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I. INTRODUCTION

The following journal club talk is based on a sequence
of papers by Raussendorf and Briegel [1, 2, 3], espe-
cially [1].

Consider a standard quantum circuit. The number of
qubits involved in the circuit is known as the breadth of
the circuit. The number of distinct timesteps at which
a gate may be applied is known as the depth of the cir-
cuit. The product of these two numbers — effectively,
the maximal number of gates that may be applied in the
circuit — is sometimes called the size of the circuit.

The main claim of [1] is as follows:

For a given breadth m and depth n there ex-
ists a quantum state ψ(m,n), known as the
cluster state, depending only on m and n,
such that:

• ψ(m,n) involves O(mn) qubits.

• ψ(m,n) can be prepared using poly(mn) phys-
ical resources (time, space, energy, etcetera).

• By doing single-qubit measurements on
ψ(m,n), in appropriate bases, and with feed-
forward of the measurement results to modify
later measurement bases, we may simulate any
quantum circuit of breadth m and depth n,
with at most a polynomial overhead in physi-
cal resources.

This model, which I’ll refer to as the cluster-state
model of quantum computation, is interesting for several
reasons:

• It may suggest new approaches for the construction
of quantum computers.

• By studying it we may learn more about what re-
sources are universal for quantum computation.

• It may suggest new approaches to quantum algo-
rithms.

• It may have significance for fundamental reasons,
showing that essentially all quantum dynamics can
be reduced to measurement.
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II. BASIC CIRCUIT NOTATION

In this section I introduce some circuit notation useful
in later sections. I have deferred the introduction of some
more complex pieces of notation until later, when the
motivation is clearer.
X,Y and Z denote the Pauli matrices, as usual. Fig. 1

depicts our circuit notation for a single-qubit quantum
gate, U . Special cases of significance are the rotations
about the respective axes of the Bloch sphere, Xx ≡
exp(−ixX/2), Yy ≡ exp(−iyY/2), Zz ≡ exp(−izZ/2).

FIG. 1: Our notation for the single-qubit gate U .

Fig. 2 depicts our circuit notation for measurement of
a single qubit in the computational basis. Fig. 3 depicts
our circuit notation for measurement of a single qubit in
a rotated basis.

FIG. 2: A measurement in the computational basis of a single
qubit, with output the classical bit m = 0 or 1.

FIG. 3: A single-qubit measurement in a rotated basis.

We often have occasion to use a two-qubit gate known
as the controlled-phase gate. Our notation for the
controlled-phase gate is illustrated in Fig. 4. This gate
is well-known to be locally equivalent to the controlled-
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not gate, and thus is universal for quantum computa-
tion, when assisted by local unitaries.

FIG. 4: The controlled-phase gate, whose action on the com-
putational basis takes |z1, z2〉 → (−1)z1z2 |z1, z2〉.

An important point about the controlled-phase gate is
that it commutes with Z rotations, and also with other
controlled-phase gates. In particular, this means that if
multiple controlled-phase gates are applied to a set of
qubits, then it does not matter in what order the gates
are applied. This allows us to use, for example, notations
like that in Fig. 5 to indicate two controlled-phase gates,
one between qubits one and two, and one between qubits
two and three.

FIG. 5: Multiple controlled-phase gates commute with one
another, and thus may be represented in this fashion, without
worrying about the order in which they are applied.

III. ELEMENTARY CIRCUIT IDENTITIES

To understand the cluster-state model of quantum
computation, it helps to first prove three quantum cir-
cuit identities. It may not be immediately obvious how
these help in developing the cluster-state model of quan-
tum computation, but the identities are, in any case, of
considerable interest in their own right.

A. The transport circuit

The most important circuit identity used in the cluster-
state model of computation is illustrated in Fig. 61.

To see that the output of the transport circuit is as
claimed, note first that the transport circuit is equivalent
to the circuit in Fig. 7. But the Zθ rotation commutes

1 This identity is also useful in arriving at fault-tolerant gate con-
structions [4]. I’m struck by the idea that [4] may stand in rela-
tion to [5] somewhat as [1] does to [6].

