
CHAPTER 1

Basic properties of holomorphic functions

Preview of differences between one and several
variables

For any n ≥ 1, the holomorphy or complex differentiability of a function on a domain in
Cn implies its analyticity: a holomorphic function has local representations by convergent
power series. This amazing fact was discovered by Cauchy in the years 1830-1840 and it
helps to explain the nice properties of holomorphic functions. On the other hand, when it
comes to integral representations of holomorphic functions, the situation for n ≥ 2 is much
more complicated than for n = 1: simple integral formulas in terms of boundary values
exist only for Cn domains that are products of C1 domains. It turns out that function
theory for a ball in Cn is different from function theory for a “polydisc”, a product of
discs.

The foregoing illustrates a constant theme: there are similarities between complex
analysis in several variables and in one variable, but also differences and some of the
differences are very striking. Thus the subject of analytic continuation presents entirely
new phenomena for n ≥ 2. Whereas every C1 domain carries noncontinuable holomorphic
functions, there are Cn domains for which all holomorphic functions can be continued
analytically across a certain part of the boundary (Section 1.9). The problems in Cn

require a variety of new techniques which yield a rich theory.
Sections 1.1 – 1.8 deal with simple basic facts, while Sections 1.9 and 1.10 contain

previews of things to come.

NOTATION. The points or vectors of Cn are denoted by

z = (z1, . . . , zn) = x+ iy = (x1 + iy1, . . . , xn + iyn).

For vectors z and w in Cn we use the standard ‘Euclidean’ norm or length and inner
product,

|z| = ‖z‖ =
(

|z1|2 + . . .+ |zn|2
)

1
2

,

(z, w) = 〈z, w〉 = z · w = z1w1 + . . .+ znwn.

Subsets of Cn may be considered as subsets of R2n through the correspondence

(x1 + iy1, . . . , xn + iyn)↔ (x1, y1, . . . , xn, yn) .

Ω will always denote a (nonempty) open subset of the basic underlying space, here Cn. We
also speak of a domain Ω in Cn, whether it is connected or not. A connected domain will
often be denoted by D if that letter is not required for a derivative.

1.1 Holomorphic functions. Later on we will use the terms ‘analytic’ and ‘holomorphic’
interchangeably, but for the moment we will distinguish between them. According to
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Weierstrass’s definition (about 1870), analytic functions on domains Ω in Cn are locally
equal to sum functions of (multiple) power series [cf. Definition 1.51]. Here we will discuss
holomorphy.

In order to establish notation, we first review the case of one complex variable. Let
Ω be a domain in C ∼ R2. For Riemann (about 1850), as earlier for Cauchy, a complex-
valued function

f(x, y) = u(x, y) + iv(x, y) on Ω

provided a convenient way to combine two real-valued functions u and v that occur together
in applications. [For example, a flow potential and a stream function.] Geometrically,
f = u + iv defines a map from one planar domain, Ω, to another. Let us think of a
differentiable map (see below) or of a smooth map (u and v at least of class C1). We fix
a ∈ Ω and write

z = x+ iy, z = x− iy,
z − a = ∆z = ∆x+ i∆y, z − a = ∆z = ∆x− i∆y.

Then the differential or linear part of f at a is given by

df = df(a) =
∂f

∂x
(a)∆x+

∂f

∂y
(a)∆y

=
1

2

(

∂f

∂x
+

1

i

∂f

∂y

)

∆z +
1

2

(

∂f

∂x
− 1

i

∂f

∂y

)

∆z.

In particular dz = ∆z, dz = ∆z. It is now natural to introduce the following symbolic
notation:

1

2

(

∂f

∂x
+

1

i

∂f

∂y

)

=
∂f

∂z
,

1

2

(

∂f

∂x
− 1

i

∂f

∂y

)

=
∂f

∂z

since it leads to the nice formula

df(a) =
∂f

∂z
(a)∆z +

∂f

∂z
(a)∆z =

∂f

∂z
dz +

∂f

∂z
dz.

[Observe that ∂f/∂z and ∂f/∂z are not partial derivatives in the ordinary sense – here
one does not differentiate with respect to one variable, while keeping the other variable(s)
fixed. However, in calculations, ∂f/∂z and ∂f/∂z do behave like partial derivatives. Their
definition is in accordance with the chain rule if one formally replaces the independent
variables x and y by z and z. For a historical remark on the notation, see [Remmert].]

We switch now to complex notation for the independent variables, writing
f((z + z)/2, (z − z)/2i) simply as f(z). By definition, the differentiability of the map f at
a (in the real sense) means that for all small complex numbers ∆z = z− a = ρeiθ we have

(1a) ∆f(a)
def
= f(a+ ∆z)− f(a) = df(a) + o(|∆z|) as ∆z → 0.
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Complex differentiability of such a function f at a requires the existence of

(1b) lim
∆z→0

∆f

∆z
= lim

{

∂f

∂z
+
∂f

∂z

∆z

∆z
+ o(1)

}

.

Note that ∆z/∆z = e−2iθ. Thus for a differentiable map, one has complex differentiability
at a precisely when the Cauchy-Riemann condition holds at a :

∂f

∂z
(a) = 0 or

∂f

∂x
=

1

i

∂f

∂y
.

[If ∂f/∂z 6= 0, the limit (1b) as ∆z → 0 can not exist.] The representation f = u + iv
gives the familiar real Cauchy-Riemann conditions ux = vy , uy = −vx. For the complex
derivative one now obtains the formulas

(1c) f ′(a) = lim
∆z→0

∆f

∆z
=
∂f

∂z
=
∂f

∂x
=

1

i

∂f

∂y
= ux + ivx = ux − iuy.

Observe that complex differentiability implies differentiability in the real sense.
Functions f which possess a complex derivative at every point of a planar domain Ω

are called holomorphic. In particular, analytic functions in C are holomorphic since sum
functions of power series in z − a are differentiable in the complex sense. On the other
hand, by Cauchy’s integral formula for a disc and series expansion, holomorphy implies
analyticity, cf. also Section 1.6.

HOLOMORPHY IN THE CASE OF Cn. Let Ω be a domain in Cn ∼ R2n and let
f = f(z) = f(z1, . . . , zn) be a complex-valued function on Ω:

(1d) f = u+ iv : Ω→ C.

Suppose for a moment that f is analytic in each complex variable zj separately, so
that f has a complex derivative with respect to zj when the other variables are kept fixed.
Then f will satisfy the following Cauchy-Riemann conditions on Ω :

(1e)
∂f

∂zj

def
=

1

2

(

∂f

∂xj
− 1

i

∂f

∂yj

)

= 0, j = 1, . . . , n.

Moreover, the complex partial derivatives ∂f/∂zj will be equal to the corresponding formal
derivatives, given by

(1f)
∂f

∂zj

def
=

1

2

(

∂f

∂xj
+

1

i

∂f

∂yj

)

,

cf. (1c).
Suppose now that the map f = u + iv of (1d) is just differentiable in the real sense.

[This is certainly the case if f is of class C1.] Then the increment ∆f(a) can be written in
the form (1a), but this time ∆z = (∆z1, . . . ,∆zn) and the differential of f at a is given by
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df(a) =
n
∑

1

(

∂f

∂xj
(a)∆xj +

∂f

∂yj
(a)∆yj

)

=
n
∑

1

(

∂f

∂zj
dzj +

∂f

∂zj
dzj

)

.

Thus
df = ∂f + ∂f

[del f and del-bar or d-bar f], where

∂f
def
=

n
∑

1

∂f

∂zj
dzj , ∂f

def
=

n
∑

1

∂f

∂zj
dzj .

With this notation, the Cauchy-Riemann conditions (1e) may be summarized by the single
equation

∂f = 0.

Definition 1.11. A function f on Ω ⊂ Cn to C is called holomorphic if the map f is
“differentiable in the complex sense”:

∆f(a) = ∂f(a) + o(|∆z|) as ∆z → 0

at every point a ∈ Ω. In particular a function f ∈ C1(Ω) is holomorphic precisely when it
satisfies the Cauchy-Riemann conditions.

More generally, a function f defined on an arbitrary nonempty set E ⊂ Cn is called
holomorphic, notation

(1g) f ∈ O(E), (also for open E = Ω!)

if f has a holomorphic extension to some open set containing E .
The notation O(E) for the class or ring of holomorphic functions on E goes back to

a standard notation for rings, cf. [Van der Waerden] Section 16. The letter O is also
appropriate as a tribute to the Japanese mathematician Oka, who has made fundamental
contributions to complex analysis in several variables, beginning about 1935, cf. [Oka].

A function f ∈ O(Ω) will have a complex derivative with respect to each variable zj
at every point of Ω, hence by Cauchy’s theory for a disc, f will be analytic in each complex
variable zj separately. A corresponding Cauchy theory for so-called polydiscs will show
that every holomorphic function is analytic in the sense of Weierstrass, see Sections 1.3
and 1.6. Thus in the end, holomorphy and analyticity will come to the same thing.

REMARK. The expressions for df , ∂f and ∂f (with variable a) have the appearance of
differential forms. First order differential forms

p1dx1 + q1dy1 + . . .+ qndyn or u1dz1 + v1dz1 + . . .+ vndzn,

with dx1, dy1, . . . , dyn or dz1, dz1, . . . , dzn as basis forms (!), will frequently be used as a
notational device. Later on we will also need higher order differential forms, cf. Chapter
10 for a systematic discussion.
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1.2 Complex affine subspaces. Ball and polydisc. A single complex linear equation

(2a) c · (z − a)
def
= c1(z1 − a1) + . . .+ cn(zn − an) = 0 (c 6= 0)

over Cn defines a complex hyperplane V through the point a, just as a single real linear
equation over Rn defines a real hyperplane.

EXAMPLE 1.21 (Tangent hyperplanes). Let f be a real C1 function on a domain Ω
in Cn ∼ R2n, let a = a′ + ia′′ be a point in Ω and grad f |a 6= 0. Then the equation
∆f(a) = f(z)−f(a) = 0 will locally define a real hypersurface S through a. The linearized
equation df(a) = 0 with ∆zj = zj − aj represents the (real) tangent hyperplane to S at a:

0 = df(a) =
∑

j

{

∂f

∂xj
(a)(xj − a′j) +

∂f

∂yj
(a)(yj − a′′j )

}

= 2 Re
∑

j

∂f

∂zj
(zj − aj).

The real tangent hyperplane contains a (unique) complex hyperplane through a, the “com-
plex tangent hyperplane” to S at a:

0 = ∂f(a) =
∑

j

∂f

∂zj
(a)(zj − aj),

cf. exercises 1.4 and 2.9.

A set of k complex linear equations of the form

c(j) · (z − a) = 0, j = 1, . . . , k

defines a complex affine subspace W of Cn, or a complex linear subspace if it passes
through the origin. Assuming that the vectors c(j) are linearly independent in Cn, W
will have complex dimension n − k. In the case k = n − 1 one obtains a complex line L
(an ordinary complex plane, complex dimension 1). Complex lines are usually given in
equivalent parametric form as

(2b) z = a+ wb, or zj = aj + wbj , j = 1, . . . , n,

where a and b are fixed elements of Cn (b 6= 0) and w runs over all of C.

If f ∈ O(Ω) and L is a complex line that meets Ω, the restriction of f to Ω∩L can be
considered as a holomorphic function of one complex variable. Indeed, if a ∈ Ω∩L and we
represent L in the form (2b), then f(a+wb) will be defined and holomorphic on a certain
domain in C. [Compositions of holomorphic functions are holomorphic, cf. exercise 1.5.]
Similarly, if V is a complex hyperplane that meets Ω, the restriction of f to Ω ∩ V can be
considered as a holomorphic function on a domain in Cn−1.

Open discs in C will be denoted by B(a, r) or ∆(a, r), circles by C(a, r). There are
two kinds of domains in Cn that correspond to discs in C, namely, balls
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B(a, r)
def
= {z ∈ Cn : |z − a| < r}

and polydiscs (or polycylinders):

∆(a, r) = ∆n(a, r) = ∆(a1, . . . , an; r1, . . . , rn)

def
= {z ∈ Cn : |z1 − a1| < r1, . . . , |zn − an| < rn}
= ∆1(a1, r1)× . . .×∆1(an, rn).

Polyradii r = (r1, . . . , rn) must be strictly positive: rj > 0, ∀j. Cartesian products D1 ×
. . .×Dn of domains in C are sometimes called polydomains.

Figures 1.1 and 1.2 illustrate the ball B(0, r) and the polydisc ∆(0, r) for the case of
C2 in the plane of absolute values |z1|, |z2|. Every point in the first quadrant represents
the product of two circles. Thus r = (r1, r2) represents the “torus”

T (0, r) = C(0, r1)× C(0, r2).

0 r    |z1|

|z2|

0 r1    |z1|

|z2|

r2

r=(r1,r2)

fig 1.1 and 1.2

The actual domains lie in complex 2-dimensional or real 4-dimensional space. The bound-
ary of the ball B(0, r) is the sphere S(0, r), the boundary of the “bidisc” ∆ = ∆(0, r) is
the disjoint union

{C(0, r1)×∆1(0, r2)} ∪ {∆1(0, r1)× C(0, r2)} ∪ {C(0, r1)× C(0, r2)} .

Observe that the boundary ∂∆(0, r) may also be described as the union of closed discs in
certain complex lines z1 = c1 and z2 = c2 such that the circumferences of those discs belong
to the torus T (0, r). This fact will imply a very strong maximum principle for holomorphic
functions f on the closed bidisc ∆(0, r). First of all, the absolute value |f | of such a
function must assume its maximum on the boundary ∂∆. This follows readily from the
maximum principle for holomorphic functions of one variable: just consider the restrictions
of f to complex lines z2=constant. By the same maximum principle, the absolute value of
f on the boundary discs of ∆ will be majorized by max |f | on the torus T (0, r). Thus the
maximum of |f | on ∆(0, r) is always assumed on the torus T (0, r).
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By similar considerations, all holomorphic functions on ∆(0, r) = ∆n(0, r) ⊂ Cn

assume their maximum absolute value on the “torus”

T (0, r) = Tn(0, r) = C(0, r1)× . . .× C(0, rn),

a relatively small part (real dimension n) of the whole boundary ∂∆(0, r) (real dimension
2n−1). In the language of function algebras, the torus is the distinguished or Shilov bound-
ary of ∆(0, r). [It is the smallest closed subset of the topological boundary on which all
f under consideration assume their maximum absolute value.] As a result, a holomorphic
function f on ∆(0, r) will be determined by its values on T (0, r). [If f1 = f2 on T , then
... .] Thus mathematical folklore [or functional analysis!] suggests that one can express
such a function in terms of its values on T (0, r). We will see below that there is a Cauchy
integral formula which does just that.

For the ball B(0, r) there is no “small” distinguished boundary: all boundary points
are equivalent. To every point b ∈ S(0, r) there is a holomorphic function f on B(0, r) such
that |f(b)| > |f(z)| for all points z ∈ B(0, r) different from b, cf. exercise 1.9. Integral
representations for holomorphic functions on B(0, r) will therefore involve all boundary
values, cf. exercise 1.24 and Chapter 10.

Function theory for a ball in Cn (n ≥ 2) is different from function theory for a polydisc,
cf. also [Rudin3,Rudin5]. Indeed, ball and polydisc are holomorphically inequivalent in the
following sense: there is no 1− 1 holomorphic map

wj = fj(z1, . . . , zn), j = 1, . . . , n (each fj holomorphic)

of one onto the other [Chapter 5]. This is in sharp contrast to the situation in C, where
all simply connected domains (different from C itself) are holomorphically equivalent [Rie-
mann mapping theorem]. In C, function theory is essentially the same for all bounded
simply connected domains.

1.3 Cauchy integral formula for a polydisc. For functions f that are holomorphic on
a closed polydisc ∆(a, r), there is an integral representation of Cauchy which extends the
well-known one-variable formula. We will actually assume a little less than holomorphy:

Theorem 1.31. Let f(z) = f(z1, . . . , zn) be continuous on Ω ⊂ Cn and differentiable in
the complex sense with respect to each of the variables zj separately. Then for every closed
polydisc ∆(a, r) ⊂ Ω,

(3a) f(z) =
1

(2πi)n

∫

T (a,r)

f(ζ)

(ζ1 − z1) . . . (ζn − zn)
dζ1 . . . dζn, ∀z ∈ ∆(a, r)

where T (a, r) is the torus C(a1, r1)× . . .×C(an, rn), with positive orientation of the circles
C(aj , rj).

PROOF. We write out a proof for n = 2. In the first part we only use the complex
differentiability of f with respect to each variable zj , not the continuity of f .
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Fix z in ∆(a, r) = ∆1(a1, r1) ×∆1(a2, r2) where ∆(a, r) ⊂ Ω. Then g(w) = f(w, z2)
has a complex derivative with respect to w throughout a neighbourhood of the closed disc
∆1(a1, r1) in C. The one-variable Cauchy integral formula thus gives

f(z1, z2) = g(z1) =
1

2πi

∫

C(a1,r1)

g(w)

w − z1
dw =

1

2πi

∫

C(a1,r1)

f(ζ1, z2)

ζ1 − z1
dζ1.

For fixed ζ1 ∈ C(a1, r1), the function h(w) = f(ζ1, w) has a complex derivative throughout
a neighbourhood of ∆1(a2, r2) in C. Hence

f(ζ1, z2) = h(z2) =
1

2πi

∫

C(a2,r2)

h(w)

w − z2
dw =

1

2πi

∫

C(a2,r2)

f(ζ1, ζ2)

ζ2 − z2
dζ2.

Substituting this result into the first formula, we obtain for f(z1, z2) the repeated integral

(3b) f(z1, z2) =
1

(2πi)2

∫

C(a1,r1)

dζ1
ζ1 − z1

∫

C(a2,r2)

f(ζ1, ζ2)

ζ2 − z2
dζ2.

If we would have started by varying the second variable instead of the first, we would
have wound up with a repeated integral for f(z1, z2) in which the order of integration is the
reverse. For the applications it is convenient to introduce the (explicit) assumption that
f is continuous, cf. Section 1.6. This makes it possible to rewrite the repeated integral in
(3b) as a double integral:

(3c) f(z1, z2) =
1

(2πi)2

∫

C(a1,r1)×C(a2,r2)

f(ζ1, ζ2)

(ζ1 − z1)(ζ2 − z2)
dζ1dζ2.

Indeed, setting ζ1 = a1 + r1e
it1 , ζ2 = a2 + r2e

it2 and

f(ζ1, ζ2)

(ζ1 − z1)(ζ2 − z2)
dζ1dζ2 = F (t1, t2)dt1dt2,

we obtain a continuous function F on the closed square region Q = I1× I2, where Ij is the
closed interval −π ≤ tj ≤ π. The integral in (3c) now reduces to the double integral of F
over Q. Since F is continuous on Q, one has the elementary “Fubini” reduction formula

∫

Q

F (t1, t2)dt1dt2 =

∫

I1

dt1

∫

I2

F (t1, t2)dt2

which implies the equality of the integrals in (3c) and (3b).

REMARKS 1.32. In the Theorem, the continuity of f does not have to be postulated
explicitly. Indeed, in his basic paper of 1906, Hartogs proved that the continuity of f
follows from its complex differentiability with respect to each of the variables zj . Since we
will not need this rather technical result, we refer to other books for a proof, for example
[Hörmander 1].
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Cauchy’s integral formula for polydiscs (and polydomains) goes back to about 1840. It
then took nearly a hundred years before integral representations for holomorphic functions
on general Cn domains with (piecewise) smooth boundary began to make their appearance,
cf. Chapter 10. Integral representations and their applications continue to be an active
area of research.

In Section 1.6 we will show that functions as in Theorem 1.31 are locally equal to sum
functions of power series.

1.4 Multiple power series. The general power series in Cn with center a has the form

(4a)
∑

α1≥0,...,αn≥0

cα1...αn
(z1 − a1)α1 . . . (zn − an)αn .

Here the αj ’s are nonnegative integers and the c’s are complex constants. We will see
that multiple power series have properties similar to those of power series in one complex
variable.

Before we start it is convenient to introduce abbreviated notation. We write α for
the multi-index or ordered n-tuple (α1, . . . , αn) of integers. Such n-tuples are added in
the usual way; the inequality α ≥ β will mean αj ≥ βj , ∀j. In the case α ≥ 0 [that is,
αj ≥ 0, ∀j], we also write

α ∈ Nn
0 , α! = α1! . . . αn!, |α| = α1 + . . .+ αn (height of α).

One sets
zα1

1 . . . zαn
n = zα, (z1 − a1)α1 . . . (zn − an)αn = (z − a)α,

so that the multiple sum (4a) becomes simply

(4a′)
∑

α≥0

cα(z − a)α.

We will do something similar for derivatives, writing

∂

∂zj
= Dj ,

∂β1+...+βn

∂zβ1

1 . . . ∂zβn
n

= Dβ1

1 . . .Dβn
n = Dβ ,

∂

∂zj
= Dj .

Returning to (4a), suppose for a moment that the series converges at some point z
with |zj−aj| = rj > 0, ∀j for some (total) ordering of its terms. Then the terms will form
a bounded sequence at the given point z [and hence at all points z with |zj − aj| = rj ]:

(4b) |cα| rαn
1 . . . rαn

n ≤M < +∞, ∀α ∈ Nn
0 .

We will show that under the latter condition, the series (4a) is absolutely convergent
throughout the polydisc ∆(a, r) [for every total ordering of its terms]. The same will be
true for the differentiated series

∑

cαD
β(z − a)α. Thus all these series will have well-

defined sum functions on the polydisc: the sums are independent of the order of the terms.
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For the proofs it will be sufficient to consider power series with center 0:

(4c)
∑

α≥0

cαz
α =

∑

cα1...αn
zα1

1 . . . zαn
n .

Lemma 1.41. Suppose that the terms cαz
α form a bounded sequence at the point z = r > 0

(4b). Then the power series (4c) is absolutely convergent throughout the polydisc ∆(0, r).
The convergence is uniform on every smaller polydisc ∆(0, λr) with 0 < λ < 1, no matter in

what order the terms are arranged. For every multi-index β ∈ Nn
0 and Dβ = Dβ1

1 . . .Dβn
n ,

the termwise differentiated series
∑

cαD
βzα is also absolutely convergent on ∆(0, r) and

uniformly convergent on ∆(0, λr).

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �

0

|z2|

∆(0,λr)

λr

      |z1|

r

s
x

fig 1.3

PROOF. For z ∈ ∆(0, λr) we have |zj | < λrj , ∀j so that by (4b)

|cαzα| = |cα||zα1

1 | . . . |zαn
n | ≤ |cα|λα1rα1

1 . . . λαnrαn
n ≤Mλα1 . . . λαn .

On ∆(0, λr) the series (4c) is thus (termwise) majorized by the following convergent (mul-
tiple) series of positive constants:

∑

α≥0

Mλα1 . . . λαn = M
∑

α1≥0

λα1 . . .
∑

αn≥0

λαn = M
1

1− λ . . .
1

1− λ =
M

(1− λ)n
.

It follows that the power series (4c) is absolutely convergent [for every total ordering of
its terms] at each point of ∆(0, λr) and finally, at each point of ∆(0, r). Moreover, by
Weierstrass’s criterion for uniform convergence, the series will be uniformly convergent on
∆(0, λr) for any given order of the terms. [The remainders are dominated by those of the
majorizing series of constants.]

We now turn to the final statement in the Lemma. To show the method of proof, it
will be sufficient to consider the simple differential operator D1. It follows from (4b) that
the differentiated series

∑

cαD1z
α =

∑

cαα1z
α1−1
1 zα2

2 . . . zαn
n
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is also majorized by a convergent series of constants on ∆(0, λr), namely, by the series

∑

α≥0

M

r1
α1λ

α1−1λα2 . . . λαn =
M

r1

(

d

dλ

∑

λα1

)

∑

λα2 . . .
∑

λαn =
M/r1

(1− λ)n+1
.

Thus the differentiated series converges absolutely and uniformly on ∆(0, λr) for each
λ ∈ (0, 1).

Proposition 1.42. Let
∑

cαz
α be a power series (4c) whose terms are uniformly bounded

at z = r > 0, or suppose only that the series converges throughout the polydisc ∆(0, r) for
some total ordering of the terms, or at least suppose that the terms cαz

α form a bounded
sequence at certain points z arbitrarily close to r. Then the series converges absolutely
throughout ∆(0, r), so that the sum

f(z) =
∑

α≥0

cαz
α, z ∈ ∆(0, r)

is well-defined (the sum is independent of the order of the terms). The sum function f will
be continuous on ∆(0, r) and infinitely differentiable (in the complex sense) with respect to
each of the variables z1, . . . , zn; similarly for the derivatives. The derivative Dβf(z) will
be equal to the sum of the differentiated series

∑

cαD
βzα.

PROOF. Choose any λ in (0, 1). Either one of the hypotheses in the Proposition implies
that the terms cαz

α form a bounded sequence at some point z = s > λr (fig 1.3). Thus we
may apply Lemma 1.41 with s instead of r to obtain absolute and uniform convergence of
the series on ∆(0, λr). It follows in particular that the sum function f is well-defined and
continuous on ∆(0, λr) and finally, on ∆(0, r).

We now prove the complex differentiability of f with respect to z1. Fix z2 = b2, . . . ,
zn = bn (|bj| < rj). By suitable rearrangement of the terms in our absolutely convergent
series (4c) we obtain

f(z1, b2, . . . , bn) =
∑

α1

(

∑

α2,...,αn

cαb
α2

2 . . . bαn
n

)

zα1

1 , |z1| < r1.

[In an absolutely convergent multiple series we may first sum over some of the indices, then
over the others, cf. Fubini’s theorem for multiple integrals.] A well-known differentiation
theorem for power series in one variable now shows that f(z1, b2, . . . , bn) has a complex
derivative D1f for |z1| < r1 which can be obtained by termwise differentiation. The
resulting series for D1f may be rewritten as an absolutely convergent multiple series:

∑

α1

(

∑

α2,...,αn

cαb
α2

2 . . . bαn
n

)

D1z
α1

1 =
∑

α

cαD1 (zα1

1 bα2

2 . . . bαn
n ) ,

cf. Lemma 1.41. Conclusion: D1f exists throughout ∆(0, r) and D1f(z) =
∑

cαD1z
α;

similarly for each Dj . Since the new power series converge throughout ∆(0, r), one can
repeat the argument to obtain higher order derivatives.
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1.5 Analytic functions. Sets of uniqueness. We formalize our earlier rough descrip-
tion of analytic functions:

Definition 1.51. A function f on Ω ⊂ Cn to C is called analytic if for every point
a ∈ Ω, there is a polydisc ∆(a, r) in Ω and a multiple power series

∑

cα(z − a)α which
converges to f(z) on ∆(a, r) for some total ordering of its terms.

It follows from Proposition 1.42 that a power series (4a) for f on ∆ is absolutely
convergent, hence the order of the terms is immaterial. Proposition 1.42 also implies the
following important

Theorem 1.52. Let f(z) be analytic on Ω ⊂ Cn. Then f is continuous on Ω and
infinitely differentiable (in the complex sense) with respect to the variables z1, . . . , zn; the
partial derivatives Dβf are likewise analytic on Ω. If f(z) =

∑

cα(z−a)α on ∆(a, r) ⊂ Ω,
then

Dβf(z) =
∑

α≥0

cαD
β(z − a)α =

∑

α≥β

cα
α!

(α− β)!
(z − a)α−β, ∀z ∈ ∆(a, r).

In particular Dβf(a) = cββ!. Replacing β by α, one obtains the coefficient formula

(5a) cα =
1

α!
Dαf(a) =

1

α1! . . . αn!
Dα1

1 . . .Dαn
n f(a).

COROLLARIES 1.53. An analytic function f on a domain Ω in Cn has only one (locally)
representing power series with center a ∈ Ω. It is the Taylor series, the coefficients are the
Taylor coefficients (5a) of f at a.

Analytic functions are holomorphic in the sense of Definition 1.11. [For analytic f one
has ∂f/∂xj = ∂f/∂zj and ∂f/∂yj = i∂f/∂zj, cf. (1c), hence the map f is of class C1 and
∂f = 0.]

Theorem 1.54 (uniqueness theorem). Let f1 and f2 be analytic on a connected domain
Ω ⊂ Cn and suppose that f1 = f2 throughout a nonempty open subset U ⊂ Ω. (This will
in particular be the case if f1 and f2 have the same power series at some point a ∈ Ω.)
Then f1 = f2 throughout Ω.

PROOF. Define f = f1 − f2. We introduce the set

E = {z ∈ Ω : Dαf(z) = 0, ∀α ∈ Nn
0}.

E is open. For suppose a ∈ E. There will be a polydisc ∆ = ∆(a, r) ⊂ Ω on which f(z)
is equal to the sum of its Taylor series

∑

Dαf(a) · (z − a)α/α!. Hence by the hypothesis,
f = 0 throughout ∆. It follows that also Dαf = 0 throughout ∆ for every α, so that
∆ ⊂ E.

The complement Ω− E is also open. Indeed, if b ∈ Ω− E then Dβf(b) 6= 0 for some
β. By the continuity of Dβf , it follows that Dβf(z) 6= 0 throughout a neighbourhood of b.
Now Ω is connected, hence it is not the union of two disjoint nonempty open sets. Since
E contains U it is nonempty. Thus Ω− E must be empty or Ω = E, so that f ≡ 0.

12



DEFINITION 1.55. A subset E ⊂ Ω in Cn is called a set of uniqueness for Ω [or better,
for the class of analytic functions A(Ω)] if the condition “f = 0 throughout E” for analytic
f on Ω implies that f ≡ 0 on Ω.

For a connected domain D ⊂ C, every infinite subset E with a limit point in D is
a set of uniqueness. [Why? Cf. exercises 1.15, 1.16.] For a connected domain D ⊂ Cn

with n ≥ 2, every ball B(a, r) ⊂ D is a set of uniqueness, but the intersection of D
with a complex hyperplane c · (z − a) = 0 (c 6= 0) is not a set of uniqueness: think of
f(z) = c · (z−a) ! One may use the maximum principle for a polydisc [Section 1.2] to show
that if ∆(a, r) ⊂ D, then the torus T (a, r) is a set of uniqueness for D. It is not so much
the size of a subset E ⊂ D which makes it a set of uniqueness, as well as the way in which
it is situated in Cn, cf. also exercise 1.17.

The counterpart to sets of uniqueness is formed by the zero sets of analytic functions,
cf. Section 1.10. Sets of uniqueness (or zero sets) for subclasses of A(Ω), for example, the
bounded analytic functions, are not yet well understood, except in very special cases, cf.
[Rudin5] for references. Discrete sets of uniqueness for subclasses of A(Ω) are important
for certain approximation problems, cf. [Korevaar1983].

1.6 Analyticity of the Cauchy integral and consequences. Under the conditions of
Theorem 1.31 the function f represented by the Cauchy integral (3a) will turn out to be
analytic on ∆(a, r). More generally we prove

Theorem 1.61. Let g(ζ) = g(ζ1, . . . , ζn) be defined and continuous on the torus T (a, r) =
C(a1, r1)× . . .× C(an, rn). Then the cauchy transform

(6a) f(z) = ĝ(z)
def
=

1

(2πi)n

∫

T (a,r)

g(ζ)

(ζ1 − z1) . . . (ζn − zn)
dζ1 . . . dζn

[where we use positive orientation of the generating circles C(aj, rj) of T (a, r)] is analytic
on the polydisc ∆(a, r).

PROOF. By translation we may assume that a = 0. Now taking an arbitrary point b in
∆(0, r): |bj | < rj , ∀j, we have to show that f(z) is equal to the sum of a convergent
power series with center b on some polydisc around b. In a situation like the present one,
where f(z) is given by an integral with respect to ζ in which z occurs as a parameter, it is
standard procedure to expand the integrand in a power series of the form

∑

dα(ζ)(z− b)α
and to integrate term by term.

In order to obtain a suitable series for the integrand, we begin by expanding each
factor 1/(ζj − zj) around zj = bj :

(6b)
1

ζj − zj
=

1

ζj − bj − (zj − bj)
=

1

ζj − bj
1

1− zj−bj

ζj−bj

=
∞
∑

p=0

(zj − bj)p
(ζj − bj)p+1

.

When does this series converge? We must make sure that the ratio |zj − bj|/|ζj − bj|
remains less than 1 as ζj runs over the circle C(0, rj). To that end we fix z such that
|zj − bj| < rj − |bj|, ∀j (fig 1.4). Then

(6c)
|zj − bj|
|ζj − bj |

≤ |zj − bj|
rj − |bj |

def
= λj < 1, ∀ζj ∈ C(0, rj).
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x

ζj
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zj

rj - |bj|

bj

0

C(0,rj)

fig 1.4

Thus for ζj running over C(0, rj) the series in (6b) is termwise majorized by the convergent
series of constants

∑

p

Mjλ
p
j =

∑

αj

1

rj − |bj|
λ
αj

j .

There is such a result for each j. Forming the termwise product of the series in (6b)
for j = 1, . . . , n, we obtain a multiple series for our integrand:

(6d)

g(ζ)

(ζ1 − z1) . . . (ζn − zn)

=
∑

α≥0

g(ζ)

(ζ1 − b1)α1+1 . . . (ζn − bn)αn+1
(z1 − b1)α1 . . . (zn − bn)αn .

By (6c) and using the boundedness of g(ζ) on T (0, r), the expansion (6d) is termwise ma-
jorized on T (0, r) by a convergent multiple series of constants

∑

αMλα1

1 . . . λαn
n . Hence the

series in (6d) is absolutely and uniformly convergent (for any given order of the terms) as ζ
runs over T (0, r), so that we may integrate term by term. Thus we obtain a representation
for the value f(z) in (6a) by a convergent multiple power series:

(6e) f(z) =
∑

α≥0

cα(z − b)α.

Here the coefficients cα [which must also be equal to the Taylor coefficients for f at b] are
given by the following integrals:

(6f) cα =
1

α!
Dαf(b) =

1

(2πi)n

∫

T (0,r)

g(ζ)

(ζ1 − b1)α1+1 . . . (ζn − bn)αn+1
dζ1 . . . dζn.

The representation will be valid for every z in the polydisc

(6g) ∆(b1, . . . , bn; r1 − |b1|, . . . , rn − |bn|).

14



COROLLARY 1.62 (Osgood’s Lemma). Let f(z) = f(z1, . . . , zn) be continuous on Ω ⊂ Cn

and differentiable in the complex sense on Ω with respect to each variable zj separately.
Then f is analytic on Ω.

[By Theorem 1.31, the function f is locally representable as a Cauchy transform. Now
apply Theorem 1.61. Actually, the continuity of f need not be postulated, cf. Remarks
1.32.]

Osgood’s lemma shows, in particular, that every holomorphic function is ana-
lytic. Thus the class of analytic functions on a domain Ω is the same as the class of
holomorphic functions, A(Ω) = O(Ω). From here on, we will not distinguish between the
terms analytic and holomorphic; we usually speak of holomorphic functions.

COROLLARY 1.63 (Convergence of power series throughout polydiscs of holomorphy). Let
f be holomorphic on ∆(a, r). Then the power series for f with center a converges to f
throughout ∆(a, r).

[We may take a = 0. If f is holomorphic on (a neighbourhood of) ∆(0, r), it may be
represented on ∆(0, r) by a Cauchy transform over T (0, r). The proof of Theorem 1.61 now
shows that the (unique) power series for f with center b = 0 converges to f throughout
∆(0, r), see (6e−g). If f is only known to be holomorphic on ∆(0, r), the preceding
argument may be applied to ∆(0, λr), 0 < λ < 1.]

COROLLARY 1.64 (Cauchy integrals for derivatives). Let f be holomorphic on ∆(a, r).
Then

Dαf(z) =
α!

(2πi)n

∫

T (a,r)

f(ζ)

(ζ1 − z1)
α1+1

. . . (ζn − zn)
αn+1 dζ1 . . . dζn, ∀z ∈ ∆(a, r).

[By Theorem 1.61, f(z) is equal to a Cauchy transform (6a) on ∆(a, r), with g(ζ) =
f(ζ) on T (a, r). Taking a = 0 as we may, the result now follows from (6f) with b = z.
Observe that the result corresponds to differentiation under the integral sign in the Cauchy
integral for f (3a). Such differentiation is thus permitted.]

COROLLARY 1.65 (Cauchy inequalities). Let f be holomorphic on ∆(a, r), f(z) =
∑

cα(z − a)α. Then

|cα| =
|Dαf(a)|

α!
≤ M

rα
=

M

rα1

1 . . . rαn
n
,

where M = sup |f(ζ)| on T (a, r).
[Use Corollary 1.64 with z = a. Set ζj = aj + rje

itj , j = 1, . . . , n to obtain a bound
for the integral.]

1.7 Limits of holomorphic functions. We will often use yet another consequence of
Theorems 1.31 and 1.61:

Theorem 1.71 (weierstrass). Let {fλ}, λ ∈ Λ be an indexed family of holomorphic
functions on Ω ⊂ Cn which converges uniformly on every compact subset of Ω as λ→ λ0.
Then the limit function f is holomorphic on Ω. Furthermore, for every multi-index α ∈ Nn

0 ,

Dαfλ → Dαf as λ→ λ0,
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uniformly on every compact subset of Ω.

In particular, uniformly convergent sequences and series of analytic functions on a
domain “may be differentiated term by term”.

PROOF. Choose a closed polydisc ∆(a, r) in Ω. For convenience we write the Cauchy
integral (3a) for fλ in abbreviated form as follows:

(7) fλ(z) = (2πi)−n
∫

T (a,r)

fλ(ζ)

ζ − z dζ, z ∈ ∆(a, r).

Keeping z fixed, we let λ→ λ0. Then

fλ(ζ)

ζ − z →
f(ζ)

ζ − z , uniformly for ζ ∈ T (a, r).

[The denominator stays away from 0.] Integrating, we conclude that the right-hand side of
(7) tends to the corresponding expression with f instead of fλ. The left-hand side tends to
f(z), hence the Cauchy integral representation is valid for the limit function f just as for
fλ (3a). Theorem 1.61 now implies the analyticity of f on ∆(a, r). Varying ∆(a, r) over
Ω, we conclude that f ∈ O(Ω).

Again fixing ∆(a, r) in Ω, we next apply the Cauchy formula for derivatives to f − fλ
[Corollary 1.64]. Fixing α and letting λ → λ0, we may conclude that Dα(f − fλ) → 0
uniformly on ∆(a, 1

2
r). Since a given compact subset E ⊂ Ω can be covered by a finite

number of polydiscs ∆(a, 1
2
r) with a ∈ E and ∆(a, r) ⊂ Ω, it follows that Dαfλ → Dαf

uniformly on E.

COROLLARY 1.72 (Holomorphy theorem for integrals). Let Ω be an open set in Cn and
let I be a compact interval in R, or a product of m such intervals in Rm. Suppose that
the “kernel” K(z, t) is defined and continuous on Ω × I and that it is holomorphic on Ω
for every t ∈ I. Then the integral

f(z) =

∫

I

K(z, t)dt = lim

s
∑

j=1

K(z, τj)m(Ij)

defines a holomorphic function f on Ω. Furthermore, Dα
zK(z, t) will be continuous on

Ω× I and

Dαf(z) =

∫

I

Dα
zK(z, t)dt.

Thus, “one may differentiate under the integral sign” here.

For the proof, one may observe the following:
(i) The Riemann sums

σ(z, P, τ) =

s
∑

j=1

K(z, τj)m(Ij), τj ∈ Ij
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corresponding to partitionings P of I into appropriate subsets Ij , are holomorphic in z on
Ω;

(ii) For a suitable sequence of partitionings, the Riemann sums converge to the integral
f(z), uniformly for z varying over any given compact subset E ⊂ Ω.

Indeed, K(z, t) will be uniformly continuous on E × I. We now write the integral as
a sum of integrals over the parts Ij of small (diameter and) size m(Ij). It is then easy to
show that the difference between the integral and the approximating sum will be small.

The continuity of Dα
zK(z, t) on Ω× I may be obtained from the Cauchy integral for

a derivative [Corollary 1.64]. The integral formula for Dαf then follows by differentiation
of the limit formula for f(z):

Dαf(z) = lim

s
∑

j=1

Dα
zK(z, τj)m(Ij).

The following two convergence theorems for Cn are sometimes useful. We do not
include the proofs which are similar to those for the case n = 1, cf. [Narasimhan] or
[Rudin2].

THEOREM 1.73 (Montel). A locally bounded family F of holomorphic functions on Ω ⊂
Cn is normal, that is, every infinite sequence {fk} chosen from F contains a subsequence
which converges throughout Ω and uniformly on every compact subset.

The key observation in the proof is that a locally bounded family of holomorphic
functions is locally equicontinuous, cf. exercise 1.28. A subsequence {f̃k} which converges
on a countable dense subset of Ω will then converge uniformly on every compact subset.

THEOREM 1.74 (Stieltjes-Vitali-Osgood). Let {fk} be a locally bounded sequence of
holomorphic functions on Ω which converges at every point of a set of uniqueness E for
O(Ω). Then the sequence {fk} converges throughout Ω and uniformly on every compact
subset.

Certain useful approximation theorems for C do not readily extend to Cn. In this
connection we mention Runge’s theorem on polynomial approximation in C. One may
call Ω ⊂ Cn a Runge domain if every function f ∈ O(Ω) is the limit of a sequence of
polynomials in z1, . . . , zn which converges uniformly on every compact subset of Ω.

More generally, let V ⊂ W ⊂ C be two domains. Then V is called Runge in W if
every function f ∈ O(V ) is the limit of a sequence of functions fk ∈ O(W ) which converges
uniformly on every compact subset of V .

THEOREM 1.75 (cf. [Runge] 1885). The Runge domains in C are precisely those open
sets, whose complement relative to the extended plane Ce = C ∪ {∞} is connected.

There are several results on Runge domains in Cn, but also open problems, cf.
[Hörmander1, Range] and especially [Fornæss-Stensønes]. The one-variable theorem pro-
vides an extremely useful tool for the construction of counterexamples in complex analysis.

1.8 Open mapping theorem and maximum principle.

Theorem 1.81. Let D ⊂ Cn be a connected domain, f ∈ O(D) nonconstant. Then the
range f(D) is open [hence f(D) ⊂ C is a connected domain].
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This result follows easily from the special case n = 1 by restricting f to a suitable
complex line. We include a detailed proof because parts of it will be useful later on. The
situation is more complicated in the case of holomorphic mappings

ζj = fj(z), j = 1, . . . , p, fj ∈ O(D)

from a connected domain D ⊂ Cn to Cp with p ≥ 2. The range of such a map will be open
only in special cases, cf. exercise 1.29 and Section 5.2.

PROOF of Theorem 1.81. It is sufficient to show that for any point a ∈ D and for small
balls B = B(a, r) ⊂ D, the range f(B) contains a neighbourhood of f(a) in C. By
translation we may assume that a = 0 and f(a) = 0.

(i) The case n = 1. Since f 6≡ 0, the origin is a zero of f of some finite order s, hence
it is not a limit point of zeros of f. Choose r > 0 such that B(0, r)=∆(0, r) belongs to D
and f(z) 6= 0 on C(0, r). Set min|f(z)| on C(0, r) equal to m, so that m > 0. We will show
that for any number c in the disc ∆(0,m), the equation f(z) = c has the same number of
roots in B(0, r) as the equation f(z) = 0, counting multiplicities.

Indeed, by the residue theorem, the number of zeros of f in B(0, r) is equal to

N(f) =
1

2πi

∫

C(0,r)+

f ′(z)

f(z)
dz.

[Around a zero z0 of f of multiplicity µ, the quotient f ′(z)/f(z) behaves like µ/(z − z0).]
We now calculate the number of zeros of f − c in B(0, r):

N(f − c) =
1

2πi

∫

C(0,r)

f ′(z)

f(z)− c dz =
1

2π

∫ π

−π

f ′(reit)

f(reit)− c re
itdt.

By the holomorphy theorem for integrals [Corollary 1.72], N(f − c) will be holomorphic in
c on ∆(0,m). Indeed, the final integrand is continuous in (c, t) on ∆(0,m)× [−π, π] and it
is holomorphic in c on ∆(0,m) for every t ∈ [−π, π]. Thus since N(f − c) is integer-valued,
it must be constant and equal to N(f) ≥ 1.

Final conclusion: f(B) contains the whole disc ∆(0,m).
(ii) The case n ≥ 2. Choose B(0, r) ⊂ D. By the uniqueness theorem, f 6≡ 0 in B or

else f ≡ 0 in D. Choose b ∈ B(0, r) such that f(b) 6= 0 and consider the restriction of f
to the intersection ∆ of B with the complex line z = wb, w ∈ C. The image f(∆) is the
same as the range of the function

h(w) = f(wb), |w| < r/|b|.

That function is holomorphic and nonconstant: h(0) = 0 6= h(1) = f(b), hence by part (i),
the range of h contains a neighbourhood of the origin in C. The same holds a fortiori for
the image f(B).

For functions f as in the Theorem, the absolute value |f | and the real part Re f can
not have a relative maximum at a point a ∈ D. Indeed, any neighbourhood of the point
f(a) in C must contain points f(z) of larger absolute value and of larger real part. One
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may thus obtain upper bounds for |f | and Re f on D in terms of the boundary values of
those functions.

Let us define the extended boundary ∂eΩ by ∂Ω if Ω is bounded and by ∂Ω ∪ {∞}
otherwise; z →∞ will mean |z| → ∞.
COROLLARY 1.82 (Maximum principle or maximum modulus theorem). Let Ω be any
domain in Cn, f ∈ O(Ω). Suppose that there is a constant M such that

lim sup
z→ζ, z∈Ω

|f(z)| ≤M, ∀ζ ∈ ∂eΩ.

Then |f(z)| ≤M throughout Ω. If Ω is connected and f is nonconstant, one has |f(z)| < M
throughout Ω.

Indeed, if µ = supD |f | would be larger than M for some connected component D
of Ω, then f would be nonconstant on D and µ would be equal to lim |f(zν)| for some
sequence {zν} ⊂ D that can not tend to ∂eΩ. Taking a convergent subsequence we would
find that µ = |f(a)| for some point a ∈ D, contradicting the open mapping theorem.

In C, more refined ways of estimating |f | from above depend on the fact that log|f | is a
subharmonic function - such functions are majorized by harmonic functions with the same
boundary values. For holomorphic functions f in Cn, log|f | is a so-called plurisubharmonic
function: its restrictions to complex lines are subharmonic. Plurisubharmonic functions
play an important role in n-dimensional complex analysis, cf. Chapter 8; their theory is
an active subject of research.

1.9 Preview: analytic continuation, domains of holomorphy, the Levi problem
and the ∂ equation. Given an analytic function f on a domain Ω ⊂ Cn, we can choose
any point a in Ω and form the power series for f with center a, using the Taylor coefficients
(5a). Let U denote the union of all polydiscs ∆(a, r) on which the Taylor series converges.
The sum function g of the series will be analytic on U [see Osgood’s criterion 1.62] and
it coincides with f around a. Suppose now that U extends across a boundary point b of
Ω (fig 1.5). Then g will provide an analytic continuation of f. It is not required that
such a continuation coincide with f on all components of U ∩ Ω.

U'

ax

Ω

fig 1.5
The subject of analytic continuation will bring out a very remarkable difference be-

tween the case of n ≥ 2 complex variables and the classical case of one variable. For a
domain Ω in the complex plane C and any (finite) boundary point b ∈ ∂Ω, there always
exist analytic functions f on Ω which have no analytic continuation across the point b,
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think of f(z) = 1/(z− b). By suitable distribution of singularities along ∂Ω, one may even
construct analytic functions on Ω ⊂ C which can not be continued analytically across any
boundary point; we say that Ω is their maximal domain of existence.

0

r2=|z2|

D

tr 
D^

     r1=|z1|

(1/2,2)

(2,1/2)

S = tr D

fig 1.6
However, in Cn with n ≥ 2 there are many domains Ω with the property that all

functions in O(Ω) can be continued analytically across a certain part of the boundary.
Several examples of this phenomenon were discovered by Hartogs around 1905. We mention
his striking spherical shell theorem: For Ω = B(a,R)− B(a, ρ) where 0 < ρ < R, every
function in O(Ω) has an analytic continuation to the whole ball B(a,R) [cf. Sections
2.8, 3.4]. Another example is indicated in fig 1.6, where D stands for the union of two
polydiscs in C2 with center 0. For every f ∈ O(D) the power series with center 0 converges
throughout D, but any such power series will actually converge throughout the larger
domain D̂, thus providing an analytic continuation of f to D̂ [cf. Section 2.4].

Many problems in complex analysis of several variables can only be solved on so-called
domains of holomorphy; for other problems, it is at least convenient to work with such
domains. Domains of holomorphy Ω in Cn are characterized by the following property:
For every boundary point b, there is a holomorphic function on Ω which has no analytic
continuation to a neighourhood of b. What this means precisely is explained in Section
2.1, cf. also the comprehensive definition in Section 6.1. The following sufficient condition
is very useful in practice: Ω is a domain of holomorphy if for every sequence of points in
Ω which converges to a boundary point, there is a function in O(Ω) which is unbounded
on that sequence [see Section 6.1]. Domains of holomorphy Ω will also turn out to be
maximal domains of existence: there exist functions in O(Ω) which can not be continued
analytically across any part of the boundary [Section 6.4].

We will see in Section 6.1 that every convex domain in Cn ∼ R2n is a domain of
holomorphy. All domains of holomorphy have certain (weaker) convexity properties, going
by names such as holomorphic convexity and pseudoconvexity [Chapter 6; fig 1.6 illustrates
a pseudoconvex domain D̂ in C2]. For many years it was a major question if all pseudo-
convex domains are, in fact, domains of holomorphy (levi problem). The answer is yes
[cf. Chapters 7, 11]. Work on the Levi problem has led to many notable developments in
complex analysis.

We mention some problems where domains of holomorphy are important:

HOLOMORPHIC EXTENSION from affine subspaces. Let Ω be a given domain in Cn and
let W denote an arbitrary affine subspace of Cn. If f belongs to O(Ω), the restriction of f
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to the intersection Ω ∩W will be holomorphic for every choice of W . Conversely, suppose
h is some holomorphic function on some intersection Ω ∩ W . Can h be extended to a
function in O(Ω)? This problem turns out to be generally solvable for all affine subspaces
W if and only if Ω is a domain of holomorphy [cf. Chapter 7].

SUBTRACTION of NONANALYTIC PARTS. Various problems fall into the following
category. One seeks to determine a function h in O(Ω) which satisfies a certain side-
condition (S), and it turns out that it is easy to construct a smooth function g on Ω
[g ∈ C2(Ω), say] that satisfies condition (S). One then tries to obtain h by subtracting
from g its “nonanalytic part” u without spoiling (S): h = g − u. What conditions does
the correction term u have to satisfy? Since h must be holomorphic, it must satisfy the
Cauchy-Riemann condition ∂h = 0. It follows that umust solve an inhomogeneous problem
of the form

(9) ∂u = ∂g on Ω, u : (S0).

[Indeed, h must satisfy condition (S) the same as g, hence u = g − h must satisfy an
appropriate zero condition (S0).] Solutions of the global problem (9) do not always exist,
but the differential equation has solutions satisfying appropriate growth conditions if Ω is
(pseudoconvex or) a domain of holomorphy [Chapter 11]. The spherical shell theorem of
Hartogs may be proved by the method of subtracting the nonanalytic part, cf. Chapter 3.

GENERAL ∂ EQUATIONS. The general first order ∂ equation or inhomogeneous Cauchy-
Riemann equation on Ω ⊂ Cn has the form

∂u =
∑n

1

∂u

∂zj
dzj = v =

∑n

1
vjdzj

or, written as a system,

∂u/∂zj = vj , j = 1, . . . , n.

The equation is locally solvable whenever the local integrability or compatibility conditions

∂vk/∂zj [= ∂2u/∂zk∂zj = ∂2u/∂zj∂zk] = ∂vj/∂zk

are satisfied, as they are in the case of (9) [cf. Chapter 7]. There are also higher order
∂ equations where the unknown is a differential form, not a function. Assuming that the
natural local integrability conditions are satisfied, all ∂ equations are globally solvable on
Ω if and only if Ω is a domain of holomorphy, cf. Chapters 11, 12.

COUSIN PROBLEMS: see below.

1.10 Preview: zero sets, singularity sets and the Cousin problems. For holomor-
phic functions in C, the best known singularities are the isolated ones: poles and essential
singularities. However, holomorphic functions in Cn with n ≥ 2 can not have isolated
singularities. More accurately, it follows from Hartogs’ spherical shell theorem that such
singularities are removable, cf. Sections 1.9, 2.6.
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From here on, let Ω be a connected domain in Cn. We suppose first that f is holo-
morphic on Ω and not identically zero. In the case n = 1 it is well-known that the zero
set Z(f) = Zf of f is a discrete set without limit point in Ω, cf. exercises 1.15, 1.16.
However, for n ≥ 2 a zero set Zf can not have isolated points [1/f can not have isolated
singularities]. Zf will be a so-called analytic set of complex codimension 1 (complex di-
mension n − 1). Example: a complex hyperplane (2a). The local behaviour of zero sets
will be studied in Chapter 4.

Certain thin singularity sets are also analytic sets of codimension 1 [Section 4.8].
We now describe some related global existence questions, the famous Cousin problems

of 1895 which have had a great influence on the development of complex analysis in Cn.

FIRST COUSIN PROBLEM. Are there meromorphic functions on Ω ⊂ Cn with arbitrarily
prescribed local infinitary behaviour (of appropriate type)?

A meromorphic function f is defined as a function which can locally be represented as
a quotient of holomorphic functions. The local data may thus be supplied in the following
way. One is given a covering {Uλ} of Ω by (connected) open subsets and for each set Uλ,
an associated quotient fλ = gλ/hλ of holomorphic functions with hλ 6≡ 0. One wants to
determine a meromorphic function f on Ω which on each set Uλ becomes infinite just like
fλ, that is, f − fλ ∈ O(Uλ). Naturally, the data Uλ, fλ must be compatible in the sense
that fλ − fµ ∈ O(Uλ ∩ Uµ) for all λ, µ.

For n = 1 Mittag-Leffler had shown that such a problem is always solvable. For
example, if Ω is the right half-plane {Re z > 0} in C, a meromorphic function f with pole
set {λ = 1, 2, . . .} and such that f(z)− 1/(z − λ) is holomorphic on a neighbourhood of λ
is provided by the sum of the series

∑∞

λ=1

(

1

z − λ +
1

λ

)

.

For n ≥ 2 it turned out that the first Cousin problem is not generally solvable for every
domain Ω in Cn. However, the problem is generally solvable on domains of holomorphy Ω
(Oka 1937). The global solution is constructed by patching together local pieces. There
is a close connection between the solvability of the first Cousin problem and the global
solvability of a related ∂ equation [Chapters 7, 11]. Oka’s original method has developed
into the important technique of sheaf cohomology (Cartan-Serre 1951-1953, see Chapter 12
and cf. [Grauert-Remmert]).

SECOND COUSIN PROBLEM. Are there holomorphic functions f on Ω ⊂ Cn with arbi-
trarily prescribed local vanishing behaviour (of appropriate type)?

The data will consist of a covering {Uλ} of Ω by (connected) open subsets and for each
set Uλ, an associated holomorphic function fλ 6≡ 0. One wants to determine a holomorphic
function f on Ω which on each set Uλ vanishes just like fλ. Here one must require that on
the intersections Uλ ∩ Uµ, the functions fλ and fµ vanish in the same way, that is, fλ/fµ
must be equal to a zero free holomorphic function. The family {Uλ, fλ} and equivalent
Cousin-II data determine a so-called divisor D on Ω. The desired function f ∈ O(Ω)
must have the local vanishing behaviour given by D. One says that f must have D as a
divisor. In the given situation this means that on every set Uλ, the quotient f/fλ must be
holomorphic and zero free.
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For n = 1 Weierstrass had shown that such a problem is always solvable. For example,
if Ω is the right half-plane {Re z > 0} in C, a holomorphic function f with zero zet
{λ = 1, 2, . . .} and corresponding multiplicities 1 is provided by the infinite product

∏∞

λ=1

(

1− z

λ

)

ez/λ.

For n ≥ 2 the second Cousin problem or divisor problem is not generally solvable,
not even if Ω is a domain of holomorphy. General solvability on such a domain requires
an additional condition of topological nature (Oka 1939) which may also be formulated in
cohomological language (Serre 1953), see Chapter 12. The divisor problem is important
for algebraic geometry.

From the preceding, the reader should not get the impression that all problems in the
Cousin I, II area have now been solved. Actually, after the solution of the classical Cousin
problems, the situation for Cn is much like the situation was for one complex variable after
the work of Mittag-Leffler and Weierstrass. In the case of C, one then turned to much
more difficult problems such as the determination of holomorphic functions of prescribed
growth with prescribed zero set, cf. [Boas]. The corresponding problems for Cn are largely
open, although a start has been made, cf. [Ronkin] and [Lelong-Gruman].
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Exercises

1.1. Use the definition of holomorphy (1.11) to prove that a holomorphic function on
Ω ⊂ Cn has a complex (partial) derivative with respect to each variable zj throughout
Ω.

1.2. Prove that O(Ω) is a ring relative to ordinary addition and multiplication of functions.
Which elements have a multiplicative inverse in O(Ω)? Cf. (1g) for the notation.

1.3. (i) Prove that there is exactly one complex line through any two distinct points a
and b in Cn.

(ii) Determine a parametric representation for the complex hyperplane c · (z− a) = 0
in Cn.

1.4. The real hyperplane V through a = a′ + ia′′ in Cn ∼ R2n with normal direction
(α1, β1, . . . , αn, βn) is given by the equation

α1(x1 − a′1) + β1(y1 − a′′1) + . . .+ αn(xn − a′n) + βn(yn − a′′n) = 0.

Show that V can also be represented in the form

Re {c · (z − a)} = 0.

Verify that a real hyperplane through a in Cn contains precisely one complex hyper-
plane through a.

1.5. Prove that the composition of differentiable maps ζ = f(w) : D ⊂ Cp ∼ R2p to C
and w = g(z) : Ω ⊂ Cn ∼ R2n to D is differentiable, and that

∂(f ◦ g)

∂zj
=

p
∑

k=1

{

∂f

∂wk
(g)

∂gk
∂zj

+
∂f

∂wk
(g)

∂gk
∂zj

}

, j = 1, . . . , n.

Deduce that for holomorphic f and g (that is, f and g1, . . . , gp holomorphic), the
composite function f ◦ g is also holomorphic.

1.6. Let f be holomorphic on Ω ⊂ Cn and let V be a complex hyperplane intersecting
Ω. Prove that the restriction of f to the intersection Ω ∩ V may be considered as a
holomorphic function on an open set in Cn−1.

1.7. Analyze the boundary of the polydisc ∆3(0, r). Then use the maximum principle for
the case of one complex variable to prove that all holomorphic functions f on ∆3(0, r)
assume their maximum absolute value on T3(0, r).

1.8. Let b be an arbitrary point of the torus T (0, r) ⊂ Cn. Determine a holomorphic
function f on the closed polydisc ∆(0, r) for which |f | assumes its maximum only at
b. [First take n = 1, then n ≥ 2.]

1.9. Let b be an arbitrary point of the sphere S(0, r) ⊂ Cn. Prove that for f(z) = b · z,
one has |f(z)| ≤ r2 on B(0, r) with equality if and only if z = eiθb for some θ ∈ R.
Deduce that for f(z) = b · z + 1, one has |f(z)| < |f(b)| throughout B(0, r)− {b}.
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1.10. Let f be holomorphic on ∆(0, r). Apply Cauchy’s integral formula to g = f p and let
p→∞ in order to verify that

|f(z)| ≤ supT (0,r)|f(ζ)|, ∀z ∈ ∆(0, r).

1.11. Extend the Cauchy integral formula for polydiscs to polydomains D = D1× . . .×Dn,
where Dj ⊂ C is the interior of a piecewise smooth simple closed curve Γj , j =
1, . . . , n.

1.12. Represent the following functions by double power series with center 0 ∈ C2 and
determine the respective domains of convergence (without grouping the terms of the
power series):

1

(1− z1)(1− z2)
,

1

1− z1z2
,

1

1− z1 − z2
,

ez1

1− z2
.

1.13. Suppose that the power series
∑

cα(z−a)α converges throughout the open set U ⊂ Cn.
Prove that
(i) the series is absolutely convergent on U ;

(ii) the convergence is locally uniform on U for any given order of the terms;
(iii) the sum function is holomorphic on U.

1.14. Let f be analytic on a connected domain Ω ⊂ Cn and such that Dαf(a) = 0 for a
certain point a ∈ Ω and all α ∈ N0. Prove that f ≡ 0.

1.15. Let f be analytic on a connected domain D ⊂ C and f 6≡ 0. Verify that for every point
a ∈ D there is an integer m ≥ 0 such that f(z) = (z − a)mg(z), with g analytic on D
and zero free on a neighbourhood of a. Show that in C2, there is no corresponding
general factorization f(z) = (z1 − a1)m1(z2 − a2)m2g(z), with g zero free around a.

1.16. Let D be a connected domain in C and {zk} a sequence of distinct points in D with
limit a ∈ D. Verify that an analytic function f on D which vanishes at the points zk
must be identically zero. Devise possible extensions of this result to C2.

1.17. For the unit bidisc ∆(0, 1) = ∆1(0, 1)×∆1(0, 1) in C2, a small planar domain around
0 may be a set of uniqueness, depending on what plane it lies in. Taking 0 < r < 1

2
,

show that the square

E1 = {x+ iy ∈ ∆ : |x1| < r, |x2| < r, y1 = y2 = 0}

is a set of uniqueness for the analytic functions f on ∆, whereas the square

E2 = {x+ iy ∈ ∆ : |x1| < r, |y1| < r, x2 = y2 = 0}

is not. [One may use a power series, or one may begin by considering f(z1, x2) with
fixed x2 ∈ (−r, r).]
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1.18. Does the Cauchy transform (6a) define an analytic function on the exterior of the
closed polydisc ∆(a, r)? Compare the cases n = 1 and n = 2.

1.19. Let f(x1 + iy1, . . . , xn + iyn) be of class C1 on Ω ⊂ Cn ∼ R2n as a function of
x1, y1, . . . , xn, yn and such that ∂f ≡ 0. Prove that f(z) = f(z1, . . . , zn) is analytic
on Ω.

1.20. Let D be a connected domain in Cn. Prove that the ring O(D) has no zero divisors:
if fg ≡ 0 with f, g ∈ O(D) and f(a) 6= 0 at a point a ∈ D, then g ≡ 0.

1.21. (Extension of Liouville’s theorem) Prove that a bounded holomorphic function on Cn

must be constant.

1.22. Let f be holomorphic on a connected domain D of the form Cn − E where n ≥ 2
and E is compact. Suppose that f(z) remains bounded as |z| → ∞. Prove that
f = constant (so that the “singularity set” E is removable). [Consider the restrictions
of f to suitable complex lines.]

1.23. Let f be holomorphic on the closed polydisc ∆(0, r) ⊂ C2. Prove the following mean
value properties:

f(0) =
1

m2(T )

∫

T (0,r)

f(ζ)dm2(ζ) =
1

m3(∂∆)

∫

∂∆

f(ζ)dm3(ζ).

Here dmj denotes the appropriate area or volume element. [Since the circles ζ1 =
r1e

it1 , ζ2 = constant and ζ1 = constant, ζ2 = r2e
it2 on T (0, r) intersect at right

angles, the area element dm2(ζ) is simply equal to the product of the elements of
arc length, r1dt1 and r2dt2. Again by orthogonality, the volume element dm3(ζ) of
C(0, r1)×∆1(0, r2) may be represented in the form r1dt1 · ρdρdt2, etc.]

1.24. Prove that holomorphic functions f on the closed unit ball B ⊂ C2 have the following
mean value property:

f(0) =
1

m3(S)

∫

S

f(ζ)dm3(ζ), S = ∂B.

[S is a union of tori T (0, r) with r1 = ρ, r2 = (1 − ρ2)
1
2 . The parametrization ζ1 =

ρeit1 , ζ2 = (1 − ρ2)
1
2 eit2 introduces orthogonal curvilinear coordinates on S and

dm3(ζ) = ρdt1(1− ρ2)
1
2 dt2dρ.]

Used in conjunction with suitable holomorphic automorphisms of the ball, this mean
value property gives a special integral representation for f(z) on B in terms of the
boundary values of f on S, cf. exercise 10.28.

1.25. Let f(z1, z2) be continuous on the closed polydisc ∆2(a, r) and holomorphic on the
interior. Take ζ1 on C(a1, r1). Now use Weierstrass’s limit theorem to prove that
f(ζ1, w) is holomorphic on the disc ∆1(a2, r2).

1.26. Prove the holomorphy of f in Corollary 1.72 by showing that f(z) can be written as
a Cauchy integral. [First write K(z, t) as a Cauchy integral.]
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1.27. Let K(z, t) be defined and continuous on Ω × I where Ω ⊂ Cn is open and I is a
compact rectangular block in Rm. Suppose that K(z, t) is holomorphic on Ω for each
t ∈ I. Prove that DjK(z, t) is continuous on Ω× I (Dj = ∂/∂zj). Finally show that
for f(z) =

∫

I
K(z, t)dt one has Djf(z) =

∫

I
DjK(z, t)dt.

1.28. Prove that a locally bounded family F of functions in O(Ω) is locally equicontinuous,
that is, every point a ∈ Ω has a neighbourhood U with the following property. To
any given ε > 0 there exists δ > 0 such that |f(z′)− f(z′′)| < ε for all z′, z′′ ∈ U for
which |z′ − z′′| < δ and for all f ∈ F .

1.29. Give an example of a holomorphic map f = (f1, f2) of C2 to C2, with nonconstant
components f1 and f2, that fails to be open.

1.30. (Extension of Schwarz’s lemma) Let f be holomorphic on the unit ball B = B(0, 1)
in Cn and in absolute value bounded by 1. Supposing that f(0) = 0, prove that
|f(z)| ≤ |z| on B. What can you say if f vanishes at 0 of order ≥ k, that is, Dαf(0) = 0
for all α’s with |α| < k? [One may work with complex lines.]
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CHAPTER 2

Analytic continuation, part I

In the present chapter we discuss classical methods of analytic continuation – tech-
niques based on power series, the Cauchy integral for a polydisc and Laurent series. More
recent methods may be found in the next chapter.

After a general introduction on analytic continuation and a section on convexity, we
make a thorough study of the domain of (absolute) convergence of a multiple power series
with center 0. Such a domain is a special kind of connected multicircular domain: if
z = (z1, . . . , zn) belongs to it, then so does every point z′ = (eiθ1z1, . . . , e

iθnzn) with
θj ∈ R. For n = 1 such connected domains are annuli or discs. Holomorphic functions on
annuli are conveniently represented by Laurent series and the same is true for multicircular
domains in Cn.

2.1 General theory of analytic continuation. Consider tripels (a, U, f), where a ∈ Cn,
U is an open neighborhood of a and f is a function on U into some non specified, but
fixed set X. Two tripels (a, U, f), (a′, U ′, f ′) are called equivalent is a = a′ and f = f ′ on
a neighborhood U ′′ of a contained in U ∩ U ′. This is indeed an equivalence relation, as is
easily seen. The equivalence class of (a, U, f) is called the germ of f at a. We will meet
germs of continuous and of smooth functions, with values in R, C or worse, but the most
prominent case will be that f is holomorphic. The tripel (a, U, f) is then called a function
element (a, U, f) at a point a ∈ Cn. Using theorem 1.54 one sees that elements (a, U, f)
and (a, Ũ , f̃) at the same point a are equivalent if f and f̃ have the same power series
at a : fa = f̃a. Thus germs of holomorphic functions can be identified with convergent
power series. If no confusion is possible we may occasionally identify germs of holomorphic
functions with their representatives.

a

b

x

x

x

x

γ

U=U0

ak

ak-1

Uk-1

V=Up

Uk

fig 2.1

DEFINITION 2.11. A function element (b, V, f) is called a direct analytic continuation of
the element (a, U, f) if V ∩ U is nonempty and g = f on a component of V ∩ U. [Some
authors require that g be equal to f on every component of V ∩ U.] More generally, an
element (b, V, g) at b is called an analytic continuation of (a, U, f) if there is a finite chain
of elements (ak, Uk, fk), k = 0, 1, . . . , p which links (a, U, f) to (b, V, g) by successive direct
continuations:
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(a0, U0, f0) = (a, U, f), (ap, Up, fp) = (b, V, g)

and

(ak, Uk, fk) is a direct analytic continuation of (ak−1, Uk−1, fk−1) for k = 1, . . . , p.

One loosely speaks of an analytic continuation of f ∈ O(U) to V. If V ∩U is nonempty,
the uniqueness theorem shows that (a, U, f) has at most one direct analytic continuation
(b, V, g) for given b ∈ V and a given component of V ∩ U. [On a different component
of V ∩ U , g may be different from f .] In the case of a chain as above, one may insert
additional elements to ensure that ak belongs to Uk ∩ Uk−1 for k = 1, . . . , p. Such a chain
may be augmented further to obtain analytic continuation along an arc γ : [0, 1] → Cn

from a to b, namely, if γ is chosen as follows: γ(0) = a, γ(1) = b and there is a partitioning
0 = t0 < t1 < . . . < tp = 1 such that γ(tk) = ak and the subarc of γ corresponding to the
interval [tk−1, tk] belongs to Uk−1, k = 1, . . . , p. One can then define a continuous chain
of elements (at, U t, f t), 0 ≤ t ≤ 1 which links (a, U, f) to (b, V, g).

Given an element (a, U, f) at a and a point b, different chains starting with (a, U, f)
may lead to different [more precisely, inequivalent] elements at b. For example, one may
start with the function element

(1) (1, {Re z > 0}, p.v. log z)

at the point z = 1 of C. Here the principal value of

log z = log |z|+ i arg z, z 6= 0

denotes the value with imaginary part > −π but ≤ +π. Hence in our initial element, log z
has imaginary part between −π/2 and π/2. One may continue this element analytically
to the point z = −1 along the upper half of the unit circle. At any point eit, 0 ≤ t ≤ π
one may use the half-plane {t − π/2 < arg z < t + π/2} as basic domain and on it, one
will by continuity obtain the holomorphic branch of log z with imaginary part between
t − π/2 and t + π/2. On the half-plane {Re z < 0} as basic domain around z = −1, our
analytic continuation will thus give the branch of log z with imaginary part between π/2
and 3π/2. However, one may continue the original element (1) also along the lower half
of the unit circle. The intermediate elements will be similar to those above, but this time
0 ≥ t ≥ −π. Thus the new analytic continuation will give the branch of log z on the
half-plane {Re z < 0} with imaginary part between −π/2 and −3π/2.

Definition 2.12 (weierstrass). The totality of all equivalence classes of function el-
ements (b, V, g) (or of all convergent power series gb) at points b ∈ Cn, which may be
obtained from a given element (a, U, f) by unlimited analytic continuation, is called the
complete analytic function F generated by (a, U, f).

RIEMANN DOMAIN for F . As the example of log z shows, a complete analytic function
F may be multivalued over Cn. In order to get a better understanding of such a function,
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one introduces a multilayered Riemann domain R for F over Cn (a multisheeted Riemann
surface when n = 1) on which F may be interpreted as a single-valued function. Most
readers will have encountered concrete Riemann surfaces for log z and

√
z. We briefly

describe the general case.
The points of the Riemann domain R for F in Definition 2.12 have the form p =

[(b, V, g)] or p = (b, gb) where [(b, V, g)] stands for an equivalence class of elements at b.
One says that the point p lies “above” b and the map π : p = (b, gb) → b is called the
projection of R to Cn. The points [(c,W, h)] or (c, hc), corresponding to direct analytic
continuations (c,W, h) of (b, V, g) for which c lies in V and hc = gc, will define a basic
neighbourhood N = N (p, V, g) of p in R. Small basic neighbourhoods will separate the
points of R. The restriction π | N establishes a homeomorphism of N in R onto V in Cn.
Over each point b of Cn, the Riemann domain R for F will have as many layers as there
are different equivalence classes [(b, V, g)] in F at b. If the element (b, V, g) is obtained by
analytic continuation of (a, U, f) along an arc γ in Cn, the Riemann domain will contain
an arc σ above γ which connects the points of R corresponding to the two elements, cf.
[Conway].

On the Riemann domain, the complete analytic function F is made into a single-valued
function through the simple definition F(p) = F((b, gb)) = g(b). We now let q = (z, hz)
run over the neighbourhood N (p, V, g) in R. The result is

F(q) = F((z, hz)) = h(z) = g(z), ∀q = (z, hz) ∈ N (p, V, g).

Thus on the Riemann domain, F is locally given by an ordinary holomorphic function
g on a domain V ⊂ Cn “under” R. Taking this state of affairs as a natural definition
of holomorphy on R, the function F will be holomorphic. Setting (a, U, f) = p0 and
identifyingN (p0, U, f) with U , one will have F = f on U . In that way the Riemann domain
R will provide a maximal continuation or existence domain for the function f ∈ O(U):
every germ of every analytic continuation is represented by a point of R. Cf. Section 5.6.

There are also more geometric theories of Riemann domains, not directly tied to
functions F . Riemann domains are examples of so-called domains X = (X, π) over Cn.
The latter are Hausdorff spaces X with an associated projection π to Cn. Every point of
X must have a neighbourhood on which π establishes a homeomorphism onto a domain
in Cn. The Cn coordinates zj can serve as local coordinates on X; different points of X
over the same point z ∈ Cn may be distinguished by means of an additional coordinate.
Cf. Section 5.6 and [Narasimhan].

Given a function element (a, U, f) and a boundary point b of U , there may or may
not exist a direct analytic continuation (b, V, g) at b. In the case n = 1 there always exist
functions f ∈ O(U) that can not be continued analytically across any boundary point
of U . This is easily seen: using Weierstrass theorem mentioned at the end of 1.10 one
constructs a holomorphic function f on U such that the boundary of U is in the closure of
the zeroes of f , cf. Chapter 6. However, as mentioned already in Section 1.9, the situation
is completely different in Cn with n ≥ 2. There are connected domains D ⊂ Cn such
that every function f ∈ O(D) can be continued analytically to a certain larger connected
domain D′ ⊂ Cn (independent of f). In many cases one can find a maximal continuation
domain D∗ in Cn:
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DEFINITION 2.13. A (connected) domain D∗ in Cn is called a [or the] envelope or hull
of holomorphy for D ⊂ Cn if

(i) D ⊂ D∗ and every f ∈ O(D) has an extension f ∗ in O(D∗);
(ii) For every boundary point b of D∗, there is a function f ∈ O(D) which has no

analytic continuation to a neighbourhood of b. [The corresponding complete analytic
function F has no element at b.]

It is perhaps surprising that there exist connected domains D ⊂ Cn which have no
envelope of holomorphy in Cn. However, for such a domain D, all functions in O(D) have
an analytic continuation to a certain domain XD over Cn, see Section 2.9.

A maximal continuation domain D∗ as in Definition 2.13 (which may coincide with
D) will be a domain of holomorphy, cf. Chapter 6 where the latter domains are studied
and characterized by special convexity properties. It will be useful to start here with a
discussion of ordinary convexity.

2.2 Auxiliary results on convexity. When we speak of convex sets we always think of
them as lying in a real Euclidean space Rn. Convex sets in Cn will be convex sets in the
corresponding space R2n.

DEFINITION 2.21. A set E ⊂ Rn is called convex if for any pair of points x and y in
E, the whole straight line segment with end points x and y belongs to E. In other words,
x ∈ E, y ∈ E must imply

(1− λ)x+ λy ∈ E, ∀λ ∈ [0, 1].

Every convex set is connected. The closure E and the interior E0 of a convex set E
are also convex. The intersection of any family of convex sets in Rn is convex.

For nonempty convex sets E ⊂ R2, one easily verifies the following properties:

x

x

L

L'

E

x0

x'

fig 2.2
(i) If there is a straight line L′ ⊂ R2 which does not meet E, there is a supporting line

L parallel to L′, that is, a line L through a boundary point x0 of E such that the interior
E0 lies entirely on one side of L.

(ii) If x′ lies outside E, there is a supporting line L separating x′ from E0 and passing
through a point x0 ⊂ E closest to x′. [Take L through x0 perpendicular to [x0, x

′].]
(iii) If E is closed (or open), it is the intersection of the closed (or open, respectively)

half-planes H containing E.
(iv) For every boundary point x0 of E there are one or more supporting lines L passing

through x0. [The vectors x− x0 for x ∈ E belong to an angle ≤ π.]
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There are corresponding results for convex sets E ⊂ Rn, n ≥ 3. The supporting lines
L then become supporting hyperplanes V , that is, affine subspaces of real dimension n− 1.
For a closed convex set E ⊂ Rn, the intersection of E with a supporting hyperplane V is
a closed convex set of lower dimension. More precisely, E ∩ V will be a closed convex set,
congruent to a closed convex set in Rn−1.

DEFINITION 2.22. For an arbitrary (nonempty) set S in Rn, the smallest convex set
containing S is called its convex hull, notation E = CH(S).

It is easy to verify that the convex hull CH(S) consists of all finite sums of the form

(2) x =
m
∑

j=1

λjsj with sj ∈ S, λj ≥ 0,
∑

λj = 1.

Indeed, induction on m and the definition of convexity will show that CH(S) must contain
all points of the form (2). On the other hand, the set of all those points is convex and
contains S, hence it contains CH(S).

In the case of a compact set S in the plane, one readily shows that m can always be
taken ≤ 3. [If x belongs to CH(S) but not to S, one may choose an arbitrary point s1 ∈ S
and join it to x; the half-line from s1 through x must meet the boundary of CH(S) at or
beyond x.] For any set S in Rn, every point x in CH(S) has a representation (2) with
m ≤ n+ 1 (Carathéodory’s theorem, cf. [Cheney]). For our application to power series we
need the notion of logarithmic convexity. Let Rn

+ denote the set of points x ∈ Rn with
xj ≥ 0, ∀j. We would like to say that F ⊂ Rn

+ is logarithmically convex if the set

logF
def
= {(log r1, . . . , log rn) : (r1, . . . , rn) ∈ F}

is convex. However, in order to avoid difficulties when rj = 0 for some j so that log rj =
−∞ [cf. exercise 2.7], we will use the following

DEFINITION 2.23. A set F in Rn
+ is called logarithmically convex if r′ ∈ F and r′′ ∈ F

always implies that F contains every point r of the symbolic form

r = (r′)1−λ(r′′)λ, 0 ≤ λ ≤ 1,

that is,
rj = (r′j)

1−λ(r′′j )λ, ∀j.
The logarithmically convex hull of a set S ⊂ Rn

+ is the smallest logarithmically convex set
containing S.

EXAMPLE 2.24. Let S be the union of the rectangles

S1 = {(r1, r2) ∈ Rn
+ : r1 < 2, r2 <

1
2}, S2 = {(r1, r2) ∈ Rn

+ : r1 <
1
2 , r2 < 2}.

Then logS is the union of the quadrants
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logS1 = {(ρ1, ρ2) ∈ R2 : ρ1 < log 2, ρ2 < log 1
2
},

logS2 = {(ρ1, ρ2) ∈ R2 : ρ1 < log 1
2 , ρ2 < log 2},

including some points with a coordinate −∞. The convex hull of logS consists of the
points (ρ1, ρ2) such that

ρ1 < log 2, ρ2 < log 2, ρ1 + ρ2 < 0

(fig 2.3). The logarithmically convex hull of S consists of the points (r1, r2) = (eρ1 , eρ2)
with (ρ1, ρ2) ∈ CH(logS), or more precisely, of the points (r1, r2) ≥ 0 such that (cf. fig
1.6):

r1 < 2, r2 < 2, r1r2 = eρ1+ρ2 < 1.

             ρ1
log s1

ρ2=log r2

ρ1=log r1

0

log S

CH(log S)

ρ2
logs2

0

log ε1

log ε2

x

x

x

x

fig 2.3 fig 2.4

EXAMPLE 2.25. Let S consist of a single point s = (s1, . . . , sn) > 0 and a neighbourhood
of 0 in Rn

+ given by 0 ≤ rj < εj (< sj), j = 1, . . . , n. Then the logarithmically convex hull
of S contains the set given by 0 ≤ rj < sj , j = 1, . . . , n, cf. fig 2.4.

2.3 Multiple power series and multicircular domains. In the following we will study
sets of convergence of power series and of more general Laurent series

(3a)
∑

α∈Zn

cαz
α =

∑

α1∈Z,...,αn∈Z

cα1...αn
zα1

1 . . . zαn
n .

In order to avoid problems with the order of the terms, we only consider absolute conver-
gence here.

DEFINITION 2.31. Let A be the set of those points z ∈ Cn where the Laurent series
(3a) [or power series (3b)] is absolutely convergent. The interior A0 of A will be called the
domain of (absolute) convergence of the series.
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In the case n = 1 the domain of convergence is an open annulus or disc (or empty).
For general n, our first observation is that the absolute convergence of a Laurent series (3a)
at a point z implies its absolute convergence at every point z′ with |z′j | = |zj |, ∀j. Indeed,
one will have |cα(z′)α| = |cαzα|, ∀α. It is convenient to give a name to the corresponding
sets of points:

DEFINITION 2.32. E ⊂ Cn is called a multicircular set (or Reinhardt set) if

a = (a1, . . . , an) ∈ E implies a′ = (eiθ1a1, . . . , e
iθnan) ∈ E

for all real θ1, . . . , θn. A multicircular domain is an open multicircular set.

Multicircular sets are conveniently represented by their “trace” in the space Rn
+ “of

absolute values”, in which all coordinates are nonnegative. Cf. fig 1.6, where the multi-
circular domain D = ∆(0, 0; 2, 1

2) ∪∆(0, 0; 1
2 , 2) in C2 is represented by its trace.

DEFINITION 2.33. The trace of a multicircular set E ⊂ Cn is given by

trE = {(|a1|, . . . , |an|) ∈ Rn
+ : (a1, . . . , an) ∈ E}.

A multicircular set E is determined by its trace. If E is connected, then so is trE
(and conversely). If E is open, trE is open in Rn

+.
Our primary interest is in multiple power series

(3b)
∑

α∈Nn
0

cαz
α =

∑

α1≥0,...,αn≥0

cα1...αn
zα1

1 . . . zαn
n .

The absolute convergence of a power series (3b) at a point z implies its absolute conver-
gence at every point z′ with |z′j | ≤ |zj |, ∀j. The corresponding sets are called complete
multicircular sets:

DEFINITION 2.34. E ⊂ Cn is called a complete multicircular set (or complete Reinhardt
set) if

(a1, . . . , an) ∈ E implies (a′1, . . . , a
′
n) ∈ E

whenever |a′j| ≤ |aj |, ∀j.
Observe that a complete multicircular set E is connected: a ∈ E is joined to the origin

by the segment z = λa, 0 ≤ λ ≤ 1 in E. A complete multicircular domain (= open set)
will be a union of (open) polydiscs centered at the origin, and conversely. Cf. D and D̂
illustrated in fig 1.6.

Proposition 2.35. The domain of (absolute) convergence A0 of a multiple power series
(3b) with center 0 is a complete multicircular domain [but may be empty].

PROOF. Let A0 be nonempty and choose any point a in A0. Then A0 contains a ball
B(a, δ), and this ball will contain a point b such that |bj| > |aj |, ∀j. The absolute
convergence of the series (3b) at z = b implies its absolute convergence throughout the
polydisc ∆(0, . . . , 0; |b1|, . . . , |bn|). This polydisc in A0 contains all points a′ with |a′j| ≤
|aj|, ∀j. Thus A0 is a complete multicircular set. A0 will be a connected domain.

34



2.4 Convergence domains of power series and analytic continuation. Let B
denote the set of those points z ∈ Cn at which the terms cαz

α, α ∈ Nn
0 of the power

series (3b) form a bounded sequence:

(4) B = {z ∈ Cn : |cαzα| ≤M = M(z) < +∞, ∀α ∈ Nn
0}.

The set B is clearly multicircular and it also has a certain convexity property:

Lemma 2.41. The trace of B is logarithmically convex.

PROOF. Let r′ ≥ 0 and r′′ ≥ 0 be any two points in trB. Then there is a constant M
[for example, M = max{M(r′),M(r′′)}] such that

|cα|(r′1)α1 . . . (r′n)αn ≤M, |cα|(r′′1 )α1 . . . (r′′n)αn ≤M, ∀α ∈ Nn
0 .

It follows that for any r = (r1, . . . , rn) with components of the form rj = (r′j)
1−λ(r′′j )λ

[with λ ∈ [0, 1] independent of j] and for all α’s,

|cα|rα1

1 . . . rαn
n = {|cα|(r′1)α1 . . . (r′n)αn}1−λ{|cα|(r′′1 )α1 . . . (r′′n)αn}λ ≤M.

Thus r ∈ B and hence trB is logarithmically convex [Definition 2.23].

Abusing the language, a multicircular domain is called logarithmically convex when
its trace is. We can now prove

Theorem 2.42. The domain of (absolute) convergene A0 of a multiple power series (3b)
with center 0 is a logarithmically convex complete multicircular domain [but may be empty].
The power series will converge uniformly on every compact subset of A0.

PROOF. Consider a power series (3b) for which A0 is nonempty. We know that A0 is a
complete multicircular domain [Proposition 2.35], hence it suffices to verify its logarithmic
convexity. Clearly, A ⊂ B, cf. (4), hence A0 ⊂ B0. We will show that also B0 ⊂ A0.
Choose b ∈ B0. Then B must contain a point c with |cj| = rj > |bj|, ∀j. The boundedness
of the sequence of terms {cαzα} at z = c or z = r implies the absolute convergence of
the power series (3b) throughout the polydisc ∆(0, r) [Lemma 1.41]. Hence b ∈ A0 so
that B0 ⊂ A0; as a result, A0 = B0. Since trB is logarithmically convex [Lemma 2.41],
trA0 = trB0 will also be logarithmically convex [basically because the interior of a convex
set is convex].

We know that A0 is a union of polydiscs ∆(0, s). The convergence of our power series
is uniform on every smaller polydisc ∆(0, λs) with λ ∈ (0, 1) [Lemma 1.41], hence it is
uniform on every compact subset of A0. Indeed, such a set may be covered by finitely
many polydiscs ∆(0, s) in A0 and hence by finitely many polydiscs ∆(0, λs).

COROLLARY 2.43 (Analytic continuation by power series). Suppose f is holomorphic
on a complete multicircular domain D in Cn. Then f has an analytic continuation to the
logarithmically convex hull D̂ of D. The continuation is furnished by the sum of the power
series for f with center 0.

Indeed, D is a union of polydiscs ∆(0, r). On each of those polydiscs, the power series
∑

cαz
α for f with center 0 converges absolutely, and it converges to f(z), cf. Corollary
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1.63. The domain of convergence A0 of the power series thus contains D. Being loga-
rithmically convex, A0 must contain D̂, the smallest logarithmically convex multicircular
domain containing D. The power series is uniformly convergent on every compact subset
of D̂ ⊂ A0. Its sum is therefore holomorphic on D̂; it extends f analytically throughout
D̂.

Fig 1.6 illustrates the case

D = ∆(0, 0; 2, 1
2 ) ∪∆(0, 0; 1

2 , 2)

in C2, cf. Example 2.24. Here the logarithmically convex hull D̂ is the exact domain of
convergence of the power series with center 0 for the function

f(z) =
1

2− z1
+

1

2− z2
+

1

1− z1z2
.

The logarithmically convex hull D̂ of a complete multicircular domain D in Cn is at
the same time its envelope of holomorphy [Definition 2.13]. Indeed, D̂ will be a domain of
holomorphy and (hence) also the maximal domain of existence for a certain holomorphic
function [see Sections 6.3, 6.4.] The latter property implies that every logarithmically
convex complete multicircular domain is the exact domain of convergence for some power
series with center 0.

2.5 Analytic continuation by Cauchy integrals. We will show how the Cauchy
integral or cauchy transform

(5a) f̂r(z)
def
=

1

(2πi)n

∫

T (0,r)

f(ζ)

(ζ1 − z1) . . . (ζn − zn)
dζ1 . . . dζn, ∀z ∈ ∆(0, r),

can be used for analytic continuation. Here T (0, r) = C(0, r1)×. . .×C(0, rn), with positive
orientation of the circles C(0, rj).

Theorem 2.51. Let D ⊂ Cn be a connected multicircular domain containing the origin
and let f be holomorphic on D. Then the Cauchy transforms f̂r, where r > 0 runs over
the interior of traceD jointly furnish an analytic continuation of f to D′, the smallest
complete multicircular domain containing D.
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� � � �
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� � � � � � �
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x

x

R
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tr D

ρ
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fig 2.5
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PROOF. We take n = 2 and choose δ = (δ1, δ2) > 0 such that the closed polydisc ∆(0, δ)
belongs to D. To each point r = (r1, r2) > 0 in trD we associate the Cauchy transform

f̂r (5a).
(i) Since f is holomorphic on ∆(0, δ) we have

f̂δ(z) = f(z), ∀z ∈ ∆(0, δ),

cf. the Cauchy integral formula, Theorem 1.31.
(ii) We next show that for arbitrary r > 0 and s > 0 in trD :

(5b) f̂r(z) = f̂s(z) on some polydisc ∆(0, δ′), δ′ = δ′rs.

