THE PERCEP T RON

T he McCulloch-Pitts Neuron

e The first mathematical model of a neuron [Warren
McCulloch and Walter Pitts, 1943]

e Binary activation: fires (1) or not fires (0)

e EXxcitatory inputs: the a's, and
Inhibitory inputs: the b's

e Unit weights and fixed threshold 6

e ADbsolute inhibition

1 If Z?{‘:Oai,t >0 and b]_,tz :bmﬂf =0

Ct+1 —
0 Otherwise

= Ciq

Computing with MccCulloch-Pitts Neurons

~AND

OR

y

Any task or phenomenon that can be represented as

a logic function can be modelled by a network of
MP-neurons

e {OR, AND, NOT} is functionally complete

e Any Boolean function can be implemented using
OR, AND and NOT

e Canonical forms: CSOP or CPOS forms

e MP-neurons & Finite State Automata

Limitation of MP-neurons and Solution

e Problems with MP-neurons

— Weights and thresholds are analytically determined.
Cannot learn

— Very difficult to minimize size of a network

— What about non-discrete and/or non-binary tasks?

e Perceptron solution [Rosenblatt, 1958]

— Weights and thresholds can be determined ana-
lytically or by a learning algorithm

— Continuous, bipolar and multiple-valued versions

— Efficient minimization heuristics exist

Perceptron

e Architecture
— Input: Z=(zg=1,21,...,2n)
— Weight: @ = (wg = —0,wq,...,wn), 8 = bias
— Net input: y =wz = Y 1"y w;x;

O If wx <O
1 If wr >0

— Output f(f) — g(@’f) — {
e Pattern classification

e Supervised learning

e Error-correction learning

Perceptron Analysis

e Perceptron’s decision boundary
wixry, + -+ wpxrp =0

woxo + wix1 + -+ + wpnxn =0

W

o
SeparaL ng hyperplane

Hyperplane direction

e All points
— below the hyperplane have value 0O
— on the hyperplane have the same value

— above the hyperplane have value 1

Perceptron Analysis
(continued)

e [inear Separability

— A problem (or task or set of examples) is lin-
early separable if there exists a hyperplane woxg+
wix1+ - +wnxn, = 0 that separates the examples
into two distinct classes

— Perceptron can only learn (compute) tasks that
are linearly separable.

— The weight vector w of the perceptron correspond
to the coefficients of the separating line
e Non-Linear Separability

— Limitations of the perceptron: many real-world
problems are highly non-linear

— Simpe Boolean functions:

x* XOR, EQUALITY, ...etc.

x Linear, parity, symmetric or ... functions

Perceptron Learning Rule

e [est problem

— Let the set of training examples be
[#1 = (1,2),d1 = 1]
[Z2 = (—1,2),d> = 0]
[Z#3 = (0,—1),d3 = O]
— The bias (or threshold) be b =10

— The initial weight vector be w = (1,0.8)

D 5

y

We want to obtain a learning algorithm that finds a weight vector
@ which will correctly classify (separate) the examples.

7

Perceptron Learning Rule
(continued)

e First input x7 is misclassified with positive error. What
to do~

e Idea: move hyperplane to separating position

e Solution:

— Move w closer to x1: add x1 to w.
x W= W + T1

— First rule: positive error rule

Ifd=1 and a = 0 then @"vW = °ld + 7

% ;3

\j

Perceptron Learning Rule
(continued)

e Second input x» is misclassified with negative error

e Solution:

— Move w away from x,: substract x> from .

—

x W = W — To

— Second rule: negative error rule

Ifd=0 and a = 1 then @"W = °ld _ z

\j

Perceptron Learning Rule
(continued)

e Third input 3 is misclassified with negative error

—

e Move w away from to x¥3: W = w — &3

o .

e T he perceptron will correctly classify inputs x4, >, ¥3
if presented to it again. There will be no errors

e [hird rule: no error rule

If d = a then @"ew = gold

10

Perceptron Learning Rule
(continued)

e Unified learning rule

u—}»new: —>Old_|_53—3>:w0ld_l_(d_a)a—j>

e With learning rate n

,u—)»new: —»OZd_i_TI(SZE»:,U—J»OZd_I_n(d_a)f

e Choice of learning rate n
— Too large: learning oscillates
— Too small: very slow learning

— 0 <n < 1. Popular choices:
x n=0.5
x n=1

[W]
2]

— Variable learning rate n =
— Adaptive learning rate

— ...etc.