FIG. 6: The transport circuit. We show in the text that the
output is as claimed.

with the phase gate, and so the output of the circuit is
the same as if we had input Zθ|ψ〉 to the circuit in Fig. 8.

FIG. 7: A circuit equivalent to the transport circuit, Fig. 6.

FIG. 8: Another circuit whose output is the same as that of
the transport circuit, Fig. 6.

It follows that to verify the output of the transport
circuit is as illustrated in Fig. 6, we need only verify it
for the case θ = 0, i.e., we need only verify the circuit
identity of Fig. 9.

To verify the result of Fig. 9, express |ψ〉 as α|0〉+β|1〉,
so the input to the circuit is α|0〉|+〉+β|1〉|−〉. After the
controlled-phase gate the state is then α|0〉|+〉+β|1〉|−〉.
Applying a Hadamard gate to the first qubit gives the
state

|0〉(α|+〉 + β|−〉) + |1〉(α|+〉 − β|−〉)√
2

. (1)

But α|+〉 + β|−〉 = H |ψ〉, and α|+〉 − β|−〉 may be ob-
tained by applying an extra X , so the outuptu state, be-
fore measurement of the first qubit in the computational
basis, is:

|0〉H |ψ〉 + |1〉XH |ψ〉√
2

. (2)

We see that measuring m = 0 gives a state H |ψ〉 output
from the transport circuit, while measuring m = 1 gives
the state XH |ψ〉, as was required to prove.
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FIG. 9: The circuit identity of Fig. 6 will follow from this
circuit identity.

B. The discard circuit

Our next circuit identity is the claim that the output of
the discard circuit in Fig. 10 is identical to the output of
the circuit in Fig. 11. Note an interesting thing about this
circuit identity: the “circuit” in Fig. 11 is not, strictly
speaking, a quantum circuit at all, since the origin of m
is undefined. Instead, it’s simply a convenient shorthand
for describing the state output from the quantum circuit
of Fig. 10. The beauty of the circuit notation is that
we can still apply all our usual tricks for manipulating
circuits to the circuit in Fig. 11.

FIG. 10: The discard circuit. Note that |ψ〉 is an abritrary
state of k + 1 qubits; the bar in the top line in the circuit
indicates a bundle of k qubits. |φ〉 is an arbitrary state of
a single qubit. We show in the text that the output of this
circuit is identical to the output of Fig. 11.

FIG. 11: The output of this circuit is identical to the output
of the discard circuit in Fig. 10.

To verify that the output of Fig. 10 is the same as
the output of Fig. 11, note that the output of Fig. 10 is
certainly the same as that of Fig. 12. Now we commute
the controlled-not gate in Fig. 12 through the controlled-
phase gate, so Fig. 10 has the same output as Fig. 13.
But applying a controlled-not to |φ〉 and then measuring
the output, m, has the same effect as preparing |0〉 or |1〉,
depending on the value ofm, as illustrated in Fig. 14. But

the output of this circuit is the same as that of Fig. 11,
by definition of the controlled-phase gate.

FIG. 12: The output of this circuit is identical to the output
of Fig. 10.

FIG. 13: The output of this circuit is identical to the output
of Fig. 12.

FIG. 14: The output of this circuit is identical to the output
of Fig. 13, by definition of the controlled-phase gate.

We now show how to generalize the identification of the
output of Fig. 10 with the output of Fig. 11. For example,
essentially the same argument as just given shows that
the output of the circuit in Fig. 15 is the same as that of
Fig. 16.

More generally, if we take an arbitrary state |ψ〉 and
apply as many controlled-phase gates as we like to an
ancilla in the state |φ〉, and then measure the ancilla
to obtain the result m, this is equivalent to simply ap-
plying Zm to those qubits of |ψ〉 which participate in a
controlled-phase gate an odd number of times.

C. Indirect entangling gate

The final circuit identity we need is an indirect way of
applying an entangling gate to two qubits, prepared in
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FIG. 15: A more complex version of the discard circuit. The
output of this circuit is identical to the output of Fig. 16.