To this end we connect r to s in the interior of trD by a polygonal line S, whose straight
segments are parallel to the coordinate axes (fig 2.5). In order to prove (5b) it is sufficient
to consider the special case where S is a segment S1 parallel to one of the axes, for example

S1 = {(t1, t2) ∈ R2
+ : s1 = t1 = r1, s2 ≤ t2 ≤ r2}.

For fixed ζ1 with |ζ1| = r1 = s1 and fixed z2 with |z2| < s2, the function

g(w)
def
=
f(ζ1, w)

w − z2

will be holomorphic on some annulus {ρ < |w| < R} in C such that ρ < s2 < r2 < R, cf.
fig 2.5, 2.6. Hence by Cauchy’s theorem for an annulus,

(5c)

∫

C(0,r2)

f(ζ1, ζ2)

ζ2 − z2
dζ2 =

∫

C(0,r2)

g(w)dw =

∫

C(0,s2)

g(w)dw =

∫

C(0,s2)

f(ζ1, ζ2)

ζ2 − z2
dζ2.

x xx xx

0

x z2

ρ r2s2 R

fig 2.6
We now multiply the first and the last member of (5c) by 1/(ζ1−z1), taking |z1| < s1 = r1,
and integrate the result with respect to ζ1 along C(0, r1) = C(0, s1). Replacing the repeated
integrals by double integrals, we obtain (5b) for the end points r and s of S1 [and, in our
example, for all z ∈ ∆(0, s)]. The general case (5b) follows by a finite number of steps of
this kind.
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Combining (i) and (ii) we conclude that for every r > 0 in trD

(5d) f̂r(z) = f(z) on some polydisc ∆(0, δ′′), δ′′ = δ′′r .

Now the Cauchy transform f̂r is holomorphic on ∆(0, r) [Theorem 1.61]. It follows that

f̂r is equal to f throughout ∆(0, r) ∩ D [uniqueness theorem 1.54]. Jointly, the Cauchy

transforms f̂r furnish an analytic continuation F of f to the domain

(5e) D′ = ∪r ∆(0, r), union over all r > 0 in tr D.

D′ is the smallest complete multicircular domain containing D, cf. fig 2.5.

COROLLARY 2.52 (Once again, analytic continuation by power series). Suppose f is
holomorphic on a connected multicircular domain D ⊂ Cn that contains the origin. Then
the power series for f with center 0 converges to f throughout D and it furnishes an
analytic continuation of f to the logarithmically convex hull D̂ of D.

Indeed, for any r > 0 in trD, the power series for f̂r with center 0 converges to
f̂r on ∆(0, r) [Corollary 1.63], but this series is none other than the power series for f
with center 0, cf. (5d). Hence the latter converges to the analytic continuation F of f
throughout D′ (5e), and in particular to f throughout D. By Corollary 2.43 applied to F
and the complete multicircular domain D′, the power series for F or f around 0 actually
provides an analytic continuation of F or f to the logarithmically convex hull (D′)∧ of D′.

Observe finally that (D′)∧ = D̂. Indeed, D̂ must containD′ [and hence (D′)∧], because
D̂ will contain every polydisc ∆(0, s) with s > 0 in trD, cf. Example 2.25.

2.6 Laurent series in one variable with variable coefficients; removability of
isolated singularities. Let A = A(0; ρ,R) denote the annulus 0 ≤ ρ < |w| < R ≤ +∞
in C (cf. fig 2.6) and let g(w) be holomorphic on A. Then there is a unique Laurent series
with center 0 that converges to g for some total ordering of its terms at each point of A.
It is the series

(6a)

∞
∑

−∞

ckw
k with ck =

1

2πi

∫

C(0,r)

g(w)w−k−1dw,

where one may integrate over any (positively oriented) circle C(0, r) with ρ < r < R. The
series actually converges absolutely, and uniformly on every compact subset of A(0; ρ,R).
To prove the existence of the series representation one uses the Cauchy integral formula
for an annulus: for ρ < r1 < |w| < r2 < R,

(6b) g(w) =
1

2πi

∫

C(0,r2)

g(v)

v − wdv −
1

2πi

∫

C(0,r1)

g(v)

v − wdv.

The first integral gives a power series
∑∞

0 ckw
k on the disc ∆(0, r2) [which will in fact

converge throughout the disc ∆(0, R)]. The second integral gives a power series in 1/w,

which may be written as −∑−1
−∞ ckw

k and which converges for |w| > r1 [and in fact, for
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|w| > ρ]. Combining the series one obtains (6a). As to the other assertions above, cf.
Section 2.7.

A holomorphic function g(w) on A(0; ρ,R) will have an analytic continuation to the
disc ∆(0, R) if and only if all Laurent coefficients ck with negative index are equal to 0.
Indeed, if there is such a continuation [which we also call g], then by Cauchy’s theorem,
the second integral in (6b) is identically zero for |w| > r1.

We now move on to Cn with n ≥ 2. Treating our complex variables z1, . . . , zn asym-
metrically for the time being, we will write z′ for (z1, . . . , zn−1) and w for zn. Using
Laurent series in w with coefficients depending on z′, we will prove:

Theorem 2.61 (hartogs’ continuity theorem). Let f(z′, w) = f(z1, . . . , zn−1, w) be
holomorphic on a domain D ⊂ Cn (n ≥ 2) of the form

D = D′ × A(0; ρ,R)∪D′
0 ×∆(0, R),

where D′ is a connected domain in Cn−1 and D′
0 a nonempty subdomain of D′ (fig 2.7).

Then f has an analytic continuation to the domain

D̃ = D′ ×∆(0, R).

z'

ρ

R

r

x

x

x

D
~

w

D'

0

D

D
'

0

fig 2.7
PROOF. For fixed z′ ∈ D′ the function g(w) = f(z′, w) is holomorphic in w on the annulus
A(0; ρ,R), hence it may be represented by a Laurent series in w,

(6c) f(z′, w) = g(w) =
∑∞

−∞
ck(z′)wk.

By (6a) the coefficients are given by

(6d) ck(z′) =
1

2πi

∫

C(0,r)

f(z′, w)w−k−1dw =
1

2π

∫ π

−π

f(z′, reit)r−ke−iktdt, ρ < r < R.

We may now apply the holomorphy theorem for integrals [Corollary 1.72] to con-
clude that each of the coefficients ck(z′) is holomorphic in z′ on D′. Indeed, f(z′, w) is
holomorphic and hence continuous in (z′, w) on D. It follows that the final integrand

K(z′, t) = f(z′, reit)r−ke−ikt
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is continuous on D′ × [−π, π]. Furthermore, for fixed t this integrand will be holomorphic
in z′ on D′, because f(z′, w) is holomorphic in z′ for fixed w = reit in A(0; ρ,R).

We next observe that for fixed z′ in D′
0, the function g(w) = f(z′, w) is holomorphic

on the whole disc ∆(0, R). Hence for such z′, the Laurent series (6c) must reduce to a
power series. In other words, for every k < 0,

ck(z′) = 0 throughout D′
0.

Thus by the uniqueness theorem for holomorphic functions, ck(z′) = 0 on all of D′ for each
k < 0. Conclusion:

(6e) f(z′, w) =
∞
∑

0

ck(z′)wk throughout D′ × A.

This power series with holomorphic coefficients actually defines a holomorphic function
f̃(z′, w) throughout D̃ = D′ ×∆(0, R). Indeed, we will show that the series is absolutely
and uniformly convergent on every compact subset of D̃; Weierstrass’s theorem 1.71 on
the holomorphy of uniform limits will do the rest. Let E ′ be any compact subset of D′

and set E = E′×∆(0, s) where s < R. Choosing r ∈ (ρ,R) such that r > s, the coefficient
formula (6d) furnishes a uniform estimate

|ck(z′)| ≤Mr−k for z′ ∈ E′, with M = sup|f | on E′ × C(0, r) ⊂ D.

This estimate implies the uniform convergence of the series in (6e) on E, where |w| ≤ s < r.
The holomorphic sum function f̃ on D̃ is equal to f on D′×A and hence on D. Thus

it provides the desired analytic continuation of f to D̃.

APPLICATION 2.62 (Removability of isolated singularities when n ≥ 2). Let f be holo-
morphic on a “punctured polydisc” D = ∆n(a, r)−{a}. Then f has an analytic extension
to D̃ = ∆n(a, r).

[By translation, it may be assumed that a = 0. Now apply Theorem 2.61, taking D′ =
∆n−1(0, r′) with r′ = (r1, . . . , rn−1), ρ = 0, R = rn and D′

0 = D′ − {0}. An alternative
proof may be based on the one-dimensional Cauchy integral formula, cf. exercise 2.14.]

APPLICATION 2.63. Holomorphic functions on open sets Ω ⊂ Cn, n ≥ 2 can not have
isolated zeros.

[An isolated zero of f would be a nonremovable isolated singularity for 1/f.]

2.7 Multiple Laurent series on general multicircular domains. For the time being,
we assume that our connected multicircular domain D in Cn does not contain any point
z with a vanishing coordinate; the exceptional case will be considered in Section 2.8.
When n = 1, D is an annulus A(0; ρ,R) on which holomorphic functions are uniquely
representable by Laurent series with center 0. The analog for general n is a Laurent series
in n variables:

THEOREM 2.71. Let f be holomorphic on a connected multicircular domain D ⊂ Cn,
n ≥ 1 that does not meet any hyperplane {zj = 0}. Then there is a unique n-variable
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Laurent series with center 0 (and constant coefficients) which converges to f at every
point of D for some total ordering of its terms. It is the series

(7a)
∑

α1∈Z,...,αn∈Z

cα1...αn
zα1

1 . . . zαn
n

whose coefficients are given by the formula

(7b) cα1...αn
=

1

(2πi)n

∫

T (0,r)

f(z)z−α1−1
1 . . . z−αn−1

n dz1 . . . dzn

for any r = (r1, . . . , rn) > 0 in the trace of D. The series will actually be absolutely
convergent on D and it will converge uniformly to f on any compact subset of D.

PROOF. We treat the typical case n = 2. For r = (r1, r2) > 0 and 0 < δ = (δ1, δ2) < r we
introduce the “annular domains”

Aδ(r) = {(z1, z2) ∈ C2 : rj − δj < |zj | < rj + δj , j = 1, 2}.

(i) Uniqueness of the Laurent series and coefficient formula. For given r > 0 in trD
we choose ε < 1

2
r so small that A2ε(r) belongs to D. Suppose now that we have a series (7a)

which converges pointwise to some function f(z) on A2ε(r), either for some total ordering
of the terms or when the series is written as a repeated series. In the former case we know
and in the latter case we explicitly postulate that the terms form a bounded sequence at
each point of A2ε(r).

|z2|

|z1|

0 r1

r2
ε2

ε1 ε1

ε2

r

A2ε(r)

Aε(r)

r + ε

fig 2.8
From the boundedness of the sequence {cαzα} at the point z = r+ 2ε, it follows that

the power series
∑

α1≥0,α2≥0

cαz
α1

1 zα2

2

is absolutely and uniformly convergent on the polydisc ∆(0, r + ε) and in particular on
Aε(r), cf. Lemma 1.41. We next use the boundedness of the sequence {cαzα} at the
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point z = (r1 − 2ε1, r2 + 2ε2) or 1/z1 = 1/(r1 − 2ε1), z2 = r2 + 2ε2. It implies that the
power series

∑

−α1>0,α2≥0

cα

(

1

z1

)−α1

zα2

2

in 1/z1 and z2 is absolutely and uniformly convergent for |1/z1| < 1/(r1−ε1) or |z1| > r1−ε1
and |z2| < r2+ε2, hence in particular on Aε(r). Also using the boundedness of the sequence
{cαzα} at z = r − 2ε and at z = (r1 + 2ε1, r2 − 2ε2), we conclude that the whole series
(7a) is absolutely and uniformly convergent on Aε(r). The sum will be equal to f(z) for
any arrangement of the terms.

Termwise integration of the absolutely and uniformly convergent series

f(z)z−β−1 =
∑

α∈Z2

cαz
α−β−1 [β + 1 = (β1 + 1, β2 + 1)]

over the torus T (0, r) in Aε(r) gives

(7c)
1

(2πi)2

∫

T (0,r)

f(z)z−β−1dz =
∑

α

cα
1

(2πi)2

∫

T (0,r)

zα−β−1dz,

where dz stands for dz1dz2. Since

1

2πi

∫

C(0,rj)

z
αj−βj−1
j dzj =







1 for αj = βj

0 for αj 6= βj ,

the sum in (7c) reduces to cβ . We have thus proved formula (7b) at least for n = 2 and
with β instead of α.

If f is represented by a series (7a) at each point of D [in the sense indicated at the
beginning of (i)], the coefficients are given by (7b) for each r > 0 in trD, hence such a
representation is surely unique. We will then have absolute and uniform convergence of the
Laurent series on any compact subset E ⊂ D, since such an E can be covered by finitely
many annular domains Aε(r) for which A2ε(r) belongs to D.

(ii) Existence of the Laurent series. Let f be holomorphic on D. For r > 0 in trD, so
that T (0, r) ⊂ D, the right-hand side of (7b) defines coefficients cα(r) which might depend
on r. Do they really? No, using the method of polygonal lines as in part (ii) of the proof
of Theorem 2.51, one readily shows that cα(r) is independent of r. Indeed, referring to
fig 2.5,

∫

C(0,r2)

f(z1, z2)z−α2−1
2 dz2 =

∫

C(0,s2)

f(z1, z2)z−α2−1
2 dz2

whenever z1 ∈ C(0, r1) = C(0, s1). Multiplying by z−α1−1
1 and integrating with respect to

z1, one concludes that cα(r) = cα(s).
Thus we may use (7b) to associate constant coefficients cα to f . With these coefficients,

the terms in the series (7a) will form a bounded sequence at each point of D. Indeed, choose
w in D and take rj = |wj |, j = 1, 2 [as we may]. Then by (7b),

42



(7d)

|cα1α2
wα1

1 wα2

2 | =
∣

∣

∣

∣

∣

1

(2πi)2

∫

T (0,r)

f(z)

(

w1

z1

)α1
(

w2

z2

)α2 dz1
z1

dz2
z2

∣

∣

∣

∣

∣

≤ sup T (0,r) |f(z)|, ∀α.

We now fix r > 0 in trD and take ε < r so small that Aε(r) belongs to D. For fixed
z2 in the annulus r2 − ε2 < |z2| < r2 + ε2, the function f(z1, z2) is holomorphic in z1 on
the annulus r1 − ε1 < |z1| < r1 + ε1, hence f has the absolutely convergent one-variable
Laurent representation

(7e) f(z1, z2) =
∑

α1∈Z

dα1
(z2)zα1

1 , z ∈ Aε(r)

with

(7f)

dα1
(z2) =

1

2πi

∫

C(0,r1)

f(z1, z2)z−α1−1
1 dz1

=
1

2π

∫ π

−π

f(r1e
it, z2)r−α1

1 e−iα1tdt .

The coefficients dα1
(z2) will be holomorphic on the annulus r2 − ε2 < |z2| < r2 + ε2,

cf. the holomorphy theorem for integrals 1.72. Hence the coefficients have the absolutely
convergent Laurent representations

(7g) dα1
(z2) =

∑

α2∈Z

dα1α2
zα2

2

with

(7h) dα1α2
= dα1α2

(r) =
1

2πi

∫

C(0,r2)

dα1
(z2)z−α2−1

2 dz2.

Substituting (7g) into (7e) we finally obtain the representation

f(z1, z2) =
∑

α1

{

∑

α2

dα1α2
(r)zα2

2

}

zα1

1 , ∀z ∈ Aε(r).

Here by (7h) and (7f), also making use of the continuity of f on T (0, r) to rewrite a
repeated integral as a double integral,
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dα1α2
(r) =

1

(2πi)2

∫

C(0,r2)

{
∫

C(0,r1)

f(z1, z2)z−α1−1
1 dz1

}

z−α2−1
2 dz2

=
1

(2πi)2

∫

T (0,r)

f(z1, z2)z−α1−1
1 z−α2−1

2 dz1dz2 = cα1α2
(r) = cα1α2

.

Conclusion: f has a representation as a series (7a, b), locally on D and hence globally,
when the terms are arranged in a repeated series. The terms form a bounded sequence
at each point w ∈ D (7d). Thus by part (i), the corresponding double series is absolutely
convergent and hence converges to f on D for any arrangement of the terms.

2.8 Spherical shell theorem. In C, a connected multicircular domain D containing the
point w = 0 is just a disc around 0. In that case the Laurent series (6a) for f ∈ O(D) on
D−{0} reduces to a power series: ck = 0 for all k < 0. Something similar happens in Cn:

LEMMA 2.81. Let D ⊂ Cn be a connected multicircular domain containing a point b with
jth coordinate bj = 0. Let f be holomorphic on D and let

∑

cαz
α be its Laurent series

(7a, b) on D̃ = D − {z ∈ Cn : z1 . . . zn = 0}. [All points with a vanishing coordinate have
here been removed from D so as to make Theorem 2.71 applicable as it stands.] Then
cα1...αn

= 0 for all α’s with αj < 0.
|z2|

|z1|

0 r1

(0,r2)

tr D

(r1,r2)

fig 2.9

PROOF. We may take n = 2 and j = 1. Shifting b = (0, b2) a little if necessary, we
may assume r2 = |b2| 6= 0 [D is open]. Since trD is open in R2

+, it will contain a
short closed horizontal segment from the point (0, r2) to a point (r1, r2) > 0. D will
then contain all points (z1, z2) with |z1| ≤ r1, |z2| = r2 (fig 2.9). Thus for each fixed
z2 ∈ C(0, r2), f(z1, z2) will be analytic in z1 on the closed disc |z1| ≤ r1. Hence by
Cauchy’s theorem,

∫

C(0,r1)

f(z1, z2)z−α1−1
1 dz1 = 0 for z2 ∈ C(0, r2)

whenever −α1 − 1 ≥ 0. Conclusion:
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cα1α2
=

1

(2πi)2

∫

C(0,r2)

(
∫

C(0,r1)

f(z1, z2)z−α1−1
1 dz1

)

z−α2−1
2 dz2 = 0, ∀α1 < 0.

We single out the important case where D meets each of the hyperplanes {zj = 0} :

THEOREM 2.82 (Analytic continuation based on multiple Laurent series). Let D ⊂ Cn

be a connected multicircular domain which for each j, 1 ≤ j ≤ n contains a point z with
zj = 0, and let f be any holomorphic function on D. Then the Laurent series for f on

D̃ = D − {z1 . . . zn = 0} with center 0 is a power series. Its sum function furnishes an
analytic continuation of f to the logarithmically convex hull D̂ of D.

PROOF. By Lemma 2.81 the Laurent series (7a, b) for f [on D̃] has cα = cα1...αn
= 0

whenever [at least] one of the numbers αj is negative, hence the Laurent series is a power

series. This power series converges to f throughout D̃ [Theorem 2.71], hence it converges
on every polydisc ∆(0, r) with r > 0 in tr D̃ or trD [Proposition 1.42]. Since the sum is
equal to f on ∆(0, r) ∩ D̃ it is equal to f on ∆(0, r) ∩D [uniqueness theorem] and hence
throughout D. Naturally, the power series furnishes an analytic continuation of f to the
smallest complete multicircular domain D′ containing D and to its logarithmically convex
hull (D′)∧, cf. the discussion following Corollary 2.52. As in that case, (D′)∧ will coincide
with D̂. [Indeed, D̂ will contain a neighbourhood of the origin, cf. exercise 2.7, hence it
contains every polydisc ∆(0, s) with s > 0 in trD (fig 2.4), and thus D̂ contains D′.]

Application 2.83 (hartogs’ spherical shell theorem). Let f be holomorphic on
the spherical shell given by ρ < |z| < R in Cn with n ≥ 2, ρ ≥ 0. Then f has an analytic
continuation to the ball B(0, R).

[A more general theorem of this kind will be proved in Chapter 3.]

2.9 Envelopes of holomorphy may extend outside Cn ! We will first construct a
domain D in C2 and a Riemann domain X over C2 with the following property: every
holomorphic function on D can be continued analytically to X, and the Riemann domain
X is really necessary to accomodate single-valued analytic continuations of all functions
in O(D).

We start with the multicircular domain D0 in C2 given by

D0 = {|z1| < 1, |z2| < 2} ∪ {|z1| < 2, 1 < |z2| < 2}.

[Make a picture of trace D0 ! Fig 2.11 shows, among other things, the 3-dimensional in-
tersection of D0 with the real hyperplane y2 = 0.] As we know, every function in O(D0)
extends analytically to the bidisc ∆(0, 2) = ∆(0, 0; 2, 2), cf. Section 2.5.
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γ

4i

T

z1-plane

T1

x

0

x

fig 2.10

We next choose an arc γ of the circle C(4i, 4) in the z1-plane (z2 = 0) as follows: γ
starts at the origin and, running counterclockwise, it terminates in the half-plane
{Re z1 < 0} between the circles C(0, 1) and C(0, 2) (fig 2.10). For example,

γ : z1 = 4i+ 4eit, z2 = 0, −π/2 ≤ t ≤ 3π/2− π/8.

Around this arc we construct a thin tube T in C2, say an ε-neighbourhood of γ. Here ε is
chosen so small that the part

T1
def
= T ∩∆(0, 2) ∩ {Re z1 < 0}

does not meet D0. Our domain D ⊂ C2 will be (cf. fig 2.11)

D
def
= D0 ∪ T.

Do

(4i,0)

(y2 =0)

T

T1

x

x

fig 2.11
Now let f be any function in O(D). Then the restriction f | D0 has an analytic

continuation to ∆(0, 2). However, on the part T1 of T that continuation may very well be
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different from the original function f . For example, one may take for f(z) that holomorphic
branch of

log(z1 − 4i) on D

for which Im f runs from −π/2 to 3π/2 − π/8 on γ. On T1 the values of Im f will be
approximately 3π/2− π/8, while on the part of T close to the origin, Im f will be approx-
imately −π/2. Hence the analytic continuation f ∗ of the restriction f | D0 to ∆(0, 2) will
have its imaginary part on T1 in the vicinity of π/2− π/8 !

All functions in O(D) have an analytic continuation to a Riemann domain X over
C2 which contains ∆(0, 2) and a copy of the tube T . The two are connected where
Re z1 > 0, but where T (going “counterclockwise”) again reaches ∆(0, 2), now in the half-
space {Re z1 < 0}, the end T1 must remain separate from ∆(0, 2): it may be taken “over
∆(0, 2)”.

SIMULTANEOUS ANALYTIC CONTINUATION: general theory. The construction of
the maximal Riemann continuation domain R for a holomorphic function f in Section 2.1
can be extended to the case of simultaneous analytic continuation for the members of a
family of holomorphic functions. We deal with indexed families; in the following discussion,
the index set Λ is kept fixed. Mimicking the procedure for a single function, we now define
Λ-elements (a, U, {fλ}) at points a ∈ Cn. Such elements consist of a connected domain
U ⊂ Cn containing a and a family of functions {fλ} ⊂ O(U) with index set Λ. Two
Λ-elements (a, U, {fλ}) and (a, Ũ, {f̃λ}) at the same point a are called equivalent if the
power series (fλ)a and (f̃λ)a agree for every λ ∈ Λ. A Λ-element (b, V, {gλ}) is called a
direct Λ-continuation of (a, U, {fλ}) if V ∩ U is nonempty and gλ = fλ, ∀λ on a fixed
component of V ∩ U . General Λ-continuations are introduced by means of both finite
chains and continuous chains of direct Λ-continuations.

Starting with a given Λ-element (a, U, {fλ}) and carrying out unlimited Λ-continua-
tion, one arrives at a Riemann domain X = (X, π) over Cn whose points p are equivalence
classes of Λ-continuations at points b ∈ Cn: let us write p = [(b, V, {gλ})]. Basic neigh-
bourhoods N = N (p, V, {gλ}) in X shall consist of the points q corresponding to the direct
Λ-continuations (c,W, {hλ}) of (b, V, {gλ}) for which c ∈ V and (hλ)c = (gλ)c, ∀λ. The
projection π : π(p) = b, when restricted to N , establishes a homeomorphism of N in X
onto V in Cn. Every function fλ of the original Λ-element has an analytic continuation
Fλ to X given by Fλ(p) = gλ(b). Indeed,

Fλ(q) = hλ(z) = gλ(z), ∀q = [(z,W, {hλ})] ∈ N (p, V, {gλ}),

so that Fλ is holomorphic on X in the accepted sense: on N ⊂ X it is given by an ordinary
holomorphic function on the domain V = π(N ) ⊂ Cn. Finally, setting p0 = [(a, U, {fλ})]
and identifying N (p0, U, {fλ}) with U , one has Fλ = fλ on U .

We have thus obtained a common continuation domainX for the family of holomorphic
functions {fλ} on U . It is plausible and one can show that this “Λ-continuation domain”
X is maximal; one speaks of a Λ-envelope for U , cf. [Narasimhan].
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APPLICATION 2.91 (Envelope of holomorphy). Let D be a connected domain in Cn.
Applying the preceding construction to U = D or U ⊂ D and Λ = O(D), one obtains an
O(D)-continuation domain XD = (XD, π) for D. Being maximal, XD is called an envelope
of holomorphy for D. Every function f ∈ O(D) has a (unique) analytic continuation
Ff to XD. On a suitable neighbourhood N of p in XD, the functions Ff are given by
Ff (q) = gf (z), z = π ◦ q, where the functions gf on V = π(N ) may be obtained from the
functions f on U by analytic continuation along a common path. Observe in particular
that for f ≡ c, also Ff ≡ c. More generally, if Ff = c on some neighbourhood N in X,
then Ff = c everywhere.

What was said in the last four sentences is also true for arbitrary (connected) O(D)-
continuation domains X for D, in or over Cn. It is perhaps surprising that on such a
domain X, the analytic continuations f ∗ of the functions f ∈ O(D) can not take on new
values:

PROPOSITION 2.92. Suppose that the equation f(z) = c, c ∈ C has no solution z ∈ D.
Then the equation f∗(q) = c can not have a solution q in any O(D)-continuation domain
X.

Indeed, by the hypothesis there is a function g ∈ O(D) such that

{f(z)− c}g(z) ≡ 1 on D.

Introducing the simultaneous analytic continuations to X, one obtains

{f∗(q)− c} g∗(q) = (f − c)∗(q) g∗(q) = 1∗ = 1 on X.

It is not hard to deduce the following corollary, cf. exercise 2.24:

COROLLARY 2.93. Let D ⊂ D′ be a connected domain in Cn to which all functions in
O(D) can be continued analytically. Then D′ belongs to the convex hull CH(D).

Exercises

2.1. Give an example of two function elements (a, U, f), (b, V, g) such that g = f on one
component of V ∩ U , while g 6= f on another component.

2.2. Let b be an arbitrary boundary point of the polydisc ∆(0, r) in C2. Show that there is
a holomorphic function on ∆(0, r) that tends to infinity as z → b. [One may conclude
that ∆(0, r) is a domain of holomorphy, cf. Section 1.9.]

2.3. Prove that hulls of holomorphy in Cn are unique when they exist [Definition 2.13].

2.4. (i) Let E be a compact convex set in Rn and let V be a supporting hyperplane.
Prove that the intersection E ∩ V is also a compact convex set.

(ii) Let S be a compact subset of Rn. Prove the Carathéodory representation (2) for
the points of the convex hull CH(S) with m ≤ n+ 1.

2.5. Let S be a compact set in Rn. Show that
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(i) For every direction (or unit vector) c there is a point b ∈ S such that
maxx∈S c · x = c · b ;

(ii) The convex hull CH(S) is the set of all points x ∈ Rn such that c·x ≤ max s∈S c·s
for every vector c ∈ Rn.

2.6. What sort of equation “y = f(x)” does the logarithmically convex hull of the set of
two points r′ > 0 and r′′ > 0 in R2

+ = {(r1, r2) ≥ 0} have?

2.7. Determine the logarithmically convex hull in R2
+ of :

(i) the set {s, t} of two points s = (s1, s2) > 0 and t = (t1, 0);
(ii) the set {s, t} when s = (s1, 0) and t = (0, t2);

(iii) the set consisting of the neighbourhood {s1 − ε < r1 < s1 + ε, 0 ≤ r2 < ε} of
(s1, 0) and the neighbourhood {0 ≤ r1 < ε, t2 − ε < r2 < t2 + ε} of (0, t2).

2.8. Prove that a closed or open set F in Rn
+ is logarithmically convex if and only if r′ ∈ F

and r′′ ∈ F always implies that r = (r′r′′)
1
2 is in F . Deduce that the unit ball

B = B(0, 1) in C2 is logarithmically convex [that is, trB is logarithmically convex].

2.9. Let S = S(0, 1) denote the unit sphere in Cn ∼ R2n :

S = {z ∈ Cn : z1z1 + . . .+ znzn = 1}

and let b be any point of S. Show that
(i) The (2n−1)-dimensional (real) tangent hyperplane to S at b may be represented

by the equation Re (b · z) = 1;
(ii) Re (b · z) < 1 throughout the unit ball B;

(iii) The complex tangent hyperplane at b, of complex dimension n−1 (real dimension
2n− 2) may be represented by the equation c · (z − b) = 0 with c = . . . ;

(iv) There is a holomorphic function f on the unit ball B that tends to infinity as
z → b. [Thus B is a domain of holomorphy, cf. Section 1.9.]

2.10. Let D be a connected (multicircular) domain in C2. Prove that D − {z1 = 0} and
D − {z1z2 = 0} are also connected (multicircular) domains.

2.11. Prove that the multicircular domain in C2 given by |z1| < 2, |z2| < 2, |z1z2| < 1 is
a domain of holomorphy. [Cf. exercise 2.2.]

2.12. (Relation between the sets A and A0 of Section 2.3) Let
∑

cαz
α be a multiple power

series with center 0. Prove that every point a ∈ A (point of absolute convergence)
with |aj | > 0, ∀j belongs to closA0. Then give an example to show that a point b ∈ A
for which one coordinate is zero may be very far from A0.

2.13. Let
∑

cαz
α be a power series in C2 for which ∆(0, 0; r1, r2) is a polydisc of convergence

that is maximal for the given r1 as far as r2 is concerned, that is, the power series
does not converge throughout any polydisc ∆(0, 0; r1, s2) with s2 > r2. Prove that the
sum function f(z) of the power series must become singular somewhere on the torus
T (0, r) = C(0, r1) × C(0, r2). [Hence if f ∈ O(∆(0, r)) becomes singular at a point
b in ∆1(0, r1)× C(0, r2), it must have a singularity on every torus C(0, ρ)× C(0, r2)
with |b1| < ρ ≤ r1.]
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2.14. (Analytic continuation across a compact subset) Let D ⊂ C2 be the domain given by

{|z1| < 1 + ε, 1− ε < |z2| < 1 + ε} ∪ {1− ε < |z1| < 1 + ε, |z2| < 1 + ε}, (0 < ε < 1),

or more generally, let D be any connected domain in Cn (n ≥ 2) that contains the
boundary ∂∆(0, 1) of the unit polydisc, but not all of ∆(0, 1) itself. Let f be any
function in O(D). Prove that the formula

F (z)
def
=

1

2πi

∫

C(0,1)

f(z′, w)

w − zn
dw, z ∈ ∆(0, 1), z′ = (z1, . . . , zn−1)

furnishes an analytic continuation of f to ∆(0, 1).

2.15. Let B denote the set of those points z ∈ Cn at which the terms cαz
α, α ∈ Zn of

the Laurent series (3a) form a bounded sequence. Prove that (the trace of) B is
logarithmically convex.

2.16. Prove that the domain of (absolute) convergence A0 of a Laurent series with center 0
in Cn is logarithmically convex.

2.17. Let D be a multicircular domain in Cn which contains the origin, or which at least
for each j contains a point z with zj = 0. Prove that the logarithmically convex hull

D̂ contains the whole polydisc ∆(0, s) whenever s > 0 belongs to trD.

2.18. Use appropriate results to determine the envelopes of holomorphy for the following
multicircular domains in C2 :

(i) {|z1| < 1, |z2| < 2} ∪ {|z1| < 2, 1 < |z2| < 2};
(ii) {1 < |z1| < 2, |z2| < 2} ∪ {|z1| < 2, 1 < |z2| < 2}.

2.19. Let f be holomorphic on Cn, n ≥ 2 and f(0) = 0. Prove that the zero set Zf of f is
closed but unbounded.

2.20. Let f be holomorphic on D = B(0, 1)− {z1 = 0} in C2. Suppose f has an analytic
continuation to a neighbourhood of the point (0, 1

2
). Prove that f has an analytic

continuation to B(0, 1).

2.21. Let D be a multicircular domain in C2 that contains the point (0, r2) with r2 > 0 and
let ε = (ε1, ε2) > 0 be so small that D contains the closure of the domain U2ε given
by |z1| < 2ε1, r2 − 2ε2 < |z2| < r2 + 2ε2. Prove that the Laurent series for f ∈ O(D)
is absolutely and uniformly convergent on Uε. [Cf. Lemma 2.81 and part (i) of the
proof of Theorem 2.71.]

2.22. (Isolated singularities in Cn, n ≥ 2 are removable) Give two alternative proofs for
Application 2.62.

2.23. Derive the spherical shell theorem from Hartogs’ continuity theorem. [Let f be holo-
morphic for ρ < |z| < R and suppose that the boundary point (ρ, 0, . . . , 0) would be
singular for f .]
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2.24. Let D ⊂ Cn be connected and bounded and let D′ ⊂ Cn be a connected domain
containing D to which all functions in O(D) can be continued analytically. Determine
the analytic continuations of the functions f(z) = c · z, where c = α − iβ ∈ Cn and
prove that

Re c · z ≤ max ζ∈D Re c · ζ, ∀z ∈ D′.

Deduce that D′ belongs to the convex hull of D, hence of D. [Cf. exercise 2.5.]

2.25. Let D ⊂ C2 be a bounded connected multicircular domain containing the origin. Use
the monomials p(z) = zα1

1 zα2

2 to show that a point z ∈ C2 outside the closure of the

logarithmically convex hull D̂ of D can not belong to an O(D)-continuation domain
D′ ⊃ D in C2.

2.26. Try to find an example of a domain D in Cn, for which the envelope of holomorphy
XD over Cn has infinitely many layers.
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CHAPTER 3

Analytic continuation, part II

This chapter deals with more recent methods of analytic continuation, based on the
∂ equation and the so-called partial derivatives lemma.

We have already discussed Hartogs’ spherical shell theorem 2.83, but there is a much
more general result on the removal of compact singularity sets, the Hartogs-Osgood-Brown
continuation theorem [Section 3.4]. We will present a modern proof of that result (due to
Ehrenpreis) in which one starts with a C∞ continuation g across an appropriate compact
set and then subtracts off the “nonanalytic part” u, cf. Section 1.9. In the present instance
the correction term u has to satisfy a ∂ equation

∂u = v =

n
∑

1

vjdzj or
∂u

∂zj
= vj , j = 1, . . . , n

on Cn with C∞ coefficients vj of compact support. The analytic continuation problem
requires a smooth solution u on Cn which likewise has compact support. The local inte-
grability conditions

∂vk/∂zj = ∂vj/∂zk, ∀ j, k

being satisfied, it turns out that there is a compactly supported solution u whenever n ≥ 2
[Section 3.2]. It will be obtained with the aid of a useful one-variable device, Pompeiu’s
integral formula for smooth functions.

There are various situations in real and complex analysis where one has good bounds
on a family of directional derivatives

(

d

dt

)m

f(a+ tξ)
∣

∣

t=0
, ξ ∈ E ⊂ S(0, 1), m = 1, 2, . . . (a fixed)

of a C∞ function f . If the set of directions E is substantial enough, a partial derivatives
lemma of the author and Wiegerinck provides related bounds for all derivatives Dαf(a).
Under appropriate conditions, the power series for f with center a can then be used for
analytic extension.

To illustrate the method we give a simple proof of the Behnke–Kneser “recessed-edge
theorem” [Section 3.5]. Another application leads to a form of Bogolyubov’s famous edge-
of-the-wedge theorem. This result which came from a problem in quantum field theory
provides a remarkable Cn extension of Schwarz’s classical reflection principle.

3.1 Inhomogeneous Cauchy-Riemann equation for n = 1. As preparation for the
case of Cn we consider the case of one variable,

(1a)
∂u

∂z
=

1

2

(

∂u

∂x
− 1

i

∂u

∂y

)

= v on C,
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where v is a function with compact support. The support, abbreviation supp, of a function
[or distribution, or differential form] is the smallest closed set outside of which it is equal
to zero. Our functions v(z) = v(x + iy) will be smooth, that is, at least of class C1 on
C = R2 as functions of x and y.

For the solution of equation (1a) we start with pompeiu’s formula [also called the
Cauchy-Green formula]:

Proposition 3.11. Let D be a bounded domain in C whose boundary Γ consists of finitely
many piecewise smooth Jordan curves, oriented in such a way that D lies to the left of Γ.
Let f(z) = f(x+ iy) be of class C1 on D as a function of x and y. Then

(1b) f(a) =
1

2πi

∫

Γ

f(z)

z − adz −
1

π

∫

D

∂f

∂z

1

z − adxdy, ∀a ∈ D.

Observe that the area integral over D is well-defined because 1/(z − a) is absolutely
integrable over a neighbourhood of a, cf. the proof below. Formula (1b) reduces to Cauchy’s
integral formula if f is holomorphic on D, so that ∂f/∂z = 0. The formula occurred in
work of Pompeiu around 1910, but its usefulness for complex analysis only became apparent
around 1950.

The proof will be based on green’s formula for integration by parts in the plane:

∫

∂D

Pdx+Qdy =

∫

D

(

∂Q

∂x
− ∂P

∂y

)

dxdy,

where P (x, y) and Q(x, y) are functions of class C1(D) and ∂D denotes the oriented bound-
ary of D. Applied to P = F and Q = iF with F (z) = F (x + iy) in C1(D), we obtain a
complex form of Green’s formula:

(1c)

∫

∂D

F (z)dz =

∫

∂D

Fdx+ iFdy =

∫

D

(

i
∂F

∂x
− ∂F

∂y

)

dxdy

= 2i

∫

D

∂F

∂z
dxdy.

a x

D
ε

ε
εΒ

-C(a, )ε

Γ
fig 3.1

PROOF of Proposition 3.11. One would like to apply Green’s formula (1c) to the function
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F (z) =
f(z)

z − a, a ∈ D.

However, this F is in general not smooth at z = a. We therefore exclude a small closed
disc Bε = B(a, ε) from D, of radius ε < d(a,Γ). Below, we will apply Green’s formula to
F on

Dε
def
= D − Bε.

The correctly oriented boundary ∂Dε will consist of Γ and −C(a, ε): the circle C(a, ε)
traversed clockwise.

Since 1/(z−a) is holomorphic throughout Dε, the product rule of differentiation gives

∂F

∂z
=
∂f

∂z

1

z − a + f(z)
∂

∂z

1

z − a =
∂f

∂z

1

z − a , z ∈ Dε.

Thus by (1c),

(1d)

∫

Γ

f(z)

z − adz +

∫

−C(a,ε)

f(z)

z − adz = 2i

∫

Dε

∂f

∂z

1

z − adxdy.

Passage to the limit as ε ↓ 0 will give (1b). Indeed, by the continuity of f at a,

∫

−C(a,ε)

f(z)

z − adz = −i
∫ π

−π

f(a+ εeit)dt→ −2πif(a) as ε ↓ 0.

Furthermore, since ∂f/∂z is continuous on D while 1/(z − a) is (absolutely) integrable
over discs B(a,R), the product is integrable over D, hence the last integral in (1d) will
tend to the corresponding integral over D. In fact, if M denotes a bound for |∂f/∂z| on
D, then





∫

D

−
∫

Dε



 =




∫

Bε

∂f

∂z

1

z − adxdy


 ≤M
∫

Bε

1

|z − a|dxdy

= M

∫ ε

0

∫ π

−π

1

r
r drdt = M 2πε→ 0 as ε ↓ 0.

Corollary 3.12. Any C1 function f(z) = f(x+ iy) on C of compact support has the
representation

(1e) f(z) = − 1

π

∫

C

∂f

∂z
(ζ)

1

ζ − z dξdη (ζ = ξ + iη), ∀z ∈ C.

Indeed, fixing a ∈ C, one may apply Pompeiu’s formula (1b) to a disc D = B(0, R)
which contains both a and the support of f . Then the integral over Γ = C(0, R) will
vanish; the integral over D = B(0, R) will be equal to the corresponding integral over C
or over supp f . One may finally replace the variable z under the integral sign in (1b) by
ζ = ξ + iη and then replace a by z.
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Formula (1e) can also be verified directly and the condition that f have compact
support may be relaxed to a smallness condition on f and ∂f/∂z at infinity, cf. exercises
3.1, 3.2. Thus if our equation ∂u/∂z = v has a solution which is small at infinity, it will
be given by the cauchy-green transform u of v :

(1f) u(z)
def
= − 1

π

∫

C or supp v

v(ζ)

ζ − z dξdη (ζ = ξ + iη), ∀z ∈ C.

We will show that this candidate is indeed a solution:

Theorem 3.13. Let v be a Cp function (1 ≤ p ≤ ∞) on C of compact support [briefly,
v ∈ Cp0 (C)]. Then the Cauchy-Green transform u of v (1f) provides a Cp solution of the
equation ∂u/∂z = v on C. It is the unique smooth solution which tends to 0 as |z| → ∞.
PROOF. Replacing ζ by ζ ′ + z in (1f) and dropping the prime ′ afterwards, we may write
the formula for u as

(1g) u(z) = − 1

π

∫

C

v(z + ζ ′)

ζ ′
dξ′dη′ = − 1

π

∫

C

v(z + ζ)

ζ
dξdη.

We will show that u has first order partial derivatives and that they may be obtained by
differentiation under the integral sign. Fixing a and varying z = a + h over a small disc
B(a, r), the function v(z + ζ) will vanish for all ζ outside a fixed large disc B = B(0, R).
Focusing on ∂u/∂x we take h real and 6= 0, so that

(1h)
v(a+ h+ ζ)− v(a+ ζ)

h
− ∂v

∂x
(a+ ζ) =

1

h

∫ h

0

{

∂v

∂x
(a+ t+ ζ)− ∂v

∂x
(a+ ζ)

}

dt.

Since ∂v/∂x is continuous and of compact support it is uniformly continuous on C, hence
the right-hand side ρ(ζ, h) of (1h) tends to 0 as h → 0 uniformly in ζ. Multiplying (1h)
by the absolutely integrable function 1/ζ on B and integrating over B, we conclude that

−πu(a+ h)− u(a)

h
−
∫

B

∂v

∂x
(a+ ζ) · 1

ζ
dξdη =

∫

B

ρ(ζ, h)
1

ζ
dξdη → 0

as h→ 0. Thus the partial derivative ∂u/∂x exists at a and

(1i)
∂u

∂x
(a) = − 1

π

∫

B or C

∂v

∂x
(a+ ζ) · 1

ζ
dξdη.

The uniform continuity of ∂v/∂x also ensures continuity of ∂u/∂x.
Differentiation with respect to y goes in much the same way, hence u is of class C1.

Combining the partial derivatives we find that

(1j)
∂u

∂z
(a) = − 1

π

∫

C

∂v

∂z
(a+ ζ) · 1

ζ
dξdη = − 1

π

∫

C

∂v

∂z
(ζ)

1

ζ − adξdη.

Now v is a Cp function of bounded support, hence by Corollary 3.12, the final member of
(1j) is equal to v(a). Thus u satisfies the differential equation (1a).
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If p ≥ 2, one may also form higher order partial derivatives by differentiation under
the integral sign in (1g) to show that all partial derivatives of u of order ≤ p exist and are
continuous on C.

The Cauchy-Green transform u(z) tends to 0 as |z| → ∞ and it is the only smooth
solution of (1a) with that property. Indeed, the other smooth solutions have the form
u+ f , where f is smooth and satisfies the Cauchy-Riemann condition ∂f/∂z = 0, hence f
must be an entire function. However, by Liouville’s theorem, f(z)→ 0 as |z| → ∞ only if
f ≡ 0.

REMARKS 3.14. For v ∈ Cp0 , p ∈ N0, the Cauchy-Green transform u (1f) will actually
be of class Cp+α, ∀α ∈ (0, 1): u ∈ Cp and its partial derivatives of order p will satisfy a
Lipschitz condition of order α, cf. exercise 3.6. In general, the transform u will not have
compact support, in fact, as |z| → ∞,

zu(z)→ (1/π)

∫

C

v(ζ)dξdη

and this limit need not vanish. [Cf. also exercise 3.5.] Formula (1f) defines a function u
under much weaker conditions than we have imposed in the Theorem: continuity of v and
integrability of |v(ζ)/ζ| over C will suffice. The corresponding transform u will be a weak
or distributional solution of equation (1a), cf. exercise 3.8.

3.2 Inhomogeneous C −R equation for n ≥ 2, compact support case. Saying that
a differential form

(2a) f =
n
∑

j=1

(ujdzj + vjdzj)

is defined and of class Cp on Ω ⊂ Cn means that the coefficients uj , vj are defined and
of class Cp on Ω as functions of the real variables x1, y1, . . . , xn, yn. By definition, such a
form vanishes on an open subset of Ω only if all coefficients vanish there. There will be a
maximal open subset of Ω on which f = 0; its complement in Ω is the support of f . The
differential form f in (2a) is called a first order form or a 1-form; if it contains no terms
ujdzj , one speaks of a (0, 1)-form.

Theorem 3.21. Let E be a compact subset of Cn, n ≥ 2 with connected complement
Ec = Cn −E. Let

v =
n
∑

1

vjdzj

be a (0, 1)-form of class Cp (1 ≤ p ≤ ∞) on Cn whose support belongs to E and which
satisfies the integrability conditions ∂vk/∂zj = ∂vj/∂zk, ∀ j, k. Then the equation ∂u = v,
or equivalently, the system

(2b)
∂u

∂zj
= vj , j = 1, . . . , n
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has a unique solution u of class Cp on Cn with support in E.

A result of this kind is sometimes called a Grothendieck-Dolbeault lemma, cf.
[Grauert-Remmert]. The solution u will actually be of class Cp+α, ∀α ∈ (0, 1), see exercise
3.9. For arbitrary compact E, supp u need not be contained in supp v [cf. the proof below].

PROOF. We will solve the first equation (2b) by means of the Cauchy-Green transform
relative to z1, cf. Theorem 3.13. It will then miraculously follow from the integrability
conditions that the other equations are also satisfied!

It is convenient to set (z2, . . . , zn) = z′, so that z = (z1, z
′). For fixed z′, the smooth

function v1(z1, z
′) of z1 has bounded support in C, hence Theorem 3.13 gives us a solution

of the equation ∂u/∂z1 = v1 in the form of the Cauchy-Green transform of v1 relative to
z1 :

(2c) u(z) = u(z1, z
′) = − 1

π

∫

C

v1(ζ, z′)

ζ − z1
dξdη = − 1

π

∫

C

v1(z1 + ζ, z′)

ζ
dξdη, z ∈ Cn.

Here the integration variable ζ = ξ + iη runs just over the complex plane. The method
of differentiation under the integral sign of Section 3.1, applied to the last integral, shows
that u is of class Cp on Cn as a function of x1, y1, . . . , xn, yn.

We now go back to the first integral in (2c) to obtain an expression for ∂u/∂zj when
j ≥ 2. In the second step below we will use the integrability condition ∂v1/∂zj = ∂vj/∂z1 :

(2d)
∂u

∂zj
(z) = − 1

π

∫

C

∂v1
∂zj

(ζ, z′)
1

ζ − z1
dξdη = − 1

π

∫

C

∂vj
∂z1

(ζ, z′)
1

ζ − z1
dξdη.

Observe that for fixed z′, the smooth function vj(z1, z
′) of z1 also has bounded support in

C. Hence by the representation for such functions in Corollary 3.12, the last integral (2d)
is just equal to vj(z1, z

′) = vj(z). Since we knew already that ∂u/∂z1 = v1, we conclude
that ∂u = v.

It follows in particular that ∂u = 0 throughout Ec, hence u is holomorphic on the
domain Ec. We will show that u = 0 on Ec. For suitable R > 0, the set E and hence
supp v will be contained in the ball B(0, R). Thus v1(ζ, z′) = 0 for |z′| > R and arbitrary ζ.
Hence by (2c), u(z1, z

′) = 0 for |z′| > R and all z1, so that u = 0 on an open subset of Ec.
The uniqueness theorem for holomorphic functions 1.54 now shows that u = 0 throughout
the connected domain Ec, in other words, supp u ⊂ E.

Naturally, the equation ∂u = v can not have another smooth solution on Cn with
support in E. [What could one say about the difference of two such solutions?]

3.3. Smooth approximate identities and cutoff functions. In various problems,
the first step towards a holomorphic solution is the construction of smooth approximate
solutions. For that step we need smooth cutoff functions and they are constructed with
the aid of suitable C∞ functions of compact support. The latter play an important role in
analysis, for example, as test functions in the theory of distributions, cf. Chapter 11.

The precursor is the C∞ function on R defined by

σ(x) =

{

e−1/x for x > 0

0 for x ≤ 0;
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its first and higher derivatives at 0 are all equal to 0. One next defines a C∞ function τ
on R with support [−1, 1] by setting

τ(x) = σ{2(1 + x)}σ{2(1− x)} =



















exp
(

− 1
1−x2

)

for |x| < 1

0 for |x| ≥ 1.

Moving on to Rn , the function τ(|x|) will provide a C∞ function whose support is the
closed unit ball B(0, 1); here |x| stands for the length of x : |x|2 = x2

1 + . . .+ x2
n. We like

to make the integral over Rn equal to 1, hence we introduce

(3a) ρ(x) = cnτ(|x|) =



















cn exp
(

− 1
1−|x|2

)

for |x| < 1

0 for |x| ≥ 1, x ∈ Rn,

where the constant cn is chosen such that
∫

Rn ρ(x)dx = 1. [Here dx denotes the volume
element of Rn.]

From the function ρ we derive the important family of C∞ functions

(3b) ρε(x)
def
=

1

εn
ρ
(x

ε

)

, x ∈ Rn, ε > 0

with supp ρε = B(0, ε). Observe that by change of scale,

∫

Rn

ρε(x)dx =

∫

B(0,ε)

1

εn
ρ
(x

ε

)

dx =

∫

B(0,1)

ρ(x)dx = 1.

0−ε ε

ω

F

εε
ε

Fε

ρ
ε

ε

fig 3.2 fig 3.3
APPROXIMATE IDENTITIES 3.31. The directed family of functions {ρε}, ε ↓ 0 of (3a, b)
is the standard example of a C∞ (nonnegative) approximate identity on Rn relative to
convolution. The usual requirements on an approximate identity {ρε} are:

(i) ρε(x)→ 0 as ε ↓ 0, uniformly outside every neighbourhood of 0;
(ii) ρε is integrable over Rn and

∫

Rn ρε(x)dx = 1;
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(iii) ρε(x) ≥ 0 throughout Rn.

Properties (i)–(iii) readily imply that for any continuous function f on Rn of compact
support, the convolution f ? ρε converges to f as ε ↓ 0 :

(f ? ρε)(x)
def
=

∫

Rn

f(x− y)ρε(y)dy → f(x) =

∫

Rn

f(x)ρε(y)dy

uniformly on Rn.
[An approximation ρε to the identity may be considered as an approximation to the

so-called delta function or delta distribution δ. The latter acts as the identity relative to
convolution: δ ? f = f ? δ = f , cf. exercise 11.5]

Proposition 3.32. To any set S in Rn and any ε > 0 there is a C∞ “ cutoff function”
ω on Rn which is equal to 1 on S and equal to 0 at all points of Rn at a distance ≥ 2ε
from S. One may require that 0 ≤ ω ≤ 1.

PROOF. We will obtain ω as the convolution of the characteristic function of a neighbour-
hood of S with the C∞ approximation ρε to the identity of (3a, b) [taking ε > 0 fixed]. Let
Sε denote the ε-neighbourhood of S, that is, the set of all points x ∈ Rn at a distance < ε
from S [Sε is an open set containing S]. Let χε be the characteristic function of Sε, that
is, χε equals 1 on Sε and 0 elsewhere. We define ω as the convolution of χε and ρε :

(3c)

ω(x) = (χε ? ρε)(x) =

∫

Rn

χε(x− y)ρε(y)dy =

∫

B(0,ε)

χε(x− y)ρε(y)dy

=

∫

Rn

χε(y)ρε(x− y)dy =

∫

Sε

ρε(x− y)dy.

First taking x ∈ S, the second integral shows that ω(x) = 1 : the points x − y will
belong to Sε for all y ∈ B(0, ε), so that χε(x − y) = 1 throughout B(0, ε) and ω(x) =
∫

B(0,ε)
ρε(y)dy = 1. Next taking x outside S2ε, the same integral shows that now ω(x) = 0 :

this time, all points x − y with |y| < ε lie outside Sε. Furthermore, since ρε ≥ 0 we have
0 ≤ ω(x) ≤

∫

ρε = 1 throughout Rn.
In order to prove that ω is of class C∞ one may use the last integral in (3c). For x in

the vicinity of a point a, one need only integrate over the intersection of Sε with some fixed
ball B(a, r), hence over a bounded set independent of x. The existence and continuity of
the partial derivatives ∂ω/∂x1, etc. may now be established by the method of formula (1h)
[cf. exercise 3.12; the partial derivatives of ρε are uniformly continuous on Rn]. Repeated
differentiation under the integral sign will show that ω has continuous partial derivatives
of all orders.

3.4 Use of the ∂ equation for analytic continuation. We can now prove the Hartogs-
Osgood-Brown continuation theorem:

Theorem 3.41. Let D be a connected domain in Cn with n ≥ 2 and let K be a compact
subset of D such that D −K is connected. Then every holomorphic function f on D −K
has an analytic continuation to D.

59



D -K
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S
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∂K3ε

∂K3ε

∂Kε

K

S

fig 3.4

PROOF. Let f be any function in O(D −K).
(i) We first construct a C∞ approximate solution g to the continuation problem.

Since we do not know how f behaves near K, we will start with the values of f at some
distance from K. For any ρ > 0, let Kρ denote the ρ-neighbourhood of K. Choosing
0 < ε < d(K, ∂D)/3, we set S = Cn − K3ε, so that the open set S contains the whole
boundary ∂D. For later use, the unbounded component of S is called S∞.

Now select a C∞ cutoff function ω on Cn ∼ R2n which is equal to 1 on S and equal
to 0 on Kε. [Use Proposition 3.32 with 2n instead of n.] We then define g on D by setting

g =

{

ωf on D −K,

0 on K.

This g is of class C∞ [because ω vanishes near ∂K] and

g = f on D ∩ S

[where ω = 1]. Thus g furnishes a C∞ continuation to D of the restriction of f to D ∩ S.
(ii) We will modify g so as to obtain an analytic continuation

h = g − u

of f. By the uniqueness theorem 1.54, it will be enough to require that h be holomorphic
on D and equal to f on a subdomain of D−K; here D∩S∞ will work best. The correction
term u then has to vanish on D ∩ S∞ [where g = f ] and it must make ∂h = 0. Hence u
must solve the ∂ problem

(4a) ∂u = ∂g on D, u = 0 on D ∩ S∞.
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One may extend g to a C∞ form v on Cn by setting

(4b) v =

{

∂g on D

0 on Cn −D;

indeed, ∂g = ∂f = 0 on D∩S and hence near ∂D. The (0, 1)-form v of course satisfies the
integrability conditions ∂vk/∂zj = ∂vj/∂zk. Its support belongs to Cn − S = K3ε which
is part of the compact set E = Cn − S∞.

We now take for u the C∞ solution of the extended ∂ problem

∂u = v on Cn, u = 0 on S∞ = Ec.

[Existence and uniqueness of u are assured by Theorem 3.21.] Then the function h = g−u
will be holomorphic on D by (4a, b). Being equal to g = f on D ∩ S∞, h will be equal
to f throughout the connected domain D − K. Thus h provides the desired analytic
continuation of f to D.

REMARK. Another proof of Theorem 3.41 may be obtained by means of the integral
formula of Martinelli and Bochner, see Section 10.7.

3.5 Partial derivatives lemma and recessed-edge theorem. The following special
case of the partial derivatives lemma suffices for most applications. For the general case
and for a proof, see Section 8.7.

Lemma 3.51. For any nonempty open subset E of the unit sphere Sn−1 in Rn, there
exists a constant β = β(E) > 0 such that for every C∞ function f in a neighbourhood of
a point a ∈ Rn and every integer m ≥ 0,

max
|α|=m

1

α!
|Dα

x f(a)| ≤ sup
ξ∈E

1

m!

∣

∣

∣

∣

(

d

dt

)m

f(a+ tξ)
∣

∣

t=0

∣

∣

∣

∣

/

βm.

We will use the Lemma to prove an interesting result on analytic continuation which
goes back to Behnke and Kneser, cf. [Kneser 1932]. Let Ω be a connected domain in
Cn ∼ R2n with n ≥ 2 and let X ⊂ Ω be the intersection of two real hypersurfaces
V : ϕ = 0 and W : ψ = 0, with ϕ and ψ of class C1(Ω), gradϕ 6= 0 on V , gradψ 6= 0
on W . The hypersurface V will divide Ω into two parts, one where ϕ > 0 and one where
ϕ < 0; similarly for W . We suppose that gradϕ and gradψ are linearly independent at
each point of X, so that the real tangent hyperplanes to V and W are different along X.
We finally set

Ω0 = {z = x+ iy ∈ Ω : min[ϕ(x, y), ψ(x, y)]< 0}
(fig 3.5). For Ω0, X is a “recessed edge”.

Theorem 3.52. (i) Suppose that the vectors

p =

(

∂ϕ

∂z1
, . . . ,

∂ϕ

∂zn

)

and q =

(

∂ψ

∂z1
, . . . ,

∂ψ

∂zn

)
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are linearly independent over C at the point b ∈ X, so that the hypersurfaces V and W
even have different complex tangent hyperplanes at b [cf. Example 1.21]. Then there
is a neighbourhood of b to which all holomorphic functions f on Ω0 can be continued
analytically.

(ii) If for every point b ∈ X there is a holomorphic function on Ω0 which can not be
continued analytically to a neighbourhood of b, then X is a complex analytic hyper-
surface. More precisely, after appropriate complex linear coordinate transformation, X
has local representation zn = g(z1, . . . , zn−1) with holomorphic g.

PROOF of part (i). Since pj = ∂ϕ/∂zj = 1
2∂ϕ/∂xj − 1

2 i∂ϕ/∂yj, etc., the real tangent
hyperplanes to V and W at 0 have the respective representations

Re (p1z1 + . . .+ pnzn) = 0, Re (q1z1 + . . .+ qnzn) = 0

a

b=0 W

V

x1 = 0

a + E 1

R

x2 = 0

k

x

V: φ = 0

W: ψ = 0

 φ < 0

 ψ < 0

Ω
0

a x

X

b

fig 3.5 fig 3.6
[cf. 1.21]. The vectors p and q being linearly independent, there is a 1− 1 complex linear
coordinate transformation of the form

z′1 = p1z1 + . . .+ pnzn, z
′
2 = q1z1 + . . .+ qnzn, z

′
3 = . . . , . . . , z′n = . . . .

Carrying out such a transformation, it may be assumed that the real tangent hyperplanes
to V and W are given by the equations

x1 = 0, x2 = 0

and that the point

a = (a1, a2, a3, . . . , an) = (−ε,−ε, 0, . . . , 0)

of Cn belongs to Ω0 for all small ε > 0.
Geometric considerations (cf. fig 3.6) next show that there is a constant R > 0 such

that for all small ε > 0, Ω0 contains the compact set

K = B(a,R) ∩ {z ∈ Cn : x2 + ε = (x1 + ε)tan θ, 5π/8 ≤ θ ≤ 7π/8}.
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Observe that the corresponding real “directions” or unit vectors ξ = (ξ1, ξ2, . . . , ξn) with
ξ2 = ξ1 tan θ, 5π/8 < θ < 7π/8 form a nonempty open subset E of the unit sphere Sn−1

in Rn.
Now let f be in O(Ω0), supK |f | = C = C(f,K). Any complex line L through a of

the form z = a+ wξ, ξ ∈ E intersects K in a disc ∆ of radius R. The restriction of f to
∆ is represented by the function

h(w) = f(a+ wξ), |w| ≤ R.

Applying the Cauchy inequalities to h on ∆1(0, R) we find that

(5a)
1

m!

∣

∣

∣

∣

(

d

dw

)m

f(a+ wξ)
∣

∣

w=0

∣

∣

∣

∣

≤ C

Rm
, ∀ξ ∈ E, ∀m ∈ N0.

Hence by the partial derivatives lemma, considering the restriction of f to Ω0 ∩Rn and
taking w = t ∈ R,

(5b) max
|α|=m

1

α!

∣

∣Dα
x f(a)

∣

∣ ≤ C/(βR)m, ∀m; β = β(E) > 0.

Since f is analytic on Ω0, the derivatives Dα
z f(a) are equal to the derivatives Dα

x f(a).
Thus around a,

f(z) =
∑

cα(z − a)α =
∑

α≥0

1

α!
Dα
x f(a) (z1 − a1)α1 . . . (zn − an)αn .

By (5b), the power series will converge at every point z with |zj − aj| < βR, ∀j :

∣

∣cα(z − a)α
∣

∣ ≤ C
∣

∣

∣

∣

z1 − a1

βR

∣

∣

∣

∣

α1

. . .

∣

∣

∣

∣

zn − an
βR

∣

∣

∣

∣

αn

, ∀α.

Conclusion: f has an analytic continuation to the polydisc ∆(a, βR) and in fact,
letting ε ↓ 0 so that a→ 0, to the polydisc ∆(0, βR).

REMARK on part (ii). The crucial observation is that under the hypothesis of part (ii),
the complex tangent hyperplanes to V and W must coincide along X. As a consequence,
the (2n − 2)-dimensional real tangent spaces to X are complex hyperplanes. This being
the case, one may conclude that X is complex analytic (“Levi-Civita lemma”). For more
detailed indications of the proof, see exercise 3.19.

3.6 The edge-of-the-wedge theorem. We will discuss a simple version for Cn and
begin with the special case n = 1 in order to bring out more clearly why the theorem is so
remarkable for n ≥ 2. Let W+ be a(n open) rectangular domain in the upper half-plane in
C, of which one side falls along the real axis. The reflected rectangle in the lower half-plane
is called W− and the (open) common boundary segment is called H (fig 3.7). We finally
set

W = W+ ∪H ∪W−.
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W+

W-

z

z

Γ

Γ

R
H

_
x

x

fig 3.7

For n = 1 our simple edge-of-the-wedge theorem reduces to the following well-known facts:

(i) (A segment as removable singularity set). Any continuous function f on W which
is holomorphic on W+ and on W− is actually holomorphic on W.

[The integral of fdz along any piecewise smooth simple closed curve Γ in W will be
zero, cf. fig 3.7, hence f is analytic on W . One may appeal to Morera’s theorem here, or
observe directly that f will have a well-defined primitive F (z) =

∫ z

a
f(ζ)dζ on W. Since F

is differentiable in the complex sense, it is analytic, hence so is f = F ′.]

(ii) (Analytic continuation by Schwarz reflection). Any continuous function g on

W+ ∪H which is holomorphic on W+ and real-valued on H has an analytic continuation
to W. For z ∈W− the continuation is given by reflection: g(z) = g(z).

[Apply part (i) to the extended function g. The condition that g (or f in part (i)) be
continuous at the points of H can be weakened, cf. [Carleman] and Remarks 3.62.

the case of Cn (n ≥ 1). Let H (for “horizontal”) be a connected domain in the real space
Rn = Rn + i0 in Cn and let V (for “vertical”) be a (usually truncated) connected open
cone with vertex at the origin in (another) Rn. To get a simple picture, we assume that
V and −V meet only at the origin. To H and V we associate two (connected) domains in
Cn as follows:

W+ = H + iV = {z = x+ iy ∈ Cn : x ∈ H, y ∈ V }, W− = H − iV

(“wedges” with common “edge” H). We again define

W = W+ ∪H ∪W−.

Observe that W is not an open set when n ≥ 2: W does not contain a Cn neighbourhood of
any point a ∈ H (fig 3.8). For n ≥ 2, the set H is a peculiarly small part of the boundary
of W+: it only has real dimension n instead of 2n− 1, as one would expect of a “normal”
piece of the boundary of a Cn domain. For the purpose of illustration when n = 2, only
one line segment of H has been drawn in fig 3.9. In that way one clearly sees two wedges
with a common edge.
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fig 3.8 fig 3.9

Theorem 3.61. Let H, V, W+, W− and W be as described above. Then there exists a
connected domain D in Cn containing W such that the following is true:

(i) Any continuous function f on W which is holomorphic on W+ and on W− has
an analytic continuation to D;

(ii) Any continuous function g on W+ ∪ H which is holomorphic on W+ and real-
valued on H has an analytic continuation to D; for z ∈W−, the continuation is given by
reflection: g(z) = g(z).

REMARKS 3.62. For every point a ∈ H there will be a fixed Cn neighbourhood to which
all functions f and g as in the Theorem can be analytically continued. Actually, the
hypothesis that f ∈ O(W+ ∪ W−) has a continuous extension to W can be weakened
considerably. It is sufficient if for y → 0 in V , the function

Fy(x) = f(x+ iy)− f(x− iy), x ∈ H ⊂ Rn

tends to 0 in weak or distributional sense ([Bogolyubov-Vladimirov], cf. [Rudin 4], [Kore-
vaar 1991]; weak convergence is defined in Chapter 11). It even suffices to have convergence
here in the sense of hyperfunctions [De Roever]. There are several forms of the edge-of-
the-wedge theorem and many different proofs have been given, cf. [Rudin 4] and [Shabat].

PROOF of the Theorem. One need only consider part (i) since part (ii) will follow as in
the case n = 1. It is sufficient to show that there is a polydisc ∆(a, ρ), ρ = ρa around
each point a ∈ H to which all functions f as in part (i) can be continued analytically. We
focus on one such function f . The key observation will be that W contains closed squares
Qξ(a) of constant size with center a in a substantial family of complex lines (cf. fig 3.9):

z = a+ wξ, ξ ∈ E ⊂ Sn−1 ⊂ Rn, w = u+ iv ∈ C.

By the one-variable result, the (continuous) restrictions f |Qξ(a) are analytic. The Cauchy
inequalities now imply bounds on certain directional derivatives of f |H. Such bounds (at
and around a) and the partial derivatives lemma will ensure that f |H is locally repre-
sented by a power series

∑

cα(x − a)α; replacing x by z one obtains the desired analytic
continuation.
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Let us first look at V . The directions from 0 that fall within the cone V determine a
nonempty open subset E′ of the unit sphere Sn−1. We choose some open subset E with
compact closure in E′. There will then be a number R > 0 such that V ∪ 0 contains the
closed truncated cone

V0 = {y ∈ Rn : y = vξ, ξ ∈ E, 0 ≤ v ≤ R}.

For a ∈ H, the domain H ⊂ Rn contains the real ball U(a, d) : |x − a| < d = d(a, ∂H).
Choosing R < d, our set W will contain the squares

Qξ(a) = {z ∈ Cn : z = a+ wξ, ξ ∈ E, −R ≤ u, v ≤ R}.

The union of these squares for ξ running over E is a compact subset of W [contained in
U(a,R)± iV0], on which |f | will be bounded, say by C = Cf .

The restriction of f to Qξ(a) is represented by

h(w) = f(a+ wξ), −R ≤ u, v ≤ R.

The function h is continuous on its square and analytic for v = Imw 6= 0, hence it is
analytic on the whole square. Thus as in Section 3.5, the Cauchy inequalities give a family
of inequalities (5a). Here C and R (may) depend on a, but if we fix b in H and restrict a
to a small neighbourhood H0 of b in H, we may take Cf and R constant.

The inequalities (5a), with w = t ∈ R and a running over H0, will imply that
f0 = f |H0 is of class C∞ around b and that it has a holomorphic extension f̃ to a Cn

neighbourhood of b. We sketch a proof; another proof may be derived from exercise
3.23. Choose a convex neighbourhood H1 of b in H0 such that d(H1, ∂H0) = δ > 0.
Now “regularize”f0 through convolution with the members of the approximate identity
{ρε} of (3a, b), 0 < ε < δ. One thus obtains C∞ functions fε = f0 ? ρε on H1 whose
derivatives in the directions ξ ∈ E satisfy the inequalities (5a) (with w = t ∈ R) for all
a ∈ H1 and all ε ∈ (0, δ). By the partial derivatives lemma, the derivatives Dα

x of the
functions fε will then satisfy the inequalities (5b) for every a ∈ H1. Taylor’s formula with
remainder next shows that the real Taylor series for fε with center a ∈ H1 converges to
fε on ∆(a, βR) ∩ H1. Complexifying such Taylor series for fε, one obtains holomorphic
extensions f̃ε of the functions fε to the union D1 of the polydiscs ∆(a, βR) with a ∈ H1.
[H1 is a set of uniqueness for D1, cf. exercise 1.17.] The family {f̃ε}, 0 < ε < δ will be
locally bounded on D1 and f̃ε → f0 on H1 as ε ↓ 0. Thus by Vitali’s theorem 1.74, the
functions f̃ε converge to a holomorphic extension f̃ of f0 on D1.

Since f̃ = f0 = f on H1, f̃ will also agree with f on the intersection of D1 with any
complex line z = a + wξ for which a ∈ H1 and ξ ∈ E. It follows that f̃ = f throughout
open subsets of W+ and W−. Conclusion: f̃ provides an analytic continuation of f to D1

and in particular, to the polydisc ∆(a, βR) for every a ∈ H1.

Exercises
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3.1. (Direct verification of the representation (1e)) Let a be fixed and z variable in C, z =
a+ reiθ. Let f be a C1 function on C of compact support. Prove that

∂f

∂z
=

1

2
eiθ
(

∂f

∂r
− 1

ir

∂f

∂θ

)

and deduce that for ε ↓ 0 :

∫

|z−a|>ε

∂f

∂z

1

z − adxdy = −1

2

∫ π

−π

f(a+ εeiθ)dθ → −πf(a).

3.2. Extend formula (1e) to arbitrary functions f in C1(C) which tend to 0 as |z| → ∞
while |∂f/∂z|/|z| is integrable over C.

3.3. Why can not one calculate ∂u/∂z by differentiation under the integral sign in formula
(1f) as it stands?

3.4. Prove a formula for (∂u/∂y)(a) analogous to (1i), starting with an appropriate analog
to (1h).

3.5. Let v ∈ C(C) be of compact support and let u be its Cauchy-Green transform (1f).
Prove that u is holomorphic outside supp v. Expand u in a Laurent series around∞ to
obtain conditions on the “moments”

∫

C
v(ζ)ζkdξdη which are necessary and sufficient

in order that u vanish on a neighbourhood of ∞.
3.6. Let v be a continuous function on C of compact support and let u be its Cauchy-Green

transform (1f). Prove that u is of class Lipα for each α ∈ (0, 1) or even better, that

|u(z + h)− u(z)| ≤M |h| log (1/|h|)

for some constant M and all z ∈ C, all |h| ≤ 1
2 . [Take 0 < |h| ≤ 1

2 , ζ ∈ supp v ⊂
B(0, R) for some R ≥ 1, |z| ≤ 2R. Substituting ζ − z = hζ ′, the variable ζ ′ may be
restricted to the disc B(0, 3R/|h|).]

3.7. Let D ⊂ C be a domain as in Proposition 3.11 and let v be of class C1(D). Suppose
one knows that the equation ∂u/∂z = v has a solution f on D which extends to a C1

function on D. Prove that

u(z)
def
= − 1

π

∫

D

v(ζ)

ζ − z dξdη, ζ = ξ + iη

is also a C1 solution on D.

3.8. (Continuation) Let D be as in Proposition 3.11 and let v be continuous on D. Prove
that the Cauchy-Green transform u of v on D (exercise 3.7) is also continuous and
that it provides a weak solution of the equation ∂u/∂z = v on D. That is,

〈∂u
∂z
, ϕ〉 def

= −〈u, ∂ϕ
∂z
〉 def

= −
∫

D

u
∂ϕ

∂z
dxdy
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is equal to

〈v, ϕ〉 def
=

∫

D

vϕ dxdy

for all test functions ϕ on D (all C∞ functions ϕ of compact support in D). [If v
belongs to C1(D) the function u will be an ordinary solution, cf. Section 11.2.]

3.9. Verify that the function u(z) in formula (2c), with v as in Proposition 3.21, is of class
Cp as a function of x1, y1, . . . , xn, yn. Next use the method of exercise 3.6 to show that
the partial derivatives of u of order p are of class Lipα, ∀α ∈ (0, 1).

3.10. Verify that the functions σ and τ introduced in Section 3.3 are of class C∞ on R.

3.11. Verify that the functions ρε of (3a, b) constitute a C∞ approximate identity on Rn as
ε ↓ 0.

3.12. Let ω be the cutoff function of (3c) and let e1 denote the unit vector in the x1 direction.
Prove that

∂ω

∂x1
(a) = lim

h→0

ω(a+ he1)− ω(a)

h
exists and =

∫

Sε

∂ρε
∂x1

(a− y)dy.

3.13. Let u be continuous on Rn and let {ρε} be a C∞ approximate identity with supp ρε ⊂
B(0, ε). Prove that the “regularization” uε = u ? ρε is of class C∞ and that uε → u as
ε ↓ 0, uniformly on every compact subset of Rn.

3.14. (Weak solutions of Du = 0 are holomorphic) Let u be continuous on C and such that
∂u/∂z = 0 in the weak sense, cf. exercise 3.8. Prove that u is holomorphic. [Show
first that ∂uε/∂z = 0, where uε is as in exercise 3.13.]

3.15. Show by an example that there is no Hartogs-Osgood-Brown continuation theorem
for n = 1. Where does the proof of Theorem 3.41 break down when n = 1?

3.16. Let D be a simply connected domain in C, K ⊂ D a compact subset such that
D−K is connected. Prove that a holomorphic function f on D−K can be continued
analytically to D if and only if

∫

Γ
{f(ζ)/(ζ − z)}dζ = 0 for some [and then for every]

piecewise smooth simple closed curve Γ around K in D −K and for all z outside Γ.

3.17. (Continuation) Prove that the following moment conditions are also necessary and
sufficient for the possibility of analytic continuation of f across K :

∫

Γ
f(ζ)ζkdζ =

0, ∀k ≥ 0 for some curve Γ as above.

3.18. Prove that every holomorphic function on the domain D = {z = x + iy ∈ C2 :
min(x1, x2) < 0} has an analytic continuation to all of C2.

3.19. (Proof of Theorem 3.52 part (ii)) Let V, W, Ω0 and X satisfy the hypotheses of The-
orem 3.52 part (ii). Verify the following assertions:
(i) At every point b ∈ X, the hypersurfaces V and W have the same complex tangent

hyperplane.
(ii) The real tangent spaces to X are complex hyperplanes.
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(iii) The real tangent hyperplanes to V and W at b ∈ X being different, one has
∂ψ/∂zj = λ∂ϕ/∂zj at b, j = 1, . . . , n, with λ = λ(b) nonreal.

(iv) Supposing from here on that ∂ϕ/∂zn 6= 0 at the point b ∈ X, the vectors
(∂ϕ/∂xn, ∂ϕ/∂yn) and (∂ψ/∂xn, ∂ψ/∂yn) are linearly independent at b.

(v) By real analysis, X has a local representation zn = xn + iyn = g(z′) =
g(z1, . . . , zn−1) around b. [Cf. Remarks 5.13.]

(vi) The function g satisfies the Cauchy-Riemann equations around b′. [Cf. assertion
(ii) above.]

3.20. Let H = R2, let V be the positive “octant” {y1 > 0, y2 > 0} of (another) R2 and set
W = (H + iV )∪H ∪ (H − iV ) in C2. Which points z = a+ iy near a ∈ H are outside
W? [Cf. fig 3.8.]

3.21. (Continuation) Prove that any function f which is continuous on W and analytic on
W+ and W− has an analytic continuation to all of C2.

3.22. Let f0 be a continuous function on the domain H0 ⊂ Rn which possesses derivatives
of all orders in the directions ξ ∈ E throughout H0. Suppose that these derivatives
satisfy the inequalities (5a) with w = t ∈ R at all points a ∈ H0. Let H1 be a
subdomain of H0 such that d(H1, ∂H0) = δ > 0 and let {ρε} be the approximate
identity of (3a, b), with 0 < ε < δ. Prove that the regularizations fε = f0 ? ρε satisfy
the inequalities (5a) (with w = t) at every point a ∈ H1.

3.23. Let f be a continuous function on a domain H in Rn such that for n linearly indepen-
dent unit vectors ξ and every m ≥ 1, the directional derivatives (d/dt)mf(x+ tξ)|t=0

exist and are bounded functions on a neighbourhood H0 of each point b ∈ H. Prove
that f is of class C∞. [By a linear coordinate transformation it may be assumed that
the unit vectors ξ are equal to e1, . . . , en. Multiplying f by a C∞ cutoff function with
support in H0 which is equal to 1 around b, one may assume that f has its support
in the hypercube −π < x1, . . . , xn < π. Taking n = 2 for a start, one knows that
Dm

1 f and Dm
2 f exist and are bounded for m = 1, 2, . . . . Introducing the Fourier series

∑

cpq exp{i(px1 + qx2)} for f on the square −π < x1, x2 < π, one may conclude that
the multiple sequence {(|p|m + |q|m)cpq}, (p, q) ∈ Z2 is bounded for each m. Deduce
that the (formal) series for Dαf is uniformly convergent for every α, hence ... .]

3.24. (Alternative proof of 3.61) We adopt the notation of 3.6..
i. Show that we may assume that H contains the cube |xi| < 6 and that V contains

the truncated cone 0 < vi < 6 and that assuming this, it suffices to show that f
extends to the unit polydisc ∆ = ∆(0, 1).

ii. Let c =
√

2− 1 and let φ(w, λ) = w+λ/c
1+cλw

. Check the following:
a. If |λ| = 1 or w is real, then Imφ.Imλ ≥ 0.
b. |φ| < 6 for |λ|, |w| < 1.
c. φ(w, 0) = w.

iii. Form
Φ(z, λ) = (φ(z1, λ), . . . , φ(zn, λ)

and consider gz(λ) = f(Φ(z, λ)). Show that gz is well defined for z ∈ H ∩ ∆,
|λ| ≤ 1 and for |λ| = 1 and z ∈ ∆. Show that for z ∈ H ∩∆, gz(λ) is analytic on
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|λ| < 1. Use Corr.1.72 to see that

F (z) :=

∫ π

−π

gz(e
iθ)
dθ

2π

is analytic on ∆.
iv. Show that for z ∈ H ∩∆ one has F (z) = gz(0) = f(z).
v. Show that F is an analytic extension of f to ∆.
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CHAPTER 4

Local structure of holomorphic functions

Zero sets and singularity sets

We will study germs of holomorphic functions at a point a. These germs form a ring
Oa, addition and multiplication being defined by the like operations on representatives.
One loosely speaks of the ring of holomorphic functions at a.

For the study of O0 in Cn, it is customary to single out one of the variables. In the
following this will be zn; we denote (z1, . . . , zn−1) by z′, so that

z = (z1, . . . , zn−1, zn) = (z′, zn), z′ ∈ Cn−1, zn ∈ C.

We similarly split the radii of polydiscs ∆(0, r) ⊂ Cn :

r = (r1, . . . , rn−1, rn) = (r′, rn), rj > 0.

In this context the origin of Cn−1 will usually be called O′.
Suppose now that f is holomorphic in some unspecified neigbourhood of 0 in other

words: [f ] ∈ O0 and that f(0) = 0, f 6≡ 0. In the case n = 1 the local structure of f and the
local zero set Zf are very simple: in a suitably small neighbourhood of 0, the function f(z)
can be written as E(z)zk, where k ≥ 1 and E is zero free in a neighbourhood of 0. In the
case n ≥ 2 the origin can not be an isolated zero of f , but the fundamental weierstrass
preparation theorem (Section 4.4) will furnish a related factorization. After an initial
linear transformation which favors the variable zn, one obtains a local representation

f(z) = E(z)W (z)

on some small neighborhood of 0, that is [f ] = [E][W ] in O0. Here W is a so-called
Weierstrass polynomial in zn and E is zero free and holomorphic in some neighbourhood
of the origin. This means: W is a polynomial in zn with leading coefficient 1; the other
coefficients are analytic in z′ = (z1, . . . , zn−1) near 0′ and they vanish at 0′. Around 0, W
will have the same zero set as f and this fact prepares the way for further study of Zf .

The detailed investigation of ZW will be based on a study of the polynomial ring
O′

0[zn], where O′
0 stands for the ring O0 in Cn−1 (Sections 4.5, 4.6).

After we have obtained a good description of the zero set, it becomes possible to prove
some results on removable singularities. We will also see that certain “thin” singularity
sets are at the same time zero sets.

Normalization relative to zn and a basic auxiliary result. Let f be holomorphic in
a neighbourhood of the origin in Cn. In the (absolutely convergent) power series

∑

cαz
α

for f(z) around 0, we may collect terms of the same degree:

(1a)

f(z) = P0(z) + P1(z) + P2(z) + . . . ,

Pj(z) =
∑

|α|=j

cαz
α homogeneous in z1, . . . , zn of degree j.
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DEFINITION 4.11. The function f is said to vanish (exactly) of order k ≥ 1 at the origin
if

Pj ≡ 0, j = 0, . . . , k − 1; Pk 6≡ 0.

An equivalent statement would be [cf. Section 1.5]:















Dαf(0) = Dα1

1 . . .Dαn
n f(0) = 0, ∀α with |α| = α1 + . . .+ αn < k,

Dβf(0) 6= 0 for some β with |β| = k.

DEFINITION 4.12. The function f is said to be normalized relative to zn at the origin
if f(0′, zn) does not vanish identically in a neighbourhood of zn = 0. Such an f is said
to vanish (exactly) of order k relative to zn at the origin if f(0′, zn) has a zero of order
(exactly) k for zn = 0. Equivalently:

Dj
nf(0) = 0, j = 0, . . . , k − 1; Dk

nf(0) 6= 0.

Corresponding definitions apply at a point a ∈ Cn: one may consider f(a+z) instead
of f(z). If f is normalized relative to zn at 0 [so that Dk

nf(0) 6= 0, say], then f is also
normalized relative to zn at all points a close to 0.

EXAMPLE 4.13. The function f(z) = z1z2 on C2 vanishes of order 2 at the origin. It
is not normalized relative to z2, but one can normalize it relative to the final variable
by the substitution z1 = ζ1 + ζ2, z2 = ζ2. Then f goes over into the analytic function
g(ζ) = ζ1ζ2 + ζ2

2 which vanishes of order 2 relative to ζ2 at the origin.

Lemma 4.14. Suppose f vanishes (exactly) of order k at the origin. Then one can always
carry out a 1− 1 linear coordinate transformation z = Aζ in Cn to ensure that f vanishes
of order (exactly) k at 0 relative to the (new) n-th coordinate.

PROOF. Write f as a sum of homogeneous polynomials of different degree as in (1a), so
that Pk 6≡ 0. Choose b 6= 0 such that Pk(b) 6= 0 and then construct an invertible n × n
matrix A with n-th column b. Now put z = Aζ and set

g(ζ)
def
= f(Aζ) = Pk(Aζ) + Pk+1(Aζ) + . . . .

Observe that A times the (column) vector (0, . . . , 0, ζn) equals (b1ζn, . . . , bnζn), so that

g(0, . . . , 0, ζn) = f(b1ζn, . . . , bnζn) = Pk(b1ζn, . . . , bnζn)+

+ Pk+1(. . .) + . . . = Pk(b)ζkn + Pk+1(b)ζk+1
n + . . . .

Clearly Dk
ng(0) 6= 0.
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Auxiliary Theorem 4.15. Let f be holomorphic on the polydisc ∆(0, r) ⊂ Cn, n ≥ 2
and suppose that f vanishes (exactly) of order k relative to zn at the origin. Then there
exist a smaller polydisc ∆(0, ρ) :

0 < ρ = (ρ1, . . . , ρn−1, ρn) = (ρ′, ρn) < r = (r′, rn)

and a number ε > 0 such that

(1b) f(0′, zn) 6= 0 for 0 < |zn| ≤ ρn,

(1c) f(z′, zn) 6= 0 for z′ ∈ ∆n−1(0′, ρ′), ρn − ε < |zn| < ρn + ε(≤ rn).

For any z′ ∈ ∆(0′, ρ′), the function g(zn) = f(z′, zn) will have precisely k zeros in the disc
∆1(0, ρn) (counting multiplicities).

PROOF. The function f(0′, zn) is holomorphic on the disc ∆1(0, rn) and it has a zero
of order k at zn = 0. Since the zeros of f(0′, zn) are isolated, there exists a number
ρn ∈ (0, rn) such that f(0′, zn) 6= 0 for 0 < |zn| ≤ ρn.

The function f(z′, zn) is holomorphic and hence continuous on a Cn neighbourhood
of the circle

γ : {z′ = 0′, |zn| = ρn}.
It is different from 0 on γ, hence 6= 0 on some Cn polydisc around each point (0′, w) ∈ γ.
Covering γ by a finite number of such polydiscs ∆n−1(0′, s′)×∆1(w, sn), we conclude that
f(z′, zn) 6= 0 on a Cn neigbourhood of γ in ∆(0, r) of the form

∆n−1(0′, ρ′)× {ρn − ε < |zn| < ρn + ε}.

|zn|

ε
ερn

(|z1|,...,|zn-1|)

0 ρ' fig 4.1
We now fix z′ ∈ ∆(0′, ρ′) for a moment. The function g(w) = f(z′, w) is holomorphic

on the closed disc ∆1(0, ρn) and zero free on the circumference C(0, ρn). The number of
zeros Ng = N(z′) of g in ∆1(0, ρn) (counting multiplicities) may be calculated with the
aid of the residue theorem:

(1d) N(z′) = Ng =
1

2πi

∫

C(0,ρn)

g′(w)

g(w)
dw =

1

2πi

∫

C(0,ρn)

∂f(z′, w)/∂w

f(z′, w)
dw.
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[Cf. Section 1.8. For any holomorphic h(w), the residue of hg′/g at a µ-fold zero w0 of g
will be µh(w0).]

With formula (1d) in hand, we let z′ vary over ∆(0′, ρ′). The final integrand is contin-
uous in (z, w) on ∆(0′, ρ′)× C(0, ρn) [which is a subset of ∆(0, r)], since the denominator
f(z′, w) does not vanish there [see (1c)]. Furthermore, the integrand is holomorphic in
z′ for each w on C(0, ρn). Applying the holomorphy theorem for integrals 1.72 [cf. also
Section 2.6], it follows that N(z′) is holomorphic on ∆(0′, ρ′). Since N(z′) is integer-valued,
it must be constant, hence

N(z′) = N(0′) = k,

the number of zeros of f(0′, w) or f(0′, zn) in ∆1(0, ρn) [always counting multiplicities].

4.2 An implicit function theorem. Let f, r and ρ be as in Auxiliary Theorem 4.15 so
that in particular f is holomorphic on ∆(0, ρ). Supposing that k = 1, the equation

g(w) = f(z′, w) = 0 [with arbitrary fixed z′ in ∆(0′, ρ′)]

has precisely one root w = w0 = ϕ(z′) inside the disc ∆1(0, ρn) [and no root on the
boundary C(0, ρn)]. With the aid of the residue theorem we can represent this root by an
integral similar to (1d) :

(2) ϕ(z′) = w0 =
1

2πi

∫

C(0,ρn)

w
g′(w)

g(w)
dw =

1

2πi

∫

C(0,ρn)

w
∂f(z′, w)/∂w

f(z′, w)
dw.

Letting z′ vary over ∆(0′, ρ′), this integral shows that ϕ(z′) is holomorphic, cf. the pre-
ceding proof. The result is important enough to be listed as a theorem:

Theorem 4.21 (implicit function theorem). Let f be holomorphic on the polydisc
∆(0, r) ⊂ Cn and suppose that f vanishes (exactly) of order 1 relative to zn at the origin:

f(0) = 0, Dnf(0) 6= 0.

0

x

(z’,0)

zn-plane

(z’,φ(z’))

ρ’

z’-space

ρn

fig 4.2
Then there exists ρ = (ρ′, ρn) with 0 < ρ < r such that on the polydisc ∆(0′, ρ′) ⊂

Cn−1, there is a unique holomorphic function ϕ(z′) with the following properties:
(i) ϕ(0′) = 0,
(ii) ϕ(z′) ⊂ ∆1(0, ρn), ∀z′ ∈ ∆(0′, ρ′),
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(iii) f(z′, zn) = 0 at a point z ∈ ∆(0, ρ) if and only if zn = ϕ(z′) with z′ ∈ ∆(0′, ρ′).

COROLLARY 4.22. Let f be holomorphic on D ⊂ Cn and vanish (exactly) of order
1 at the point a ∈ D. Then there is a neighbourhood of a in which the zero set Zf is
homeomorphic to a domain in Cn−1. [In this case a is called a regular point of Zf . Since
homeomorphisms preserve dimension, the zero set has complex dimension n − 1 or real
dimension 2n− 2.]

Indeed, taking a = 0 and normalizing relative to zn as in Lemma 4.14, we will have
f(0) = 0, Dnf(0) 6= 0. By Theorem 4.21 there is then a polydisc ∆(0, ρ) ⊂ D in which Zf
has the form

Zf ∩∆(0, ρ) = {(z′, φ(z′)) ∈ Cn : z′ ∈ ∆(0′, ρ′)}
with ϕ ∈ O(∆(0′, ρ′)). The correspondence z′ ↔ (z′, ϕ(z′)) between ∆(0′, ρ′) and Zf (the
graph of ϕ) in ∆(0, ρ) is 1− 1 and bicontinuous.

