The Fundamental Theorem of Calculus:

1. If $F^{\prime}(x)=f(x)$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
2.If f does not have a jump discontinuity at
x, then

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Create a new set like the Cantor set except
the first middle piece only has length $1 / 4$
each of the next two middle pieces only have length $1 / 16$
the next four pieces each have length $1 / 64$, etc.
The amount left has size $1-\left(\frac{1}{4}+\frac{2}{16}+\frac{4}{64}+\frac{2^{3}}{4^{4}}+\cdots\right)$

$$
\begin{aligned}
& =1-\frac{1}{4}\left(1+\left(\frac{2}{4}\right)+\left(\frac{2}{4}\right)^{2}+\left(\frac{2}{4}\right)^{3}+\cdots\right) \\
& =1-\frac{1}{4} \cdot \frac{1}{1-1 / 2}=\frac{1}{2}
\end{aligned}
$$

Vito Volterra, 1881: There exists a function, $F(x)$, whose derivative, $F^{\prime}(x)$, exists and is bounded for all x, but the derivative, $F^{\prime}(x)$, cannot be integrated.

We'll call this set SVC (for Smith-Volterra-Cantor).
It has some surprising characteristics:

1. SVC contains no intervals - no matter how small a subinterval of $[0,1]$ we take, there will be points in that subinterval that are not in SVC. SVC is nowhere dense.

We'll call this set SVC (for Smith-Volterra-Cantor).
It has some surprising characteristics:

1. SVC contains no intervals - no matter how small a subinterval of $[0,1]$ we take, there will be points in that subinterval that are not in SVC. SVC is nowhere dense.
2. Given any collection of disjoint subintervals of [0,1], if the sum of the lengths is greater than $1 / 2$, then they must contain at least one point in SVC.

We'll call this set SVC (for Smith-Volterra-Cantor).
It has some surprising characteristics:

1. SVC contains no intervals - no matter how small a subinterval of $[0,1]$ we take, there will be points in that subinterval that are not in SVC. SVC is nowhere dense.
2. Given any collection of disjoint subintervals of [0,1], if the sum of the lengths is greater than $1 / 2$, then they must contain at least one point in SVC.
3. Given any partition of $[0,1]$ into subintervals, the sum of the lengths of the intervals that contain points in SVC will always be at least $1 / 2$. SVC has measure $\mathbf{1 / 2}$.

Volterra's construction
$f_{1}(x)$ is a differentiable function for all values of x, but $\lim _{0^{+}} f_{1}^{\prime}(x)$ and $\lim _{1^{-}} f_{1}^{\prime}(x)$ do not exist

Volterra's construction

To the right of $x=1 / 8$, take the mirror image of this function: for $1 / 8<x<1 / 4$, and outside of $[0,1 / 4]$, define this function to be 0 . Call this function $f_{1}(x)$.

Now we slide this function over so that the portion that is not identically 0 is in the interval [3/8,5/8], that middle piece of length $1 / 4$ taken out of the SVC set.

We slide one copy of $f_{2}(x)$ into each interval of length $1 / 16$ that was removed from the SVC set.

Volterra's function, $V(x)$, is what we obtain in the limit as we do this for every interval removed from the SVC set. It has the following properties:

1. V is differentiable at every value of x, and its derivative is bounded (below by -1.013 and above by 1.023).

Volterra's function, $V(x)$, is what we obtain in the limit as we do this for every interval removed from the SVC set. It has the following properties:

1. V is differentiable at every value of x, and its derivative is bounded (below by -1.013 and above by 1.023).
2. If a is a left or right endpoint of one of the removed intervals, then the derivative of V at a exists (and equals 0), but we can find points arbitrarily close to a where the derivative is +1 , and points arbitrarily close to a where the derivative is -1 .

We'll call this set SVC (for Smith-Volterra-Cantor).
It has some surprising characteristics:

1. SVC contains no intervals - no matter how small a subinterval of $[0,1]$ we take, there will be points in that subinterval that are not in SVC. SVC is nowhere dense.
2. Given any collection of disjoint subintervals of [0,1], if the sum of the lengths is greater than $1 / 2$, then they must contain at least one point in SVC.
3. Given any partition of $[0,1]$ into subintervals, the sum of the lengths of the intervals that contain points in SVC will always be at least $1 / 2$. SVC has measure $\mathbf{1 / 2}$.

We'll call this set SVC (for Smith-Volterra-Cantor).
It has some surprising characteristics:

1. SVC contains no intervals - no matter how small a subinterval of $[0,1]$ we take, there will be points in that subinterval that are not in SVC. SVC is nowhere dense.
2. Given any collection of disjoint subintervals of [0,1], if the sum of the lengths is greater than $1 / 2$, then they must contain at least one point in SVC.
3. Given any partition of $[0,1]$ into subintervals, the sum of the lengths of the intervals that contain points in SVC will always be at least $1 / 2$. SVC has measure $\mathbf{1 / 2}$.

No matter how we partition [0,1], the pieces that
Bernhard Riemann $(1852,1867)$ On the representation of a function as a trigonometric series

Defined definite integral as limit of $\sum f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)$

Key to convergence: on each interval, look at the variation of the function

$$
V_{i}=\sup _{x \in\left\{x_{i-1}, x_{i}\right]} f(x)-\inf _{\left.x \in x_{i-1}, x_{i}\right]} f(x)
$$

[^0]| Conclusion: Volterra's function V can be |
| :--- |
| differentiated and has a bounded derivative, but its |
| derivative, V^{\prime}, cannot be integrated: |
| $\frac{d}{d x} V(x)=v(x)$, but $\int_{0}^{x} v(t) d t \neq V(x)-V(0)$. |.

The Fundamental Theorem of Calculus:

1. If F has bounded variation and $F^{\prime}(x)=f(x)$,
then
2.If f does not have a jump discontinuity at
x, then

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

[^0]: Integral exists if and only if $\sum V_{i}\left(x_{i}-x_{i-1}\right)$ can be made as small as we wish by taking sufficiently small intervals.

