THE PERCEPTRON

The McCulloch-Pitts Neuron

- The first mathematical model of a neuron [Warren McCulloch and Walter Pitts, 1943]
- Binary activation: *fires* (1) or *not fires* (0)
- Excitatory inputs: the a's, and Inhibitory inputs: the b's
- Unit weights and fixed threshold θ
- Absolute inhibition

Computing with McCulloch-Pitts Neurons

- Any task or phenomenon that can be represented as a logic function can be modelled by a network of MP-neurons
 - {OR, AND, NOT} is functionally complete
 - Any Boolean function can be implemented using OR, AND and NOT
 - Canonical forms: CSOP or CPOS forms
 - MP-neurons ⇔ Finite State Automata

Limitation of MP-neurons and Solution

- Problems with MP-neurons
 - Weights and thresholds are analytically determined.
 Cannot learn
 - Very difficult to minimize size of a network
 - What about non-discrete and/or non-binary tasks?
- Perceptron solution [Rosenblatt, 1958]
 - Weights and thresholds can be determined analytically or by a learning algorithm
 - Continuous, bipolar and multiple-valued versions
 - Efficient minimization heuristics exist

Perceptron

- Architecture
 - Input: $\vec{x} = (x_0 = 1, x_1, \dots, x_n)$
 - Weight: $\vec{w} = (w_0 = -\theta, w_1, \dots, w_n)$, θ = bias

- Net input:
$$y = \vec{w}\vec{x} = \sum_{i=0}^{n} w_i x_i$$

- Output
$$f(\vec{x}) = g(\vec{w}\vec{x}) = \begin{cases} 0 & \text{If } \vec{w}\vec{x} < 0 \\ 1 & \text{If } \vec{w}\vec{x} \ge 0 \end{cases}$$

- Pattern classification
- Supervised learning
- Error-correction learning

Perceptron Analysis

• Perceptron's *decision boundary*

 $w_1x_1 + \dots + w_nx_n = \theta$

$$w_0x_0 + w_1x_1 + \dots + w_nx_n = 0$$

- All points
 - below the hyperplane have value 0
 - on the hyperplane have the same value
 - above the hyperplane have value 1

Perceptron Analysis (continued)

- Linear Separability
 - A problem (or task or set of examples) is linearly separable if there exists a hyperplane $w_0x_0 + w_1x_1 + \cdots + w_nx_n = 0$ that separates the examples into two *distinct* classes
 - Perceptron can only learn (compute) tasks that are linearly separable.
 - The weight vector \vec{w} of the perceptron correspond to the coefficients of the separating line
- Non-Linear Separability
 - Limitations of the perceptron: many real-world problems are highly non-linear
 - Simpe Boolean functions:
 - * XOR, EQUALITY, ... etc.
 - * Linear, parity, symmetric or ... functions

Perceptron Learning Rule

• Test problem

- Let the set of training examples be

$$[\vec{x}_1 = (1, 2), d_1 = 1]$$
$$[\vec{x}_2 = (-1, 2), d_2 = 0]$$
$$[\vec{x}_3 = (0, -1), d_3 = 0]$$

- The bias (or threshold) be b = 0
- The initial weight vector be $\vec{w} = (1, 0.8)$

We want to obtain a learning algorithm that finds a weight vector \vec{w} which will correctly classify (separate) the examples.

Perceptron Learning Rule (continued)

- First input \vec{x}_1 is misclassified with positive error. What to do?
- Idea: move hyperplane to separating position
- Solution:
 - Move \vec{w} closer to \vec{x}_1 : add \vec{x}_1 to \vec{w} .

$$* \vec{w} = \vec{w} + \vec{x}_1$$

- First rule: positive error rule

If d = 1 and a = 0 then $\vec{w}^{new} = \vec{w}^{old} + \vec{x}$

Perceptron Learning Rule (continued)

- Second input \vec{x}_2 is misclassified with negative error
- Solution:
 - Move \vec{w} away from \vec{x}_2 : substract \vec{x}_2 from \vec{w} .

$$* \vec{w} = \vec{w} - \vec{x}_2$$

- Second rule: negative error rule

If d = 0 and a = 1 then $\vec{w}^{new} = \vec{w}^{old} - \vec{x}$

Perceptron Learning Rule (continued)