In the following sections we will investigate the zero set in the vicinity of a point where
f vanishes of order > 1.

4.3 Weierstrass polynomials. Let f, r and ρ again be as in Auxiliary Theorem 4.15,
so that in particular f is holomorphic on ∆(0, ρ). Taking k ≥ 1 arbitrary this time, the
equation

(3a) g(w) = f(z′, w) = 0 [with arbitrary fixed z′ in ∆(0′, ρ′)]

has precisely k roots inside the disc ∆1(0, ρn), counting multiplicities [and no root on the
boundary C(0, ρn)]. We may number the roots in some order or other:

(3b) w1 = w1(z′), . . . , wk = wk(z′); wj(0
′) = 0, ∀j.

However, occasionally some roots may coincide, and in general it is not possible to define
the individual rootswj(z

′) in such a way that one obtains smooth functions of z′ throughout
∆(0′, ρ′). [Think of f(z′, w) = z1 − wk.]

In this situation it is natural to ask if the functions (3b) might be the roots of a nice
algebraic equation. Let us consider the product

(3c) (w − w1) . . . (w − wk) = wk +
k
∑

j=1

ajw
k−j , aj = aj(z

′).

Apart from a ± sign, the coefficients aj are equal to the so-called elementary symmetric
functions of the roots:

a1 = −(w1 + . . .+ wk), a2 = w1w2 + . . .+ w1wk + w2w3 + . . .+ wk−1wk, . . . ,

ak = (−1)kw1 . . .wk.

Observe that aj(0
′) = 0, j = 1, . . . , k. We will show that the coefficient aj(z

′) depend
analytically on z′. The proof may be based on an algebraic relation between symmetric
functions (to be found in [Van der Waerden] for example) of which we will give an analytic
proof.
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Lemma 4.31. The coefficients aj = aj(z
′) in (3c) can be expressed as polynomials in the

power sums
sp = sp(z

′) = wp1 + . . . wpk, p = 1, 2, . . .

and (hence) they are holomorphic functions of z′ on ∆(0′, ρ′).

PROOF. (i) it is convenient to divide by wk in (4.33) and to set 1/w = t. Thus

Πk
ν=1(1− wνt) =

k
∑

j=0

ajt
j def

= P (t), a0 = 1.

Taking the logarithmic derivative of both sides and multiplying by t, one obtains the two
answers

t
P ′(t)

P (t)
=



















∑k
j=1 jajt

j/
∑k
m=0 amt

m,

∑k
ν=1

−wν t
1−wνt

= −∑k
ν=1

∑∞
p=1w

p
νt
p = −∑∞

p=1 spt
p.

We now multiply through by the first denominator and find:

k
∑

1

jajt
j = −

k
∑

0

amt
m

∞
∑

1

spt
p.

Equating coefficients of like powers of t on both sides, the result is

(3d) jaj = −(aj−1s1 + aj−2s2 + . . .+ a0sj), j = 1, . . . , k.

Hence by induction, aj can be expressed as a polynomial in s1, . . . , sj.
(ii) We complete the proof of the Lemma by showing that the power sums sp(z

′) are
holomorphic in z′ on ∆(0′, ρ′). To this end we write sp(z

′) as an integral: by the residue
theorem, cf. (1d),

(3e) sp(z
′) =

k
∑

ν=1

wpν =
1

2πi

∫

C(0,ρn)

wp
g′(w)

g(w)
dw =

1

2πi

∫

C(0,ρn)

wp
∂f(z′, w)/∂w

f(z′, w)
dw.

The holomorphy now follows as usual from the holomorphy theorem for integrals 1.72.
The polynomial (3c) is called the Weierstrass polynomial belonging to the roots

w1, . . . , wk of the equation f(z′, w) = 0. Replacing w by zn we formulate:

Definition 4.32. A weierstrass polynomial in zn of degree k is a holomorphic func-
tion in a neighbourhood of the origin in Cn of the special form

(3f) W (z′, zn) = zkn +

k
∑

j=1

aj(z
′)zk−jn , (k ≥ 1)
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where the coefficients aj(z
′) are holomorphic in a neighbourhood of 0′ in Cn−1 and such

that aj(0
′) = 0, j = 1, . . . , k.

An arbitrary polynomial in zn with coefficients that are holomorphic in z′ is called a
(holomorphic) pseudopolynomial in zn.

4.4 The Weierstrass theorems. Let f, r and ρ be as in Auxiliary Theorem 4.15, so
that in particular f is holomorphic on ∆(0, ρ). Moreover, the equation f(z′, w) = 0 with
z′ fixed in ∆(0′, ρ′) has precisely k roots (3b) inside the disc ∆1(0, ρn) and no roots on the
boundary C(0, ρn). Dividing g(w) = f(z′, w) by the Weierstrass polynomial W (w) (3c)
with these same roots, we obtain a zero free holomorphic function E(w) on the closed disc
∆1(0, ρn). Explicitly reintroducing z′, we have

(4a)
f(z′, zn)

W (z′, zn)
= E(z′, zn), (z′, zn) ∈ ∆n−1(0′, ρ′)×∆1(0, ρn).

Here E(z′, zn) is holomorphic in zn on ∆1(0, ρn) for each z′ ∈ ∆(0′ρ′). Also, E(z′, zn) is
different from 0 throughout δ(0′, ρ′)×∆1(0, ρn).

We will show that E is holomorphic in z = (z′, zn) on ∆(0, ρ). For this we use the
one-variable Cauchy integral formula, initially with fixed z′ :

(4b) E(z) = E(z′, zn) =
1

2πi

∫

C(0,ρn)

f(z′, w)

W (z′, w)

dw

w − zn
, z = (z′, zn) ∈ ∆(0, ρ)

The holomorphy of E(z) now follows from the holomorphy theorem for integrals 1.72.
Indeed, the integrand is continuous in (z, w) = (z′, zn, w) on ∆(0, ρ) × C(0, ρn) since
W (z′, w)(w − zn) is different from zero there. Furthermore, for each w ∈ C(0, ρn),
the integrand is holomorphic being a product of holomorphic functions in z′ and zn on
∆(0′, ρ′)×∆1(0, ρn). Conclusion from (4a, b) :

Theorem 4.41 ( weierstrass’s preparation theorem). Let f be holomorphic on a
neighbourhood of the origin in Cn. Suppose f vanishes at 0 (exactly) of order k relative
to zn. Then there is a neighbourhood of the origin in which f has a unique holomorphic
factorization

f(z) = E(z)W (z′, zn),

where W is a Weierstrass polynomial in zn of degree k (3f) and E is zero free.

The factorization is unique because W is uniquely determined by f . For the local
study of zero sets one may apparently restrict oneself to Weierstrass polynomials. The
question of further decomposition of such polynomials will be taken up in Section 4.5.

There is also a preparation theorem for C∞ functions, see [Malgrange].
There is a second (somewhat less important) Weierstrass theorem which deals with the

division of an arbitrary holomorphy function F by a preassigned Weierstrass polynomial
[division with remainder]:
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Theorem 4.42 ( Weierstrass’s division theorem). Let F be holomorphic in a neigh-
bourhood of the origin in Cn and let W be an arbitrary Weierstrass polynomial in zn of
degree k (3f). Then F has a unique representation around 0 of the form

(4c) F = QW + R,

where Q is holomorphic and R is a (holomorphic) pseudopolynomial in zn of degree < k.

We indicate a proof. Assuming that F and W are holomorphic on ∆(0, r) we choose
ρ < r such that W (z) 6= 0 for z′ ∈ ∆(0′, ρ′) and |zn| = ρn, cf. Auxiliary Theorem 4.15.
Then Q may be defined by

4d Q(z)
def
=

1

2πi

∫

C(0,ρn)

F (z′, w)

W (z′, w)

dw

w − zn
, z ∈ ∆(0, ρ).

One readily shows that Q and hence R
def
= F − QW are holomorphic on ∆(0, ρ) and that

R is a pseudopolynomial in zn of degree < k, cf. exercise 4.6. For the uniqueness of the
representation, cf. exercise 4.7.

4.5 Factorization in the rings O0 and O′
0[zn]. As indicated before, the symbol Oa or

Oa(Cn) denotes the ring of germs of holomorphic functions at a, or equivalently, allpower
series

f(z) =
∑

α≥0

cα(z − a)α =
∑

α≥0

cα1...αn
(z1 − a1)α1 . . . (zn − an)αn

in z1, . . . , zn with center a that have nonempty domain of (absolute) convergence [cf. Sec-
tion 2.3].For [f ] and [g] in Oa one defines the sum [f ] + [g] = [f + g] and the product
[f ][g] = [fg] via representatives f, g. Product and sum are well defined at least throughout
the intersection of the domains of f and g and this intersection will contain a.

As seen above, in working with germs, one strictly speaking has to take representatives,
work with these on suitably shrunken neighbourhoods and pass to germs again. Usually
the real work is done on the level of the representatives, while the other parts of the proces
are a little tiresome. To avoid the latter, we will write f ∈ Oa, indicating both a germ at
a or a representative on a suitable neighborhood, or even its convergent power series at a.
This will not lead to confusion. Obviously there will be no loss of generality by studying
O0 only.

The zero element in O0 is the constant function 0. There is also a multiplicative
identity, namely, the constant function 1. The ring O0 is commutative and free of zero
divisors cf. exercise 1.20]. Thus O0 is an integral domain. A series or function f ∈ O0 has
a multiplicative inverse 1/f in O0 if and only if f(0) 6= 0; such an f is called a unit in the
ring. The nonunits are precisely the series or functions which vanish at the origin; they
form a maximal ideal. For factorizations “at” the origin (around the origin) and for the
local study of zero sets, units are of little interest.

DEFINITION 4.51. An element f ∈ O0 different from the zero element is called reducible
(in or over O0) if it can be written as a product g1g2, where g1 and g2 are nonunits of
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O0. An element f 6= 0 is irreducible if for every factorization f = g1g2 in O0, at least one
factor is a unit.

In reducibility questions for O0 we may restrict ourselves to Weierstrass polynomials,
cf. the preparation theorem 4.41.

EXAMPLES. It is clear that z2
3 and z2

3 − z1z2z3 are reducible in O0(C3), but how about

(5a) W (z) = z2
3 − z2

1z2 ?

Proposition 4.52. Every (holomorphic) factorization of a Weierstrass polynomial into
nonunits of O0 is a factorization into Weierstrass polynomials, apart from units with
product 1.

PROOF. Let W be a Weierstrass polynomial in zn of degree k (3f) and suppose that
W = g1g2, where the factors gj are holomorphic in a neighbourhood of 0 and gj(0) = 0.
Setting z′ = 0′ we find

zkn = W (0′, zn) = g1(0′, zn)g2(0′, zn),

hence gj(0
′, zn) 6≡ 0, so that the functions gj are normalized relative to zn at the origin

[Definition 4.12]. Thus we can apply the preparation theorem to each gj :

gj = EjWj , j = 1, 2

in some neighbourhood of 0. Here the Wj ’s are Weierstrass polynomials in zn and the Ej ’s
are zero free. It follows that

W = 1 ·W = E1E2W1W2

in some neighbourhood of 0. Now W1W2 is also a Weierstrass polynomial in Zn and E1E2

is zero free. The uniqueness part of the preparation theorem thus shows that W1W2 = W
and E1E2 = 1.

We can now show that the Weierstrass polynomial (5a) is irreducible (over O0). Oth-
erwise there would be a decomposition of the form

z2
3 − z2

1z2 = (z3 − w1(z′))(z3 − w2(z′))

with holomorphic functions wj at 0. This would imply w1+w2 = 0, w1w2 = −w2
1 = −z2

1z2,
but the latter is impossible since z1

√
z2 is not holomorphic at 0. [The function W of (5a)

is reducible over Oa for some points a where W (a) = 0 and a2 6= 0. Which precisely ?]

DEFINITION 4.53. An integral domain A with identity element is called a unique factor-
ization domain (ufd) if every nonunit (6= 0) can be written as a finite product of irreducible
factors in A and this in only one way, apart from units and the order of the factors.
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PROPERTIES 4.54. Suppose A is a unique factorization domain. Then:

(i) The polynomial ring A[x] is also a ufd (“Gauss’s lemma”);

(ii) For any two relatively prime elements f and g in A[x] (that is, any nonzero f and
g which do not have a nonunit as a common factor), there are relatively prime elements
S and T in A[x], with degreeS < degree g, degT < deg f , and a nonzero element R in A
such that

(5b) Sf + Tg = R (“resultant of f and g”).

We indicate proofs, but refer to algebra books for details. For part (i) we need only
consider primitive polynomials f in A[x], that is, polynomials whose coefficients have no
common factors others than units. By looking at degrees, it becomes clear that such f can
be decomposed into finitely many irreducible factors in A[x]. For the uniqueness one may
first consider the case where A is a (commutative) field. Then the Euclidean algorithm
holds for the greatest common divisor (f, g) in A[x], hence (f1, g) = (f2, g) = 1 implies
(f1f2, g) = 1. It follows that irreducible decompositions f = f1 . . . fr in A[x] must be
unique. In the general case one first passes from A to the quotient field QA. A factorization
of f in A[x] gives one in QA[x]. For the converse, one observes that the product of two
primitive polynomials in A[x] is again primitive. It follows that any factorization of f in
QA[x] can be rewritten as a factorization into primitive polynomials in A[x]. Hence since
AA[x] is a ufd, so is A[x].

As to part (ii), relatively prime elements f and g in A[x] are relatively prime in QA[x],
hence by the Euclidean algorithm for the greatest common divisor, there exist S1 and T1

in QA[x], degS1 < deg g, degT1 < deg f such that S1f + T1g = 1. The most economical
removal of the denominators in S1 and T1 leads to (5b).

Theorem 4.55. The rings O′
0[zn] and O0 = O0(Cn) are unique factorization domains.

[Here O′
0 stands for O0(Cn−1).]

PROOF. Concentrating on O0 we use induction on the dimension n. For n = 0 the ring
O0 = C is a field and every nonzero element is a unit, hence there is nothing to prove.
Suppose now that the theorem has been proved for O′

0 = O0(Cn−1). It then follows from
Gauss’s lemma that the polynomial ring O′

0[zn] of the pseudopolynomials in zn is also a
ufd.

Next let f be an arbitrary nonunit 6= 0 inO0 = O0(Cn).By a suitable linear coordinate
transformation we ensure that f is normalized relative to zn, cf. Lemma 4.14. Weierstrass’s
preparation theorem then gives a factorization f = EW , where E is a unit in O0 and
W ∈ O′

0[zn] is a Weierstrass polynomial. As a consequence of the induction hypothesis,
W can be written as a finite product of irreducible polynomials in O′

0[zn]. The factors are
Weierstrass polynomials (apart from units with product 1) and they are also irreducible
over O0, cf. Proposition 4.52.

The uniqueness of the decomposition (apart from units and the order of the factors)
follows by normalization from the uniqueness of the factorization f = EW at 0 and the
uniqueness of the factorization in O′

0[zn].
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Corollary 4.56 (irreducible local representation). Let f be holomorphic at 0 in
Cn and normalized relative to zn. Then f has a holomorphic product repesentation at 0
[in a neighbourhood of 0] of the form

(5c) f = EW p1
1 . . .W ps

s .

Here E is zero free, the Wj’s are pairwise distinct irreducible Weierstrass polynomials
in zn and the pj ’s are positive integers. The representation is unique up to the order of
W1, . . . ,Ws.

We finally show that the rings O0(Cn) are Noetherian:

DEFINITION 4.57. A commutative ring A with identity element is called Noetherian if
every ideal I ⊂ A is finitely generated, that is, if there exist elements g1, . . . , gk in I such
that every f ∈ I has a representation f =

∑

ajgj with aj ∈ A.
The so-called Hilbert basis theorem asserts that for a Noetherian ring A, the polyno-

mial ring A[x] is also Noetherian, cf. [Van der Waerden] section 84.

Theorem 4.58. O0 = O0(Cn) are Noetherian.

PROOF. One again uses induction on the dimension n. For n = 0 the ring O0 = C is a
field, so that the only two ideals are the ones generated by 0 and by 1. Suppose, therefore,
that n ≥ 1 and that the theorem has been proved for O′

0 = O0(Cn−1). Then by the above
remark, the polynomial ring O′

0[zn] is also Noetherian.
Now let I be any ideal in O0 = O0(Cn) which contains a nonzero element g. By change

of coordinates and the Weierstrass preparation theorem we may assume that g = EW ,
where E is a unit in O0 and W is a Weierstrass polynomial in zn. Observe that W will
also belong to I and thus to the intersection J = I ∩ O′

0[zn].
This intersection J is an ideal in the ring O′

0[zn], hence by the induction hypothesis, it
is generated by finitely many elements g1, . . . , gp. We claim that in O0, the elements W and
g1, . . . , gp will generate I. Indeed, let F be any element of I. By the Weierstrass division
theorem, F = QW + R, where Q ∈ O0 and R ∈ O′

0[zn]. Clearly R is also in I, hence
R ∈ J , so that R = b1g1 + . . .+ bpgp with bj ∈ O′

0[zn]. Thus F = QW + b1g1 + . . .+ bpgp.

4.6 Structure of zero sets. We first discuss some global properties. Let f be a holo-
morphic function 6≡ 0 on a connected domain D in Cn. What sort of subset is the zero set
Zf = Z(f) of f in D ?

Theorem 4.61. Zf is closed (relative to D) and thin: it has empty interior. The zero set
does not divide D even locally: to every point a ∈ Zf there are arbitrarily small polydiscs
∆(a, ρ) in D such that ∆(a, ρ)− Zf is connected. Ω = D − Zf is a connected domain.

PROOF. It is clear that Zf is closed [f is continuous] and that it has no interior points: if
f would vanish on a small ball in D, it would have to vanish identically. [More generally,
Zf can not contain a set of uniqueness 1.55 for O(D).]

Next let a be any point in Zf . We may assume that a = 0 and that f vanishes at 0 of
order k relative to zn. By Auxiliary Theorem 4.15, there will be arbitrarily small polydiscs
∆(0, ρ) ⊂ D and ε > 0 such that f(0′, zn) 6= 0 for 0 < |zn| ≤ ρn and

f(z′, zn) 6= 0 throughout U = ∆(0′, ρ′)× {ρn − ε < |zn| < ρn}.
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fig 4.3
Observe that the subset U ⊂ ∆(0, ρ)− Zf is connected. Furthermore, every point (b′, c)
of ∆(0, ρ)− Zf may be connected to U by a straight line segment in ∆(0, ρ) lying in the
complex plane z′ = b′ but outside Zf . Indeed, the disc z′ = b′, |zn| < ρn contains at most
k distinct points of Zf (fig 4.3). Thus ∆(0, ρ)− Zf is connected.

Any two point p and q in Ω can be joined by a polygonal path in D. Such a path may
be covered by finitely many polydiscs ∆(a, ρ) ⊂ D such that ∆(a, ρ) − Zf is connected.
The latter domains will connect p and q in Ω.

We now turn our attention to the local form of Zf . We have already encountered
regular points of Zf , that is, points a around which Zf is homeomorphic to a domain in
Cn−1. Regularity of a point a ∈ Zf is assured if f vanishes at a of order exactly 1, see
Corollary 4.22.

Suppose from here on that f vanishes of order k at a, we may again take a = 0 and
normalize relative to zn to obtain the local irreducible representation (5c) for f . We will
now consider Zf purely as a set without regard to multiplicities. In that case it may be
assumed that f is a Weierstrass polynomial in zn of the form

(6a) f = W1 . . .Ws,

where the factors are distinct and irreducible.

Theorem 4.62 (local form of the zero set). Let f be a Weierstrass polynomial
in zn of degree k that is either irreducible or equal to a product (6a) of distinct irre-
ducible Weierstrass polynomials W1, . . . ,Ws. Then there is a neighbourhood ∆(0, ρ) =
∆(0′, ρ′) × ∆1(0, ρn) of the origin in Cn in which the zero set Zf may be described as
follows. There exists a holomorphic function R(z′) 6≡ 0 on ∆(0′, ρ′) such that for every
point z′ in ∆(0′, ρ′) − ZR, there are precisely k distinct points of Zf in ∆(0, ρ) which lie
above z′; all those points are regular points of Zf . For z′ in ZR some roots of the equation
f(z′, zn) = 0 in ∆1(0, ρn) will coincide. We say that the local zero set

Zf ∩∆(0, ρ)

is a k-sheeted complex analytic hypersurface above ∆(0′, ρ′) ⊂ Cn−1 which bran-
ches (and can have nonregular points) only above the thin subset ZR of ∆(0′, ρ, ).
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PROOF. The Weierstrass polynomial f in zn of degree k (6a) and its partial derivative

(6b)
∂f

∂zn
=

s
∑

i=1

W1 . . .Wi−1
∂W

∂zn
Wi+1 . . .Ws

of degree k − 1 must be relatively prime in O′
0[zn]. Indeed, none of the irreducible factor

Wj of f can divide ∂f/∂zn. This is so because Wj divides all the terms in the sum (6b)
with i 6= j, but not the term with i = j: degree ∂Wj/∂zn < degWj .

The greatest common divisor representation (5b) for the ufd O′
0[zn] now provides a

relation

(6c) Sf + T
∂f

∂zn
= R = R(z′)

relatively prime elements S and T in O′
0[zn], degS < k − 1, degT < k, and a nonzero

element R(z′) in O′
0. [A resultant R of f and ∂f/∂zn is also called a discriminant of f

as a pseudopolynomial in zn. The special case k = 1 is trivial, but fits in if we take
S = 0, T = 1 to yield R = 1.]

Relation (6c) may be interpreted as a relation among holomorphic functions on some
polydisc ∆(0, r). We now choose ∆(0, ρ) as in auxiliary theorem 4.15. For any point
b′ ∈ ∆(0′, ρ′), the equation

(6d) f(b′, zn) = 0

then has precisely k roots in ∆1(0, ρn), counting multiplicities. Suppose b′ is such that
some of these roots coincide, in other words, equation (6d) has a root zn = c of multiplicity
≥ 2. Then

(6e) f(b′, c) =
∂f

∂zn
(b′, c) = 0,

hence by (6c), R(b′) = 0.
Conclusion: the k roots zn of the equation f(z′, zn) = 0 in ∆1(0, ρn) are all distinct

whenever R(z′) 6= 0 or z′ ∈ ∆(0′, ρ′) − ZR. The corresponding points (z′, zn) of Zf are
regular: at those points ∂f/∂zn 6= 0 because of (6c); now see Corollary 4.22.

If R(b′) = 0, the k roots of (6d) must satisfy T∂f/∂zn = 0, hence if T (b′, zn) 6≡ 0, (6e)
must hold for some c ∈ ∆1(0, ρn). However, even then (b′, c) may be a regular point of Zf :

EXAMPLE 4.63. For f(z) = z2
3 − z2

1z2 in O0(C3) we have ∂f/∂z3 = 2z3, hence

R(z′) = 2f(z)− z3∂f/∂z3 = −2z2
1z2

will be a resultant. The zero set Zf has two sheets over C2, given by z3 = ±z1
√
z2; the

sheets meet above ZR. The points of ZR have the forms z′ = (a, 0) and z′ = (0, b); the
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corresponding points (a, 0, 0) and (0, b, 0) of Zf are of different character. Around (0, b, 0)
with b 6= 0, Zf decomposes into two separate zero sets that meet along the complex line
z1 = z3 = 0. However, the points (a, 0, 0) with a 6= 0 are regular for Zf , as is shown by the
local representation z2 = z2

3/z
2
1 !

Theorem 4.62 has various important consequences such as the so-called “Nullstellen-
satz”, cf. exercises 4.17, 4.18.

ANALYTIC SETS 4.64. A subset X of a domain D ⊂ Cn is called an analytic set if
throughout D, it is locally the set of common zeros of a family of holomorphic functions.
[Since the rings Oa are Noetherian, one may limit oneself to finite families.] A point a ∈ X
is called regular if the intersection of X with a (small) polydisc ∆(a, r) is homeomorphic
to a domain in a space Ck; the number k is called the complex dimension of X at a. By
dimX one means the maximum of the dimensions at the regular points.

Taking D connected and f ∈ O(D), f 6≡ 0, the zero set Zf is an analytic set of
complex dimension n − 1. The set of the nonregular points of Zf is locally contained
in the intersection of the zero sets of two relatively prime holomorphic functions, in the
preceding proof, f and ∂f/∂zn. The nonregular points belong to an analytic set of complex
dimension n−2: locally, there are at most a fixed number of nonregular points above each
point of a zero set ZR in Cn−1. Cf. [Gunning-Rossi], [Hervé]. In the case n = 2, Zf is a
complex analytic surface (real dimension 2) and the local sets ZR in C consist of isolated
points; in this case, the nonregular points of Zf in D also lie isolated.

4.7 Zero sets and removable singularities. For g ∈ O(D) g 6≡ 0, the zero set Zg ⊂
D ⊂ Cn is at the same time a singularity set: think of h = 1/g on the domain D − Zg.
However, we will see that Zg can not be the singularity set of a bounded holomorphic
function on D−Zg. For n = 1 this is Riemann’s theorem on removable singularities in C.
The latter is a consequence of the following simple lemma.

Lemma 4.71. A bounded holomorphic function f on a punctured disc ∆1(0, ρ)− {0} in
C has an analytic extension to the whole disc ∆1(0, ρ).

PROOF. In the Laurent series
∑∞

−∞ ckw
k for f(w) with center 0, all coefficients ck with

negative index must be zero. Indeed, for k < 0 and 0 < r < ρ.

(7a) ck =

∣

∣

∣

∣

1

2πi

∫

C(0,r)

f(w)w−k−1dw

∣

∣

∣

∣

≤ sup |f | · r|k| → 0 as r ↓ 0.

Thus the Laurent series is actually a power series which furnishes the desired extension.
The corresponding Cn result is also called the Riemann removable singularities theo-

rem:

Theorem 4.72. LetD be a connected domain in Cn and let Zg be the zero set of a nonzero
function g ∈ O(D). Let f be homomorphic on the domain Ω = D − Zg and bounded on
a neighbourhood in Ω) of every point a ∈ Zg. Then f has an analytic extension F to the
whole domain D.

PROOF. Take n ≥ 2 and choose a ∈ Zg, then adjust the coordinate system so that a = 0
while g vanishes at 0 of some finite order k relative to zn. Next choose ∆(0, ρ) ⊂ D such
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that f is bounded on ∆(0, ρ) − Zg and g(0′, zn) 6= 0 for 0 < |zn| ≤ ρn, g(z′, zn) 6= 0
on ∆(0′, ρ′) × C(0, ρn), cf. auxiliary theorem 4.15. For fixed z′ ∈ ∆(0′, ρ′), the function
g(z′, zn) then has precisely k zeros w1(z′), . . . , wk(z′) in ∆1(0, ρn) and no zero on C(0, ρn).
By the hypothesis, f(z′, zn) will be holomorphic and bounded on ∆1(0, ρn)−{w1, . . . , wk}.
Hence by Riemann’s one-variable theorem, f(z′, zn) has an analytic extension F (z′, zn) to
the disc ∆1(0, ρn). Since F (z′, w) = f(z′, w) in particular for w ∈ C(0, ρn), the one-variable
Cauchy integral formula gives the representation

(7b) F (z) = F (z′, zn) =
1

2πi

∫

C(0,ρn)

f(z′, w)

w − zn
dw, zn ∈ ∆1(0, ρn), z′ ∈ ∆(0′, ρ′).

How will F behave as a function of z = (z′, zn) ∈ ∆(0, ρ) ? The function f(z′, w) is
holomorphic and hence continuous on the set ∆(0′, ρ′) × C(0, ρn), on which g(z′, w) 6= 0.
Thus the integrand in (7b) is continuous in (z, w) = (z′, zn, w) on the set ∆(0, ρ)×C(0, ρn).
Moreover, for fixed w ∈ C(0, ρn), the integrand is holomorphic in z = (z′, zn), cf. the proof
at the beginning of Section 4.4. So it follows as usual from the holomorphy theorem for
integrals 1.72 that F (z) is holomorphic on ∆(0, ρ); naturally, F = f outside Zg on ∆(0, ρ).

We know now that f extends analytically to some polydisc ∆(a, ρ) around each point
a ∈ Zg. The uniqueness theorem will show that the various extensions F = Fa are
compatible: if the polydiscs ∆(a, ρ) and ∆(b, σ) for Fa and Fb overlap, the intersection
contains a small ball of D − Zg and there Fa = f = Fb, hence Fa = Fb throughout the
intersection.

REMARKS 4.73. In Theorem 4.72, the zero set Zg may be replaced by an aribtrary
analytic set X in D of complex dimension ≤ n−1 [thus, a set X which is locally contained
in the zero set of a nonzero function, cf. 4.64]. If X has complex dimension ≤ n− 2, it will
be a removable singularity set for every holomorphic function on D−X. This is clear when
n = 2, since an analytic set of dimension 0 consists of isolated points. For the general case,
see exercise 4.26.

Another remarkable result on removable singularities is Rado’s theorem, see exercises
4.27, 4.28.

4.8 Hartogs’ singularities theorem. Roughly speaking, the theorem asserts that sin-
gularity sets X in Cn of complex dimension n− 1 are zero sets of analytic functions. The
setup is as follows, cf. fig 4.4. The basic domain Ω will

Ω = Ω′ ×∆1(0, R),

where Ω′ is a connected domain in Cn−1. The subset X ⊂ Ω will be the graph of an
arbitrary function g : Ω′ → ∆1(0, R) :

X = {z = (z′, zn) = (z′, w) : z′ ∈ Ω′, zn = w = g(z′)}.

We will say that a holomorphic function f on Ω−X becomes singular at the point a ∈ X
[and that a is a singular point for f ] if f has no analytic continuation to a neighbourhood
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for a. Under a mild restriction on X, a function f ∈ O(Ω−X) will either become singular
everywhere on X or nowhere on X:

a’ z’

C n-1

Ω

’

a
X

(z’,w ’)

(z’,g(z’))

Ω

fig 4.4

Proposition 4.81. Let supK |g(z′)| = RK < R for every compact subset K ⊂ Ω′. [This
is certainly the case if g is continuous.] Let f in O(Ω−X) become singular at some point
a ∈ X. Then f becomes singular at every point of X and g is continuous.

PROOF. Let E ⊂ Ω′ consist of all points z′ such that (z′, g(z′)) is a singular point for
f(z′, w). Then E is nonempty and closed in Ω′ and the restriction g | E is continuous.
Indeed, let {z′ν} be any sequence in E with limit b′ ∈ Ω′ and let c be any limit point of
the sequence {g(z′ν)}. Then |c| ≤ lim sup|g(z′ν)| ≤ RK < R where K = {z′ν}∞1 ∪{b′}. Thus
(b′c) belongs to Ω and as a limit point of singular points, (b′, c) must be a singular point
for f. Hence c = g(b′) and b′ ∈ E. The argument shows that E is closed and that g | E is
continuous at b′.

Using Hartogs’ continuity theorem 2.61 we can now show that the open set Ω′
0 = Ω′−E

is empty. Indeed, if Ω′
0 is not empty, E and Ω′

0 must have a common boundary point z′0
in the connected domain Ω′. Since g | E is continuous at z′0, there is a polydisc ∆(z′0, r

′)
in Ω′ above which the singular points (z′, g(z′)) of f have g(z′) very close to w0 = g(z′0).
It follows that f(z′, w) is analytic on a subdomain of Ω of the form

∆(z′0, r
′)× {ρn < |w − w0| < rn} ∪D′

0 ×∆1(w0, rn),

where D′
0 = ∆(z′0, r

′) ∩ Ω′
0 is nonempty. But then f has an analytic continuation to the

neighbourhood ∆(z′0, r
′)×∆1(w0, rn) of (z′0, w0) ! This contradiction proves that E is all

of Ω′ and that g is continuous.

Theorem 4.82. Let Ω, g and X be as described at the beginning of the Section. Suppose
that there is a holomorphic function f on Ω − X which becomes singular at every point
of X. Then g is holomorphic on Ω′, hence the singularity set X is the zero set of the
holomorphic function h(z) = zn − g(z′) in Ω.

PROOF. We will sketch how to show that g is smooth; if one knows that g is of class
C1, the recessed edge theorem 3.52 may be used to prove that g is holomorphic, see part
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(v) below. The smoothness proof depends on the smoothness of continuous functions that
possess the mean value property for circles or spheres: such functions are harmonic. In
order to prove that a certain continuous auxiliary function has the mean value property,
it will first be shown that it has the sub mean value property, in other words, that it is
subharmonic. Readers who have not encountered subharmonic functions before may wish
to postpone the proof until they have studied Chapter 8.

(i) The function g is continuous. Indeed, let z′ → b′ in Ω′. Then one limit point
of g(z′) must be c = g(b′): the singular point (b′, g(b′)) can not be isolated. If there are
other limit points w of g(z′), they must have |w| = R, since |w| < R would imply that
there would be more than one singular point of f above b′. Thus for small ε > 0 there is a
small polydisc ∆(b′, r′) such that for any z′ in it, either |g(z′)− c| ≤ ε or |g(z′)− c| ≥ 2ε.
Denoting the corresponding subsets of ∆(b′, r′) by E and Ω′

0, respectively, the argument of
the preceding proof shows that E is closed, that g | E is continuous and that Ω′

0 is empty.
(ii) The function –log |g(z′)−w| will be subharmonic in z′. We give a proof for n = 2,

taking g(0) = 0 and writing z instead of z′ for the time being. Working close to the origin,
it will be shown that the continuous function Ω′ → R ∪ {−∞} given by

(8a) Gw(z) = G(z, w) = − log |g(z)− w|

is subharmonic in z around 0 whenever |w| = s is not too small and not too large. We
have to prove then that Gw has the sub mean value property for small r > 0 :

(8b) G(z, w) ≤ 1

2π

∫ π

−π

G(z + reit, w)dt.

For c 6= 0 fixed, w close to c and z near 0, [so that |g(z)| is small], one may repesent f(z, w)
by a power series in w − c with holomorphic coefficients ak(z) :

(8c) f(z, w) =
∑

k≥0

ak(z)(w − c)k.

Cf. Section 2.6: our function f is holomorphic on a neighbourhood of the point (0, c) in
C2.]

w

C(0,s)

0

c

g(z)

g(b)

fig 4.5
For fixed z, the point w = g(z) may be a singular point for f(z, w), but other singu-

larities must be as far away as the boundary of Ω. Hence if |c| is not too large, f(z, w) will
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be analytic in w (at least) for |w− c| < |g(z)− c|. Thus by the Cauchy-Hadamard formula
for the radius of convergence of a power series in one variable,

1/lim sup|ak(z)|1/k ≥ |g(z)− c|,

so that

(8d) A(z)
def
= lim sup

k→∞

1

k
log |ak(z)| ≤ − log |g(z)− c| = G(z, c).

In the following, we will show that for b near 0,

(8e) A∗(b)
def
= lim sup

z→b
A(z) = lim

ρ↓0
sup

|z−b|<ρ

A(z)equals G(b, c).

By the holomorphy of the coefficients ak(z), the functions (1/k) log |ak(z)| are sub-
harmonic around 0. There they are uniformly bounded from above, hence their sub mean
value property is inherited by the lim sup, A(z) in (8d). [Use Fatou’s lemma.] In the same
way, the sub mean value property carries over to the lim sup A∗(b) in (8e), considered as
a function of b.

Now suppose for a moment that A∗(b) < G(b, c) for some b. Then there are small δ
and ε > 0 such that A(z) < G(b, c)−2δ for |z−b| < 2ε. At this stage we appeal to a lemma
of Hartogs on sequences of subharmonic functions with a uniform upper bound [exercise
8.31]. It implies that the subharmonic functions (1/k) log |ak(z)| with lim sup < G(b, c)−2δ
must satisfy the fixed inequality

(1/k) log |ak(z)| < G(b, c)− δ for |z − b| < ε

for all k which exceed some index k0. By simple estimation, it would then follow that
the series in (8c) is uniformly convergent on the product domain |z − b| < ε, |w − c| <
(1 + δ)|g(b)− c|. Thus f would have an analytic continuation to a neighbourhood of the
singular point (b, g(b)).

This contradiction shows that G(b, c) = A∗(b). Being continuous, it follows that
G(b, c) is subharmonic as a function of b.

(iii) Actually, − log |g(z′) − w| will be harmonic in z′. Indeed, since (1/2π)
∫ π

π

log |ζ − seiθ|dθ = log s whenever |ζ| < s, integration of (8b) over a suitable circle |w| = s
leads to the result

− log s =
1

2π

∫ π

−π

G(z, seiθ)dθ ≤ 1

4π2

∫ π

−π

∫ π

−π

G(z + reit, seiθ)dtdθ = − log s.

It follows that one must have equality in (8b) for all small r > 0 and |w| = s. the resulting
mean value property implies that Gw(z) is harmonic and in particular also C∞ smooth,
cf. Section 8.1 and exercise 8.14.

(iv) The function g is smooth. Indeed, by exponentiation it follows from (iii) that
(g − w)(g − w) is smooth for each w of absolute value s. Choosing w = ±s, subtraction
will show that Re g is smooth. The choices w = ±is will show that Im g is smooth.
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(v) We finally show that g is holomorphic. Setting ϕ = Re (g − zn), ψ = Im (g − zn),
our set X is the intersection of the smooth real hypersurfaces V : ϕ = 0 and W : ψ = 0 in
Ω. The gradients of ϕ and ψ are linearly independent:

∂ϕ/∂xn = −1, ∂ϕ/∂yn = 0 while ∂ψ/∂xn = 0, ∂ψ/∂yn = −1.

Now the hypothesis of the theorem implies that the restriction of f to Ω0, the part of Ω
where min(ϕ, ψ) < 0, can not be continued analytically to a neighbourhood of any point
of X. Thus part (ii) of the recessed edge theorem 3.52 shows that g is holomorphic, cf.
exercise 3.19.

Remark. Hartogs’ original proof [Hartogs 1909] had different final steps, cf. exercises
4.32, 4.33 and [Narasimhan].
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Exercises

4.1. Suppose that f vanishes of order k ≥ 2 relative to zn at 0. Show that f need not
vanish of order k relative to z at 0.

4.2. Carry out an invertible linear transformation of C3 in order to make f(z) = z1z2z3
vanish of order 3 relative to the new third coordinate at 0.

4.3. Let f and g be holomorphic at the origin of Cn and not identically zero. Prove that f
and g can be simultaneously normalized relative to zn at 0. (A single linear coordinate
transformation will normalize both functions.)

4.4. Determine a polydisc ∆(0, ρ) as in Auxiliary Theorem (4.16) for the function f(z) =
2z2

1 + z2z3 + 2z2
3 + 2z3

3 on C3. How many zeros does f(z′, z3) have in ∆1(0, ρ3) for
z′ ∈ ∆(0′, ρ′)?

4.5. Apply Weierstrass’s factorization theorem to f(z) = z1z2z3 + z3(ez3 − 1) in O0(C3).
[Determine both W (z′, z3) and E(z′, z3).]

4.6. Prove Weierstrass’s division formula (4c) . [Defining Q as in formula (4d), show that

R(z)
def
= F (z)−Q(z)W (z) =

1

2πi

∫

C(0,ρn)

F (z′, w)

W (z′, w)

W (z′, w)−W (z′, zn)

w − zn
dw,

z ∈ ∆(0, ρ)

is a pseudopolynomial in zn of degree< k = degW.]

4.7. Let F and W be as in Weierstrass’s division theorem. Prove that there is only one
holomorphic representation F = QW + R around 0 with a pseudopolynomial R of
degree< k = degW. [If also F = Q1W + R1, then (Q1 −Q)W = R−R1.]

4.8. Suppose that P = QW in O0 where P is a pseudopolynomial in zn and W a Weier-
strass polynomial in zn. Prove that Q is a pseudopolynomial in zn.

4.9. Prove that the pseudopolynomial z2
2 − z2

1 in z2 is divisible by the pseudopolynomial
z1z

2
2 − (1 + z2

1)z2 + z1 in O0, but that the quotient is not a pseudopolynomial.

4.10. Prove that a power series f in O0 has a multiplicative inverse in O0 if and only if
f(0) 6= 0.

4.11. Characterize the irreducible and the reducible elements in O0(C1).

4.12. Prove directly that O0(C1) is a unique factorization domain.

4.13. Determine a resultant of f(z) = z2
3 − z1 and g(z) = z2

3 − z2 as elements of O′
0[z3].

4.14. Let A be a ufd. Prove that nonconstant polynomials f and g in A[x] have a (noncon-
stant) common factor in A[x] if and only if there are nonzero polynomials S and T ,
deg S < deg g, deg T < deg f such that Sf + Tg = 0.

4.15. The Sylvester resultant R(f, g) of two polynomials

f(x) = a0x
k + . . .+ ak, g(x) = b0x

m + . . .+ bm
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with coefficients in a commutative ring A with identity is defined by the determinant
indicated in fig 4.6.
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fig 4.6

Denote the cofactors of the elements in the last column by c0, . . . , cm−1, d0, . . . , dk−1

and set
c0x

m−1 + . . .+ cm−1 = S(x), d0x
k−1 + . . .+ dk−1 = T (x).

Prove that Sf + Tg = R(f, g). [Add to the last column xk+m−1 times the first, plus
xk+m−2 times the second, etc. Expand.]

4.16. Describe the zero sets of the Weierstrass polynomials z2
3−z1z2 and z4

3−z1z2z3 around
0 in C3. Identify the nonregular points.

4.17. Let f and g be relatively prime in O0 and normalized relative to zn. Prove that
around 0, the zero sets Zf and Zg can coincide only above the zero set ZR of a
nonzero holomorphic function R(z′), defined around 0′ in Cn−1.

4.18. (Nullstellensatz) Let f be irreducible over O0 with f(0) = 0 and suppose that g ∈ O0

vanishes everywhere on Zf around 0. Prove that f is a divisor of g in O0. Extend to
the case where f is a product of pairwise relatively prime irreducible factors.

4.19. Let f and g be relatively prime in O0. Prove that they are also relatively prime in Oa
for all points a in a neighbourhood of 0.

4.20. Describe the ideals in O0(C1) and verify that O0(C1) is a Noetherian ring.

4.21. Prove that an analytic set is locally the set of common zeros of finitely many holo-
morphic functions.
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4.22. Let Ω′, Ω, g and X be as at the beginning of Section 4.8. Let f be holomorphic
on Ω and zero free on Ω − X. Suppose that f vanishes at a point a ∈ X. Prove
(without using the results of Section 4.8) that f = 0 everywhere on X and that g is
holomorphic on Ω′.

4.23. Let X be an analytic subset of a connected domain D ⊂ Cn of complex dimension
≤ n−1. Let f be holomorphic on Ω = D−X and bounded on a neighbourhood (in Ω)
of every point a ∈ X. Prove that f has an analytic extension F to the whole domain
D.

4.24. Use the preceding removable singularities theorem to verify that Ω = D −X is con-
nected. [If Ω = Ω0 ∪ Ω1 with disjoint open Ωj and f = 0 on Ω0, f = 1 on Ω1, then
. . . ].

4.25. Let f be continuous on D ⊂ C2 and holomorphic on D − V , where V is a real
hyperplane, for example, {y1 = 0}. Prove that f is holomorphic on D.

4.26. (An analytic singularity set in Cn of complex dimension ≤ n − 2 is removable) Let
X be an analytic subset of D ⊂ Cn which is locally contained in the set of common
zeros of two relatively prime holomorphic functions. Suppose that f is holomorphic
on D − X. Prove that f has an analytic extension to D. Begin by treating the case
n = 2! [Taking a ∈ X equal to 0, one may assume that X is locally contained in,

or equal to, Zg ∩ Zh, where g is a Weierstrass polynomial in zn with coefficients
in z′ = (z1, . . . , zn−1) and h (obtained via a resultant) a Weierstrass polynomial in
zn−1 with coefficients in z′′ = (z1 . . . , zn−2). Choose ρ > 0 such that g(z′, zn) 6= 0 for
|zn| = ρn, z

′ ∈ ∆(0′, ρ′) and h(z′′, zn−1 6= 0 for |zn−1| = ρn−1, z
′′ ∈ ∆(0′′, ρ′′). Extend

f(z) = f(z′′, zn−1, zn) analytically to the closed bidisc |zn−1| ≤ ρn−1, |zn| ≤ ρn for
each z′′ ⊂ ∆(0′′, ρ′′). How can one represent the analytic extension F (z′′, zn−1, zn)?
Show that F (z) is holomorphic on ∆(0, ρ).]

4.27. (Special case of Rado’s theorem) Let f be continuous on the closed disc ∆(0, 1) ⊂ C
and holomorphic on Ω = ∆(0, 1)−Zf . Let F be the Poisson integral of f on the disc.
Prove that

(i) F = f on Ω. [Take |f | ≤ 1 and apply the maximum principle to harmonic

functions such as Re (F − f) + ε log |f | on Ω.]

ii) F provides an analytic extension of f to Ω(0, 1). [G = DF = ∂F/∂z will be

antiholomorphic: DG = ∂G/∂z = ∂2F/∂z∂z = 0 and on Ω, . . .]

4.28. (Rado’s removable singularities theorem) Let Ω ⊂ D ⊂ Cn be open and suppose that
f is holomorphic on Ω and such that f(z)→ 0 whenever z tends to a boundary point
ζ of Ω in D. Prove that f has an analytic extension to D, obtained by setting f = 0
on D − Ω.

4.29. Let D be a connected domain in Cn, let V be a complex hyperplane intersecting D
and let f be holomorphic on D − V . Give two proofs for the following assertion: If f
has an analytic continuation to a neighbourhood of some point a ∈ V ∩D, then f has
an analytic continuation to the whole domain D.
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4.30. For D ⊂ C2 and X = D ∩ R2, let f be analytic on D − X. Prove that f has an
analytic extension to D. [One approach is to set z1 + iz2 = z′1, z1 − iz2 = z′2, so that
X becomes a graph over C.]

4.31. Proposition 4.81 has sometimes been stated without the restriction supK |g(z′)| =
RK < R. Show by an example that some restriction is necessary.

4.32. (Proof of Hartogs’ theorem for n = 2 without appeal to the recessed edge theorem)
For z in a small neighbourhood of 0, let g = g(z) have its values close to 0. Suppose
one knows that − log |g − w| is harmonic in z for every w in a neighbourhood of the
circle C(0, s). Deduce that

gzz
g − w −

gzgz
(g − w)2

= constant.

Conclude that gzz = 0 and gzgz = 0, so that either Dg = gz ≡ 0 or Dg ≡ 0.

4.33. (Continuation) Rule out the possibility Dg ≡ 0 in the proof of Hartog’ theorem for
n = 2 by a coordinate transformation, (z, w) = (z, z + w̃). [The singularity set X
becomes w̃ = g̃(z) = g(z)− z.]
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CHAPTER 5

Holomorphic mappings and complex manifolds

Holomorphic mappings ζ = f(z) from a connected domain D in a space Cm to some
space Cp are a useful tool in many problems. They are essential for the definition and
study of complex manifolds [Section 5.5-5.7]. Holomorphic maps may be defined by a
system of equations

(0) ζj = fj(z1, . . . , zm), j = 1, . . . , p with fj ∈ O(D).

is a basic property that compositions of such maps are again holomorphic, cf. exercise 1.5.
One often encounters 1 − 1 holomorphic maps. In the important case m = p = n,

such a map will take D ⊂ Cn onto a domain D′ in Cn, and the inverse map will also be
holomorphic (the map f is “biholomorphic”), see Section 5.2. In this case the domains D
and D′ are called analytically isomorphic, or (bi)holomorphically equivalent; the classes of
holomorphic functions O(D) and O(D′) are closely related.

In C (but not in Cn), there is a close connection between 1− 1 holomorphic and con-
formal mappings. A famous result, the Riemann mapping theorem, asserts that any two
simply connected planar domains, different from C itself, are conformally or holomorphi-
cally equivalent. However, in Cn with n ≥ 2, different domains are rarely holomorphically
equivalent, for example, the polydics and the ball are not. Similarly, Cn domains rarely
have nontrivial analytic automorphisms. However, if they do, the automorphism groups
give important information. We will discuss some of the classical results of H. Cartan
on analytic isomorphisms in Cn which make it possible to determine the automorphism
groups of various special domains [Section 5.3, 5.4].

One-to-one holomorphic maps continue to be an active subject of research. In recent
years the main emphasis has been on boundary properties of such maps. Some of the
important developments in the area are indicated in Section 5.8; see also the references
given in that Section.

5.1 Implicit mapping theorem. The level set (where f= constant) or zero sets of
holomorphic maps (0) are a key to their study and applications. The level set of f through
the point a ∈ D is the solution set of the equation f(z) = f(a) or of the system

(1a) 0 = fj(z)− fj(a) =

m
∑

k=1

∂fj
∂zk

(a)(zk − ak) + higher order terms, j = 1, . . . , p.

The interesting case is that where the number m of unknowns is at least as large as the
number p of equations.

An approximation to the level set is provided by the zero set of the linear part or
differential mapping,

(1b) df




a
: dfj =

m
∑

k=1

∂fj
∂zk

(a)dzk, j = 1, . . . , p.
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We will assume that our holomorphic map f is nonsingular at a. By that one means that
the linear map df





a
is nonsingular, that is, it must be of maximal rank. Taking m ≥ p,

the (rectangular) Jacobi matrix or Jacobian

Jf (a)
def
=

[

∂fj
∂zk

(a)

]

, j = 1, . . . , p; k = 1, . . . ,m

thus will have rank equal to p. The solution set of the linear system df




a
= 0 will then be

a linear subspace of Cm of complex dimension n = m− p.
We now turn to a more precise description of the level set of f when m−p = n ≥ 1. It is

convenient to renumber the variables zk in such a way that the final p×p submatrix of Jf (a)
becomes invertible. Renaming the last p variables w1, . . . , wp and setting a = 0, f(a) + 0,
the system (1a) for the level set becomes

(1c) fj(z, w) = fj(z1, . . . , zn, wn, . . . , wp) = 0, j = 1, . . . , p

with fj(0) = 0 and

(1d) det J(0)
def
= det

[

∂fj
∂wk

(0)

]

6= 0.

Under these conditions one has the following extension of the Implicit function theorem
4.21:

Theorem 5.11 ( implicit mapping theorem). Let f = (f1, . . . , fp), fj = fj(z, w) be
a holomorphic map of the polydisc ∆(0, r) ⊂ Cn

z ×Cp
w to Cp such that

f(0) = 0, det J(0) 6= 0.

Then there exist a polydisc ∆(0, ρ) = ∆n(0, ρ′)×∆p(0, ρ
′′) in ∆(0, r) and a unique holo-

morphic map w = ϕ(z) = (ϕ1, . . . , ϕp) from ∆n(0, ρ′) ⊂ Cn
z to ∆p(0, ρ

′′) ⊂ Cp
w such that

ϕ(0) = 0 and
f(z, w) = 0 at a point (z, w) ∈ ∆(0, ρ)

if and only if
w = ϕ(z) with z ∈ ∆n(0, ρ′).

COROLLARY 5.12 (Local form of the zero set for the map f). In ∆(0, ρ) ⊂ Cn+p, the
zero of the holomorphic map f is the graph of the holomorphic map ϕ on ∆n(0, ρ′).
Equivalently, the zero set of f in ∆(0, ρ) is the image of the 1 − 1 holomorphic map
ψ = (id, ϕ) on ∆(0, ρ′) ⊂ Cn. This map is bicontinuous, hence the zero set of f around
the origin is homeomorphic to a domain in Cn and hence has complex dimension n.

PROOF of Theorem 5.11. In the following, a map ϕ from ∆n(0, ρ′) to ∆p(0, ρ
′′) will be

loosely referred to as a map with associated polydisc ∆n(0, ρ′)×∆p(0, ρ
′′).

We will use the Implicit function theorem 4.21 and apply induction on the number
p of equations (1c). By hypothesis (1d) at least one of the partial derivatives Dpfj =
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∂fj/∂wp, j = 1, . . . , p must be 6= 0 at the origin, say Dpfp(0) 6= 0. One may then solve
the corresponding equation

fp(z, w1, . . . , wp) = 0

for wp: around 0, it will have a holomorphic solution

(1e) wp = χ(z, w′) = χ(z, w1, . . . , wp−1)

with χ(0) = 0 and associated polydisc ∆n+p−1(0, s′)×∆1(0, s′′).
Substituting the solution (1e) into the other equations, one obtains a new system of

p − 1 holomorphic equations in p − 1 unknown functions on some neighbourhood of the
origin:

(1f) gj(z, w
′)

def
= fj(z, w

′, χ(z, w′)) = 0, j = 1, . . . , p− 1

with gj(0) = 0. The new Jacobian J ′ will have the elements

(1g)
∂gj
∂wk

=
∂fj
∂wk

+
∂fj
∂wp

∂χ

∂wk
=

∂fj
∂wk

− ∂fj
∂wp

(

∂fp
∂wk

/

∂fp
∂wp

)

j, k = 1, . . . , p− 1.

In the final step we have used the identity fp(z, w
′, χ(z, w′)) = 0 to obtain the relations

∂fp
∂wk

+
∂fp
∂wk

∂χ

∂wk
≡ 0, k = 1, . . . , p− 1.

By (1g) the k-th column of J ′ is obtained by taking the k-th column of J and sub-
tracting from it a multiple of the final column of J. The zeros which then appear in the
last row of J are omitted in forming J ′, but taken into account for the evaluation of det J :

det J = (det J ′) · ∂fp
∂wp

.

Conclusion: det J ′ 6= 0 at the origin.
If we assume now that the theorem had been proved already for the case of p − 1

equations in p−1 unknown functions, it follows that the new system (1f) has a holomorphic
solution w′ = (ϕ1, . . . , ϕp−1) around 0 which vanishes at 0 and has associated polydisc
∆n(0, σ′) × ∆p−1(0, σ′′). Combination with (1e) finally furnishes a holomorphic solution
w = (ϕ1, . . . , ϕp) of our system (1c) around 0 which vanishes around 0 and has associated
polydisc ∆n(0, ρ′)×∆p(0, ρ

′′). That the map ϕ is unique follows from the observation that
the corresponding map ψ = (id, ϕ) on ∆n(0, ρ′) is uniquely determined by the zero set of
f in ∆(0, ρ).

REMARKS 5.13. Theorem 5.11 may also be derived from a corresponding implicit map-
ping theorem of real analysis. Indeed, the system of p holomorphic equations (1c) in p
unknown complex functions wj = uj + ivj of z1, . . . , zn can be rewritten as a system of
2p real equations in the 2p unknown real functions uj , vj of x1, y1, . . . , xn, yn. The new
Jacobian JR(0) will also have nonzero determinant, cf. exercise 5.3, hence the real system
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is uniquely solvable and will furnish smooth solutions uj(x, y), vj(x, y) around the origin.
Writing ϕj(x) = uj(z) + ivj(z), the identities

fj(z1, . . . , zn, ϕ1(z), . . . , ϕp(z)) ≡ 0, j = 1, . . . , p

may be differentiated with respect to each zν to show that the functions ϕj satisfy the
Cauchy-Riemann equations, hence they are holomorphic.

Actually, the contemporary proofs of the real analysis theorem involve successive
approximation or a fixed point theorem, and such techniques may be applied directly to
the holomorphic case as well, cf. exercise 5.7.

Inverse maps. We first prove a theorem on the existence of a local holomorphic inverse
when the given map has nonvanishing Jacobi determinant. The derivation will be based
on the preceding result, but it will be more natural now to interchange the roles of z and
w.

Theorem 5.21 (local inverse). Let g be a holomorphic map of a neighbourhood of
0 in Cn to Cn such that g(0) = 0 and det Jg(0) 6= 0. Then there is a (connected open)
neighbourhood U of 0 on which g is invertible. More precisely, there is a holomorphic map
h of a Cn neighbourhood V of 0 onto U which inverts g |U :

w = g(z) for z ∈ U ⇐⇒ z = h(w) for w ∈ V.
PROOF. Letting w vary over all of Cn and z over a suitable neighbourhood of 0 in Cn,
the equation

ζ = f(w, z)
def
= w − g(z) [ or ζj = wj − gj(z), ∀j]

will define a holomorphic map of a polydisc ∆(0, r) in C2n to Cn. This map will satisfy the
conditions of the Implicit mapping theorem 5.11 with p = n and (w, z) instead of (z, w) :

f(0) = 0, det

[

∂fj
∂zk

(0)

]

= ± det

[

∂gj
∂zk

(0)

]

6= 0.

Hence there are a polydisc ∆(0, ρ) = ∆n(0, ρ′) × ∆n(0, ρ′′) in Cn
w × Cn

z and a unique
holomorphic map z = h(w) from ∆n(0, ρ′) to ∆n(0, ρ′′) such that h(0) = 0 and

(2a)
f(w, z) ≡ w − g(z) = 0 for (w, z) ∈ ∆(0, ρ)

⇐⇒ z = h(w) for w ∈ ∆n(0, ρ′)
.

We still have to identify suitable sets U and V . For U one may take any (connected

open) neighbourhood of 0 in ∆n(0, ρ′′) for which V
def
= g(U) belongs to ∆n(0, ρ′). Indeed,

for such a choice of U and any z ∈ U, the point (g(z), z) lies in ∆(0, ρ), hence by (2a)
z = h ◦ g(z), so that h | V is the inverse of g | U and conversely. Finally, by the arrow
pointing to the left, g = h−1 on h(∆n(0, ρ′)), hence since h is continuous, V = h−1(U) will
be open.

We can now prove the fundamental result that a 1− 1 holomorphic map in Cn (with
n-dimensional domain) is biholomorphic, that is, the inverse is also holomorphic (Clements
1912):
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Theorem 5.22 (holomorphy of global inverse). Let Ω ⊂ Cn be a connected do-
main and let w = f(z) be a 1 − 1 holomorphic map of Ω onto a set Ω′ in Cn. Then Ω′

is also a connected domain and the Jacobi determinant, det Jf (z) is different from zero
throughout Ω, hence f−1 will be a holomorphic map of Ω′ onto Ω.

PROOF. The proof is a nice application of the local theory of zero sets and will use
induction on the dimension n. In view of Theorem 5.21 we need only show that det Jf (a) 6=
0, ∀a ∈ Ω; it will follow that Ω′ is open. Whenever convenient, we may take a = f(a) = 0.

(i) for n = 1 it is well known that the map w = f(z) is 1 − 1 around the origin (if
and) only if f ′(0) 6= 0. Indeed, if

f(z) = bzk + higher order terms, b 6= 0, k ≥ 2,

the f(z) will assume all nonzero values c close to 0 at k different points z near the origin.
Cf. the proof of the Open mapping theorem 1.81; the k roots will be distinct because f ′(z)
cannot vanish for small z 6= 0.

(ii) Now the induction step – first an outline. We have to prove that the analytic
function det Jf (z) on Ω ⊂ Cn, n ≥ 2 is zero free. Supposing on the contrary that for our
1−1 map f , the zero set Z = Z(det Jf ) is nonempty, the induction hypothesis will be used
to show that all elements of the matrix Jf must vanish on Z. From this it will be derived
that f=constant on Z around the regular points, contradicting the hypothesis that f is
1− 1.

For simplicity we focus on the typical case n = 3, assuming the result for n = 2. Thus,
let f :

(2b) wj = fj(z1, z2, z3), j = 1, 2, 3

be a 1− 1 holomorphic map on Ω ⊂ C3, 0 ∈ Ω, with f(0) = 0 and suppose that

(2c) det Jj =

∣

∣

∣

∣

∣

∣

∣

∣

D1f1 D2f1 D3f1

D1f2 D2f2 D3f2

D1f3 D2f3 D3f3

∣

∣

∣

∣

∣

∣

∣

∣

= 0 for z = 0

(a) We first assume that the Jacobi matrix Jj(0) contains a nonzero element; renum-
bering coordinates we may take D3f3(0) 6= 0. Replacing wi by wi − ciw3 with suitable
ci, i = 1, 2 we can ensure that for the representation of our map, D3fi(0) = 0, i = 1, 2.
Then by (2c) also

(2d)

∣

∣

∣

∣

∣

D1f1 D2f2

D1f2 D2f2

∣

∣

∣

∣

∣

= 0 for z = 0.

Around the origin the zero set Z(f3) will be the graph of a holomorphic function z3 =
ϕ(z1, z2) with ϕ(0) = 0 [Implicit function theorem 4.21]. The restriction of f to Z(f3)
must be 1− 1; around 0 this restriction is given by

wi = hi(z1, z2)
def
= fi(z1, z2, ϕ(z1, z2)), i = 1, 2; w3 = 0.
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It follows that the holomorphic map h must be 1−1 around 0 ∈ C2, hence by the induction
hypothesis, det Jh(0) 6= 0. However, since D3fi(0) = 0,

Djhi(0) = Djfi(0) +D3fi(0)Djϕ(0) = Djfi(0), i, j = 1, 2

so that by (2d), det Jh(0) = 0. This contradiction proves that all elements in Jf (0) must
vanish.

(b) By the preceding argument, all elements Dkfj of the Jacobian Jf must vanish
at every point of the zero set Z = Z(det Jf ) in Ω. This zero set can not be all of Ω, for
otherwise Dkfj ≡ 0, ∀j, k and then f would be constant on Ω, hence not 1− 1.

Thus det Jf 6≡ 0 and the zero set Z will contain a regular point a [cf. Theorem 4.62].
By suitable manipulation we may assume that Z is the graph of a holomorphic function
z3 = ψ(z1, z2) around a. Then the restriction f | Z is locally given by

wi = ki(z1, z2)
def
= fi(z1, z2, ψ(z1, z2)), i = 1, 2, 3.

However, the derivatives Djki will all vanish around a′ = (a1, a2). Indeed, they are lin-
ear combinations of Djfi and D3fi on Z, hence equal to zero. The implication is that
k=constant around a′ hence f | Z is constant around a, once again a contradiction.

The final conclusion is that det Jf 6= 0 throughout Ω, thus completing the proof for
n = 3. The proof for general n is entirely similar.

REMARKS 5.23. Let us first consider holomorphic maps f from Ω ⊂ Cm to Ω′ ⊂ Cp. In
the 1− 1 case such a map f is biholomorphic if p = m, but if p > m, the inverse map need
not be holomorphic on f(Ω) [it need not even be continuous!], cf. exercise 5.9.

For p = m biholomorphic maps f : Ω→ f(Ω) are examples of so-called proper maps.
A map f : Ω→ Ω′ is called proper if for any compact subset K ⊂ Ω′ the pre-image f−1(K)
is compact in Ω. When Ω and Ω′ are bounded, this means that for any sequence of points
{z(ν)} in Ω which tends to the boundary ∂Ω, the image sequence {f(z(ν))} must tend to
the boundary ∂Ω′.

5.3 Analytic isomorphisms I. In Sections 5.3 and 5.4, D will always denote a connected
domain in Cn.

Definition 5.31. A 1−1 holomorphic (hence biholomorphic) map of D onto itself is called
an (analytic) automorphism of D. The group of all such automorphisms is denoted by
AutD.

Domains that are analytically isomorphic must have isomorphic automorphism groups.
Indeed, if f establishes an analytic isomorphism of D onto D′ ⊂ Cn and h runs over the
automorphisms of D, then f ◦ h ◦ f−1 runs over the automorphisms of D′. H. Cartan’s
1931 theorem below will make it possible to determine the automorphism groups of some
simple domains and to establish the non-isomorphy of certain pairs of domains, cf. Section
5.4.

EXAMPLES 5.32. What are the automorphisms f of the unit disc ∆(0, 1) in C? Suppose
first that f(0) = 0. Schwarz’s lemma will show that such an automorphism must have the
form

f(z) = eiθz for some θ ∈ R.
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[Indeed, by the maximum principle |f(z)/z| must be bounded by 1 on ∆ and similarly,
using the inverse map, |z/f(z)| ≤ 1. Thus |f(z)/z| = 1, so that f(z)/z must be constant.]

There also are automorphisms f that take the origin to an arbitrary point a ∈ ∆(0, 1),
or that take such a point a to 0. An example of the latter is given by

(3a) f(z) =
z − a
1− az .

[Formula (3a) defines a 1 − 1 holomorphic map on C − {1/a} and |f(z)| = 1 for |z| = 1,
hence |f(z)| < 1 for |z| < 1. Every value w ∈ ∆(0, 1) is taken on by f on ∆(0, 1).]

On the unit bidisc ∆2(0, 1) = ∆(0, 0; 1, 1) in C2 the formulas

(3b) wj = gj(z) =
zj − aj
1− ajzj

, j = 1, 2

define an automorphism that carries a = (a1, a2) ∈ ∆2(0, 1) to the origin.

EXAMPLES 5.33. The unitary transformations of Cn are the linear transformations

w = Az or wj =
n
∑

k=1

ajkzk, j = 1, . . . , n

that leave the scalar product invariant [and hence all norms and all distances]:

(Az,Az′) = (z, A
T
Az′) = (z, z′), ∀z, z′.

[Thus they may also be described by the condition A
T
A = In or A

T
= A−1.] In particular

|Az| = |z|, ∀z: unitary transformations define automorphisms of the unit ball B(0, 1) in
Cn.

There are also automorphisms of the ball that carry an arbitrary point a ∈ B(0, 1)
to the origin. First carrying out a suitable unitary transformation, it will be sufficient to
consider the case where a = (c, 0, . . . , 0) with c = |a| > 0. If n = 2 one may then take

(3c) w1 =
z1 − c
1− cz1

, w2 =
(1− c2)

1
2

1− cz1
z2.

Cf. also exercises 5.21, 5.22 and [Rudin 4].

Theorem 5.34. Let D ⊂ Cn be bounded and let w = f(z) be a holomorphic map of
D into itself with fixed point a : f(a) = a. Suppose furthermore that the Jacobian Jf (a)
is equal to the n × n identity matrix In, so that the development of f around a can be
written in vector notation as

f(z) = a+ (z − a) + P2(z − a) + . . .+ Ps(z − a) + . . . ,
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where Ps(ζ) is a vector [n-tuple] of homogeneous polynomials Psj in ζ1, . . . , ζn of degree
s. Then f is the identity map:

f(z) ≡ z.
PROOF. The essential idea of the proof is to iterate the map f. The iterates f◦f, f◦f◦f, . . .
will also be holomorphic maps D → D with fixed point a. Taking a = 0 as we may, the
components of f become

fj(z) =
∑

α≥0

c(j)α zα = zj + P2j(z) + . . .+ Psj(z) + . . . ,

where Psj is a homogeneous polynomial of degree s. We choose positive vectors r =
(r1, . . . , rn) and R = (R1, . . . , Rn) such that

∆(0, r) ⊂ D ⊂ ∆(0, R).

Then fj will in particular be holomorphic on ∆(0, r) and |fj | will be bounded by Rj. Hence
by the Cauchy inequalities 1.65:

(3d) |c(j)α | ≤ Rj/rα, ∀α, j = 1, . . . , n.

Now let s be the smallest integer ≥ 2 such that

f(z) = z + Ps(z) + h(igher) o(rder) t(erms)

with Ps 6≡ 0 [if there is no such s we are done]. Then the composition f ◦ f has the
expansion

f ◦ f(z) = f(z) + Ps ◦ f(z) + h.o.t.

= z + Ps(z) + h.o.t.+ Ps(z) + h.o.t.

= z + 2Ps(z) + h.o.t.

[It is convenient to use components and to begin with the cases n = 1 and n = 2.] Quite
generally, the k times iterated map will have the expansion

f◦k(z) = f ◦ f ◦ . . . ◦ f(z) = z + kPs(z) + h.o.t.

[Use induction.] This is also a holomorphic map of D into itself, hence inequality (3d) may
be applied to the coefficients in kPsj :

|kc(j)α | ≤ Rj/rα, |α| = s; j = 1, . . . , n; k = 1, 2, . . . .

The conclusion for k →∞ is that Ps ≡ 0 and this contradiction shows that f(z) ≡ z.

5.4 Analytic isomorphisms II: circular domains.

DEFINITION 5.41. D ⊂ Cn is called a circular domain if a ∈ D implies that eiθa =
(eiθa1, . . . , e

iθan) belongs to D for every real number θ.

For a 6= 0, the points z = eiθa, θ ∈ R for a circle with center 0 in the complex line
through 0 and a. (Circular domains need not be multicircular!) Circular domains admit
the one-parameter family of automorphisms {kθ}, given by the formula

(4a) kθ(z) = eiθz, z ∈ D.
Observe that linear mappings commute will transformations kθ :

(4b) Akθ(z) = Aeiθz = eiθAz = kθ(Az).

The proof of the main theorem will depend on the following fact:
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Lemma 5.42. Linear mappings are the only holomorphic mappings f = (f1, . . . , fn) of a
neighbourhood of 0 in Cn that commute with all kθ’s.

PROOF. Indeed, suppose that

f(eiθz) ≡ eiθf(z) or fj(e
iθz) ≡ eiθfj(z), ∀j.

Expanding fj(z) =
∑

α≥0 bαz
α, it follows that

fj(e
iθz) =

∑

bα(eiθz1)α1 . . . (eiθzn)αn =
∑

bαe
i|α|θzα ≡ eiθ

∑

bαz
α,

hence by the uniqueness of the power series representation,

(ei|α|θ − eiθ)bα = (ei(|α|−1)θ − 1)eiθbα = 0.

If this holds for all θ’s [or for a suitable subset!], the conclusion is that bα = 0 whenever
|α| 6= 1, and then fj is linear.

Theorem 5.43. Let D and D′ be bounded circular domains in Cn containing the origin.
Suppose that f = (f1, . . . , fn) is an analytic isomorphism of D onto D′ such that f(0) = 0.
Then the map f must be linear:

fj(z) = aj1z1 + . . .+ ajnzn, j = 1, . . . , n.

PROOF. The proof will involve a number of holomorphic maps ϕ [of a neighbourhood of
0 in Cn to Cn] with ϕ(0) = 0. We will represent the differential or linear part of such a ϕ
at the origin by

dϕ = dϕ
∣

∣

0
: wj =

n
∑

k=1

∂ϕj
∂zk

(0)zk.

Observe that such linear parts obey the following rules:

(4c) d(ϕ ◦ ψ) = dϕ ◦ dψ, dϕ−1 ◦ dϕ = d(ϕ−1 ◦ ϕ) = id, dkθ = kθ

[cf. (4a); the differential of a linear map is the map itself].
To the given analytic isomorphism f we associate the auxiliary map

(4d) g = k−θ ◦ f−1 ◦ kθ ◦ f, θ ∈ R fixed.

This will be an automorphism of D with g(0) = 0. Linearization gives

dg = dk−θ ◦ df−1 ◦ dkθ ◦ df = k−θ ◦ kθ ◦ df−1 ◦ df = id,

because kθ commutes with linear maps. Thus the development of g around the origin has
the form

g(z) = z + P2(z) + h.o.t.

Applying Theorem 5.32 to g we find that g(z) ≡ z or g = id. Returning to the
definition of g (4d), the conclusion is that

f ◦ kθ = kθ ◦ f, ∀θ ∈ R,

hence by Lemma 5.42, f is linear.

As an application one may verify a classical result of Poincaré:
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Theorem 5.44. The unit polydisc ∆(0, 1) and the unit ball B(0, 1) in C2 are not ana-
lytically isomorphic.

PROOF. Suppose that f is an analytic isomorphism of ∆ onto B. It may be assumed that
f(0) = 0. Indeed, if f initially carried ζ ∈ δ to 0 in B, we could replace f by f ◦ g−1 where
g is an automorphism of ∆ that takes ζ to 0, cf. (3a).

Theorem 5.43 now shows that f = (f1, f2) must be linear:

f1(z) = az1 + bz2, f2(z) = cz1 + dz2.

Here |fj(z)| must be < 1 for |zν | < 1. Setting z1 = reit and z2 = r, it follows for r ↑ 1 and
suitable choices of t that

(4e) |a|+ |b| ≤ 1, |c|+ |d| ≤ 1.

We also know that z → ∂∆ must imply f(z)→ ∂B [the map f must be proper, cf. 5.23].
Setting z = (r, 0) or (0, r) it follows for r ↑ 1 that

(4f) |a|2 + |c|2 = 1, |b|2 + |d|2 = 1.

Combination of (4f) and (4e) shows that

2 = |a|2 + |c|2 + |b|2 ≤ (|a|+ |b|)2 + (|c|+ |d|)2 ≤ 2,

hence |a||b|+ |c||d| = 0, so that

(4g) ab = cd = 0.

If b = 0 we must have |d| = 1 (4f), hence c = 0 (4g) and thus |a| = 1 (4f); if a = 0 we
must have |c| = 1, d = 0 and |b| = 1. In conclusion, the matrix of the linear transformation
f must have one of the following forms:









e
iθ1

0

0 e
iθ2









or









0 e
iθ2

e
iθ1

0









However, the corresponding maps take ∆ onto itself, not onto B! This contradiction shows
that there is no analytic isomorphism of ∆ onto B.

A different proof that readily extends to Cn is indicated in exercise 5.13. For further
results on AutD, see [Behnke-Thullen].

5.5 Complex submanifolds of Cn. It is useful to start with a discussion of local
holomorphic coordinates.
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DEFINITION 5.51. Suppose we have a system of functions

(5a) w1 = g1(z), . . . , wn = gn(z)

which defines a 1− 1 holomorphic map g of a neighbourhood U of a in Cn
z onto a neigh-

bourhood V of b = g(a) in Cn
w. Such a system is called a local coordinate system for Cn

at a, or a holomorphic coordinate system for U.
The reasons for the names are: (i) there is a [holomorphic] 1 − 1 correspondence

between the points z ∈ U and the points w = g(z) of the neighbourhood V of b = g(a);
(ii) every holomorphic function of z on U can be expressed as a holomorphic function of w
on V (and conversely), cf. Section 5.2. By the same Section, holomorphic functions (5a)
will form a local coordinate system for Cn at a if and only if

(5b) det Jg(a) 6= 0.

Lemma 5.52. Suppose we have a family of p < n holomorphic functions {w1 =
g1(z), . . . , wp = gp(z)} with

rankJ(g1, . . . , gp) = p

at a. Such a family can always be augmented to a local coordinate system (5a) for Cn

at a.

PROOF. Indeed, the vectors

c1 =

[

∂g1
∂zk

(a)

]

k=1,...,n

, . . . , cp =

[

∂gp
∂zk

(a)

]

k=1,...,n

will be linearly independent in Cn. Thus this set can be augmented to a basis of Cn by
adding suitable constant vectors

cq = [cqk]k=1,...,n, q = p+ 1, . . . , n.

Defining gq(z) =
∑

k cqkzk for p+ 1 ≤ q ≤ n, the holomorphic functions

w1 = g1(z), . . . , wn = gn(z)

will satisfy condition (5b), hence they form a coordinate system for Cn at a.

DEFINITION 5.53. A subset M of Cn is called a complex submaifold if for every point
a ∈M , there are a neighbourhood U of a in Cn and an associated system of holomorphic
functions g1(z), . . . , gp(z), with rankJ(g1, . . . , gp) equal to p on U , such that

(5c) M ∩ U = {z ∈ U : g1(z) = . . . = gp(z) = 0}.

All values of p ≥ 0 and ≤ n are allowed; it is not required that p be the same
everywhere on M.
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Examples. The zero set Zf of a holomorphic function f on open Ω ⊂ Cn is in general
not a complex submanifold, but the subset Z∗

f of the regular points of Zf is one, cf. Section
4.6. Any open set Ω ⊂ Cn is a complex submanifold. The solution set of a system of p ≤ n
linear equations over Cn with nonsingular coefficient matrix is a complex submanifold.

Locally, a complex submanifold M is homeomorphic to a domain in some space
Cs, 0 ≤ s ≤ n. In fact, the Implicit mapping theorem 5.11 will give an effective dual
representation. Using the defining equations (5c) for M around a, one can express p of the
coordinates zj in terms of the other n− p with the aid of a holomorphic map ϕ. One thus
obtains the following

DUAL REPRESENTATION 5.54. Up to an appropriate renumbering of the coordinates,
the general point a ∈ M in Definition 5.53 will have a neighbourhood ∆(a, ρ) ⊂ U such
that

(5d) M ∩∆(a, ρ) = {z ∈ Cn : z = ψ(z′) = (z′, ϕ(z′)), z′ ∈ ∆s(a
′, ρ′) ⊂ Cs}.

Here ψ = (id, ϕ) is a 1−1 holomorphic map on ∆(a′, ρ′) such that g1 ◦ψ = . . . = gp ◦ψ ≡ 0
and s = n− p.

Such a map ψ is called a local (holomorphic) parametrization of M at a and the number
s is called the (complex) dimension of M at a. The dimension will be locally constant; the
maximum of the local dimensions is called dimM . If M is connected, dimaM = dimM
for all a ∈M.

One may use the dual representation (5d) to define holomorphic functions on a complex
submanifold M of Cn :

DEFINITION 5.55. A function f : M → C is called holomorphic at (or around) a ∈ M
if for some local holomorphic parametrization ψ of M at a, the composition f ◦ ψ is
holomorphic in the ordinary sense.

In order to justify this definition, one has to show that different local parametrizations
of M at a will give the same class of holomorphic functions on M at a. We do this by
proving the following characterization:

Theorem 5.56. A function f on a complex submanifold M of Cn is holomorphic at
a ∈ M if and only if it is locally the restriction of a holomorphic function on some Cn

neighbourhood of a.

PROOF. (i) The difficult part is to extend a given holomorphic function f on M to a
holomorphic function on a Cn neighbourhood of a ∈M. The idea is simple enough: start
with a set of local defining functions w1 = g1, . . . , wn = gn for Cn at a [lEMMA 5.52]. In
the w-coordinates M is locally given by w1 = . . . = wp = 0 and one can use wp+1, . . . , wn
as local coordinates for M. It turns out that the given f on M can be considered locally as a
holomorphic function F (wp+1, . . . , wn). The latter actually defines a holomorphic function
on a Cn neighbourhood of a which is independent of w1, . . . , wp.

We fill in some details. In a small neighbourhood U = ∆(a, ρ) of a we will have two
representations for M. There is a certain local parametrization ψ (5d) which was used to
define f as a holomorphic function on M at a :

f ◦ ψ(z′) ∈ O{∆(a′, ρ′)}.
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We also have the initial representation (5c). Using the augmentation of Lemma 5.52 and
taking U small enough, the neighbourhood V = g(U) of b = g(a) in Cn

w will give us
representations

(5e)
U = h(V ) = {z ∈ Cn : z = h(w), w ∈ V }, h = g1,

M ∩ U = h(V ∩ {w1 = . . . = wp = 0}) = {z ∈ Cn : z = h(0, w̃), (0, w̃) ∈ V }.

Here (0, w̃) = (0, . . . , 0, wp+1, . . . , wn). In view of (5d) we obtain from (5e) a holomorphic
map of the (0, w̃-part of V onto ∆(a′, ρ′) :

z′ = h′(0, w̃) : written out, zj = hj(0, w̃), j = 1, . . . , s.

Thus in terms of the w-coordinates, f |M ∩ U is given by

(5f) F (w)
def
= f ◦ ψ ◦ h′(0, w̃),

(0, w̃) ∈ V . If we now let w run over all of V , formula (5f) furnishes a holomorphic
function F (w) on all of U which is independent of w1, . . . , wp.

(ii) The proof in the other direction is simple. Indeed, if f ∗(z) is any holomorphic
function on a Cn neighbourhood of a ∈ M and ψ is any local parametrization (5d) of M
at a, then the restriction f∗ |M is holomorphic at a since

f∗
∣

∣

M
◦ ψ = f∗ ◦ ψ

will be holomorphic on ∆(a′, ρ′) ⊂ Cs for small ρ′.

5.6 Complex manifolds. A topological manifold X of (real) dimension n is a Hausdorff
space, in which every point has a neighbourhood that is homeomorphic to a (connected)
domain in Rn. Further structure may be introduced via an atlas for X, that is, a family U
of coordinate systems (U, ρ), consisting of domains U which jointly cover X and associated
homeomorphisms ρ (“projections”) onto domains in Rn. If (U, ρ), (V, σ) ∈ U , U ∩ V 6= ∅
are “overlapping coordinate systems”, the composition

(6a) σ ◦ ρ−1 : ρ(U ∩ V )→ σ(U ∩ V )

must be a homeomorphism between domains in Rn.

DEFINITION 5.61. A complex (analytic) manifold X, of complex dimension n, is a topo-
logical manifold of real dimension 2n with a complex structure. The latter is given by a
complex (analytic) atlas U = {(U, ρ)}, that is, an atlas for which the projections ρ(U) are
domains in Cn while the homeomorphisms (6a) are 1− 1 (bi)holomorphic maps.

The complex structure makes it possible to define holomorphic functions on X :

DEFINITION 5.62. Let X be a complex manifold, Ω a domain in X. A function f : Ω→ C
is called holomorphic if for some covering of Ω by coordinate systems (U, ρ) of the complex
atlas, the functions

(6b) f ◦ ρ−1 : ρ(Ω ∩ U)→ C
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are ordinary holomorphic functions on domains in a space Cn.

The property of holomorphy of f at a ∈ X will not depend on the particular coor-
dinate system that is used around a [the maps (6a) are biholomorphic.] Many results on
ordinary holomorphic functions carry over to the case of complex manifolds, for exam-
ple, the Uniqueness theorem (1.54) and the Open mapping theorem (1.81). Thus if X is
connected and compact, an everywhere holomorphic function f on X must be constant.
[Indeed, |f | will assume a maximum value somewhere on X.]

Holomorphic functions on a complex manifold are holomorphic maps from the mani-
fold to C. In general holomorphic maps are defined in much the same way:

DEFINITION 5.63. Let X1, X2 be complex manifolds with atlanta U1, U2, respectively
and let Ω1 ⊂ X1, Ω1 ⊂ X1 be domains. A map f : Ω1 → Ω2 is called holomorphic if for
any (U, ρ) ∈ U1, (V, σ) ∈ U2 with V ∩ f(U ∩ Ω1) 6= ∅ the map

σ ◦ f ◦ ρ : ρ(U ∩ Ω1)→ σ(V )

is holomorphic.

One similarly tranfers notions like biholomorphic map and analytically equivalence to com-
plex manifolds. It should be noticed that a topological manifold may very well carry differ-
ent complex structures, leading to complex manifolds that are not analytically equivalent,
cf. exercise 5.34, 5.35.

EXAMPLE 5.64. Let Ce be the extended complex plane C∪ {∞} or the Riemann sphere
with the standard topology. We may define a complex structure by setting

(U, ρ) = Ce − {∞}, ρ(z) = z), (V, σ) = (Ce − {0}, σ(z) = 1/z).

Both U and V are homeomorphic to the complex plane. Clearly U ∩V = C−{0} and the
same holds for ρ(U ∩ V ) and σ(U ∩ V );

σ ◦ ρ−1(z) = 1/z

is a 1− 1 holomorphic map of ρ(U ∩ V ) onto σ(U ∩ V ).
A function f on a domain Ω ⊂ Ce containing ∞ will be holomorphic at ∞ if

f ◦ σ−1(z) = f ◦ ρ−1(1/z) is holomorphic at σ(∞) = 0 [or can be extended to a function
holomorphic at 0]. A function which is holomorphic everywhere on Ce must be constant.

One may also obtain the Riemann sphere Ce from C via the introduction of homo-
geneous coordinates. Starting with the collection of nonzero complex pairs (w0, w1), one
introduces the equivalence relation

(w0, w1) ∼ (w′
0, w

′
1)⇐⇒ w′

0 = λw0, w′
1 = λw1

for some nonzero λ ∈ C. The point z ∈ C is represented by (1, z) and equivalent pairs.
Points far from the origin have the form (1, µ) with large (complex µ and they are also
conveniently represented by (1/µ, 1). The point at ∞ will be represented by the limit
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pair (0, 1). This approach leads to the complex projective plane P1 which is analytically
isomorphic to the Riemann sphere, cf. Section 5.7 below.

EXAMPLE 5.65. Let R be the Riemann surface for the complete analytic function log z
on C− {0}, cf. Section 2.1. All possible local power series for log z may be obtained from
the special function elements (ak, Hk, fk), k ∈ Z defined below, where Hk is a half-plane
containing ak and fk(z) a corresponding holomorphic branch of log z:















ak = eikπ/2, Hk = {z ∈ C : (k − 1)π/2 < arg z < (k + 1)π/2},

fk(z) = branch of log z on Hk with (k − 1)π/2 < Im fk(z) < (k + 1)π/2.

The points of R have the form



























p = (b, gb), b ∈ C{0},

gb = power series at b for a branch g(z) of log z on, say, a

convex neighbourhood V of b in C− {0}.

Corresponding basic neighbourhoods N (p, V, g) in R consist of all points q = (z, hz) such
that z ∈ V and hz = gz. There is a projection ρ of R onto C− {0} given by

ρ(p) = ρ((b, gb)) = b.

It is not difficult to verify that R is a Hausdorff space and that the restriction of ρ to
N (p, V, g) is a homeomorphism onto V ⊂ C. Finally, the multivalued function log z on
C− {0} may be redefined as a single-valued function Log on R :

(6c) Log p = Log g(b, gb) = g(b).

We now use the special basic neighbourhoods N (ak, Hk, fk) and the projection ρ to
define a complex structure on R :

(6d) Uk = N (ak, Hk, fk), ρk = ρ | Uk, ∀k ∈ Z.

For nonempty Uj ∩ Uk, the map ρk ◦ ρ−1
j is simply the identity map on ρj(Uj ∩ Uk) =

ρk(Uj ∩ Uk). We will verify that the function Log is holomorphic on R in the sense of
Definition 5.62. Indeed, ρk is a homeomorphism of Uk onto Hk and the points q = (z, hz)
in Uk have the form ρ−1

k (z), z ∈ Hk, implying that hz = (fk)z. Hence

Log ρ−1
k (z) = Log q = Log (z, hz) = h(z) = fk(z), ∀z ∈ Hk.

REMARK 5.66. The equation ew − z = 0 defines a complex submanifold M of C2. One
can show that this M is analytically isomorphic to the Riemann surface R for log z. In
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fact, every Riemann domain over Cn (even when defined in a more general way than
in Section 2.1) is analytically isomorphic to a submanifold of some space CN , cf.
[Hörmander 1].

5.7 Complex projective space Pn. Geometrically one may think of Pn as the col-
lection of all complex lines through the origin in Cn+1. Such a line is determined by
an arbitrary point w = (w0, w1, . . . , wn) 6= 0; equivalently, one can use any other point
w = (λw0, . . . , λwn), λ ∈ C, λ 6= 0.

DEFINITION 5.71. The elements of Pn are equivalence classes [w] of points w in
Cn+1 − {0} :

w′ ∼ w if w′ = λw for some λ ∈ C− {0}.
Neighbourhoods of [w] in Pn are obtained from neighbourhoods of a representing point w
in Cn+1 − {0} by identifying equivalent elements.

For the topology, it is convenient to choose a representing point w and a neighbourhood
of w on the unit sphere S in Cn+1.

A complex structure is defined on Pn by the following coordinate systems (Uj , ρj),
j = 0, 1, . . . , n :

Uj consists of the classes [w] in which w has (j + 1)st coordinate wj 6= 0,

[w] = [(w0, . . . , wn)] =

[(

w0

wj
, . . . ,

wj−1

wj
, 1,

wj+1

wj
, . . . ,

wn
wj

)]

,

and

(7a) ρj ◦ [w] =

(

w0

wj
, . . . ,

wj−1

wj
,
wj+1

wj
, . . . ,

wn
wj

)

, [w] ∈ Uj .

Every element [w] of Uj has precisely one representative in Cn+1 −{0} with (j+ 1)st
coordinate wj equal to 1; the elements of Uj are in 1−1 correspondence with the points of
the affine hyperplane Hj : {wj = 1} in Cn+1. This correspondence is a homeomorphism,
hence Uj is topologically the same as Cn. We will check the holomorphy of the composite
map ρk ◦ ρ−1

j when j < k. If [w] is any element of Uj ∩ Uk, where w denotes a Cn+1

representative, then wj 6= 0 and wk 6= 0. By (7a), ρj(Uj ∩ Uk) consists of the points
z = (z1, . . . , zn) with

z1 =
w0

wj
, . . . , zj =

wj−1

wj
, zj+1 =

wj+1

wj
, . . . , zk =

wk
wj
, . . . , zn =

wn
wj

,

that is, we get all points z ∈ Cn with zk 6= 0. Applying ρk ◦ρ−1
j to such z we find, cf. (7a),

(7b)

ρk ◦ ρ−1
j (z1, . . . , zn) = ρk ◦ [(z1, . . . , zj, 1, zj+1, . . . , zn)]

=

(

z1
zk
, . . . ,

zj
zk
,

1

zk
,
zj+1

zk
, . . . ,

zk−1

zk
,
zk+1

zk
, . . . ,

zn
zk

)

.
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This formula indeed defines a 1 − 1 holomorphic map of ρj(Uj ∩ Uk) onto ρk(Uj ∩ Uk)
[the (j + 1)st coordinate is 6= 0]. For j > k the proof is similar, although there are minor
differences.

Conclusion: Pn is a complex manifold of dimension n.