FIG. 16: The output of this circuit is identical to the output
of Fig. 15.

arbitrary states |ψ〉 and |φ〉, via two intermediate qubits
prepared in fixed states |+〉. The identity we need is that
the output on the top and bottom lines of Fig. 17 is the
same as the output of Fig. 18, up to an irrelevant global
phase.

FIG. 17: This circuit indirectly entangles the top and the
bottom qubit. The output on the top and the bottom line is
the same as the output of Fig. 18.

To prove this, note that the initial state of the four
qubits in Fig. 17 is

∑
ab |ψ〉|a〉|b〉|φ〉

2
. (3)

Applying the three controlled-phase gates results in the
state

∑
ab(−1)abZa|ψ〉|a〉|b〉Zb|φ〉

2
. (4)

Recall that the action of the Hadamard gate is H |a〉 =
∑

c(−1)ac|c〉/√2. As a result, after applying Hadamard

FIG. 18: The output of this circuit is the same as the output
on the top and the bottom line of Fig. 17.

gates to the second and third qubits we have
∑

abcd(−1)ab+ac+bdZa|ψ〉|c〉|d〉Zb|φ〉
4

. (5)

It will be convenient to treat the addition in the exponent
of −1 as addition modulo two. Suppose the measurement
results in Fig. 17 are c and d. Then the resulting condi-
tional state of the first and the fourth qubits is

∑
ab(−1)ab+ac+bdZa|ψ〉Zb|φ〉

2
. (6)

Rewriting ab+ac+bd = (a+d)(b+c)+cd (recall that we’re
using modulo two addition) we see that the conditional
state is, up to an unimportant phase factor,

∑
ab(−1)(a+d)(b+c)Za|ψ〉Zb|φ〉

2
. (7)

This can be rewritten

(Zd ⊗ Zc)
∑

ab(−1)(a+d)(b+c)Za+d|ψ〉Zb+c|φ〉
2

. (8)

Changing variables in the sum to a′ = a+d and b′ = b+c
we obtain

(Zd ⊗ Zc)
∑

a′b′(−1)a′b′Za′ |ψ〉Zb′ |φ〉
2

. (9)

It is straightforward to verify directly that the controlled-
phase gate may be written

∑
a′b′(−1)a′b′Za′ ⊗ Zb′ , and

thus the output on the top and bottom lines of Fig. 17
is the same as the output of Fig. 18, up to an irrelevant
global phase.

IV. THE CLUSTER-STATE MODEL OF
QUANTUM COMPUTATION

A. The cluster state

To describe the cluster-state model of quantum com-
putation it is extremely helpful to introduce some new
notation. In particular, we denote a basic cluster state
as shown in Fig. 19. This represents an array of 3 × 4
qubits. The joint state of the qubits may be described by
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specifying a procedure to prepare the state 2: (a) prepare
each qubit in the state |+〉; (b) apply a controlled-phase
gate between each pair of neighbouring qubits.

FIG. 19: A 3 × 4 cluster state.

Obviously, this notation for the cluster state differs
quite a bit from the standard circuit model. In particular,
the notation of Fig. 19 represents a static state, with no
dynamics.

We have defined the cluster state for a square lattice,
but in fact a cluster state may be defined for any graph.
For example, the cluster state illustrated in Fig. 20 is
prepared by initializing all the qubits in the state |+〉,
and then applying controlled-phase gates between those
qubits connected by the graph.

FIG. 20: Notation for a cluster state on a graph.

The way a cluster-state computation works is to ap-
ply a series of single-qubit measurements to the qubits.
To indicate this process we use a notation like that in
Fig. 21. This indicates doing first a measurement on the
qubit marked with a “1”, by rotating the qubit using H
and then measuring in the computational basis. That is,
we measure the top left qubit in the X basis. Then we
measure the qubit marked with a “2” in the same way.
Finally, we measure the qubit marked “3” by applying
HZθ and measuring in the computational basis.

2 Of course, other preparation procedures are possible.

FIG. 21: The notation used for measurement.

