@23C3 (52°31'14.48"N, 13°24'59.51"E)

2006-12-29

mailto:jacob@appelbaum.net
mailto:ralf@coderpunks.org

What's this about?
● What is FileVault? Why use FV?
● Practical problems with FileVault

– Known and unknown attacks against FV
● Reversing on OS X

– DiskImages Framework
● FileVault crypto details

– A free implementation
● OSX oddities and more

– PRNG, swap, sleep images, DMA attacks
● Special guest Hacker Happily Hacking!

Motivation

● General interest in disk cryptography
● Personal data retention
● Protection against theft
● Everyone uses laptops
● Undocumented. Is it secure? How does it work?

 The marketing side

● “FileVault secures your home directory by
encrypting its entire contents using the
Advanced Encryption Standard with 128-bit
keys. This high-performance algorithm
automatically encrypts and decrypts in real
time, so you don’t even know it’s happening.”

... but we do want to know what's
happening!

● Internals are not (well) documented
– Exception: man page for hdiutil(8)

● DiskImages framework is private (no src, no
headers)
– /System/Library/PrivateFrameworks/
DiskImages.Framework

● Kernel module not open-sourced

DiskImages framework

● Modular architecture, supports plugins
– hdiutil plugins

● third-party plugin known: VirtualPC disk images
● helpers: diskimages-helper, hdiejectd
● hdiutil(8): CLI “front-end”
● IOHDIXController kernel module does in-

kernel attach and encryption/decryption
(shows up as
 com.apple.AppleDiskImageController)

DiskImages framework (2)

● Backing stores:
– CBSDBackingStore
– C{RAM,Carbon,Dev,CURL,Vectored}BackingStore

● Encodings
– CEncryptedEncoding
– C{MacBinary,AppleSingle,UDIF,SegmentedNDIF,Se

gmentedUDIF,SegmentedUDIFRaw}Encoding
● Shadowed images, compressed images,

sparse images, message digests on images

Crypto details
● Blocks get encrypted in 4kByte “chunks”

AES-128, CBC mode
– IV := trunc

128
(HMACSHA1(hmac-key || chunkno))

● Keys are encrypted (“wrapped”) in header of
disk image

● Wrapping of keys done using 3DES-EDE
● Two different header formats (v1, v2)
● Version 2 header: support for asymmetrically

(RSA) encrypted header

Crypto details / implementation

● Login password used to derive key for
unwrapping
– PBKDF2 (PKCS#5 v2.0), 1000 iterations

● Crypto parts implemented in CDSA/CSSM
– DiskImages has own AES implementation, pulls in

SHA-1 from OpenSSL dylib
● “Apple custom” key wrapping loosely according

to RFC 2630 (PKCS#7, section 12.6)
– in Apple's CDSA provider (open source)

Recovery mechanism

● When enabling FileVault, you can set a master
password

● Master password protects FileVault recovery
keychain
– /Library/Keychains/
FileVaultMaster.keychain

● Recovery keychain contains 1024 bit RSA key
● However, beware:

1024 bit RSA modulus ≈ 72 bit symmetric key
(Lenstra-Verheul heuristics)

Headers / versions

● V1 “headers” live at the end of the file
● V2 headers live at the beginning
● “Version is the default for non-sparse images.

As of OS X 10.4.7, sparse, encrypted images
will always use version 2.” (hdiutil man page)

● Meta data at end of the image can lead to “bad”
things when compacting.

Password header for version 2

uint32_t kdf_algorithm;
uint32_t kdf_prng_algorithm;
uint32_t kdf_iteration_count;
uint32_t kdf_salt_len; /* bytes */
uint8_t kdf_salt[32];
uint32_t blob_enc_iv_size; /* bytes */
uint8_t blob_enc_iv[32];
uint32_t blob_enc_key_bits; /* bits */
uint32_t blob_enc_algorithm;
uint32_t blob_enc_padding;
uint32_t blob_enc_mode;
uint32_t encrypted_keyblob_size;
uint8_t encrypted_keyblob[0x30];

Reversing Private Frameworks
● full signatures for C++ code, e.g.:

– CEncryptedEncoding::decodePasswordHeader(Security::CssmData const&,
CEncryptedEncoding::PasswordHeader const&)

– CEncryptedEncoding::decodePrivateKeyHeader(__CFString const*,
CEncryptedEncoding::PrivateKeyHeader const&)

– CEncryptedEncoding::decodeV1Header(Security::CssmData const&,
CEncryptedEncoding::V1Header const&)

– CEncryptedEncoding::decrypt(long long, long long, void*)

● Analysis done using gdb, hdiutil debug output
and otool disassemblies

● Would've liked to use the Boomerang reverse
compiler...
– Worked somewhat after a little patching; not used

though. Lots of more work to fix it...