EXAMPLE 5.72. The complex projective plane P1 is covered by two coordinate systems
(U0, ρ0) and (U1, ρ1). Here

U0 = {[(1, z)] : z ∈ C}, ρ0 ◦ [(1, z)] = z,

U1 = {[(w, 1)] : w ∈ C} = {[(1, z)] : z ∈ C− {0}} ∪ [(0, 1)],

ρ1 ◦ [(w, 1)] = ρ1 ◦ [(1, z)] = w =
1

z
for w =

1

z
6= 0, ρ1 ◦ [(0, 1)] = 0.

Cf. Example 5.64 !

A function f will be holomorphic at a point [a] of Pn, with aj 6= 0, if f ◦ ρ−1
j is

holomorphic at the point ρj ◦ [a] of Cn. For P1 the rule agrees with the standard definition
of holomorphy at a point of the Riemann sphere.

We observe that Pn is compact for every n. Indeed, the formula

(7c) ϕ(w0, w1, . . . , wn) = [(w0, w1, . . . , wn)], |w| = 1

defines a continuous map of the unit sphere S in Cn+1 onto Pn; the image of a compact
set under a continuous map is compact.

It is useful to consider Pn as a compactification of Cn. Starting with Cn one introduces
homogeneous coordinates:

z = (z1, . . . , zn) is represented by (λ, λz1, . . . , λzn)

for any nonzero λ ∈ C. This gives an imbedding of Cn in Pn. In order to obtain the whole
Pn one has to add the elements

[(w0, w1, . . . , wn)] with w0 = 0.

It is reasonable to interpret those elements as complex directions (w1, . . . , wn) in which one
can go to infinity in Cn, or as points at infinity for Cn. Indeed, if z = µw, w ∈ Cn −{0},
then

(z1, . . . , zn)←→ [(1, µw1, . . . , µwn)] = [(
1

µ
,w1, . . . , wn)]

−→ [(0, w1, . . . , wn)] as µ→∞.
Observe that the imbedding of Cn in Pn reveals a complex hyperplane {w0 = 0} of “points
at infinity” for Cn; strictly speaking, it is a copy of Pn−1.

By a projective transformation

wj =
n
∑

k=0

ajkw
′
k, j = 0, 1, . . . , n, det[ajk] 6= 0,

110



any point of Pn can be mapped onto any other point of Pn; the hyperplane {w0 = 0} can
be mapped onto any other (complex) hyperplane.

Let f be a meromorphic function on Ω ⊂ C. We can write f = g/h with g, h, holomorphic
and without common zeroes. Thus we can associate to f the map F : Ω → P, F (z) =
[(h(z), g(z)]. On the other hand, let F be a map from Ω to P. It follows from the definitions
that we may write F (z) = [(f1(z), f2(z))], with (composition with ρ0) f2/f1 holomorphic
if f1 6= 0 and (composition with ρ1) f1/f2 holomorphic if f2 6= 0. In other words, f1/f2
has singular points precisely at the zeroes of the function f2/f1, and thus is meromorphic.
Its associated map to P is again F . In the higher dimensional case mappings to P will
form meromorphic functions, but meromorphic functions may have intersecting zero and
polar set and then don’t give rise to mappings to P.

Theorem 5.73. Any holomorphic map f from Pn to P is of the form

f [(z0, . . . , zn)] = [P (z0, . . . , zn), Q(z0, . . . , zn)]

where P and Q are homogeneous polynomials of the same degree on Cn+1.

PROOF. We leave the case n = 1 to the reader and assume from now on n ≥ 2. Define
F : Cn+1 \ {0} :→ P by

F (z) = f ◦ π(z) = [(g(z), h(z))],

where π : Cn+1 → Pn is the projection π(z) = [z]. By the definition of holomorphic map,
we find that {g = 0}∩{h = 0} = ∅ and g/h is holomorphic when h 6= 0 and also 1

g/h
= h/g

is holomorphic when g 6= 0. Thus g/h is meromorphic on Cn+1 \ {0}. As we shall see in
Chapter 12, if n ≥ 2, Cn+1 \{0} is special in the sense that every meromorphic function on
it is the quotient of two globally defined holomorphic functions. Thus g/h = g′/h′ with g′

and h′ holomorphic on Cn+1 \{0}. Now we use the sperical shell theorem to extend g′ and
h′ analytically to all of Cn+1. Since F factorizes through Pn. We also have homogeneity:

(7d) g′(λz)/h′(λz) = g′(z)/h′(z), for z ∈ Cn+1 \ {0} and λ ∈ C \ {0}.

Now we expand g′(z) =
∑

j≥j0
Pj(z) and h′(z) =

∑

k≥k0
Qk(z), where Pj and Qk are

homogeneous polynomials of degree j and k and Pj0 , Qk0 6≡ 0. We can regard (7d) as an
identity for holomorphic functions in λ:

h′(z)
∑

j≥j0

Pj(z)λ
j = g′(z)

∑

k≥k0

Qk(z)λk.

It follows that j0 = k0 and that for every j and every z ∈ Cn+1 \ {0}

h′(z)Pj(z) ≡ g′(z)Qj(z).

Comparing degrees this implies that for all j and k

(7e) PjQk = QjPk.

For (7e) to be true,we must have for each j: either Pj0/Qj0 = Pj/Qj or Pj ≡ Qj ≡ 0. In
other words g′/h′ = Pj0/Qj0 .
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Theorem 5.74. Every map f : Pn → Pm can be written in the form

f([z]) = [P0(z), P1(z), . . . , Pn(z)],

where the Pj are homogeneous of the same degree.

PROOF. We clearly may write f in the above form with Pj suitable (not necessarily
holomorphic !) functions, which don’t have a common zero and satisfy Pi/Pj is holomorphic
outside the zeroes of Pj . Hence outside the zeroes of Pk, k arbitrary, we find that

Pi
P0

=
Pi/Pk
P0/Pk

,

hence Pi/P0 is meromorphic. It follows as in the proof of the previous theorem that Pi/P0

is a quotient of homogeneous polynomials of the same degree and we are done.

5.8 Recent results on biholomorphic maps. The (unit) ball B in Cn is homogeneous
in the sense that the group AutB acts transitively: any point of B can be taken to any
other point by an analytic automorphism. For n = 1 it follows from the Riemann mapping
theorem that all simply connected planar domains are homogeneous (also true for C itself).
However, from a Cn point of view, homogeneous domains turn out to be rare. Limiting
oneself to bounded domains with C2 boundary and ignoring holomorphic equivalence, the
ball is in fact the only connected domain with transitive automorphism group. For n ≥ 2
almost all small perturbations of the ball lead to inequivalent domains. Furthermore,
there are no proper holomorphic mappings of the ball to itself besides automorphisms
when n ≥ 2. [For n = 1, all finite products of fractions as in (3a) define proper maps
B → B.]

Suppose now that D1 and D2 are holomorphically equivalent (bounded connected)
domains in Cn with smooth boundary, Question: Can every biholomorphic map f of D1

onto D2 be extended to a smooth map on D1? In the case n = 1 a classical result of
Kellogg implies that the mapping functions are [nearly] as smooth up to the boundary as
the boundaries themselves. Since 1974 there are also results of such type for n ≥ 2. The
major breakthrough was made by C. Fefferman: If D1 and D2 are strictly pseudoconvex
domains [for this notion, see Section 9.3] with C∞ boundary, then any biholomorphic map
between them extends C∞ to the boundary. Subsequently, the difficult proof has been
simplified, while at the same time the condition of strict pseudoconvexity could be relaxed.
In particular, it follows from this work that strict pseudoconvexity is a biholomorphic
invariant. It has also become possible to prove relatively sharp results for the case of Ck

boundaries. Finally, many of the results have been extended to proper mappings.
Conversely one may ask under what conditions maps from [part of] ∂D1 onto [part

of] ∂D2 can be extended to biholomorphic maps. This problem has led to the discovery of
important differential invariants of boundaries (N. Tanaka, Chern, Moser). Lately there
has been much activity in the area by the Moscow school of complex analysis.

References: [Diederich-Lieb], [Krantz], [Range], [Rudin 4], [Shabat] and Encyclopaedia
of the Mathematical Sciences vol. 7, 9.
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Exercises

5.1. Let f = (f1, . . . , fp) be a holomorphic map from a connected domain D ⊂ Cm to Cp

such that Dkfj ≡ 0, ∀j, k. What can you say [and prove] about f?

5.2. Write out a complete proof of the Implicit mapping theorem 5.11 for the case p = 2.

5.3. Let fj(z, w), j = 1, . . . , p be a family of holomorphic functions of (z, w) on a neigh-
bourhood of 0 in Cn ×Cp such that

det J(O) =

∣

∣

∣

∣

∂(f1, . . . , fp)

∂(w1, . . . , wp)
(0)

∣

∣

∣

∣

6= 0.

Write fj = gj + ihj , wk = uk + ivk and show that the unique solvability of the system
of equations

d̃f
∣

∣

0
= 0 :

p
∑

k=1

∂fj
∂wk

(0)dwk = 0, j = 1, . . . , p

for dw1, . . . , dwp implies the unique solvability of the related real system

d̃g|0 = d̃h|0 = 0 (variables du1, dv1, . . . , dvp). Deduce that

detJR(0) =

∣

∣

∣

∣

∂(g1, h1, . . . , gp, hp)

∂(u1, v1, . . . , up, vp)
(0)

∣

∣

∣

∣

6= 0.

[One can show more precisely that det JR(0) = | det J0)|2.]
5.4. (Continuation). Let wj = ϕj(z) = ϕj(x + iy), j = 1, . . . , p be a C1 solution of the

system of equations fj(z, w) = 0, j = 1, . . . , p (where fj(0) = 0) around the origin.
Prove that the functions ϕj(z) must be holomorphic.

5.5. Let g be an infinitely differentiable map R→ R with g(0) = 0, g′(0) 6= 0. Prove that
g is invertible in a neighbourhood of 0 and that h = g−1 is also of class C∞ around 0.

5.6. Give an example of a 1 − 1 map f of R onto R with f(0) = 0 which is of class C∞

while f−1 is not even of class C1.

5.7. Use successive approximation to give a direct proof of Theorem 5.21 on the existence of
a local holomorphic inverse. [By suitable linear coordinate changes it may be assumed
that Jg(0) = In, so that the equation becomes w = g(z) = z−ϕ(z), where ϕ vanishes
at 0 of order ≥ 2. For small |w| one may define

z(0) = w, z(ν)(w) = w + ϕ(z(ν−1)), ν = 1, 2, . . . .]

5.8. Give a complete proof of Theorem 5.22 on the holomorphy of the global inverse.

5.9. (i) Let w = f(z) be the holomorphic map of D = C − {1} C2 given by w1 =
z(z− 1), w2 = z2(z− 1). Prove that f is 1− 1 but that f−1 is not continuous on
f(D).

(ii) Prove that a 1− 1 holomorphic map f of Ω ⊂ Cn onto Ω′ ⊂ Cn is proper.
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5.10. Construct biholomorphic maps of
(i) the right half-plane H : {Re z > 0} in C onto the unit disc ∆(0, 1);

(ii) the product H ×H : {Re z1 > 0, Re z2 > 0} in C2 onto the unit bidisc ∆2(0, 1).

5.11. Determine all analytic automorphisms of ∆2(0, 1) and of B2(0, 1) that leave the origin
fixed.

5.12. Let D1 and D2 be connected domains in Cn containing the origin and suppose that
there is a 1−1 holomorphic map of D1 onto D2 which takes 0 to ). Let Aut0Dj denote
the subgroup of the automorphisms of Dj that leave 0 fixed. Prove that Aut0D1 is
isomorphic to Aut0D2.

5.13. Use exercise 5.12 to verify that ∆2(0, 1) and B2(0, 1) are not analytically isomorphic.
Also compare the groups Aut0Dj for D1 = ∆n(0, 1), D2 = Bn(0, 1).

5.14. Let D ⊂ C be a bounded connected domain and let f be a holomorphic map of D
into itself with fixed point a. Prove:
(i) |f ′(a)| ≤ 1;

(ii) If f is an automorphism of D, then |f ′(a)| = 1;
(iii) If f ′(a) = 1 then f(z) ≡ z.

5.15. Let D1 and D2 be bounded connected domains in Cn. Prove that for given a ∈
D1, b ∈ D2 and n×x matrix A, there is at most one biholomorphic map f of D1 onto
D2 such that f(a) = b and Jf (a) = A.

5.16. Let D1 and D2 be bounded connected domain in C, a ∈ D1, b ∈ D2. Prove that ther
is at most one biholomorphic map f of D1 onto D2 such that f(a) = b and f ′(a) > 0.

5.17. Determine all analytic automorphisms of
(i) the disc ∆(0, 1) ⊂ C;

(ii) the bidisc ∆2(0, 1) ⊂ C2.

5.18. (i) Prove that the (analytic) automorphisms of C have the form w = az + b.
(ii) The situation in C2 is more complicated. Verify that the equations w1 = z1, w2 =

g(z1) + z2 define an automorphism of C2 for any entire function g on C. Cf.
Theorem 5.43 and exercise 5.32.

5.19. Prove that the Cayley transformation:

w1 = ϕ1(z) =
z1

1 + z2
, w2 = ϕ2(z) = i

1− z2
1 + z2

furnishes a 1−1 holomorphic map of the unit ball B2 = B2(0, 1) in C2 onto the Siegel
upper half-space:

D2
def
= {(w1, w2) ∈ C2 : Imw2 > |w1|2}.

5.20. (Continuation) The boundary ∂D2 = {(w, t+ i|w|2) : w ∈ C, t ∈ R} is parametrized
by C×R. Show that ∂D2 becomes a nonabelian group (Heisenberg group) under the
multiplication

(w, t) · (w′, t′) = (w + w′, t+ t′ + 2 Imw · w′).

114



5.21. (Continuation) Show that the “translation” (w1, w2) → (w1, w2 + t), t ∈ R is an
automorphism of D2. Deduce that the ball B2 admits an automorphism that carries
the origin to a point a at prescribed distance |a| = c from the origin.

5.22. Derive the automorphism (3c) of the unit ball B2(0, 1) ⊂ C2 that takes a = (c, 0) to
the origin by trying z′1 = ϕ(z1), z′2 = ψ(z1)z2. [Set z2 = 0 to determine the form of
ϕ.]

5.23. What is the difference between a complex submanifold M of Cn and an analytic set
V (4.64)?

5.24. Prove that a connected complex submanifold M of Cn has the same dimension m at
each of its points. Verify that such an M is a complex manifold of dimension m in
the sense of Definition 5.61. Finally, show that there exist nonconstant holomorphic
functions on such an M , provided M contains more than just one point.

5.25. (Riemann domain over D ⊂ Cn). Let (a, U, f), a ∈ Cn be a function element, F the
classical complete analytic function generated by the element. Describe the Riemann
domain R for F and show that it is a Hausdorff space. Verify that R can be made
into a complex manifold of dimension n and describe how F becomes a holomorphic
function on R. [Cf. Section 2.1 and Example 5.65.]

5.26 Prove that the equation ew − z = 0 defines a complex submanifold M of C2. Show
that M is analytically isomorphic to the Riemann surface R for log z described in
Example 5.65.

5.27. Prove the statements about holomorphic functions on a complex manifold made right
after Definition 5.62.

5.28. This is an exercise about Pn. The notations are as in Section 5.7.
(i) Describe the map ρk ◦ρ−1

j ; ρj(Uj ∩Uk)→ ρk(Uj ∩Uk) also when j > k and verify
that it is 1− 1 holomorphic.

(ii) Prove that the map ϕ (7c) of the unit sphere S in Cn+1 to Pn is continuous.
(iii) Describe ϕ−1 ◦ [w] for [w] ∈ Pn. Conclusion: There is a 1 − 1 correspondence

between the points of Pn and . . . on S.

5.29. Let f be defined on a domain in P1. What does analyticity of f at the point [a] =
[(a0, a1)] of P1 mean? Show that f is analytic at the point [(0, 1)] of P1 (the point ∞
for C ) if and only if

f ◦ ρ−1
1 (w) = f ◦ [(w, 1)] (= f ◦ ρ−1

0

(

1

w

)

when w 6= 0)

is analytic at w = 0.

5.30. Let f be analytic and bounded on a ‘conical set’ |(z2/z1)−b| < δ, |z1| > A around the
direction (1, b) in C2

z. Prove that f can be continued analytically to a neighbourhood of
the “infinite point” [(0, 1, b)]. That is, using P2, f◦ρ−1

1 (ζ) has an analytic continuation
to a neighbourhood of 0, b) in C2

ζ . [Where will f ◦ ρ−1
1 (ζ) be analytic and bounded?]
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5.31. (Behaviour of entire functions at infinity) Let f be an entire function on C2 which is
analytic at (that is, in a neighbourhood of) one infinite point, say [(0, 1, b)]. Prove that
f is constant. Show quite generally that a nonconstant entire function on Cn must
become singular at every infinite point. [Cf. Hartogs’ singularities theorem 4.82.]

5.32. Determine the automorphisms of P1 and Pn (cf. exercise 5.18).

5.33. Let A ∈ Gl(n+1,C) such that A leaves the quadratic form −|z0|2+ |z1|2 + |z2|2 + · · ·+
|zn|2 invariant. Show that A gives rise to an automorphism of Pn which leaves the unit
ball in the coordinate system U0 = {z0 6= 0} invariant. Describe all automorphisms
of the unit ball in Cn.

5.34. Consider the topological manifold D = {(x, y) ∈ R2 : x2 + y2 < 1}. For 0 ≤ t ≤ 1
we put different complex structures on D, each consisting of one coordinate system
(D, ρt):

ρt : D → C, ρt(x, y) =
r

1− tr (x+ iy),

where x2 + y2 = r2. Thus we have for each 0 ≤ t ≤ 1 a complex manifold. Which
ones are biholomorphically equivalent?

5.35. Consider the torus:

T = {F (s, t)) ∈ R3 : F (s, t) = 2(cos s, sin s, 0) + (cos t cos s, cos t sin s, sin t), s, t ∈ R}

Let V1 = {1 < s, t < 6}, V2 = {1 < s < 6,−2 < t < 2}, V3 = {−2 < s < 2, 1 < t < 6},
V4 = {−2 < s, t < 2} and Fj = F |Vj

, j = 1, . . . , 4. We describe coordinate systems
for T locally inverting F : For j = 1 . . . , 4, let

Uj = {F (s, t) ∈ T : (s, t) ∈ Vj}, ρj(x, y, z) = ga,b(F
−1
j (x, y, z)),

where ga,b(s, t) = as+ibt. Show that for a, b ∈ R\{0} this defines an analytic structure
on T . Which values of a and b give rise to analytically equivalent manifolds?

5.36. Show that the projection

π : Cn+1 \ {0} → Pn, (z0, . . . , zn) 7→ [(z0, . . . zn)]

is a holomorphic mapping. Relate this to the Spherical shell theorem 2.8.
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CHAPTER 6

Domains of holomorphy

As was indicated in Section 1.9, there are many areas of complex analysis where it
is necessary or advantageous to work with domains of holomorphy, cf. Chapters 7, 11,
12. In C, every domain is a domain of holomorphy, but in Cn, n ≥ 2, the situation is
quite different. One reason is that holomorphic functions in Cn can not have isolated
singularities: singularities are “propagated” in a certain way.

In order to get insight into the structure of domains of holomorphy, we will study
several different characterizations, most of them involving some kind of (generalized) con-
vexity. In fact, there are striking parallels between the properties of convex domains and
those of domains of holomorphy. To mention the most important one, let d(·, ∂Ω) denote
the boundary distance function on Ω. Convex domains may be characterized with the aid
of a mean value inequality for the function log 1/d on (real) lines. Domains of holomorphy
are characterized by so-called pseudoconvexity; the latter may be defined with the aid of a
circular mean value inequality for log 1/d on complex lines.

In the present chapter it is shown that domains of holomorphy are pseudoconvex. One
form of that result goes back to Levi (about 1910), who then asked if the converse is true.
His question turned out to be very difficult. A complete proof that every pseudoconvex
domain is indeed a domain of holomorphy was found only in the 1950’s. Although different
approaches have been developed, the proof remains rather complicated, cf. Chapters 7,
11.

A special reference for domains of holomorphy is [Pflug].

6.1 Definition and examples. For n = 1 the example

Ω = C− (−∞, 0], f(z) = p(rincipal) v(alue) log z

shows that one has to be careful in defining a domain of existence or a domain of holomor-
phy. Indeed, the present function f could not be continued analytically to a neighbourhood
U of any boundary point b on the negative real axis if one would simultaneously consider
the values of f in the upper half-plane and those in the lower half-plane (fig 6.1).

0b
U

Ω1

Ω

fig 6.1
Of course, one should only pay attention to the values of f on one side of R, those

on Ω1, say , and then one will (for small U) obtain an analytic continuation “above” the
original domain of definition. There are similar examples in Cn, cf. Section 2.9.
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DEFINITION 6.11. A domain (open set) Ω in Cn is called a domain of holomorphy
if for every (small) connected domain U that intersects the boundary ∂Ω and for every
component Ω1 of U ∩ Ω, there is a function f in O(Ω) whose restriction f |Ω1

has no
(direct) analytic continuation to U .

An open set Ω will be a domain of holomorphy if and only if all its connected compo-
nents are domains of holomorphy.

SIMPLE CRITERION 6.12. The following condition is clearly sufficient for Ω to be a
domain of holomorphy: for every point b ∈ ∂Ω and every sequence of points {ζν} in Ω
with limit b, there is a function f in O(Ω) which is unbounded on the sequence {ζν}.
[Actually, this condition is also necessary, see Exercise 6.22.]

EXAMPLES 6.13. (i) In C every domain Ω is a domain of holomorphy, just think of
f(z) = 1/(z − b), b ∈ ∂Ω. [What if Ω = C?]

(ii) In Cn every “polydomain” Ω = Ω1 × . . . × Ωn with Ωj ⊂ C, is a domain of
holomorphy, just consider functions f(z) = 1/(zj − bj), bj ∈ ∂Ωj.

(iii) In Cn with n ≥ 2 no connected domain D−K (K ⊂ D compact) is a domain of
holomorphy, think of the Hartogs-Osgood-Brown continuation theorem 4.41.

CONVEX DOMAINS 6.14. Every convex domain D ⊂ Cn = R2n is a domain of holomor-
phy. Indeed, for any given boundary point b of D there is a supporting real hyperplane V ,
that is, a hyperplane through b in R2n which does not meet D (so that D lies entirely on
one side of V , fig 6.2).

z

0

b

V

c=α + iβ

D

D
0

z2

z1

-

fig 6.2 and fig 6.3
We introduce the unit normal (α1, β1, α2, . . . , βn) to V at b which points away from

D; in complex notation: α + iβ = c, say. The component of the vector z = x+ iy in the
direction of c = α+ iβ will be given by

α1x1 + β1y1 + α2x2 + . . .+ βnyn = Re (α− iβ)(x+ iy) = Re c · z.

Thus the hyperplane V has the equation Re c · z = Re c · b and throughout D one has
Re c · z < Re c · b. It follows that the function

f(z) =
1

c · (z − b)
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is holomorphic on D and tends to infinity as z → b. [Observe that this f becomes singular
at all points of the supporting complex hyperplane c · (z − b) = 0 through b which is
contained in V .]

A domain of holomorphy need not be convex in the ordinary sense: think of the case
n = 1 and of the case of logarithmically convex complete multicircular domains in Cn, cf.
fig 2.5. The latter are always domains of holomorphy, see Sections 6.3 and 6.4. On the
other hand, we have:

EXAMPLE 6.15. Let 0 be a boundary point of a connected domain D ⊂ C2 which contains
a punctured disc z1 = 0, 0 < |z2| ≤ R as well as full discs z1 = −δ, |z2| ≤ R arbitrarily
close to the punctured disc (fig 6.3). Then D can not be a domain of holomorphy. Indeed,
by Hartogs’ continuity theory 2.61, every f ∈ O(D) has an analytic continuation to a
neighbourhood of 0.

6.2 Boundary distance functions and ordinary convexity. In characterizations of
domains of holomorphy, boundary distance functions play an essential role. It is instructive
to begin with characterizations of convex domains in terms of such functions.

DEFINITION 6.21. Let Ω be a domain in Rn or Cn. For the points x ∈ Ω, the distance
to the boundary is denoted by

(2a) d(x)
def
= d(x, ∂Ω)

def
= inf

ξ∈∂Ω
d(x, ξ).

For a nonempty part K of Ω, the distance to the boundary is denoted by

(2b) d(K)
def
= d(K, ∂Ω)

def
= inf

x∈K
d(x, ∂Ω).

If Ω is not the whole space, the infimum in (2a) is attained for some point b ∈ ∂Ω.
Observe that the function d(x) is continuous. If K is compact and ∂Ω nonempty, the
distance d(K) is also attained. Note that d(x) is the radius of the largest ball about x
which is contained in Ω. Similarly, d(K) is the largest number ρ such that Ω contains the
ball B(x, ρ) for every point x ∈ K.

Suppose now that D is a convex domain and that x′ and x′′ belong to D. Then D
will contain the balls B(x′, d(x′)) and B(x′′, d(x′′)) and also their convex hull. The latter
will contain the ball about the point 1

2 (x′ + x′′) with radius 1
2{d(x′) + d(x′′)} [geometric

exercise, cf. fig 6.4], hence

x’

x’’

d(x’’)

d(x’)
(x’+x’’)/2

fig 6.4
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(2c) d( 1
2(x′ + x′′)) ≥ 1

2{d(x′) + d(x′′)} ≥
√

d(x′)d(x′′).

It follows that the function

(2d) v(x)
def
= log 1/d(x) = − log d(x)

satisfies the following mean value inequality on the line segments in D :

(2e) v( 1
2
(x′ + x′′)) ≤ 1

2
{v(x′) + v(x′′)};

the value of v at the midpoint of a line segment is majorized by the mean of the values at
the end points.

A continuous function v on a domain D with property (2e) is a so-called convex
function: the graph on line segments in D lies below [never comes above] the chords. In
formula:

(2f) v((1− λ)x′ + λx′′) ≤ (1− λ)v(x′) + λv(x′′), ∀λ ∈ [0, 1], ∀[x′, x′′] ⊂ D.

For dyadic fractions λ = p/2k this follows from the mean value inequality by repeated
bisection of segments; for other λ one uses continuity. [For our special function v one can
also derive (2f) from fig 6.4 and properties of the logarithm, cf. Exercise 6.6.] We have
thus proved:

Proposition 6.22. On a convex domain D, the function v = log 1/d is convex.

Conversely, one can show that convexity of the function v = log 1/d on a connected
domain D implies convexity of the domain, cf. Exercises 6.7, 6.8.

We still remark that on any bounded domain Ω, the function log 1/d is a so-called
exhaustion function:

DEFINITION 6.23. Let Ω in Rn or Cn be open. A continuous real function α on Ω is
called exhaustion function for Ω if the open sets

(2g) Ωt = {z ∈ Ω : α(z) < t}, t ∈ R

have compact closure [are “relatively compact”] in Ω.

Observe that the sets Ωt jointly exhaust Ω : ∪Ωt = Ω. For Ω equal to the whole space
Rn, the function |x|2 is a convex exhaustion function:

∣

∣

1
2(x′ + x′′)

∣

∣

2 ≤ 1
2 (|x′|2 + |x′′|2).

Every convex domain has a convex exhaustion function, and every connected domain with
a convex exhaustion function is convex, cf. Exercises 6.7, 6.8.
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another characteristic property of convex domains. Let D be a connected
domain in Rn or Cn and let K be a nonempty compact subset of D. To start out we again
suppose that D is convex. Then the convex hull CH(K) will also be a compact subset of
D. We will in fact show that it has the same boundary distance as K itself:

(2h) d(CH(K)) = d(K).

Indeed, as we know [Section 2.2], any point x ∈ CH(K) can be represented as a finite sum

x =

m
∑

1

λjsj with sj ∈ K, λj ≥ 0 and
∑

λj = 1.

Now by (2f) or fig 6.4, all points y = (1− λ)s1 + λs2, 0 ≤ λ ≤ 1 of a segment [s1, s2] ⊂ D
satisfy the inequality

d(y) ≥ min{d(s1), d(s2)}.

Hence for our point x, using induction,

d(x) ≥ min{d(s1), . . . , d(sm)} ≥ d(K).

Thus d(CH(K)) ≥ d(K) and (2h) follows.
Conversely, let D be any domain with property (2h), or simply a domain such that

CH(K) is a compact subset of it whenever K is one. Then D must be convex. Indeed, for
any two points x′, x′′ ∈ D one may take K = {x′, x′′}. Then CH(K) is the line segment
[x′, x′′] and by the hypothesis it belongs to D.

We summarize as follows:

Proposition 6.24. The following conditions on a connected domain D in Rn or Cn are
equivalent:
(i) D is convex;

(ii) d(CH(K)) = d(K) for every compact subset K of D;
(iii) CH(K) is a compact subset of D for every compact K ⊂ D.

In Section 6.4 we will prove an analogous characterization for domains of holomorphy
Ω in Cn. It will involve the so-called holomorphically convex hull of K in Ω.

6.3 Holomorphic convexity. As an introduction we characterize the ordinary convex
hull CH(K) for compact K ⊂ Cn with the aid of holomorphic functions. One may describe
CH(K) as the intersection of all closed half-spaces containing K [cf. Section 2.2]. It is of
course sufficient to take the minimal half-spaces containing K — those that are bounded
by a supporting hyperplane. In Cn those half-spaces are given by the inequalities

(3a) Re c · z ≤ Re c · b = sup
ζ∈K

Re c · ζ, c ∈ Cn − {0},
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where b is an appropriate boundary point of K associated with the direction c (cf. 6.14).
Thus the convex hull of K ⊂ Cn may be described as follows:

(3b)

CH(K) = {z ∈ Cn : Re c · z ≤ sup
ζ∈K

Re c · ζ, ∀c ∈ Cn}

= {z ∈ Cn : |ec·z| ≤ sup
ζ∈K
|ec·ζ |, ∀c ∈ Cn}.

In the last line, CH(K) is described with the aid of the special class of entire functions
f(z) = exp(c · z), c ∈ Cn. If one uses a larger class of holomorphic functions, one obtains
a smaller [no larger] hull for K, depending on the class [see for example Exercise 6.16].
In the following definition, the class of admissible holomorphic functions and the resulting
hull are determined by a domain Ω containing K.

DEFINITION 6.31. Let Ω ⊂ Cn be a domain K ⊂ Ω nonempty and compact (or at least
bounded). The O(Ω)-convex hull K̂Ω, or holomorphically convex hull of K relative
to Ω, is the set

(3c) K̂Ω
def
= {z ∈ Ω : |f(z)| ≤ ‖f‖K = sup

ζ∈K
|f(ζ)|, ∀f ∈ O(Ω)}.

Before turning to examples we give another definition.

DEFINITION 6.32. Let Ω be a domain in Cn and let ϕ be a continuous map from the
closed unit disc ∆1(0, 1) ⊂ C to Ω which is holomorphic on the open disc ∆1 = ∆1(0, 1).
Then ϕ, or rather

∆ = ∆ϕ
def
= ϕ(∆1)

is called a (closed) analytic disc in Ω. The image Γ = Γϕ = ϕ(C) of the boundary C = ∂∆1

will be called the edge of the analytic disc:

edge ∆ϕ
def
= Γϕ = ϕ(∂∆1).

EXAMPLES 6.33. (i) Let ∆ = ∆1(a, r) be a closed disc in Ω ⊂ C and let Γ = ∂∆. Then
by the maximum principle

|f(w) ≤ ‖f‖Γ ∀w ∈ ∆, ∀f ∈ O(Ω),

hence the holomorphically convex hull Γ̂Ω contains the disc ∆. The function f(w) = w−a
shows that Γ̂Ω = ∆. Compare Exercise 6.12, however.

(ii) More generally, let Ω be a domain in Cn and let ∆ϕ be an analytic disc in Ω.
Now let f be in O(Ω). Applying the maximum principle to the composition f ◦ ϕ on ∆1,
we find that the hull Γ̂Ω of the edge Γ must contain the whole analytic disc ∆ϕ :

|f(z)| = |f ◦ ϕ(w)| ≤ ‖f ◦ ϕ‖C(0,1) = ‖f‖Γ, ∀z = ϕ(w) ∈ ∆ϕ.
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fig 6.5

(iii) Let D ⊂ C2 be the multicircular domain (fig 6.5)

D = {|z1| < 1, |z2| < 3} ∪ {|z1| < 3, 1 < |z2| < 3},

Γ the circle {z1 = 2, |z2| = 2} in D. Every function f in O(D) has an analytic continuation
to the equiradial bidisc ∆2(0, 3), cf. Section 2.5. The holomorphically convex hull of Γ
relative to the bidisc will be the disc {z1 = 2, |z2| ≤ 2} [why not more?]. Hence Γ̂D is the
part of that disc which belongs to D :

Γ̂D = {z ∈ C2 : z1 = 2, 1 < |z2| ≤ 2}.

PROPERTIES 6.34. (a) K̂Ω is closed relative to Ω since we are dealing with continuous
functions f in Definition 6.31. Also, K̂Ω is a bounded set even if Ω is not, since by (3b)

K̂Ω ⊂ CH(K) ⊂ B(0, R) whenever K ⊂ B(0, R).

However, K̂Ω need not be compact, cf. Example (iii) above. We will see in Section 6.4
that noncompactness of K̂Ω can occur only if Ω fails to be a domain of holomorphy.

(b) for any point z0 ∈ Ω−K̂Ω and arbitrary constants A ∈ C, ε > 0 there is a function
g in O(Ω) such that

(3d) g(z0) = A, ‖g‖K < ε.

Indeed, there must be a function f in O(Ω) for which |f(z0)| > ‖f‖K . Now take
g = Afp/f(z0)p with sufficiently large p.
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DEFINITION 6.35. A domain Ω ⊂ Cn is called holomorphically convex if the O(Ω)-
convex hull K̂Ω is compact for every compact subset K of Ω.

Holomorphic convexity will provide a characterization for domains of holomorphy
[Section 6.4].

EXAMPLES 6.36. (i) Every domain Ω ⊂ C is holomorphically convex. Indeed, for any
compact K ⊂ Ω, the bounded, relatively closed subset K̂Ω of Ω must be closed in C [and
hence compact]. Otherwise K̂Ω would have a limit point b in ∂Ω. The function 1/(z − b)
which is bounded on K would then fail to be bounded on K̂Ω.

(ii) Every logarithmically convex complete multicircular domain D ⊂ Cn is holomor-
phically convex. We sketch the proof, taking n = 2 for convenience. Let K ⊂ D be
compact. Enlarging K inside D, we may assume that K is the union of finitely many
closed polydiscs. Now let b be any point in ∂D. In the plane of |z1|, |z2|, there will be a
curve α1 log |z1|+ α2 log |z2| = c with αj ≥ 0 that separates the point (|b1|, |b2|) from the
trace of K. To verify this, one may go to the plane of log |z1|, log |z2| in which log trD is
a convex domain. It may finally be assumed that the numbers αj are rational or, removing
denominators, that they are nonnegative integers. The monomial f(z) = zα1

1 zα2

2 will then

satisfy the inequality |f(b)| > ‖f‖K , hence b can not be a limit point of K̂D.

6.4 The Cartan-Thullen characterizations of domains of holomorphy. We begin
with an important auxiliary result on simultaneous analytic continuation (see also Exercise
6.26 !):

Proposition 6.41. Let K be a compact subset of Ω ⊂ Cn, let a be a point of the O(Ω)-
convex hull K̂Ω and let f be any holomorphic function on Ω. Then the power series for f
with center a converges (at least) throughout the ball B(a, d(K)) and uniformly on every
compact subset of that ball. More generally, if g is any function in O(Ω) which is majorized
by the boundary distance function d on K:

(4a) |g(ζ)| ≤ d(ζ), ∀ζ ∈ K,

then the power series for f around a converges throughout the ball B(a, |g(a)|).

PROOF. The first result is the special case g ≡ d(K) of the second. We will prove the
first result and then indicate what has to be done to obtain the more general one.

Observe that the unit ball B(0, 1) is the union of the maximal polydiscs ∆(0, r) which
it contains, that is, the polydiscs for which r = (r1, . . . , rn) has length 1. Taking 0 < λ <
d(K), let Kλ be the λ-neighbourhood of K, that is, the set of all points in Cn at a distance
< λ from K. The closure Kλ will be a compact subset of Ω; note that we may represent
it in the form

Kλ =
⋃

ζ∈K

B(ζ, λ) =
⋃

ζ∈K, |r|=1

∆(ζ, λr).

124



Naturally, Mλ = sup |f | on Kλ will be finite. Applying the Cauchy inequalities 1.65 to f
on ∆(ζ, λr), ζ ∈ K, |r| = 1, we obtain

(4b)
∣

∣Dαf(ζ)
∣

∣ ≤ Mλα!

(λr)α
=

Mλα!

(λr1)α1 . . . (λrn)αn
, ∀α ≥ 0.

For given α, the right-hand side furnishes a uniform bound for the modulus of the holo-
morphic function Dαf throughout K, hence a bound for ‖Dαf‖K . Since a belongs to K̂Ω,
the same bound must be valid for |Dαf(a)|. [Use (3c) for Dαf .] It follows that the power
series for f with center a,

(4c)
∑

α≥0

Dαf(a)

α!
(z − a)α,

will converge at every point z with |zj − aj | < λrj , j = 1, . . . , n. In other words, it
converges throughout the polydisc ∆(a, λr). This holds for all λ < d(K) and all r with
|r| = 1, hence the series converges throughout the union B(a, d(K)) of those polydiscs,
and it converges uniformly on every compact subset of that ball. [Cf. Theorem 2.42.]

For the second result one takes 0 < λ < 1 and introduces the set

K∗
λ =

⋃

ζ∈K

B(ζ, λ|g(ζ)|).

This too is a compact subset of Ω [use (4a) and the continuity of g]. Instead of (4b) one
now obtains |Dαf(ζ)| ≤M∗

λα!/(λ|g(ζ)|r)α or

(4d)
∣

∣Dαf(ζ) · g(ζ)|α|
∣

∣ ≤ M∗
λα!

(λr)α
, ∀α ≥ 0, |r| = 1.

These inequalities hold throughout K [also where g(ζ) = 0]; they will extend to the point
a ∈ K̂Ω. Via the convergence of the series (4c) throughout the polydiscs ∆(a, λ|g(a)|r)
with λ < 1 and |r| = 1, one obtains its convergence on the union B(a, |g(a)|).

One more definition and we will be ready for the main result.

DEFINITION 6.42. Ω ⊂ Cn is called the (maximal) domain of existence for the function
f ∈ O(Ω) if for every (small) connected domain U that intersects the boundary of Ω and for
every component Ω1 of U ∩Ω, it is impossible to continue the restriction f |Ω1

analytically
to U , cf. fig 6.1.

Theorem 6.43. (cartan-thullen). The following conditions on a domain Ω ⊂ Cn are
equivalent:

(i) Ω is a domain of holomorphy;
(ii-a) For every compact subset K ⊂ Ω, the holomorphically convex hull K̂Ω has the

same distance to the boundary ∂Ω as K:

d(K̂Ω) = d(K);
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(ii-b) All holomorphic functions g on Ω which are majorized by the function d on K
are majorized by d on K̂Ω :

(4e) |g(ζ)| ≤ d(ζ), ∀ζ ∈ K =⇒ |g(z)| ≤ d(z), ∀z ∈ K̂Ω;

(iii) Ω is holomorphically convex, that is, K̂Ω is a compact subset of Ω whenever K is;
(iv) Ω is the maximal domain of existence for some function f ∈ O(Ω).

PROOF. For the proof we may assume that Ω is connected: if Ω is a domain of holomorphy,
so are all its components and conversely. We may also assume Ω 6= Cn and will write K̂
for K̂Ω.

(i) ⇒ (ii-a). Since K ⊂ K̂ one has d(K̂) ≤ d(K). For the other direction, choose
any point a in K̂. For any function f in O(Ω), the power series with center a converges
(at least) throughout the ball B = B(a, d(K)) [Proposition 6.41]. The sum of the series
furnishes a direct analytic continuation of f [from the component of Ω ∩ B that contains
a] to B and this holds for all f in O(Ω). However, by the hypothesis Ω is a domain of
holomorphy, hence B must belong to Ω or we would have a contradiction. It follows that
d(a) ≥ d(K) and, by varying a. that d(K̂) ≥ d(K).

(i) ⇒ (ii-b). This implication also follows from Proposition 6.41. If (4a) holds for
g ∈ O(Ω), the power series for any f ∈ O(Ω) with center a ∈ K̂ will define a holomorphic
extension of f to B(a, |g(a)|), hence such a ball must belong to Ω. Thus d(a) ≥ |g(a)| and
(4e) follows.

(ii-a) or (ii-b) ⇒ (iii). Let K ⊂ Ω be compact. Because (ii-b) implies (ii-a) [take
g ≡ d(K)] we may assume (ii-a). We know that K̂ ⊂ Ω is bounded and closed relative to
Ω [Properties 6.34]. Since by the hypothesis K̂ has positive distance to ∂Ω, it follows that
K̂ is compact.

(iii) ⇒ (iv). We will construct a function f in O(Ω) that has zeros of arbitrarily high
order associated to any boundary approach.

Let {aν} be a sequence of points that lies dense in Ω and let Bν denote the maximal
ball in Ω with center aν . Let {Eν} be the “standard exhaustion” of Ω by the increasing
sequence of compact subsets

Eν = {z ∈ Ω : |z| ≤ ν, d(z, ∂Ω) ≥ 1/ν}, ν = 1, 2, . . . ;

∪Eν = Ω. By changing scale if necessary we may assume that E1 is nonempty. By (iii)
the subsets Êν ⊂ Ω are also compact. Since Bν contains points arbitrarily close to ∂Ω, we
can choose points

ζν in Bν − Êν , ν = 1, 2, . . . .

We next choose functions gν in O(Ω) such that

gν(ζν) = 1, ‖gν‖Eν
< 2−ν , ν = 1, 2, . . .

[cf. formula (3d)]. Our function f is defined by

(4f) f(z) =

∞
∏

ν=1

{1− gν(z)}ν , z ∈ Ω;
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we will carefully discuss its properties. For the benefit of readers who are not thoroughly
familiar with infinite products, we base our discussion on infinite series.

We begin by showing that the infinite product in (4f) is uniformly convergent on
every set Eµ. Let z be any point in Eµ. Then for ν ≥ µ

|gν(z)| ≤ ‖gν‖Eµ
≤ ‖gν‖Eν

< 2−ν .

Using the power series −∑ws/s for the principal value of log(1 − w) on the unit disc
{|w| < 1}, it follows that

ν|p.v. log{1− gν(z)}| ≤ ν|gν(z) + 1
2gν(z)2 + . . . | < 2ν2−ν .

Thus the series
∑

ν≥µ

ν p.v. log{1− gν(z)}

is uniformly convergent on Eµ; the sum function is holomorphic on the interior E0
µ. Ex-

ponentiating, we find that the product

∏

ν≥µ

{1− gν(z)}ν

is also uniformly convergent on Eµ; the product function is zero free on Eµ and holomorphic
on E0

µ.
Multiplying by the first µ−1 factors, the conclusion is that the whole product in (4f)

converges uniformly on Eµ. The product defines f as a holomorphic function on E0
µ and

hence on Ω. Since f is zero free on E1 it does not vanish identically; on Eµ it vanishes
precisely where one of the first µ− 1 factors of the product is equal to zero. At the point
z = ζν ∈ Bν the factor {1− gν(z)}ν vanishes of order ≥ ν, hence the same holds for f.

We will show that f can not be continued analytically across ∂Ω. Suppose on the
contrary that f has a direct analytic continuation F to a connected domain U intersecting
∂Ω if one starts from the component Ω1 of U ∩ Ω. Now choose a point b in ∂Ω1 ∩ U
and select a subsequence {a′k = aνk

} of {aν} which lies in Ω1 and converges to b. The
associated balls B′

k = Bνk
must also tend to b, hence for large k they lie in Ω1 and by

omitting a few, we may assume that they all do. At z = ζ ′k = ζνk
∈ B′

k our function f
vanishes of order ≥ νk ≥ k and the same must then hold for F . Thus

DαF (ζ ′k) = 0 for all α,s with |α| < k.

Since ζ ′k → b it follows by continuity that DαF (b) = 0 for every multi-index α, hence
F ≡ 0. By the uniqueness theorem this would imply f ≡ 0, but that is a contradiction.

(iv) ⇒ (i): clear.

REMARK 6.44. One can show that a result like 6.43(ii-a) is also valid for other distance
like functions, e.g., as introduced in exercise 6.27. , cf. [Pflug].
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6.5 Domains of holomorphy are pseudoconvex. On a convex domain Ω the function
v = log 1/d is convex: it satisfies the linear mean value inequality (2e), or with different
letters,

(5a) v(a) ≤ 1
2
{v(a− ξ) + v(a+ ξ)}

for every straight line segment [a− ξ, a+ ξ] in Ω. Pseudoconvexity of a domain Ω in Cn

may be defined in terms of a weaker mean value inequality for the function v = log 1/d.
In the case n = 1 this will be the inequality that characterizes subharmonic functions:

DEFINITION 6.51. A continuous subharmonic function v on Ω ⊂ C is a continuous
real valued function that satisfies for every point a ∈ Ω and all sufficiently small vectors
ζ ∈ C− {0}, v the circular mean value inequality:

(5b) v(a) ≤ v(a; ζ)
def
=

1

2π

∫ π

−π

v(a+ eitζ)dt, 0 < |ζ| < ra.

In the present case of C one may write ζ = reiϕ and thus v(a; ζ) = v(a; r), the mean value
of v over the circle C(a, r). For subharmonic v as defined here, the mean value inequality
(5b) will automatically hold for every ζ with 0 < |ζ| < d(a) [one may take ra = d(a),
Section 8.2].

In the case of Cn, the mean value inequality relative to circles in complex lines leads
to the class of plurisubharmonic functions:

DEFINITION 6.52. A continuous plurisubharmonic (psh) function v on Ω ⊂ Cn is a
continuous real function with the property that its restrictions to the intersections of Ω
with complex lines are subharmonic. Equivalently, it is required that for every point a ∈ Ω
and every vector ζ ∈ Cn−{0}, the function v(a+wζ), w ∈ C satisfy circular mean value
inequalities at the point w = 0. The condition may also be expressed by formula (5b), but
now for vectors ζ ∈ Cn.

It may be deduced from (5a) [by letting ξ run over a semicircle] that convex functions
on Ω ⊂ Cn are plurisubharmonic. An important example is given by the function |z|2.
Observe also that the sum of two psh functions is again psh

More general [not necessarily continuous] subharmonic and plurisubharmonic func-
tions will be studied in Chapter 8. The following lemma is needed to prove circular mean
value inequalities for continuous functions.

Lemma 6.53. Let f be a continuous real functions on the closed unit disc ∆1(0, 1) ⊂ C
with the following special property:

Π For every polynomial p(w) such that Re p(w) ≥ f(w) on the circumference C(0, 1),
one also has Re p(0) ≥ f(0). Then f satisfies the mean value inequality at 0 relative
to the unit circle:

f(0) ≤ f(0; 1) =
1

2π

∫ π

−π

f(eit)dt.
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PROOF. By Weierstrass’s theorem on trigonometric approximation, any 2π-periodic con-
tinuous real function on R can be uniformly approximated, within any given distance ε,
by real trigonometric polynomials

∑

k≥0

(ak cos kt+ bk sin kt) = Re
∑

k≥0

(ak − ibk)eikt = Re p(eit).

Here p(w) stands for the polynomial
∑

k≥0(ak − ibk)wk. For our given f , we now approx-

imate f(eit) + ε with error ≤ ε by Re p(eit) on R:

−ε ≤ f(eit) + ε− Re p(eit) ≤ ε.

Then
f(w) ≤ Re p(w) ≤ f(w) + 2ε on C(0, 1).

Hence by property (Π) of f ,

f(0) ≤ Re p(0) = a0 =
1

2π

∫ π

−π

Re p(eit)dt

≤ 1

2π

∫ π

−π

f(eit)dt+ 2ε = f(0, 1) + 2ε.

The proof is completed by letting ε ↓ 0.

DEFINITION 6.54. A domain (open set) Ω in Cn is called pseudoconvex if the function

(5c) v(z) = log 1/d(z) = log 1/d(z, ∂Ω)

is plurisubharmonic on Ω.

There are also other definitions of pseudoconvexity possible, cf. Remark 6.57 and
Theorem 9.34.

Theorem 6.55. Every domain of holomorphy in Cn is pseudoconvex.

PROOF. Let Ω ⊂ Cn be a domain of holomorphy. Choose any point a in Ω. We will show
that the function v = − log d satisfies the mean value inequality (5b) for every ζ ∈ Cn with
0 < |ζ| < d(a). Fixing such a ζ, the flat analytic disc

∆ = {z ∈ Cn : z = a+ wζ, |w| ≤ 1}

will belong to Ω. We set

(5d) f(w) = v(a+ wζ) = − log d(a+ wζ), w ∈ ∆1(0, 1)

and get ready to apply Lemma 6.53 to this continuous real f .
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Thus, let p(w) be any polynomial in w such that

(5e) Re p(w) ≥ f(w) = − log d(a+ wζ), ∀w ∈ C(0, 1).

In order to exploit the fact that Ω is a domain of holomorphy, we have to reformulate (5e)
as an inequality for a holomorphic function on Ω. This is done by choosing a polynomial
q(z) in z such that

(5f) q(a+ wζ) = p(w), ∀w ∈ C;

singling out a nonzero coordinate ζj of ζ, one may simply take q(z) = p{(zj − aj)/ζj}.
Then for z = a+ wζ with w ∈ C(0, 1), (5e) gives

Re q(z) = Re p(w) ≥ − log d(z),

or equivalently,

(5g) |e−q(z)| ≤ d(z), ∀z ∈ Γ = edge ∆.

We know that ∆ ⊂ Ω belongs to the holomorphically convex hull of Γ relative to Ω, cf. 6.33.
Now Ω is a domain of holomorphy, hence by the Cartan-Thullen theorem 6.43, inequality
(5g) must also hold everywhere on ∆ ⊂ Γ̂Ω, cf. (4e). It will hold in particular for z = a,
hence |e−q(a)| ≤ d(a) or

(5h) Re p(0) = Re q(a) ≥ − log d(a) = f(0).

Summing up, (5e) always implies (5h), so that f has property (
∏

) of Lemma 6.53.
Conclusion:

f(0) ≤ f(0; 1) or v(a) ≤ v(a; ζ).

We close with an important auxiliary result for the solution of the Levi problem in
Chapters 7, 11.

Proposition 6.56. Every pseudoconvex domain Ω has a plurisubharmonic exhaustion
function: It is “psh exhaustible” The intersection Ω′ = Ω ∩ V of a psh exhaustible
domain Ω with a complex hyperplane V is also psh exhaustible.

PROOF. (i) If Ω = Cn, then the function |z|2 will do. For other pseudoconvex Ω, the
function

α(z) = log
1

d(z)
+ |z|2, z ∈ Ω

will be a psh exhaustion function. Indeed, α is a sum of psh functions, hence psh, cf. Def-
inition 6.54 and the lines following Definition 6.52. The term |z|2 ensures the compactness
of the subsets Ωt of Ω when Ω is unbounded, cf. Definition 6.23.

(ii) If α is any psh exhaustion function for Ω, then α′ = α |Ω′ will be a psh exhaustion
function for Ω′ = Ω ∩ V . [Verify this.]

REMARK 6.57. Psh exhaustion functions are essential in the solution of the ∂ problem on
pseudoconvex domains as presented in Chapter 11. For that reason, one sometimes defines
pseudoconvexity in terms of the existence of psh exhaustion functions. In fact, every psh
exhaustible domain is also pseudoconvex in the sense of Definition 6.54 [cf. Section 9.3].

130



Exercises

6.1. Prove directly from the definition that Uj = {z ∈ Cn : zj 6∈ 0} is a domain of
holomorphy. Prove also that Uj ∩ Uk is a domain of holomorphy.

6.2. Let Ω1 and Ω2 be domains of holomorphy in Cm and Cp, respectively. Prove that the
product domain Ω = Ω1 × Ω2 is a domain of holomorphy in Cm+p.

6.3. (Analytic polyhedra) Let P be an analytic polyhedron in Cn, that is, P is compact
and there exist a neighbourhood U of P and a finite number of holomorphic functions
f1, . . . , fk on U such that

P = {z ∈ U : |fj(z)| < 1, j = 1, . . . , k}.

Prove that P is a domain of holomorphy. [Examples: the polydisc ∆(a, r) with
r <∞, the multicircular domain in C2 given by the set of inequalities |z1| < 2,
|z2| < 2, |z1z2| < 1.]

6.4. Prove directly that the Reinhardt triangle

D = {(z1, z2) ∈ C2 : 0 < |z1| < |z2| < 1}

is a domain of holomorphy. [This is a logarithmically convex multicircular domain
which, however, is not complete.]

D

|z2|

0 1

|z1|

fig 6.6

6.5. Prove that the closure D of the Reinhardt triangle can not be the intersection of
a family of domains of holomorphy. [Cf. Section 2.5.] Show in addition that every
holomorphic function on D which is bounded with all its derivatives of arbitrary order,
extends to the polydisc ∆2(0, 1). [Cf. [Sibony] for related examples.]

6.6. Let D be convex and let x′, x′′ lie in D. Show that

d((1− λ)x′ + λx′′) ≥ (1− λ)d(x′) + λd(x′′), ∀λ ∈ [0, 1].

Now use the fact that the function log t is increasing and concave [the graph lies above
the chords] to prove inequality (2f) for v = − log d.
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6.7. Let D be a connected domain in Rn. A point b ∈ ∂D is called a boundary point of
nonconvexity for D if there is a straight line segment S throught b in D whose end
points belong to D and which is the limit of a continuous family of line segments
inside D. Suppose now that D is nonconvex. Prove that D has a boundary point of
nonconvexity. [There must be points x′, x′′ in D such that the segment [x′, x′′] does
not belong to D. Connecting x′ to x′′ by a polygonal path in D, one may deduce that
D must contain segments [x0, x1] and [x0, x2] such that [x1, x2] does not belong to D.
Now consider segments parallel to [x1, x2].]

6.8. (Continuation) Let D be a connected domain in Rn.
(i) Suppose that the function v(x) = log 1/d(x) is convex on D.

Deduce that D is convex.
(ii) Prove that D is convex if and only if it has a convex exhaustion function.

6.9. Let K ⊂ Rn be compact. Characterize the points x of the convex hull CH(K) by
means of a family of inequalities involving real linear functions, cf. (3b).

6.10. Let K ⊂ Ω ⊂ Cn be compact, K̂ = K̂Ω the holomorphically convex hull of K relative
to Ω. Prove that
(i) (K̂)∧ = K̂;

(ii) if |zj | ≤ rj for all z ∈ K, then |zj | ≤ rj for all z ∈ K̂ [hence K̂ is bounded].

6.11. Suppose K ⊂ Zf ⊂ Ω, where Zf is the zero set of a function f ∈ O(Ω). Prove that

K̂ ⊂ Zf .
6.12. Let Ω ⊂ C be the annulus A(0, ρ, R) and let K be the circle C(0, r), where ρ < r < R.

Determine K̂Ω.

6.13. Let K ⊂ C be compact, C−K connected, a ∈ C−K. Prove that there is a simple
holomorphic function f on a neighbourhood Ω of K∪{a} with connected complement
Ce − Ω such that

|f(z)| ≤ 1 on K, |f(a)| > 1.

Next use Runge’s theorem 1.75 to show that there is a polynomial p(z) such that

|p(z)| ≤ 1 on K, |p(a)| > 1.

Finally, describe K̂C.

6.14. Let K be an arbitrary compact set in C [C−K need not be connected]. Describe
K̂C.

6.15. Let ∆ ⊂ Ω ⊂ Cn be a flat analytic disc, ∆ = {z ∈ Cn : z = a+wζ, |w| ≤ 1}, where
ζ ∈ Cn − {0}. Determine Γ̂Ω where Γ = edge ∆.

6.16. (Polynomially convex hull) For K ⊂ Cn compact, the polynomially convex hull K̃ is
defined by

K̃ = {z ∈ Cn : |p(z)| ≤ ‖p‖K for all polynomials p}.
Prove:

132



(i) For any domain Ω containing K, K̂Ω ⊂ K̃;
(ii) For any polydisc ∆ containing K, K̂∆ = K̃;

(iii) K̃ = K̂Cn ⊂ CH(K).

6.17. Let K ⊂ Ω ⊂ Cn be compact and let E be the set of those points z ∈ Ω, for which
there is a constant Mz such that |f(z)| ≤ Mz‖f‖K for all f ∈ O(Ω). Prove that
E = K̂Ω.

6.18. Prove directly from Definition 6.35 that the following domains are holomorphically
convex:
(i) Cn;

(ii) polydiscs in Cn;
(iii) convex domains in Cn.

6.19. Prove that the intersection of two domains of holomorphy is again a domain of holo-
morphy.

6.20. Let D1 be a connected domain of holomorphy in Cn and let D2 ⊂ Cn be analytically
isomorphic to D1. Prove that D2 is also a domain of holomorphy.

6.21. Let Ω be a domain of holomorphy and let Ωε be the “ε-contraction” of Ω, that is,
Ωε = {z ∈ Ω : d(z) > ε}. Prove that Ωε is also a domain of holomorphy. [For
K ⊂ Ωε, K̂Ωε ⊂ K̂Ω.]

6.22. (Another characterization of domains of holomorphy) Prove that Ω ⊂ Cn is a domain
of holomorphy if and only if the following condition is satisfied:

“For every boundary point b and every sequence of points {ζν} in Ω that con-
verges to b, there is a holomorphic function f on Ω which is unbounded on the
sequence {ζν}”.

[Let Ω be a domain of holomorphy and {Kν} an increasing exhaustion of Ω by compact
subsets, determined in such a way that Kµ+1−K̂µ contains a point θµ of the sequence
{ζν}. Define f =

∑

gµ, where the functions gµ ∈ O(Ω) are determined inductively
such that

|gµ(θµ)| > µ+

µ−1
∑

ν−1

|gν(θµ)|, ‖gµ‖Kµ
< 2−µ.

What can you say about |f(θµ)| ?]

6.23. Prove that Ω ⊂ Cn is a domain of holomorphy if and only if the following condition
is satisfied: For every compact K ⊂ Ω and every function f ∈ O(Ω),

sup
K

|f(z)|
d(z)

= sup
K̂

|f(z)|
d(z)

.

6.24. Let D be a connected domain of holomorphy, K ⊂ D compact. Prove that there
is an analytic polyhedron P such that K ⊂ P ⊂ D. Deduce that D is the limit of
an increasing sequence of analytic polyhedra {Pν} such that P ν ⊂ P 0

ν+1. [Assuming
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K = K̂ (as we may), associate certain functions to the boundary points of an
ε-neighbourhood of K.]

6.25. Use the mean value inequality (5a) for v = log 1/d on straight line segments to prove
that every convex domain in Cn is pseudoconvex.

6.26. (Continuity principle for analytic discs, cf. Hartogs’ continuity theorem 2.61) Let D
be a connected domain in Cn and let {∆ν}, ν = 1, 2, . . . be a sequence of analytic
discs in D which converges to a set E in Cn. Suppose that the edges Γν of the discs
∆ν all belong to a compact subset K of D. Setting d(K) = ρ and taking any point
b ∈ E, prove that (suitable restrictions of) the functions f ∈ O(D) can be continued
analytically to the ball B(b, ρ).

6.27 Let Ω be a domain of holomorphy. For a ∈ Cn \ {0} let

da(z) = da(z, ∂Ω) = sup{r : (z + λa) ∈ Ω ∀|λ| < r}.

Let Γ be the edge of an analytic disc ∆̄ in Ω. Show that

da(Γ) = da(∆̄).

Next show that − log da(z) is psh on Ω and deduce a proof of step ii of Hartogs’
singularity theorem (4.82), for all n ≥ 2.

6.28. (Prism Lemma). Let Hx be a domain in Rn
x which contains two closed line segments

[x0, x1] and [x0, x2] that do not belong to a straight line and let f be holomorphic
on Hx + iRn

y ⊂ Cn. Prove that f has an analytic continuation to a neighborhood of
Tx+ iRn

y , where Tx is the closed triangular region with vertices x0, x1, x2. [ Take x0 =
(0, 0, 0, . . . , 0), x1 = (1, 1, 0, . . . , 0), x2 = (−1, 1, 0, . . . , 0). By translation invariance, it
is sufficient to prove that f has an analytic extension to a neighborhood of an arbitrary
point a = (a1, a2, . . . , 0) ∈ T 0

x : |a1| < a2 < 1. Determine c and d such that a lies on
the parabola x2 = cx2

1 + d through x1 and x2 and then consider the family of analytic
discs ∆λ = {z ∈ T + iRn

y : z2 = cz2
1 + λ, z3 = · · · = zn = 0}, 0 ≤ λ ≤ d = 1− c. The

boundaries Γλ belong to {[x0, x1] ∩ [x0, x2]}+ iRn
y . Verify that the projection of ∆λ

onto the z1-plane is given by the inequality |x1| ≤ c(x2
1 − y2

1) + λ.]
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CHAPTER 7

The first Cousin problem, ∂ and the Levi problem

Towards the end of the nineteenth century, prominent mathematicians solved the
following problems:
– Construct a meromorphic function f on C, or on a domain Ω ⊂ C, with poles at
prescribed points and with a prescribed way of becoming infinite at the poles (results of
Mittag-Leffler);
– Construct a holomorphic function f on C, or on Ω ⊂ C, with zeros at prescribed points
and with prescribed multiplicities of the zeros (results of Weierstrass).

The corresponding questions for Cn and for domains Ω ⊂ Cn were also raised and led
to the important first and second Cousin problem, respectively, see
Section 1.10. However, solutions for domains other than simple product domains did not
appear until Oka started to make his major contributions around 1936. It seemed then that
the Cousin problems are best considered on domains of holomorphy. Still, that was not the
whole story. Complete understanding came only with the application of sheaf cohomology
[Cartan-Serre, early 1950’s, cf. Chapter 12 and the monograph [Grauert-Remmert]]. More
recently, there has been increased emphasis on the role of the ∂ equation, especially after
Hörmander found a direct analytic solution for the general ∂ problem on pseudoconvex
domains [cf. Chapter 11].

Let us elaborate. The Cousin problems require a technique, whereby local solutions
may be patched together to obtain a global solution. Techniques for the first Cousin
problem can be applied also to other problems, such as the holomorphic extension of
functions, defined and analytic on the intersection of a domain with a complex hyperplane,
and the patching together of local solutions of the ∂ equation to a global solution. In this
Chapter it will be shown that the reduced, so-called holomorphic Cousin-I problem is
generally solvable on a domain Ω ⊂ Cn if and only if the “first order” ∂ equation ∂u = v
is generally solvable on Ω. Indeed, smooth solutions of the holomorphic Cousin-I problem
exist no matter what domain Ω one considers. Such smooth solutions can be modified to
a holomorphic solution by the method of “subtraction of nonanalytic parts” if an only if
one can solve a related ∂ equation.

In Chapter 11 it will be shown analytically that every pseudoconvex domain is a ∂
domain, that is, a domain on which all (first order) ∂ equations are solvable. For C2 it
will then follow that pseudoconvex domains, ∂ domains, Cousin-I domains (domains on
which all first Cousin problems are solvable) and domains of holomorphy are all the same,
cf. Sections 7.2, 7.7. The situation in Cn with n ≥ 3 is more complicated: see Sections
7.2, 7.5 and the discussion of the Levi problem in Section 7.7; cf. also Chapter 12.

7.1 Meromorphic and holomorphic Cousin-I. A meromorphic function f on an open
set Ω ⊂ C is a function which is holomorphic except for poles. The poles must be isolated:
they can not have a limit point inside Ω, but there are no other restrictions. [A limit point
of poles inside Ω would be a singular point of f but not an isolated singularity, hence
certainly not a pole.] The classical existence theorem here is Mittag-Leffler’s: For any
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open set Ω ⊂ C, any family of isolated points {aλ} ⊂ Ω and any corresponding family of
principal parts

fλ(z) =

mλ
∑

s=1

cλs(z − aλ)−s,

there is a meromorphic function f on Ω which has principal part fλ at aλ for each λ but
no poles besides the points aλ. That is, for each point aλ there is a small neighbourhood
Uλ ⊂ Ω such that

(1a) f = fλ + hλ on Uλ, with hλ ∈ O(Uλ)

[hλ holomorphic on Uλ], while f is holomorphic on Ω − ∪λUλ. For a classical proof of
Mittag-Leffler’s theorem, cf. Exercise 7.1, for a proof in the spirit of this Chapter, cf.
Exercise 7.3.

Since analytic functions in Cn with n ≥ 2 have no isolated singularities [Chapters 2,
3], meromorphy in Cn must be defined in a different way:

DEFINITION 7.11. A meromorphic function f on Ω ⊂ Cn [we write f ∈ M(Ω)] is
a function which, in some (connected) neighbourhood Ua of each point a ∈ Ω, can be
represented as a quotient of holomorphic functions,

f = ga/ha on Ua, with ha 6≡ 0.

[The question of global quotient representations of meromorphic functions f will be con-
sidered in Theorem 12.6x.]

Observe that a meromorphic function need not be a function in the strict sense that
it has a precise value everywhere: it is locally defined as an element of a quotient field. On
Ua, the above f may be assigned a precise value (at least) wherever ha 6= 0 or ga 6= 0. A
meromorphic function is determined by its finite values,
cf. Exercise 7.5.

Suppose now that for Ω ⊂ Cn one is given a covering by open subsets Uλ, where λ
runs over some index set Λ, and that on each set Uλ one is given a meromorphic function
fλ. One would like to know if there is a global meromorphic function f on Ω which on
each set Uλ becomes singular just like fλ, in other words, f should satisfy the conditions
(1a). Of course, this question makes sense only if on each nonempty intersection

(1b) Uλµ = Uλ ∩ Uµ,

the functions fλ and fµ have the same singularities. One thus arrives at the following
initial form of the first Cousin problem:

MEROMORPHIC FIRST COUSIN PROBLEM 7.12. Let {Uλ}, λ ∈ Λ be a covering
of Ω ⊂ Cn by open subsets and let the meromorphic functions fλ ∈ M(Uλ) satisfy the
compatibility conditions

(1c) fλ − fµ = hλµ on Uλµ with hλµ ∈ O(Uλµ), ∀λ, µ ∈ Λ.
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The question is if there exists a meromorphic function f ∈ M(Ω) such that

(1d) f = fλ + hλ on Uλ with hλ ∈ O(Uλ), ∀λ ∈ Λ.

In looking for f , one may consider the holomorphic functions hλ as the unknowns.
They must then be determined such that hµ − hλ = hλµ on Uλµ, cf. (1d) and (1c). By
(1c), the functions hλµ will have to satisfy certain requirements:

hλµ = −hµλ on Uλµ, hλµ = hλν + hνµ on Uλµν = Uλ ∩ Uµ ∩ Uν ,
etc. It turns out that the meromorphic Cousin problem can be reduced to a holomorphic
problem involving the known functions hλµ and the unknown functions hλ:

(HOLOMORPHIC) COUSIN-I PROBLEM or ADDITIVE COUSIN PROBLEM 7.13.
Let {Uλ}, λ ∈ Λ be an open covering of Ω ⊂ Cn and let {hλµ} be a family of holomorphic
functions on the (nonempty) intersections Uλµ that satisfy the compatibility conditions

(1e)















hλµ + hµλ = 0 on Uλµ, ∀λ, µ, ν ∈ Λ

hλµ + hµν + hνλ = 0 on Uλµν , ∀λ, µ, ν ∈ Λ.

The question is if there exist holomorphic functions hλ ∈ O(Uλ) such that

(1f) hλ − hµ = hλµ on Uλµ, ∀λ, µ ∈ Λ.

A family {Uλ, fλ} with functions fλ ∈ M(Uλ) that satisfy condition (1c) will be called
a set of meromorphic Cousin data on Ω; a family {Uλ, hλµ} with holomorphic functions
hλµ ∈ O(Uλµ) that satisfy the conditions (1e) will be called a set of (holomorphic) Cousin-I
data on Ω. The above forms of the first Cousin problem are related in the following way:

Proposition 7.14. The meromorphic first Cousin problem on Ω with data {Uλ, fλ} has
a solution f (in the sense of (1d) if and only if there is a solution {hλ} to the holomorphic
Cousin-I problem on Ω with the data {Uλ, hλµ} derived from (1c). In particular, if all
holomorphic Cousin-I problems on Ω are solvable, then so are all meromorphic first Cousin
problems on Ω.

PROOF. If the family {hλ} solves the holomorphic problem corresponding to the functions
hλµ coming from (1c), then in view of (1f):

fλ + hλ = fµ + hµ on Uλµ, ∀λ, µ,
hence one may define a global meromorphic function f on Ω by setting

f
def
= fλ + hλ on Uλ, ∀λ.

Conversely, if f solves the meromorphic problem, then the family {hλ} given by (1d) solves
the corresponding holomorphic problem.

We will see in the sequel that the theory for the holomorphic Cousin-I problem has a
number of applications besides the meromorphic problem.
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DEFINITION 7.15. An open set Ω in Cn will be called a cousin-I domain if all holo-
morphic first Cousin problems on Ω are solvable. By Proposition 7.14, all meromorphic
first Cousin problems on such a domain are also solvable. If it is only known that all
meromorphic first Cousin problems on Ω are solvable, one may speak of a meromorphic
Cousin-I domain.

Are all meromorphic Cousin-I domains in Cn also holomorphic Cousin-I domains?
The answer is known to be yes for n = 2, cf. Exercise 7.23. For n = 1 the answer is yes
for a trivial reason: by the theory below, all domains Ω in C are Cousin-I domains !

EXAMPLE 7.16. Let U1 and U2 be domains in C with nonempty intersection U12. Let h12

be any holomorphic function on U12. All boundary points of U12 may be bad singularities
for h12! Nevertheless, by the Cousin-I theory h12 can be represented as h2 − h1 with
hj ∈ O(Uj). It does not seem easy to prove this directly! Cf. also Exercise 7.14.

Not all domains in C2 are Cousin-I domains:

EXAMPLE 7.17. Take Ω = C2 − {0},

Uj = {z ∈ C2 : zj 6= 0}, j = 1, 2; h12 = −h21 =
1

z1z2
, h11 = h22 = 0.

Question: Can one write h12 as h2 − h1 with hj ∈ O(Uj) ?
Observe that U1 is a multicircular domain and that U1 = [C − {0}] × C. Every

holomorphic function h1 on U1 is the sum of a (unique) absolutely convergent Laurent
series

∑

p,q

apqz
p
1z
q
2 ,

at least where z1z2 6= 0, cf. Section 2.7. Here apq = 0 whenever q < 0: indeed, for fixed
z1 6= 0,

h1(z1, z2) =
∑

q

(

∑

q

apqz
p
1

)

zq2

will be an entire function of z2, hence
∑

p apqz
p
1 = 0 for every q < 0 and all z1 6= 0. Another

application of the uniqueness theorem for Laurent series in one variable completes the proof
that apq = 0 for all (p, q) with q < 0. Similarly every holomorphic function h2 on U2 is the
sum of a Laurent series

∑

p,q

bpqz
p
1z
q
2

with bpq = 0 whenever p < 0. It follows in particular that

a−1,−1 = b−1,−1 = 0.

Thus a difference h2 − h1 with hj ∈ O(Uj) can not possibly be equal to the prescribed
function h12 on U1 ∩ U2: the latter has Laurent series

∑

cpqz
p
1z
q
2 = z−1

1 z−1
2 hence 1 =

c−1,−1 6= b−1,−1 − a−1,−1. The present Cousin-I problem is not solvable.
[A shorter but less informative proof is suggested in Exercise 7.6.]
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The domain Ω = C2−{0} is not a domain of holomorphy. [All holomorphic functions
on Ω have an analytic continuation to C2, cf. Sections 2.6, 3.4.] This is not a coincidence:
on a domain of holomorphy, all Cousin-I problems will be solvable [see Theorem 7.71].

7.2 Holomorphic extension of analytic functions defined on a hyperplane sec-
tion. Certain holomorphic extensions may be obtained by solving Cousin problems:

Theorem 7.21. Let Ω ⊂ Cn be a [meromorphic] Cousin-I domain and let Ω′ be the
nonempty intersection of Ω with some (affine) complex hyperplane V ⊂ Cn. Then every
holomorphic function h on Ω′ [interpreted as a subset of Cn−1] has a holomorphic extension
g to Ω.

PROOF. By suitable choice of coordinates it may be assumed that V is the hyperplane
{zn = 0}, so that the (n−1)-tuples (z1, . . . , zn−1) = z′ can serve as coordinates in Ω′ = V ∩
Ω. The given holomorphic function h(z′) on Ω′ can, of course, be extended to a holomorphic
function [independent of zn] on the cylinder Ω′ ×C by setting h̃(z′, zn) = h̃(z′, 0) = h(z′).
This observation solves the extension problem if Ω ⊂ Ω′ × C; the general case will be
handled via a meromorphic Cousin problem.

We introduce a covering of Ω by a family of polydiscs contained in Ω; the polydiscs
which contain no point z with zn = 0 will be called Up’s, those containing some point of
V will be called Vq’s. Observe that if (z′, zn) ∈ Vq, then also
(z′, 0) ∈ Vq ⊂ Ω, hence z′ ∈ Ω′ [see fig 7.1 and cf. Exercise 7.11.]

Vq

V

(z’,zn)

(z’,0)

fig 7.1
One associates meromorphic Cousin data to the above covering that depend on the

given function h:

(2a) fp = 0 on each Up, fq(z
′, zn) =

h(z′)

zn
on each Vq.

Since an intersection Up∩Vq contains no points z with zn = 0, the corresponding difference
fp − fq = hpq is holomorphic on that intersection.

By the hypothesis, our meromorphic first Cousin problem is solvable. Let f be a
meromorphic solution on Ω:

(2b) f =















fp + hp = hp on Up, hp ∈ O(Up), ∀p,

fq + hq = h(z′)/zn + hq on Vq, hq ∈ O(Vq), ∀q.
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We now define

(2c) g = znf =



























znhp on the polydisc Up, ∀p.

h(z′) + znhq at each point (z′, zn)

in the polydisc Vq, ∀q.

The function g is clearly holomorphic on Ω. It is equal to h on Ω′: the points of Ω with
zn = 0 belong to polydiscs Vq, hence g(z′, 0) = h(z′).

Appropriate choice of h will provide the following important step in an inductive
solution of the Levi problem:

Theorem 7.22. Let Ω ⊂ Cn be a [meromorphic] Cousin-I domain. Suppose that the
(nonempty) intersections of Ω with the complex hyperplanes in Cn are domains of holo-
morphy when considered as subsets of Cn−1. Then Ω is a domain of holomorphy.

PROOF. Choose any (small) connected domain U that intersects the boundary of Ω and
any component Ω0 of U ∩ Ω. We will construct a function g ∈ O(Ω) whose restriction
g | Ω0 can not be continued analytically to U [cf. Definition 6.11].

Take a point b ∈ U ∩ ∂Ω0 and a point a ∈ Ω0 such that the segment [a, b] belongs to
U ; let c be the point of [a, b] ∩ ∂Ω0 closest to a [so that c ∈ ∂Ω; c may coincide with b].

U

Ω

Ω0

a
c

b

fig 7.2
We next select a complex hyperplane V which contains [a, b]. Since by hypothesis the

intersection Ω′ = V ∩ Ω is a domain of holomorphy, there is a holomorphic function h on
Ω′ which becomes singular at c for approach along [a, c). [One may take a function h that
is unbounded on [a, c), cf. Exercise 6.22. For n = 2, cf. also Exercise 7.12.] Let g, finally,
be a holomorphic extension of h to the Cousin-I domain Ω. Then the restriction of g to Ω0

has no analytic continuation to U : g must also become singular at c for approach along
[a, c).

COROLLARY 7.23. Let Ω ⊂ Cn be a [meromorphic] Cousin-I domain and suppose that
the same is true for the intersection of Ω with any affine complex subspace of Cn of any
dimension k between 1 and n. Then Ω is a domain of holomorphy.

140



[Use induction on n; the intersections of Ω with complex lines are planar open sets,
hence domains of holomorphy.]

Thus in C2, every [meromorphic] Cousin-I domain is a domain of holomorphy. This
is no longer true in Cn with n ≥ 3. For example, it was shown by Cartan that Ω =
Cn \Cm × {(0, . . . , 0)}, n ≥ m+ 3 is a Cousin-I domain, cf. Exercise 7.10.

The method of proof of Theorem 7.22 gives another interesting criterion for a domain
of holomorphy, see Exercise 7.24.

7.3 Refinement of coverings and partitions of unity. It is sometimes desirable to
refine a given covering of Ω by open subsets. A covering {Vj}, j ∈ J of Ω is called a
refinement of the covering {Uλ}, λ ∈ Λ if each set Vj is contained in some set Uλ. In order
to transform given Cousin data for the covering {Uλ} into Cousin data for the covering
{Vj}, we introduce a refinement map, that is, a map σ : J → Λ such that

(3a) Vj ⊂ Uσ(j) for each j ∈ J.

[There may be several possible choices for Uσ(j): we make one for each j.]

REFINEMENT OF COUSIN DATA 7.31. Let {Vj} be an open covering of Ω,
ϕjk ∈ O(Vjk). The data {Vj , ϕjk} are called a refinement of given Cousin-I data {Uλ, hλµ}
on Ω if the covering {Vj} is a refinement of {Uλ}, and if the functions ϕjk are obtained
from the functions hλµ via a refinement map σ, combined with restriction:

(3b) ϕjk = hσ(j)σ(k) |Vjk
, ∀j, k ∈ J [Vjk ⊂ Uσ(j)σ(k)].

Let {Uλ, hλµ} be given holomorphic Cousin-I data for Ω and let {Vj , ϕjk} be a refine-
ment. It is clear that the functions ϕjk (3b) will then satisfy the compatibility conditions
for the covering {Vj}, cf. (1e), hence the data {Vj , ϕjk} are also Cousin-I data for Ω.

Proposition 7.32. The original Cousin-I problem {Uλ, hλµ} on Ω is (holomorphically)
solvable if and only if the refined problem {Vj, ϕjk} is.

PROOF. Suppose we have a solution {ϕj} of the refined problem:

ϕk − ϕj = ϕjk = hσ(j)σ(k) on Vjk ⊂ Uσ(j)σ(k), ∀j, k ∈ J.

We want to construct appropriate functions hλ on the sets Uλ from the functions ϕj and
hλµ. By the compatibility conditions (1e),

hσ(j)σ(k) + hσ(k)λ − hσ(h)λ = 0 on Uσ(j)σ(k) ∩ Uλ.

Combination of the two formulas shows that

ϕk + hσ(k)λ = ϕj + hσ(j)σ(k) + hσ(k)λ = ϕj + hσ(j)λ on Vjk ∩ Uλ.
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For each λ ∈ Λ we may therefore define a function hλ in a consistent manner throughout
Uλ by setting

(3c) hλ
def
= ϕj + hσ(j)λ on Uλ ∩ Vj , ∀j.

[Each point of Uλ belongs to some set Vj .] The (holomorphic) functions hλ, hµ will then
satisfy the relation

hµ − hλ = ϕj + hσ(j)µ − ϕj − hσ(j)λ = hλµ on Uλµ ∩ Vj

for each j, hence hµ − hλ = hλµ throughout Uλµ. Thus the family {hλ} will solve the
original Cousin-I problem.

The proof in the other direction is immediate: if {hλ} solves the original problem, the
family obtained via the map σ, combined with restriction, will solve the refined problem.
Indeed, if

ϕj
def
= hσ(j) | Vj , ∀j ∈ J,

then
ϕk − ϕj = hσ(k) − hσ(j) = hσ(j)σ(k) = ϕjk on Vjk.

SPECIAL OPEN COVERINGS 7.33. It is convenient to consider open coverings {Vj} of
Ω that have the following properties:

(3d)
{Vj} is locally finite, that is, every compact subset of Ω

intersects only finitely many sets Vj ;

(3e) Vj has compact closure on Ω for each j.

Every special open covering {Vj} as above will be countably infinite: by (3e) it must
be infinite, and by (3d) it is countable [cf. the proof below].

Lemma 7.34. Every open covering {Uλ} of Ω has a special refinement {Vj} – one that
satisfies the conditions (3d, e).

PROOF. One may obtain such a refinement {Vj} of {Uλ} with the aid of the standard
exhaustion of Ω by the compact subsets

Eν = {z ∈ Ω : d(z, ∂Ω) ≥ 1/ν, |z| ≤ ν}, ν = 1, 2, . . . .

Assuming E2 nonempty (as we may by changing the scale if necessary), one picks out
finitely many sets Uλ that jointly cover E2. The corresponding subsets Uλ∩E0

3 [E0=interior
of E] will provide the first sets Vj ; together, they cover E2. One next covers E3 − E0

2 by
finitely many sets Uλ and uses the corresponding subsets Uλ ∩ (E0

4 −E1) as the next sets
Vj ; jointly they cover E3 − E0

2 . In the next step one covers E4 − E0
3 by infinitely many

sets Uλ ∩ (E0
5 −E2), etc.
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DEFINITION 7.35. A C∞ partition of unity on Ω subordinate to an open covering
{Uλ} is a family of nonnegative C∞ functions {βλ} on Ω such that

∑

λ

βλ ≡ 1 on Ω and supp βλ ⊂ Uλ, ∀λ,

Here supp βλ is the support relative to Ω, that is, the smallest relatively closed subset of
Ω outside of which βλ is equal to 0.

Proposition 7.36. For every special covering {Vj}, j = 1, 2, ... of Ω satisfying the con-
ditions (3d, e) there exists a C∞ partition of unity {βj} on Ω with βj ∈ C∞

0 (Vj), that is,
supp βj is a compact subset of Vj , ∀j.

[Actually, there exist C∞ partitions of unity subordinate to any open covering {Uλ};
they may be obtained from those for special coverings by a simple device, cf. Exercise
7.15.]

PROOF of the Proposition. We begin by constructing a family of nonnegative C∞ func-
tions {αj} on Ω such that suppαj is a compact subset of Vj while α =

∑

j αj is a strictly
positive C∞ function on Ω. For appropriate εj > 0 with 4εj < diamVj , let Wj denote the
set of all points in Vj whose distance to the boundary ∂Vj is greater than 2εj . It may and
will be assumed that the numbers εj have been chosen in such a way that the family {Wj}
is still a covering of Ω. [One may first choose ε1 so small that the family W1, V2, V3, . . . is
still a covering, then choose ε2 so small that the family W1, W2, V3, . . . is still a covering,
etc.]

For each j we now determine a nonnegative C∞ function αj on Ω which is strictly
positive on Wj and has compact support in Vj . [One may obtain αj by smoothing of the
characteristic function of Wj through convolution with a nonnegative C∞ approximation
to the identity ρε, ε = εj , whose support is the ball B(0, εj), cf. Section 3.3.] Observe
that at any given point a ∈ Ω, at least one function αj will be > 0.

Since the covering {Vj} is locally finite, a closed ball B ⊂ Ω intersects only finitely
many sets Vj . Hence all but a finite number of functions αj are identically zero on B.
It follows that the sum

∑

j αj defines a C∞ function α on B, and hence on Ω. By the
preceding, the sum function α will be > 0 throughout Ω.

The proof is completed by setting

βj
def
= αj/α, ∀j.

7.4 Analysis of Cousin-I. Existence of smooth solutions. Suppose that the holo-
morphic Cousin-I problem with data {Uλ, hλµ} on Ω has a holomorphic or smooth solution
{hλ} : hλ ∈ O(Uλ) or hλ ∈ C∞(Uλ) and hµ − hλ = hλµ on Uλµ. By refinement of the
data we may assume that the covering {Uλ} is locally finite and that we have been able to
construct a C∞ partition of unity {βλ} on Ω, subordinate to the covering {Uλ}, cf. Section
7.3.
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We wish to analyze the function hλ and focus on a point a in Uλ. At such a point a
we will have

(4a) hλ = hν + hνλ

for all indices ν such that a ∈ Uν . There are only finitely many such indices ν ! We multiply
(4a) by βν and initially sum over precisely those indices ν for which a ∈ Uν (symbol

∑a
ν):

(4b)

(

∑

a

ν

βν

)

hλ =
∑

a

ν

βνhν +
∑

a

ν

βνhνλ (at the point a ∈ Uλ).

The value of the first sum will not change if we add the terms βν (equal to 0 !) which
correspond to the indices ν for which a 6∈ Uν . The sum over all ν’s is equal to 1 and this
will hold at every point a ∈ Uλ:

(4c)
∑

a

ν

βν =
∑

ν∈Λ

βν = 1 (at a ∈ Uλ).

Products βνhν , whether they occur in the second sum (4b) or not, may be extended
to C∞ functions on Ω by defining βνhν = 0 on Ω− Uν ; indeed, βνhν = 0 outside a closed
subset of Uν anyway [closed relative to Ω]. The value of the second sum will not change if
we add the terms zero corresponding to those ν’s, for which a 6∈ Uν :

(4d)
∑

a

ν

βνhν =
∑

ν∈Λ

βνhν (at a ∈ Uλ).

What can we say about the last sum (4d) on Uλ or elsewhere?
On a closed ball B ⊂ Ω, only finitely many terms in the full sum

∑

βνhν are ever
6= 0. Thus the full sum defines a C∞ function on B and hence on Ω:

(4e)
∑

ν∈Λ

βνhν
def
= u ∈ C∞(Ω).

B

Uλ

Uν∂Ω

supp βν

fig 7.3
We now turn to the third sum in (4b), but there we will not go outside Uλ. Products

βνhνλ are defined only on Uλν . Such products can be extended to C∞ functions on Uλ
by setting them equal to 0 on Uλ − Uν : they vanish at the points of Uν close to Uλ − Uν
anyway (fig 7.3). For indices ν such that Uν does not meet Uλ, we may simply define
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βνhνλ as 0 throughout Uλ. We are again going to sum over all ν’s; at a ∈ Uλ this only
means that we add a number of zero terms to the original sum:

(4f)
∑

a

ν

βνhνλ =
∑

ν∈Λ

βνhνλ (at a ∈ Uλ).

What can we say about the last sum (4f)?
On a closed ball B in Uλ, only finitely many terms in the full third sum

∑

βνhνλ are
ever 6= 0. Thus that sum defines a C∞ function on B and hence on Uλ:

(4g)
∑

ν∈Λ

βνhνλ
def
= gλ ∈ C∞(Uλ).

Conclusion. Combining (4b− g), we see that at any point a ∈ Uλ:

hλ =

(

∑

a

ν

βν

)

hλ =
∑

ν∈Λ

βνhν +
∑

ν∈Λ

βνhνλ = u+ gλ.

Thus any holomorphic or C∞ soluation of the Cousin-I problem under consideration can
be represented in the form

(4h) hλ = u+ gλ on Uλ, ∀λ ∈ Λ,

where gλ ∈ C∞(Uλ) is given by (4g) and u ∈ C∞(Ω).
Conversely, if we define functions hλ by (4h, g), they will always form at least a smooth

solution of the Cousin-I problem, no matter what open set Ω we have
[see below]:

Theorem 7.41. Let {Uλ, hλµ} be any family of holomorphic Cousin-I data on Ω ⊂ Cn

which has been refined so that the covering {Uλ} is locally finite and there is a C∞ partition
of unity {βλ} on Ω subordinate to {Uλ}. Then the functions hλ defined by (4h, g), with an
arbitrary C∞ function u on Ω, constitute a C∞ solution of the Cousin-I problem with the
given data, and every C∞ solution of the problem is of that form.

PROOF. For functions hλ as in (4h, g) one has

(4i)

hµ − hλ = gµ − gλ =
∑

ν∈Λ

(

βνhνµ − βνhνλ
)

=

(

∑

ν∈Λ

βν

)

hλµ = hλµ on Uλµ, ∀λ, µ

because of the compatibility conditions (1e). Thus the functions hλ form a C∞ solution
of the Cousin-I problem, cf. (1f). That all C∞ solutions of the problem have the form
(4h, g) follows from the earlier analysis.
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Remark. That every holomorphic (or C∞!) Cousin-I problem for arbitrary open Ω
is C∞ solvable can also be proved without refinement of the Cousin data – it suffices to
refine the covering (if necessary), cf. Exercise 7.20.

7.5 Holomorphic solutions of Cousin-I via ∂. In Section 7.4 we have determined all
C∞ solutions {hλ} of a given (suitably refined) holomorphic Cousin-I problem {Uλ, hλµ}
on an open set Ω. For a fixed C∞ partition of unity {βλ} subordinate to {Uλ}, they have
the form (4h):

hλ = u+ gλ on Uλ,

with gλ as in (4g) and an arbitrary C∞ function u on Ω.

QUESTION 7.51. Will there be a holomorphic solution among all the C∞ solutions {hλ}?
We still have the function u at our disposal. For holomorphy of the smooth functions

hλ it is necessary and sufficient that

0 = ∂hλ = ∂u+ ∂gλ,

or

(5a) ∂u = −∂gλ on Uλ, ∀λ ∈ Λ.

The second members in (5a) can be used to define a �global differential form v on Ω. Indeed,
on an intersection Uλ ∩ Uµ, (4i) gives

(5b) ∂(gµ − gλ) = ∂(hµ − hλ) = ∂hλµ = 0

since hλµ ∈ O(Uλµ)! Thus we obtain a C∞ form v on Ω by setting

(5c) v =

n
∑

j=1

vjdzj
def
= −∂gλ = −

n
∑

j=1

∂gλ
∂zj

dzj on Uλ, ∀λ ∈ Λ.