This notation has several noteworthy points. First, the
temporal order of the measurements is made clear by the
numbers attached to the qubits. Second, the results of
earlier measurements can be fed forward to influence later
measurements. So, for example, we could have used the
results of measurements 1 and 2 to influence the choice
of angle θ used for measurement 3.

Indeed, since measurements on different qubits com-
mute with one another, the point in introducing a tempo-
ral order is usually for one of the following three reasons:
(a) for pedagogical clarity; (b) for ease of analysis; or —
and this is the really critical reason — (c) when feed-
forward is used so that later measurement bases are in-
fluenced by earlier measurement results. It is sometimes
convenient to emphasize this fact by using the notation
of Fig. 22 to denote measurements. Here, the measure-
ments 1 and 1′ are done first, but can be regarded as
being done in any order, or in parallel, since the choice
of α and β are made independently. However, the mea-
surements 2 and 2′ are done later (again, in either order
or in parallel), since the values of γ and δ depend on the
outcomes of the measurements 1 and 1′. Note that we
will usually omit the primes, using them only when it is
helpful to refer to specific qubits in the circuit.

FIG. 22: The notation used for parallel measurements.

A typical cluster-state quantum computation thus
looks something like Fig. 22. The output of the com-
putation is defined to consist of those qubits which have
not yet been measured, i.e., the blank qubits in the figure.

B. A single-qubit unitary gate

We begin our explanation of the cluster-state model of
quantum computation by showing how to simulate the
simple quantum circuit in Fig. 23. The simulation proce-
dure is sufficiently useful that we also introduce a nota-
tion for the gate we’re simulating, in Fig. 24. Note that
the gate introduced, Uα,β, is universal for computation,
together with the controlled-phase gate. It is also useful
to note that by choosing α = β = 0 we can simulate the
identity gate, i.e., a wire.

The cluster-state computation we use to simulate the
circuit of Fig. 23 is shown in Fig. 25. Note that α in
this figure is the same as α in Fig. 23, but that β′ is not
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FIG. 23: A simple quantum circuit that we’ll simulate in the
cluster-state model.

FIG. 24: A useful gate notation.

necessarily the same; it will depend on the result of the
first measurement.

FIG. 25: The cluster-state circuit used to simulate the circuit
of Fig. 23

To analyse the output of Fig. 25, note that it is equiv-
alent to the quantum circuit shown in Fig. 26. This,
in turn, is equivalent to the quantum circuit shown in
Fig. 27, just by delaying the operations on the second
and third qubits. But the circuit in Fig. 27 is just two
copies of the transport circuit, Fig. 6, with the output of
the first used as input to the second. The output of the
first transport circuit is

Xm1HZα|+〉, (10)

and thus the output of the two combined transport cir-
cuits is

Xm2HZβ′Xm1HZα|+〉. (11)

We choose β′ = ±β so that Z ′
βX

m1 = Xm1Zβ; this can
be done since β′ is chosen after m1 is known. Further-
more, since H is in the Clifford group, it follows that
HXm1 = σm1H , where by σm1 we just mean some known
Pauli matrix (in this case, Z), without worrying too much
about keeping track of the details for the purposes of
analysis. (In practice, you would need to keep track, of
course!) It follows that the output of the circuit in Fig. 27
is

σm1,m2HZβHZα|+〉, (12)

which is just

σm1,m2XβZα|+〉. (13)

That is, the output of Fig. 23 is the same as the final state
of the cluster-state computation in Fig. 25, up to a known
Pauli error σm1,m2 . Assuming that the computation is
read out in the computational basis, this known Pauli
error can be compensated by classical post-processing of
the readout result from Fig. 25, and thus the two methods
of computation are equivalent.

FIG. 26: A quantum circuit equivalent to the cluster-state
circuit in Fig. 25.

FIG. 27: This quantum circuit is equivalent to the circuit in
Fig. 26, but is easier to analyse.

C. Two consecutive single-qubit unitary gates

Suppose next that we want to simulate a circuit con-
taining two consecutive Uα,β-type gates, as illustrated in
Fig. 28.