Results?

● vfdecrypt
– Input encrypted dmgs, output decrypted dmgs
– Works for Version 1 and Version 2 encrypted dmgs
– Encrypted sparse disk images: only outer layer will

be stripped (encryption); still a sparse disk image
inside.

– Very rough code at the moment, but works.
● Cryptographic security depends on more than

just AES-128, it's rather
3DES effective 112bit || AES-128 || RSA-1024

Why we'd like FDE

● Since only $HOME is encrypted, all other data is
still unprotected.

● Think /tmp, log files: /var/log, /System/Logs
● We'd like to have full disk encryption
● Possible with DiskImages framework

(CDevBackingStore), but possibly hdiutil is
not sufficient for setting it up.

OS X PRNG pecularities

● Uses (modified) Yarrow
● Initial entropy determined from system time
● Security Server (securityd) feeds entropy to

kernel by writing to /dev/random
– This data is pulled from the kernel using a debug

interface (KERN_KDGETENTROPY) every 15 secs.
● Reseeds are very short (50µsec). Predictability

of reseed operations.

Attack vectors?

● Found in xnu-792.13.8 and earlier:
/*
 * Encryption data.
 * "iv" is the "initial vector". Ideally, we want to
 * have a different one for each page we encrypt, so that
 * crackers can't find encryption patterns too easily.
 */

[...]

/*
 * No need for locking to protect swap_crypt_ctx_initialized
 * because the first use of encryption will come from the
 * pageout thread (we won't pagein before there's been a pageout)
 * and there's only one pageout thread.
 */

[...]

#define SWAP_CRYPT_AES_KEY_SIZE 128 /* XXX 192 and 256 don't work ! */

Firewire

● DMA firewire attacks allow for reading and
writing of all system memory

● Possible to own people with an iPod
● Possible to defend against with OpenFirmware

or with a patched kernel (see references)
– Platform dependent

Swap files and memory issues

● Well known issues
● Passwords are not properly scrubbed
● Encrypted swap not on by default in Tiger or

even available Panther or below
– /var/vm/swapfile{0,1,n} containing unhashed user

passwords and other sensitive info
● Any ring 0 code can take your keys (remote

airport key harvesting anyone?)

But surely everyone knows about
encrypted swap?

● (http://www.apple.com/macosx/features/filevault)

Safe Sleep

● Safe sleep is invoked when power runs critically
low

● Memory contents written to
/var/vm/sleepimage

● Safe sleep is careful but not careful enough...
● If encrypted swap is on:

– contents of the sleep image will be encrypted, but
key will be written out in the header (xnu-792.13.8)

Weak passwords

● Brute force dictionary attacks are possible
● We can typically get around ~200 keys/sec

– AMD Sempr0n 3300

Special guest appearance

● Please welcome David Hulton
– Demoing vfcrack

vfcrack working

vfcrack done

vfcrack

● We can typically get around ~200 keys/sec with
a normal laptop

● Using a compact flash sized FPGA from pico
computing we can increase this dramatically

● We can achieve ~2000+ keys/sec (10x!)
● Demo!

Other fine references
● Firewire DMA attacks - "All your memory are

belong to us" @
http://md.hudora.de/presentations/ by
Maximillian Dornseif

● Secure your Mac workshop by Angelo Laub @
http://metalab.at/wiki/SYMWorkshop

● DmgBrute by ? -
http://fsbsoftware.com/data/dmgBrute.c

● MDE@22c3 by Jacob Appelbaum -
http://events.ccc.de/congress/2005/fahrplan/att
achments/714-Slides-
Modern_Disk_Encryption_Systems.pdf

http://md.hudora.de/presentations/
http://metalab.at/wiki/SYMWorkshop
http://fsbsoftware.com/data/dmgBrute.c

Code and slide release

● Free and Open Source software
● Cracking with optional FPGA acceleration

(Thanks to h1kari) included as vfcrack
● Download now from:

http://crypto.nsa.org/vilefault/

http://crypto.nsa.org/vilefault/

Thanks!

● Christan Fromme
● David Hulton
● Angelo Laub
● Jennifer Granick
● Luis Miras
● To every person at the EFF
● All the great people in and at the CCC

And thanks most of all...

● Club Mate!

Questions?