The conditions (5a) on u can now be summarized by the single equation ∂u = v on Ω. If
u satisfies this condition, then ∂hλ = 0, so that hλ is a holomorphic function for each λ.
We have thus proved:

Proposition 7.52. The (suitably refined) holomorphic Cousin-I problem 7.13 on Ω has a
holomorphic solution {hλ} if and only if the associated ∂ equation

(5d) ∂u = v on Ω,

with v given by (5c) and (4g), has a C∞ solution u on Ω.

Incidentally, it is clear from (5c) that v satisfies the integrability conditions ∂vk/∂zj =
∂vj/∂zk. It will be convenient to introduce the following terminology:
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DEFINITION 7.53. An open set Ω ⊂ Cn will be called a ∂ domain if all equations
∂u = v on Ω, with (0, 1)-forms v of class C∞ that satisfy the integrability conditions, are
C∞ solvable on Ω.

We will now prove the following important

Theorem 7.54. Every ∂ domain Ω in Cn is a Cousin-I domain 7.15, and conversely.

PROOF of the direct part. Let Ω be a ∂ domain. Then equation (5d) is C∞ solvable,
hence by Proposition 7.52, every suitable refined (holomorphic) Cousin-I problem on Ω is
holomorphically solvable. Proposition 7.32 on refinements now tells us that every Cousin-I
problem on Ω is holomorphically solvable, hence Ω is a Cousin-I domain.

For the converse we need an auxiliary result on local solvability of the ∂ equation that
will be proved in Section 7.6:

Proposition 7.55. Let v be a differential form
∑n

1 vjdzj of class Cp

(1 ≤ p ≤ ∞) on the polydisc ∆(a, r) ⊂ Cn that satisfies the local integrability conditions
∂vk/∂zj = ∂vj/∂zk. Then the equation ∂u = v has a Cp solution f = fs on every polydisc
∆(a, s) with s < r. [If a certain differential dzk is absent from v (that is, if the coefficient
vk is identically 0), one may take the corresponding number sk equal to rk. The solution
constructed in Section 7.6 will actually be of class Cp+α, ∀α ∈ (0, 1).]

PROOF of Theorem 7.54, converse part. Let Ω be a Cousin-I domain and let v be any
C∞ differential form

∑n
1 vjdzj on Ω that satisfies the integrability conditions. We cover

Ω by a family of “good” polydiscs Uλ, λ ∈ Λ, that is, polydiscs Uλ ⊂ Ω on which there
exists a C∞ solution fλ of the equation ∂u = v. Then on the intersections Uλµ:

∂(fλ − fµ) = v − v = 0,

hence

hλµ
def
= fλ − fµ ∈ O(Uλµ), ∀λ, µ.

Just as in Section 7.1 the differences hλµ will satisfy the compatibility conditions (1e),
hence {Uλ, hλµ} is a family of holomorphic Cousin-I data for Ω. Since by the hypothesis
all Cousin-I problems on Ω are (holomorphically) solvable, there is a family of functions
hλ ∈ O(Uλ) such that

hλµ = hµ − hλ
on each nonempty intersection Uλµ. We now set

u
def
= fλ + hλ on Uλ, ∀λ.

This formula will furnish a global C∞ solution of the equation ∂u = v on Ω : fλ + hλ =
fµ + hµ on Uλµ and

∂u = ∂fλ + ∂hλ = v + 0 = v on Uλ, ∀λ.

Conclusion: Ω is a ∂ domain.
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7.6 Solution of ∂ on polydiscs. We first prove the important local solvability of the ∂
equation asserted in Proposition 7.55. Next we will show that polydiscs (and in particular
Cn itself) are ∂ domains [“Dolbeault’s lemma”]. The latter result is not needed for the
sequel, but we derive it to illustrate the approximation technique that may be used to prove
the general solvability of ∂ on domains permitting appropriate polynomial approximation,
cf. [Hörmander 1], [Range].

PROOF of Proposition 7.55. It is convenient to take a = 0. For n = 1 the proof is very
simple. Just let ω be a C∞ cutoff function which is equal to 1 on ∆(0, s) and has support
in ∆(0, r). Then ωv can be considered as a Cp form on C which vanishes outside ∆(0, r).
Hence the Cauchy-Green transform will provide a Cp solution of the equation ∂u = ωv on
C and thus of the equation ∂u = v on ∆(0, s), cf. Theorem 3.13.

For n ≥ 2 we try to imitate the procedure used in Section 3.2 for the case where v has
compact support, but now there will be difficulties. These are due to the fact that we can
not multiply v by a nonzero C∞ function of compact support in ∆(0, r) and still preserve
the integrability conditions. To get around that problem one may use induction on the
number of differentials dzj that there actually present in v.

If v contains no differentials dzj at all, the equation is ∂u = 0 and every holomorphic
function on ∆(0, r) is a Cp solution on the whole polydisc. Suppose now that precisely
q differentials dzj are present in v, among them dzn, and that the Proposition has been
established already for the case in which only q − 1 differentials dzj are present. As usual
we write z = (z′, zn) and we set

∆(0, r) = ∆n−1(0, r′)×∆1(0, rn) = ∆n−1 ×∆1(0, rn).

Choosing s as in the Proposition, so that in particular sn < rn, we let ω = ω(zn) be
a cutoff function of class C∞

0 on ∆1(0, rn) ⊂ C which is equal to 1 on ∆1(0, sn). Defining
ωvj = 0 for |zn| ≥ rn, the product

ω(zn)v(z′, zn) = ωv1dz1 + . . .+ ωvndzn

represents a Cp form on ∆n−1 ×C which for fixed z′ ∈ ∆n−1 vanishes when
|zn| ≥ Rn. Thus the Cauchy-Green transform of ωvn relative to zn provides a solution ϕ
to the equation ∂u/∂zn = ωvn on ∆n−1 ×C, cf. Theorem 3.13:

(6a) ϕ(z) = ϕ(z′, zn) = − 1

π

∫

C

ω(ζ)vn(z′, ζ)

ζ − zn
dξdη.

Observe that the function ϕ is of class Cp on ∆(0, r) and that the same holds for ∂ϕ/∂zn =
ωvn.

We will determine the derivatives ∂ϕ/∂zj with j < n by differentiation under the
integral sign, noting that by the integrability conditions,

∂

∂zj
{ω(ζ)vn(z′, ζ)} = ω(ζ)

∂vj
∂zn

(z′, ζ) =
∂

∂ζ
{ω(ζ)vj(z

′, ζ)} − vj(z′, ζ)
∂ω

∂ζ
.
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Thus, referring to the representation for compactly supported functions of Corollary 3.12
for the second step,

(6b)

∂ϕ

∂zj
= − 1

π

∫

C

∂

∂ζ
{ω(ζ)vj(z

′, ζ)} dξdη
ζ − zn

+
1

π

∫

C

vj(z
′, ζ)

ζ − zn
∂ω

∂ζ
(ζ)dξdη

= ω(zn)vj(z
′, zn) + I(vj , ω), 1 ≤ j < n,

say. By inspection, the derivatives ∂ϕ/∂zj are of class Cp on ∆(0, r).
We now introduce the differential form

(6c) w = v − ∂ϕ.

This new form is also of class Cp on ∆(0, r) and it satisfies the integrability conditions
[forms ∂ϕ always do]. Moreover, if we restrict the form to
∆n−1(0, r′)×∆1(0, sn), then it may be written as

w = w1dz1 + . . .+ wn−1dzn−1,

since ∂ϕ/∂zn = ωvn = vn on that polydisc. Finally, if dzk was absent from v, that is,
vk = 0 and k > n, then by (6b) also ∂ϕ/∂zk = 0, so that wk = 0. Thus the new form
w restricted to ∆n−1(0, r′)×∆1(0, sn) contains at most q − 1 differentials dzj . Hence by
the induction hypothesis, there is a Cp function ψ on the polydisc ∆n−1(0, s′)×∆1(0, sn)
such that w = ∂ψ there. Conclusion:

(6d) v = ∂ϕ+ w = ∂(ϕ+ ψ) on ∆(0, s),

with ϕ+ ψ ∈ Cp.
[Actually, the function ϕ in (6a) will be of class Cp+α, ∀α ∈ (0, 1), cf. Remarks 3.14

and Exercises 3.6, 3.9. Likewise, by induction, ψ ∈ Cp+α.]

Theorem 7.61. Let v =
∑n

1 vjdzj be a differential form of class Cp (1 ≤ p ≤ ∞) on
the polydisc ∆(a, r) ⊂ Cn that satisfies the integrability conditions. Then the equation
∂u = v has a Cp solution on ∆(a, r).

PROOF. We take a = 0 and introduce a strictly increasing sequence of polydiscs ∆k

[more precisely, ∆k ⊂ ∆k+1, k = 0, 1, 2, . . .] with center 0 and union ∆ = ∆(0, r). By
Proposition 7.55 there are Cp functions fk on ∆k+1, k = 1, 2, . . . such that ∂fk = v on ∆k.
Starting with such functions fk, we will inductively determine Cp functions uk, k = 1, 2, . . .
on ∆ such that
(i) supp uk ⊂ ∆k+1,
(ii) ∂uk = v on ∆k,

(iii) |uk − uk−1| < 2−k on ∆k−2, k ≥ 2.

Let {ωk} be a sequence of Cp cutoff functions on Cn such that ωk = 1 on ∆k and
suppωk ⊂ ∆k+1. We define u1 = ω1f1 on ∆2, u1 = 0 on ∆ − ∆2 so that (i) and (ii)
hold for k = 1. Now suppose that u1, . . . , uk have been determined in accordance with
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conditions (i)-(iii). Since ∂(fk+1 − uk) = 0 on ∆k, the difference fk+1 − uk is holomorphic
on that polydisc, hence equal to the sum of a power series around 0 which is uniformly
convergent on ∆k−1. Thus one can find a polynomial pk such that

|fk+1 − uk − pk| < 2−k−1 on ∆k−1.

We may now define

uk+1 =















(fk+1 − pk)ωk+1 on ∆k+2,

0 on ∆−∆k+2

to obtain (i)-(iii) with k + 1 instead of k.
By (iii) we may define a function u on ∆ by

u = u1 +

∞
∑

2

(uk − uk−1);

the series will be uniformly convergent on every compact subset of ∆. Condition (ii) shows
that the terms uk−uk−1 with k > j are holomorphic on ∆j , hence ϕj =

∑

k>j(uk−uk−1)
is holomorphic on ∆j . It follows that u = uj + ϕj is of class Cp on ∆j . Moreover, on ∆j

∂u = ∂uj + ∂ϕj = v + 0 = v.

Since these results hold for each j = 1, 2, . . . we are done.

The method of the previous theorem may be extended to show that products of planar
domains are Cousin-I domains, cf. exercise 7.21. It seems difficult to determine if a given
domain is Cousin-I. The following theorem is sometimes useful.

Theorem 7.62. Let {Uλ} be some open cover of the domain Ω consisting of Cousin-I
domains. Ω is a Cousin-I domain if and only if for all Cousin-I data of the form {Uλ, hλµ}
the Cousin-I problem is solvable.

PROOF. The only if part is clear. For the if part, suppose that we are given Cousin-I
data {Vi, hij}. Then {Vi ∩ Uλ, hij} are Cousin-I data on Uλ (here and in the sequel we
denote the restriction of a function to a smaller domain and the function itself with the
same symbol), hence there exist hλi ∈ O(Vi ∩ Uλ) with

hλi − hλj = hij on Uλ ∩ Vij .

On Uλµ ∩ Vij we find hλi − hλj = hij = hµi − hµj , therefore

hλi − hλj = hµi − hµj .
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Thus hλi − hµi = hλj − hµj for all i, j on Uλµ and we may define hλµ ∈ O(Uλµ) by

hλµ = hλi − hµi on Vi ∩ Uλµ.

Are these consistent Cousin-I data? Yes: on Vi ∩ Uλµν we have

hλµ + hµν + hνλ = hλi − hµi + hµi − hνi + hνi − hλi = 0.

We can solve this Cousin-I problem with functions hλ ∈ O(Uλ). Now for all i we find on
Vi ∩ Uλµ

hλi − hµi = hλµ = hλ − hµ.
Hence hλi −hλ = hµi −hµ on Vi∩Uλµ and we may conclude that hλi −hλ extends analytically
to a function hi ∈ O(Vi). We claim that the hi provide a solution. Indeed, for all λ we
have on Uλ ∩ Vij

hi − hj = hλi − hλ − hλj + hλ = hij .

7.7 The Levi problem. It will be shown in Chapter 11 that every domain with a
plurisubharmonic exhaustion function, or pseudoconvex domain, is a ∂ domain. Once that
fundamental result has been established, we can use Theorem 7.54 to conclude:

Theorem 7.71. Every pseudoconvex domain, and hence every domain of holomorphy, is
a Cousin-I domain.

More important, the result of Chapter 11 will enable us to complete the solution of
the Levi problem begun in Section 7.2:

Theorem 7.72. Every domain Ω in Cn with a plurisubharmonic exhaustion function, or
pseudoconvex domain, is a domain of holomorphy.

PROOF. We use induction on the dimension. Suppose then that the result has been
established for dimension n − 1; dimension 1 is no problem since every domain in C is a
domain of holomorphy. Now let Ω be a psh exhaustible domain in Cn, n ≥ 2. By the
fundamental result to be proved in Chapter 11, Ω is a ∂ domain and hence a Cousin-
I domain [Theorem 7.54]. On the other hand, the intersections Ω′ of Ω with (affine)
complex hyperplanes are also psh exhaustible [Proposition 6.56]. Hence by the induction
hypothesis, they are domains of holomorphy when considered as open subsets of Cn−1.
Thus by Theorem 7.22, Ω is a domain of holomorphy.

Remarks. For n = 2 the Levi problem was settled by Oka in 1942, while solutions for
n ≥ 3 were obtained almost simultaneously by Bremermann, Norguet and Oka in the years
1953-1954. After Dolbeault’s work on cohomology (1953-1956, cf. Chapter 12), it became
clear that a solution of the Levi problem could also be based on an analytic solution of ∂,
but such a solution did not exist at the time!

Exercises
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7.1. Prove the Mittag-Leffler theorem for Ω = C (Section 7.1) along the following classical
lines:
(i) Write down a rational function gk with the prescribed poles and principal parts

on the disc ∆(0, k), k = 1, 2, . . . ;
(ii) Does the series g1 +

∑∞
2 (gk−gk−1) converge on Ω? If not, how can it be modified

to ensure convergence, taking into account that gk − gk−1 is holomorphic on
∆(0, k − 1)?

7.2. (Related treatment of ∂ on C) Let v be a Cp function on Ω = C, 1 ≤ p ≤ ∞.
(i) Use a suitable Cauchy-Green transform (Section 3.1-(1f)) to obtain a Cp function

uk on C such that ∂uk/∂z = v on ∆(0, k);
(ii) Determine a Cp solution u of the equation ∂u/∂z = v on Ω by using a suitable

modification of the series u1 +
∑∞

2 (uk − uk−1).

7.3. Describe how one can solve the meromorphic first Cousin problem for C (Section 7.1)
directly with the aid of a ∂ problem. [Using nonoverlapping discs ∆(aλ, rλ), let ωλ be
a C∞ function on C with support in ∆(aλ, rλ) and equal to 1 on ∆(aλ,

1
2rλ). Then

u = f −∑ωλfλ must be a C∞ function on C. What conditions does ∂u/∂z have to
satisfy?]

7.4. Extend the constructions in Exercises 7.1, 7.2 to the case where Ω is:
(i) the unit disc ∆(0, 1);

(ii) the annulus A(0; 1, 2).

7.5. Let U be a connected domain in Cn, g, h, g̃, h̃ ∈ O(U), h 6≡ 0, h̃ 6≡ 0. Suppose that
g/h = g̃/h̃ outside Z(h) ∪ Z(h̃). Prove that gh̃ = hg̃ on U , so that [g/h] = [g̃/h̃] in
the quotient field for O(U).

7.6. Prove directly [without Laurent series] that the following meromorphic first Cousin
problem on Ω = C2 − {0} must be unsolvable:

f1 =
1

z1z2
on U1 = {z1 6= 0}, f2 = 0 on U2 = {z2 6= 0}.

[Cf. formula (2c).]

7.7. Let Ω1 be a Cousin-I domain in Cn and let Ω2 be analytically isomorphic to Ω1. Prove
that Ω2 is also a Cousin-I domain.

7.8. Which holomorphic Cousin-I problems for Ω = C2 − {0} and
Uj = {z ∈ C2 : zj 6= 0}, j = 1, 2 are solvable and which are not?

7.9. Let Ω be the multicircular domain in Cn (n ≥ 2) given by

{|z′| < 1, |zn| < 3} ∪ {|z′| < 3, 1 < |zn| < 3}, z′ = (z1, . . . , zn−1).

Prove that Ω is not a Cousin-I domain by indicating a holomorphic function on Ω ∩
{z1 = 2} that has no analytic extension to Ω.

7.10. Prove by computation that all Cousin-I problems for Ω = C3 − {0}, Uj =
{z ∈ C3 : zj 6= 0}, j = 1, 2, 3 are solvable:
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(i) Show that it is sufficient to consider the case where

h23 = a zp1z
q
2z
r
3 , h31 = b zp1z

q
2z
r
3, h12 = c zp1z

q
2z
r
3 .

(ii) Suppose p < 0. Show that then a = 0, c = −b and (assuming b 6= 0)
q ≥ 0, r ≥ 0. Solve.

(iii) Finally deal with the case p ≥ 0, q ≥ 0, r ≥ 0.
(iv) Can you extend this to Cn \Cm, n−m ≥ 3?

7.11. Suppose that the polydisc ∆(a, r) in Cn meets the hyperplane {zn = 0}. What does
this mean for an and rn? Prove that the intersection is precisely the projection of
∆(a, r) onto the hyperplane.

7.12. Prove more directly than in the text that a Cousin-I domain Ω in C2 is a domain of
holomorphy, using the following idea. Starting out as in the proof of Theorem 7.22,
take c = 0 and let the complex line z2 = 0 pass through [a, b]. Cover Ω by polydiscs Up
(not containing points with z2 = 0) and Vq (containing points with z2 = 0). Now solve
the associated meromorphic Cousin problem with fp = 0 on each Up, fq = 1/z1z2 on
each Vq, etc.

7.13. C∞ partitions of unity subordinate to a given open covering {Uλ} are relatively easy
to construct for the case of open sets Ω in R. Verify the following steps:
(i) It may be assumed that Ω is an open interval I and that {Uλ} is a locally finite

covering by open intervals Iλ;
(ii) There are subintervals Jλ ⊂ Iλ which are relatively closed in I and jointly cover

I, and for Jλ ⊂ Iλ there is a C∞ function αλ ≥ 0 on I such that αλ > 0 on Jλ
and αλ = 0 on a neighbourhood of I − Iλ in I;

(iii) The functions βλ = αλ/
∑

αν form a C∞ partition of unity on I, subordinate to
the covering {Iλ}.

7.14. Let f be holomorphic on D = D1 ∩D2 in C. Which ∂ problem do you have to solve
in order to represent f in the form f1 + f2 with fj ∈ O(Dj)?

7.15. Let Ω ⊂ Rn be open and let {Uλ}, λ ∈ Λ be an arbitrary covering of Ω by open
subsets. Construct a C∞ partition of unity {βλ}, λ ∈ Λ on Ω subordinate to the
covering {Uλ}. [Start out with a special refinement {Vj} as in 7.33 and an associated
partition of unity {αj}. Try to define βλ in terms of functions αj .]

7.16. Determine a smooth solution of the Cousin-I problem in Example 7.17 with the aid
of the pseudo-partition of unity

βj = zjzj/|z|2, j = 1, 2

associated with the covering {Uj}.
7.17. Determine a smooth form v = v1dz1 + v2dz2 on Ω = C2 − {0}, with ∂v2/∂z1 =

∂v1/∂z2, for which the equation ∂u = v can not be solvable on Ω.
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7.18. Let {Uλ, hλµ} be an arbitrary family of Cousin-I data on Ω of class Cp

(1 ≤ p ≤ ∞), that is, the functions hλµ are of class Cp and they satisfy the compati-
bility conditions (1e). Prove that the corresponding Cousin problem is Cp solvable.

7.19. Prove that Ω ⊂ Cn is a Cousin-I domain if and only if for some p (1 ≤ p ≤ ∞), the
equation ∂u = v is Cp solvable on Ω for every (0, 1)-form v of class Cp that satisfies
the integrability conditions.

7.20. Let {Uλ, hλµ} be an arbitrary family of holomorphic Cousin-I data on Ω. Use a special
refinement {Vj} of the covering {Uλ} with associated C∞ partition of unity {βj} and
with refinement map σ to prove the following. Every C∞ solution of the Cousin-I
problem with the original data can be represented in the form

hλ = u+ gλ = u+
∑

j

βjhσ(j)λ on Uλ, u ∈ C∞(Ω),

and every family of functions {hλ} of this form is a C∞ solution.

7.21. Formulate and prove a generalization of Proposition (7.55) to products of arbitrary
planar domains.

7.22. Formulate and prove a generalization of Proposition (7.55) to products of arbitrary
planar domains. [You may have to use Runge’s theorem on rational approximation,
which states that a holomorphic function defined in a neighborhood of a compact set
K can be uniformly approximated with rational functions with poles atmost in one
point of each component of the complement of K in the extended complex plane.]

(7.23) Using exercise 7.10, show that Cn \Cm is a Cousin-I domain if n−m ≥ 3.

(7.24) (Hefer’s lemma) Let Ω ⊂ Cn be a domain of holomorphy, so that Ω and the intersec-
tions of Ω with affine complex subspaces are ∂ domains
(Chapter 11) and hence Cousin-I domains. Suppose that Ω meets the subspace
Wk = {z1 = z2 = . . . = zk = 0} of Cn and that f ∈ O(Ω) vanishes on Ω ∩ Wk.
Prove that there are holomorphic functions gj on Ω such that

f(z) =
k
∑

1

zjgj(z).

[Use induction on k.]

7.25. (Hefer’s theorem) Let Ω ⊂ Cn be a domain of holomorphy and let F be holomorphic
on Ω. Prove that there are holomorphic functions Pj(z, w) on Ω× Ω such that

F (z)− F (w) =
n
∑

1

(zj − wj)Pj(z, w), ∀z, w ∈ Ω.

[Use zj − wj = ζj and zj = ζn+j , j = 1, . . . , n as new coordinates on Ω× Ω.]
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7.26. Let Ω be a domain in C2 for which every meromorphic first Cousin problem is solvable.
Prove that in this case, also every holomorphic Cousin-I problem on Ω is solvable. [If
a more direct approach does not work, one can always use the general solvability of
∂ on a pseudoconvex domain which is established in Chapter 11. It does not seem to
be known if every meromorphic Cousin-I domain Ω ⊂ Cn, n ≥ 3 is a (holomorphic)
Cousin-I domain.]

7.27. (Another characterization of domains of holomorphy) Anticipating the general solv-
ability of (first order) ∂ on plurisubharmonically exhaustible domains (Chapter 11),
one is asked to prove the following result:

“Ω ⊂ Cn is a domain of holomorphy if and only if for every complex line
L that meets Ω and for every holomorphic function h1 on Ω1 = Ω ∩ L,
there is a holomorphic extension of h1 to Ω”.
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CHAPTER 8

Subharmonic functions, plurisubharmonic
functions and related aspects of potential
theory

Subharmonic functions on a domain Ω in C or Rn are characterized by the local sub
mean value property. Their name comes from the fact that they are majorized by harmonic
functions with the same boundary values on subdomains of Ω.

Subharmonic functions in C play an important role in estimating the growth of holo-
morphic functions. The reason is that for holomorphic f , the functions v = log |f | is
subharmonic. In the case of holomorphic f in Cn, log |f | is even more special, namely,
plurisubharmonic. In this chapter we will study subharmonic and plurisubharmonic (psh)
functions in some detail. Because it serves as a model, the special case of C will receive a
good deal of attention. Readers who are familiar with this case may wish to skip part of
Sections 8.1–8.3.

Many properties of subharmonic and plurisubharmonic functions can be derived by
means of approximation by smooth functions of the same class. Smooth subharmonic
functions are characterized by nonnegative Laplacian and this property makes them easier
to investigate. There is a related characterization of smooth psh functions. For arbitrary
subharmonic and psh functions the desired C∞ approximants are obtained by convolution
with suitable approximate identities. The results on psh functions are used in Chapter 9
to construct smooth psh exhaustion functions of rapid growth on pseudoconvex domains.
Such functions are essential for the solution of the ∂̄ problem in Chapter 11.

Classical potential theory in Rn involves subharmonic functions [as well as their neg-
atives, the superharmonic functions]. For applications to holomorphic functions in Cn

one needs special Cn potential theory which involves plurisubharmonic functions. We will
study aspects of that recent theory and discuss some applications, among them the useful
lemma on the estimation of partial derivatives in terms of directional derivatives of the
same order.

8.1 Harmonic and subharmonic functions. For these functions the theory is much
the same in all spaces Rn (n ≥ 2). However, we will play special attention to the case
n = 2. The theory is simpler there, due to the close relation between harmonic functions in
R2 and holomorphic functions in C. Moreover, the theory of plurisubharmonic functions
in Cn (n ≥ 2) is in many ways closer to the theory of subharmonic functions in C than
to the theory of such functions in R2n.

Accordingly, let Ω be an open set in R2 or C. A function u on Ω is called harmonic
if it is real valued of class C2 and its Laplacian is identically zero:

∆u
def
=
∂2u

∂x2
+
∂2u

∂y2
=

1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2
∂2u

∂θ2

= 4
∂2u

∂z∂z̄
= 0 on Ω [x+ iy = z = reiθ].
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[In the case of Rn one will use the n-dimensional Laplacian.] A function is called harmonic
on an arbitrary set E if it has a harmonic extension to some open set containing E. Unless
the contrary is explicitly stated, our harmonic functions will be real-valued.

For holomorphic f on Ω ⊂ C both u = Re f and v = Imf are harmonic: the
Cauchy-Riemann condition ∂f/∂z = 0 implies that ∆u+ i∆v = ∆f = 0.

Conversely, let u be any harmonic function on Ω. Then u is locally the real part of
a holomorphic function f . Indeed, by Laplace’s equation, the derivative ∂u/∂z will be
holomorphic. [It is of class C1 and has ∂/∂z equal to zero.] Suppose for a moment that
u = Re f = 1

2 (f+f) for some holomorphic f . Then ∂u/∂z must equal 1
2∂f/∂z+ 1

2∂f/∂z =
1
2f

′ [since ∂f/∂z = 0], hence 1
2f must be a primitive of ∂u/∂z. Starting then with

our harmonic u, let 1
2g be any holomorphic primitive of ∂u/∂z on some disc B in Ω

and set u − 1
2
(g + g) = v. Then ∂v/∂z = ∂u/∂z − 1

2
∂g/∂z = 0, hence since v is real,

∂v/∂x = ∂v/∂y = 0. Thus v is equal to a real constant c and u = Re (g + c) on B.
As a corollary, the composition u ◦ h of a harmonic function u and a holomorphic

function h is harmonic on any domain where it is well-defined.
Holomorphic functions f on Ω have the circular mean value property: by Cauchy’s

formula,

f(a) =
1

2πi

∫

C(a,r)

f(ζ)

ζ − a dζ =
1

2π

π
∫

−π

f(a+ reit)dt

whenever the closed disc B(a, r) belongs to Ω. It follows that harmonic functions u on Ω
have the same mean value property: representing u as Re f on discs, with f holomorphic,
we find

(1a) u(a) = u(a; r)
def
=

1

2π

π
∫

−π

u(a+ reit)dt, 0 ≤ r < d(a) = d(a, ∂Ω).

One may use the analytic automorphisms of the unit disc and the mean value property
at 0 to derive the Poisson integral representation for harmonic functions u on B(0, 1):

(1b)

u(z) = P [u|C ](z) =
1

2π

∫

C(0,1)

1− |z|2
|ζ − z|2 u(ζ)ds(ζ)

=
1

2π

π
∫

−π

1− r2
1− 2r cos(θ − t) + r2

u(eit)dt, z = reiθ, 0 ≤ r < 1,

cf. exercise 8.2. There is a corresponding Poisson integral formula for harmonic functions
u on the unit ball B = B(0, 1) ⊂ Rn (n ≥ 3):

(1b′) u(x) = P [u|S](x)
def
=

1

σn

∫

S(0,1)

1− |x|2
|ξ − x|n u(ξ)ds(ξ), S = ∂B,
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σn = area S(0, 1) = 2π
1
2
n/Γ( 1

2
n), cf. exercises 8.3 and 8.51.

For any continuous function g on ∂B, the Poisson integral u = P [g] provides a har-
monic function on B with boundary function g: it solves the Dirichlet problem for the
Laplace operator on B, cf. exercise 8.3. In general a Dirichlet problem for a partial differ-
ential operator L of order 2 on a domain D is to find for given functions u on D and g on
the boundary of D a function F that satisfies

LF (x) = u(x), x ∈ D, F |∂D = g.

Subharmonic functions v on Ω ⊂ C are always real-valued; in addition, the value −∞
is allowed (not +∞). The essential requirement is that v have the sub mean value property
[cf. Definition 6.52]: for every point a ∈ Ω there must exist some number δ(a) > 0 such
that

(1c) v(a) ≤ v(a; r) =
1

2π

π
∫

−π

v(a+ reit)dt, 0 ≤ r < δ(a).

The local inequality (1c) on Ω will imply that v(a; r) is a nondecreasing function of r, see
Corollaries 8.23. Thus in the final analysis, inequality (1c) will hold for all r such that
B(a, r) ⊂ Ω. However, it is advantageous not to demand δ(a) = d(a) from the beginning.

To ensure the existence of the mean values v(a; r) one requires that subharmonic
functions satisfy an appropriate continuity condition. In many applications we will have
ordinary continuity, but in some situations one can not expect more than upper semi-
continuity, cf. exercise 8.5. A function v on E in C [or Rn] to R ∪ {−∞} is called upper
semi-continuous (usc) if, for every point a ∈ E,

(1d) lim sup
z∈E, z→a

v(z) ≤ v(a).

In other words, whenever A > v(a), then A > v(z) on some neighborhood of a in E.
There is an equivalent condition which is very useful in applications and perhaps easier to
remember: A function v on E is upper semi-continuous if and only if, on every compact
subset, it can be represented as the limit of a decreasing sequence of finite continuous
functions {vk}, cf. exercises 8.6, 8.7.

Similarly, a function v on E to R ∩ {∞} is called lower semi-continuous (lsc) if −v is
usc, or equivalently

(1d′) lim inf
z∈E, z→a

v(z) ≥ v(a).

One also has a description in terms of limit of an increasing sequence of finite continuous
functions.

We will most often meet usc functions. Let v be usc. In terms of a sequence of contin-
uous {vk ↓ v} on the circle C(a, r) in Ω, the mean value v(a; r) may be defined unambigu-
ously as lim vk(a; r) [monotone convergence theorem]. It may happen that v(a; r) = −∞,
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but for a subharmonic function v on a connected domain Ω containing B(a, r), this will
occur only if v ≡ −∞, cf. Corollaries 8.23.

DEFINITION 8.11. Subharmonic functions on Ω in C or R2 are upper semi-continuous
functions v : Ω → R ∪ {−∞} which have the sub mean value property: inequality (1c)
must hold at every point a ∈ Ω for some δ(a) > 0. There is a corresponding definition for
the case of Rn, with v(a; r) denoting the mean value of v over the sphere S(a, r). We say
that v is subharmonic on an arbitrary set E in Rn if v has a subharmonic extension to
some open set containing E.

One easily deduces the following simple

PROPERTIES 8.12. For subharmonic functions v1 and v2 on Ω, the sum v1 + v2 and the
supremum or least common majorant,

v(z)
def
= sup{v1(z), v2(z)}, z ∈ Ω

are also subharmonic; in the latter case,

vj(a) ≤ vj(a; r) ≤ v(a; r), j = 1, 2⇒ v(a) ≤ v(a; r).

In order to obtain extensions to infinite families of subharmonic functions on Ω, one has
to know already that δ(a) in (1c) can be taken the same for all members of the family,
cf. Corollaries 8.23. Assuming that much, it follows that the supremum or upper envelope
of an infinite family of subharmonic functions on Ω [when < +∞] also has the sub mean
value property, hence it is subharmonic provided it is upper semi-continuous. The limit
function of a decreasing family of subharmonic functions on Ω is always subharmonic: such
a function is automatically usc. [But the infimum of an arbitrary family of subharmonic
functions need not be subharmonic, cf. exercise 8.10 !] We finally observe the following.
If v is subharmonic on Ω then by upper semi-continuity (1d) and the sub mean value
property (1c),

(1e) v(a) = lim
r↓o

v(a; r) = lim sup
z→a

v(z), ∀a ∈ Ω.

EXAMPLES 8.13. For holomorphic f on Ω ⊂ C the functions |f | and log |f | are subhar-
monic. For |f | this follows immediately from the mean value property of f :

|f(a)| = 1

2π

∣

∣

π
∫

−π

f(a+ reit)dt
∣

∣ ≤ 1

2π

π
∫

−π

|f(a+ reit)|dt.

For log |f | one distinguishes the cases f(a) = 0 [nothing to prove] and f(a) 6= 0 [then
there is a holomorphic branch of log f around a, so that log |f | is harmonic around a].
In problems where one has to estimate the growth of |f |, it is usually best to work with
log |f |. An important subharmonic function on C is

v(z) = log |z − a|.
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Harmonic functions u on a connected domain D ⊂ C which depend only on x = Re z
are linear in x, that is, of the form u = c1x+ c2. Subharmonic functions v which depend
only on x will be sublinear on line segments or convex, cf. Example 8.35. Convex functions
v are always subharmonic: the linear mean value inequality (6.5a) for all small complex
ξ or ζ implies the circular mean value inequality (6.5b).

The negative of a subharmonic function is called superharmonic. Example: the
logarithmic potential log 1/|z − a| on C of a unit mass at a. More generally, it can be
shown that all logarithmic potentials

(1f) Uµ(z)
def
=

∫

K

log
1

|z − ζ| dµ(ζ), z ∈ C

with K compact, µ a finite positive measure, are superharmonic, cf. exercises 8.12, 8.22.
Such potentials are harmonic on the complement of K. On K itself they need not be
continuous (cf. exercise 8.5), even if µ is absolutely continuous so that dµ(ζ) = ϕ(ζ)dξdη
with integrable density ϕ. [But for smooth ϕ, cf. Examples 8.33.]

8.2 Maximum principle and consequences. Although we restrict ourselves to C here,
the main results and the proofs readily extend to Rn. The following maximum principle
is characteristic for subharmonic functions, cf. also exercise 8.13.

Theorem 8.21. Let D ⊂ C be a bounded or unbounded connected domain, let v be
subharmonic on D and u harmonic. Suppose that v is “majorized by u on the extended
boundary of D”. The precise meaning of this hypothesis is that

lim sup
z→ζ,z∈D

{v(z)− u(z)} ≤ 0, ∀ζ in ∂eD,

where ∂eD is the boundary of D in Ce = C ∪ {∞}. [Thus ∂eD includes the point at ∞ if
D is unbounded.] Then v is majorized by u throughout D:

v(z) ≤ u(z), ∀z ∈ D.

PROOF. Since v−u will be subharmonic we may as well replace v−u by v or equivalently,
set u ≡ 0. Put M = supD v (≤ +∞); we have to prove that M ≤ 0.

Suppose on the contrary thatM > 0. There will be a sequence of points {zk} ⊂ D such
that v(zk)→M ; taking a subsequence, we may assume that zk → a in closeD, the closure
of D in Ce. Because of the boundary condition lim sup v(z) ≤ 0 for z → ζ ∈ ∂eD and by
the assumption M > 0, our point a must be inside D. Hence by upper semi-continuity
(1d),

M = lim v(zk) ≤ lim sup
z→a

v(z) ≤ v(a) < +∞;

since M ≥ v(a) we must have M = v(a). Thus by the sub mean value property (1c),

(2a)

π
∫

−π

{v(a+ reit)−M}dt ≥ 0 whenever 0 ≤ r < δ(a).
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Here the integrand is non-positive; being upper semi-continuous, it must vanish everywhere
on [−π, π]. Indeed, if it would be negative at some point t = c, it would be negative on an
interval around c (1d), contradicting (2a). Hence v(z) = M on C(a, r) and thus, varying
r, v(z) = M throughout the disc B(a, δ(a)).

Let E be the subset of D where v(z) = M . Under the assumption M > 0 the set E is
nonempty and open. By upper semi-continuity it will also be closed in D, hence E = D so
that v ≡M . The boundary condition now shows that M > 0 is impossible, so that v ≤ 0
everywhere on D.

In the general case we conclude that v ≤ u throughout D. If v(a) = u(a) at some
point a ∈ D, the proof shows that v ≡ u.

APPLICATION 8.22. (Comparison with a Poisson integral). Let v be subharmonic on (
a neighborhood of) the closed unit disc B(0, 1) in C. Then v is majorized on B = B(0, 1)

by the Poisson integral u = P [v]
def
= P [v|C ] of its boundary values on C(0, 1):

v(reiθ) ≤ u(reiθ)
def
=

1

2π

π
∫

−π

1− r2
1− 2r cos(θ − t) + r2

v(eit)dt, 0 ≤ r < 1.

For the verification one represents v as the limit of a decreasing sequence of finite
continuous functions vk on B. The associated Poisson integrals uk = P [vk] are harmonic
functions on B with boundary functions vk | ∂B: as z ∈ B tends to ζ ∈ ∂B, uk(z) →
vk(ζ). Thus by upper semi-continuity (1d),

lim sup
z→ζ

{v(z)− uk(z)} ≤ v(ζ)− vk(ζ) ≤ 0, ∀ζ ∈ ∂B.

Hence by the maximum principle, v(z) ≤ uk(z) throughout B. Now for fixed z ∈ B, the
Poisson integrals uk(z) = P [vk](z) tend to the Poisson integral u(z) = P [v](z) as k → ∞
[monotone convergence theorem]. Conclusion: v(z) ≤ u(z) throughout B.

We will explore various consequences of Application 8.22. First of all, if v is integrable
over C(0, 1), then u = P [v] is harmonic and by the mean value property of u:

(2b) v(0; r) ≤ u(0; r) = u(0) = v(0; 1) 0 ≤ r < 1.

What if v is not integrable over C(0, 1) ? Our subharmonic v is certainly bounded from
above by some real constant M on C(0, 1), so that v(eit)−M ≤ 0 and consequently

1− r2
1− 2r cos(θ − t) + r2

{v(eit)−M} ≤ 1− r
1 + r

{v(eit)−M}.

Applying 8.22 to v −M instead of v, we thus obtain

v(reiθ)−M ≤ 1− r
1 + r

1

2π

π
∫

−π

{v(eit)−M}dt =
1− r
1 + r

{v(0; 1)−M}.
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Hence if v(0; 1) happens to be −∞, then v ≡ −∞ on B(0, 1).
Simple transformations give corresponding results for other discs. In particular, if v

is subharmonic on B(a,R) then

(2b′) v(a; r) ≤ v(a;R), 0 ≤ r < R

and v(a;R) = −∞ implies that v ≡ −∞ on B(a,R). If a subharmonic function v on a
connected domain D equals −∞ on a subdomain D0 then v ≡ −∞. Indeed, let D1 be the
maximal subdomain of D containing D0 on which v = −∞. If D1 would have a boundary
point a in D, then v(a; r) would be −∞ for some small r > 0 and hence v = −∞ on a
neighborhood of a. This contradiction shows that D1 = D.

COROLLARIES 8.23. Let v be subharmonic on Ω. Then for a ∈ Ω, the mean value v(a; r)
is a nondecreasing function of r for 0 ≤ r < d(a) = d(a, ∂Ω), see (2b′). The mean value
inequality (1c) thus holds for all such r. If D is a connected component of Ω, one either
has

v(a; r) > −∞ for all a ∈ D and 0 < r < d(a),

or
v ≡ −∞ on D.

Hence if v 6≡ −∞ on D, one has v > −∞ on a dense subset and then it follows from
the sub mean value property that v is locally integrable on D. [Choose any point a ∈ D
such that v(a) > −∞ and then take any compact disc B(a,R) ⊂ D. On that disc v is
bounded above. On the other hand the integral of v over B(a,R) must be > −∞ by (1c)
for 0 ≤ r ≤ R and Fubini’s theorem.]

We indicate some more applications.

(8.24) A characterization of harmonic functions. Any continuous (finite real) function v on
Ω with the mean value property (1a) is harmonic [and hence of class C∞], cf. Application
8.22 and exercise 8.14.

(8.25) Uniqueness in the Dirichlet problem. For a bounded domain D and a continuous
real function g on ∂D, there is at most one harmonic function u on D with boundary
function g: one for which limu(z) = g(ζ) whenever z(∈ D) tends to a point ζ ∈ ∂D.
[Apply the maximum principle to ± the difference of two solutions.]

In the case of unbounded domains one needs a condition at ∞ for uniqueness. For
example, the Dirichlet problem for D = C− B(0, 1) and boundary function 0 on ∂D has
the solutions c log |z|. However, there is only one bounded solution [u = 0], and hence also
just one solution which has the form log |z|+ O(1) as |z| → ∞, [u = log |z|]. Indeed, if v
is subharmonic on D and

lim sup
z→ζ

v(z) ≤ 0, ∀ζ ∈ ∂D, v(z) ≤M on D,

then the modified subharmonic function

vε(v) = v(z)− ε log |z|, ε > 0
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is majorized by 0 on all of ∂eD. Thus by the maximum principle vε(z) ≤ 0 at every point
z ∈ D and hence, letting ε ↓ 0, v(z) ≤ 0 throughout D.

There are various problems for which one needs special harmonic functions that behave
like log |z| at ∞:

(8.26) A bound for polynomials that are bounded by 1 on [−1, 1]. Let p(z) run over all
polynomials such that |p(x)| ≤ 1 on [−1, 1]. Taking deg p = m ≥ 1, does there exist a good
upper bound for |p(z)|1/m at the points z in D = C− [−1, 1] ?

Observe that

(2c) v(z)
def
=

1

m
log |p(z)|

is a subharmonic function on C which is majorized by 0 on [−1, 1] and by log |z| + O(1)
at ∞. Thus if we can find a harmonic function g(z) on D with boundary values 0 on ∂D
and such that g(z) = log |z|+O(1) at ∞, comparison of v(z) and (1 + ε)g(z) will result in
the estimate

(2c′) v(z) ≤ g(z), ∀z ∈ D.

An appropriate “Green function” g can be obtained from log |w| by 1−1 holomorphic
or conformal mapping of D′ : {|w| > 1} onto D in such a way that “∞ corresponds to∞”.
A suitable map is z = 1

2
(w + 1/w) [what happens to circles |w| = r > 1 ?]. The inverse

map is given by w = ϕ(z) = z + (z2 − 1)
1
2 , where we need the holomorphic branch of the

square root that behaves like z at ∞; it will give ϕ(z) absolute value > 1 throughout D.
[The other branch would give ϕ(z) absolute value < 1 on D.] We may now set

(2c′′) g(z) = log |w| = log |z + (z2 − 1)
1
2 | [so that g(z) > 0 on D].

The example of the Chebyshev polynomials Tm(z) = cosmw where cosw = z will
show that the upper bound provided by (2c–c′′) is quite sharp: |Tm(x)| ≤ 1 and

Tm(z) =
1

2
(eimw + e−imw) =

1

2
(cosw + i sinw)m +

1

2
(cosw − i sinw)m

=
1

2
{z + (z2 − 1)

1
2 }m +

1

2
{z − (z2 − 1)

1
2 }m.

(8.27) Sets on which a subharmonic function can be −∞. Let D ⊂ C be a connected
domain. A subset E ⊂ D throughout which a locally integrable subharmonic function on
D can be equal to −∞ is called a polar subset. Polar sets must have planar Lebesgue
measure zero, but not every set of measure 0 is polar. For example, line segments I in D
are non polar.

Indeed, let v be subharmonic on D and equal to −∞ on I. By coordinate transforma-
tion z′ = az + b we may assume that I = [−1, 1] and by shrinking D if necessary, we may
assume that D is bounded and v ≤ 0 throughout D. Let g be the function (2c′′) and set
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min∂D g = c so that c > 0. For any λ > 0 the subharmonic function v − λg on D− [−1, 1]
has all its boundary values ≤ −λc, hence

v(z) ≤ λ{g(z)− c}, ∀z ∈ D, ∀λ > 0.

There will be a disc B(0, δ) ⊂ D throughout which g(z) < c. Letting λ→∞ it follows that
v = −∞ throughout B(0, δ), hence v is not integrable over that disc. [In fact, v ≡ −∞,
cf. Corollaries 8.23.]

In planar potential theory one introduces the notion of logarithmic capacity (cap) to
measure appropriate kinds of sets [Section 8.5]. A compact set K ⊂ C will be polar relative
to D ⊃ K precisely when capK = 0, cf. exercise 8.45. For a closed disc and a circle the
capacity is equal to the radius.

8.3 Smooth subharmonic functions. Regularization. A real C2 function g on R is
convex if and only if g′′ ≥ 0. There is a similar characterization for smooth subharmonic
functions:

Proposition 8.31. A (finite) real C2) function v on Ω in R2 [or Rn] is subharmonic if
and only if its Laplacian ∆v is nonnegative throughout Ω.

PROOF. The simplest way to estimate the deviation of the circular mean v(a; r) from
v(a) is by integration of the Taylor expansion for v around a. Taking a = 0 one has for
(x, y)→ 0:

v(x, y) = v(0) + vx(0)x+ vy(0)y + 1
2
vxx(0)x2 + vxy(0)xy + 1

2
vyy(0)y2 + o(x2 + y2).

Setting x = r cos θ, y = r sin θ (r > 0) and integrating with respect to θ from −π to π,
one obtains the formula

(3a) v(0; r)− v(0) = 1
4
∆v(0)r2 + o(r2) for r ↓ 0.

Hence if v is subharmonic on a neighborhood of 0, so that v(0; r) ≥ v(0) for all small r, it
follows that ∆v(0) ≥ 0. As to the other direction, if ∆v(0) > 0 one finds that v(0; r) > v(0)
for all sufficiently small r. If one only knows that ∆v ≥ 0 on a neighborhood U of 0, one
may first consider vε = v + ε(x2 + y2) with ε > 0. Then ∆vε ≥ 4ε, hence the functions
vε are subharmonic on U . The same will hold for the limit function v of the decreasing
family {vε} as ε ↓ 0, cf. Properties 8.12.

REMARKS. An alternative proof may be based on the exact formula

(3b) v(0) = v(0; r)− 1

2π

∫

B(0,r)

∆v(ξ, η) log
r

ρ
dξdη, ρ = (ξ2 + η2)

1
2 ,

cf. exercise 8.20. There are similar proofs for Rn.
In Section 3.1 we have derived a representation formula for smooth functions in terms

of boundary values and a (special) first order derivative. Formula (3b) is a particular case
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of a general representation formula for smooth functions in terms of boundary values and
the Laplacian, cf. exercise 8.49. Such representations may be obtained with the aid of
Green’s formula involving Laplacians:

(3c)

∫

D

(u∆v − v∆u)dm =

∫

∂D

(u
∂v

∂N
− v ∂u

∂N
)ds.

Here D is a bounded domain in R2 or Rn with piecewise smooth boundary, while u and v
are functions of class C2(D). The symbol dm denotes the “volume” element of D, ds the
“area” element of ∂D and ∂/∂N stands for the derivative in the direction of the outward
normal to ∂D [or minus the derivative in the direction of the inward normal]. Formula
(3c) may be derived from the Gauss-Green formula for integration by parts, cf. Section
3.1 and exercises 8.46, 8.47 and also Chapter 10.

Arbitrary subharmonic functions v may be characterized by the condition that ∆v
must be ≥ 0 in the sense of distributions, cf. exercise 8.27.

DEFINITION 8.32. Real C2 functions v such that ∆v > 0 on Ω (or vzz > 0 in the case of
C) are called strictly subharmonic.

EXAMPLES 8.33. Let α be a C∞ subharmonic function on Ω ⊂ C and let g be a nonde-
creasing convex C∞ function on R, or at least on the range of α. Then the composition
β = g ◦ α is also C∞ subharmonic on Ω. Indeed, βz = g′(α)αz, hence since αz = αz [α is
real !],

(3d) βzz = g′′(α)|αz|2 + g′(α)αzz ≥ g′(α)αzz.

The function v(z) = |z|2 is strictly subharmonic on C.

Finally, let µ be an absolutely continuous measure on C with a C1 density ϕ on C of
compact support K. Then the potential Uµ in (1f) is of class C2 and it satisfies Poisson’s
equation ∆U = −2πϕ, cf. exercise 8.21. If ϕ ≥ 0, Uµ will be a smooth superharmonic
function on C.

Certain properties are easy to obtain for smooth subharmonic functions. For arbitrary
subharmonic functions v one may then form so-called regularizations vε and try passage
to the limit. The regularizations are smooth subharmonic majorants which tend to v as
ε ↓ 0:

Theorem 8.34. Let v be subharmonic on Ω ⊂ C and not identically −∞ on any compo-
nent, so that v is locally integrable [ Corollaries 8.23.] We let Ωε denote the “ε-contraction”
of Ω : Ωε = {z ∈ Ω : d(z) > ε}, ε > 0. Finally, let ρε(z) = ε−2ρ(|z|/ε) be the stan-
dard nonnegative C∞ approximate identity on C with circular symmetry; in particular
suppρε = B(0, ε) and

∫

C
ρε = 1 [Section 3.3]. Then on Ωε, the regularization

vε(z)
def
=

∫

Ω

v(ζ)ρε(z − ζ)dm(ζ) =

∫

B(0,ε)

v(z − ζ)ρε(ζ)dm(ζ)
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of v is well-defined, of class C∞, subharmonic and ≥ v. At each point z ∈ Ω, the values
vε(z) converge monotonically to v(z) as ε ↓ 0. If v is a finite continuous function, the
convergence is uniform on every compact subset of Ω.

PROOF. Since v is locally integrable on Ω, it is clear that the regularization vε is well-
defined and of class C∞, cf. Sections 3.3 and 3.1. We may derive mean value inequalities
for vε from those for v by inverting the order of integration in an appropriate repeated
integral. Indeed, for a ∈ Ωε and 0 < r < d(a)− ε,

π
∫

−π

vε(a+ reit)dt =

∫

B(0,ε)

ρε(ζ)dm(ζ)

π
∫

−π

v(a− ζ + reit)dt

≥
∫

B(0,ε)

ρε(ζ) · 2πv(a− ζ)dm(ζ) = 2πvε(a),

hence vε is subharmonic on Ωε.
How does vε(z) behave as ε ↓ 0 ? This time we will use r and t as polar coordinates,

ζ = reit. From the special form of ρε and noting that ρ(ζ) = ρ(r), we obtain for ε < d(z):

(3e)

vε(z) =

∫

B(0,ε)

v(z − εζ)ρ(ζ)dξdη

=

1
∫

0

ρ(r)r dr

π
∫

−π

v(z − ε reit)dt = 2π

1
∫

0

ρ(r)r v(z; εr)dr.

Now the mean value v(z; εr) is monotonically decreasing as ε ↓ 0 by Corollaries 8.23, hence
the same will hold for vε(z). Finally, since v(z; εr)→ v(z) as ε ↓ 0 (1e), formula (3e) and
the monotone convergence theorem show that

vε(z) ↓ 2π

1
∫

0

ρ(r)rv(z) dr = v(z).

For finite continuous v the convergence above will be uniform on compact sets in Ω
because in this case, v(z − ζ)→ v(z) uniformly on compact subsets of Ω as ζ → 0.

EXAMPLE 8.35. As an application one may show that subharmonic function v(x, y) =
f(x) on Ω in R2 which depends only on x is convex or sublinear on line segments. For
smooth v the result is immediate from ∆v = f ′′ ≥ 0. In the general case one finds that
the regularization vε [on Ωε] depends only on x and hence is convex; passage to the limit
as ε ↓ 0 gives the convexity of v. Similarly, if a function v(z) = ϕ(|z|) on an annulus
A(0; ρ,R) depends only on |z| = r, then ϕ(r) is a convex function of log r. For this and
other applications, see exercises 8.23–8.28.
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8.4 Plurisubharmonic functions. We have seen already when a continuous function is
plurisubharmonic [Section 6.5]. As in the case of subharmonic functions, the requirement
of continuity may be relaxed:

DEFINITION 8.41. A plurisubharmonic (psh) function on an open set Ω ⊂ Cn is an upper
semi-continuous function v : Ω → R ∪ {−∞}, whose restrictions to the intersections of Ω
with complex lines are subharmonic. In other words, for every complex line z = a + wζ
(a ∈ Ω, ζ ∈ Cn−{0}, w ∈ C variable), the restriction v(a+wζ) must have the sub mean
value property at the point w = 0.

There is a corresponding notion of pluriharmonic functions on Ω: they are the real
C2 functions whose restrictions to the intersections with complex lines are harmonic.

EXAMPLES and PROPERTIES 8.42. For holomorphic f on Ω ⊂ Cn both u = Ref
and v = Imf are pluriharmonic, while |f | and log |f | are plurisubharmonic. Indeed, for
a ∈ Ω, f(a + wζ) will be holomorphic in w around w = 0. Every convex function v on
Ω ⊂ Cn is psh, cf. Examples 8.13.

For psh functions v1 and v2 on Ω, the sum v1 +v2 and the supremum or least common
majorant sup(v1, v2) are also psh. The supremum or upper envelope of an infinite family
of psh functions is psh provided it is upper semi-continuous. If the latter is not the case,
then its usc regularization will be psh, cf. the section after the proof of Theorem 8.64,
exercise 8.8 and 8.29. The limit function of a decreasing family of psh functions is always
psh.

Psh functions v on Ω ⊂ Cn are in particular subharmonic in the sense of R2n. Indeed,
for a ∈ Ω one will have the inequality

v(a) ≤
π
∫

−π

v(a+ eitζ)dt/2π, ∀ζ ∈ Cn with |ζ| = r < d(a).

Now observe that the transformation ζ → eitζ (with t fixed) represents a rotation about 0
in Cn = R2n. Letting ζ run over the sphere Sr = S(0, r) and averaging, Fubini’s theorem
thus gives the mean value inequality

v(a) ≤
π
∫

−π

{
∫

Sr

v(a+ eitζ)ds(ζ)/m(Sr)}dt/2π = v(a; r),

where v(a; r) denotes the average of v over the sphere S(a, r) [we may write ds(ζ) =
ds(eitζ)]. It follows that psh functions satisfy a maximum principle [Theorem 8.21 for Rn

instead of C], that they are majorized on balls by the Poisson integrals u = P [v] of their
boundary values [cf. Applications 8.22 and (1b′)] and that the spherical means v(a; r) have
the same properties as the circular means in Corollaries 8.23. In particular, if v is psh on
B(a,R) ⊂ Cn then v(a; r) is nondecreasing for 0 ≤ r ≤ R and its limit for r ↓ 0 equals
v(a) as in (1e). Furthermore, if v is psh on a connected domain D ⊂ Cn and 6≡ −∞, then
v(a; r) is finite for all a ∈ D, 0 < r < d(a) and v is locally integrable.
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Smooth functions. For a C2 convex function v on Ω ⊂ Rn, the restriction to the
intersection with any real line x = a+ tξ through a ∈ Ω is C2 convex. Setting v(a+ tξ) =
g(t), the characterization g′′ ≥ 0 leads to the necessary and sufficient condition

(4a)

n
∑

j,k=1

∂2v

∂xj∂xk
(a)ξjξk ≥ 0, ∀a ∈ Ω, ∀ξ ∈ Rn.

In words: the (real) Hessian matrix or form of v must be positive semidefinite everywhere
on Ω.

The characterization 8.31 of smooth subharmonic functions leads to a similar charac-
terization for smooth psh functions v on Ω ⊂ Cn. The important quantities now are the
complex Hessians, that is, the Hermitian matrices

[
∂2v

∂zj∂zk
(a)]j,k=1,...,n, a ∈ Ω

and the corresponding Hermitian forms, the complex Hessian or Levi forms

(4a′)

n
∑

j,k=1

∂2v

∂zj∂zk
(a)ζjζk, ζ ∈ Cn, a ∈ Ω.

Proposition 8.43. A real C2 function v on Ω ⊂ Cn is plurisubharmonic if and only if its
complex Hessian form (4a′) is positive semidefinite at every point a ∈ Ω, or equivalently,
if the smallest eigenvalue of the form,

(4b) λv(a) = min
|ζ|=1

n
∑

j,k=1

DjDkv(a) · ζjζk is ≥ 0, ∀a ∈ Ω.

PROOF. Consider the restriction of v to the intersection of Ω with the complex line
z = a + wζ. This C2 functions is subharmonic precisely when ∆wv(a + wζ) ≥ 0 for
all w such that z = a + wζ ∈ Ω. The proof is completed by direct calculation: for
zj = aj + wζj, j = 1, . . . , n,

∂v(z)

∂w
=
∑

j

Djv(z) · ζj , 1
4
∆wv(z) =

∂2v(z)

∂w∂w
=
∑

j,k

DjDkv(z) · ζjζk.

DEFINITION 8.44. A real function v on Ω is called strictly plurisubharmonic if it is of
class C2 and its complex Hessian form is positive definite everywhere on Ω; equivalently,
the smallest eigenvalue λv must be strictly positive throughout Ω.
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EXAMPLES 8.45. Let α be a C∞ psh function on Ω ⊂ Cn and let g be a nondecreasing
convex C∞ function on R, or at least on the range of α. Then the composition β = g ◦ α
is also C∞ psh on Ω:

Djβ = g′(α)Djα, DjDkβ = g′′(α) ·Dkα+ g′(α)DjDkα,
∑

j,k

DjDkβ · ζjζk = g′′(α)
∑

j

ζjDjα
∑

k

ζkDkα

+ g′(α)
∑

j,k

DjDkα · ζjζk ≥ 0.

We record for later use that for the smallest eigenvalues of α and β,

(4c) λβ ≥ g′(α)λα.

The functions

|z|2 − 1,
1

1− |z|2 , log
1

1− |z|2
are strictly psh on the ball B(0, 1) ⊂ Cn. Useful psh functions on Cn are

|z|2, log |z| = 1
2

log |z|2, log+ |z − a| = sup(log |z − a|, 0).

As subharmonic functions in R2n, psh functions in Cn may be regularized as in The-
orem 8.34. The regularizations will also be psh functions:

Theorem 8.46. Let v be a locally integrable plurisubharmonic function on Ω ⊂ Cn and
let ρε(z) = ε−2nρ(|z|/ε) be the standard nonnegative C∞ approximate identity on Cn with
spherical symmetry [Section 3.3]. Then the regularization vε = v ∗ ρε is well-defined on
Ωε = {z ∈ Ω : d(z) > ε}, of class C∞, psh and ≥ v. At each point z ∈ Ω, the values vε(z)
converge monotonically to v(z) as ε ↓ 0; if v is continuous, the convergence is uniform on
compact sets in Ω.

Sketch of PROOF [cf. the proof of Theorem 8.34]. We verify that vε is psh: for a ∈ Ωε

and τ ∈ Cn, 0 < |τ | < d(a)− ε,
π
∫

−π

vε(a+ eitτ)dt =

∫

B(0,ε)

ρε(ζ)dm(ζ)

π
∫

−π

v(a− ζ + eitτ)dt

≥
∫

B(0,ε)

ρε(ζ) · 2πv(a− ζ)dm(ζ) = 2πvε(a).

Furthermore, forε < d(z) and Sr = ∂B(0, r),

vε(z) =

∫

B(0,ε)

v(z − εζ)ρ(ζ)dm(ζ) =

1
∫

0

ρ(r)dr

∫

Sr

v(z − εζ)ds(ζ)

=

1
∫

0

ρ(r)m(Sr)v(z; εr)dr ↓ v(z)

∫

B

ρ = v(z) as ε ↓ 0.

169



APPLICATION 8.47 (Plurisubharmonic functions and holomorphic maps). Let f be a
holomorphic map from a domain D1 ⊂ Cn to a (connected) domain D2 ⊂ Cp and let v be
a psh function on D2. Then the pull back V of v to D1,

V = f∗v
def
= v ◦ f

is also psh. Indeed, for a C2 psh function v the statement may be verified by direct
computation of the complex Hessian, cf. Proposition 8.43. An arbitrary psh function
v 6≡ −∞ on D2 is locally integrable and hence the pointwise limit of a decreasing family
of smooth psh functions vε as ε ↓ 0. The pull back f∗v will be the limit of the decreasing
family of psh functions f∗vε as ε ↓ 0, hence also psh.

APPLICATION 8.48 Sets on which a plurisubharmonic function can be −∞. Let D be a
connected domain in Cn, n ≥ 2. A subset E throughout which a locally integrable psh
function on D can be equal to −∞ is called a pluripolar subset. In Newtonian potential
theory for Rn or R2n one works with ordinary subharmonic [or superharmonic] functions
and the corresponding small sets are called polar. Whether a set in Cn is pluripolar or
not depends very much on its orientation relative to the complex structure. Any subset
of a zero set Z(f), with f ∈ O(D) not identically zero, is pluripolar. Thus in C2 ≈ R4,
the square −1 ≤ x1, y1 ≤ 1 in the complex line z2 = 0 is pluripolar, but the square
−1 ≤ x1, x2 ≤ 1 in the “real” plane y1 = y2 = 0 is not, cf. exercises 1.16 and 8.39. The
two sets are equivalent from the viewpoint of R4, hence both polar.

For compact sets K ⊂ Cn we will introduce a logarithmic capacity. It can be shown
that such sets are pluripolar in Cn precisely when they have capacity zero (cf. [Siciak
1982]).

8.5 Capacities and Green functions: introduction. The mathematical notion of the
capacity of a compact set K in R3 goes back to classical electrostatics and the Newtonian
potential, cf. [Wermer 1974]. One would think of K as a conductor [preferably with
smooth boundary] which carries a distribution of positive charge, represented by a positive
measure µ on K. We suppose that there exists some nonzero distribution µ for which
the associated electrostatic potential

∫

K
dµ(ξ)/|x − ξ| remains bounded on K [otherwise

we say that K has capacity zero]. Question: How much charge can one put on K if the
potential is not allowed to exceed a given constant V ? The maximal charge Q = µ(K) is
obtained in the case of an equilibrium charge distribution, for which the potential is equal
to V (essentially) everywhere on K. The ratio Q/V turns out to be independent of V and
gives the capacity. For a closed ball B(a,R) is a sphere S(a,R) and in appropriate units,
the capacity is equal to the radius.

In the case of arbitrary compact sets K in C or R2 one proceeds by analogy. The
planar Laplace operator suggests that we now use the logarithmic potential Uµ of a positive
measure µ on K (1f). For convenience one normalizes the total charge µ(K) to 1. One
says that K has positive capacity if Uµ is bounded above on K for some µ. Varying µ, the
smallest possible upper bound γ = γK is called the Robin constant for K. It is attained for
the so-called equilibrium distribution µ0 on K. This measure is concentrated on the outer
boundary ∂0K and its potential is equal to γ essentially everywhere on K. [The exceptional
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set will be polar (8.27); it is empty if ∂0K is well-behaved; in C, a continuum K is all
right.] The constant γ may be negative; for the disc B(a,R) or the circle C(a,R) one
finds γ = − log R, cf. Examples (8.51). It is customary to define the so-called logarithmic
capacity, capK, as e−γ , so the closed discs and circles in the plane have capacity equal to
their radius.

There is another way to obtain the Robin constant and thus the capacity for compact
sets K in C. Suppose for simplicity that K has well-behaved outer boundary. Then there
exists a classical Green function on the unbounded component D of C−K with “pole” at
infinity. It is the unique harmonic function g(z) on D with boundary values 0 on ∂D and
which is of the form log |z|+O(1) as |z| → ∞. In terms of the potential of the equilibrium
distribution µ0 on K one will have

(5a) g(z) = γ − Uµ0(z), ∀z ∈ D.

Observe that

Uµ0(z) = − log |z| −
∫

K

log
∣

∣1− ζ

z

∣

∣dµ0(ζ) = − log |z|+ o(1)

as |z| → ∞, hence

(5b) γ = min
|z|→∞

{g(z)− log |z|}.

EXAMPLES 8.51. For K = B(a,R) and K = C(a,R) in C,

g(z) = log
|z − a|
R

, |z − a| > R; γ = − log R, capK = R.

For the line segment [−1, 1] in C, cf. (8.26),

g(z) = log |z + (z2 − 1)
1
2 |, γ = log 2, cap[−1, 1] =

1

2
.

Here one has to use the holomorphic branch of (z2 − 1)
1
2 on C \ [−1, 1] that behaves like

z at ∞.
The Green function g(z) on D may be extended to a subharmonic function on C by

setting it equal to 0 on K and throughout bounded components of C \K [formula (5a)
will then hold everywhere]. The extended Green function may also be defined in terms of
polynomials. The advantage of such an approach is that it provides a Green function for
every compact set in C. Using polynomials in z = (z1, . . . , zn), the same definition will
work in Cn. Its polynomial origin will make the new Green function directly useful in the
study of holomorphic functions in Cn (cf. [Siciak 1962, 1982]).

8.6 Green functions on Cn with logarithmic singularity at infinity.
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DEFINITION 8.61. For K ⊂ Cn compact, the (pre-) Green function gK(z) with “pole”
(logarithmic singularity) at infinity is given by

gK(z) = sup
m≥1

sup
deg pm≤m

1

m
log
|pm(z)|
‖pm‖k

, ∀z ∈ Cn.

Here pm runs over all polynomials in z of degree ≤ m for which ‖pm‖K = supK |pm(ζ)| > 0.
One defines the logarithmic capacity of K in terms of a generalized Robin constant:

γ = γK = lim sup
|z|→∞

{gK(z)− log |z|}, capK = e−γ .

Simple properties. There is monotonicity: if K ⊂ K ′ one has ‖pm‖K ≤ ‖pm‖K′ ,
hence

gK(z) ≥ gK′(z), capK ≤ capK ′.

Also cap is invariant under translations and there is homogeneity: cap(tK) = tcapK,
t ≥ 0. Observe that for any m ≥ 1 and deg pm ≤ m, the function

(6a) v(z) =
1

m
log |pm(z)|/‖pm‖K (‖pm‖K > 0)

is plurisubharmonic and satisfies the following conditions:

(6b) v(z) ≤ 0 on K, v(z) ≤ log |z|+O(1) as |z| → ∞.

[For |α| ≤ m and |z| ≥ 1, |zα| ≤ |z|m.] Clearly gK(z) ≤ 0 on K; the special choice
pm(z) ≡ 1 (and m = 1) shows that

(6c) gK(z) ≥ 0 on Cn, gK(z) = 0 on K.

Before we discuss examples it is convenient to prove a simple lemma:

Lemma 8.62. (i) Let v be any psh function on Cn which is majorized by 0 on the closed
ball B(a,R) and by log |z|+O(1) at ∞. Then

v(z) ≤ log+ |z − a|
R

, ∀z ∈ Cn.

(ii) Let K ⊂ Cn be such that gK(z) ≤M on the ball B(a,R). Then

gK(z) ≤M + log+ |z − a|
R

, ∀z ∈ Cn,

hence K has finite Robin constant and positive logarithmic capacity.

PROOF. (i) Setting z = a+ wb with w ∈ C, b ∈ Cn, |b| = R we find

v(a+ wb) ≤ 0 for |w| ≤ 1, v(a+ wb) ≤ log |w|+O(1) as |w| → ∞.
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Comparing the subharmonic function v(a+wb) with the harmonic function (1 + ε) log |w|
for |w| > 1, the maximum principle will show that

v(z) = v(a+ wb) ≤ log |w| = log |z − a|/R for |z − a| > R.

(ii) By the definition of gK , the psh functions v of (6a) will be majorized by M on B(a,R).
Now apply part (i) to v −M instead of v and then use the definition of gK once again.

EXAMPLES 8.63. (i) Let K be the closed ball B(a,R) ⊂ Cn. Setting z = a + wb with
w ∈ C, |b| = R the Lemma shows that gK(a+wb) ≤ log+ |w|, cf. (6c). On the other hand
the special choice p1(z) = b · (z−a)/R2 shows that gK(a+wb) ≥ log |p1(a+wb)| = log |w|.
Conclusion: gK(a+ wb) ≡ log+ |w| for every b ∈ Cn of norm R, hence

gK(z) = log+ |z − a|
R

, γ = − log R, capK = R,

in agreement with Example 8.51 when n = 1. (ii) For the line segment K = [−1, 1] in C
one will have

gK(z) = g(z) = log |z + (z2 − 1)
1
2 |, capK =

1

2
,

in conformity with 8.51. Indeed, any subharmonic function v on C which is majorized by
0 on K and by log |z| + O(1) at ∞ will be majorized by g on C − K, cf. (8.26), hence
gK ≤ g. On the other hand, if we use the Chebyshev polynomials Tm(z) we find

gK(z) ≥ lim
m→∞

1

m
log |Tm(z)| = log |z + (z2 − 1)

1
2 |, z ∈ C− [−1, 1],

see (8.26). Simple transformations will give the Green functions for other compact line
segments in C.

(iii) Every non-degenerate rectangular block K in Rn = Rn + i0 ⊂ Cn:

K = {x ∈ Rn : aν ≤ xν ≤ bν , ν = 1, . . . , n} (bν > aν)

has positive capacity in Cn. This will follow from Lemma 8.62 and the simple inequality

gK(z) ≤ g1(z1) + . . .+ gn(zn),

where gν stands for the one-variable Green function for the real interval [aν , bν] in C
with pole at ∞. We verify the inequality in the case n = 2. For v(z1, z2) as in (6a) we
have v(x1, x2) ≤ 0 whenever aν ≤ xν ≤ bν . Taking x2 ∈ [a2, b2] fixed, the subharmonic
function v(z1, x2) will be majorized by 0 on [a1, b1] and by log |z1|+O(1) at ∞, hence it is
majorized by g1(z1) throughout Cz1 , cf. (ii). Thus for fixed z1, the subharmonic function
v(z1, z2) − g1(z1) will be majorized by 0 on [a2, b2] and by log |z2|+ O(1) at ∞, hence it
is majorized by g2(z2) throughout Cz2 . Conclusion: all admissible functions v(z1, z2) are
majorized by g1(z1) + g2(z2) on C2 and the same will hold for their upper envelope, the
Green function gK(z1, z2).

[One actually has gK(z) = sup{g1(z1), . . . , gn(zn)}, cf. exercise 8.44.]
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The following theorem will be used in Section 8.7:

Main Theorem 8.64. (cf. [Siciak 1982]). For compact K in Cn the following asser-
tions are equivalent:
(i) gK(z) < +∞ throughout Cn;
(ii) There are a ball B(a, r) and a constant M such that gK(z) ≤M on B(a, r);

(iii) There exist a ∈ Cn, r > 0 and M such that

gK(z) ≤M + log+ |z − a|
r

, ∀z ∈ Cn;

(iv) γ = γK < +∞ or capK = e−γ > 0;
(v) For every bounded set H ⊂ Cn there is a constant CH = C(H,K) such that for every

m ≤ 0 and all polynomials p(z) of degree ≤ m,

‖p‖H ≤ ‖p‖K C(H,K)m.

[In terms of gK , one may take C(H,K) = exp(supH gK).]

PROOF. (i) ⇒ (ii). We will use Baire’s theorem: If a complete metric space is the union
of a countable family of closed sets, at least one of the sets must contain a ball. Assuming
(i), define

Es = {z ∈ Cn : gK(z) ≤ s}, s = 1, 2, . . . .

Every Es is a closed set: it is the intersection of the closed sets {z ∈ Cn : v(z) ≤ s}
corresponding to the continuous functions v of (6a). Now Cn =

⋃∞
s=1 Es, hence by Baire’s

theorem, some set Eq contains a ball B(a, r). We then have (ii) with M = q.
(ii) ⇒ (iii): apply Lemma 8.62 with R = r.
(iii) ⇒ (iv) ⇒ (ii): use the definition of γ in Definition 8.61.
(iii) ⇒ (v) ⇒ (ii) or (i): use the definition of gK in 8.61. Q.E.D.

The (pre-) Green function gK need not be plurisubharmonic even if it is finite, because
it need not be upper semi-continuous. For example, if K = B(0, 1) ∪ {2} in C then
gK(z) = log+ |z| for z 6= 2 but gK(2) = 0. To repair this small defect one may define the
“real” Green function g∗K as the “upper regularization” of gK :

g∗K(a) = lim sup
z→a

gK(z), ∀a ∈ Cn,

cf. exercise 8.8. It follows from Theorem 8.64 that g∗K is either identically +∞ (if
capK = 0) or finite everywhere (if capK > 0). In the latter case one may show that
g∗K is plurisubharmonic. [The regularized upper envelope of a locally bounded family of
psh functions is psh, cf. exercise 8.29.]

In the case of C [but not in Cn !] it may be shown that gK is harmonic outside K
when it is finite. Furthermore

g∗K(z) = γ − Uµ0(z) = γ +

∫

K

log |z − ζ|dµ0(ζ),
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where the positive measure µ0 of total mass 1 represents the equilibrium distribution on
K, cf. (5a). One may deduce from this that the Green function g∗K on C satisfies Poisson’s
equation, ∆g∗K = 2πµ0 [at least in the sense of distributions]. There is a corresponding
partial differential equation for g∗K in Cn (n ≥ 2), the so-called complex Monge-Ampère
equation, which will be studied in Section 8.8.

The function capK has most of the properties usually required of a capacity. It is
monotonic and capKν → capK if Kν ↘ K or Kν ↗ K; for bounded sets L that are limits
of increasing sequences {Kν} of compact sets, it makes sense to define capL = lim capK.
See the recent paper [Ko lodziej 1989].

8.7 Some applications of Cn capacities. Our main application will be the partial
derivatives lemma ([Korevaar-Wiegerinck 1985], [Korevaar 1986]) which was used already
in Sections 3.5, 3.6; for other uses see exercises 8.52, 8.58. Let E be a family of directions
ξ in Rn; we think of E as a subset of the unit sphere Sn−1. If E is large enough, the
partial derivatives of C∞ functions f in Rn can be estimated in terms of the directional
derivatives of the same order that correspond to the set E. It is remarkable that the best
constant β(E) in this real variables result is equal to a Cn capacity for a set closely related
to E. The set in question is the closure Ec of the circular set Ec ⊂ Cn generated by E:

(7a) Ec
def
= {z = eitξ ∈ Cn : ξ ∈ E, t ∈ R}.

Theorem 8.71 (Partial derivatives lemma). (i) For every nonempty open subset E
of the real unit sphere Sn−1 there is a constant βE > 0 such that, for any point a ∈ Rn

and any C∞ function f in a neighborhood of a,

(7b) max
|α|=m

1

α!

∣

∣Dαf(a)
∣

∣ ≤ sup
ξ∈E

1

m!

∣

∣

(

d

dt

)m

f(a+ tξ)
∣

∣

t=0

∣

∣/βmE , m = 1, 2, . . . .

(ii) For an arbitrary set E ⊂ Sn−1 ⊂ Rn there is such a constant βE > 0 if and only if the
closed circular set K = Ec has positive logarithmic capacity in Cn.
(iii) The best (largest possible) constant βE in (7b) is equal to what may be called a Siciak
capacity:

(7c) βE = σ(Ec), σ(K)
def
= exp(− sup

∆
gK),

where gK is the (pre-) Green function for K in Cn with logarithmic singularity at ∞
(Definition 8.61) and ∆ = ∆n(0, 1) is the unit polydisc.

REMARKS. If βE > 0 and f is a continuous function on a domain D in Rn such that the
mth order directional derivatives on the right-hand side of (7b) exist at every point a ∈ D
and are uniformly bounded on D for each m, then f is of class C∞ and (7b) is applicable,
cf. exercises 3.22, 8.53.

The proof below will show that the Theorem reduces to a result on polynomials. For
the class of all polynomials f(z) in z = (z1, . . . , zn), there exist inequalities (7b) for any
bounded set E in Cn with the property that Ec has positive capacity, cf. exercise 8.54.

175



PROOF of the Theorem. Let E ⊂ Sn−1 be given. Taking a = 0 as we may, let f be any
C∞ function on a neighborhood of 0 in Rn. We introduce its Taylor expansion

(7d) f(x) ∼
∞
∑

0

qm(x).

where

(7d′) qm(x) =
∑

|α|=m

cαx
α, cα = Dαf(0)/α!.

The homogeneous polynomials qm(x) may be characterized by the condition that for every
integer N ≥ 0,

f(x)−
N
∑

0

qm(x) = o(|x|N ) as x→ 0.

For x = tξ with ξ ∈ E fixed, t ∈ R variable we also have the expansion

f(tξ) ∼
∞
∑

0

qm(tξ) =
∞
∑

0

qm(ξ)tm,

where for every N, f(tξ)−∑N
0 qm(ξ)tm = o(|t|N ) as t→ 0. It follows that

(7d′′) qm(ξ) =
1

m!

( d

dt

)m
f(tξ)

∣

∣

t=0
.

Thus our problem in (7b) [with a = 0] is to estimate the coefficients cα of homogeneous
polynomials qm in terms of the supremum norm ‖qm‖E .

The coefficients cα are estimated rather well by the Cauchy inequalities for the closed
unit polydisc ∆ = ∆(0, 1) ⊂ Cn:

|cα| ≤ ‖qm‖T ≤ ‖qm‖∆ = ‖qm‖∆,

where T is the torus T (0, 1) = C(0, 1)×. . .×C(0, 1). [Cf. Corollary 1.65. Alternatively, this
coefficient inequality may be derived from Parseval’s formula for orthogonal representations
on T .] On the other hand, since qm is a homogeneous polynomial,

‖qm‖E = ‖qm‖Ec
= ‖qm‖K , K = Ec.

Question: Can we estimate ‖qm‖∆ in terms of ‖qm‖K?
(a) [Proof of half of parts (ii) and (iii).] Suppose first that capK > 0. Then by

Theorem 8.64 part (v),

‖qm‖∆ ≤ ‖qm‖KC(∆, K)m, C(∆, K) = exp(sup
∆

gK).
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It follows that

max
|α|=m

|cα| ≤ ‖qm‖∆ ≤ ‖qm‖E C(∆, Ec)
m, m = 1, 2, . . . .

In view of (7d′,′′) we have thus proved (7b) with

1/βE = C(∆, Ec) = exp(sup
∆

gK).

The smallest constant 1/βE that can be used in (7b) will be ≤ exp(sup∆ gK).
(b) [Proof of part (i).] Next suppose that E is any nonempty open subset of Sn−1.

Then the compact truncated cone E∗ = [0, 1] ·E in Rn contains a nondegenerated rectan-
gular block, hence it has positive capacity [see Example 8.63–iii]. Thus by Theorem 8.64
there is a positive constant C(∆, E∗) such that for all homogeneous polynomials qm and
their coefficients cα,

max
|α|=m

|cα| ≤ ‖qm‖∆ ≤ ‖qm‖E∗ C(∆, E∗)m = ‖qm‖E C(∆, E∗)m, m = 1, 2, . . . .

(c) [Completion of parts (ii) and (iii).] Finally, suppose that for E there is a positive
constant β = βE such that (7b) holds [with a = 0] for all C∞ functions f(x). Then for all
homogeneous polynomials q(x) = Σcαx

α,

(7e) |cα| ≤ β−m‖q‖E , ∀α, where m = deg q.

We will deduce that K = Ec has positive capacity.
From (7e) we obtain the preliminary estimate

(7f)

‖q‖∆ = sup
∆

∣

∣

∑

|α|=m

cαz
α
∣

∣ ≤
∑

|α|=m

|cα|

≤ β−m‖q‖E
∑

|α|=m

1 ≤ (m+ 1)nβ−m‖q‖E .

[Since α1 + . . . + αn = m there are at most m + 1 possibilities for each αj .] By (7f), β
must be ≤ 1. Indeed, E belongs to ∆ and hence (m + 1)nβ−m ≥ 1 or β ≤ (m + 1)n/m;
now let m → ∞. We will use (7f) to derive a better estimate, valid for all polynomials p
of degree ≤ m, namely,

(7f ′) ‖p‖∆ ≤ ‖p‖K/βm, where K = Ec.

For the proof we form powers ps with s ∈ N which we decompose into homoge-
neous polynomials: p(z)s =

∑ms
0 qj(z), qj homogeneous of degree j. Then p(wξ)s =

∑ms
0 qj(ξ)w

j, hence by the one-variable Cauchy inequalities, taking ξ ∈ E and letting w
run over the circle C(0, 1) so that wξ ∈ Ec,

|qj(ξ)| ≤
∥

∥p(wξ)s
∥

∥

C(0,1)
≤ ‖p‖sK .
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Thus ‖qj‖E ≤ ‖p‖sK and by (7f)

‖ps‖∆ =
∥

∥

ms
∑

0

qj
∥

∥

∆
≤

ms
∑

0

(j + 1)nβ−j‖qj‖E ≤ (ms+ 1)n+1β−ms‖p‖sK .

Finally, taking the sth root and letting s→∞ we obtain (7f′).
It follows from (7f′) and Definition 8.61 that the Green function gK is bounded by

log 1/β at each point z ∈ ∆, hence by Theorem 8.64 part (ii), K = Ec has positive
capacity. This conclusion completes the proof of part (ii).

By the preceding exp gK ≤ 1/β throughout ∆, hence the smallest possible constant
1/β(E) that works in (7b) must be ≥ exp(sup∆ gK). In view of part (a), the smallest
possible 1/βE is thus equal to exp(sup∆ gK). In other words, the largest possible constant
βE is equal to the Siciak capacity σ(K) in part (iii) of the Theorem.

REMARKS. The definition of σ(K) in (7c) may be applied to any compact set K in Cn.
Just like capK) the function σ(K) has most of the properties usually associated with a
capacity. In particular, σ(K) ≤ σ(K ′) if K ⊂ K ′ and σ(Kν) → σ(K) if Kν ↘ K or
Kν ↗ K. The function σ is also a Cn capacity in the sense that σ(K) = 0 if and only if
K is pluripolar or equivalently, capK = 0. Cf. [Siciak 1982].

In other applications of Cn potential theory, the precise constant is given by a Siciak
capacity involving the unit ball:

(7g) ρ(K)
def
= exp(− sup

B
gK), B = B(0, 1).

For compact circular subsets K = Kc of the closed unit ball, the constant ρ(K) may be
characterized geometrically as the radius of the largest ball B(0, r) which is contained in
the polynomially convex hull K̃ of K, cf. exercises 6.16 and 8.55, 8.56. This property makes
ρ(K) the sharp constant in the Sibony-Wong theorem on the growth of entire functions in
Cn:

Theorem 8.72. Let K = Kc be a compact circular subset of the unit sphere ∂B ⊂ Cn

of positive capacity. Then for every polynomial and [hence] for every entire function F (z)
in Cn,

sup
|z|≤ρr

|F (z)| ≤ sup
z∈rK

|F (z)|, where ρ = ρ(K).

Cf. exercise 8.57 and [Siciak 1982].

8.8 Maximal functions and the Dirichlet Problem. Let us return to C for a moment.
Suppose we know that we can solve the Dirichlet problem for ∆: given a domain D ⊂ C
and f ∈ C(∂D), there exists a smooth function u ∈ C(D) such that

∆u = 0 on D

u|∂D = f.
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Now we can describe u. We introduce the Perron family:

(8a) Pf = {v ∈ C(D) : v is subharmonic on D, v|∂D ≤ f}.

Clearly u ∈ Pf and in view of Theorem 8.21 it is the largest one:

(8b) u(z) = sup
v∈Pf

v(z).

One can write down (8b) even without knowing that Dirichlet’s problem is solvable and it
is reasonable to expect that this will give some sort of solution. This indeed turns out to
be the case as was shown by Perron and as we shall see below.

Working again with several variables we introduce the Perron-Bremermann family

(8c) Ff = {u ∈ C(D) : u is plurisubharmonic on D, u|∂D ≤ f}

and form the Perron-Bremermann maximal function:

(8d) Ff (z) = sup
u∈Ff

u(z).

One may expect that this gives rise to the solution of the Dirichlet problem for an analogue
of the Laplace operator in some sense. What would this operator look like? The following
simple proposition will give an idea.

Proposition 8.81. Let D be a domain in Cn, Ff the Perron-Bremermann family for
f ∈ C(∂D). If u ∈ Ff and u is smooth and strictly plurisubharmonic at some point
a ∈ D, then u 6= Ff .

PROOF. Let u be smooth and strictly plurisubharmonic on B(a, r) ⊂ D. Choose a
smooth real valued cutoff function χ ≥ 0 supported in B(a, r/2) with χ(a) > 0. Then for
sufficiently small ε > 0 the function uε = u + εχ will be plurisubharmonic, uε ∈ Ff and
uε(a) > u(a), which shows that u 6= Ff .

Therefore, if Ff would exist and be smooth, it would be a plurisubharmonic function
[by 8.42] but nowhere could it be strictly plurisubharmonic. In other words, the least
eigenvalue of the complex Hessian of Ff would equal 0. Thus it would be a solution of the
Complex Monge-Ampère equation

(8e) M(u) = det
∂2u

∂zj∂z̄k
= 0.

We are led to the Dirichlet problem for M : Given a domain D in Cn and a function
f ∈ C(∂D), find a continuous plurisubharmonic function u on D such that

M(u) = 0, u|∂D = f.

Note that in the one dimensional case M reduces to a multiple of ∆ and we don’t need to
require that u be subharmonic —it will follow from the equation. In the higher dimensional
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case there are lots of problems. One can show that the maximal function (8d) need not be
C2, cf. exercise 8.60. Apparently we have the problem of defining M(u) for non smooth
u. This can be done, but is much harder than in the one dimensional case where one
can use distributions, because ∆ is linear. However, M is highly nonlinear in the higher
dimensional case.

In what follows we will discuss some aspects of solving the Dirichlet problem for M .
The solution will be complete in the one dimensional case only. We refer to the literature
for complete proofs and many related interesting results, see [Bedford, Taylor; Bedford;
Cegrell; Klimek].

Let D be a bounded domain in Cn given by a smooth defining function ρ which is
plurisubharmonic on a neighborhood of D. That is,

D = {z ∈ Dom(ρ) : ρ(z) < 0},

while ∇ρ 6= 0 on {ρ = 0}, cf. Chapter 9. In C one may modify a smooth defining function
to be strictly subharmonic, in Cn this is not true: The condition on D means that the
domain is strictly pseudoconvex, cf. Chapter 9. In particular D is pseudoconvex. Although
strict pseudoconvexity is not a necessary condition to solve the Dirichlet problem for M ,
pseudoconvexity alone is not enough, cf. exercise 8.62.

Proposition 8.82. Suppose that D ⊂ Cn has a smooth plurisubharmonic defining func-
tion ρ and that f is continuous on ∂D and use the notation (8c) and (8d). Then Ff is
continuous on D, plurisubharmonic on D and satisfies Ff |∂D = f .

PROOF. First we discuss boundary behavior. Let ε > 0, and let φ be smooth on a
neighborhood of D̄ such that on ∂D f − ε < φ < f (One may start with a continuous
function with this property defined on a neighborhood of D̄ and approximate it uniformly
on a compact neighborhood of D̄ with smooth functions) For sufficiently large C1 the
function g0 = φ+ C1ρ will be strictly plurisubharmonic, thus g0 ∈ Ff and

(8f) lim inf
z→w∈∂D

Ff (z) ≥ lim
z→w∈∂D

g0(z) ≥ f(w)− ε.

Similarly take ψ ∈ C∞(D̄), f < ψ < f + ε on ∂D. Again for sufficiently large C2 > 0
C2ρ−ψ will be strictly plurisubharmonic. For g ∈ Ff we have C2ρ−ψ+g < 0 on ∂D, thus
by the maximum principal also on D. Therefore g < ψ − C2ρ independently of g ∈ Ff ,
hence Ff ≤ ψ − C2ρ and

(8g) lim sup
z→w∈∂D

Ff (z) ≤ lim
z→w∈∂D

(ψ − C2ρ)(w) ≤ f(w) + ε.

Since ε was arbitrary, it follows from (8f, g) that Ff is continuous at ∂D and has boundary
values f .

Next we investigate continuity in the interior. As a supremum of continuous functions,
Ff is lsc. We form the usc regularization F ∗

f , which is a plurisubharmonic function, and
wish to prove continuity, that is

H = F ∗
f − Ff ≡ 0.
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The function H is ≥ 0, usc on D̄ and continuous on ∂D with boundary values 0. Let
M = supz∈DH(z). If M > 0 then M is attained at a compact subset K in the interior of
D. Let

L = Lδ = {z ∈ D, d(z, ∂D) ≥ δ}

Given ε > 0 we may take δ small enough such that K ⊂ L and H < ε as well as Ff−g0 < ε
on ∂L. The function F ∗

f can on compact subsets of D be approximated from above by a
decreasing sequence of plurisubharmonic functions {hj}. We claim that this convergence
is almost uniform on ∂L, i.e.

∃m > 0 : hm − F ∗
f < 2ε on ∂L.

This is just an elaborate version of Dini’s theorem on decreasing sequences of continuous
functions, cf. exercise 8.59. Define

h(z) =

{

max(g0, hm − 4ε) on L;

g0 on D \ L.