- Third input \vec{x}_3 is misclassified with negative error
- Move \vec{w} away from to \vec{x}_3 : $\vec{w} = \vec{w} \vec{x}_3$

- The perceptron will correctly classify inputs $\vec{x}_1, \vec{x}_2, \vec{x}_3$ if presented to it again. There will be no errors
- Third rule: no error rule

If
$$d = a$$
 then $\vec{w}^{new} = \vec{w}^{old}$

Perceptron Learning Rule (continued)

• Unified learning rule

$$\vec{w}^{new} = \vec{w}^{old} + \delta \vec{x} = \vec{w}^{old} + (d-a)\vec{x}$$

• With learning rate η

$$\vec{w}^{new} = \vec{w}^{old} + \eta \delta \vec{x} = \vec{w}^{old} + \eta (d-a)\vec{x}$$

- \bullet Choice of learning rate η
 - Too large: learning oscillates
 - Too small: very slow learning
 - $0 < \eta \leq 1$. Popular choices:
 - $* \eta = 0.5$

 $* \eta = 1$

- Variable learning rate $\eta = \frac{|\vec{w}\vec{x}|}{|\vec{x}^2|}$
- Adaptive learning rate

— ...etc.

Perceptron Learning Algorithm

Initialization: $\vec{w}_{0} = \vec{0};$ t = 0;Repeat t = t + 1;Error = 0;For each training example $[\vec{x}, d_{\vec{x}}]$ do $net = \vec{w} \cdot \vec{x};$ $a_{\vec{x}} = g(net);$ $\delta_{\vec{x}} = d_{\vec{x}} - a_{\vec{x}};$ $Error = Error + |\delta_{\vec{x}}|;$ $\vec{w}_{t+1} = \vec{w}_t + \eta \cdot \delta_{\vec{x}} \cdot \vec{x};$ { or equivalently, For $0 \le i \le n$ $w_{i,t+1} = w_{i,t} + \eta \cdot \delta_{\vec{x}} \cdot x_i;$ } Until Error = 0;Save last weight vector;

- Perceptron convergence theorem: [M. Minsky and S. Papert, 1969] The perceptron learning algorithm terminates if and only if the task is linearly separable
- Cannot learn non-linearly separable functions

Perceptron Learning Algorithm (continued)

- Termination criteria
 - Assured for small enough η and I.s. functions
 - For non-I.s. functions: halt when number of misclassifications is minimal
- Problem representation
 - Non-numeric inputs: encode into numeric form
 - Multiple-class problem:
 - * Use single-layer network
 - * Each output node corresponds to one class
 - * A *u*-neuron network can classify inputs into 2^u classes
- Variations of perceptron
 - Bipolar vs. binary encodings
 - Threshold vs. signum functions

Pocket Algorithm

- Robust classification for linearly non-separable problems?
- Find \vec{w} such that such that the number of misclassifications is as small as possible.

```
Initialization: \vec{w_0} = \text{PerceptronLearning};

Error_{\vec{w_0}} = \text{number of misclassifications of } \vec{w_0};

Pocket = \vec{w_0};

t = 0;

Repeat

t = t + 1;

\vec{w_t} = \text{PerceptronLearning};

If Error_{\vec{w_t}} < Error_{\vec{w_{t-1}}} Then

Pocket = \vec{w_t};

Until t = MaxIterations;

Best weight so far is stored in Pocket;
```

- Initial weight in PerceptronLearning should be random
- Presentation of training examples in PerceptronLearning should be random
- Slow but robust learning for non-separable tasks

Adaline

- Architecture
 - Input: $\vec{x} = (x_0 = 1, x_1, \dots, x_n)$
 - Weight: $\vec{w} = (w_0 = -\theta, w_1, \dots, w_n)$, θ = bias
 - Net input: $y = \vec{w}\vec{x} = \sum_{i=0}^{n} w_i x_i$
 - Output $f(\vec{x}) = g(\vec{w}\vec{x}) = \vec{w}\vec{x}$
- Pattern classification
- Supervised learning
- Error-correction learning

Adaline Analysis

• Adaline's *decision boundary*

 $w_0x_0+w_1x_1+\cdots+w_nx_n=0$

- The Adaline
 - has a decision boundary like the perceptron
 - can be used to classify objects into two categories
 - has same limitation as the perceptron

Adaline Learning Principle

• Data fitting (or linear regression)