FIG. 28: A simple circuit containing two consecutive single-
qubit gates.

This can be done using the cluster-state computation
depicted in Fig. 29. In this computation, α is the same
as in Fig. 28, but β′ = ±β, γ′ = ±γ, δ′ = ±δ, with the
specific value of the sign depending on the values of the
earlier measurement outcomes. Note that β′ is chosen as
in the previous section; γ′ and δ′ will also be chosen in a
similar way.

To see that this simulation works, note that the cluster-
state computation of Fig. 29 is equivalent to the quantum
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FIG. 29: The cluster-state computation used to simulate the
circuit of Fig. 28.

circuit depicted in Fig. 30.

FIG. 30: The cluster-state computation of Fig. 29 is equiva-
lent to this quantum circuit.

To understand the output of the circuit in Fig. 30, note
that it consists of four consecutive transport circuits. We
already know that the output of the first two transport
circuits is

σm1,m2Uα,β|+〉, (14)

provided β′ is chosen as described in the previous section.
This is then used as input to the next two transport cir-
cuits, giving as output

Xm4HZδ′Xm3HZγ′σm1,m2Uα,β |+〉. (15)

We can commute the known Pauli error σm1,m2 through
Zγ′ to obtain Zγ (provided γ′ is chosen appropriately),
and then through H , to obtain

Xm4HZδ′σm1,m2,m3HZγUα,β |+〉, (16)

where σm1,m2,m3 is a known Pauli error depending on the
first three measurement results. This can then be com-
muted through Zδ′ , making it Zδ, provided δ′ is chosen
appropriately, and through H , giving

σm1,m2,m3,m4Uγ,δUα,β|+〉, (17)

which, up to a known Pauli error, is the same as the
output of Fig. 28.

There are two important general lessons to be learnt
from this example. The first lesson is that the Pauli
errors which result from the unpredictability of the mea-
surement results are not serious. We can always propra-
gate them through to the end of the computation, simply
by making appropriate choices of the measurement bases.

The second lesson relates to how one concatenates
cluster-state computations. Consider the cluster-state

computation of Fig. 29. This is equivalent to first prepar-
ing the cluster state on the first three qubits, and then
doing measurements 1 and 2. As we saw in the previous
section, this leads to the state Uα,β |+〉 being output on
the third qubit (up to a Pauli error). The remaining parts
of the cluster are then prepared with controlled-phase
gates, followed by the measurements 3 and 4, which re-
sults in the gate Uγ,δ being applied, and the result output
on the final qubit.

D. A small quantum circuit

As our final example, consider the quantum circuit in
Fig. 31. The simulation of this circuit in the cluster-state
model illustrates essentially all the general principles of
cluster-state quantum computation.

FIG. 31: A simple quantum circuit.

The quantum circuit of Fig. 31 may be simulated using
a 4 × 7 cluster state. The first step in the simulation is
to measure the qubits as shown in Fig. 32, all in the
computational basis. There is no need to put a temporal
label on the measurements, since they are all in a fixed
basis.

FIG. 32: The first step in the cluster-state simulation of the
quantum circuit in Fig. 31.

How does this sequence of measurements affect the re-
mainder of the cluster state? Imagine, without loss of
generality, that the first qubit measured is the second
qubit in the first column. By our results on the discard
circuit, Fig. 10, and its generalizations, we see that the
effect of this measurement is to remove the qubit from the
cluster, and apply a Zm operation to the neighbouring
qubits, where m was the measurement outcome.

The resulting state is thus, up to the Zm operations,
exactly the same as would have resulted by preparing a
cluster-state on the original lattice, but with the mea-
sured qubit deleted, as illustrated in Fig. 33. However,
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such factors of Zm can be compensated for in subsequent
single-qubit measurements, since m is known. Thus, we
may as well regard the resulting state as being the cluster
state of Fig. 33.

FIG. 33: The state that results after the measurement on the
second row of the first column in Fig. 32 can be treated as
though it is this cluster state.

Repeated applications of this argument show that
the state output from the cluster-state computation of
Fig. 32 may be regarded as the cluster state of Fig. 34.