Then h ∈ Ff , because at ∂L and hence on a tiny neighborhood of ∂L,

g0 > Ff − ε > F ∗
f − 2ε > hm − 4ε.

We conclude that F ∗
f − Ff < F ∗

f − h < 4ε on L. Hence M < 4ε, which implies M = 0.

Proposition 8.83. Suppose that Ff is maximal for Ff on D. Let B be a ball in D and
let g = Ff |∂B, then Ff |B is maximal for Fg.
PROOF. Proposition 8.82 shows that G is continuous. It is clear that Ff |B ∈ Fg, therefore
Ff |B ≤ Fg. Now form the Poisson modification:

F̃ =

{

Ff outside B

Fg on B̄
.

This F̃ is indeed an element of Ff ; we only have to check plurisubharmonicity on ∂B.
Restricting to a complex line l through a ∈ ∂B, we see that the mean value inequality
holds: F̃ (a) = F (a), while on a circle about a in l we have F̃ ≥ Ff . As F̃ ≤ Ff by
definition of Ff , we obtain Ff |B = Fg.

COROLLARY 8.84. The Dirichlet problem for ∆ has a (unique) solution on smooth
domains in C.

PROOF. The Poisson integral solves the Dirichlet problem on discs cf. Section 8.1. Propo-
sition 8.83 shows then that the maximal function coincides with a harmonic function on
discs. It is therefore harmonic. Uniqueness was shown in (8.2).

In the same fashion one concludes from Proposition 8.83.
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COROLLARY 8.85. Suppose that the Dirichlet problem for M is solvable on the unit
ball, then it is solvable on every domain D which admits a strictly psh defining function.

Proposition 8.86. Let u ∈ C2(D̄), f = u|∂D. If Mu ≡ 0, then u = Ff .

Suppose that ∃v ∈ Ff , C > 0, such that supD v(z) − u(z) = C and (hence) ∃K ⊂⊂ D
with v − u = C on K. Adapting C if necessary, we may even assume v < f − ε on ∂D.
Hence there exists a compact K2 ⊂ D with v < u − ε outside K2. Then for sufficiently
small η, the function

vη(z) = v(z) + η|z|2

will have the properties vη − u < 0 outside K2 and vη − u will assume its maximum C ′

close to C on a compact neighborhood K1 of K. We have

K ⊂⊂ K1 ⊂⊂ K2 ⊂⊂ D.

Approximating vη uniformly from above on K2 with psh functions vj , we find one v′, such
that v′ − u < 0 close to the boundary of K2. Now put

h(z) =

{

u(z) on D \K2,

max{u(z), v′(z)} on K2.

It is clear that h ∈ Ff and that h− u is smooth in a neighborhood of a point z0 where it

assumes its maximum. Let ζ0 be an eigenvector of
(

∂2u
∂zi∂z̄j

)

|z0 with eigenvalue 0. Then

restricted to the complex line {z0 +wζ0}, (h−u)(z0 +wζ0) assumes a maximum at w = 0.
But ∆(h− u)(z0 + wζ0)|w=0 > 0, a contradiction.

CONCLUSION A function u ∈ C2(D̄) is maximal in Ff for f = u|∂D if and only if
MA(u) ≡ 0.

We make some further, extremely sketchy, remarks on the Dirichlet problem for M

Existence. Corollary 8.85 shows that it would be sufficient to show that Ff provides
a solution for the Dirichlet problem for f ∈ ∂B, B a (the unit) ball in Cn. Now if one
assumes that f ∈ C2(∂B) it can be shown that Ff is almost C2: second derivatives exist
and are locally in L∞, [this is best possible, cf. exercise 8.60]. The proof exploits the
automorphisms of B to perturb f and Ff .

To show that M(Ff ) = 0, one tries to execute the idea of Proposition 8.81: If M(Ff ) 6≡
0, construct a function v on a small ball B(z0, δ) such that v is psh, v(z0) > u(z0) and
v < u on ∂B(z0, δ). Simple as it may sound, it is a difficult and involved step.

One passes to continuous boundary values like this. A key result is the Chern-Levine-
Nirenberg inequality, a special case of which reads as follows:

For every K ⊂⊂ D there exists a constant CK such that for u ∈ C2 ∩ PSH(D)

∫

K

M(u) dV ≤ CK ||u||n∞.
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It follows that if uj ∈ C2 ∩ PSH(D) is a bounded set in L∞, then M(uj) dV has a
subsequence converging to some measure. It can be shown that as long as uj ∈ C2 ∩
PSH(D) ↓ u ∈ L∞ ∩ PSH(D), this limit measure is independent of the sequence. Thus
M(u) or perhaps better M(u) dV is defined as a positive measure. Now if f ∈ C(∂D) take
a sequence of smooth fj ↓ f . It is clear that Ffj

↓ Ff and then M(Ff ) = limM(Ffj
) = 0.

Finally uniqueness is derived from so called comparison principles. An example, of
which we don’t give a proof, [but see exercise 11.x], is the following

Lemma 8.87. Let u, v ∈ C(D̄) ∩ PSH(D) and u ≥ v on ∂D. Then

∫

u<v

M(v) dV ≤
∫

u<v

M(u) dV.

Assuming this Lemma, we put v = Ff and let u be an other solution. Then u ∈ F and
u(z0) < v(z0) for some z0 ∈ D. For suitable ε, δ > 0 the function ṽ(z) = v(z) − ε + δ|z|2
will satisfy

u > ṽ on ∂D while u(z0) < ṽ(z0).

Also, M(ṽ) > δn [it suffices to check this for smooth v ∈ PSH]. Thus Lemma 8.87 leads
to

δnm({u < ṽ}) ≤
∫

u<ṽ

M(ṽ) dV ≤
∫

u<ṽ

M(u) dV = 0.

This is a contradiction.

REMARKS 8.88. Lets look back at the definition of the Green function gK in Definition
8.61. It was defined as the sup of a subset of all psh functions that satisfy (6b). One
can show that taking the sup over all functions that satisfy (6b) gives the same Green
function. Thus the Green function is a kind of Perron Bremermann function, but now
with a growth condition at infinity. Now it should not come as a surprise that M(g∗K) = 0
on the complement of K. This is indeed the case, cf. [Bedford 88, Ko lodziej]

We finally remark that one needs to have a good theory of “generalized differential
forms”, the so called currents at one’s disposal to complete the proofs, cf. Chapter 10.

Exercises

8.1. Show that the harmonic functions u(x) = f(r) on Rn − {a} which depend only on
|x− a| = r have the form

u(x) =















c1 log 1
|x−a|

+ c2 if n = 2,

c1
∣

∣x− a
∣

∣

2−n
+ c2 if n 6= 2.

[f ′′ + n−1
r f ′ = 0.]
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8.2. (Poisson integral). Let u be harmonic on B(0, 1) ⊂ C. For a = reiθ ∈ B, set

w =
z − a
1− az and u(z) = U(w).

Verify that U is harmonic on B and that the mean value property of U furnishes the
Poisson integral representation for u:

u(reiθ) = u(a) = U(0) =
1

2π

∫

C(0,1)

U(w)
dw

iw

=
1

2π

∫

C(0,1)

u(z)
1− |a|2
|z − a|2

dz

iz
=

1

2π

∫ π

−π

1− r2
1− 2r cos(θ − t) + r2

u(eit)dt.

8.3. (Dirichlet problem for disc and ball). (i) Writing z = reiθ in C, verify that the Poisson
kernel can be written as follows:

1− r2
1− 2r cos(θ − t) + r2

= Re
eit + z

eit − z .

Deduce that the Poisson integral u = P [g] of an integrable function g on C(0, 1) is
harmonic on the unit disc B in C. Show that for continuous g, u(z)→ g(ζ) as z ∈ B
tends to ζ ∈ C(0, 1). [A constant function is equal to its Poisson integral. Now take
ζ = 1 and g(1) = 0. Split the interval of integration into [−δ, δ] and the rest. The
kernel is nonnegative.] (ii) Verify that the Poisson kernel for the unit ball in Rn,

|ξ|2 − |x|2
|ξ − x|n =

ξ · ξ − x · x
(ξ · ξ − ξ · x− x · ξ + x · x)n/2

,

satisfies Laplace’s equation relative to x on Rn−{ξ}. Then show that for continuous
g on S(0, 1) ⊂ Rn, the Poisson integral u = P [g] solves the Dirichlet problem for the
unit ball B and boundary function g, cf. (1b′). [How to show that P [1] ≡ 1? P [1](x)
is harmonic on B and depends only on |x| (why?), hence . . . .]

8.4. Write down a Poisson integral for harmonic functions on the closed disc [or ball]
B(a,R). Deduce that harmonic functions are of class C∞ and show that a uniform
limit of harmonic functions on a domain Ω in C [or Rn] is harmonic.

8.5. Prove that v(z) =
∑∞

2 k−2 log |z − 1/k| is subharmonic on B(0, 1
2
) ⊂ C, but not

continuous at 0. [v is, in fact, subharmonic on C.]

8.6. Let v on E ⊂ Rn be the limit of a decreasing sequence of upper semi-continuous (usc)
functions {vk}. Prove that v is usc.

8.7. Let E ⊂ Rn be compact and let v : E → R ∪ {−∞} be such that lim sup
x→a

v(x) ≤
v(a), ∀a ∈ E. Prove that v assumes a maximum on E and that there is a decreasing
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sequence of finite continuous functions {vk} which converges to v on E. [First assum-
ing v > −∞, define vk(x) = max

y∈E
{v(y)− k|x− y|}. Use a value yk = yk(x) where the

maximum is attained to show that vk(x′) − vk(x) ≥ −k|x′ − x|, etc. For the proof
that vk(x) ↓ v(x) it is useful to observe that yk(x)→ x as k →∞. Finally, allow also
the value −∞ for v.]

8.8. (Usc regularization). Let V be a function Ω→ R∪ {−∞} and let V ∗ be its “regular-
ization”:

V ∗(a) = lim sup
x→a

V (x), ∀a ∈ Ω.

Supposing V ∗ < +∞ on Ω, prove that it is upper semi-continuous.

8.9. Prove that for any bounded domain Ω ⊂ C, the exhaustion function

− log d(z) = sup{− log |z − b|, b ∈ ∂Ω}

is subharmonic on Ω. Can you find a subharmonic exhaustion function for arbitrary
bounded domains Ω in Rn (n ≥ 3) ?

8.10. Show that the infimum of the subharmonic functions v1(x, y) = x and v2(x, y) = −x
on R2 is not subharmonic.

8.11. Prove the relations (1e) for subharmonic functions.

8.12. Compute the logarithmic potential of (normalized) arc measure on C(0, 1) : U(z) =
−
∫ π

−π
log |z − eit|dt/2π. Verify that U is superharmonic on C and harmonic except

on C(0, 1).

8.13. (Maximum principle characterization of subharmonic functions). Let Ω in
R2 [or Rn] be open and let v : Ω→ R∪{−∞} be upper semi-continuous. Prove that
v is subharmonic if and only if it satisfies the following maximum principle:

“For every subdomain D ⊂ Ω (or for every disc [or ball]]D withD ⊂ Ω) and every
harmonic function u on D which majorizes v on ∂eD, one has u ≥ v throughout
D”.

8.14. Suppose that v on Ω is both subharmonic and superharmonic, or equivalently, that
v is finite, real, continuous and has the mean value property on Ω. Prove that v is
harmonic.

8.15. (Hopf’s lemma). Let v be C1 subharmonic on the closed unit disc B(0, 1) and < 0
except that v(1) = 0. Prove that the outward normal derivative ∂v/∂N is strictly
positive at the point 1. [Let u be the Poisson integral of v

∣

∣

C
(0, 1). Since v(r) ≤ u(r)

it is enough to prove that lim{v(1) − u(r)}/(1 − r) > 0.] Extend to other smoothly
bounded domains.

8.16. Let v be a subharmonic function on the annulus A(0; ρ,R) ⊂ C. Prove that m(r) =
maxθ v(reiθ) is a convex function of log r:

m(r) ≤ log r2 − log r

log r2 − log r1
m(r1) +

log r − log r1
log r2 − log r1

m(r2), ρ < r1 ≤ r ≤ r2 < R.
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Apply the result to v(z) = log |f(z)| where f is holomorphic on the annulus A(0; ρ,R).
The resulting inequality for the “maximum modulus” M(r) = maxθ |f(reiθ)| is known
as Hadamard’s three circles theorem.

8.17. Let v be a subharmonic function on C. What can you say if v is bounded above?
What if only lim sup v(z)/ log |z| ≤ 0 for |z| → ∞?

8.18. Let v be subharmonic on the infinite strip S: a < x = Rez < b, −∞ < y = Imz <∞
in C and bounded above on every interior strip a+ δ < x < b− δ, δ > 0. Prove that
m(x) = supy v(x+ iy) is convex.

8.19. Prove directly and simply that a strictly subharmonic function v on a connected
domain D ⊂ R2 can not have a maximum at a ∈ D. What about an arbitrary
smooth subharmonic function?

8.20. Let v be a C2 function on the closed disc B(0, r). Show that ∀θ,

v(r cos θ, r sin θ) = v(0) +

r
∫

0

∂

∂ρ
. . . dρ

= v(0)−
r
∫

0

∂v

∂ρ
{ρ ∂v

∂ρ
(ρ cos θ, ρ sin θ)} log

ρ

r
dρ.

8.21. Let ϕ be a C1 function on C of compact support, U(z) =
∫

C
log |z − ζ| · ϕ(ζ)dξdη.

Prove that ∂U/∂z and ∂U/∂z are of class C1 and that ∆U = 2πϕ. [Think of Theorem
3.13. Show that

∂U

∂x
=

∫

C

log |ζ| · ∂
∂ξ

ϕ(z + ζ)dξdη = −
∫

C

Re
1

ζ
· (z + ζ)dξdη,

∂U

∂z
= . . . .]

8.22. Let K ⊂ C be compact and let µ be a positive measure on K with µ(K) = 1. Prove:
(i) Uε(z) = 1

2

∫

K
log(|z − ζ|2 + ε2)dµ(ζ), ε > 0 is C∞ subharmonic on C:

(ii) U(z) =
∫

K
log |z − ζ|dµ(ζ) is subharmonic on C and harmonic outside K.

8.23. Let v(z) = ϕ(|z|) be a usc function on the annulus A(0; ρ,R) ⊂ C that depends only
on |z| = r. Prove that v(z) is subharmonic if and only if ϕ(r) is a convex function of
log r. [For smooth ϕ, this is equivalent to saying that dϕ(r)/d log r is nondecreasing.]
Can you use the result to show that for arbitrary subharmonic v on A(0; ρ,R), both

m(r) = m(z) = sup
θ

v(eiθz) and v(0; r) = v(0; z) =
1

2π

π
∫

−π

v(zeiθ)dθ

are convex functions of log r?

8.24. Let f : D1(⊂ C)→ D2 ⊂ C be holomorphic and let v be subharmonic on D2. Prove
that v ◦ f is subharmonic on D1.
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8.25. Extend Theorem 8.34 to Rn, paying special attention to the case n = 1 (regularization
of convex functions on I ⊂ R).

8.26. Let v be subharmonic on Ω ⊂ Rn and let g be a nondecreasing convex function on R.
Prove that g ◦ v is subharmonic on Ω.

8.27 Let v be locally integrable on Ω. In the theory of distributions the Laplacian ∆v is
defined by its action on test functions ϕ on Ω [ C∞ functions of compact support in
Ω, cf. Chapter 11]:

〈∆v, ϕ〉 def
= 〈v,∆ϕ〉 def

=

∫

Ω

v∆ϕ.

One says that ∆v ≥ 0 on Ω in the sense of distributions if 〈∆v, ϕ〉 ≥ 0 for all test
functions ϕ ≥ 0 on Ω. Prove that a continuous function v on Ω is subharmonic if and
only if ∆v ≥ 0 in this sense. [∆vε(z) =

∫

Ω
v(ζ)∆ρε(z − ζ)dm(ζ).]

8.28. Use the regularization of Theorem 8.34 to show that a continuous function with the
mean value property is of class C∞.

8.29. (Upper envelopes of families of subharmonic functions). Let {vλ}, λ ∈ Λ be a
family of subharmonic functions on Ω in Rn of Cn whose upper envelope V is locally
bounded above. Prove:
(i) V is subharmonic if it is upper semi-continuous;

(ii) The usc regularization V ∗ of V is subharmonic [cf. exercise 8.8];
(iii) The regularizations Vε are subharmonic and ≥ V [cf. the proof of Theorem 8.34];
(iv) Vε ≥ Vδ for 0 < δ < ε [compare ρη ∗ Vε and ρη ∗ Vδ];
(v) lim

ε↓0
Vε = V ∗;

(vi) If the functions vλ are psh, so is V ∗.

8.30. Use Fubini’s theorem to prove that a subharmonic function v also has the sub mean
value property for balls (or discs if n = 2); if v is subharmonic on B = B(a,R) ⊂ Rn,
then v(a) ≤ vB(a;R), the average of v over the ball B(a,R).

8.31. (Hartog’s lemma). Let {vk} be a sequence of subharmonic functions on Ω ⊂ Rn

which is locally bounded above and such that lim sup vk(z) ≤ A at every point z ∈ Ω.
Prove that for every compact subset E ⊂ Ω and ε > 0, there is an index k0 such
that vk < A + ε throughout E for all k > k0. [Choose a “large” ball B = B(a,R)
in Ω. Use Fatou’s lemma to show that lim sup

∫

B
vk ≤

∫

B
lim sup vk. Thus

∫

B
vk <

(A+ 1
2
ε)volB, ∀k > k1. Deduce an inequality for vk(z) at each point of a small ball

B(a, δ).]

8.32. Let v be C2 psh on a (connected) domain D2 ⊂ Cp and let f be a holomorphic map
from D1 ⊂ Cn to D2. Prove that v ◦ f is psh on D1.

8.33. Prove that the following functions are strictly psh on Cn;
(i) |z|2;

(ii) log(|z|2 + c2), c > 0;
(iii) g(|z|2) where g is a real C2 function on [0,∞) such that g′ > 0 and g′ + tg” > 0.
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8.34. Let D be the spherical shell B(0, R− B(0, ρ) in Cn, n ≥ 2. Prove that a usc func-
tion v(z) = ϕ(|z|) that depends only on |z| = r is psh on D if and only if ϕ(r) is
nondecreasing and convex as a function of log r. [Set ϕ(r) = g(r2) and start with
g ∈ C2.]

8.35. Prove a Hadamard type “three spheres theorem” for holomorphic functions on a spher-
ical shell in Cn, n ≥ 2. Do you notice a difference with the case n = 1 ? [Cf. exercise
8.16.]

8.36. Prove that a real C2 function u on Ω ⊂ Cn is pluriharmonic if and only if

∂2u

∂zj∂zk
= 0 on Ω, ∀j, k = 1, . . . , n.

8.37. Prove that a pluriharmonic function u on the unit bidisc ∆2(0, 1) ⊂ C2 is equal to
the real part of a holomorphic function f on ∆2. [Show first that one has power series
representations

∂u

∂z1
=

∑

p≥1, q≥0

papqz
p−1
1 zq2 ,

∂u

∂z2
=

∑

p≥0, q≥1

qbpqz
p
1z
q−1
2 ,

then compare apq and bpq. Can you now find f ?]

8.38. Prove that the circle C(0, r) in C is non polar. Also show that the torus T (0, r) in
Cn is non pluripolar.

8.39. Prove that the square −1 ≤ x1, x2 ≤ 1 in R2 ⊂ C2 is non pluripolar. [Cf. 8.27 and
exercise 1.16.] Extend to nonempty open subsets of Rn ⊂ Cn.

8.40. Let K ⊂ Cn be compact. Prove that gK(z) ≥ log |z|/R for some constant R, so that
the Robin constant γK is always > −∞ and capK < +∞.

8.41. Let K ⊂ C be compact and such that there is a positive measure µ on K (with
µ(K) = 1) whose logarithmic potential Uµ is bounded above on C, by M say. Prove
that gK(z) ≤M − Uµ(z) on C and that capK ≥ e−M .

8.42. Show that a compact line segment in C of length L has capacity 1
4
L.

8.43. Prove that the Green function gK(z) with pole at ∞ for the closed unit bidisc {|z1| ≤
1, |z2| ≤ 1} in C2 is equal to sup(log+ |z1|, log+ |z2|). Also treat the case of the torus
C(0, 1) × C(0, 1) in C2 ! [Fix z 6= 0 with |z1| ≥ |z2| and consider the complex line
ζ = wz.]

8.44. (i) Prove that a psh function V (w) on E = {w ∈ C2 : |w1| ≥ 1, |w2| ≥ 1} which
is majorized by 0 on the torus T (0, 1) and by log |w| + O(1) at ∞ is majorized by
sup{log |w1|, log |w2|} throughout E. [First consider v(w1, e

it) for |w1| > 1, then
v(w1, λw1) for |w1| > 1/|λ| where |λ| ≤ 1, etc.
(ii) Prove that the Green function gK(z) for the closed square −1 ≤ x1, x2 ≤ 1, y1 =
y2 = 0 in C2 is equal to sup{g(z1), g(z2)}, where g is the Green function with pole at∞
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for the interval [−1, 1] in C. [Taking both z1 and z2 outside [−1, 1], one can use (i) and
a suitable holomorphic map. The cases where z1 = x1 ∈ [−1, 1] or z2 = x2 ∈ [−1, 1]
may be treated separately.]

8.45. Let K be a compact polar subset of C. Prove that capK = 0. [Use the fact that gK
is harmonic on C−K when capK > 0.] The converse is also true but more difficult.
It may be derived with the aid of Hartogs’ lemma, exercise 8.31.

8.46. Let D be a bounded domain in Rn with (piecewise) C1 boundary and let f be a
function of class C1 onD. Discuss the classical Gauss-Green formula for integration
by parts:

∫

D

∂f

∂xj
dm =

∫

∂D

fNxj
ds.

Here dm stands for volume element, ds for “area” element and N is the outward unit
normal, Nxj

its component in the xj direction.

8.47. Derive Green’s formula involving Laplacians: for functions u and v of class C2

on D,
∫

D

(u∆v − v∆u)dm =

∫

∂D

(u
∂v

∂N
− v ∂u

∂N
)ds.

[Apply exercise 8.46 to f = u∂v/∂xj and f = v∂u/∂xj, subtract, etc.]

8.48. (Representation of smooth functions by potentials). Let D be a bounded
domain in Rn with (piecewise) C1 boundary and let u be of class C2 on D. Prove
that for n > 2:

(n− 2)σnU(a) = −
∫

D

|x− a|2−n∆u(x)dm(x)

+

∫

∂D

{|x− a|2−n ∂u
∂N

(x)− u(x)
∂

∂N
|x− a|2−n}ds(x), ∀a ∈ D.

Here σn = 2π
1
2
n/Γ( 1

2
n) is the area of the unit sphere S(0, 1) in Rn. For n = 2, |x−

a|2−n has to be replaced by log 1/|x − a| and the constant (n − 2)σn by σ2 = 2π.
[Apply Green’s formula to D −B(a, ε) and let ε ↓ 0.]

8.49. (Representation of smooth functions using the classical Green function
with finite pole). Let D be a smoothly bounded domain in Rn. For n > 2, the
Green function g(x, a) with pole at a ∈ D is defined by the following properties:

(i) g(x, a) is continuous on D − {a} and harmonic on D − {a};
(ii) g(x, a)− |x− a|2−n has a harmonic extension to a neighborhood of a;

(iii) g(x, a) = 0 for x ∈ ∂D. [For n = 2, |x − a|2−n in (ii) must be replaced by
log 1/|x − a|.] Assuming that the Green function exists and is of class C2 on
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D − {a}, prove that for every C2 function u on D:

(n− 2)σnu(a) =−
∫

D

∆u(x)g(x, a)dm(x)

−
∫

∂D

u(x)
∂g

∂N
(x, a)ds(x), ∀a ∈ D.

8.50. Prove that the ball B(0, 1) ⊂ Rn has Green function

g(x, a) =















− log |x− a|+ log(|a| |x− a′|) for n = 2;

|x− a|2−n − (|a| |x− a′|)2−n for n ≥ 3.

Here a′ is the reflection |a|−2a of a in the unit sphere S(0, 1) and |a| |x− a′| is to be
read as 1 for a = 0.

8.51. (Poisson integral for the ball). Derive the following integral representation for
harmonic functions u on the closed unit ball B(0, 1) in Rn:

u(a) = 1σn

∫

S(0,1)

u(x)
1− |a|2
|x− a|n ds(x), ∀a ∈ N(0, 1);

σn = 2π
1
2
n/Γ( 1

2
n).

[For the calculation of ∂g/∂N one may initially set x = rx̃ with x̃ ∈ S, so that
∂/∂N = ∂/∂r. Note for the differentiation that |x− a|2 = (x− a, x− a).]

8.52. Let D be a convex domain in Rn and let E be a nonempty open subset of the unit
sphere Sn−1. For constant C > 0, we let F = F(E,C) denote the family of all C∞

functions f on D whose directional derivatives in the directions corresponding to E
satisfy the inequalities

sup
ξ∈E

1

m!

∣

∣

(

d

dt

)m

f(a+ tξ)
∣

∣

t=0

∣

∣ ≤ Cm, m = 0, 1, 2, . . .

at each point a ∈ D. Prove that there is a neighborhood Ω of D in Cn to which
all functions f ∈ F can be extended analytically. [Begin by showing that the power
series for f with center a converges throughout the polydisc ∆ = ∆n(a, β/C), with
β = β(E) as in Theorem 8.71. Does the series converge to f on ∆ ∩D ?]

8.53. Extend the preceding result to the case where F consists of the continuous functions
f on D which have directional derivatives in the directions corresponding to E that
satisfy the conditions imposed in exercise 8.52. [Regularize f ∈ F and prove a con-
vergence result for analytic extensions of the regularizations fε to a neighborhood of
a in Cn.]
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8.54. Let E be any subset of the closed unit ball B = B(0, 1) in Cn. Prove that there
is a constant β(E) > 0 such that the inequalities (7b) hold for all polynomials f(z)
in z = (z1, . . . , zn) if and only if the set K = Ec has positive logarithmic capacity.
Determine the optimal constant β(E).

8.55. Let E be any subset of the closed unit ball B = B(0, 1) in Cn and let K = Ec be
the closure of the circular subset Ec generated by E. We define α(E) as the largest
nonnegative constant such that

‖qm‖B ≤ ‖qm‖E/α(E)m

for all m ≥ 1 and all homogeneous polynomials qm in z = (z1, . . . , zn)n of degree m.
Prove that

‖pm‖B ≤ ‖pm‖K/α(E)m

for all polynomials pm of degree ≤ m. Deduce that α(E) is equal to ρ(Ec), where ρ
is the Siciak capacity defined in (7g). [Cf. the proof of Theorem 8.71.]

8.56. (Continuation). Let K be any compact circular subset of B(0, 1) ⊂ Cn. Prove that
ρ(K) = α(K) is equal to the radius of the largest ball B(0, r) that is contained in the
polynomially convex hull K̃ of K.

8.57. Give a proof of the Sibony-Wong theorem, Theorem 8.72. [First consider G(z) = F (rz)
where F is a polynomial.]

8.58. (Helgason’s support theorem for Radon transforms). Let g(x) be a continuous
function on Rn such that |xαg(x)| is bounded for every multi-index α ≥ 0 and let
ĝ(ξ, λ) be its Radon transform, obtained by integration over the hyperplanes x ·ξ = λ:

ĝ(ξ, λ) =

∫

x·ξ=λ

g(x)ds(x), (ξ, λ) ∈ Sn−1 ×R.

Prove that g has bounded support whenever ĝ does. [Introduce the Fourier transform
f of g; clearly f ∈ L2(Rn). Supposing ĝ(ξ, λ) = 0 for |λ| > R and all ξ,

f(tξ) =

∫

Rn

g(x)e−itξ·xdm(x) =

R
∫

−R

ĝ(ξ, λ)e−itλdλ.

Now use the partial derivatives lemma to deduce that f can be extended to an en-
tire function of exponential type on Cn. By the so-called Paley-Wiener theorem (or
Plancherel-Pólya theorem), such an f ∈ L2 is the Fourier transform of a function of
bounded support, hence supp g is bounded. For the present proof and an extension of
Helgason’s theorem, cf. [Wiegerinck 1985] Theorem 1.]

8.59 Let K be compact in Rn, f usc and g lsc on K, 0 < f − g < ε on K. Suppose that
{hn} is a monotonically decreasing sequence of continuous functions, which converges
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pointwise to f on K. Prove that ∃n0 with hn0
−f < 2ε on K. Deduce Dini’s theorem:

if f is continuous on K and hn ∈ C(K) ↓ f , then {hn} converges uniformly.

8.60 (Sibony) Let
f(z) = (|z1|2 − 1/2)2 = (|z2|2 − 1/2)2 on ∂B(0, 1).

Show that Ff (z) = max{(|z1|2 − 1/2)2, (|z2|2 − 1/2)2} on B(0, 1)− ∆(0, 1
2

√
2) and 0

elsewhere. How smooth is Ff?

8.61 Let D be the polydisc ∆2(0, 1). Show that there is in general no solution for the
Dirichlet problem for M on D:

M(u) = 0 on D, u = f on ∂D.

[Take f = 0 on |z2| = 1, but not identically 0.]

8.62 (Continuation) Find a smoothly bounded pseudoconvex domain with the above prop-
erty.
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CHAPTER 9

Pseudoconvex domains and smooth plurisubharmonic
exhaustion functions

Pseudoconvexity was introduced in Chapter 6 where it was shown that domains of
holomorphy are pseudoconvex. Here we will further study pseudoconvexity, in particular
we will construct smooth strictly plurisubharmonic exhaustion functions of arbitrarily rapid
growth. This will be an important ingredient in the solution of the Levi problem in Chapter
11.

Next we will give other characterizations of pseudoconvexity, also in terms of behaviour
of the boundary of the domain. The latter is done only after a review of the boundary
behaviour of convex domains in terms of the Hessian of the defining function. For smooth
pseudoconvex domains the complex Hessian of the defining function has to be positive
semidefinite on the complex tangent space at any point of the boundary of the domain.
Strict pseudoconvexity is introduced [ now the complex Hessian has to be positive definite].
We shall see that this notion is locally biholomorphically equivalent to strict convexity.

9.1 Pseudoconvex domains. According to Definition 6.54, a domain or open set Ω ⊂ Cn

is pseudoconvex if the function

log 1/d(z), z ∈ Ω, d(z) = d(z, ∂Ω)

is plurisubharmonic. In C, every domain is pseudoconvex, cf. exercise 8.9. In Cn every
convex domain is pseudoconvex. More generally, every domain of holomorphy is pseudo-
convex [section 6.5]. A full proof of the converse has to wait until Chapter 11, but for some
classes of domains the converse may be proved directly:

EXAMPLE 9.11. (Tube Domains). Let D be a connected tube domain

D = H + iRn = {z = x+ iy ∈ Cn : x ∈ H, y ∈ Rn}

Here the base H is an arbitrary (connected) domain in Rn. For which domains H will D
be a domain of holomorphy?

It may be assumed that the connected domain D is pseudoconvex. Let [x′, x′′] be any line
segment in H; we may suppose without loss of generality that

x′ = (0, 0, . . . , 0), x′′ = (1, 0, . . . , 0).

Now consider the complex line z2 = · · · = zn = 0 through x′ and x′′. On the closed strip
S : 0 ≤ Re z1 ≤ 1 in that complex line, the function

− log d(z) = − log d(z1, 0, . . . , 0) = v(z1) = v(x1 + iy1)

will be subharmonic. Since the tube D and the strip S are invariant under translation
in the y1 direction, the function v(z1) must be independent of y1. Hence v is a sublinear
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function of x1 on S, cf. Example 8.35. Varying [x′, x′′], it follows that − log d(x) is convex
on H. We finally observe that for x ∈ H, d(x) is equal to the boundary distance to ∂H: for
x ∈ H, the nearest point of ∂D = ∂H+ iRn must belong to ∂H by Pythagoras’s theorem.
The convexity of − log d(x) now implies that H is convex, cf. exercises 6.7, 8. It follows
that D is convex, hence D is a domain of holomorphy [Section 6.1].

A convex tube has a convex base. As final conclusion we have :

Theorem 9.12 (Bochner). A connected tube domain is a domain of holomorphy if and
only if its base is convex.

Bochner proved more generally that the hull of holomorphy of an arbitrary connected
tube domain D = H+iRn is given by its convex hull, CH(D) = CH(H)+iRn, cf. [BoMa],
[Hör]. An elegant proof may be based on the so-called prism lemma, cf. exercises 6.28 and
9.1.

Every pseudoconvex domain Ω ⊂ Cn is psh exhaustible: it carries a (continuous) psh
exhaustion function α, see Proposition 6.56. As before we will use the notation

(1a) Ωt = {z ∈ Ω : α(z) < t}, t ∈ R

for the associated relatively compact subsets which jointly exhaust Ω. We use the notation

Ω1 ⊂⊂ Ω2

to express that the closure of Ω1 is a compact subset of the interior of Ω2. Thus Ωt ⊂⊂ Ωt+s
if t, s > 0.

For some purposes, notably for the solution of the ∂ equation [Chapter 11], we need
C∞ strictly psh exhaustion functions β on Ω which increase rapidly towards the boundary.
If one has just one C∞ strictly psh exhaustion function α for Ω, one can construct others
of as rapid growth as desired by forming compositions β = g ◦ α, where g is a suitable
increasing convex C∞ function on R, cf. Example 8.45. Thus the problem is to obtain a
first C∞ psh exhaustion function!

Using regularization by convolution with an approximate identity ρε as in Theorem
8.46, one may construct C∞ psh majorants αε to a give psh function on Cn. Unfortunately,
for given α on a domain Ω 6= Cn, the function αε is defined and psh only on the ε-
contraction Ωε of Ω. To overcome this difficulty we proceed roughly as follows. For a given
psh exhaustion function α on Ω consider the function v = |z|2 +α on Ω and the exhausting
domains Ωt = {v < t} associated to it. Given any τ = (t1, t2, t3, t4), tj > 0, sufficiently
large and strictly increasing we can construct a basic building block βτ which has the
following properties: βτ ∈ C∞(Ω), suppβτ ⊂ Ωt4 \ Ωt1 , βτ is psh on Ωt3 and strictly psh
on Ωt3 \ Ωt2 . For suitable choice of quadruples τk, and Mk >> 0 the sum

β =
∑

k

Mkβτk

will be locally finite (hence smooth) and strictly plurisubharmonic.
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The above ideas will be worked out in Section 9.2 to construct the special C∞ psh
exhaustion functions that are required for the solution of the ∂̄ problem and (thus) the
Levi problem, cf Chapter 11.

It is always good to keep in mind that in the final analysis, domains of holomorphy
are the same as pseudoconvex domains: certain properties are much easier to prove for
pseudoconvex domains than for domains of holomorphy. In particular the results of Section
9.3 will carry over to domains of holomorphy. As another useful example of this we have
the following

Theorem 9.13.

(i) The interior Ω of the intersection of a family of pseudoconvex domains {Ωj}j∈J is
pseudoconvex.

(ii) The union Ω of an increasing sequence of pseudoconvex domains {Ωj}j∈N is pseudo-
convex.

[(ii) may be stated for families that are indexed by linearly ordered sets too.]

PROOF. (i): Let dj denote the boundary distance for Ωj and d the boundary distance for
Ω. Then clearly on Ω we have d(z) = inf dj(z). Hence − log d(z) = sup− log dj(z), and,
as − log d(z) is continuous, it follows from Properties 8.42. that it is plurisubharmonic.

(ii): Observing that dj(z) ≤ dj+1(z) and dj(z) ↑ d(z). It follows that − log d(z) is the
limit of the decreasing sequence of psh functions − log dj(z) and by Theorem 8.42 is a psh
function. [The fact that dj is not defined on all of Ω poses no problem: Every z ∈ Ω has
a neighborhood U ⊂ Ωj for large enough j and on U we may let the sequence start at j.]

9.2 Special C∞ functions of rapid growth. We will prove the following important
result:

Theorem 9.21. Let Ω ⊂ Cn be psh exhaustible and let α be a (continuous) psh exhaus-
tion function for Ω. Furthermore, let m and µ be locally bounded real functions on Ω and
let K ⊂ Ω be compact. Then

(i) Ω possesses a C∞ strictly psh exhaustion function β ≥ α.

(ii) More generally there is a C∞ function β ≥ m on Ω whose complex Hessian has smallest
eigenvalue λβ ≥ µ throughout Ω.

(iii) Finally, if α is nonnegative on Ω and zero on a neighborhood of K and if m and µ
vanish on a neighborhood N of the zero set Z(α) of α, there is a function β as in (ii)
which vanishes on a neighborhood of K.

PROOF. The first statement follows from the second by taking m = α and µ > 0: any
continuous function β ≥ α will be an exhaustion function. The second statement follows
from the third by taking K and N empty. We thus turn to the third statement and proceed
by constructing the building blocks announced in the previous Section.

Consider the function v = c|z|2 + α on Ω, c > 0 and the exhausting domains Ωt =
{v < t}. If t1 < t2

Ωt1 ⊂⊂ Ωt2 ,
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if these sets are non-empty. Let τ = (t1, t2, t3, t4), tj > 0, sufficiently large and strictly
increasing. Choose auxiliary numbers t5, t6, with t1 < t5 < t2, t3 < t6 < t4. We assume
that the corresponding Ωtj are non empty. Consider the function

vτ = χ(z) ·max{v(z)− t5, 0},

where χ is the characteristic function of Ωt6 . The function vτ is plurisubharmonic on
suppχ and its support is contained in suppχ intersected with the complement of Ωt5 . Let

η <
1

2
min{d(∂Ωtj , ∂Ωtk) : 1 ≤ j < k ≤ 6}.

We then form the regularization βτ = vτ ∗ρη, ρη belonging to a radial approximate identity
and supported on B(0, η). This function will be a nonnegative C∞ function with support
in Ωt4 \Ωt1 . Next βτ will be psh on Ωt3 , because here it is a smoothened out psh function
and it will be strictly psh and strictly positive on Ωt3 \Ωt2 , because here it can be written
as

ρη ∗ |z|2 + ρη ∗ (α− t5)

and the first term will have a strictly positive complex Hessian.
Now we choose a sequence tj ↑ ∞, j = 1, 2, . . ., and form the quadrupels τ j =

(tj , tj+1, tj+2, tj+4) and corresponding functions βj . We choose the constant c in the
definition of v so small that for a (small) positive t1 we have K ⊂ Ωt1 ⊂ N . We shall
choose a sufficiently rapidly increasing sequence of positive numbers {Mj} and form

(2a) β(z) =
∑

k

Mkβk(z).

For each z ∈ Ω there exists a k such that a neigborhood B(z, r) is contained in Ωtk+1
\Ωtk−1

.
Hence B(z, r) is contained in the support of at most 5 βk’s. It follows that (2a) is a locally
finite sum, hence β is well defined and smooth for every choice of Mk.

How to choose Mk? We can choose M1 such that on Ωt2 the inequalities M1β1 > m
and λM1β1

> µ hold [and on Ωt1 “everything” vanishes]. Suppose now that we have chosen

M1, . . . ,Mk−1 such that
∑k−1
j=1 Mjβj(z) satisfies the requirements of the theorem on Ωk.

As βk is nonnegative, psh on Ωk+1 and positive, strictly psh on Ωk+1 \Ωk, we can choose

Mk >> 0 such that
∑k−1
j=1 Mjβj(z) +Mkβk(z) will have values and Hessian on Ωk+1 \ Ωk

as required. On the rest of Ωk+1 the new sum will still meet the requirements. With the
Mk as constructed, β will be the function we are looking for: it solves our problem on all
Ωk, hence also on Ω.

9.3 Characterizations of pseudoconvex domains. The following exposition parallels
the one for domains of holomorphy in section 6.3-6.5.

DEFINITION 9.31. Let Ω be a domain in Cn, K ⊂ Ω nonempty and compact. The
plurisubharmonically or psh convex hull of K relative to Ω is the set

K̂psh = K̂psh
Ω = {z ∈ Ω : v(z) ≤ sup

K
v(ζ), for all psh functions v on Ω}.
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Ω is called psh convex if for every compact subset K, the psh convex hull K̂psh has positive
boundary distance (or compact closure) in Ω.

K̂psh will be bounded: think of v(z) = |z|2. However, since psh functions need not be
continuous, K̂psh might fail to be closed in Ω.

PROPERTIES 9.32.
(i) The psh convex hull K̂psh is contained in the holomorphically convex hull K̂ = K̂Ω:

if v(z) ≤ supK v for some point z ∈ Ω and all psh functions v on Ω, then in particular

log |f(z)| ≤ sup
K

log |f |, ∀f ∈ O(Ω),

hence z ∈ K̂. [If Ω is psh convex then K̂psh = K̂, cf. [Hör 1], [Ran]. ]
(ii) Every analytic disc ∆̄ in Ω is contained in the psh convex hull of the edge Γ = ∂∆̄

Example 6.33. Indeed, let ∆̄ = ϕ(∆̄1) with ϕ continuous on ∆̄1 ⊂ Ω and holomorphic
on ∆1, and let v be psh on Ω. Then v ◦ϕ is subharmonic on ∆1 and usc on ∆̄1, hence
by the maximum principle v ◦ ϕ is bounded above by its supremum on C(0, 1).

We will need the following continuity property for analytic discs relative to psh convex
domains:

Proposition 9.33. Let Ω ⊂ Cn be psh convex and let {∆̄λ}, 0 ≤ λ ≤ 1 be a family of
analytic discs in Cn which vary continuously with λ, that is, the defining map

ϕλ(w) = ϕ(w, λ) : ∆̄1(0, 1)× [0, 1]→ Cn

is continuous, while of course ϕλ(w) is holomorphic on {|w| < 1} for each λ. Suppose now
that ∆̄0 belongs to Ω and that Γλ = ∂∆̄λ belongs to Ω for each λ. Then ∆̄λ belongs to Ω
for each λ.

REMARK. It follows from exercise 6.26 that there is a corresponding continuity property
for analysic discs relative to domains of holomorphy.

PROOF of the proposition. The set E = {λ ∈ [0, 1] : ∆̄λ ⊂ Ω} is nonempty and open.
The subset S = ∪0≤λ≤1Γλ of Ω is compact: S is the image of a compact set under a

continuous map. Hence by the hypothesis, the psh convex hull Ŝpsh has compact closure
in Ω. By property 9.32-ii,

∆̄λ ⊂ Γ̂pshλ ⊂ closŜpsh

whenever ∆̄λ ⊂ Ω, that is whenever λ ∈ E. Suppose now that λk → µ, where {λk} ⊂ E.
Then since ∆̄λ depends continuously on λ, also ∆̄µ belongs to clos Ŝpsh ⊂ Ω, that is µ ∈ E.
Thus E is closed. Conclusion: E = [0, 1].

Theorem 9.34. The following conditions on a domain Ω ⊂ Cn are equivalent:
(i) Ω is pseudoconvex, that is the function − log d(z) = − log d(z, ∂Ω) is plurisubhar-

monic on Ω;
(ii) Ω is locally pseudoconvex: every point b ∈ Ω̄ has a neighborhood U in Cn such

that the open set Ω′ = Ω ∩ U is pseudoconvex;
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(iii) Ω is psh exhaustible, that is Ω has a psh exhaustion function α [Definition 6.23]
(iv) Ω carries C∞ strictly psh functions β of arbitrarily rapid growth towards the

boundary [cf. Definition 8.44]
(v) Ω is psh convex [Definition 9.31]

PROOF. (i)⇒(ii); a ball is pseudoconvex and the intersection Ω′ of two pseudoconvex
domains Ω1 and Ω2 is pseudoconvex by Theorem 9.13.

(ii)⇒(iii). Take b ∈ ∂Ω and U and Ω′ as in (ii). Then d(z) = d′(z) for all z ∈ Ω close
to b. Thus the function− log d on Ω is psh on some neighborhood of every point of ∂Ω.
Hence there is a closed subset F ⊂ Ω such that − log d is psh on Ω \ F .

Suppose first that Ω is bounded. Then − log d is bounded above on F , by M say. One
may now define a psh exhaustion function for Ω by setting

α = max(− log d,M + 1).

Indeed, α = M + 1 on a neighborhood of F , hence α is a maximum of continuous psh
functions on some neighborhood of each point of Ω. That α is an exhaustion function is
clear.

If Ω is unbounded, one may first determine a psh exhaustion function v for Cn that is
larger than − log d on F . Take v(z) = g(|z|2) where G is a suitable increasing convex C2

function on R, or use Theorem 9.21 (iii). A psh exhaustion function for Ω is then obtained
by setting

α = sup(− log d, v).

(iii)⇒(iv): see Theorem 9.21.

(iii) or (iv)⇒(v). Let α be a psh exhaustion function for Ω and define subsets Ωt as in
Theorem 9.13. Now take any nonempty compact subset K ⊂ Ω and fix s > M = supK α.
Then α(z) ≤M < s for any z ∈ K̂psh, hence K̂psh ⊂ Ωs. Thus K̂psh has positive boundary
distance in Ω, that is Ω is psh convex.

(v)⇒(i). Let Ω be psh convex. Starting out as in the proof of Theorem 6.55 we
choose a ∈ Ω, B(a,R) ⊂ Ω and ζ ∈ Cn with 0 < |ζ| < R, so that the flat analytic disc
∆̄ = {z ∈ Cn : z = a+ wζ, |w| ≤ 1} belongs to Ω. Setting v(z) = − log d(z) we have to
prove the mean value inequality v(a) ≤ v̄(a; ζ). To that end we get ready to apply Lemma
6.53 to the continuous real function

f(w)
def
= v(a+ wζ) = − log d(a+ wζ), w ∈ ∆̄1(0, 1).

Accordingly, let p(w) be any polynomial in w such that

(3a)
Rep(w) ≥ f(w) = − log d(a+ wζ)

or d(a+ wζ) ≥ |e−p(w)| on C(0, 1).

We now choose an arbitrary vector τ ∈ Cn with |τ | < 1 and introduce the family of
analytic discs

∆̄λ = {z = a+ wζ + λe−p(w)τ : |w| ≤ 1}, 0 ≤ λ ≤ 1.
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It is clear that ∆̄λ varies continuously with λ and that ∆̄0 = ∆̄ ⊂ Ω. Furthermore the
boundary Γλ of ∆̄λ will belong to Ω for each λ ∈ [0, 1]. Indeed it follows from (3a) that

d(a+ wζ + λe−p(w)τ) ≥ d(a+ wζ)− |λe−p(w)τ |
≥ d(a+ wζ)− |e−p(w)||τ | > 0, ∀(w, λ) ∈ C(0, 1)× [0, 1].

The continuity property for analytic discs [Proposition 9.33] now shows that ∆̄λ ⊂ Ω,
∀λ ∈ [0, 1]. Taking λ = 1 and w = 0, we find in particular that

a+ ep(0)τ ∈ Ω.

This result holds for every vector τ ∈ Cn of length |τ | < 1, hence Ω must contain the
whole ball B(a, |ep(0)|). In other words, d(a) ≥ |ep(0)| or

(3b) Rep(0) ≥ − log d(a) = f(0).

Summing up: (3a) always implies (3b) so that f has property (Π) of Lemma 6.53.
Conclusion:

f(0) ≤ f̄(0; 1) or v(a) ≤ v̄(a; ζ).

Thus v = − log d is psh: we have (i).

COROLLARY 9.35. The intersection of a pseudoconvex domain with (affine) complex
hyperplanes are also pseudoconvex (as domain in the hyperplanes). [Cf. Proposition 6.56.]

9.4 The boundary of a pseudoconvex domain. By Theorem 9.34, pseudoconvexity of
a domain is a local property of the boundary. But how can one tell from the local behavior
of ∂Ω if Ω ⊂ Cn is pseudoconvex? One may first ask more simply how one can tell from
local boundary behavior if a domain is convex.

We assume here that Ω is smoothly bounded and discuss boundary smoothness in real
coordinates, say for Ω ⊂ Rn.

DEFINITION 9.41. We say that the boundary ∂Ω is of class Cp, (1 ≤ p ≤ ∞) at b ∈ ∂Ω
if Ω has a local defining function around b of class Cp. This is a real function ρ defined
on a neighborhood U of b such that

Ω ∩ U = {x ∈ U : ρ(x) < 0} and dρ(x) 6= 0 or grad ρ(x) 6= 0), ∀x ∈ U.

One calls ∂Ω of class Cp if it is of class Cp at each of its (finite) points.

EXAMPLES 9.42. The function ρ(x) = |x|2 − 1 is a global C∞ defining function for the
ball B(0, 1). For the unit polydisc ∆n(0, 1) ⊂ Cn, the function ρ(z) = |zn|2 − 1 is a C∞

defining function for the part ∆n−1(0, 1)× C(0, 1) of the boundary.

On a small neighborhood U of a point b where ∂Ω is of class Cp (p ≥ 2), the following
signed boundary distance function provides a defining function ρ ∈ Cp:

(4a1) ρ(x) =

{−d(x, ∂Ω), x ∈ Ω̄ ∩ U ;

d(x, ∂Ω), x ∈ U \ Ω̄.
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For the verification one may use the local boundary representation xn = h(x′) indicated
below, cf. exercise 9.2 and [Kran].

By translation and rotation one may assume in Definition 9.41 that b = 0 and that
grad ρ|0 = (0, . . . , 0, λ) where λ > 0. Thus with x = (x′, xn),

(4a2) ρ(x′, xn) = λxn + g(x′, xn),where g ∈ Cp and g(0) = dg|0 = 0.

By the implicit function theorem there is then a local boundary representation xn = h(x′)
with h ∈ Cp and h(0) = dh|0 = 0. One may finally take x̃n = xn − h(x′) as a new nth
coordinate so that locally ∂Ω = {x̃n = 0} and ρ(x̃) = x̃n is a local defining function.

Lemma 9.43. Any two local defining functions ρ and σ of class Cp around b ∈ ∂Ω are
related as follows:

(4b) σ = ωρ with ω > 0 of class Cp−1, dσ = ωdρ on ∂Ω.

PROOF. Taking ρ(x) = xn one has by (4a2) applied to σ:

σ(x) = λxn + g(x′, xn),with g(x′, 0) = 0,

λ > 0, g ∈ Cp and dg|0 = 0. One may write g in the form

g(x′, xn) =

∫ xn

0

∂g

∂xn
(x′, s) ds = xn

∫ 1

0

∂g

∂xn
(x′, txn) dt;

the final integral defines a function of class Cp−1 around 0. On ∂Ω this function equals
∂g/∂xn(x′, 0) and there also dg = ∂g/∂xn(x′, 0) dxn.

DEFINITION 9.44. Let ρ be a Cp defining function for ∂Ω around b. Departing somewhat
from the language of elementary geometry, the (real) linear space

(4c) Tb(∂Ω) = {ξ ∈ Rn :
n
∑

1

∂ρ

∂xj
(b)ξj = 0}

of real tangent vectors at b is called the (real) tangent space to ∂Ω at b. [By (4b)
it is independent of the choice of defining function.]

Suppose for the moment that Ω ⊂ Rn is convex with C2 boundary. Then the function
v = − log d is convex on Ω and smooth near ∂Ω, say on Ω∩U . It follows that the Hessian
form v is positive semidefinite there cf. (8.4a). A short calculation thus gives the inequality

−1

d

n
∑

i,j=1

∂2d(x)

∂xi∂xj
ξiξj +

1

d2

∑

j

∂d(x)

∂xj
ξj
∑

k

∂d(x)

∂xk
ξk ≥ 0, x ∈ Ω ∩ U, ξ ∈ Rn.

We now do three things: we introduce the defining function ρ of (4a1) [which equals −d
on Ω ∩ U for suitable U ], we limit ourselves to what are called tangent vectors ξ at x,
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that is
∑ ∂ρ

∂xj
(x)ξj = 0 [which removes the second term above] and we finally pass to the

boundary point b of Ω by continuity. The result is

(4d)

n
∑

i,j=1

∂2ρ

∂xi∂xj
(b)ξiξj ≥ 0, ∀ξ ∈ Tb(∂Ω), ∀b ∈ ∂Ω.

One can show that this condition is independent of the C2 defining function that is used.
[This follows immediately from (4b) in the case of a C3 boundary and defining functions,
but requires some care in general, cf. [Kran], p.102.]

A domain Ω ⊂ Rn with C2 boundary is called strictly convex at b if the quadratic
form in (4d) is strictly positive for ξ 6= 0 in Tb(∂Ω). There will then be a small ball B
around around b such that Ω∩B is convex, moreover there exists a large ball B ′ such that
Ω ∩ B ⊂ B′ and b = ∂(Ω ∩ B) ∩ ∂B′, cf. [Kran].

One can do something similar to the preceding in the case of a pseudoconvex domain
Ω ⊂ Cn with C2 boundary. Now the function v = − log d is psh on Ω and smooth on
Ω ∩ U . The complex Hessian form of v will be positive semidefinite there [Proposition
8.43]:

−1

d

n
∑

i,j=1

∂2d(z)

∂zi∂z̄j
ζiζ̄j +

1

d2

∑

j

∂d(z)

∂zj
ζj
∑

k

∂d(z)

∂z̄k
ζ̄k ≥ 0, z ∈ Ω ∩ U, ζ ∈ Cn.

Again introducing the defining function ρ of (4a), it is natural to limit oneself to what will
be called complex tangent vectors ζ to ∂Ω at z, which are given by

(4e)

n
∑

j=1

∂ρ

∂zj
(z)ζj = 0.

Passing to the boundary, we find this time that

(4f)

n
∑

i,j=1

∂2ρ

∂zi∂z̄j
(b)ζiζ̄j ≥ 0, ∀ζ as in (4e) with z = b, ∀b ∈ ∂Ω.

One can show as before that the condition is independent of the defining function that is
used.

One will of course ask what condition (4e) means in terms of the underlying space
R2n. Let us write zj = xj + iyj , ζj = ξj + iηj and carry out the standard identification
z = (x1, y1, . . .), ζ = (ξ1, η1, . . .). Then (4e) becomes

(4e′)
n
∑

1

(

∂ρ

∂xj
ξj +

∂ρ

∂yj
ηj

)

= 0,
n
∑

1

(

∂ρ

∂xj
ηj −

∂ρ

∂yj
ξj

)

= 0,

where we evaluate the derivatives at b ∈ ∂Ω. The first condition (4e′) expresses that
ζ [or rather, its real representative] is perpendicular to the gradient gradρ|b in R2n, cf.
(4c), hence ζ belongs to the real tangent space Tb(∂Ω). The second condition says that
−iζ = (η1,−ξ1, . . .) also belongs to Tb(∂Ω). Interpreting Tb(∂Ω) as a subset of Cn, this
means that ζ belongs to iTb(∂Ω).
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DEFINITION 9.45. The complex linear subspace

TC

b (∂Ω)
def
= Tb(∂Ω) ∩ iTb(∂Ω) = {ζ ∈ Cn :

∑ ∂ρ

∂zj
(b)ζj = 0}

of Cn is called the complex tangent space to ∂Ω at b. Its elements are complex tangent
vectors.

As a subset of R2n, TC

b (∂Ω) is a (2n-2)-dimensional linear subspace which is closed under
[the operation corresponding to] multiplication by i on Cn. Cf. exercise 2.7.

REMARK 9.46. Instead of the submanifold ∂Ω we can consider any (real) submanifold
S of Cn = R2n and form its tangent space Tb(S). Indeed, if S is defined locally by
ρ1 = ρ2 = · · · = ρm = 0, one may define

Tb(S) = {ξ ∈ R2n :
n
∑

j=1

∂ρk
∂xj

(b)ξj = 0, k = 1, . . . ,m}.

Subsequently, we may define the complex tangent space to S at b:

TC

b (S) = Tb(S) ∩ iTb(S).

Again this is a complex linear subspace of Cn. One may check that S is a complex
submanifold of Cn if and only if

TC

b (S) = Tb(S) = iTb(S).

On the other hand TC

b (S) may equal {0} for all b ∈ S. Such manifolds are called totally
real, the typical example being Rn + i{0} ⊂ Cn.

DEFINITION 9.47. A domain Ω ⊂ Cn with C2 boundary is said to be Levi pseudoconvex
if condition (4f) holds for a certain (or for all) C2 defining function(s) ρ. Ω is called strictly
(Levi) pseudoconvex at b ∈ ∂Ω if for some local defining function ρ ∈ C2,

n
∑

i,j=1

∂2ρ

∂zi∂z̄j
(b)ζiζ̄j > 0 for all ζ 6= 0 in TC

b (∂Ω).

By our earlier computation, every pseudoconvex domain Ω ⊂ Cn with C2 boundary is
Levi pseudoconvex. For bounded Ω the converse is also true, see below for the strictly
pseudoconvex case and compare [Kran], [Ran].

The ball is strictly pseudoconvex, the polydisc ∆n(0, 1) is not (unless n = 1). Indeed,
at the points of the distinguished boundary the polydisc is not C2, at the other boundary
points the complex Hessian vanishes. More generally, it is easy to see that if there is an at
least strictly one dimensional analytic variety passing through b and contained in ∂Ω then
Ω is not strictly pseudoconvex at b.
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How are pseudoconvexity and convexity related? Let Ω be strictly convex at b ∈ ∂Ω
and let ρ be a defining function at ρ. We may perform an affine change of coordinates and
assume that b = 0, ∂ρ

∂zn
= 1, ∂ρ

∂zj
= 0, 1 ≤ j < n. Thus Tb(∂Ω) = {Re zn = 0} and with

zj = xj + iyj we may expand ρ in a Taylor series around 0:

(4g)

ρ(x, y) = xn +
1

2

( n
∑

i,j=1

∂2ρ

∂xi∂xj
(0)xixj +

n
∑

i,j=1

∂2ρ

∂xi∂yj
(0)xiyj

+
n
∑

i,j=1

∂2ρ

∂yi∂xj
(0)yixj +

n
∑

i,j=1

∂2ρ

∂yi∂yj
(0)yiyj

)

+ o(|(x, y)|2).

We rewrite this in terms of z and z̄. Thus after an elementary computation we find:

(4g′)

ρ(z, z̄) = 1/2(zn + z̄n) +
1

2

( n
∑

i,j=1

∂2ρ

∂zi∂zj
(0)zizj +

n
∑

i,j=1

∂2ρ

∂z̄i∂z̄j
(0)z̄iz̄j

)

+

n
∑

i,j=1

∂2ρ

∂zi∂z̄j
(0)ziz̄j + o(|z|2)

= Rezn + Re
n
∑

i,j=1

∂2ρ

∂zi∂zj
(0)zizj +

n
∑

i,j=1

∂2ρ

∂zi∂z̄j
(0)ziz̄j + o(|z|2).

Strict convexity of Ω at 0 is equivalent to positive definiteness of the quadratic part Q(z)
of (4g), (4g′), that is, Q(z) ≥ c|z|2, c > 0. Substituting iz for z in the quadratic part of
(4g′) and adding we find that

Q(z) +Q(iz) = 2
n
∑

i,j=1

∂2ρ

∂zi∂z̄j
(0)ziz̄j ≥ 2c|z|2.

Thus strict convexity implies strict pseudoconvexity. In the other direction one can not
expect an implication, but the next best thing is true:

Lemma 9.48. ( Narasimhan) Let Ω be strictly pseudoconvex at b ∈ ∂Ω. Then there
is a (local) coordinate transformation at b such that in the new coordinates Ω is strictly
convex at b.

PROOF. We may assume that b = 0 and that the defining function ρ of ω has the form
(4g′). We introduce new coordinates:

z′j = zj , j = 1, . . . , n− 1,

z′n = zn +
n
∑

i,j=1

∂2ρ

∂zi∂zj
(0)zizj ,

and thus zn = z′n +O(|z′|2). In the new coordinates Ω is given by the defining function ρ′

which has the following Taylor expansion at 0

ρ′(z′) = ρ(z(z′)) = Rez′n +

n
∑

i,j=1

∂2ρ

∂zi∂z̄j
(0)z′iz̄

′
j + o(|z|2).
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We have obtained that in ′ coordinates Ω is strictly convex at 0.

REMARK. Note that the proof show that at a strictly pseudoconvex boundary point b ∈
∂Ω there exists an at most quadratic polynomial, the so called Levi polynomial, P (z) with
the property that P (b) = 0 and for a small neigborhood U of b, ReP (z) < 0 on U ∩ Ω̄\{b}.
In the notation of the proof the previous lemma P (z) = ∂ρ

∂zn
(0)zn +

∑n
i,j=1

∂2ρ
∂zi∂zj

(0)zizj .

Of course one can perform a similar process if ∂Ω is only pseudoconvex at b. The result
will be that one can make the quadratic part of the defining function positve semidefinite.
This, of course doesn’t guarantee local convexity. Nevertheless it came as a big surprise
when Kohn and Nirenberg [KoNi] discovered that there exist smoothly bounded pseudo-
convex domains that are not locally biholomorphically equivalent to convex domains. See
also [Kran] for a more detailed account and [FoSi] for what may be achieved with elaborate
changes of coordinates.

Next one may ask how one can relate the defining function to a psh exhaustion func-
tion.

Theorem 9.49. Suppose that Ω is a strictly pseudoconvex domain in Cn with defining
function ρ. Then for sufficiently large M the function

ρ̃(z) =
eMρ(z) − 1

M

is a defining function which is strictly psh in a neighborhood of ∂Ω. Moreover there exists
a strictly psh function on Ω which is equal to ρ̃ in a neighborhood of ∂Ω.

PROOF. We know that for b ∈ ∂Ω

∑

i,j=1

∂2ρ

∂zi∂z̄j
(b)ziz̄j ≥ c(b)|z|2, z ∈ TC

b (∂Ω),

where c(b) is positive and smoothly depending on b. We have

ρ̃(z) =
eMρ(z) − 1

M
= ρ(z)(1 +O(ρ(z))

at ∂Ω. Thus it is clear that ρ̃ is a defining function for Ω. The complex Hessian of ρ̃ is
given by

∂2ρ̃

∂zi∂z̄j
= eMρ

(

∂2ρ

∂zi∂z̄j
+M

∂ρ

∂zi

∂ρ

∂z̄j

)

.

We write z ∈ Cn as z = zt + zν , zt ∈ TC

b (∂Ω), zν ∈ TC

b (∂Ω)⊥, so that |z|2 = |zt|2 + |zν |2.
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Then at b, with eMρ(b) = 1 and using matrix notation we obtain:

z̄t
(

∂2ρ̃

∂zi∂z̄j
(b)

)

z = (z̄tt + z̄tν)

(

∂2ρ

∂zi∂z̄j
(b) +M

∂ρ

∂zi
(b)

∂ρ

∂zj
(b)

)

(zt + zν)

= (z̄tt + z̄tν)

(

∂2ρ

∂zi∂z̄j
(b)

)

(zt + zν) +Mz̄tν
∂ρ

∂zi
(b)

∂ρ

∂zj
(b)zν

≥ z̄tt
(

∂2ρ

∂zi∂z̄j
(b)

)

zt − d(b)|zt||zν | − e(b)|zν |2 +M |∂ρ
∂z
|2|zν |2

≥ c(b)|zt|2 − d(b)|zt||zν | − e(b)|zν |2 +M |∂ρ
∂z
|2|zν |2,

with d, e, f positive continuous functions of b. Now for any fixed b we can find an M = M(b)
such that the last expression ≥ c′(b)(|zt|2 + |zν |2) = c′(b)|z|2. Thus for every b ∈ ∂Ω
we have found M(b) such that the corresponding ρ̃ is strictly psh at b, hence also in a
neighborhood of b, and by compactness of ∂Ω there exists an M such that ρ̃ is strictly psh
at a neighborhood U of ∂Ω.

To construct a global function σ, first note that for δ > 0 sufficiently small, U contains
a neighborhood of ∂Ω of the form Vδ = {z : −δ < ρ̃(z) < δ} with ∂Vδ ∩ Ω = {ρ̃(z) = −δ}.
Now let

σ1(z) =

{

max{ρ̃(z),−δ/2} for z ∈ Ω ∩ Vδ,

−δ/2 elsewhere on Ω.

The function σ1 is clearly psh and continuous. Next we modify it to be C2. Let h(t)
be C2, convex, non decreasing on R and equal to −δ/4 for t < −δ/3, equal to T on a
neighborhood of 0. Then σ2 = h ◦ σ1 is psh, C2 and strictly psh close to ∂Ω. Now let
χ(z) ∈ C∞(Ω) have compact support and be strictly psh on a neighborhood of the set
where σ is not strictly psh. We put

σ(z) = σ2(z) + εχ(z).

If ε is sufficiently small σ will be strictly psh where σ2 is, and it will always be strictly psh
where χ is. We are done.

COROLLARY 9.410. A strictly Levi pseudoconvex domain is pseudoconvex.

PROOF. Let ρ be a strictly psh defining function for the domain. Then −1/ρ is, as a
composition of a convex function with a psh one, a plurisubharmonic exhaution function.

REMARK. If Ω is a domain and ρ is a continuous plurisubharmonic function on Ω such
that ρ < 0 on Ω and limz→∂Ω ρ(z) = 0, then ρ is called a bounded plurisubharmonic
exhaustion function Clearly, by the previous proof, if Ω has a bounded psh exhaustion
function, then Ω is pseudoconvex.

Exercises
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9.1. Using exercise 6.28, prove Bochners Theorem 9.12.

9.2. Prove that the signed boundary distance (4a1) provides a defining function for Cp

domains Ω (p ≥ 2).
a. Prove that there exists a neighborhood of ∂Ω such that for every x ∈ U there is

exactly one y ∈ ∂Ω with d(x, y) = d(x, ∂Ω).
b. Using a local representation yn = h(y′) for ∂Ω, show that

d(x, ∂Ω) = d(x, y∗) = |xn − y∗n|(1 + |∇h|2)1/2

where y∗ is the unique element of (a).
c How smooth is d? (One can show Cp cf. [Krantz])

9.3. Show that for p < 2 the domain Ω = {y > |x|p} ⊂ R2 has not the uniqueness property
of exercise 9.2a.

9.4. Let M be a submanifold of dimension k ≤ 2n of Cn. If a ∈ M , what are the
possibilities for dim TC

a (M)?

9.5. Verify the statement made in Remark 9.46: A submanifold is an analytic submanifold
if and only if TC = TR everywhere on the manifold.

9.6. (Hartogs) Let Ω be a pseudoconvex domain and let h be psh on Ω. Show that

D = {z = (z′, zn) ∈ Cn : |zn| < e−h(z′)}

is pseudoconvex. [Note that log |zn|+ h(z′) is a bounded psh exhaustion function for
D as a subset of Ω×C.]

9.7. (Continuation) Suppose that D is a domain of holomorphy. Show that there exist
holomorphic functions ak(z′) on Ω such that

h(z′) = lim sup
k→∞

log |ak(z′)|
k

.

[Expand a function f ∈ O(D) which is nowhere analytically extendable at ∂D in a
power series in zn with coefficients in O(Ω).]

9.8. (Continuation) Assuming that the Levi problem can be solved, show that the hull of
holomorphy and the psh convex hull of a compact subset of a domain of holomorphy
are the same.

9.9. (Range) Show that if Ω is a bounded Levi pseudoconvex domain with C3 boundary
has a strictly psh exhaustion function ρ. [One may take

ρ(z) = −(−d)ηe−N|z|2 ,

with η sufficiently small and N sufficiently large.] Kerzman and Rosay show that
pseudoconvex domains with C1 boundary admit a bounded psh exhaustion function.
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9.10. (Continuation) Show that a Levi pseudoconvex domain with C3 boundary can be
exhausted by strictly pseudoconvex domains, i.e.

Ω = Ωj , Ωj ⊂⊂ Ωj+1.

[Readers who are familiar with Sards Lemma may derive this for every pseudoconvex
domain using the smooth strictly psh exhaustion function of Theorem 9.21.]

9.11. Let Ω be a pseudoconvex domain in C2 with smooth boundary. Suppose that 0 ∈ ∂Ω
and T0(∂Ω) = {Rew = 0}. Show that close to 0 Ω has a defining function with
expansion

ρ(z, w) = Rew + Pk(z, z̄) +O(|w|2 + |w||z|+ |z|k+1),

where Pk is a real valued homogeneous polynomial of degree k ≥ 2 in z and z̄. Show
that close to 0 the complex tangent vectors have the form

(

ζ1

ζ2

)

, ζ2 = ζ1 ·O(|w|+ |z|k−1).

Estimate the Hessian and show that Pk is subharmonic. Conclude that k is even.

9.12. (Continuation) Let Ω be a pseudoconvex domain given by

Rew − Pk(z) ≤ 0,

where Pk is a real valued homogeneous polynomial of degree k on C. Show that if
k = 2 or 4, then Ω admits a supporting complex hyperplane at the origin, that is,
after a holomorphic change of coordinates the complex tangent plane at 0 meets Ω̄
only at 0 [everything taking place in a sufficiently small C2-neighborhood of 0].

9.13. (Continuation) Give an example of a polynomial P6 such that Ω is pseudoconvex, but
every disc of the form w = f(z), f(0) = 0 meets Ω. Conclusion?
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CHAPTER 10

Differential forms and integral representations

Differential forms play an important role in calculus involving surfaces and manifolds.
If one only needs the theorems of Gauss, Green and Stokes in R2 or R3, an elementary
treatment may suffice. However, in higher dimensions it is hazardous to rely on geometric
insight and intuition alone. Here the nice formalism of differential forms comes to the
rescue. We will derive the so-called general Stokes theorem which makes many calculations
almost automatic.

The purpose of this chapter is to obtain general integral representations for holomor-
phic and more general smooth functions. We will start in Rn, where things are a little
easier than in Cn. A representation for test functions will lead to a good kernel α, result-
ing in formulas with and without differential forms. Proceeding to Cn, we are led to the
related Martinelli-Bochner kernel β and the corresponding integral representation. Final
applications include the Szegö integral for the ball and explicit continuation of analytic
functions across compact singularity sets.

In Cn with n ≥ 2 there are now many kernels for the representation of holomorphic
functions. The relatively simple Martinelli-Bochner kernel β(ζ − z) has the advantage of
being independent of the domain, but it is not holomorphic in z and in general does not
solve the ∂ problem. Fundamental work of Henkin and Ramirez (1969-70) for strictly
pseudoconvex domains has led to many new integral representations which do not have
the above drawbacks and give sharp results for the ∂ problem. However, the subject
has become extremely technical and we refer to the literature for details, cf. the books
[Aiz-Yuz], [Hen-Leit], [Kerz], [Ran] and [Rud 4], where further references may be found.
Rudin’s book provides a very readable introduction.

10.1 Differential forms in Rn. A domain Ω ⊂ Rn will carry differential forms of any
order p ≥ 0. The class of p-forms will be denoted by Λp; throughout this chapter it is
assumed that the coefficients of the forms are at least continuous on Ω. A p-form may be
considered as a complex-valued function whose domain consists of all (oriented) smooth
surfaces of dimension p in Ω. The functions is given by an integral and the notation (1a) for
p-forms serves to show how the function is evaluated for different p-surface and in different
coordinate systems. We start with p = 1.

Λ1 consists of the 1-forms, symbol

f =

n
∑

j=1

fj(x)dxj.

A 1-form f assigns a number to every C1 arc γ : x = γ(t) = (γ1(t), . . . , γn(t)),
0 ≤ t ≤ 1 in Ω, called the integral of f over γ:

∫

γ

f
def
=

∫

[0,1]

n
∑

1

fj ◦ γ(t)
dγj
dt

dt.
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Such an integral is independent of the parametrization of γ.
Λ2 consists of the 2-forms, symbol

f =
n
∑

j,k=1

fjk(x)dxj ∧ dxk.

The symbols dxj ∧ dxk are so-called wedge products. A smooth surface X in Ω is given
by a parametric representation of class C1,

x = X(t) = (X1(t), . . . , Xn(t)), t = (t1, t2) ∈ D,

where D is a compact parameter region in R2, such as the closed unit square [0, 1]× [0, 1].
A form f in Λ2 assigns a number to every C1 surface X in Ω, the integral of f over X:

∫

X

f
def
=

∫

D

n
∑

j1,j2=1

fj1j2 ◦X(t)
∂(Xj1, Xj2)

∂(t1, t2)
dm(t).

Here dm(t) denotes Lebesgue measure on D and
∂(Xj1

,Xj2
)

∂(t1,t2)
the determinant of the Jacobi

matrix with entries
∂Xjk

∂tl
, k, l = 1, 2. In general we have for any p ≥ 0:

Λp, the p-forms, symbol

(1a) f =
n
∑

j1,...,jp=1

fj1...jp(x)dxj1 ∧ . . . ∧ dxjp .

For p ≥ 1 a smooth p-surface X in Ω is given by a C1 map

x = X(t) = (X1(t), . . . , Xn(t)), t = (t1, . . . , tp) ∈ D,

where D is a compact parameter region in Rn such as the closed unit cube, D = [0, 1]p.
A form f in Λp assigns a number to every smooth p-surface X in Ω, the integral of f over
X:

(1b)

∫

X

f
def
=

∫

D

∑

fj1...jp ◦X(t)
∂(Xj1, . . . , Xjp)

∂(t1, . . . , tp)
dm(t).

Again dm(t) denotes Lebesgue measure on D and
∂(Xj1

,...,Xjp

∂(t1,...,tp) the determinant of the

Jacobi matrix with entries
∂Xjk

∂tl
, k, l = 1, . . . , p. Note that the integral of a differential

form is always taken over a map. The integral is invariant under orientation preserving
coordinate transformations in Rn.

For p = n we have the important special case where X is the identity map, id, on the
closure of a (bounded) domain Ω, while f = ϕ(x)dx1 ∧ . . .∧ dxn, with ϕ continuous on (a
neighborhood of) Ω. Taking D = Ω and X = id, so that Xj(t) = tj , one obtains

(1b′)

∫

id|Ω

f =

∫

id|Ω

ϕ(x)dx1 ∧ . . . ∧ dxn =

∫

Ω

ϕ(t)dm(t) =

∫

Ω

ϕdm.
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Taking ϕ = 1, it will be clear why the form

(1b′′) ω(x)
def
= dx1 ∧ . . . ∧ dxn

is called the volume form in Rn. [Incidentally, in the case of the identity map id | Ω, one
often simply writes Ω under the integral sign.]

Observe that the (continuous) 0-forms are just the continuous functions on Ω.

Anticommutative relation and standard representation. Two p-forms f and g on Ω are
called equal: f = g if

∫

X

f =

∫

X

g

for all smooth p-surfaces X in Ω. Formula (1b) involves the determinant of a Jacobi
matrix, not the absolute value of the determinant! If one interchanges two rows, the sign
is reversed. Considering special p-forms dxj1 ∧ . . . ∧ dxjp and a permutation (k1, . . . , kp)
of (j1, . . . , jp), one will have

∫

X

dxk1 ∧ . . . ∧ dxkp
=

∫

X

εdxj1 ∧ . . . ∧ dxjp

for all X, where ε equals 1 for an even, −1 for an odd permutation. Thus by the definition
of equality,

(1c) dxk1 ∧ . . . ∧ dxkp
= εdxj1 ∧ . . . ∧ dxjp .

As a special case one obtains the anticommutative relation for wedge products:

(1c′) dxk ∧ dxj = −dxj ∧ dxk.

This holds also for k = j, hence dxj ∧ dxj = 0. Whenever some index in a wedge product
occurs more than once, that product is equal to 0. In particular all p-forms in Rn with
p > n are zero.

With the aid of (1c′) we can arrange the indices in every nonzero product dxk1 ∧ . . .∧
dxkp

in increasing order. Combining terms with the same subscripts, we thus obtain the
standard representation for p-forms,

(1d) f = ΣJ fJ(x)dxJ .

One sometimes writes Σ′
J to emphasize that the summation is over (all) increasing p-indices

J = (j1, . . . , jp), 1 ≤ j1 < . . . < jp ≤ n. dxJ is a so-called basic p-form,

(1d′) dxJ = dxj1 ∧ . . . ∧ dxjp .

For p-forms in standard representation one has f = g if and only if fJ = gJ for each J , cf.
exercise 10.2.
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Exterior or wedge product. The sum of two p-forms is defined in the obvious way. The
wedge product of two basic forms dxJ and dxK of orders p and q is defined by

dxJ ∧ dxK = dxj1 ∧ . . . ∧ dxjp ∧ dxk1 ∧ . . . ∧ dxkq
.

This product is of course equal to 0 if J and K have a common index. For general p- and
q-forms f and g one sets, using their standard representations,

(1e) f ∧ g = ΣfJdxJ ∧ ΣgKdxK
def
= ΣfJgKdxJ ∧ dxK .

The product of a function ϕ and a form f is written without wedge:

ϕf = fϕ = ΣϕfJdxJ .

The multiplication of differential forms is associative and distributive, but not commuta-
tive.

Upper bound for integrals. Using the standard representation of f one defines, cf.
(1b),

(1f ′)

∫

X

|f | =
∫

D

∣

∣

∣

∣

Σ′
JfJ ◦X(t)

∂(Xj1, . . . , Xjp)

∂(t1, . . . , tp)

∣

∣

∣

∣

dm(t).

One the has the useful inequality

(1f ′′) |
∫

X

ϕf | ≤
∫

X

|ϕf | ≤ sup
X
|ϕ| ·

∫

X

|f |.

Differentiation. There is a differential operator d from p-forms of class C1 [that is, with
C1 coefficients] to (p+ 1)-forms. By definition it is linear and

(1g)







for 0-forms ϕ one has dϕ
def
= Σn1

∂ϕ
∂xj

dxj ,

for special p-forms f = ϕdxJ one has df
def
= dϕ ∧ dxJ .

Thus if f = ΣfLdxL, then

(1g′) df = Σ dfL ∧ dxL =
∑

j,L

∂fL
∂xj

dxj ∧ dxL.

Applying the definition to 1-forms f = Σfkdxk, it is easy to obtain the standard represen-
tation for df :

df = Σkdfk ∧ dxk =
∑

j,k

∂fk
∂xj

dxj ∧ dxk = Σ′

(j<k)

(

∂fk
∂xj
− ∂fj
∂xk

)

dxj ∧ dxk.
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For C2 functions one thus finds

d2ϕ = d(dϕ) = Σ′

(

∂

∂xj

∂ϕ

∂xk
− ∂

∂xk

∂ϕ

∂xj

)

dxj ∧ dxk = 0.

Going to p-forms f = ΣfLdxL and using associativity, there results

d2f = d(df) = d(ΣdfL ∧ dxL) = Σd2fL ∧ dxL = 0.

PROPOSITION (10.11). For all p-forms f of class C2 one has d2f = 0, hence

d2 = 0.

For the derivative of a product f ∧ g (1e) of C1 forms there is the “Leibniz formula”

(1h)

d(f ∧ g) = Σd(fJgK) ∧ dxJ ∧ dxK
= Σ{(dfJ)gK + fJdgK} ∧ dxJ ∧ dxK
= df ∧ g + (−1)pf ∧ dg if f ∈ Λp.

10.2 Stokes’ theorem. Green’s theorem for integration by parts in the plane may be
interpreted as a result on differential forms. We recall that for appropriate closed regions
D ⊂ R2 and functions f1, f2 in C1(D),

(2a)

∫

∂D

f1dx1 + f2dx2 =

∫

D

(

∂f2
∂x1
− ∂f1
∂x2

)

dm(x)

[Section 3.1]. Setting f1dx1 + f2dx2 = f , the formula may be rewritten as

(2a′)

∫

∂(id)

f =

∫

id

(

∂f2
∂x1
− ∂f1
∂x2

)

dx1 ∧ dx2 =

∫

id

df [id = id | D].

This is a special case of the general Stokes theorem below.
Something similar may be done with Gauss’s theorem for integration by parts in R3

[easily extended to Rp] or the related divergence theorem:

(2b)

∫

D

∂ϕ

∂xj
dm =

∫

∂D

ϕNxj
dσ,

∫

D

div
⇀
v dm =

∫

∂D

⇀
v ·

⇀

N dσ.

Here ϕ is a function in C1(D) and
⇀

N is the exterior unit normal to ∂D; Nxj
or Nj is the

component of
⇀

N in the xj-direction, while dσ is the “area element” of ∂D. Finally,
⇀
v is a

vector field,

div
⇀
v =

3
∑

1

∂vj
∂xj

[or

p
∑

1

∂vj
∂xj

].
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The special case of the closed unit cube D = [0, 1]p in Rp is basic for the proof of the
general Stokes theorem. Just as in formula (2a′) we consider the identity map id on D,
thus obtaining a special p-surface. To obtain a formula like (2a′), we have to give a suitable
definition for the oriented boundary ∂(id). It will be defined by a formal sum or chain of
“oriented faces”. The faces are the following maps on the closed unit cube [0, 1]p−1 to Rp:

(2b′)











































V 1,0(t) = (0, t1, . . . , tp−1), V 1,1(t) = (1, t1, . . . , tp−1),

V 2,0(t) = (t1, 0, t2, . . . , tp−1), V 2,1(t) = (t1, 1, t2, . . . , tp−1),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V p,0(t) = (t1, . . . , tp−1, 0), V p,1(t) = (t1, . . . , tp−1, 1),

0 ≤ t1, . . . , tp−1 ≤ 1.

q-forms assign numbers to q-surfaces; conversely, q-surfaces assign numbers to q-forms.
Since one can add C valued functions, one can formally add q-surfaces Vj as functions
defined on q-forms. Saying that X is a chain V1 + . . . + Vm means that for all q-forms
f,
∫

X
f is defined by

(2c)

∫

X

f =

∫

V1

f + . . .+

∫

Vm

f ; similarly

∫

−V

f = −
∫

V

f.

Lemma 10.21. Let f be any (p − 1)-form of class C1 on the closed unit cube D in
Rp, id = id | D. Then the chain

(2c) ∂(id)
def
=

p
∑

j=1

(−1)j(V j,0 − V j,1) [cf.(2b′)]

provides the correct (oriented) boundary to yield the desired formula

(2c′)

∫

id

df =

∫

∂(id)

f

[

=

p
∑

j=1

(−1)j
( ∫

V j,0

f −
∫

V j,1

f

)]

.

.

PROOF. To verify (2c′) it will be enough to consider the representative special case f =
ϕ(x)dx2 ∧ . . . ∧ dxp:

∫

∂(id)

f =

∫

∂(id)

ϕ(x)dx2 ∧ . . . ∧ dxp =

(
∫

V 1,1

−
∫

V 1,0

)

−
(
∫

V 2,1

−
∫

V 2,0

)

+ . . . .
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Observe that

for x = V (t) = V 1,1(t) or V 1,0(t),
∂(V2, . . . , Vp)

∂(t1, . . . , tp−1)
=
∂(t1, . . . , tp−1)

∂(t1, . . . , tp−1)
= 1,

for x = V (t) = V 2,1(t),
∂(V2, . . . , Vp)

∂(t1, . . . , tp−1)
=

∂(1, t2, . . . , tp−1)

∂(t1, t2, . . . , tp−1)
= 0, etc.

Thus

∫

∂(id)

f =

∫

[0,1]p−1

{ϕ(1, t1, . . . , tp−1)− ϕ(0, t1, . . . , tp−1)}dt1, . . . dtp−1 + 0

=

∫

[0,1]p

∂ϕ

∂x1
(t0, t1, . . . , tp−1)dt0dt1 . . . dtp−1 =

∫

id

∂ϕ

∂x1
dx1 ∧ dx2 ∧ . . . ∧ dxp

=

∫

id

(

∂ϕ

∂x1
dx1 + . . .+

∂ϕ

∂xp
dxp

)

∧ dx2 ∧ . . . ∧ dxp =

∫

id

df.

The general Stokes theorem may be obtained from the special case in the lemma by
the machinery of pull backs.

DEFINITION 10.22. Let y = T (x) : yj = Tj(x), j = 1, . . . , n be a C1 map from Ω1 in Rm

to Ω2 in Rn. Given a p-form [in standard representation]

f = ΣfJ (y)dyJ on Ω2,

its pull back T ∗f is the p-form on Ω1 given by

(2d)

T ∗f = Σ {fJ ◦ T (x)}dTJ , J = (j1, . . . , jp),

dTJ =dTj1 ∧ . . . ∧ dTjp , dTj = Σ
∂Tj
∂xk

dxk.

Proposition 10.23. Let T be as above and let S, xk = Sk(u) be a C1 map from Ω0 in
R` to Ω1. Let f be a p-form, g a q-form on Ω2, X a p-surface in Ω1. Then one has the
following properties of pull backs:
(i) T ∗(f + g) = T ∗f + T ∗g if q = p;
(ii) T ∗(f ∧ g) = T ∗f ∧ T ∗g;
(iii) S∗(T ∗f) = (TS)∗f ;
(iv)

∫

T◦X
f =

∫

X
T ∗f ;

(v) dT ∗f = T ∗(df) when f ∈ C1, T ∈ C2. In particular:
(v′) if df = 0, then d(T ∗f) = 0.

PROOF. (i), (ii): these follow directly from the definition. (iii) This is obvious for 0-forms,
hence by (i) and (ii) it is enough to consider the case of 1-forms f = dyj. Here, using the
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chain rule in the second line,

T ∗f = dTj =
∑

k

∂Tj
∂xk

dxk,

S∗(T ∗f) =
∑

k

∂Tj
∂xk

◦ S(u)
∑

p

∂Sk
∂up

dup =
∑

p

∂

∂up
(Tj ◦ S)dup = (TS)∗f.

(iv) Let be the parameter domain for X, hence also for Y = T ◦X and let id be the
identity map on D. It will be enough to prove

(iv′)

∫

Y

f =

∫

Y ◦ id

f =

∫

id

Y ∗f.

Indeed, from this step and (iii) it will follow that

∫

T◦X

f =

∫

id

Y ∗f =

∫

id

X∗(T ∗f) =

∫

X◦ id

T ∗f =

∫

X

T ∗f.

For the proof of (iv′) we may take f = ϕdYJ . Now in self-explanatory notation, using the
expansion formula for a determinant on the way,

dYj1 ∧ . . . ∧ dYjp =
∑

k1,...,kp

∂Yj1
∂tk1

. . .
∂Yjp
∂tkp

dtk1 ∧ . . . ∧ dtkp

=
∑

k1,...,kp

∂Yj1
∂tk1

. . .
∂Yjp
∂tkp

ε(k1, . . . , kp)dt1 ∧ . . . ∧ dtp

=
∂(Yj1 , . . . , Yjp)

∂(t1, . . . , tp)
′′dm(t)′′,

cf. (1c), (1b′′). Hence

∫

id

Y ∗f =

∫

id

(ϕ ◦ Y )dYj1 ∧ . . . ∧ dYjp =

∫

D

ϕ ◦ Y (t)
∂(Yj1 , . . . , Yjp)

∂(t1, . . . , tp)
dm(t)

=

∫

Y

ϕdYJ =

∫

Y

f.

(v) For C1 functions ϕ on ω2, using the chain rule

d(T ∗ϕ) = d{ϕ(T ◦ x)} = Σk
∂

∂xk
ϕ(T ◦ x)dxk

= ΣkΣj
∂ϕ

∂Yj
(T ◦ x)

∂Tj
∂xk

dxk = Σj
∂ϕ

∂Yj
(T ◦ x)dTj = T ∗(dϕ).
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For dYJ = dYj1 ∧ . . . ∧ dYjp one has T ∗(dYJ) = dTj1 ∧ . . . ∧ dTjp and hence by (1h) and
Proposition (10.11)

d{T ∗(dYJ)} = d2Tj1 ∧ dTj2 ∧ . . . ∧ dTjp − dTj1 ∧ d2Tj2 ∧ . . . ∧ dTjp + . . . = 0.

Finally, for f = ϕdYJ one has T ∗f = ϕ(T ◦ x)T ∗(dYJ) and thus by the preceding,

d(T ∗f) = d{ϕ(T ◦ x)} ∧ T ∗(dYJ) + ϕ(T ◦ x)d{T ∗(dYJ)}
= T ∗(dϕ) ∧ T ∗(dYJ) = T ∗(dϕ ∧ dYJ) = T ∗(df).

Q.E.D.

We can now prove the general Stokes theorem. Let X : D → Ω ⊂ Rn be a p-surface
of class C2, where D is the closed unit cube in Rp. The (oriented) boundary of X is defined
by the chain

(2e) ∂X = X ◦ ∂(id) =

p
∑

j=1

(−1)j(X ◦ V j,0 −X ◦ V j,1),

where id is the identity map on D and ∂(id) is as in Lemma (10.24).

Theorem 10.24 (Stokes ). Let X be as above and let f be a (p−1)-form of class C1(Ω).
Then with ∂X defined by (2e) and (2b′),

(2f)

∫

∂X

f =

∫

X

df.

PROOF. One has X = X ◦ id, hence by the properties of pull-backs (10.23) and by Lemma
10.21,

∫

∂X

f =

∫

X◦∂(id)

f =

∫

∂(id)

X∗f =

∫

id)

d(X∗f)

=

∫

id

X∗(df) =

∫

X◦id

df =

∫

X

df.

Formula (2f) readily extends to chains X = V1 + . . .+ Vm of smooth p-surfaces, for which
one defines ∂X = ∂V1 + . . .+ ∂Vm [cf. (2c)].

REMARKS 10.25. The important special case p = n may be called the general Gauss-
Green or divergence theorem. Taking D = Ω, where Ω is bounded domain in Rn with
oriented C2 boundary ∂Ω and assuming that f is an (n − 1)-form of class C1 on (a
neighborhood of) Ω, the formula becomes

(2g)

∫

∂Ω

f =

∫

Ω

df
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where we have carelessly written Ω instead of id | Ω.
The name “Stokes’ theorem” for the general case stems from the fact that Kelvin and

Stokes considered the important case p = 2, n = 3.