- Set of measurements: $\{(x, d_x)\}$

– Find w and b such that

$$d_x \approx wx + b$$

or more specifically,

$$d_i = wx_i + b + \varepsilon_i = y_i + \varepsilon_i$$

where

- * $\varepsilon_i = \text{instantaneous error}$
- * $y_i =$ linearly fitted value
- * w = line slope, b = d-axis intercept (or bias)

Adaline Learning Principle (continued)

- Best fit problem: find the best choice of (\vec{w}, b) such that the fitted line passes closest to all points
- Solution: Least squares
 - Minimize sum of squared errors (SSE) or mean of squared errors (MSE)

- Error
$$\varepsilon_{\vec{x}} = d_{\vec{x}} - \tilde{d}_{\vec{x}}$$
 where $\tilde{d}_{\vec{x}} = \vec{w}\vec{x} + b$

– MSE:

$$J = \frac{1}{N} \sum_{i=1}^{N} \varepsilon_{\vec{x}_i}^2$$

Adaline Learning Principle (continued)

• The minimum MSE, called the *least mean square* (LMS) can be obtained analytically:

$$\frac{\delta J}{\delta \vec{w}} = 0$$
$$\frac{\delta J}{\delta b} = 0$$

and solve for \vec{w} and b

- Pattern classification can be interpreted as a linear
- LMS is difficult to obtain for larger dimensions (complex formula) and larger data sets
- Adaline:
 - Learns by minimizing the MSE
 - Not sensitive to noise
 - Powerful and robust learning

Adaline Learning Algorithm

- Gradient descent
 - A learning example: $[\vec{x}, d_{\vec{x}}]$
 - Actual output: $net_{\vec{x}} =$
 - Desired output: $d_{\vec{x}}$
 - Squared error: $E_{\vec{x}} = (d_{\vec{x}} net_{\vec{x}})^2$
 - Gradient of $E_{\vec{x}}$:

$$\nabla E_{\vec{x}} = \frac{\delta E_{\vec{x}}}{\delta \vec{w}} = \left(\frac{\delta E_{\vec{x}}}{\delta w_0}, \frac{\delta E_{\vec{x}}}{\delta w_1}, \dots, \frac{\delta E_{\vec{x}}}{\delta w_n}\right)$$

- $E_{\vec{x}}$ is minimal if and only if $\nabla E_{\vec{x}} = 0$
- Negative gradient of $E_{\vec{x}}$:

$$-\nabla E_{\vec{x}}$$

gives direction of steepest descent to the minimum

- Gradient descent:

$$\Delta \vec{w} = -\eta \nabla E_{\vec{x}} = -\frac{\delta E_{\vec{x}}}{\delta \vec{w}}$$

20

Adaline Learning Algorithm (continued)

• Widrow-Hoff delta rule

$$\frac{\delta E_{\vec{x}}}{\delta w_i} = 2(d_{\vec{x}} - net_{\vec{x}}) \frac{\delta(-net_{\vec{x}})}{\delta \vec{w}_i}$$
$$= (d_{\vec{x}} - net_{\vec{x}}) \frac{\delta(-\sum_{j=0}^n w_j x_j)}{\delta \vec{w}_i}$$
$$= -(d_{\vec{x}} - net_{\vec{x}}) x_i$$

• \Rightarrow Learning rule:

$$\vec{w}^{new} = \vec{w}^{old} + \eta (d_{\vec{x}} - net_{\vec{x}})\vec{x}$$

Adaline Learning Algorithm (continued)

```
Initialization: \vec{w}_0 = \vec{0};
t = 0;
Repeat
   t = t + 1;
   For each training example [\vec{x}, d_{\vec{x}}] do
       net_{\vec{x}} = \vec{w} \cdot \vec{x};
       a_{\vec{x}} = g(net_{\vec{x}}) = net_{\vec{x}};
       \delta_{\vec{x}} = d_{\vec{x}} - a_{\vec{x}};
       \vec{w}_{t+1} = \vec{w}_t + \eta \cdot \delta_{\vec{x}} \cdot \vec{x};
       {
           or equivalently,
           For 0 \le i \le n
               w_{i,t+1} = w_{i,t} + \eta \cdot \delta_{\vec{x}} \cdot x_i;
       }
Until MSE(\vec{w}) is minimal;
Save last weight vector;
```

Can be used for function approximation task as well