FIG. 34: The result of the cluster-state computation of Fig. 32
is this new cluster state.

The next step in the computation is to perform the
measurement prescribed in Fig. 35. Suppose we re-
gard these measurements as being performed before the
controlled-phase gates setting up the cluster state on the
rest of the graph. The effect is to prepare the qubits im-
mediately to the right of those labelled 2 in the states
Uα,β|+〉, and |+〉, up to known Pauli errors.

FIG. 35: These measurements simulate the first single-qubit
gates in the computation of Fig. 31.

The next step is to perform the measurements pre-
scribed in Fig. 36. By the equivalence of Figs. 17 and 18,
the output at the qubits immediately above and below
those marked 3 is the result of letting controlled-phase

act on (Uα,β ⊗ I)|+〉|+〉, again up to a known Pauli er-
ror. Note that in order for this to work, it is crucial
that the controlled-phase gate be in the Clifford group.
If it were not the Pauli errors from earlier stages of the
computation would not propagate through the computa-
tion to become Pauli errors, and the whole scheme would
break down.

FIG. 36: The measurements labelled 3 simulate the
controlled-phase gate in the circuit of Fig. 31.

It should now be clear how to complete the simulation
of Fig. 31. The next step is to do measurements 4 and
5, as indicated in Fig. 37. These measurements simply
make the output of the previous computation propagate
further along the chain; we regard them as being a trvial
part of the controlled-phase gate. Our reason for doing
this is so that the controlled-phase gate and single-qubit
unitaries are always the same “breadth”, taking up two
columns of cluster-state computation. In actual fact, a
little more thought shows that this extra step is not nec-
essary, but from our point of view this is a detail.

FIG. 37: The extra measurements, 4 and 5, cause the quan-
tum information to propagate further along the chain, with-
out changing it, except possibly to change the known Pauli
errors.

An interesting point about Fig. 37 is that the measure-
ments labelled 3, 4 and 5 could all be done at any time
whatsoever in the computation, since they don’t depend
on the previous measurement results. Thus, they could
be done even before the measurements labelled 1 and 2.
It is a remarkable fact about the cluster-state model that
interactions in the quantum circuits model of computa-
tion can all be effectively performed in parallel at the
beginning of a cluster-state computation. It is only the
single-qubit gates that require careful temporal ordering.

The cluster-state computation is concluded by doing
the measurements in Fig. 38, in order to simulate the
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final single-qubit gates in Fig. 31. The output on the
final two qubits of the cluster is identical, up to known
Pauli errors, to the output of the circuit in Fig. 31.

FIG. 38: The extra measurements conclude the simulation of
Fig. 31.

E. Summary

It should now be clear how to simulate an arbitrary
quantum circuit in the cluster-state model of quantum
computation. With the cluster states I’ve described there
are some obvious limitations — e.g., we can only simlu-
late nearest-neighbour controlled-phase gates. But this
is universal for quantum computation, and it is obvi-
ous that by starting with cluster states on more com-
plex graphs we could simulate an arbitrary circuit in the
standard model, with only a small overhead.

Obviously, it would be very interesting to play fur-
ther with this model. Lots of ideas suggest themselves;
too many to enumerate now. In particular, it’d be a lot
of fun to try to understand cluster-state computations
that get away from the standard quantum circuit model,
especially doing interesting things with the temporal or-
dering. There are all kinds of possibilities for encoding
interesting problems in cluster states, and then trying to
process them! Maybe by so doing we’ll be inspired to
think of new algorithms? I’m fairly convinced that one
of the keys to making progress in this way is to think
rather carefully about notation. The notation I’ve in-
troduced can be improved quite a bit further, I think,
and this may be very useful for doing computations in
the cluster-state model. I think the notation used for
concatenation, in particular, could be considerably im-
proved, perhaps by introducing some way of describing
the “effective output” of a partial cluster-state computa-
tion (i.e., the resulting state of those unemasured qubits
adjacent to measured qubits), which is then used as the
“effective input” when further measurements are added.
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