10.3 Integral representations in Rn. We first derive an integral formula for test func-
tions ϕ on Rn, that is, C∞ functions of compact support. By calculus,

ϕ(0) = −{ϕ(∞)− ϕ(0)} = −
∞
∫

0

∂ϕ

∂x1
(r, 0, . . . , 0)dr.

Instead of ∂ϕ
∂x1

(r, 0, . . . , 0) may write (∂/∂r)ϕ(re1), where e1 is the unit vector in the x1-
direction. Of course, we can go to infinity in any direction ξ, where ξ denotes a unit vector.
Thus

ϕ(0) = −
∞
∫

0

∂

∂r
ϕ(rξ)dr, ∀ξ ∈ S1 = S(0, 1) ⊂ Rn.

We now take the average over S1:

(3a) ϕ(0) = − 1

σ(S1)

∫

S1

dσ(ξ)

∞
∫

0

∂

∂r
ϕ(rξ)dr,

where

(3a′) σ(S1) = σn(S1) = “area of unit sphere” = 2πn/2/Γ(n/2).

The integral (3a) may be transformed into an integral over Rn by appropriate use
of Fubini’s theorem. One first inverts the order of integration, then substitutes rξ = x.
Next observe that area elements of spheres Sr = S(0, r) transform according to the rule
of similarity: dσ(x) = rn−1dσ(x/r). However, in polar coordinates the product of dr and
dσ(x) gives the n-dimensional volume element:

dr dσ(x) = dm(x), |x| = r.

Writing out some of the steps, there results

−σ(S1)ϕ(0) =

∞
∫

0

dr

∫

x/r∈S1

∂

∂r
ϕ(x)dσ(

x

r
) =

∞
∫

0

dr

∫

x∈Sr

∂

∂r
ϕ(x)

dσ(x)

rn−1

=

∫

Rn

∂

∂r
ϕ(x) · 1

rn−1
dm(x).

One finally rewrites the radial derivative ∂ϕ/∂r as

∂

∂r
ϕ(x) =

∂ϕ

∂x1

x1

r
+ . . .+

∂ϕ

∂xn

xn
r
.

Thus we obtain the following
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Proposition 10.31. For test functions ϕ on Rn [and in fact, for all functions ϕ in
C1

0 (Rn)],

ϕ(0) = − 1

σ(S1)

∫

Rn

( ∂ϕ

∂x1
x1 + . . .+

∂ϕ

∂xn
xn
) 1

|x|n dm(x).

[Note that the final integral is (absolutely) convergent: r1−n is integrable over a neighbor-
hood of 0 in Rn.]

We wish to obtain representations for smooth functions on bounded domains and for
that we will use Stokes’ theorem. As a first step we rewrite (10.31) in terms of differential
forms. Besides dϕ and the volume form,

dϕ = Σn1
∂ϕ

∂xj
dxj and ω(x) = dx1 ∧ . . . ∧ dxn,

we need the auxialiary forms

(3b) ωk(x)
def
= (−1)k−1dx1 ∧ . . . [k] . . . ∧ dxn, k = 1, . . . , n

where [k] means that the differential dxk is absent. Observe that

(3b′) dxj ∧ ωk(x) =















0 if k 6= j [dxj will occur twice],

ω(x) if k = j [thanks to (−1)k−1].

Thus the following product gives the differential form corresponding to the integrand in
(10.31):

(3b′′)

∑

j

∂ϕ

∂xj
dxj ∧

∑

k

(−1)k−1xk
1

|x|n dx1 ∧ . . . [k] . . . ∧ dxn =

∑

j

∂ϕ

∂xj
xj

1

|x|n ω(x).

Apparently the “good kernel” to use in conjunction with dϕ is

(3c) α(x) = αn(x)
def
=

1

σ(S1)

n
∑

k=1

xk
1

|x|n ωk(x) [σ(S1) = σn(S1) = 2πn/2/Γ(n/2)].

Proposition 10.32. The values of a function ϕ in C1
0 (Rn) may be obtained from dϕ with

the aid of the (n− 1)-form α of (3c), (3b):

ϕ(0) = −
∫

id|D

dϕ ∧ α, ϕ(a) = −
∫

id|D

dϕ ∧ α(x− a).
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Here D may be any closed cube about 0 or a that contains suppϕ.

The first formula follows from (10.31) in view of (3c), (3b′′) and (1b′). For the last formula,
one need only apply the first to ϕ(x+ a).

Having identified a candidate kernel α we will derive a more general representation
theorem. For this we need some

Properties 10.33 of α:
(i) dα(x) = 0 for x 6= 0;
(ii)

∫

Sr
α =

∫

S1
α = 1, ∀r > 0, where Sr or S(0, r) stands for id | S(0, r);

(iii) |
∫

Sr
uα| ≤ sup

Sr

|u|
∫

Sr
|α| = c sup

Sr

|u|,

where u is any continuous function and c =
∫

S1
|α|.

PROOF. (i) This may be verified by computation: by (3c) and (3b′),

σ(S1)dα = Σkd(xk|x|−n) ∧ ωk = ΣkΣj
∂

∂xj
(xk|x|−1)dxj ∧ ωk

= Σk
∂

∂xk
(xk|x|−1)ω = Σk(|x|−1 − n|x|−n−2x2

k)ω = 0, x 6= 0.

[The result will be less surprising if one observes that, for n ≥ 3, xk|x|−1 = const ·
(∂/∂xk)|x|2−n; the relation dα = 0 is equivalent to ∆|x|2−n = 0.]

(ii) We can now apply Stokes’ theorem or the divergence theorem to the spherical
shell Ω bounded by Sr and S1. Taking 0 < r < 1,

∫

S1

α−
∫

Sr

α =

∫

Ω

dα = 0.

An alternative is to remark that α is invariant under change of scale: α(λx) = α(x), cf.
(iii) below.

The constant value of the integral may also be derived from Stokes’ theorem. On
S1, α = |x|nα and by (3c), (3b),

σ(S1)d(|x|nα) = ΣkΣj
∂

∂xj
(xk)dxj ∧ ωk = Σkdxk ∧ ωk = nω.

Thus
∫

S1

α =

∫

S1

|x|nα =

∫

B1

d(|x|nα) =
n

σ(S1)

∫

B1

ω =
n

σ(S1)
m(B1) = 1

[cf. exercise 10.10].
(iii) The first part follows from (1f′′). The constancy of

∫

Sr

|α| is due to the fact that

α(λx) = α(x), ∀λ > 0. Indeed, using the parameter region S1 for Sλ, the sum in definition
(1f′) will be independent of λ.

We can now prove the following general representation of smooth functions:

219



Theorem 10.34. Let Ω ⊂ Rn be a bounded domain with C2 boundary, u a function of
class C1 on Ω. Then

u(a) =

∫

∂Ω

u(x)α(x− a)−
∫

Ω

du(x) ∧ α(x− a), ∀a ∈ Ω

where we have written Ω under the integrals instead of id | Ω.

For a formulation free of differential forms, cf. exercises 10.7, 10.8. The result may
be extended to domains Ω with piecewise C1 boundary by approximation from inside.

Proof of the theorem. It may be assumed by translation that a = 0; the general
formula readily follows. Taking ε > 0 so small that Bε = B(0, ε) belongs to Ω, we will
apply Stokes’ theorem to du ∧ α on Ωε = Ω− Bε.
On Ωε, cf. (10.33),

du ∧ α = d(uα)− udα = d(uα).

Thus

(3d)

∫

Ωε

du ∧ α =

∫

Ωε

d(uα) =

∫

∂Ωε

uα =

∫

∂Ω

uα−
∫

∂Bε

uα.

0
B

ε

Ω

ε

ε

∂Ω
fig 10.1

Again using (10.33),

(3e)

∫

∂Bε

uα = u(0) +

∫

∂Bε

{u(x)− u(0)}α,

|
∫

∂Bε

{u(x)− u(0)}α| ≤ sup
∂Bε

|u(x)− u(0)|
∫

S1

|α| → 0 as ε ↓ 0.

On the other hand

(3e′)

∫

Ωε

du ∧ α→
∫

Ω

du ∧ α as ε ↓ 0,
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since every coefficient in the form du∧α is bounded by const.|x|1−n on Bε, cf. (3b′′). Thus
letting ε ↓ 0 in (3d), there results

∫

Ω

du ∧ α =

∫

∂Ω

uα − u(0).

10.4 Differential forms in Cn. One may consider Cn as R2n with coordinates xj = Rezj
and yj = Imzj , but for the application of differential forms in Cn, it is advantageous to
use not dxj and dyj , but their complex counterparts

(4a) dzj = dxj + idyj , dzj = dxj − idyj .

with the aid of the inverse formulas

(4a′) dxj = 1
2
(dzj + dzj), dyj = 1

2i (dzj − dzj),

every s-form f in Cn = R2n can be written in exactly one way as

(4b) f =
∑

J,K

fJK(z)dzJ ∧ dzK ,

where J = (j1, . . . , jp) and K = (k1, . . . , kq) run over all increasing p− and q-indices,
1 ≤ j1 < . . . < jp ≤ n, 1 ≤ k1 < . . . < kq ≤ n, with variable p and q such that p + q = s.
Naturally,

dzJ = dzj1 ∧ . . . ∧ dzjp , dzk1 ∧ . . . ∧ dzkq
.

The class Λp,q. A sum (4b) in which every J is a p-index [with p fixed] and every K
a q-index [with q fixed] defines a (p, q)-form, or a form of type or bidegree (p, q). The class
of (p, q)-forms [with continuous coefficients] is denoted by Λp,q.

For a C1 function ϕ on Ω ⊂ Cn we saw in Section 1.3 that

(4c) dϕ = ∂ϕ+ ∂ϕ, where ∂ϕ = Σn
1

∂ϕ

∂zj
dzj , ∂ϕ = Σn1

∂ϕ

∂z j
dzj .

Similarly, for a C1 form f in Λp,q,

(4c′) df =
∑

J,K

dfJK ∧ dzJ ∧ dzK = ∂f + ∂f,

where

(4c′′) ∂f =
∑

J,K

∂fJ,K ∧ dzJ ∧ dzK , ∂f =
∑

J,K

∂fJ,K ∧ dzJ ∧ dzK .

Notice that ∂f is a (p+ 1, q)-form and ∂f is a (p, q + 1) form.
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Since d = ∂ + ∂ on ∧p,q, the equation d2 = 0 becomes

(4d) ∂2 + (∂∂ + ∂∂) + ∂
2

= 0.

If f is a C2 form in ∧p,q, the forms ∂2f, (∂∂ + ∂∂)f and ∂
2
f are of the respective types

(p+ 2, q), (p+ 1, q + 1) and (p, q + 2). Thus the vanishing of their sum implies that each
of these forms must be 0:

(4e) ∂2 = 0, ∂∂ = −∂∂, ∂
2

= 0

on ∧p,q [and hence generally on ∧s]. The last relation confirms the local integrability
condition ∂v = 0 for the equation ∂u = v.

We finally remark that for (n, q)-forms f in Cn of class C1, always

∂f = 0, df = ∂f.

Such forms f are said to be saturated with differentials dzj . A similar remark applies to
(p, n)-forms in Cn.

The volume form in Cn. For n = 1, writing z = x+ iy,

dz ∧ dz = d(x− iy) ∧ d(x+ iy) = 2idx ∧ dy,

hence in Cn = R2n

∧nj=1(dzj ∧ dzj) = (2i)n ∧nj=1 (dxj ∧ dyj).

Thus, using an equal number of transpositions on each side,

dz1 ∧ . . . ∧ dzn ∧ dz1 ∧ . . . dzn = (2i)ndx1 ∧ . . . ∧ dxn ∧ dy1 ∧ . . . ∧ dyn.

Using the customary notation ω(z) = dz1 ∧ . . . ∧ dzn, cf. (1b′′), the volume form for Cn

becomes

(4f) (2i)−nω(z) ∧ ω(z) = dx1 ∧ . . . ∧ dxn ∧ dy1 ∧ . . . ∧ dyn = “dm2n”,

provided we orient our R2n as Rn ×Rn. [The more natural choice “dm2n” = dx1 ∧ dy1 ∧
dx2∧ . . ., made by many authors, has the drawback that it introduces an unpleasant factor
(−1)n(n−1)/2 into formula (4f).]

10.5 Integrals in Cn involving the Martinelli-Bochner kernel. We begin once more
with test functions ϕ, but now in Cn = R2n. By Proposition (10.31),

(5a) ϕ(0) = − 1

σ(S1)

∫

Cn

(

∂ϕ

∂x1
x1 +

∂ϕ

∂y1
y1 + . . .+

∂ϕ

∂xn
xn +

∂ϕ

∂yn
yn

)

|z|−2ndm(z).
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Using the definition of the derivatives ∂ϕ/∂zj and ∂ϕ/∂zj ,

(5b)
∂ϕ

∂xj
xj +

∂ϕ

∂yj
yj =

∂ϕ

∂zj
zj +

∂ϕ

∂zj
zj = Djϕ · zj +Djϕ · zj .

Now there is a little miracle:

(5b′)

∫

Cn

Djϕ · zj |z|−2ndm =

∫

Cn

Djϕ · zj |z|−2ndm!

Indeed, for n ≥ 2,

zj |z|−2n = cnDj(|z|2)1−n, zj |z|−2n = cnDj(|z|2)1−n.

[For n = 1 one has to use log |z|2.] Thus, using distributional bracket notation for conve-
nience,

∫

fψ = 〈f, ψ〉, 〈Djf, ψ〉 = −〈f,Djψ〉 etc.,

(5b′′)

∫

zj |z|−2nDjϕdm = cn〈Dj |z|2−2n, Djϕ〉

= −cn〈|z|2−2n, DjDjϕ〉 − cn〈|z|2−2n, DjDjϕ〉

= cn〈Dj |z|2−2n, Djϕ〉 =

∫

zj |z|−2nDjϕdm.

[This is basically ordinary integration by parts, cf. exercise 10.17.]
By the preceding, the integral in (5a) splits as a sum of two equal integrals, one

involving ΣDjϕ · zj and the other involving ΣDjϕ · zj . Choosing the latter, one obtains

Proposition 10.51. For test functions ϕ on Cn [and in fact, by approximation, for all
functions ϕ in C1

0 (Cn)],

ϕ(0) = − 2

σ(S1)

∫

Cn

(

∂ϕ

∂z1
z1 + . . .+

∂ϕ

∂zn
zn

)

|z|−2ndm(z) [σ2n(S1) = 2πn/Γ(n)].

As before, we wish to formulate the result with the aid of differential forms.

∂ϕ = Σj
∂ϕ

∂zj
dzj and ω(z) = dz1 ∧ . . . ∧ dzn

we need

ωk(z)
def
= (−1)k−1dz1 ∧ . . . [k] . . .∧ dzn.

Observe that

dzj ∧ ωk(z) ∧ ω(z) =















0 if k 6= j [dzj will occur twice],

ω(z) ∧ ω(z) if k = j [thanks to (−1)k−1],
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so that by (4f),

Σj
∂ϕ

∂zj
dzj ∧ Σkzk|z|−2nωk(z) ∧ ω(z) = Σk

∂ϕ

∂zk
zk|z|−2nω(z) ∧ ω(z)

= (2i)nΣk
∂ϕ

∂zk
zk|z|−2ndm2n.

Thus by (10.51) a “good kernel” for use in conjunction with ∂ϕ is

(5c) β(z) = βn(z)
def
= bn

n
∑

k=1

zk|z|−2nωk(z) ∧ ω(z),

where

(5c′) bn = 2(2i)−n/σ2n(S1) = (n− 1)!/(2πi)n.

The (n, n− 1)-forms β is called the Martinelli-Bochner kernel [Mart 1938], [Boch 1943].

Proposition 10.52. The values of a function ϕ in C1
0 (Cn)b may be obtained from ∂ϕ

with the aid of the kernel β:

ϕ(0) = −
∫

id|D

∂ϕ ∧ β, ϕ(a) = −
∫

id|D

∂ϕ(z) ∧ β(z − a).

Here D may be any closed cube about 0 or a that contains suppϕ

The properties of β are very similar to those of α, as are their proofs.

Properties 10.53 of β:
(i) dβ(z) = 0 for z 6= 0 ( also ∂β = 0);
(ii)

∫

Sr
β =

∫

S1
β = 1, ∀r > 0;

(iii) |
∫

Sr
uβ| ≤ sup

Sr

|u|
∫

S1
|β| for all continuous functions u.

Theorem 10.54. Let Ω ⊂ Cn be a bounded domain with C2 boundary, u a function of
class C1 on Ω. Then

(5d) u(a) =

∫

∂Ω

u(z)β(z − a)−
∫

Ω

∂u(z) ∧ β(z − a), ∀a ∈ Ω.

In particular, for holomorphic functions f on Ω ([Mart 1938], [Boch 1943]),

(5e) f(z) =

∫

∂Ω

f(ζ)β(ζ − z), ∀z ∈ Ω.
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Strictly speaking, we should have written id | Ω under the integrals instead of just Ω.
For the proof, observe that

∂u ∧ β = du ∧ β = d(uβ)

since β is saturated with dzj ’s; now proceed as in the case of Theorem (10.34). As in that
result a piecewise C1 boundary ∂Ω will suffice.

REMARKS 10.55. The integral (5e) expresses a holomorphic function f on Ω in terms
of its boundary values. What sort of formula do we obtain for n = 1? In that case the
product ωk is empty, hence ≡ 1 and ω(z) = dz. Thus

β(z) =
1

2πi

z

|z|2 dz =
1

2πi

dz

z
, β(ζ − z) =

1

2πi

dζ

ζ − z ,

so that (5e) reduces to the familiar Cauchy integral formula when n = 1.
The kernel β(ζ − z) is the same for every domain Ω ⊂ Cn, but for n ≥ 2 it is not

holomorphic in z. Hence, except in the case n = 1, the integral (5e) does not generate
holomorphic functions on Ω. Neither does formula (5d) solve the ∂ equation when n ≥ 2.
On strictly pseudoconvex domains the kernel may be modified to remedy the situation,
but the resulting kernels depend on the domain, cf. Section 10.8. In Section 10.6 we will
obtain a holomorphic kernel for the case of the unit ball.

10.6 Szegö’s integral for the ball. We begin with a lemma that can be used to write the
Martinelli-Bochner theorem (10.54) in classical notation. Let Nxk

(z) and Nyk
(z) denote

the xk- and yk -component of the outward unit normal
⇀

N to ∂Ω at z and set

νk(z) = Nzk
= Nxk

+ iNyk
, k = 1, . . . , n.

Ignoring constant factors, ω(z) ∧ ω(z) represents the volume element dm of Ω; similarly,
the (n, n− 1)-form

(6a)

n
∑

k=1

νk(z)ωk(z) ∧ ω(z)

will represent the “area element” dσ of ∂Ω. The precise result is as follows:

Lemma 10.61. Let Ω ⊂ Cn be a bounded domain with C2 boundary and let ϕ be any
C1 function on ∂Ω. Then

∫

∂(id)|Ω

ϕ(z)ωk(z̄) ∧ ω(z) =
1

2
(2i)n

∫

∂Ω

ϕνkdσ

∫

∂(id)|Ω

ϕΣn1νkωk ∧ ω =
1

2
(2i)n

∫

∂Ω

ϕdσ.

PROOF. Since ∂Ω is smooth one can extend ϕ to a C1 function on Ω. [One may
use local parametrization to “straighten” ∂Ω, cf. Section 9.4 and to make ϕ equal to zero
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except in a neighborhood of ∂Ω.] Applying Stokes’ theorem one obtains, writing id for
id | Ω,

∫

∂(id)

ϕωk ∧ ω =

∫

id

d(ϕωk ∧ ω) =

∫

id

(Dkϕ)ω ∧ ω = (2i)n
∫

Ω

Dkϕdm,

cf. (4f). Now by Gauss’s formula (2b),

∫

Ω

Dkϕdm =

∫

Ω

1

2

(

∂

∂xk
− 1

i

∂

∂yk

)

ϕdm

=
1

2

∫

∂Ω

ϕ(Nxk
+ iNyk

)dσ =
1

2

∫

∂Ω

ϕνkdσ.

The second formula in the lemma follows by applying the first to ϕνk,
k = 1, . . . , n and by adding:

∫

∂(id)

∑

ϕνkωk ∧ ω =
1

2
(2i)n

∫

∂Ω

∑

ϕνkνkdσ

=
1

2
(2i)n

∫

∂Ω

ϕdσ. [Σ|νk|2 = |
⇀

N |2]

Observe that for the case of the unit ball B = B(0, 1) and S = ∂B, one has

νk(z) = xk + iyk = zk.

Let f be in O(B); we will obtain an integral formula for f with holomorphic kernel. To
this end we set

(6b) β(z, w)
def
= bn

1

(z · w)n
Σn1wkωk(w) ∧ ω(z), [bn as in (5c′)]

so that β(z, z) is equal to the Martinelli-Bochner kernel β(z). Recall that z ·w was defined
as z1w1 + · · ·+ znwn. Define

(6c) g(z, w) =

∫

S

f(ζ)β(ζ − z, ζ − w).

For ζ ∈ S and small |z|, |w|, the denominator of β(ζ − z, ζ − w) can not vanish, hence
g(z, w) is holomorphic on Br × Br if r is small [for example, r = 1/3].

By the Martinelli-Bochner theorem 10.54,

(6d) g(z, z) = f(z), z ∈ B.

We will deduce that the power series

Σaλµz
λwµ for g(z, w)
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on Br × Br can not contain terms involving w. Indeed, replacing z by tz (t ∈ R) and
differentiating with respect to t, one finds that the following equality for power series:

g(z, z) = Σaλµz
λzµ = f(z) = Σcνz

ν

implies equality of the homogeneous polynomials of the same degree:

Σ
|λ|+|µ|=k

aλµz
λzµ = Σ

|ν|=k
bνz

ν .

From this it readily follows by special choices of the variables that aλµ = 0 for all µ 6= 0.
In conclusion, the function g(z, w) is independent of w on Br×Br, so that for |z| < r,

cf. (6b) and (6d),

(6e)

f(z) = g(z, z) = g(z, 0) =

∫

S

f(ζ)β(ζ − z, ζ)

= bn

∫

S

f(ζ)

((ζ − z) · ζ)n
Σn1 ζkωk(ζ) ∧ ω(ζ).

By the uniqueness theorem for holomorphic functions, the representation will hold for all
z ∈ B. Applying the second formula of Lemma 10.61 to ϕ(ζ) = f(ζ)/(1−z ·ζ)n on S = ∂B
where νk(ζ) = ζk, (6e) gives

Theorem 10.62 (Szegö). Let f be holomorphic on B(0, 1) ⊂ Cn. Then

f(z) =
(n− 1)!

2πn

∫

∂B

f(ζ)

(1− z · ζ)n
dσ(ζ), ∀z ∈ B.

The constant in front of the integral comes from bn · 12 (2i)n. As a check one may take
f ≡ 1 and z = 0 which shows that the constant must equal 1/σ2n(S1). The representation
(10.62) will actually hold for all continuous functions f on B that are holomorphic on B.
[Applying the formula to f(λz) and let λ ↑ 1.]

There is a related result for any convex domain with smooth boundary, cf. [Rud 4].

10.7 The Martinelli-Bochner transform and analytic continuation. For n = 1
and a smooth arc γ in C, we know that the Cauchy transform

f̂(z) =
1

2πi

∫

γ

f(ζ)

ζ − z dζ

is holomorphic on the complement of γ for every continuous function f on γ. For n ≥ 2
and a smooth (2n − 1)-surface X in Cn, one may ask for which functions f on X the
Martinelli-Bochner transform

(7a) f̂(z) sup
Sr

∫

X

f(ζ)β(ζ − z)

is holomorphic on the complement of X. This question will not be very interesting when
Cn −X is connected. [Why not? Cf. exercise 10.30.] Thus let X be a “closed” surface.
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Proposition 10.71. Let X be a compact (2n − 1)-surface of class C2 in Cn without
boundary. Let f be a C1 function on X that satisfies the tangential Cauchy-Riemann
equations, that is,

(7b) dXf(z) ∧ ω(z) = 0,

where dXf is df computed tangentially. Then the Martinelli-Bochner transform f̂ is holo-
morphic on the complement of X. Furthermore, if n ≥ 2 then f̂ = 0 on the unbounded
component of Cn −X.

Note that the tangential Cauchy-Riemann equations are certainly satisfied if f is
holomorphic on a neighborhood of X. If the coordinate system is chosen such that the real
tangent space at a ∈ X is given by Imzn = 0, the tangential C − R equations will reduce
to

(7c)
∂f

∂z1
= . . . =

∂f

∂zn−1
= 0.

For the proof of the proposition we need some additional facts about β.

Lemma 10.72. (i) For ζ1 6= z1 one has

β(ζ − z) = dζβ
(1)(ζ − z) = ∂ζβ

(1)(ζ − z),

where

(n− 1)β(1)(ζ − z) = bn

n
∑

k=2

ζk − zk
ζ1 − z1

|ζ − z|2−2nω1k(ζ) ∧ ω(ζ),

ω1k(ζ) = (−1)k[1]dζ2 ∧ . . . [k] . . . ∧ dζn

(the differentials dζ1 and dζk are absent).
(ii) For fixed z, the derivative (∂/∂z1)β(1)(ζ−z) has a smooth extension {. . .} to Cn−{z}:

{

∂

∂z1
β(1)(ζ − z)

}

= bn

n
∑

k=2

(ζk − zk)|ζ − z|−2nω1k(ζ) ∧ ω(ζ).

In terms of that extension,

∂

∂z1
β(ζ − z) = dζ

{

∂

∂z1
β(1)(ζ − z)

}

.

For part (i) it is all right to take z = 0. The verification is similar to the computation
that shows dβ = 0 or dα = 0. Part (ii) is simple. There are of course corresponding results
with ζ1 replaced by one of the other variables ζj .
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PROOF of Proposition 10.71. Take z ∈ Cn −X. By the definition of f̂ , the lemma,
Stokes’ theorem and the tangential C − R equations (7b),

∂

∂z1
f̂(z) =

∫

X

f(ζ)
∂

∂z1
β(ζ − z) =

∫

X

f(ζ)dζ

{

∂

∂z1
β(1)(ζ − z)

}

=

∫

X

dζ

[

f(ζ)

{

∂

∂z1
β(1)(ζ − z)

}]

−
∫

X

dζf(ζ) ∧
{

∂

∂z1
β(1)(ζ − z)

}

=

∫

∂X

f(ζ)

{

∂

∂z1
β(1)(ζ − z)

}

− 0 = 0. [∂X = ∅]

Similarly for the other derivatives ∂/∂zj .

The final statement of the proposition follows from the fact that f̂ is holomorphic on
a connected domain Cn −E, E compact and that f̂(z)→ 0 as |z| → ∞, cf. exercise 1.22.

We can now give an integral formula for analytic continuation across a compact sin-
gularity set, resulting in another proof of the Hartogs-Osgood-Brown theorem (3.41).

Theorem 10.73. Let D be a connected domain in Cn, n ≥ 2 and let K be a compact
subset of D such that D−K is connected. Let f be holomorphic on D−K. Taking Ω to be
any bounded subdomain of D containing K and with connected C2 boundary X = ∂Ω in
D, the Martinelli-Bochner transform f̂ of f corresponding to X = ∂Ω provides an analytic
continuation of f across K.

Proof. Besides Ω we consider a similar subdomain Ω1 containing K, with Ω1 ⊂ Ω. By
Proposition 10.71, the Martinelli-Bochner transforms f̂ and f̂1 of f corresponding to ∂Ω
and ∂Ω1 will be holomorphic on the complements of ∂Ω and ∂Ω1, respectively.

On the other hand, by the Martinelli-Bochner theorem 10.54,

f = f̂ − f̂1 on Ω− Ω1.

K

=∂ΩX

∂Ω1

∂D fig 10.2
However, f̂1 = 0 outside Ω1 (10.71), hence f̂ = f on Ω− Ω1. This f̂ provides an analytic
continuation of f to Ω.
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With a little more work one can obtain a stronger result: For Ω as above and f ∈
C1(∂Ω) satisfying the tangential Cauchy-Riemann equations, the transform f̂ provides a
holomorphic extension of f to Ω which is C1 on Ω. For this and other results on Martinelli-
Bochner transforms, see [Ran].

10.8. Good integral representations. In this section we will see how integral represen-
tations which are good in the sense that the boundary integral has a holomorphic kernel
are obtained. Among other things, analogues of the Szegö formula will be found for general
convex domains.

To obtain such integral representations we analyze the Martinelli-Bochner form (6b)

β(z, w) = bn
1

(z · w)n

n
∑

k=1

wkωk(w) ∧ ω(z).

The properties 10.53 are all that is needed to get a Martinelli-Bochner type integral for-
mula. The most important (and hardest to achieve) is clearly 10.53 (i):

(8a) dβ(z, z̄) = ∂β(z, z̄) + ∂̄β(z, z̄) = 0.

One sees that ∂β = 0 because ω is saturated with dzj ; computation shows that ∂̄ falls
essentially on the second component of the argument of β i.e. the “z part” and does not
“see” the first one. Also, from Section 10.6 we get the impression that the integral formula
remains valid under some changes of the second component. Inroducing F = {(ζ, η) ∈
Cn ×Cn such that (ζ · η) = 0}, this suggests

Lemma 10.81. The Martinelli-Bochner form β has the property that

dβ(ζ, η) = 0 (ζ, η) /∈ F.

[Here d = dζ + dη = ∂ζ + ∂̄ζ + ∂η + ∂̄η.]
PROOF. Observe that β(ζ, η) is saturated with dζ, hence ∂ζβ = 0; the coefficients of β are
holomorphic in ζ and η, hence ∂̄ζβ = ∂̄ηβ = 0. Finally we compute, using dηk ∧ ωj(η) = 0
if j 6= k,

∂ηβ(ζ, η) = bn
∑

j

( −nζj
(ζ · η)n+1

ηjdηj +
1

(ζ · η)n
dηj

)

∧ ωj(η) ∧ ω(ζ) = 0.

A Leray map will be a (smooth) map η = η(z, ζ) to Cn defined on a subset of Cn×Cn

such that

(8b) (ζ − z) · η 6= 0 (z 6= ζ).

To a Leray map η we associate the kernel [(n, n− 1) form]

(8c) Kη(z, ζ) = β(ζ − z, η(z, ζ)),

here z is a (fixed) parameter.
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COROLLARY 10.82. Let z be fixed. Suppose that η(ζ, z) satisfies (8b) as a function of
ζ on a domain D. Then

dζK
η(z, ζ) = 0 on D.

PROOF. For fixed z, the form Kη(z, ζ) is the pull back of β under the map ζ 7→ (ζ −
z, η(z, ζ)). Since the image of this map doesn’t meet F , combination of Proposition 10.24
(v′) and previous Lemma gives dζK

η(z, ζ) = 0 as the pull back of a closed form.

Proposition 10.83. Let Ω be a domain in Cn, z ∈ Ω fixed and d(z) = d(z, ∂Ω) > ε.
Suppose that there exists a Leray map η(z, ζ) on {z} × Ω̄, such that η(z, ζ) = ζ − z for
|ζ − z| < ε. Then for all f ∈ C1(Ω̄)

f(z) =

∫

Ω

Kη(z, ζ) ∧ ∂̄f +

∫

∂Ω

Kη(z, ζ)f

PROOF. For |ζ − z| < ε we have Kη(z, ζ) = β(ζ − z, ζ − z) the Martinelli-Bochner form.
Hence

(8d) f(z) =

∫

B(z,ε)

Kη(z, ζ) ∧ ∂̄f +

∫

{|ζ|=ε}

Kη(z, ζ)f.

We apply Stokes’ theorem to the last integral on the domain Ω \B(z, ε) and obtain

(8e)

∫

{|ζ|=ε}

Kη(z, ζ)f =

∫

∂Ω

Kη(z, ζ)f −
∫

Ω\B(z,ε)

d(Kη(z, ζ)f)

=

∫

∂Ω

Kη(z, ζ)f +

∫

Ω\B(z,ε)

(Kη(z, ζ) ∧ ∂̄f),

because dK = 0 on Ω\B(z, ε), K is saturated with dζ and anticommutativity. Substitution
of (8e) in (8d) completes the proof.

We also need a homogeneity property of the form

(8d) ω′(w) =
∑

k

wkωk(w).

Lemma 10.84. For every smooth function f(w)

ω′(f(w)w) = fn(w)ω′(w).

PROOF.

ω′(f(w)w) =
∑

k

(−1)k−1f(w)wk d(f(w)w1) ∧ . . . [k] . . . ∧ d(f(w)wn)

=
∑

k

(−1)k−1f(w)wk (w1df(w) + f(w)dw1) ∧ . . .

. . . [k] . . .∧ (wndf(w) + f(w)dwn) .
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As df(w) ∧ df(w) = 0, this amounts to
∑

k

(−1)k−1f(w)nwkdw1 ∧ . . . [k] . . .∧ dwn

+
∑

k

(−1)k−1f(w)wk





∑

j<k

wj(−1)j−1df(w) ∧ dw1 ∧ . . . [j] . . . [k] . . .∧ dwn

+
∑

j>k

wj(−1)j−2df(w) ∧ dw1 ∧ . . . [k] . . . [j] . . .∧ dwn



 .

The second part equals 0! The forms in this sum with coefficient (−1)k−1+j−1f(w)wkwj
and (−1)k−1+j−2f(w)wkwj cancel. This proves the Lemma.

For a “clever” proof based on properties of determinants in non commutative rings,
see [Hen-Lei].

Again, let Ω be a domain in Cn and U a neighborhood of ∂Ω; let η(z, ζ) : Ω×U → Cn

be a Leray map and let χ(z, ζ) ∈ C∞(Ω×Ω) be a nonnegative function such that χ(z, ζ) = 1
on a neighborhood of the diagonal {ζ = z} ⊂ Ω × Ω, while for fixed z, χ(z, ζ) ∈ C∞

0 (Ω).
Then we may form a Leray map η̃ on Ω× Ω̄:

η̃(z, ζ) = ‖ζ − z‖2
(

1− χ(z, ζ)

(ζ − z) · η(z, ζ)
η(z, ζ) +

χ(z, ζ)

‖ζ − z‖2 (ζ − z)
)

.

Clearly (ζ − z) · η̃ = ‖ζ − z‖2 and η̃ = ζ − z as a function of ζ close to ζ = z. Thus we
may apply Proposition 10.83 and we obtain that for any C1 function f on Ω̄

f(z) =

∫

∂Ω

f(ζ)K η̃(z, ζ) +

∫

Ω

K η̃(z, ζ) ∧ ∂̄f.

We write φ(z, ζ) = ‖ζ − z‖2/(ζ − z) · η(z, ζ) and observe that on ∂Ω

K η̃ = bn
ω′(φη)

((ζ − z) · φη)n
∧ ω(ζ) = bn

ω′(η)

((ζ − z) · η)n
∧ ω(ζ) = Kη,

by Lemma 10.84. We have proved

Proposition 10.85. Using notation as above, we have for every C1 function f on Ω

f(z) =

∫

∂Ω

f(ζ)Kη(z, ζ) +

∫

Ω

K η̃(z, ζ) ∧ ∂̄f.

If we can choose the Leray map to depend holomorphically on z, we have achieved with
Proposition 10.85 a good analogue of the Cauchy Pompeiu formula. Indeed as with the
usual Cauchy kernel we have a Cauchy type transform which yields holomorphic functions:

(8f) g(z) =

∫

∂Ω

f(ζ)Kη(z, ζ)

is holomorphic for every continuous function f . Also we have
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COROLLARY 10.86. Suppose that Ω admits a holomorphic Leray map. If the equation
∂̄u = v, (∂̄v = 0) admits a solution u ∈ C1(Ω̄) then the function

ũ(z) =

∫

Ω

K η̃(z, ζ) ∧ v

also satisfies ∂̄ũ = v.

PROOF. Express u by means of Proposition 10.85 and observe that the boundary integral
represents a holomorphic function, hence u− ũ is holomorphic.

Holomorphic Leray maps exist if Ω is C1 and convex: Let Ω = {ρ < 0}, take ηj(ζ) =
∂ρ
∂ζ̄j

independent of z. Then (z − ζ) · η =
∑

j
∂ρ
∂zj

(zj − ζj) 6= 0 on Ω. In case of the unit

ball this reduces the Cauchy type transform (8f) to the Szegö Kernel. It will be clear
from Narasimhan’s Lemma 9.48 that one can find such Leray maps at least locally on
strictly pseudoconvex domains. The integral representation of Proposition 10.85 may be
used to solve the Cauchy Riemann equations on strictly pseudoconvex domains, (without
assuming solvability as we do in Corollary 10.86). This gives a solution of the Levi problem,
cf. [Øvrelid]. However, to obtain estimates for solutions of the ∂̄ equation, say in Hölder
norms Proposition 10.85 admits much freedom and there is an other approach, which we
will now discuss. Notice that the kernel K η̃ is obtained by continuously deforming the
Martinelli-Bochner kernel into our neat holomorphic kernel at the boundary. We can do
a similar trick but now the deformation will take place on the boundary itself. Thus
we consider the domain Z = ∂Ω × [0, 1], with coordinates (ζ, λ). Its boundary equals
∂Z = ∂Ω× {1} − ∂Ω× {0}.

Again assume that we have a Leray map η for Ω. We introduce the following Leray
map on Ω× ∂Ω× [0, 1]:

η̃(z, ζ, λ) = λ
η(z, ζ)

(ζ − z) · η(z, ζ)
+ (1− λ)

ζ − z
‖ζ − z‖2 , (z fixed in Ω)

and the kernel

K η̃(z, ζ, λ) = ω′(η̃) ∧ ω(ζ − z).

As before, (ζ − z) · η̃(z, ζ, λ) 6= 0 and K η̃ is a pull back of β, so that

dK = (∂̄ζ + ∂ζ + dλ)K = 0.

Theorem 10.87. Suppose that the domain Ω admits a Leray map η(z, ζ) : Ω×∂Ω→ Cn.
With the kernel K η̃ as defined above, the following integral representation is valid for
f ∈ C1.

f(z) =

∫

Ω

β(ζ − z, ζ − z) ∧ ∂̄f +

∫

∂Ω×[0,1]

K η̃(z, ζ, λ) ∧ ∂̄ζf +

∫

∂Ω

fKη(z, ζ).
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PROOF. Starting with the Martinelli-Bochner representation for f , we only have to
show that

(8g)

∫

∂Ω

fβ(ζ − z, ζ − z) =

∫

∂Ω×[0,1]

K η̃(z, ζ, λ) ∧ ∂̄ζf +

∫

∂Ω

fKη(z, ζ).

We apply Stokes’ theorem to obtain

(8h)

∫

∂Ω×[0,1]

dζ,λ(f ∧K η̃(z, ζ, λ)) =

∫

∂Ω×{1}

fK η̃(z, ζ, 1)−
∫

∂Ω×{0}

fK η̃(z, ζ, 0).

The lefthand side is equal to
∫

∂Ω×[0,1]
∂̄ζf ∧ K η̃(z, ζ, λ), because dζ,λK = 0, f does not

depend on λ and K is saturated with dζ. For the righthand side, observe that K η̃(z, ζ, 0) =

bnω
′( ζ−z

‖ζ−z‖2 )∧ω(ζ− z) and K η̃(z, ζ, 1) = bnω
′( η(z,ζ)

(ζ−z)·η(z,ζ))∧ω(z− ζ). Lemma 10.85 gives

that K η̃(z, ζ, 0) = β(ζ − z, ζ − z) and K η̃(z, ζ, 1) = Kη(z, ζ). Substitution of all this in
(8h) gives (8g). We are done.

How is Theorem 10.87 used to solve the Cauchy Riemann equations?. Assume that
we have a C1 ∂̄ closed form v and that we know that a solution u with ∂̄u = v exists.
Theorem 10.87 represents u and as before we see that

ũ =

∫

Ω

v ∧ β(ζ − z, ζ − z) +

∫

∂Ω×[0,1]

v ∧K η̃(z, ζ, λ)

is another solution. One easily checks that the integrand in
∫

∂Ω×[0,1]
is a polynomial in

λ, hence we can integrate with respect to λ and this integral is reduced to an integral of
v over ∂Ω. It turns out that a situation has been reached in which one can make good
estimates of ũ in terms of v. The details are rather technical and we refer the reader to
the literature cited in the beginning of this chapter.
Exercises

10.1. Equivalent parametrizations of a smooth arc are obtained by smooth maps of one pa-
rameter interval onto another with strictly positive derivative. How would one define
equivalent parametrizations of a smooth 2-surface? A p-surface? The integral of a
p-form over a smooth p-surface must have the same value for equivalent parametriza-
tions.

10.2. Let f be a continuous p-form in Ω ⊂ Rn in standard representation Σ′
JfJdxJ . Suppose

that
∫

X
f = 0 for all smooth p-surfaces X in Ω. Prove that fJ = 0 for every multi-

index J = (j1, . . . , jp). [Choose a ∈ Ω and ε > 0 so small that a+ εD ⊂ Ω, where D
is the closed unit cube in R

n. Now define X as follows:

Xj1(t) = aj1 + εt1, . . . , Xjp(t) = ajp + εtp,

Xk(t) ≡ ak for k 6= j1, . . . , jp; 0 ≤ tj ≤ 1.]

10.3. Let f = Σ′fJ (x)dxj be a continuous (k− 1)-form on Rp−{0} such that f(λx) = f(x)
for all λ > 0. Let Sr be the sphere S(0, r) in Rp, r > 0. Prove that the integrals

∫

Sr
f

and
∫

Sr
|f | are independent of r.
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10.4. Let f be a p-form in Ω ⊂ R
n, g a q-form. Prove that

(i) g ∧ f = (−1)pqg ∧ g; (ii) d(f ∧ g) = df ∧ g + (−1)pf ∧ dg.
10.5. Suppose one wants to apply Stokes’ theorem to a disc and its boundary. Can one

represent the disc as a smooth 2-surface with [0, 1]× [0, 1] as parameter domain? How
would you deal with the annulus A(0; ρ,R)? If f is a smooth 1-form on A, how would
you justify wrting

∫

A

df =

∫

C(0,R)

f −
∫

C(0,ρ)

f ?

10.6. Go over the proofs of properties (iii)-(v) of pull backs. Could you explain the proofs
to somebody else?

10.7. Use Theorem (10.34) to obtain the following R2 formula which is free of differential
forms: for a ∈ Ω,

u(a) =
1

2π

∫

∂Ω

u(x)
∂

∂N
log|x− a|ds− 1

2π

∫

Ω

gradu(x) · grad log|x− a|dm.

10.8. Apply the Gauss-Green theorem (2b) to
⇀
v = ugradE to obtain the Rn formula

∫

Ω

(gradu · gradE + udiv gradE)dm =

∫

∂Ω

u
∂E

∂N
dσ.

Then use a fundamental solution E of Laplace’s equation in Rn to obtain in a form
of Theorem (10.34) that is free of differential forms. [Start with a = 0.]

10.9. Let Ω be a bounded domain Rn with C2 boundary, Nk(x) the component of the

outward unit normal
⇀

N to ∂Ω at x. Show that the (n − 1)-form Σn
1Nk(x)ωk(x)

represents the area element of ∂Ω in the sense that for all smooth functions ϕ on ∂Ω,

∫

∂(id)|Ω

ϕΣn1Nkωk =

∫

∂Ω

ϕdσ.

[Extend ϕΣNkωk smoothly to Ω.]

10.10. Use differentiation to relate m(Br) in Rn to σ(Sr) and deduce that
σ(S1) = n ·m(B1)

10.11. Prove that the different forms dzJ∧dzK in ∧p,q, where J and K run over the increasing
p-indices and q-indices, are linearly independent over C. [Start with the real situation.]

10.12. Prove that ∧s decomposes uniquely in C
n as

∧s = ∧s,0 + ∧s−1,0 + . . .+ ∧0,s.

10.13. Calculate ∂f, ∂f and df when f = z1dz2 + z2dz1.

10.14. Prove that for a C1 form f in ∧p,q, one has df = 0 only if ∂f = ∂f = 0. Does this
also hold in ∧s ?
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10.15. Prove that for f ∈ ∧p,q, one has ∂̄f̄ = ∂f .

10.16. Determine g such that E = g(z · z) satisfies Laplace’s equation on Cn − {0}:

∆E = 4
n
∑

1

∂2E

∂zj∂zj
= 0.

10.17. Prove that for test functions ϕ on Cn = R2n,

∫

Cn

(

∂ϕ

∂x1
x1 +

∂ϕ

∂y1
y1

)

|z|−2ndm = 2

∫

Cn

∂ϕ

∂z1
z1|z|−2ndm

by showing first that for all z′ = (z2, . . . , zn) 6= 0,

∫

R2

(

∂ϕ

∂x1
y1 −

∂ϕ

∂y1
x1

)

|z|−2ndx1 dy1 = 0.

10.18. Let ϕ be a test function on Cn. Show that

ϕ(0) = − 1

n

∫

C

∂ϕ

∂z1
(z1, 0, . . . , 0)

1

z1
dm(z1)

=
(

− 1

n

)n
∫

Cn

∂nϕ

∂Σ1 . . . ∂zn

1

z1 . . . zn
dm(z).

10.19. Show that the above formula can be extended to include the case ϕ(z) = (1− |z|2)n

for |z| ≤ 1, ϕ(z) = 0 for |z| > 1. Deduce that in C
n = R

2n, m(B1) = πn/n!.

10.20. (A Sobolev-type lemma). Let u be an L2 function on Cn of bounded support and such
that the distributional derivative ∂nu/∂z1 . . . ∂zn is equal to an Lp function where
p > 2. Prove that u is a.e. equal to a continuous function. [From exercise 10.18 and
Hölder’s inequality it may be derived that |ϕ(0)| ≤ C‖∂nϕ/∂z1 . . . ∂zn‖p and similarly
sup |ϕ| ≤ . . .. Deduce that u ? ρε tends to a limit function uniformly as ε ↓ 0.]

10.21. Verify the properties of the Martinelli-Bochner kernel β in (10.56).

10.22. Supply the details in the proof of the Martinelli-Bochner theorem (10.57), starting
with the case a = 0 and then passing on to the case of general a ∈ Ω.

10.23. Let f be holomorphic on Ω where Ω is as in Theorem (10.54). Prove directly [without
using Section 10.7] that

∫

∂Ω

f(ζ)β(ζ − z) = 0 for z ∈ C
n − Ω.

10.24. What representation for C1 functions does Theorem (10.54) give in the case n = 1?

10.25. Show that for holomorphic functions f on B = B(0, 1) ⊂ C
n,

f(z) =
(n− 1)!

2πn

∫

∂B

f(ζ)
1− z · ζ
|ζ − z|2n dσ(ζ).
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10.26. Derive a form of Theorem (10.57) that is free of differential forms.

10.27. Show that the following forms can serve as area element dσ on the unit sphere S =
{z ∈ C

2 : z1z1 + z2z2 = 1}:

−1

2
(z1dz2 − z2dz1) ∧ dz1 ∧ dz2,

1

2z2
dz1 ∧ dz1 ∧ dz2,

1

2z2
dz1 ∧ dz2 ∧ dz1.

10.28. In C2 the following automorphism of B = B(0, 1) takes the point
c = (c1, 0) ∈ B to the origin:

ζ1
1 =

ζ1 − c1
1− c1ζ1

, ζ1
2 =

(1− |c1|2|)
1
2

1− c1ζ1
ζ2.

Use the mean value theorem for holomorphic functions f on B to derive that

f(c1, 0) =
1

2π2

∫

S

(1− |c1|2)2

|1− c1ζ1|4
f(ζ)dσ(ζ).

Deduce the so-called invariant Poisson integral for f(z):

f(z) =
1

2π2

∫

S

(1− |z|2)2

|1− z · ζ|4
f(ζ)dσ(ζ), z ∈ B.

10.29. Express the “invariant Poisson Kernel” P (z, ζ) of exercise 10.28 in terms of the Szegö
kernel S(z, ζ) = (1 − z · ζ)−2. Now use the Szegö integral to derive the preceding
formula. Extend the latter to Cn.

10.30. Let X be a smooth (2n−1)-surface in Cn, n ≥ 2 such that Xc = Cn−X is connected.

Let f ∈ C(X) be such that the Martinelli-Bochner transform f̂ is holomorphic on Xc.

Prove that f̂ ≡ 0.

10.31. Prove that statements about the tangential Cauchy-Riemann equations made after
Proposition (10.71).

10.32. Let X be a smooth (2n− 1)-surface in Cn with real defining function ρ. [ρ ∈ Cp on a
neighborhood of X for some p ≥ 1, ρ = 0 on X, dρ 6= 0 on X.] Prove that f ∈ C1(X)
satisfies the tangential C − R equations if and only if

∂f ∧ ∂ρ = 0 or
∂f

∂zj

∂ρ

∂zk
− ∂f

∂zk

∂ρ

∂zj
= 0, ∀j, k.
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CHAPTER 11

Solution of the ∂̄ equation on pseudoconvex domains

In this chapter we discuss Hörmander’s ingenious L2 method with weights for the
global solution of the inhomogeneous Cauchy-Riemann equations

∂̄u = v or
∂u

∂z̄j
= vj , j = 1, . . . , n

on domains in Cn.

The method applies to all domains Ω which possess a plurisubharmonic exhaustion
function. It proves the existence of weak or distributional solutions u on Ω that are locally
equal to L2 functions when the vj ’s are. If the functions vj are of class Cp (1 ≤ p ≤ ∞), it
readily follows that the solutions are also of class Cp. Taking p = ∞, one concludes that
every psh exhaustible domain is a ∂̄ domain [as defined in Chapter 7] and hence is a Cousin
-I domain [the holomorphic Cousin-I problem is generally solvable on Ω]. Applying the
results also to the intersections of Ω with affine subspaces of Cn, one obtains the solution
of the Levi problem: Every pseudoconvex domain is a domain of holomorphy [cf. Section
7.7]. Some remarks are in order here. One began to search for analytic approaches to
the ∂̄ problem around 1950. There where important contributions contributions by many
authors, notably Morrey and Kohn, before Hörmander obtained his weighted L2 results in
1964. Estimating solutions of ∂̄ equations has remained in active area of research up till
the present time. It has turned out that while Hörmander’s introduction of weights in the
problem gives a fast and clean solution by sweeping all unpleasant boundary behavior under
the rug, the approach of Kohn and his students, notably Catlin, although very involved,
is more fundamental and gives much more precise results, with wider applications.

In a sense, postulating pseudoconvexity of Ω for the solution of the “first order” ∂̄
problem is too much: for n ≥ 3, ∂̄ domains or Cousin-I domains need not be pseudoconvex
[cf. Section 7.2]. However, Hörmander’s method also gives solutions to the “higher order”
∂̄ equations on pseudoconvex domains, cf Section 11.8 and [Hör 1]. The general solvability
of the ∂̄ equations of every order on Ω is equivalent to the property of pseudoconvexity; we
will return to this matter in Chapter 12. A more important benefit of Hörmander’s method
is that it provides useful growth estimates for the solution of the ∂̄-equation [see Section
11.7]. Such estimates are finding applications even in the case n = 1; further applications
in Cn may be expected.

For n = 1 the principal existence theorem may be derived in a more or less straight-
forward manner [Section11.3], but for n ≥ 2 the proof remains rather involved. The ideas
in our exposition are of course Hörmander’s, with some small modifications. We do not
explicitly use any results on unbounded operators. The principal tool is F. Riesz’s theorem
to the effect that every continuous linear functional on a Hilbert space is represented by
an inner product function.
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11.1 Distributions and weak solutions. Let Ω be a domain or open set in Rn or
Cn. Test functions φ on Ω are complex-valued functions of class C∞

0 (Ω), that is, C∞

functions whose supports are compact subsets of Ω. Examples of test functions have been
encountered in section 3.3, namely:
(i) the standard C∞ approximation of the identity ρε on Rn whose support is the ball

B̄(0, ε): ρε(x) = ε−nρ1(|x|/ε),
∫

ρε = 1, ρε ≥ 0;
(ii) for compact F , a C∞ cutoff function ω on Rn which equals 1 on F and 0 at distance
≥ ε from F , cf. Proposition (3.).

DEFINITION 11.11. A distribution

T : φ 7→ T (φ) = 〈T, φ〉
on Ω is a linear functional on the space of test functions C∞

0 (Ω):

〈T, λφ+ µψ〉 = λ〈T, φ〉+ µ〈T, ψ〉.

We say that distributions Tν are (weakly or distributionally) convergent to the distri-
bution T as ν → ν0 or ν →∞ if

〈Tν , φ〉 → 〈T, φ〉, ∀φ ∈ C∞
0 (Ω).

The symbol 〈T, φ〉 denotes a (bi)linear functional; the symbol ( , ) is reserved for an
inner product which is conjugate linear in the second factor. It is customary to impose
a weak continuity condition on the functionals 〈T, φ〉 as functions of φ: starting with a
strong notion of convergence φν → φ in the vector space of test functions, one requires
that 〈T, φν〉 → 〈T, φ〉 whenever φν → φ. Since such continuity of the functional T is not
important in the present context, we do not go into detail. Cf., [Schwa], [Hör 2].

EXAMPLES 11.12. Every continuous or locally integrable function f on Ω defines a
distribution by the formula

〈f, φ〉 =

∫

Ω

fφ dm =

∫

suppφ

fφ dm.

In the sequel we often omit the Lebesgue measure or “volume element” dm on Ω. Lo-
cally uniform (or locally L1) convergence of functions fν to f on Ω implies distributional
convergence:

|〈f, φ〉 − 〈fν , φ〉| ≤
∫

suppφ

|f − fν | · sup |φ| → 0 as ν → ν0.

Derivatives of test functions are again test functions. Repeated integration by parts will
show that

fν(x) = ν100eiνx → 0 weakly on R as ν →∞.

The famous delta distribution on Rn is given by the formula

〈δ, φ〉 = φ(0).
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A distribution T is said to vanish on an open subset Ω0 ⊂ Ω if 〈T, φ〉 = 0 for all test
functions with support in Ω0. Taking Ω0 equal to the maximal open subset of Ω on which
T vanishes, the complement Ω \ Ω0 is called the support of T . Two distributions are said
to be equal on an open subset if their difference vanishes there. For continuous functions
these definitions agree with the usual ones. This will follow from

Proposition 11.13. Let f be a continuous or locally integrable function on Ω ⊂ Rn such
that 〈f, φ〉 = 0 for all test functions φ on Ω. Then f(x) = 0 almost everywhere on Ω, and
in particular at all points x where f happens to be continuous.

PROOF. Let {ρε} be the standard nonnegative approximate identity on Rn with suppρε =
B̄(0, ε) [Section 3.3]. Then for any compact subset K ⊂ Ω and 0 < r < d(K, ∂Ω), the
function ρε(x− y) with x ∈ K fixed and y variable will be a test function on Ω whenever
ε ≤ r. Hence since 〈f, ρε(x− ·)〉 = 0

0 = 〈f, ρε(x− ·)〉 =

∫

Ω

f(y)ρε(x− y) dy = f ∗ ρε(x) =

∫

B(0,ε)

f(x− z)ρε(z) dz

=

∫

B(0,1)

f(x− εy)ρ1(y) dy, ∀x ∈ K.

Now for continuous f , using uniform continuity on the [closure of the] r-neighborhood Kr

of K,
∫

K

|f(x)− f(x− εy)| dx→ 0 as ε ↓ 0,

uniformly for y ∈ B = B(0, 1). This holds more generally for all locally integrable f : such
functions may be approximated in L1 norm on K̄r by continuous functions.

By the preceding we have
∫

K

|f(x)| dx =

∫

K

dx|
∫

B

{f(x)− f(x− εy)}ρ1(y) dy| ≤
∫

K

dx

∫

B

| . . . | dy

=

∫

B

{
∫

K

|f(x)− f(x− εy)| dx}ρ1(y) dy,

where the final member tends to 0 as ε ↓ 0. [Since we deal with positive functions the
inversion of the order of integration is justified by Fubini’s theorem.] Hence one has
∫

K
|f(x)| dx = 0, and since K may be any compact subset of Ω, the proposition follows.

Proposition 11.14. The test functions φ on Ω are dense in L1(Ω) and L2(Ω).

PROOF. Let Ω ⊂ Rn. The continuous functions with compact support are dense in L1(Ω)
and also in L2(Ω). Any continuous function f with compact support is a uniform limit of
functions φν in C∞

0 with support in a fixed compact set K, e.g., through convolution with
an approximate identity. Finally,

‖f − φν‖pp ≤ vol(K) · (sup
K
|f − φν |)p, p = 1, 2,

Hence uniform convergence leads to Lp convergence.

The most important notion in distribution theory is that of distributional derivatives:
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DEFINITION 11.15. The partial derivatives of the distribution T on Ω ⊂ Rn are defined
by formal integration by parts:

〈 ∂T
∂xj

, φ〉 = −〈T, ∂φ
∂xj
〉.

In Cn this leads to formulas for

DjT =
∂T

∂zj
=

1

2

(

∂T

∂xj
+

1

i

∂T

∂yj

)

, D̄jT =
∂T

∂z̄j
=

1

2

(

∂T

∂xj
− 1

i

∂T

∂yj

)

:

〈DjT, φ〉 = −〈T,Djφ〉, 〈D̄jT, φ〉 = −〈T, D̄jφ〉.
Observe that the distributional derivatives are again distributions. For functions f of class
C1, integration by parts gives precisely the result of the definition:

〈 ∂f
∂xj

, φ〉 =

∫

Ω

∂f

∂xj
φ dx1 . . . dxn = −

∫

Ω

f
∂φ

∂xj
dx1 . . . dxn = −〈f, ∂φ

∂xj
〉.

The boundary integrals vanish because φ has compact support. It follows that for such
functions the (first order ) distributional derivatives agree with the ordinary derivatives in
their action on test functions. Defining the product of a C∞ function ω and a distribution
T by 〈ωT, φ〉 = 〈Tω, φ〉 = 〈T, ωφ〉, one has the usual rule for differentiation of ωT . In
higher order distributional derivatives, the order of differentiation is immaterial since this
is so for test functions. Distributional differentiation is a continuous operation: if Tν → T
in the distributional sense then ∂Tν

∂xj
→ ∂T

∂xj
:

〈∂Tν
∂xj

, φ〉 = −〈Tnu,
∂φ

∂xj
〉 → −〈T, ∂φ

∂xj
〉 = 〈 ∂T

∂xj
, φ〉.

We can now define a weak (locally integrable) solution of the ∂̄ problem

∂̄u = v =

n
∑

1

vj dz̄j or D̄j = vj , j = 1, . . . , n

on Ω ⊂ Cn. Here it is assumed that the coefficients vj of the (0,1) form v are locally
integrable functions.

DEFINITION 11.16. A locally integrable function u on Ω is called a weak solution of
the equation ∂̄u = v if the distributional derivatives D̄ju are equal to the functions vj ,
considered as distributions on Ω. That is, for each j = 1, . . . n and for all test functions
φ ∈ C∞

0 (Ω),

〈D̄ju, φ〉 = −
∫

Ω

uD̄jφ dm =

∫

Ω

vjφ dm = 〈vj , φ〉.

Observe that the equation ∂̄u = v can have a weak solution u only if

D̄jvk = D̄jD̄ku = D̄kD̄j = u = D̄kvj , ∀j, k
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in the sense of distributions. In terms of the (0,2) form or “tensor”

(1b) ∂̄1v
def
=

∑

1≤j<k≤n

(D̄jvk − D̄kvj) dz̄j ∧ dz̄k,

the resulting (local) integrability conditions may be summarized by

(1c) ∂̄1v = 0 (often written ∂̄v = 0).

11.2 When weak solutions are ordinary solutions. The L2 method will provide weak
(global) solutions of the equation ∂̄u = v. Here we will show that for smooth forms v such
weak solutions are (almost everywhere) equal to ordinary smooth solutions. We begin with
an auxiliary result for the homogeneous equation ∂̄u = 0.

Proposition 11.21. Let u be an integrable function on the polydisc ∆(a, s) ⊂ Cn such
that ∂̄u = 0 in the weak sense. Then there is a holomorphic function h such that u = h
almost everywhere on ∆(a, s).

PROOF. It is sufficient to prove the result for the unit polydisc ∆ = ∆(0, 1) and as the
result is local, it will be convenient to assume u is extended to a neighborhood U of ∆̄ and
satisfies there ∂̄u = 0 weakly. Now form the C∞ functions

(2a) uε(z)
def
= u ∗ ρε(z) =

∫

Cn

u(ζ)ρ(z − ζ) dm(ζ), ε > 0

where {ρε} is the standard C∞ approximate identity on Cn = R2n, in particular suppρε ⊂
B̄(0, ε) and ρε is radial, cf. Section 3.3. We will take r < d(∆, ∂U)/2 and ε always less
than r. Note that if u is a genuine holomorphic function, the mean value property over
spheres gives that uε = u. [By introducing polar coordinates in (2a).] Since for a ∈ ∆
ρε(a− ζ) ∈ C∞

0 (U) we have

∂uε
∂z̄j

(a) =

∫

u(ζ)
∂ρε
∂z̄j

(a− ζ) dm(ζ) = 〈u, D̄jρε(a− ·)〉 = 〈D̄ju, ρε(a− ·)〉 = 0.

Hence uε is holomorphic on ∆. On the other hand one easily shows that

(2b) uε −→ u in L1(∆) asε ↓ 0,

cf. the proof of Proposition 11.13. If u is continuous the convergence in (2b) is uniform,
hence u is continuous. For the general case there is a clever trick: Form

(u ∗ ρδ) ∗ ρε = (u ∗ ρε) ∗ ρδ = uε,

the first equality by general properties of convolution and the second by the remark after
(2a). Now let ε→ 0. We find u ∗ ρδ = u almost everywhere, and the proof is complete.

242



Theorem 11.22. Suppose that the equation ∂̄u = v on Ω ⊂ Cn, with v =
∑n

1 vj dz̄j of
class Cp (1 ≤ p ≤ ∞), has a weak (locally integrable) solution u0 on Ω. Then the equation
has Cp solutions f on Ω and u0 is almost everywhere equal to one of them.

PROOF. By Section 11.1, ∂̄1v = ∂̄1∂̄u0 = 0 in distributional and hence ordinary sense. It
follows that our equation has local solutions of class Cp [Proposition 7.58]. Hence every
point a ∈ Ω belongs to a polydisc Uλ ⊂⊂ Ω on whose closure the equation ∂̄u = v has a
Cp solution fλ. Every other integrable solution on Uλ is almost everywhere equal to fλ
plus some holomorphic function hλ. [Apply Proposition 11.21 to the difference with fλ.]
This will in particular be the case for our global weak solution u0:

(2c) u0 = fλ + hλ a.e. on Uλ,hλ ∈ O(Uλ).

Ω is covered by polydiscs Uλ. On an intersection Uλµ,

fλ + hλ
a.e.
= u0

a.e.
= fµ + hµ,

hence the smooth functions on the left and right must be equal throughout Uλµ. Thus we
may define a global Cp function f on Ω by setting

f
def
= fλ + hλ on Uλ, ∀λ.

This f will be an ordinary solution of our ∂̄ equation on Ω: on each Uλ, ∂̄f = ∂̄fλ = v.
Finally u0 = f a.e. on Ω.

11.3 General solvability of ∂̄ for n = 1. Hörmander’s L2 method is best explained
in the simple case of a planar domain Ω. There is no restriction on the open set Ω ⊂ C
and we will think of v as a locally square integrable function [rather than a form]. The ∂̄
equation then becomes

(3a)
∂u

∂z̄
=

1

2

(

∂u

∂x
− 1

i

∂u

∂y

)

= v or D̄u = v on Ω ⊂ C.

Since there is only one complex variable, there is no integrability condition.
A weak L2 solution of (3a) is a locally square integrable function u on Ω such that

〈D̄u, φ〉 = 〈v, φ〉 for all test functions φ on Ω. we may express this condition in terms of
the inner product ( , )0 of L2(Ω), replacing φ by φ̄:

(3a′)

(v, φ)0 =

∫

Ω

vφ̄ dm = 〈v, φ〉 = 〈D̄u, φ̄〉

= −〈u, D̄φ̄〉 = −(u,Dφ)0, D =
∂

∂z
=

1

2

(

∂u

∂x
+

1

i

∂u

∂y

)

.

The essential idea is to look for a solution u in an appropriate weighted space L2
β =

L2(Ω, e−β), where β is a real C∞ function. Here the inner product is

(3b) (f, g)β =

∫

Ω

fḡe−β dm =

∫

fḡe−β .
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We use the same notation (v, φ)β if v is locally in L2 and φ ∈ C∞
0 (Ω). The domain Ω and

the Lebesgue measure dm on Ω will usually be omitted from our integrals.
Condition (3a′) must also hold for test functions e−βφ instead of φ:

(3c)
(v, φ)β = (v, φe−β)0 = (D̄, φe−β)0 = −(u,D{φe−β})0

= −(u, {Dφ−Dβ · φ}e−β)0 = (u,−Dφ+Dβ · φ)β = (u, δφ)β, ∀φ.

Here we have written δ for the formal adjoint to D̄ relative to the weight e−β , which as
usual is defined by:

(3c′) δ = δβ = −D +Dβ · id, (D̄u, φ)β = (D̄, φe−β)0 = (u, δφ)β ∀φ.

Observe that (3c) is completely equivalent with (3a′): the product φe−β runs over
all test functions on Ω precisely when φ does. We will use (3c) to derive a necessary and
sufficient condition for the existence of a weak solution in L2

β :

Proposition 11.31. The equation D̄u = v with v locally in L2, has a weak solution u in
L2
β = L2(Ω, e−β) if and only if there is a constant A = Av independent of φ such that

(3d) |(φ, v)β| = |(v, φ)β| ≤ A‖δφ‖β , ∀φ ∈ C∞
0 (Ω).

Under condition (3d) there is a solution u0 of minimal norm ‖u0‖β ≤ A; it is orthogonal
to all holomorphic functions in L2

β .

PROOF. (i) If u is a weak solution in L2
β, then by (3c)

|(v, φ)β| = |(u, δφ)β| ≤ ‖u‖β‖δφ‖β , ∀φ.

(ii) Suppose we have (3d). Then the pairing

(3e) l : δφ 7→ (φ, v)β, ∀φ

will define a continuous linear functional on the linear subspace W of L2
β, consisting of all

test functions of the form δφ. Indeed, l is well defined on W because δφ1 = δφ2 implies
(φ1, v)β = (φ2, v)β, see (3d) with φ = φ1−φ2. By the same inequality the linear functional
has norm ≤ A. We extend l by continuity to the closure W̄ of W in L2

β : if ψk in W tends

to ψ in L2
β , l(ψk) tends to a limit [Cauchy criterion] which we call l(ψ). The extended

linear functional will still be called l and there is no change in norm.
Applying the Riesz representation theorem to l on the Hilbert space H = W̄ , we

conclude that there is a unique element u0 ∈ W̄ ⊂ L2
β such that

(3e′) l(w) = (w, u0)β, ∀w ∈ W̄

and

(3f) ‖u0‖β = ‖l‖ ≤ A.
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Specializing to w = δφ we obtain the relation

(φ, v)β = l(δφ) = (δφ, u0)β or (v, φ)β = (u0, δφ)β, ∀φ.
By (3c), u0 is a weak solution of the equation D̄u = v on Ω; by (3f), it satisfies the growth
condition ‖u0‖β ≤ A.

(iii) The solution of equation (3a) in L2
β is unique up to a solution of the homogeneous

equation D̄u = 0, that is, up to a holomorphic function h in L2
β . Thus the general solution

has the form u = u0 + h with u0 as above. The solution u0 in W̄ will be orthogonal to
every holomorphic h in L2

β . Indeed,

0 = (D̄h, φ)β = (h, δφ)β , ∀φ,
hence h ⊥ W and therefore h ⊥ u0 ∈ W̄ . Thus our special solution u0 has minimal norm
in L2

β : ‖u0 + h‖2β = ‖u0‖2β + ‖h‖2β.

Derivation of a suitable basic inequality (3d). The starting point is provided by an
important a priori inequality for test functions φ. When we compute the commutator of
D̄ and its adjoint δ = δβ , the Laplacian of β will appear:

(D̄δ − δD̄)φ = D̄(−Dφ+Dβ · φ)− (−D +Dβ · id)D̄φ = D̄Dβ · φ.
We will set

D̄Dβ = βzz̄ =
1

4
∆β = b.

The commutator formula shows that

(bφ, φ)β = (D̄Dβ · φ, φ) = (D̄δφ, φ)− (δD̄φ, φ) = (δφ, δφ)β − (D̄φ, D̄φ)β .

Thus we arrive at the following

A PRIORI INEQUALITY 11.32:
∫

Ω

|φ|2e−βb ≤
∫

Ω

|δφ|2e−β , ∀φ ∈ C∞
0 (Ω).

In order to exploit (11.32) we have to impose the condition

b =
1

4
∆β > 0,

that is β must be strictly subharmonic on Ω, cf. Section 8.3. We now apply the Schwarz
inequality to (φ, v)β. Since we have (11.32) it is natural to estimate in the following way:

(3g)

|(φ, v)β|2 = |
∫

φ(e−βb)1/2 · v̄(e−βb−1)1/2|2

≤
∫

|φ|2e−βb
∫

|v|2e−βb−1 ≤
∫

|v|2e−βb−1‖δφ‖2β .

In words

BASIC INEQUALITY (n = 1) 11.33. For every strictly subharmonic function β ∈ C∞(Ω)
and every function v ∈ L2

β+logb = L2(Ω, e−βb−1), there is an inequality (3d) with

A = Av = ‖v‖β+logb.

Combining (11.33) and Proposition 11.31 and referring to Theorem 11.22 on the ex-
istence of smooth solutions, we obtain
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First Main Theorem 11.34. (case n = 1). Let β ∈ C∞(Ω) be strictly subharmonic, so
that b = βzz̄ > 0. Let v be any function in L2(Ω, e−βb−1). Then there exists a function u
in L2(Ω, e−β) which solves the equation D̄u = v in the weak sense on Ω and which satisfies
the growth condition

∫

Ω

|u|2e−β dm ≤
∫

Ω

|v|2e−βb−1 dm.

If v is of class Cp on Ω, 1 ≤ p ≤ ∞, the solution u can be modified on a set of measure
zero so as to become a classical Cp solution.

It is easy to show that for every Cp function v on Ω, there is a strictly subharmonic
function β such that v is in L2(Ω, e−βb−1), cf. Lemma 11.63 below. Thus the ∂̄ equation
is generally solvable on every planar domain. For other applications it is convenient to
derive a second main theorem which does not involve derivatives of β (Section 11.7). In
the next sections we will extend the first main theorem to pseudoconvex domains in Cn.

11.4 The L2 method for ∂̄ when n ≥ 2. We will describe how to obtain weak L2

solutions of the equation ∂̄u = v on domains Ω ⊂ Cn. Here v is a (0,1) form
∑n

1 vj dz̄j
that is locally in L2 [ that is vj ∈ L2

loc(Ω), ∀j and which satisfy the integrability condition
∂̄1v = 0 (1b). More precisely, our forms v as well as the solutions u will belong to certain
weighted spaces L2

β = L2(Ω, e−β), where β is a real C∞ function. For (0,1) forms the
defining inner product is

(4a) (f, g)β =

∫

Ω

( n
∑

1

fj ḡj

)

e−β dm =

n
∑

1

(fj, gj)β .

We also write f · ḡ for
∑n

1 fj ḡj and |g|2 for
∑n

1 |gj|2. The same notations are used if f
is only locally in L2 while G is a (0,1) test form φ on Ω, that is a form

∑n
1 φj dz̄j whose

coefficients are test functions. Analogous definitions will apply to (0,2) forms such as ∂̄1v
in formula (1a). If the context permits, Ω, dm and the weight index β will be omitted
from the formulas.

A weak solution of the equation ∂̄u = v on Ω is a locally integrable function U such
that

(D̄j , φj)0 = −(u,Djφj)0 = (vj , φj)0, j = 1, . . . , n

for all test functions φj on Ω, cf. Definition 11.17 with φ̄j instead of φ. Introducing the
weight functions e−β , this requirement may be written in the equivalent form

(vj , φj)β = (u,−Djφj +Djβ · φj)β = (u, δjφj)β, ∀j, φj ,

cf. (3c) We can summarize those equations by a single condition:

(4b)
(v, φ)β = (∂̄u, φ)β =

∑

j

(D̄ju, φj)β =
∑

j

(u, δjφj)β

= (u, δφ)β, ∀ test forms φ =
∑n

1 φj dz̄j on Ω.
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Here we have used the inner product notation (4a) for forms and the corresponding notation
(3b) for functions, while

(4b′) δφ = δβφ =

n
∑

1

δjφj , δj = −Dj + (Djβ)id.

By (4b) δ = δβ is the formal adjoint to ∂̄ relative to the weight e−β . [Observe that δ sends
(0,1) forms to functions.]

It readily follows from (4b) that the equation ∂̄u = v has a weak solution u in L2
β(Ω)

if and only if there is a basic inequality

(4c) |(φ, v)β| = |(v, φ)β| ≤ A‖δφ‖β , ∀ test forms φ on Ω,

where A = Av is a constant independent of φ. Indeed, Proposition 11.31 immediately
extends to the n-dimensional situation; the proof remains virtually unchanged. The next
step is to derive a suitable a priori inequality for test forms.

For test functions ψ on Ω and the operators D̄j and their adjoints δj in L2
β , we have

the commutator relations

(D̄kδj − δjD̄k)ψ = D̄k(−Djψ +Djβ · ψ)− (−Dj + (Dj)β · id)D̄kψ = DjD̄kβ · ψ.

Thus for all test forms φ on Ω, taking ψ = φj and using the inner product of the function
space L2

β ,

(4d)

n
∑

j,k=1

(

DjD̄kβ · φj , φk
)

=
∑

j,k

(

D̄kδjφj , φk
)

−
∑

j,k

(

δjD̄kφj , φk
)

=
∑

j,k

(δjφj , δkφk) + {−
∑

j,k

(

D̄kφj , D̄jφk
)

}.

The first term on the right is equal to

(4d′)
(

∑

j

δjφj ,
∑

k

δkφk

)

= ‖δφ‖2.

The last term in (4d) may be rewritten as

−
∑

j,k

=
1

2

∑

j,k

(

D̄kφj − D̄jφk, D̄kφj − D̄jφk
)

−
∑

j,k

(

D̄kφj , D̄kφj
)

,

hence by the definition of ∂̄1 in (1a),

(4d′′) −
∑

j,k

(

D̄kφj , D̄jφk
)

=
∑

1≤j<k≤n

∥

∥D̄kφj − D̄jφk
∥

∥

2 −
∑

j,k

∥

∥D̄kφj
∥

∥

2 ≤ ‖∂̄1φ‖2.
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As to the left-hand side of (4d), writing b = b(z) for the smallest eigenvalue λβ(z) of the
complex Hessian of β(z), one has

∑

(DjD̄kβ)φj φ̄k ≥ b|φ|2, hence

(4d′′′)
∑

j,k

(

DjD̄kβ · φj , φk
)

≥
∫

Ω

b|φ|2e−β .

Combining all the relations (4d), we obtain the following

A PRIORI INEQUALITY 11.41 (for test forms)

∫

Ω

|φ|2e−βb ≤ ‖δφ‖2β + ‖∂̄1φ‖2β , b = λβ , δ = δβ .

For the application of (11.41), we will require that b(z) be > 0 on Ω, in other words
that β be strictly plurisubharmonic.

Because of the final term ‖∂̄1φ‖2 in (11.41), it is not possible to obtain a basic inequal-
ity (4c) for (v, φ)β by straightforward application of Schwarz’s inequality as in the case
n = 1 (3g). In order to keep the norm ‖∂̄φ‖ small, one has to use the fact that ∂̄1v = 0.
Let us assume for the moment that v is in L2

β . [If necessary, one can initially replace Ω by
a suitable subdomain or adjust β outside suppφ.] The idea is to split the test form φ into
two parts, one in the null space N of ∂̄1 in L2

β and one orthogonal to it:

(4e) φ = f + g, f ∈ N, g ⊥ N.

We will verify that N is closed, so that the decomposition is possible, and that as a result

(4f) (v, φ)β = (v, f)β, ∂̄1f = 0, δβf = δβφ ∈ C∞
0 (Ω).

Indeed suppose fν → f̃ in L2
β and ∂̄1fν = 0 for all ν in the sense of distributions, in

other words,

〈D̄jfνk − D̄kfνj , φjk〉 = −〈fνk, D̄jφjk〉+ 〈fνj, D̄kφjk〉 = 0

for all test functions φjk and all j, k. Passing to the limit in the second member, one

concludes that ∂̄1f̃ = 0, hence f̃ ∈ N . Thus the orthogonal decomposition (4e) exists and
since v ∈ N , one has (v, g)β = 0 and the first part of (4f) follows. Finally, note that ∂̄ψ is
in N for every test function ψ on Ω: ∂̄1∂̄ψ = 0. Thus

(4f ′) 0 = (g, ∂̄ψ)β = (δβg, ψ)β, ∀ψ ∈ C∞
0 (Ω)

so that δg = 0 and δf = δφ.
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With (4f) in hand and aiming for a basic inequality (4c), we would like to proceed as
follows, cf. (3g), (11.33):

(4g)
‖(v, φ)β‖2 = ‖(v, f)β‖2 ≤

∫

|f |2e−βb

≤ ‖v‖2β+logb(‖δf‖2β + ‖∂̄1f‖2β) = A2
v‖δφ‖2β.

Observe that the central step would require an extension of the a priori inequality (11.41)
to more general forms f in L2

β for which δf and ∂̄1f are also in L2
β. If Ω is all of Cn,

such an extension may be proved by straightforward approximation of f by test forms,
cf. the approximation theorem 11.51 below. However, on general pseudoconvex Ω, the
approximation 11.51 requires modification of the weight function near the boundary of Ω.
It is difficult to see then how one could prove the precise analog to (11.41) for our form f ,
In Section 11.5 we will carefully select a different weight function e−γ , where γ ≥ β grows
very rapidly towards the boundary of Ω. We then decompose our test form φ in L2

γ to
prove the desired

BASIC INEQUALITY 11.42. For psh exhaustible Ω ⊂ Cn, strictly psh β on Ω [so that
b = λβ > 0] and every (0,1) form v in L2(Ω, e−βb−1) with ∂̄1v = 0, one has [just as for
n=1!]

|(φ, v)β| ≤ ‖v‖β+logb‖δβφ‖β for all test forms φ on Ω.

As in Section 11.3, the existence of L2 solutions to the ∂̄ equation will now follow
from the Riesz representation theorem. For the precise result, see Section 11.6.

11.5. Proof of the basic inequality. Let Ω, β and v be as in the statement of the
inequality (11.42) and let φ be a given test form on Ω. If we decompose φ as in (4e),
the question arises whether we can extend the a priori inequality (11.41) to more general
forms f with δf and ∂̄1f in L2

β . The answer is yes if we know that f is in L2
β−σ, where

the (continuous) function σ becomes sufficiently large near the boundary of Ω:

(5a) σ(z) ≥ 2log+ c

d(z)
for some constant c > 0 and d(z) = d(z, ∂Ω).

[If Ω = Cn one may simply take σ = 0.] Such a result may be derived from the following

Approximation Theorem 11.51. To any given (0,1) form f in L2
β−σ with δf and ∂̄1f

in L2
β and any number ε > 0, there is a test form ψ on Ω such that

‖f − ψ‖β + ‖δ(f − ψ)‖β + ‖∂̄1(f − ψ)‖β < ε.

Here the adjoint δ may belong to β (4b′) or to any other given C∞ function α on Ω.

PROOF. Let f be as in the theorem.
(i) Suppose first that f =

∑n
1 fj dz̄j has compact support K ⊂⊂ Ω. Then one can

use approximating test forms ψ of the type f ∗ ρε, where {ρε} is the usual standard C∞

approximate identity on Cn with suppρε = B̄(0, ε), cf. the proofs of (11.13), (11.14).
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Indeed, since f , δf and ∂̄1f are in the weighted L2 spaces on Ω, we have fj ∈ L2(K),
∀j and

δf = δαf = −
∑

Djfj +
∑

(Djα)fj ∈ L2(K) ∂̄1f ∈ L2(K) (coefficientwise);

as a consequence, also
∑

Djfj ∈ L2(K). Taking ε < r < d(K, ∂Ω)/2, one finds that
supp(f ∗ρε) ⊂ Kr, the r-neighborhood of K. As in the proof of Proposition 11.14, we then
have the following convergence relations in L2(Kr) [and hence in L2(Ω, e−β)] when ε ↓ 0:

fj ∗ ρε → fj , ∀j,
δ(f ∗ ρε) = −

(

∑

Djfj

)

∗ ρε +
∑

(Djα)(fj ∗ ρε)→ δf,

∂̄1(f ∗ ρε) = (∂̄1f) ∗ ρε → ∂̄1f (coefficientwise).

(ii) The general case is reduced the the preceding with the aid of cutoff functions ω,
but these have to be chosen with some care. Making use of the standard exhaustion of Ω
by compact sets

Es = {z ∈ Ω : d(z) ≥ 1/s, |z| ≤ s}, s = 1, 2 . . . ,

we take ρε(z) = ε−2nρ1(z/ε) as before and define

ωs = χs ∗ ρr : χs characteristic function of Es, r = 1/2s.

By this definition (cf. fig 11.1), suppωs ⊂ E2s and ωs = 1 on a neighborhood of Es/2, so
that ∂ωs = D1ωs dz1 + · · ·+Dnωs dzn has its support in E2s − Es/2. It follows that

(5b)

|Djωs(z)| = |D̄jωs(z)| = |χs ∗Djρr(z) =

∣

∣

∣

∣

∣

∫

B(0,r)

χs(z − ζ)Djρr(ζ) dm(ζ)

∣

∣

∣

∣

∣

≤ 1

r

∫

B(0,1)

|Djρ1(w)| dm(w) = 2sc1 < 4c1/d(z),

hence

|δωs| ≤ c2/d(z)

since d(z) < 2/s on supp∂ωs.
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r=1/2s

¶Ω

¶E2s

¶Es

¶Es/2

Es/2

Es

fig 11.1

Now let η > 0 be given. We will show that for large s,

(5c) ‖f − ωs‖ < η, ‖δf − δ(ωsf)‖ < η, ‖∂̄1f − ∂̄1(ωsf)‖ < η.

The first inequality requires only that f ∈ L2
β [we know more]:

‖f − ωs‖2 ≤
∫

Ω\Es/2

|f |2e−β < η2 for s > s1.

For the second inequality we observe that

δ(ωsf) = −
∑

Dj(ωsfj) +
∑

(Djα)ωsfj = ωsδf −
∑

(Djωs)fj .

251



Thus
‖δf − δ(ωsf)‖ ≤ ‖δf − ωsδf‖+ ‖ |∂ωs| · |f | ‖;

The proof is completed by the estimates

‖δf − ωsδf‖2 ≤
∫

Ω\Es/2

|δf |2e−β < η2/4 for s > s2,

∫

|∂ωs|2|f |2e−β ≤
∫

E2s\Es/2

c22|f |2e−β/d2

(

c22/c
2
)

∫

Ω\Es/2

|f |2e−β+σ < η2/4 for s > s3.

In the final step we have used (5b) and inequality (5a): 2logc/d ≤ σ; by our hypothesis, f
is in L2

β−σ.
The proof of the third inequality (5c) is similar, cf. exercise 11.14. With (5c) estab-

lished, the proof of Theorem 11.51 is completed by part (i).

New decomposition of φ. Returning to the proof of the basic inequality, the difficulty
is that in general, the form f in the decomposition (4e) will not be in L2

β−σ. We therefore

recommence and do our splitting of φ in a space L2
γ , where γ will be determined later. To

begin with, we require that

γ ≥ β on Ω, γ = β on suppφ, γ ≥ β + logb near ∂Ω ∪∞.

By the last condition, v ∈ L2
β+logb will be in L2

γ . We now split

(5d) φ = f + g, f ∈ N(∂̄1) ⊂ L2
γ , g ⊥ N.

Since v ∈ N , so that (v, g)γ = 0 and hence δγg = 0 [cf. (4f)],

(5d′) (v, φ)β = (v, φ)γ = (v, f)γ, ∂̄1f = 0, δγf = δγφ = δβφ.

By Schwarz’s inequality,

(5e) |(v, φ)β|2 = |(v, f)γ|2 ≤
∫

|v|2e−γ+σb−1

∫

|f |2e−γ−σb.

[The reason for having the factor exp(−γ − σ) in the last integral is that we later want to
approximate f by test forms, taking the β of the approximation theorem equal to γ + σ.]

It will be necessary to impose suitable additional conditions on σ and γ. The definitive
requirements on σ are:

(5f) σ ∈ C∞, λσ ≥ 0, σ = 0 on K
def
= suppφ, σ(z) ≥ 2log+c/d(z).
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The function γ will be taken C∞ strictly psh and ≥ β + σ, so that the last integral with
v in (5e) is finite. The complete set of requirements for γ is listed in (5h) below.

Adjusted a priori inequality for test forms. Our aim is to estimate the final integral
in (5e). To that end we first derive an ad hoc inequality for test forms ψ and then we will
use approximation. The a priori inequality (11.41) with φ replaced by ψ and β by γ + σ
gives

(5g)

∫

Ω

|ψ|2e−γ−σλγ+σ ≤ ‖δγ+σψ‖2γ+σ + ‖∂̄1ψ‖2γ+σ,

where λγ+σ is the smallest eigenvalue of the complex Hessian of γ + σ. We wish to replace
δγ+σψ by δγψ since we have information about δγf . By (4b′),

δγ+σψ = δγψ +
n
∑

1

(Djσ)ψj = δγψ + ∂σ · ψ.

Hence by the elementary inequality |c1 + c2|2 ≤ (1 + θ)|c1|2 + (1 + θ−1)|c2|2 with arbitrary
θ > 0:

(5g′) ‖δγ+σψ‖2 = ‖δγψ + ∂σ · ψ‖2 ≤ (1 + θ)‖δγψ‖2γ+σ + (1 + θ−1)

∫

|∂σ|2|ψ|2e−γ−σ .

Combining (5g, g′) and noting that λγ+σ ≥ λγ , we obtain

(5g′′)

∫

|ψ|2e−γ−σ(λγ − (1 + θ−1)|∂σ|2) ≤ (1 + θ)‖δγψ‖2γ+σ + ‖∂̄1ψ‖2γ+σ.

We are thus led to impose the following definitive condition on γ ∈ C∞(Ω):

(5h)

{

λγ ≥ b+ (1 + θ−1)|∂σ|2, γ = β on K = suppφ,

γ ≥ β + σ on Ω, γ ≥ β + logb near ∂Ω ∪∞.

The existence of γ = γθ, after σ has been selected, will be verified by means of Proposition
11.53 below. Inequality (5g′′) then gives us the desired

AD HOC A PRIORI INEQUALITY (11.52) for test forms ψ on Ω. For b = λβ , for any
constant θ > 0 and with σ and γ = γ(β, σ, θ,K) as in (5f), (5h),

∫

|ψ|2e−γ−σb ≤ (1 + θ)‖δγψ‖2γ+σ + ‖∂̄1ψ‖2γ+σ.

Use of approximation to establish the basic inequality. The above inequality for test
forms readily extends to general forms f ∈ L2

γ with δγf and ∂̄1f in L2
γ+σ. Indeed, let
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E ⊂ Ω be compact and η > 0. By the approximation theorem 11.51 with γ + σ instead of
β, there will be a test form ψ such that, using (11.52) in the middle step,

(5i)

∫

E

|f |2e−γ−σb ≤
∫

E

|ψ|2e−γ−σb+ η ≤ (1 + θ)‖δγψ‖2γ+σ + ‖∂̄1ψ‖2γ+σ + η

≤ (1 + θ)‖δγf‖2γ+σ + ‖∂̄1f‖2γ+σ + 2η.

We now may first let η go to 0 and then let E tend to Ω. Specializing to the form f
obtained in (5b), (5b′), we conclude from (5i) that

(5i′)

∫

Ω

|f |2e−γ−σb ≤ (1 + θ)‖δγf‖2γ+σ + ‖∂̄1f‖2γ+σ
= (1 + θ)‖δβφ‖2β [γ + σ = β on K = suppφ].

Hence by (5e), noting that γ − σ ≥ β on Ω,

|(v, φ)β|2 ≤
∫

|v|2e−βb−1 · (1 + θ)‖δβφ‖2β .

Since γ = γθ no longer appears here, we can let θ go to 0 and the basic inequality 11.42
follows.

It remains to verify the existence of σ and γ with the properties listed in (5f), (5h).
To that end we prove one final

Proposition 11.53. Let Ω, β and b = λβ be as in the basic inequality 11.42. Then to
any compact subset K ⊂ Ω and any positive constant A, there exist C∞ psh functions σ
and τ , with 0 ≤ σ ≤ τ on Ω and σ = τ = 0 on K, such that

σ(z) ≥ 2log+c/d(z) for some c > 0,

λτ ≥ A|dσ|2 = A
n
∑

1

|Dj |σ|2 on Ω,

τ(z) ≥ logb(z) outside some compact K ′ ⊂ Ω.

Taking K = suppφ and A = 1 + θ−1, the function σ will satisfy the conditions (5f)
and the function γ = β + τ will satisfy the conditions (5h) [λβ+τ ≥ λβ + λτ = b+ λτ ].

PROOF of the Proposition. The proof is a fairly straightforward application of Theorem
9.21 on the existence of rapidly growing psh C∞ functions on a psh exhaustible domain Ω.
One first observes that there are continuous psh exhaustion functions α ≥ 0 and α′ ≥ 0 on
Ω such that

K ⊂ Z(α)0 = intZ(α), Z(α) ⊂ Z(α′)0,

where Z stands for “zero set”. Starting out with an arbitrary continuous exhaustion
function α0, there will be a constant M with α0 − M < 0 on K and one takes α =
sup(α0 −M, 0); similarly for α′.
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If Ω = Cn we choose σ = 0, otherwise we set

2c = d(Z(α′), ∂Ω), m1(z) = 2log+c/d(z).

The nonnegative function m1 will vanish for d(z) ≥ c, so that m1 = 0 on a neighborhood
of Z(α′). Hence by Theorem 9.21 there is a C∞ function σ on Ω such that

σ ≥ m1 and λσ ≥ 0, while σ = 0 on a neighborhood of Z(α).

Once σ has been chosen, we set

m2 =

{

σ on Z(α′)

sup(σ, logb) on Ω \ Z(α′),
µ = A|∂σ|2 on Ω.

Since m2 = µ = 0 on a neighborhood of Z(α), Theorem 9.21(iii) assures the existence of
τ ∈ C∞(Ω) such that

τ ≥ m2 and λτ ≥ µ, while τ = 0 on K.

11.6 General solvability of ∂̄ on pseudoconvex domains. The basic inequality (11.42)
and the Riesz representation theorem will give the following result for Cn:

First Main Theorem 11.61. Let Ω ⊂ Cn be pseudoconvex or plurisubharmonically ex-
haustible and let β ∈ C∞(Ω) be strictly plurisubharmonic, so that the smallest eigenvalue

b = b(z) = λβ(z) of the complex Hessian [ ∂2β
∂zi∂z̄j

] is strictly positive. Let v =
∑n

1 vj dz̄j be

a (0,1) form in L2(Ω, e−βb−1) which (distributionally) satisfies the integrability condition
∂̄1v = 0. Then there exists a function u in L2(Ω, e−β) which solves the equation ∂̄u = v
in the weak sense on Ω and which satisfies the growth condition

∫

Ω

|u|2e−β dm ≤
∫

Ω

|v|2e−βb−1 dm.

If v is of class Cp(Ω), 1 ≤ p ≤ ∞, such a solution u exists in the classical sense as a Cp

function.

For the proof one uses the same method as in Section 11.3: Proposition 11.31 read-
ily extends to Cn, cf. (4c). The basic inequality (11.42) gives the constant A = Av =
‖v‖β + logb which provides the upper bound for ‖u‖β. If v ∈ Cp(Ω) then the solution u
may be modified on a set of measure 0 to obtain a Cp solution [Theorem 11.22].

We will now derive

COROLLARY 11.62. On a pseudoconvex domain Ω the equation ∂̄u = v is globally Cp

solvable for every (0,1) form v of class Cp with ∂̄1v = 0.

In view of Theorem 11.61 it is enough to prove:
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Lemma 11.63. Let Ω ⊂ Cn be pseudoconvex and let v be a locally square integrable
(0,1) form on Ω. Then there exists a strictly psh C∞ function β on Ω such that v ∈
L2(Ω, e−βλ−1

β ).

PROOF. Write Ω = ∪jKj , a countable increasing union of compact subsets. Define a
locally bounded function m on Ω:

m(z) = log+

(

j2
∫

Kj+1\Kj

|v|2
)

on Kj+1 \Kj , j = 1, 2, . . . ,

so that
∫

Kj+1\Kj

|v|2e−m ≤ 1/j2.

Next set µ ≡ 1. Then v ∈ L2(Ω, e−mµ−1). Now by Theorem 9.21 there exists β ∈ C∞(Ω)
with β ≥ m and λβ ≥ µ, hence v ∈ L2(Ω, e−βλ−1

β ).

The case p =∞ of Corollary 11.62 gives the all important final

COROLLARY 11.64. Every pseudoconvex domain is a ∂̄ domain and hence a Cousin-I
domain [cf. Section 7.5]. More significant, every pseudoconvex domain is a domain of
holomorphy [cf. Section 7.7].

11.7 Another growth estimate for the solution of ∂̄ and interpolation. In the first
main theorem 11.61, the factor b−1 in the integral involving v is somewhat inconvenient.
This factor disappears in the special case β = |z|2 for which b = λβ = 1. [Verify this].

Thus for v ∈ L2(Ω, e−|z|2) one gets a nice symmetric growth estimate [cf. exercise 11.16].
More important, in the general case v ∈ L2(Ω, e−α) [with C∞ psh α] one can also

obtain a growth estimate that is free of derivatives of the weight function. Substituting
β = α+ γ in the first main theorem, with γ strictly psh so that λγ > 0, one has

(7a) e−βb−1 = e−α−γ/λα+γ ≤ e−αe−γ/λγ

and one would like this to be ≤ ce−α. Thus one requires that

(7a′) e−γ ≤ cλγ .

Setting γ = g(|z|2) and first taking n = 1 so that λγ = γzz̄ one is led to the condition

e−g(t) ≤ c{tg′′(t) + g′(t)},

cf. (8.1). Some experimentation gives the solution g(t) = 2log(1 + t), c = 1/2, which will
also work for n ≥ 2. Theorem 11.61 will now lead to the case α ∈ C∞ of the following
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Second main Theorem 11.71. Let Ω ⊂ Cn be pseudoconvex and let v be any (0,1)
form of class Cp(Ω), 1 ≤ p ≤ ∞ such that ∂̄1v = 0. Let α be any plurisubharmonic
function on Ωsuch that v ∈ L2

α. Then the equation ∂̄u = v has a Cp solution u on Ω
satisfying the growth condition

(7b)

∫

Ω

|u|2e−α(1 + |z|2)−2 dm ≤ 1

2

∫

Ω

|v|2e−α dm.

PROOF. (i) In the case α ∈ C∞ with λα ≥ 0, the result is obtained from Theorem 11.61
by setting

β = α+ 2log(|z|2 + 1).

Indeed a short calculation will show that [cf. exercise 11.20]

b = λβ ≥ 2(1 + |z|2)−2, e−βb−1 ≤ 1

2
e−α.

Thus if v ∈ L2
α, then also v ∈ L2

β+logb and the result follows.
(ii) Since the estimate (7b) with α ∈ C∞ contains no derivatives of α, the result can

be extended to arbitrary psh functions α on Ω by a suitable limit process.
Let {Ωk}, k = 1, 2, . . . be an exhaustion of Ω with open pseudoconvex domains as

given by (9.1a) or Theorem 9.21, which have compact closure in Ω. Regularizing the given
psh function α as in Section 8.4, we can construct C∞ psh functions αk defined on Ωk and
such that αk ↓ α (k ≥ k0) on each compact subset of Ω.

By part (i) there are functions uk ∈ Cp(Ωk) such that ∂̄uk = v on Ωk and

(7c)

∫

Ωk

|uk|2e−αk(1 + |z|2)−2 ≤ 1

2

∫

Ωk

|v|2e−αk ≤ 1

2

∫

Ω

|v|2e−α, k = 1, 2, . . . .

As αk ≤ αj , it follows that the L2 norms of the functions uk on a fixed set Ωj are
uniformly bounded for k ≥ j. Thus one can choose a subsequence {uν}, ν = νk → ∞
which converges weakly in L2(Ωj) for each j to a limit u in L2

loc(Ω). This convergence is
also in distributional sense [“integrate” against a test form].

For such a limit function u, since differentiation is a continuous operation, cf. Section
11.1,

∂̄u = lim ∂̄uν = v in distributional sense on Ω.

Furthermore, for each j and every k ≥ j,

(7d)

∫

Ωj

|u|2e−αk(1 + |z|2)−2 ≤ lim inf
ν

∫

Ωj

|uν |2e−αk(1 + |z|2)−2

≤ lim inf
ν

∫

Ωj

|uν |2e−αν (1 + |z|2)−2 ≤ 1

2

∫

Ω

|v|2e−α.

Letting k → ∞ the monotone convergence theorem will give that
∫

Ωj
|u|2e−α(1 + |z|2)−2

has the upper bound of (7b) for each j and hence (7b) follows.
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Because v is of class Cp, u can finally be changed on a set of measure zero to provide
a Cp solution [Theorem 11.22].

The main theorems enable one to obtain solutions to various problems on pseudocon-
vex domains Ω subject to growth conditions. We mention one:

Interpolation by analytic functions 11.72. Let {aλ} be a sequence of pairwise distinct
points without limit point in Ω and suppose that α is a psh function on Ω which becomes
−∞ in such a way that e−α is non-integrable on every small ball Br = B(aλ, r):

∫

Br

e−αdm = +∞, ∀r ∈ (0, rλ).

Then a continuous function u in L2(Ω, e−α(1 + |z|2)−2) must vanish at each point aλ: for
small r,

∫

Br

|u(z)|2e−α(1 + |z|2)−2 ≥ 1

2
|u(aλ)|2(1 + |aλ|2)−2

∫

Br

e−α.

This fact can be used to prove the existence of analytic solutions h to interpolation
problems

(7d) h(aλ) = bλ, ∀λ, h ∈ O(Ω), Ω pseudoconvex

which satisfy appropriate growth conditions. One first determines a simple C2 solution g
to the interpolation problem, then subtracts a suitable non-analytic part u to obtain h in
the form g − u. The condition on u will be

(7e) ∂̄u = v
def
= ∂̄g on Ω, u(aλ) = 0, ∀λ. Here v ∈ C1.

One now chooses a psh function α on Ω which is singular on the sequence {aλ} in the way
indicates above, while

∫

|∂̄g|2e−α <∞. [Apparently we had better choose g constant in a
suitable neighborhood of {aλ} so that ∂̄g vanishes at the singular points of α.] Then the
C1 solution u of the ∂̄ equation guaranteed by Theorem 11.71 will satisfy the condition
(7e) and the difference h = g− u will solve the interpolation problem (7d). The growth of
h will be limited by the growth of g and that of u; for the latter one has condition (7b).
By the solid mean value theorem for analytic functions on balls cf. [exercise 2.23], an L2

estimate for h can be transformed into a pointwise estimate.

EXAMPLE 11.74. Determine a holomorphic function h on C of limited growth such that
h(k) = bk, k ∈ Z, where {bk} is any given bounded sequence of complex numbers.

Thinking of the special case bk = 0, ∀k, it is plausible that an interpolating function
h will not grow more slowly than sinπz. However, it need not grow much faster! Indeed,
let ω be a C2 function on C such that ω(z) = 1 for |z| ≤ 1/4, ω(z) = 0 for |z| ≥ 1/2. Then

g(z) =

∞
∑

−∞

bkω(z − k)
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will be a C2 solution of the interpolation problem. A typical non-integrable function on a
neighborhood of 0 in C is 1/|z|2; a function that is non-integrable on every neighborhood
of every integer is 1/| sin2 πz|. Thus a first candidate for α will be 2log| sinπz|. Since D̄g
is bounded on C and vanishes outside the set of annuli 1

4 ≤ |z − k| ≤ 1
2
, while 1/| sin2 πz|

is bounded on that set,
∫

C

|D̄g|2 1

| sin2 πz|(1 + |z|2)
dm ≤ const

∫

|Imz|≤ 1
2

1

1 + |z|2 dm <∞.

Thus a good subharmonic function α is furnished by

α(z) = 2log| sinπz|+ log(1 + |z|2).

The solution of the equation ∂̄u = ∂̄g guaranteed by Theorem 11.71 will satisfy the growth
condition

∫

C

|u|2 1

| sin2 πz|(1 + |z|2)3
dm <∞.

Since g is bounded, it will follow that h = g − u is bounded by c|z|3| sinπz| for |Imz| ≥ 1;
the bound c|z|3 will also hold for |Imz| < 1, |z| ≥ 1.

For this particular problem one knows an explicit solution by a classical interpolation
series, cf. [Boas]. It is interesting that the general method used here gives a nearly optimal
growth result.

Some other applications of Theorem 11.71 are indicated in the exercise 11.21, 11.22,
11.24; cf. also [Hör 1], [Bern], [Sig], [Siu], [Ron]. Further applications are certainly possible.

11.8 “Higher order ” ∂̄ equations. Up till now we have only discussed the equation

(8a) ∂̄u = v on Ω ⊂ Cn

tor the case of (0,1) forms v with ∂̄v = 0. More generally, one may think of v as a (0, q)
form with locally integrable coefficients and ∂̄v = ∂̄qv = 0. The problem is to determine
a (0, q − 1) form u on Ω satisfying (8a). On the whole, the treatment in the general case
parallels the one for q = 1. We will discuss the case q = 2 here, indicating some small
differences with the case q = 1.

For a (0,1) form

u =

n
∑

k=1

uk dzk

with locally integrable coefficients we have

(8b) ∂̄u = ∂̄1u
def
=

n
∑

j,k=1

D̄juk · dz̄j ∧ dz̄k =
∑

′

j,k

(D̄juk − D̄kuj) dz̄j ∧ dz̄k.

Here the prime indicates that we only sum over pairs (j, k) with j < k; we have used the
anticommutative relation [cf. Chapter 10]

dz̄j ∧ dz̄k = −dz̄k ∧ dz̄j ;
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the wedge products dz̄j ∧ dz̄k with 1 ≤ j < k ≤ n form a basis for the (0,2) forms in Cn.
Thus an arbitrary (0,2) form v has a unique representation

(8c) v =
∑

′

j,k

vjkdz̄j ∧ dz̄k =
1

2

n
∑

j,k=1

vjkdz̄j ∧ dz̄k,

where [as is customary] we have defined the coefficients vjk with j ≥ k by antisymmetry:
vjk = −vkj . For computational purposes it is often convenient to work with the normalized
full sums.

A form v on Ω is said to be of class L2
β = L2(Ω, e−β) if the coefficients are; the inner

product of (0,2) forms is given by

(8d) (f, g)β =

∫

Ω

f · ḡ e−β , f · ḡ =
∑

′

j,k

fjkḡjk =
1

2

∑

j,k

fjkḡjk.

As before, we will need the formal adjoint δ = δβ to ∂̄ in L2
β . Let φ be a (normalized) (0,2)

test form, that is, the coefficients are test functions. For our (0,1) form u, using (8b) and
the definition of distributional derivatives,

(∂̄u, φ)0 = 〈∂̄u, φ̄〉 =
∑

′

j<k

〈D̄juk − D̄kuj , φjk〉 =
∑

j,k

〈D̄juk, φ̄jk〉

= −
∑

j,k

〈uk, D̄j φ̄jk〉 = −
∑

j,k

(uk, Djφjk)0.

Applying this result to e−βφ instead of φ with β ∈ C∞, we obtain

(∂̄u, φ)β =
∑

j,k

(uk, δjφjk)
def
= (u, δφ)β, δj = −Dj +Djβ · id.

Thus the adjoint δ = δβ applied to a (0,2) test form φ gives a (0,1) form:

(8e) δφ =
∑

k

(

∑

j

δjφjk

)

dz̄k =
∑

s

(

∑

j

δjφjs

)

dz̄s.

Using the fact that δj and D̄j are adjoints in L2
β and by the commutator relations in

Section 8.4. cf. (4d),

(8f)

(δφ, δφ)β =
∑

s

(

∑

j

δjφjs,
∑

k

δkφks

)

=
∑

s

∑

j,k

(

D̄kδjφjs, φks
)

=
∑

s

∑

j,k

(

DjD̄kβ · φjs, φks
)

+
∑

s

∑

j,k

(

D̄kφjs, D̄jφks
)

.
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We also need (∂̄φ, ∂̄φ)β . The usual definition of ∂̄ = ∂̄2 gives, cf. (8b),

∂̄φ =
∑

s

∑

′

j,k

D̄sφjk · dz̄s ∧ dz̄j ∧ dz̄k =
1

2

∑

s,j,k

. . .

=
∑

′

i<j<k

(

D̄iφjk − D̄jφik + D̄kφij
)

dz̄i ∧ dz̄j ∧ dz̄k.

For the computation of the inner product it is safest to start with the standard represen-
tation in the last line, in terms of a basis. Changing over to full sums one then obtains

∂̄φ · ∂φ̄ = 1
4

∑

s,j,k

∑

t,l,m

D̄sφjk ·Dtφ̄lm · εsjktlm,

where the ε-factor equals 0 unless (t, l,m) is a permutation of (s, j, k); for an even permu-
tation the value of ε is 1, for an odd permutation -1. It follows that

(8f ′) (∂̄φ, ∂̄φ)β =
1

2

∑

s,j,k

(

D̄sφjk, D̄sφjk
)

−
∑

s,j,k

(

D̄sφjk, D̄jφsk
)

.

The last sum also occurs at the end of (8f), although with slightly permuted indices.
Adding (8f′) to (8f), we obtain

(8f ′′)
∑

s

∑

j,k

(

DjD̄kβ · φjs, φks
)

+
1

2

∑

s,j,k

‖D̄sφjk‖2 = (δφ, δφ) + (∂̄φ, ∂̄φ).

Finally introducing the smallest eigenvalue b = λβ of
[

DjD̄kβ
]

, we have in view of (8d):

∑

s

∑

j,k

DjD̄kβ · φjsφ̄ks ≥
∑

s

b
∑

j

|φjs|2 = 2bφ · φ̄.

Combination gives the following a priori inequality for (0,2) test forms:

(8g)

∫

Ω

|φ|2e−βb ≤ 1

2
(δφ, δφ)β +

1

2
(∂̄φ, ∂̄φ)β .

A weak [locally integrable] solution u of the equation (8a) is characterized by the
condition

(δφ, u)β = (φ, ∂̄u)β = (φ, v)β, ∀ test forms φ.

Taking Ω pseudoconvex and β strictly psh, the a priori inequality and suitable approxi-
mation arguments may be used to prove the following basic inequality, cf. Sections 11.4,
11.5:

(8h) |(φ, v)β|2 ≤
∫

|v|2e−βb−1 · 1

2
‖δβφ‖2β .

As before the Riesz representation theorem then gives
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Theorem 11.81. Let Ω ⊂ Cn be pseudoconvex, let β be a strictly psh C∞ function on
Ω and b = λβ . Let v be a (0,2) form in L2

β+logb(Ω) with ∂̄v = 0. Then there is a (0,1) form

u in L2
β(Ω) such that ∂̄u = v and

∫

Ω

|u|2e−β ≤ 1

2

∫

Ω

|v|2e−βb−1.

In the case q ≥ 2 it is not true that all the solutions of the equation ∂̄u = v must be
smooth whenever v is, just think of the case n = q = 2 and v = 0, where the equation
becomes D̄1u2 − D̄2u1 = 0. However, on pseudoconvex Ω, equation (8a) always has a
solution which is orthogonal to the nullspace of ∂̄q−1 in L2

β, cf. Proposition 11.31. Such a
solution does have smoothness properties related to those of v, cf. [Hör1]. In particular,
for v in C∞ there always exists a solution u in C∞.

Exercises

11.1. Show that fν(x) = ν100eiνx → f = 0 distributionally on R as ν →∞.

11.2. Let fν , f in L2
loc(Ω) be such that for every compact subset K ⊂ Ω, fν → f weakly in

L2(K), that is
∫

K
fν ḡ →

∫

K
fḡ, ∀g ∈ L2(K). Prove that fν → f distributionally on

Ω.

11.3. Let {ρε} be the standard approximate identity on Rn [Section3.3]. Prove that ρε → δ
distributionally on every domain Ω ⊂ Rn.

11.4. Show that the delta distribution on Rn is equal to 0 on Rn \{0}, so that suppδ = {0}.
Deduce that δ can not be equal to a locally integrable function on Rn.

11.5. For a distribution T on Rn and a test function φ, the convolution T ∗ φ is defined by
the formula T ∗ φ(x) = 〈T, φ(· − y)〉. Prove that δ ∗ φ = φ and that this convolution
reduces to the ordinary one if T is a locally integrable function.

11.6. Let T be a distribution on Ω ⊂ Rn which is equal to a C1 function f on Ω0 ⊂ Ω.
Prove that ∂T

∂xj
is distributionally equal to the function ∂f

∂xj
on Ω0.

11.7. Let T be a distribution on Ω, ω ∈ C∞(Ω). Prove that

∂

∂xj
(ωT ) =

∂ω

∂xj
T + ω

∂T

∂xj
.

11.8. Let u be a function on Ω ⊂ Cn that depends only on r = |z| : u(z) = f(r). Calculate
∂̄u, assuming that f is piecewise smooth.

11.9. Given that uν → u distributionally on Ω ⊂ Cn, prove that ∂̄uν → ∂̄u distributionally
on Ω. [That is the coefficients converge distributionally.]

11.10. Verify that ∂̄1∂̄ = 0 on Ω ⊂ Cn when applied to:

(i) C∞functions, (ii) distributions.
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11.11. Investigate the case of equality in the a priori inequality for test functions (11.32).

11.12. Let u be a locally integrable function on Ω ⊂ Cn such that [each coefficient of] ∂̄u
is also locally in L1. Let Ω0 ⊂⊂ Ω, ε < d(Ω0, ∂Ω). Prove that for our standard C∞

approximation to the identity ρε, ∂̄(u ∗ ρε) = (∂̄u) ∗ ρε on Ω0.

11.13. Let v be a (0,1) form in L1
loc(Ω) such that ∂̄1v is also in L1

loc(Ω) and let ω be a C∞

function on Ω. Calculate the coefficients of ∂̄1(ωv). Show that in differential form
notation,

∂̄1(ωv) = ω∂̄1v + ∂̄ω ∧ v.

11.14. Let u be an L2 function on Cn of bounded support whose distributional derivatives
∂u
∂z̄j

are in L2 for j = 1, . . . , n. Prove that all first order partial derivatives of u are in

L2. [ Show first that for test functions φ, ‖ ∂φ∂zj
‖ = ‖ ∂φ∂z̄j

‖, then use regularization.]

11.15. Let Ω ⊂ Cn be pseudoconvex and let v be a (0,1) form of class Cp on Ω with ∂̄1v = 0.
Prove that the equation ∂̄u = v has a Cp solution on Ω such that

∫

|u|2e−|z|2 ≤
∫

|v|2e−|z|2 .

11.16. Describe the steps in the proof of the first main theorem 11.61 for the special case
Ω = Cn.

11.17. Prove that the ∂̄ problem considered in the first main theorem 11.61 has a solution or-
thogonal to all holomorphic functions h in that space. Determine the general solution
in L2

β . Which solution has minimal norm? [ Such a minimal solution is sometimes
called the Kohn solution.]

11.18. (Behnke Stein theorem) Prove that the limit of an increasing sequence of domains of
holomorphy in Cn is also a domain of holomorphy.

11.19. Show that for γ(z) = 2log(1 + |z|2) one has λγ = 2(1 + |z|2)−2, so that e−γ = 1
2
λγ

11.20. Let {aλ} be a sequence of distinct points without limit point in Ω ⊂ Cn. Suppose
that there is a continuous psh function α on Ω such that |α(z)− log|z − αλ|| ≤ Cλ on
some small ball B(aλ, rλ) around each point aλ. Deduce that there is a holomorphic
function h 6≡ 0 in Ω which vanishes at the points aλ and does not grow much faster
than enα towards the boundary of Ω. [Force h = 1 at some point a ∈ Ω such that
α(z) ≥ −C on some ball B(a, r).]

11.21. Let u be a psh function on a domain Ω ⊂ Cn and let c > 0. Show that the collection
of points z ∈ Ω such that exp−cu is not integrable over any neighborhood of z is
contained in an analytic variety of dimension < n. [Use an idea from the previous
exercise].

11.22. (Holomorphic extension from a hyperplane with bounds). Let α be a psh function on
Cn such that for some constant A,

|α(z)− α(w)| ≤ A whenever |z − w| < 1.
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Suppose h is a holomorphic function on a complex hyperplane V such that

I(h) =

∫

V

|h|2e−αdσ <∞,

where σ denotes Lebesgue measure on V . Prove that there is a holomorphic function
g on Cn such that g = h on V and

∫

Cn

|g|2e−α(1 + |z|2)−3dm ≤ 6πeAI(h).

[Let ω(t) be continuous on C, 1 for |t| ≤ 1
2 , 0 for |t| ≥ 1 and linear in |t| for 1

2 ≤ |t| ≤ 1.
Taking for V the hyperplane zn = 0, set

g(z′, zn) = ω(zn)h(z′)− znu(z′, zn)

and require ∂̄g = 0. Show that ‖ωh‖2α ≤ πeAI(h) and ‖∂̄u‖α ≤ 4πeAI(h).]

11.23. Develop a theory of L2 solutions with growth estimates for the real equation

du =

n
∑

j=1

∂u

∂xj
dxj = v

on appropriate domains Ω in Rn. [Which are the “right” domains?]

11.24. (Research problem) Prove (or disprove) the following: The a priori inequality 11.32
can be extended to all functions f in L2

β for which δf is also in L2
β . Cf. Theorem

11.51. If this works, try to extend the a priori inequality 11.41. to all forms f in L2
β

with δf ∈ L2
β and ∂̄1f = 0.
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CHAPTER 12

Divisor problem, Cousin problems and cohomology

Cousin Problems and their history were described in Section 1.10 as well as in Chapter 7
They can be fruitfully described in terms of cohomology of sheaves. From the appropriate
cohomology groups the solvability of the Cousin problem can in principle be read off. In this
chapter we will formulate the Cousin II problem, introduce sheaves and study cohomology
groups.

12.1 The problems. We begin with the “hypersurface problem” for arbitrary open
sets Ω ⊂ Cn. A subset V ⊂ Ω is called a (complex) analytic hypersurface (or an analytic
set of complex codimension 1, cf. 4.64), if it is locally a zero set. This means that every
point a ∈ Ω has a neighborhood U ⊂ Ω on which there is a holomorphic function fU , not
identically zero [on any component of U ], such that

V ∩ U = {z ∈ U : fU (z) = 0}.

[We don’t require that V consist of regular points as in the case of a complex submanifold
of codimension 1, cf. Section 5.5.]. The obvious first question is, whether a given analytic
hypersurface V in Ω is also globally a zero set. In other words, is there a holomorphic
function f on Ω such that V , considered as a set, is the same as Z(f)?

For closer analysis, we introduce a suitable open covering {Uλ} of Ω, namely one for
which there are functions fλ ∈ O(Uλ) such that V ∩Uλ = Z(fλ), ∀λ. As long as we ignore
multiplicities, we may require that no fλ be divisible by a square (of a non-unit) on Uλ.
This condition will be satisfied if fλ and, for example, ∂fλ

∂zn
are relatively prime on Uλ, cf.

the proof of Theorem 4.62 on the local form of a zero set. Thus for suitable Uλ and fλ,
all holomorphic functions defining V on Uλ will be multiples of fλ, see the Nullstellensatz
in exercise 4.18. The desired global f also must be a multiple of fλ on Uλ. On the other
hand we don’t want f to vanish outside Z(fλ) on Uλ or more strongly than fλ on Z(fλ),
hence we seek f such that

(1a) f = fλhλ on Uλ, hλ ∈ O∗(Uλ), ∀λ.

Here O∗(U) = {h ∈ O(U) : hν0 on U}, the set of units in O(U). Note that by our
arguments, the given functions fλ and fµ will be compatible on every intersection Uλµ =
Uλ ∩ Uµ in the sense that

(1b) fλ = fµhλµ on Uλµ with hλµ ∈ O∗(Uλµ), ∀λ, µ.

The following more general problem will lead to precisely the same conditions (1a),
(1b). Suppose one start with compatibly given meromorphic functions fλ on the sets Uλ.
Question: Is there a global meromorphic function f on Ω which on each set Uλ has the same
zeros and infinities as fλ, including multiplicities? For a precise formulation we introduce
the classM∗(U) of invertible meromorphic functions on U [those that don’t vanish on any
component of U ].
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DEFINITION 12.11. Let {Uλ}, λ ∈ Λ be a covering of Ω ⊂ Cn by open subsets. A divisor
on Ω associated with {Uλ} is a system of data

D = {Uλ, fλ}, λ ∈ Λ,

involving functions fλ ∈ M∗(Uλ) that satisfy the compatibility condition (1b). If in
addition fλ ∈ O(Uλ), ∀λ, one speaks of a holomorphic divisor.

If a holomorphic or meromorphic function f on Ω satisfies the conditions (1a) we say that
it has D as a divisor. A divisor for which there exists an f as in (1a) is called principal.

12.12 MEROMORPHIC SECOND COUSIN PROBLEM or DIVISOR PROBLEM: Let D
be a divisor on Ω. Is it principal? Or also: Determine a meromorphic function f on Ω
which has D as a divisor.

Much the same as in the first Cousin problem, one may take the functions hλ of (1a)
as unknown. By (1a), (1b) they must satisfy the compatibility conditions hµ = hλhλµ
with hλµ ∈ O∗(Uλµ), hence

hλµ = 1/hµλ, hλµ = hλνhνµ

on the relevant intersection of the sets Uα. We thus arrive at the so-called

(HOLOMORPHIC) COUSIN-II PROBLEM or MULTIPLICATIVE COUSIN PROBLEM.
Let {Uλ}, λ ∈ Λ be an open covering of Ω ⊂ Cn and let {hλµ}, λ, µ ∈ Λ be a family of
zero free holomorphic functions on the (nonempty) intersections Uλ ∩ Uµ that satisfy the
compatibility conditions

(1c)

{

hλµhµλ = 1 on Uλµ = Uλ ∩ Uµ, ∀λ, µ,

hλµhµνhνλ = 1 on Uλµν = Uλ ∩ Uµ ∩ Uν , ∀λ, µ, ν.

Determine zero free holomorphic functions, hλ ∈ O∗(Uλ), such that

(1d) hµ/hλ = hλµ on Uλµ
, ∀λ, µ.

A family of functions hλµ ∈ O∗(Uλµ) satisfying (1c) is called a set of Cousin-II data
on Ω.

Proposition 12.13. A divisor D = {Uλ, fλ} on Ω belongs to a meromorphic function
F on Ω (in the sense of (1a)) if and only if there is a solution {hλ} of the holomorphic
Cousin-II problem on Ω with the data {Uλ, hλµ} derived from (1b).

The proof is similar to that of Proposition 7.14 for the first Cousin problem.

The Cousin-II problem is the multiplicative analog of Cousin-I. At first glance it
might seem that there is a straightforward reduction of Cousin-II to Cousin-I with the aid
of suitable branches of the functions loghλµ. However, the problem is not that easy: even
for simply connected intersections Uλµ, it is not clear if one can choose branches loghλµ in
such a way that, in conformity with (1c),

(1d) loghλµ + loghµλ = 0, loghλµ + loghµν + loghνλ = 0
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on all relevant intersections of sets Uα.
Indeed, as was first shown by Gronwall in 1917, the multiplicative Cousin problem

may fail to be solvable even on domains of holomorphy. The following nice counterexample
is due to Oka.

12.2 Unsolvable and solvable Cousin-II problems. Let Ω be the domain of holo-
morphy

Ω = A1 × A2, Aj = {zj ∈ C : 1− δ < |zj | < 1 + δ}, δ > 0 small.

We consider the holomorphic function

g(z)
def
= z1 − z2 − 1 on Ω.

For points (z1, z2) of the zero set Z(g) one must have (cf. fig. 12.1):

|z1| ≈ 1, |z1 − 1| = |z2| ≈ 1,

hence
z1 ≈ eπi/3, z2 = z1 − 1 ≈ e2πi/3, or z1 ≈ e−πi/3, z2 ≈ e−2πi/3.

For small δ, the zero set will consist of two components which are a positive distance apart.
Setting

A+
j = Aj ∩ {Imzj ≥ 0}, A−

j = Aj ∩ {Imzj ≤ 0},

the set Z(g) will have an “upper” part in A+
1 × A2 [in fact, in A+

1 × A+
2 ] and a “lower”

part in A−
1 × A2 [in fact, in A−

1 × A−
2 ].

0 1

A+
1

A-
1

proj  V

z1 -plane

x x

fig 12.1

We now define an analytic surface V in Ω as the “upper part” of Z(g):

(2a) V = {z ∈ A+
1 ×A2 : z2 = z1 − 1}.
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12.21 CLAIM. There is no holomorphic function f on Ω which has V as its exact zero
set. In other words, there is no function f ∈ O(Ω) with divisor D = {Uj , fj}, j = 1, 2 as
defined below:

U1 : a “small” ε-neighborhood of A+
1 × A2 in Ω,

f1(z) = z1 − z2 − 1 so that Z(f1) = V ,

U2 : a “small” ε-neighborhood of A−
1 × A2 in Ω,

f2(z) = 1 so that Z(f2) = ∅.
The corresponding function h12 = f1/f2 on U12 is in O∗. It is claimed that the Cousin-II
problem for U1, U2 and h12 is unsolvable: h12 can not be written as h2/h1 with hj ∈ O∗(Uj).

PROOF. Suppose on the contrary that there exists f ∈ O(Ω) with divisor D as above, or
equivalently, that the corresponding Cousin-II problem has a solution {hj}, j = 1, 2. In
both cases we can write

(2b) f = fjhj on Uj , with hj ∈ O∗(Uj), j = 1, 2.

We will obtain a contradiction by comparing the increase of arg f(1, w) along the unit
circle with that of arg f(−1, w). In fact, computation of the difference in the increases by
remaining inside U1 will differ from what we get by remaining inside U2. We start with
the latter.

Our f would be in O∗(U2), hence for fixed z1 ∈ A−
1 , the function f(z1, w) is holo-

morphic and zero free on A2. There is then a continuous (even holomorphic ) branch of
logf(z1, w) on the open arc C1 = C(0, 1) \ {1}. With ∆C1g denoting the increment of g
along C1, we have

νf (z1)
def
=

1

2π
∆C1 arg f(z1, w) =

1

2πi
∆C1 logf(z1, w) =

1

2πi

∫

C(0,1)

∂f(z1, w)/∂w

f(z1, w)
dw.

This integer valued function of z1 is continuous on A−
1 , hence constant. In particular

νf (1)− νf (−1) = 0.

We will now compute the same difference via the domain U1. On U1,

f = f1h1 = (z1 − z2 − 1)h1 = gh,

say, where h = h1 ∈ O∗(U1). Thus for h, just as for f before but now remaining inside U1,

νh(1)− νh(−1) = 0.

However, for g(z1, w) = z1 − w − 1 direct calculation gives

νg(z1) =
1

2πi

∫

C(0,1)

−1

z1 − w − 1
dw =

{

1 if z1 = 1,

0 if z1 = −1.

Hence, going via U1, we obtain the answer

νf (1)− νf (−1) = νg(1) + νh(1) + νg(−1)− νh(−1) = 1!

This contradiction shows that our divisor problem or Cousin-II problem has no solution:
there is no f ∈ O(Ω) with Z(f) = V .
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REMARK 12.22. The method may be adapted to show that the above Cousin-II problem
does not even have a continuous solution. That is, there exist no functions gj ∈ C∗(Uj)
(zero free continuous functions) such that h12 = g1/g2 on U12. [For merely continuous f
one can of course not express νf (z1) by the integral used above.] The non-existence of a
continuous solution suggests a topological obstruction. In fact, Oka proved a result on the
holomorphic divisor problem akin to the following

Theorem 12.23. Let Ω ⊂ Cn be a Cousin-I domain. The Cousin-II problem on Ω with
compatible data {Uλ, hλµ} has a holomorphic solution if and only if it has a continuous
solution.

PROOF. We only give an outline since we will prove a more refined result later on.
(i) Just as in the case of Cousin-I the given Cousin-II problem will be solvable if and only

if its refinements are solvable (cf. Proposition 7.32).
(ii) Refining our problem, if necessary, we assume that the sets Uλ, and hence the inter-

sections Uλµ, are convex. On a convex set a zero free holomorphic (or continuous)
function has a holomorphic (or continuous) logarithm, cf. Proposition 12.72 below.

(iii) Supposing now that our original Cousin-II problem has a solution, the same is true
for the refined problem. That is, if we denote the (possibly) refined data also by
{Uλ, hλµ}, there exist functions gλ ∈ C∗(Uλ) such that hλµ = gµ/gλ on Uλµ, for all
λ, µ. Choosing continuous logarithms loggλ on the sets Uλ, we then define

loghλµ = loggµ − loggλ on Uλµ, ∀λ, µ.

Since hλµ is holomorphic and loghλµ continuous, loghλµ will be holomorphic on Uλµ.
Indeed, loghλµ will have local representations similar to (7a) below.
The present functions loghλµ will automatically satisfy the compatibility conditions

(1d) for the additive Cousin problem. Thus since Ω is a Cousin-I domain, there exist
functions ϕλ ∈ O(Uλ) such that

loghλµ = ϕµ − ϕλ on Uλµ, ∀λ, µ.

It follows that
hλµ = eϕµ/eϕλ on Uλµ,

that is, the Cousin-II problem is solved by the functions hλ = eϕλ ∈ O∗(Uλ).

Theorem 12.23 is an example of the heuristic “Oka principle”: If a problem on a
domain of holomorphy is locally holomorphically solvable and if it has a global continuous
solution, then it has a global holomorphic solution.

12.3 Sheaves. Sheaves were introduced and studied by Cartan, Leray and Serre. They
were used by Cartan and Grauert in connection with the solution of the Levi-problem.
Sheaves have been a highly successful tool in several parts of mathematics, particularly in
algebraic geometry. Examples of sheaves are scattered all over this book. It is high time
we formally define them.
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DEFINITION 12.31. A sheaf F over a space X with projection π is a triple (F , π,X)
where F and X are topological spaces and π is a surjective local homeomorphism.

A section of (F , π,X) over an open U ⊂ X is a continuous map σ : U → F such that σ ◦π
is the identity mapping on U . The sections over U are denoted by F(U) or Γ(U) = Γ(U,F).
A stalk of (F , π,X) is a subset of F of the form π−1(x) where x ∈ X.

A sheaf of rings, (abelian) groups, etc. is a sheaf F with the property that the
stalks F(x) have the structure of a ring, respectively, an (abelian) group, etc. of which the
algebraic operations like addition or multiplication are continuous. The latter means the
following: form the product space F × F with product topology and consider the subset

F · F = {(f1, f2) ∈ F × F : π(f1) = π(f2)}.
Now addition (for example) in the stalks of F gives rise to a map

+ : F · F → F , (f1, f2) 7→ f1 + f2,

which has to be continuous.

EXAMPLES 12.32. Let D be a domain in Cn.
(i) The constant sheaves C × D, Z × D, etc. over D. Projection is ordinary projection

on D. Observe that C (and Z etc.) need be equipped with the discrete topology.
(ii) The Riemann domains (R, π,D) of Definition 2.12 equipped with the usual topology,

that is, defined by the basic neighborhoods N (p, V, g).
(iii) The sheaf of germs of holomorphic functions on U , denoted by OU , with projection

π : [f ]a 7→ a. Here [f ]a denotes the germ of an analytic function f at a point
a ∈ U . For OU to become a sheaf we have to give it a topology that makes π a local
homeomorphism. This can be done in a way similar to example (ii): A base for the
topology is given by the sets

(3a) N (V, f) = {[f ]a : a ∈ V } where f ∈ O(V ).

Sections over V can be identified with holomorphic functions on V : To a holomorphic
function f on V we associate the section

σf : a 7→ [f ]a.

It is an easy exercise to check that σ is continuous. The fact that O(V ) indicates both
sections over V and holomorphic functions on V reflects this association.

(iv) Let K denote an algebra of functions on U . Thus K could be C∞(U) or ∧p,q(U) the
(p, q)-forms on U (our functions may well be vector valued!) A germ of a function in
K was defined in Section 2.1. As in the previous example these germs together form
a sheaf a base for the topology of which is given similar to (3a). We thus obtain the
sheaf C∞

U of germs of smooth functions on U , the sheaf ∧p,qU of germs of smooth p, q
forms on U , the sheaf O∗

U of holomorphic zero free functions on U , the sheaf MU of
germs of meromorphic functions on U (strictly speaking this one does not consists of
germs of functions), etc. Again sections and functions can be identified.

It is easily seen that the examples (i, iii, iv) have the property that the stalks are
abelian groups or have even more algebraic structure. We leave it to the reader to check
that the algebraic operations are continuous.

We need some more definitions.
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DEFINITION 12.33. Let F and G be sheaves over X with projections πF , respectively
πG . A continuous map ϕ : F → G is called a sheaf map if

πF = πG ◦ ϕ.

G is called a subsheaf of F if for all x ∈ X we have Gx ⊂ Fx. If F and G are sheaves of
abelian groups then a map of sheaves ϕ : F → G is called a sheaf homomorphism if its
restriction to each stalk is a group homomorphism. Similarly one defines homomorphisms
of sheaves of rings, etc.

Observe that a sheaf homomorphism ϕ : F → G induces homomorphisms ϕ∗ : F(U) →
G(U), ϕ∗(σ) = ϕ ◦ σ for σ ∈ F(U).

12.4 Cohomological formulation of the Cousin-problems. Cousin-I and Cousin-II
data {hλµ} associated with an open covering {Uλ} of Ω ⊂ Cn are examples of so-called
cocycles consisting of sections in the sheaves O and O∗ over Ω. These are sheaves of abelian
groups. The group operation will always be denoted by + (it is multiplication of germs
in case of O∗!). In this section we will deal with Cousin problems associated to arbitrary
sheaves of abelian groups over domains in Cn

12.41. GENERAL COUSIN PROBLEM. Suppose we have a open covering U = {Uλ},
λ ∈ Λ of Ω ⊂ Cn. For a sheaf of abelian groups F over Ω, Cousin data associated with U
consist of sections fλµ of F , one over each intersection Uλµ, λ, µ ∈ Λ, such that

(4a) fλµ + fµλ = 0,

(4b) fλµ + fµν + fνλ = 0

on the relevant intersections of sets Uα. One tries to determine a family of sections fλ ∈
Γ(Uλ,F), (λ ∈ λ), such that

(4c) fλµ = fµ − fλ on Uλµ, ∀λ, µ.

We introduce some further terminology. With a covering U = {Uλ} of Ω there are associ-
ated various cochains “with values in” F .

DEFINITION 12.42. (Cochains for U with values in F). A zero-cochain f 0
− is a family

of sections {fλ}, fλ ∈ Γ(Uλ). It is simply a function on Λ assuming specific sections of F
as values:

f0
− : λ 7→ f0

λ ∈ Γ(Uλ), λ ∈ Λ.

A 1-cochain f1
− is a family of sections {fλµ}, fλµ ∈ Γ(Uλµ) with the alternating property

(4a). It is an alternating function on Λ2:

f1
− : (λ, µ) 7→ f1

λ,µ ∈ Γ(Uλµ), λ, µ ∈ Λ.
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An s-cochain f s− is an alternating function on Λs+1:

fs− : (λ0, λ1, . . . , λs) 7→ fsλ0λ1...λs
∈ Γ(Uλ0λ1...λs

), λj ∈ Λ.

Here Uλ0λ1...λs
= Uλ0

∩ . . . ∩ Uλs
, while alternating means that for a permutation σ with

sign ε(σ) we have f sσ(λ0λ1...λs) = ε(σ)fsλ0λ1...λs
.

For s-cochains associated to U one defines addition as addition of the values of the cochain.
Thus one obtains the abelian group of s-cochains:

Cs(U) = Cs(U ,F).

Starting with a 0-cochain f 0
− for U , formula (4c) defines a 1-cochain f 1

− which is
denoted by δf0

−. We need a corresponding operator on s-cochains:

δ = δs : Cs(U)→ Cs+1(U).

DEFINITION 12.43 (Coboundary operator). For an s-cochain f s− = {fλ0λ1...λs
} one de-

fines δfs− ∈ Cs+1(U) by

(δfs−)λ0λ1...λs+1
=

s+1
∑

r=0

(−1)rfλ0...λ̂r ...λs
on Uλ0λ1...λs+1

, ∀(λ0, λ1, . . . λs+1),

where λ̂r means that the index λr is omitted.

Observe that δ is a homeomorphism.

Illustration. The Cousin data in (12.41) consist of a 1-cochain f 1
− = {fλµ} for U with

values in F ((4a)), such that δf 1
− = 0 ((4b)). The Cousin problem is whether there exists

a 0-cochain f0
− for U with values in F such that f 1

− = δf0
− ((4c)).

DEFINITION 12.44 (Cocycles and coboundaries for U and F). An s-cochain f s− is called
an s-cocycle if

δfs− = 0.

An s-cochain f s− is called a s-coboundary if (s ≥ 1 and)

fs− = δfs−1
− ,

for some (s− 1)-cochain f s−1
− .

Because δ is a homomorphism, the s-cocycles form a subgroup

Zs(U) = Zs(U ,F) ⊂ Cs(U ,F);

Similarly the s-coboundaries form a subgroup

Bs(U) = Bs(U ,F) ⊂ Cs(U ,F).
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Lemma 12.45. Every s-boundary is an s-cocycle:

δ2 = δsδs−1 = 0, s ≥ 1,

hence Bs(U) is a subgroup of Zs(U).

PROOF. This is a verification similar to the one for the ∂̄ operator.

(δsδs−1f
s−1
− )λ0λ1...λs+1

=

s+1
∑

r=0

(−1)r(δs−1f
s−1
− )λ0...λ̂r...λs+1

=
s+1
∑

r=0

(−1)r
r−1
∑

k=0

(−1)kfs−1

λ0...λ̂k...λ̂r...λs+1

+
s+1
∑

r=0

(−1)r
s+1
∑

k=r+1

(−1)k−1fs−1

λ0...λ̂r ...λ̂k...λs+1

= 0,

because of cancelation.
The case s = 0 is somewhat special: there are no real coboundaries and one defines

B0 = {0}. For a 0-cocycle f 0
− = {fλ} one has

fµ − fλ = 0 on Uλµ, ∀λ, µ.

Apparently a 0-cocycle determines a global section of F : one may define f ∈ Γ(Ω,F) in a
consistent manner by setting

f = fλ on Uλ, ∀λ.

In this setup the groups Cs(U ,F) form what is called a semi-exact sequence or com-
plex:

(4d) · · · δ−→Cs−1(U ,F)
δ−→Cs(U ,F)

δ−→Cs+1(U ,F)
δ−→· · · . (δ ◦ δ = 0)

This notion makes sense for sequences of abelian groups connected through homo-
morphisms with the property that the composition of two consecutive ones is 0. Thus a
semi-exact sequence of abelian groups is a sequence

· · ·−→Aj
fj−→Aj+1

fj+1−→Aj+2−→· · ·

with fj+1 ◦ fj = 0. If, moreover, the kernel of fj+1 equals the image of fj , the sequence
is called exact. The same terminology applies to sequence of sheaves of abelian groups
connected through sheaf homomorphisms. Finally, a short exact sequence is an exact
sequence of the form

0→ A
f−→B

g−→C → 0.

It follows that here f is injective, while g is surjective.
The important objects are the quotient groups of (4d):
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DEFINITION 12.46 ((v)Cech Cohomology groups for U and F). The quotient group

Hs(U ,F)
def
=
Zs(U ,F)

Bs(U ,F)
=

s-cocycles

s-coboundaries

is called the s-th cohomology group for the covering U of Ω with values in F . The elements
are equivalence classes of s-cocycles, the cosets of the subgroup of s-coboundaries.

For s = 0 one has

(4e) H0(U ,F) = Z0(U ,F) = Γ(Ω,F).

The cohomology groups are zero if and only if (4d) is exact. They measure the “amount
of inexactness” of the complex.

ILLUSTRATION The Cousin problem asks if a given 1-cocycle f 1
− for U and F is a

1-coboundary. Thus this Cousin problem is always solvable when every 1-cocycle is a
1-coboundary, in other words when

H1(U ,F) = 0.

EXAMPLE 12.47. [cf. Example (7.17)]. Take F = O, Ω = C2 − {0}, Uj = {zjν0}, j =
1, 2. The associated 0-cochains h0

− = {h1, h2} are given by the holomorphic functions

hi(z) =
∑

α∈Z2

aiαz
α on Ui (i = 1, 2),

with aiα = 0 if α1−i < 0. The 1-cochains h1
− = {h11, h12, h21, h22} are given by holomorphic

functions

(4f) h11 = h22 = 0, h12(z) = −h21(z) =
∑

α∈Z2

cαz
α on U12.

The relations in (4f) follow from the alternating property of cocycles. The 1-cochains are
at the same time 1-cocycles since there are only two different indices:

(δh1
−)jkl = hkl − hjl + hjk = 0

whenever two indices such as k and l are the same.

The 1-coboundaries are those 1-cocycles, for which h12 on U12 equals a difference h2 − h1

of functions hj ∈ O(Uj). That is, (4f) represents a coboundary if and only if

cα = a1
α − a2

α, ∀α ∈ Z2.

This requirement presents no problem if α1 ≥ 0 or α2 ≥ 0 (or both). However if α1, α2 < 0
there is no solution unless cα = 0 Thus the coboundaries are those cocycles with cα = 0,
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(αi < 0). The cohomology group H1(U ,O) is isomorphic to the group of holomorphic
functions

h12(z) =
∑

αi<0

cαz
α on U12.

EXAMPLE 12.48. Taking F and Ω as above, we consider the covering V1 = {0 < |z| < 2},
V2 = {1 < |z| < ∞}. The associated Cousin problem will be generally solvable. Indeed
every holomorphic function h12 on V12 = {1 < |z| < 2} has an analytic continuation
to B(0, 2) [by Hartogs’ spherical shell theorem, Sections 2.8, 3.4]. Thus such a function
is written as h12 = 0 − h1 with h1 the analytic continuation to V1 of h12. Conclusion:
H1({V1, V2},O) = 0.

12.5 Definition of the domain cohomology groups Hs(Ω,F). The illustration to
(12.46) gives the precise condition H1(U ,F) = 0 for the general solvability of the Cousin
problem for F and a fixed covering U of Ω. We would also like to have a condition on Ω
which assures the general solvability of the Cousin problem for every covering of Ω. [For
the sheaf O such a condition was that Ω be a ∂̄ domain, cf. Chapter 7.] Keeping F fixed
we write

Hs(U ,F) = Hs(U).

By Proposition 7.32 whose proof is valid for general sheaves F , refinement of Cousin data
does not affect the solvability of the Cousin problem, Thus if V is a refinement of U and
H1(V) = 0, so that all Cousin problems for V are solvable, then in particular all refinements
to V of Cousin problems for U are solvable, hence all Cousin problems for U are solvable
so that H1(U) = 0.

What will happen in general to the cohomology groups if we refine the covering U of Ω
to V? We will see that H1(U) is always (isomorphic to a subgroup of H1(V). Refinement
may lead to large and larger groups H1(W) which ultimately become constant. The limit
group is called H1(Ω,F). For s ≥ 2 the situation is more complicated; in the general
case one needs the notion of a direct limit to define Hs(Ω,F), see below. We need two
propositions

Proposition 12.51. A refinement of the covering U of Ω to V via a refinement map σ
induces a unique homomorphism σ∗ = σ(U ,V) of H(U) to H(V), that is a sequence of
homomorphisms σ∗

s(U ,V) : Hs(U)→ Hs(V). Uniqueness means here that the homomor-
phism is independent of the choice of the refinement map.

PROOF. Let the covering V = {Vj}, j ∈ J , of Ω be a refinement of the covering U = {Uλ},
λ ∈ Λ and let σ : J → Λ be a refinement map, that is, every set Vj is contained in Uσ(j).
To every cochain f s− ∈ Cs(U) the map assigns a cochain in Cs(V) — denoted by σ(f s−) —
by restriction. Specifically, for s = 0, 1, . . ., we have, with σ = σs,

σ(fs−)j0j1...js = fsσ(j0)σ(j1)...σ(js) | Vj0j1...js .
The maps σ on cochain groups are clearly homomorphisms. Moreover they commute

with the coboundary operator δ:

δs ◦ σs = σs+1 ◦ δs, (Cs(U)→ Cs+1(V)).
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Thus, the image of a cocycle is again a cocycle and the image of a coboundary is a
coboundary, that is, σs maps Zs(U) into Zs(V) and the subgroups Bs(U) into Bs(V). It
follows that σ induces a homomorphisms σ∗

s of the quotient groups by σ∗
s : [fs−] 7→ [σfs−],

in other words, we found a homomorphism

σ∗ : Hs(U)→ Hs(V).

We will now indicate how to show that σ∗ depends only on the refinement and not
on the refinement map. Here the notion of a chain homotopy is useful. Suppose that σ
and τ are two (chain) homomorphism from the complexes C(U) to C(V) associated to
the refinement mappings σ and τ . A chain homotopy between σ and τ is a (sequence of)
map(s)

Θ = {Θs}, Θs : Cs(U)→ Cs−1(V), (s = 1, 2, . . .).

with the property that

(5a) Θs+1δs + δs−1Θs = (σs − τs).

Assuming that Θ has been constructed, suppose that fs is an s-cocycle. Then δfs = 0 and
(5a) gives (σs − τs)fs = δs−1Θsfs, which is a coboundary. Thus σ∗ = τ∗.

Now we have to define Θ:

(5b) [Θsf
s
−]j0j1...js−1

=
s−1
∑

r=0

(−1)rfτ(j0)τ(j1)...τ(jr)σ(jr)...σ(s−1).

Verification of (5b) is a tedious calculation. However, if we can prove that (5b) defines a
chain homotopy for those τ and σ which are equal on J − {k} for one k ∈ J , then we are
done, because we can deform two arbitrary refinement maps to each other by a chain of
deformations, changing one j ∈ J at a time. Now if τ(j) = σ(j) on J − k, then there are
two possibilities

i. k is not in j0, . . . js. Then (σs − τs)(fj0...js) = 0 and (5b) equals 0 so we are done.
ii. k is in j0, . . . js. We may assume k = j0. We find

(σs − τs)(fj0...js) = fσ(j0)...σ(js) − fτ(j0)...τ(js).

To verify (5b) we compute, keeping in mind that fλ0...λs
= 0 if two indices are equal,

[δΘsf
s
−]j0j1...js =

s
∑

l=0

(−1)l[Θsf
s
−]j0j1...ĵl...js = +

s
∑

l=1

(−1)lfs
τ(j0)σ(j0)σ(j1)...ĵl...σ(js−1)

and

[Θs+1δf
s
−]j0j1...js = [δf ]τ(j0)σ(j0)...js

= (σs − τs)(fj0...js) +

s
∑

l=1

(−1)l+1fs
τ(j0)σ(j0)σ(j1)...ĵl...σ(js−1).

Adding yields (5b).
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Proposition 12.52. For s = 1 the homomorphism σ∗ = σ(U ,V) in Proposition 12.51 is
injective, hence if V is a refinement of U then H1(U) is isomorphic to a subgroup of H1(V).

PROOF. Let f1
− be an arbitrary cocycle in Z1(U), with cohomology class [f 1

−] ∈ H1(U).
Supposing that σ∗[f1

−] = [σf1
−] = 0 in H1(V), we have to show that [f 1

−] = 0. But this
follows from (the proof of) Proposition 7.32 on refinements of Cousin problems. Indeed if
σf1

− is a coboundary for V, the refined Cousin problem for V and σf 1
− is solvable, but then

the original Cousin problem for U and f 1
− is also solvable, so that f 1

− is a coboundary for
U .

DEFINITION 12.53. The (domain) cohomology group Hs(Ω) = Hs(Ω,F) is the “direct
limit” of the (coverings) groups Hs(U) = Hs(U ,F) under the mappings σ(U ,V), associated
with all possible refinements of coverings U of Ω to coverings V. The direct limit may be
defined as the set of equivalence classes of elements in the disjoint union ∪UHs(U) over all
coverings U of Ω. Elements u ∈ Hs(U) and v ∈ Hs(V) are equivalent if there is a common
refinement W of U and V such that u and v have the same image in Hs(W), that is,

σ∗(U ,W)u = σ∗(V,W)v.

Every element of [u] of Hs(Ω) has a representative u in some group Hs(U). For any
refinement W of this U the class [u] will contain the element σ(U ,W)u of Hs(W). The
sum of two elements [u] and [v] in Hs(Ω), where u ∈ Hs(U) and v ∈ Hs(V) is formed
by adding the representatives σ(U ,W)u and σ(V,W)v in Hs(W), where W is a common
refinement of U and V.

By Propositions 12.51 and 12.52 we have the following important

COROLLARY 12.54. The map u ∈ Hs(U) 7→ [u] ∈ Hs(Ω) defines a homomorphism of
Hs(U) into Hs(Ω) and for s = 1 this homomorphism is injective. In particular H1(U) is
isomorphic to a subgroup of H1(Ω) and H1(Ω,F) = 0 (The Cousin problem for Ω with
values in F is solvable) if and only if H1(U ,F) = 0 for every covering U of Ω.

REMARK. One may also think of the elements of Hs(Ω) as equivalence classes of cocycles
in the disjoint union ∪UZs(U) over all coverings U of Ω. To this end one extends the notion
of cohomologous cocycles to cocycles belonging to different coverings: f s− ∈ Zs(U) and
ϕs− ∈ Zs(V) are called equivalent or cohomologous in ∪UZs(U) if they have cohomologous
images in Zs(W) for some common refinement W of U and V. Observe that a common
refinement of U and W always exists: Take

W = {W = U ∩ V : U ∈ U , V ∈ V}.

12.6 Computation of H(Ω,F) and in particular H1(Ω,O). We first prove a general
result on the computation of H1(Ω) = H1(Ω,F).
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Theorem 12.61. Let U = {Uλ}, λ ∈ Λ be any covering of Ω ⊂ Cn by Cousin domains
for F : H1(Uλ,F) = 0 for all λ. Then

H1(Ω,F) ∼= H1(U ,F).

PROOF. We have to show that H1(W) is (isomorphic to) a subgroup of H1(U) for every
covering W of Ω, so that H1(U) is maximal and thus equal to H1(Ω). Now H1(W) is a
subgroup of H1(V) for any common refinement V of U and W [Proposition 12.52], hence
it is sufficient to show that

(6a) H1(V) ∼= H1(U) for all refinements V of U .

Choose a refinement V = {Vj}, j ∈ J of U and an associated 1-cocycle ϕ1
− = {ϕjk}.

Restriction of ϕ1
− to Uλ gives a 1-cocycle (also denoted by ϕ1

−) on Uλ for the covering
{Vj ∩ Uλ}, j ∈ J . By the hypotheses this cocycle is a coboundary: we can choose a
0-cochain ϕ0

−λ or ϕλ− on Uλ such that

ϕjk = ϕλk − ϕλj on Vjk ∩ Uλ, ∀j, k.

We do this for all λ; on Uµ we find

ϕjk = ϕµk − ϕ
µ
j on Vjk ∩ Uµ, ∀j, k.

Thus on Uλµ ∩ Vjk, ϕµk − ϕλk = ϕµj − ϕλj , so that we may define fλµ in a consisted manner
on Uλµ by setting

(6b) fλµ = ϕµj − ϕλj on Uλµ ∩ Vj , ∀j ∈ J.

One readily verifies that (6b), ∀λ, µ ∈ Λ defines a 1-cocycle f 1
− for the covering U .

For given ϕ1
−, this cocycle may depend on the choices of the 0-cocycle ϕλ−. However, if we

make different choices ψλ− then ψλk − ψλj = ϕλk − ϕλj , hence the differences ψλj − ϕλj define

a 0-cochain g− for U via gλ = ψλj − ϕλj on Uλ ∩ Vj , ∀j. The result is that f1
− is replaced

by the cohomologous cochain f̃1
− = f1

− + δg−:

f̃λµ − fλµ = ψµj − ψλj − (ϕµj − ϕλj ) = gµ − gλ on Uλµ ∩ Vj , ∀j.

Thus by our process, the cohomology class of f 1
− in Z1(U) is uniquely determined by ϕ1

−.
Note also that coboundaries go into coboundaries: for a coboundary ϕ1

− we may take the
0-cochains ϕ0

−λ equal to ϕ0
− independent of λ and we then obtain f 1

− = 0! Thus we have
a map of cohomology classes belonging to Z1(V) into cohomology classes belonging to
Z1(U) and this map is a homomorphism. The map is injective too: if f 1

− is a coboundary,
fλµ = fµ − fλ, (6b) shows that the definition χj = ϕλj − fλ, ∀λ gives a 0-cochain χ− for V
and ϕ1

− = δχ−.
The conclusion is that our process defines an injective homomorphism of H1(V) into

H1(U), hence H1(V) is a subgroup of H1(U). Since conversely H1(U) is a subgroup of
H1(V) [Proposition 12.52], the proof of (6a) is complete.
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EXAMPLE 12.62. For Ω = C2−{0} one may compute H1(Ω,O) with the aid of example
(12.47).

Theorem 12.61 is a special case of the following theorem of J. Leray, a proof of which can be
found in [GuRo], or [GrRe]. Call a covering {Uλ} of Ω ⊂ Cn acyclic if Hs(Uλ1...λj

,F) = 0
for all s ≥ 1 and for all intersections Uλ1...λj

.

Theorem 12.63 (Leray). For every acyclic covering U of Ω:

Hs(Ω,F) ∼= Hs(U ,F), s = 0, 1, 2, . . . .

In the case of the first Cousin problem, (F = O), we have general solvability for all
coverings U of Ω ⊂ Cn if and only if H1(Ω,O) = 0. By Chapter 7 we also have general
solvability if and only if the equation ∂̄u = v on Ω is generally C∞ solvable for all (0,1)-
forms v (of class C∞) for which ∂̄v = 0. Recall that (the sheaf of sections of) (p, q) forms
on Ω is denoted by ∧p,q = ∧p,q(Ω).

For p = 0, 1, . . . we have an exact sequence of sheaves

(6c) 0→ Op,0 i−→∧p,1 ∂̄−→∧p,2 ∂̄−→· · · ∂̄−→∧p,n → 0.

Here Op,0 is the subsheaf of ∧p,0 consisting of germs (p, 0) forms with holomorphic co-
effients; O0,0 = O. Exactness follows from the fact that ∂̄∂̄ = 0 and that locally, for
example on polydiscs (Section 7.6, Chapter 11), the equation ∂̄u = v, has a solution if
∂̄v = 0. To (6c) is associated a semi-exact sequence of the groups of sections, that is, the
groups of smooth differential forms on Ω:

(6d) 0→ Op,0(Ω)
i−→∧p,1(Ω)

∂̄−→∧p,2 (Ω)
∂̄−→· · · ∂̄−→∧p,n (Ω)→ 0.

In general (6d) is not exact, globally the equations ∂̄u = v, may not have a solution even if
∂̄v = 0. Again cohomology groups will measure the amount of inexactness. See Definition
12.68 below.

Before pursuing this any further we will compute some trivial cohomology groups.
We have seen in Chapter 7 that it is useful to be able to solve smooth Cousin-I problems,
in order to connect them to the Cauchy-Riemann equations. Now we will do something
similar in terms of cohomology. First we introduce some terminology.

DEFINITION 12.64. Let Ω ⊂ Cn and let U be an open covering of Ω and F a sheaf
of abelian groups over Ω. A partition of unity of F subordinate to U is a set of sheaf
homomorphisms βλ : F → F such that

i.
∑

λ βλ = id on F ;
ii. βλ([f ]x) = [0]x for all x in some open neighborhood of the complement of Ūλ.

EXAMPLES 12.65. Let U be a covering of Ω ⊂ Cn and let {β̃λ} be a (usual) partition
of unity subordinate to U . Then the β̃λ give rise to a partition of unity {βλ} of the sheaf
C∞ on Ω by

βλ([u]z) = [β̃λu]z.

Similarly ∧p,q(Ω) admits a partition of unity subordinate to U .
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DEFINITION 12.66. A sheaf of abelian groups F over Ω is called fine if for every (locally
finite) covering U of Ω it admits a partition of unity subordinate to U .

The sheaves in 12.65 are fine sheaves.

Theorem 12.67. Suppose that F is a fine sheaf over Ω and that U is any locally finite
covering of Ω. Then Hp(Ω,U) = 0, (p ≥ 1), for every U and therefore Hp(Ω,F) = 0 for
p ≥ 1.

PROOF. Let U = {Uλ} be a locally finite covering of Ω and let βλ be the associated
partition of unity of F . It suffices to show that for p > 0 every p-cocycle (for U and F) is
a p-coboundary. This is done similarly to the proof of Theorem 7.41. Let σ− ∈ Zp(U ,F).
Put

τλ0···λp−1
=
∑

µ

βµ(σµλ0···λp−1
).

Notice that βµ(σµλ0···λp−1
) is at first only defined on Uµ ∩ Uλ0···λp−1

, but extends to
Uλ0···λp−1

because it vanishes in a neighborhood of the boundary of Uµ. Thus τ is a
well defined (p− 1) cocycle. We compute

(δτ)λ0···λp
=

p
∑

i=0

(−1)iτλ0···λ̂i···λp
=

p
∑

i=0

(−1)i
∑

µ

βµ(σµλ0···λ̂i···λp
)

=
∑

µ

βµ

(

p
∑

i=0

(−1)iσµλ0···λ̂i···λp

)

=
∑

µ

βµ(σλ0···λp
) = σλ0···λp

,

where we have used that σ is a cocycle, i.e.
∑p+1

i=0 (−1)iσλ0···λ̂i···λp+1
= 0, for all indices λi,

in particular with λ0 = µ, and that
∑

µ βµ = id.

DEFINITION 12.68. Forms v with ∂̄v = 0 are called ∂̄ closed, forms v = ∂̄u are called ∂̄
exact. Let Zp,q

∂̄
(Ω) denote the group of ∂̄ closed forms in ∧p,q(Ω) and let Bp,q

∂̄
(Ω) denote

the group of ∂̄ exact forms in ∧p,q(Ω). The quotient groups are the Dolbeault cohomology
groups:

Hp,q

∂̄
(Ω)

def
=
Zp,q
∂̄

(Ω)

Bp,q
∂̄

(Ω)
.

Thus general solvability of the first Cousin problem may also be expressed by the condition
H0,1(Ω) = 0. As a consequence H1(Ω,O) = 0 if and only if H0,1

∂̄
(Ω) = 0. Much more is

true:

Theorem 12.69 (Dolbeault). Let Ω ⊂ Cn be open and let U be a locally finite covering
of Ω that consists of domains of holomorphy. Then for p = 0, 1, . . . , n

Hq(Ω,O) = H0,q

∂̄
(Ω) = Hq(U ,O).

For the proof we need some results from homological algebra. Let

0→ E i−→F s−→G → 0
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be an exact sequence of sheaves over Ω. For U open in Ω there is an associated exact
sequence of groups of sections

(6e) 0→ E(U)
i∗−→F(U)

s∗−→G0(U)→ 0.

Here G0(U) denotes the image of F(U) under s∗ in G(U), which need not be all of G(U).
Similarly, if U is an open covering of Ω, then there is an induced exact sequence of chain
groups with Cs0(U ,G) the image of s∗ in Cs(U ,G):

(6e′) 0→ Cs(U , E)
i∗−→Cs(U ,F)

s∗−→Cs0(U ,G)→ 0.

See exercise 12.11.
The coboundary operator δ commutes with the maps i∗ and s∗. One thus obtains the

following commutative diagram with exact columns.

(6f)

0 0 0




y





y





y

· · · δ−→ Cs−1(U , E)
δ−→ Cs(U , E)

δ−→ Cs+1(U , E)
δ−→· · ·





y

ϕ





y

ϕ





y

ϕ

· · · δ−→ Cs−1(U ,F)
δ−→ Cs(U ,F)

δ−→ Cs+1(U ,F)
δ−→· · ·





y
ψ





y
ψ





y
ψ

· · · δ−→ Cs−1
0 (U ,G)

δ−→ Cs0(U ,G)
δ−→ Cs+1

0 (U ,G)
δ−→· · ·





y





y





y

0 0 0

.

Commutative means, of course, that every two possible compositions of maps originating
at the same group and ending in the same group yield the same map. The maps ϕ and ψ
commute with δ and therefore (compare the proof of Proposition 12.51) take cocycles to
cocycles, coboundaries to coboundaries. Thus ϕ and ψ induce homomorphisms ϕ∗, ψ∗:

(6g) Hs(U , E)
ϕ∗

−→Hs(U ,F)
ψ∗

−→Hs
0(U ,G), s = 0, 1, 2 . . .

The various sequences (6g) are connected through a homomorphism induced by δ:

Proposition 12.610 (Snake Lemma). Associated to the commutative diagram (6f)
there exist connecting homomorphisms δ∗ : Hs

0(U ,G)→ Hs+1
0 (U , E) for the sequences (6g)

such that the following sequence is exact:

0−→H0(U , E)
ϕ∗

−→H0(U ,F)
ψ∗

−→H0
0 (U ,G)

δ∗−→H1(U , E)
ϕ∗

−→H1(U ,F)
ψ∗

−→H1
0 (U ,G)

δ∗−→H2(U , E)
ϕ∗

−→H2(U ,F)
ψ∗

−→H2
0 (U ,G)

δ∗−→· · · .
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PROOF. We define δ∗ by chasing through the diagram. Take a cocycle g ∈ Zs(U ,G).
The map ψ is surjective, hence there exists f ∈ Cs(U ,F) with ψf = g. Observe that
ψδf = δψf = δg = 0, thus δf ∈ Cs+1(U ,F) belongs to the kernel of ψ and as ϕ is
injective, ∃! e = e(f) ∈ Cs+1(U , E) such that δf = ϕe. We compute ϕδe(f) = δδf = 0,
hence, because ϕ is injective, e(f) ∈ Zs+1(U , E). Now we wish to define δ∗[g] = [e(f)].

We have to check that this is well defined, that is, independent of the choice of f in
the class [f ] and, moreover, that if g is a coboundary, e is a coboundary too.

Suppose ψ(f̃ − f) = 0. Then f̃ − f = ϕes so that δ(f̃ − f) = ϕδes. In other words
e(f̃)− e(f) = δes, that is [e(f̃)] = [e(f)].

Next suppose that g = δgs−1 is a coboundary. Then gs−1 = ψfs−1 for some fs−1 ∈
Cs−1(U ,F). Also gs = ψfs. Now observe that ψ(fs−δfs−1) = 0, so that fs−δfs−1 = ϕes.
We obtain that δfs = δ(fs − δfs−1) = δϕes = ϕδes. We conclude that e(f) = δes a
coboundary.

Finally we show exactness of the sequence. This is again done by chasing the diagram
(6f).

At Hp(U, E). [ep] ∈ im δ∗ ⇔ ∃fp−1 : δψfp−1 = 0 and ϕep = δfp−1 ⇔ [ϕep] = 0.
At Hp(U,F). [fp] ∈ kerψ∗ ⇔ ∃gp−1 : ψfp = δgp−1 ⇔ ∃fp−1 : δψfp−1 = ψδfp−1 =

ψfp ⇔ ∃fp−1 : ψ(fp − δfp−1) = 0⇔ ∃fp−1 : fp + δfp−1 ∈ imϕ⇔ [fp] ∈ imϕ∗

At Hp
0 (U,G). δ∗[gp] = 0⇔ ∃fp : ψfp = gp and [ϕ−1δfp] = 0⇔ ∃epϕ−1δfp = δep ⇔

δ(fp − ϕe) = 0⇔ f − ϕe ∈ Zp(U ,F) and ψ∗[f − ϕe] = [ψf ] = [g].

Now we wish to pass to the direct limit and also replace C0 by C in the exact sequence.
We need

Lemma 12.611. Keeping the notation as before, suppose that g− ∈ Cp(U ,G). Then
there exists a refinement V of U with refinement map σ such that the refined cochain gσ
is in Cp0 (V,G).

PROOF. After refinement if necessary, we may assume that U is a special open covering
in the sense of 7.33 and that there is an open covering W = {Wλ} with the property that
W̄λ ⊂ Uλ. Let gλ0···λp

be a p cochain in Cp(U ,G). Because the sequence (6e) is exact, there
exists for every z ∈ Ω and every λ0 · · ·λp with z ∈ Uλ0···λp

a neighborhood Vz ⊂ Uλ0···λp

such that gλ0···λp
| Vz = s ◦ fλ0···λp

| Vz for some fλ0···λp
defined on Vz. For a fixed z there

are only finitely many intersections Uλ0···λp
that contain z, because the covering is locally

finite. Thus we may choose Vz independent of λ0 · · ·λp. Shrinking Vz if necessary, we may
also assume that Vz ∩Wλ 6= ∅ implies that Vz ∈ Uλ and z ∈ Wλ implies that Vz ∈ Wλ.
From {Vz}z∈Ω we select a countable, locally finite subcovering {Vi = Vzi

} and we define the
refinement function σ by choosing σ(i) ∈ {λ : z ∈Wλ}. Suppose that Vi0···ip is nonempty.
Then for 0 ≤ j ≤ p Vi0∩Wσ(ij) 6= ∅, hence Vi0 ⊂ Uσ(ij). Now the refined cochain σ(g)i0··· ip
is the restriction of the function gσ(i0)···σ(ip) defined on Uσ(i0)···σ(ip) ⊃ Vi0 , and therefore
there exists f = fσ(i0)···σ(ip) on Vi0 with s ◦ f = g on Vi0···ip .

COROLLARY 12.612 (Snake Lemma). The following sequence is exact

0−→H0(Ω, E)
ϕ∗

−→H0(Ω,F)
ψ∗

−→H0(Ω,G)
δ∗−→H1(Ω, E)

ϕ∗

−→H1(Ω,F)
ψ∗

−→H1(Ω,G)
δ∗−→H2(Ω, E)

ϕ∗

−→H2(Ω,F)
ψ∗

−→H2(Ω,G)
δ∗−→· · · .
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PROOF. Lemma 12.611 and the fact that δ commutes with refinement maps imply that
every cocycle in Zp(V,G) may be refined to a cocycle in Zp0 (U ,G). Also a coboundary
δg may be refined to a coboundary in Bp0(V,G) by refining g. We infer that H2

0 (Ω,G) =
H2(Ω,G). Exactness of the sequence in 12.612 is obtained by passing to the direct limit
in 12.610.

Proof of Theorem 12.69. Consider the exact sequence

0−→Lp,q i−→∧p,q ∂̄−→Lp,q+1−→0.

Here Lp,q stands for the sheaf of germs of ∂̄ closed (p, q) forms (which is of course the same
as the sheaf of germs of ∂̄ exact (p, q) forms). The Snake Lemma gives the following exact
cohomology sequence

(6h) · · · i
∗

−→Hj(Ω,∧p,q) ∂̄∗

−→Hj(Ω,Lp,q+1)
d∗−→Hj+1(Ω,Lp,q) i∗−→Hj+1(Ω,∧p,q) ∂̄∗

−→· · · .

In view of Theorem 12.67 we obtain

0
∂̄∗

−→Hj(Ω,Lp,q+1)
d∗−→Hj+1(Ω,Lp,q) i∗−→0.

Thus Hj(Ω,Lp,q+1) is isomorphic to Hj+1(Ω,Lp,q) and repeating this we find

(6i). H1(Ω,Lp,q) ∼= Hq+1(Ω,Op)

Also, from (6h) with j = 0 we see

Γ(Ω,∧p,q) ∂̄∗

−→Γ(Ω,Lp,q+1)
d∗−→H1(Ω,Lp,q)−→0

is exact, therefore H1(Ω,Lp,q) ∼= Γ(Ω,Lp,q+1)/∂̄∗Γ(Ω,∧p,q). Combining this with (6i)
yields

Hq+1(Ω,Op) ∼= Γ(Ω,Lp,q+1)/∂̄∗Γ(Ω,∧p,q),

which proves Hq(Ω,O) = H0,q

∂̄
(Ω), by taking p = 0.

If the covering U consists of domains of holomorphy, then all ∂̄ equations may be
solved on u ∈ U , hence in (6e, 6e’) we have G0(U) = G(U) and Cs0(U ,G) = Cs(U ,G). Thus
in the exact sequence of Proposition 12.610 we have Hp

0 (U ,G) = Hp(U ,G). We conclude
that we may repeat the previous proof with Ω replaced by U and obtain

Hq+1(U ,Op) ∼= Γ(Ω,Lp,q+1)/∂̄∗Γ(Ω,∧p,q),

which proves Hq(U ,O) = H0,q

∂̄
(Ω).
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12.7 The multiplicative Cousin problem revisited. Cousin-II data consist of a cover-
ing U of Ω and an associated 1-cocycle h1

− ∈ Z1(U ,O∗), cf. (1c, 1d). The group operation
in O∗ is multiplication. The question is to determine if h1

− is a coboundary. The illustration
to 12.46 and Corollary 12.54 lead to the following observation.

OBSERVATION 12.71. Let Ω ⊂ Cn be open. The multiplicative Cousin problem is
generally solvable for a fixed covering U of Ω if and only if

H1(U ,O∗) = 0.

It can generally be solved for every covering U of Ω if and only if

H1(Ω,O∗) = 0.

One obvious way to try and solve Cousin-II problems is to reduce them to Cousin-I
problems by passing to the logarithms of the data. Therefore it is necessary that the
functions hλµ ∈ O∗(Uλµ) should admit holomorphic logarithms, hence we have to work
with appropriate coverings.

Proposition 12.72. For a domain V ⊂ Cn, each of the following conditions suffices
for the existence of continuous (or holomorphic) logarithms of zero free continuous (or
holomorphic) functions g on V :
(i) V is simply connected: all closed curves in V can be contracted to a point inside V ;
(ii) H1(V,Z) = 0.

PROOF. (i) On a sufficiently small ball B(c, δ) in V , a continuous (or holomorphic) branch
of logg may be defined by setting

(7a)

logg(z) = logg(c) + p.v.log

{

1 +
g(z)− g(c)

g(c)

}

= logg(c) +
∞
∑

1

(−1)k−1

k

{

g(z)− g(c)

g(c)

}k

.

Here logg(c) is an arbitrary value of the logarithm; one takes δ > 0 so small that |g(z)−
g(c)| < |g(c)| throughout B(c, δ).

On every Jordan arc from a fixed point a to a point b in V , a continuous branch of
logg may be obtained with the aid of a suitable covering of the arc by small balls. If all
arcs from a to b in V are homotopically equivalent (that is, obtainable from each other by
continuous deformation within V ), then logg(b) may be defined unambiguously in terms
of logg(a) with the aid of connecting Jordan arcs in V . Thus on simply connected V , a
zero free continuous function g has a continuous logarithm. If g is holomorphic, so is the
logarithm, as can be seen from (7a) locally.

(ii) Consider the exact sequence of sheaves

0−→Z
i−→O exp−→O∗−→0,
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where exp denotes the map f 7→ e2πif . This gives rise to a long exact cohomology sequence

(7b)
0−→H0(V,Z)

i∗−→H0(V,O)
exp∗

−→H0(V,O∗)
δ∗−→H1(V,Z)

i∗−→H1(V,O)
exp∗

−→H1(V,O∗)
δ∗−→H2(V,Z)−→· · ·

Recalling that H0(V,F) equals the global sections of F , we see that H1(V,Z) = 0 implies
that exp∗ is surjective to H0(V,O∗), hence every zero free holomorphic function is of the
form exp g with g holomorphic on V .

There is a similar exact sequence of sheaves for continuous functions

0−→Z
i−→C exp−→C∗−→0,

and the preceding argument gives the result for continuous logarithms.
The exact sequence (7b) gives further insight into the Cousin-II problem:

Theorem 12.73 (Serre) Let Ω ⊂ Cn be a Cousin-I domain. Then the Cousin-II
problem (and by Proposition 12.13, also the divisor problem) is generally solvable on Ω
whenever

H2(Ω,Z) = 0.

PROOF. We have to prove that H1(Ω,O∗) = 0. Looking at the exact sequence (7b) and
using that H1(Ω,O) = H2(Ω,Z) = 0 we derive from exactness of

0 = H1(Ω,O)
exp∗

−→H1(Ω,O∗)
δ∗−→H2(Ω,Z) = 0,

that H1(Ω,O∗) = 0.

As an application we obtain an answer to the so-called Poincaré problem: When do
meromorphic functions have global representations as quotients of holomorphic functions?

Theorem 12.74. Let Ω be a Cousin-I domain in Cn such that H2(Ω,Z) = 0. Then every
meromorphic function f on Ω has a global representation

f =
g

h
, g, h ∈ O(Ω)

with g and f relatively prime everywhere on Ω.

PROOF. Let f be meromorphic on Ω, that is, every point a ∈ Ω has a neighborhood Ua on
which f can be represented as a quotient ga/ha of holomorphic functions (Section 7.1). It
may be assumed that ga and h−a are relatively prime at a. They are then relatively prime
on some neighborhood of a, cf. Section 4.6 and exercise 4.19. Hence there is a covering U
of Ω such that

f =
ϕλ
ψλ

on Uλ, ∀λ ∈ Λ

with ϕλ and ψλ relatively prime everywhere on Uλ.
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On Uλµ one has ϕλψµ = ϕµψλ. It follows that ϕλ and ϕµ have the same prime factors
at every point of Uλµ:

ϕλ
ϕµ

= hλµ ∈ O∗(Uλµ);

similarly ψλ/ψµ = 1/hλµ. The pairs {Uλ, ϕλ} will form a holomorphic divisor D1 on Ω.
By Theorem 12.72 the divisor problem for D1 is solvable: there are holomorphic functions
hλ ∈ O∗(Uλ) such that hλµ = hµ/hλ on Uλµ and the formula

g
def
= ϕλhλ on Uλ, ∀λ

defines a holomorphic function g on Ω with divisor D1. Similarly the formula h = ψλ/hλ
on Uλ, ∀λ defines a holomorphic function h on Ω with divisor {Uλ, ψλ}. Finally, f = g/h
on every Uλ and hence on Ω, and the functions g and h are relatively prime everywhere
on Ω.

12.8 Cousin-II and Chern classes. It is very reasonable to ask which individual
Cousin-II problems {U , h1

−} on Ω ⊂ Cn are solvable. For that question we will take a
closer look at the map

(8a) c : H1(U ,O∗)
δ∗−→H2(U ,Z)

j−→H2(Ω,Z).

DEFINITION 12.81. Let U be an open covering of Ω ⊂ Cn. The Chern class of a 1-
cocycle h1

− ∈ Z1(U ,Ω) is the element c(h1
−) in H2(Ω,Z) assigned to it by (8a). The Chern

class of a divisor D = {Uλ, fλ} is defined as the Chern class of the corresponding cocycle
h1
− = {hλµ = fλ/fm} on Uλµ, see 12.12

c(D) = c(h1
−).

REMARK . From (8a) it is clear that the Chern class c(h1
−) only depends on the coho-

mology class [h1
−].

We now compute the Chern map of a 1-cocycle h1
− ∈ Z1(U ,Ω), that is, we make the

computation of δ∗ in (7b) explicit. If necessary we refine the covering U to V via a
refinement map σ in order to make sure that σ(h1

−) ∈ C1
0 (V,O∗). Pulling back σ(h1

−)ij
under exp yields a 1-cochain loghσ(i)σ(j) ∈ C1(V,O). Applying δ to the result gives a
2-coboundary

(8b) gijk = loghjk − loghik + loghij ∈ C2(V,O),

where we have suppressed σ in the indices. Because h1
− is a (multiplicative) 1-cocycle,

that is hλµhµνhνλ = 1, (8b) gives that gijk/2πi is in fact Z valued. As the Snake Lemma
shows, gijk/2πi is a 2-cocycle in Z2(U ,Z). Thus c(h1

−)ijk = gijk/2πi ∈ H2(Ω,Z).
We summarize:
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Theorem 12.82. Suppose Ω ⊂ Cn is a Cousin-I domain, H1(Ω,O) = 0. A Cousin-II
problem {U , h1

−} on Ω is solvable if and only if the Chern class c(h1
−) is zero. A divisor D

on Ω is principal if and only if its Chern class c(D) equals zero.
Suppose moreover that H2(Ω,O) = 0. Then the Chern map is an isomorphism,

H1(Ω,O) ∼= H2(Ω,Z).

PROOF. The first part rephrases what we have seen before, the last part follows from the
long exact sequence (7b).

Exercises

12.1 Let Ω be a domain in C, {aλ} a family of isolated points in Ω and {mλ} any corre-
sponding family of positive integers. Construct a continuous function on Ω which for
each Λ is equal to (z − aλ)mλ on a suitable disc ∆(aλ, ρλ) and which is equal to 1
outside ∪λ∆(aλ, 2ρλ).

12.2 (Continuation) Prove that there is a holomorphic function f on Ω which vanishes of
precise order mλ in aλ, ∀λ but which has no other zeros on Ω.

12.3 What does an arbitrary divisor on Ω ⊂ C look like? Split it into a positive and a
negative part. Prove that every divisor problem on Ω ⊂ C is solvable.

12.4 Prove Proposition (12.13) on the equivalence of the divisor problem and the corre-
sponding Cousin-II problem.

12.5 Is every Cousin-II problem on a domain Ω ⊂ C solvable?

12.6 Let Ω be a Cousin-II domain in Cn, M an (n− 1)-dimensional complex submanifold
of Ω. Prove that there is a global holomorphic defining function f for M , that is,

M = {z ∈ Ω : f(z) = 0},

while f is nowhere divisible by the square of a non-unit. [By the last condition, every
holomorphic function on a neighborhood U of a ∈ Ω which vanishes on M ∩ U must
equal a multiple of f around a.]

12.7 (Continuation). Let h be a holomorphic function on M . Prove that there is a holo-
morphic function g on Ω such that g |M = h. [If ∂f

∂zn
ν0 at a ∈M , then M is locally

given by zn = ϕ(z′) and h(z′, ϕ(z′)) will be holomorphic on a neighborhood of a′,
hence one may interpret h as a holomorphic function on a neighborhood of a which is
independent of zn. Now look at the proof of Theorem (7.21), but divide by f instead
of zn.]

12.8 Calculate Hs(U ,F) for the trivial covering U = {Ω} of Ω.

12.9 Prove that Ω is a Cousin-I domain if and only if H1(Ω,O) = 0. Compute H1(Ω,O)
for Ω = C3 − {0}.

12.10 Check that refinement commutes with the coboundary operator.
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12.11 Prove that an exact sequence of sheaves induces exact sequences of (chain) groups
(6e,6e’)

12.12 Let Ω ⊂ Cn be a simply connected domain in the usual sense. Prove that H1(Ω,Z) =
0.

12.13 Compute H1(A,Z) for the annulus A = {z ∈ C : 1 < |z| < 2}.
12.14 Let Ω and Ω′ in Cn be biholomorphically equivalent (or at least homeomorphic).

Prove that H2(Ω′,Z) = 0 if and only if H2(Ω,Z) = 0. Can you prove, more generally,
that Hp(Ω′,Z) ∼= Hp(Ω,Z)?

12.15 Show that all convex domains in Cn are Cousin-II domains.

12.16 Let Ω be a domain in C2. Prove that Ω is a Cousin-II domain
(i) if Ω = D1 ×D2 where D1 ⊂ C and D2 ⊂ C are simply connected;

(ii) if Ω = D1 ×D2 where D2 ⊂ C is simply connected.

12.17 Give an example of an exact sequence of sheaves such that for some covering U of Ω
and some s, Cs(U ,G)νCs0(U ,G). (Cp. (6e))

12.18 (Sheaf of divisors) The quotient sheaf D =M∗/O∗ of germs of invertible meromor-
phic functions modulo invertible holomorphic functions over the points of Ω is called
the sheaf of divisors of Ω.
(i) Show that a divisor D = {Uλ, fλ} belonging to a covering U of Ω is a global

section of D over Ω;
(ii) Show that the divisor problem for given D may be formulated as follows: Is there

a section of f ofM∗ over Ω which is mapped onto the given section D under the
quotient map q : M∗−→M∗/O∗?

(iii) Show that the following sequence of sheaves over Ω is exact:

0−→O∗ i−→M∗ q−→D−→0.

(iv) Show that the divisor problem for D is solvable if and only if D ⊂ kernelϕ
where ϕ is the map Γ(Ω,D)−→H1(Ω,O∗) in the long exact cohomology sequence
generated by the sequence in (iii).

12.19 Let Ω be the domain Cn − {0}, n ≥ 3. Show that H1(Ω,O) = 0. Next show
H2(Ω,Z) = 0. Conclude that the Poincaré problem for Ω is solvable and observe that
the proof of Theorem 5.73 is completed.

12.20 Let Ω = Cn − {z : z1 = z2 = · · · = zk = 0}. Prove that if k ≤ n − 2, then
H1(Ω,O) = 0.

12.21 De Rham cohomology Dolbeault cohomology is modeled on the (easier) De Rham
cohomology: Consider a domain Ω ⊂ Rn, and its sheaf of germs of s-forms ∧s.
(i) Define a linear operator d from C∞ to Λ1 by

df =

n
∑

1

∂f

∂xj
dxj
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and from Λs to Λs+1 by

d(f(x) dxi1 ∧ . . . ∧ dxis) = df ∧ dxi1 ∧ . . . ∧ dxis

and linearity. Show that d2 = 0.
(ii) A p-form u is called closed if du = 0, exact if it is of the form dv. Prove that on

a ball every closed p-form is exact. Conclude that

0−→C
d−→Λ1 d−→Λ2 d−→ . . .

is an exact sequence of sheaves.
(iii) Introduce de Rham cohomology groups Hp

d (Ω) as closed p-forms modulo exact
p-forms. Copy the proof of the Dolbeault Theorem to show that

Hp(Ω,C) ∼= Hp
d (Ω).
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