11

Perceptron Learning Algorithm

Initialization: wgp = 0;

t =0;

Repeat
t=t+ 1;
Error = 0

For each training example [Z,dz] do
net = W - T;
az = g(net);
O = dz — ag;
Error = Error 4 |0z ;
Wit = W+ 1 -0z &;
{

or equivalently,
For 0<1:1<n
W41 = Wi+ M- 0z x4

}

Until Error = O;
Save last weight vector;

e Perceptron convergence theorem: [M. Minsky and
S. Papert, 1969] The perceptron learning algorithm
terminates if and only if the task is linearly separable

e Cannot learn non-linearly separable functions

12

Perceptron Learning Algorithm
(continued)

e Termination criteria
— Assured for small enough n and |.s. functions

— For non-l.s. functions: halt when number of mis-
classifications is minimal

e Problem representation

— Non-numeric inputs: encode into numeric form

— Multiple-class problem:

x Use single-layer network
x Each output node corresponds to one class
* A u-neuron network can classify inputs into 2%
classes
e \Variations of perceptron
— Bipolar vs. binary encodings

— Threshold vs. signum functions
13

Pocket Algorithm

e Robust classification for linearly non-separable prob-
lems?

e Find w such that such that the number of misclassi-
fications is as small as possible.

Initialization: wg = Perceptronlearning;
E?“’rorwo — number of misclassifications of wg;
Pocket = wp;
t =0;
Repeat

t=t+ 1;

w; = PerceptronlLearning;

If Errorg, < Errorg . Then
Pocket = wW;;
Until t = MaxIterations;
Best weight so far is stored in Pocket;

e Initial weight in PerceptronLearning should be random

e Presentation of training examples in
PerceptronLearning should be random

e Slow but robust learning for non-separable tasks
14

Adaline

XO =1
Xl\ WO
: " y
pandl
*n

e Architecture

— Input: Z=(zg=1,21,...,2n)
— Weight: @ = (wg = —60,w1,...,wy), 6 = bias
— Net input: y = wx = >_%

— Output (%) = g(wF) = &7

e Pattern classification

e Supervised learning

e Error-correction learning

15

Adaline Analysis

e Adaline’'s decision boundary

woxrg + wixry + - + wpxrp =0

W

0
Separati ng hyperplane

Hyperplane direction

e [he Adaline
— has a decision boundary like the perceptron
— can be used to classify objects into two categories

— has same limitation as the perceptron

16

Adaline Learning Principle

e Data fitting (or linear regression)
— Set of measurements: {(x,d;)}

— Find w and b such that
dr ~ wx + b
or more specifically,

di =wz; +b+e =y, +¢

where

x £; = instantaneous error
x y; = linearly fitted value
* w = line slope, b = d-axis intercept (or bias)

3.2%
3 remi
2.5

2 <
15 ¢

1
0.5

X
4 10 17

17

Adaline Learning Principle
(continued)

e Best fit problem: find the best choice of (w,b) such
that the fitted line passes closest to all points
e Solution: Least squares

— Minimize sum of squared errors (SSE) or mean of
squared errors (MSE)

— Error ez = dz — dz where dz = wWZ + b
— MSE:

1N2
T=N 45

X
2 4 6 8 10 17

18

Adaline Learning Principle
(continued)

The minimum MSE, called the least mean square
(LMS) can be obtained analytically:

i
OW
i
- = O
ob

and solve for w and b

Pattern classification can be interpreted as a linear

LMS is difficult to obtain for larger dimensions (com-
plex formula) and larger data sets

Adaline:
— Learns by minimizing the MSE
— Not sensitive to noise

— Powerful and robust learning

19

Adaline Learning Algorithm

e Gradient descent
— A learning example: [Z,dz]
— Actual output: netz =
— Desired output: dgz
— Squared error: Ez = (dz — netz)?
— Gradient of Ez:
_ ‘Bz

VEz = (

dOw

OEz dEz OEz
Swo dwy — dwnp

— Ez is minimal if and only if VEz =20

— Negative gradient of Ez:
—VEz

gives direction of steepest descent to the mini-
mum

— @Gradient descent:
OBz

—

0w

AW = _UVEQE’ —_ —

20

Adaline Learning Algorithm
(continued)

e Widrow-Hoff delta rule

OF~ O(—netz

= = 2(dz — nelyz) (= 2)
6(— Zn:o’wjxj)

= (dz — netg) =

5’(1)7;

—(dz — netz)z;

e — Learning rule:

LNV — —old 4 U(df . netf)a_:’

21

Adaline Learning Algorithm
(continued)

Initialization: gy = O;
t =0;
Repeat
t=t+1;
For each training example (¥, dz] do

nety = W - &

Wiy1 = W+ 10z T;

{

or equivalently,
For 0<:1<n
W41 = Wi+ 10z Ty

}

Until MSE(®w) is minimal;
Save last weight vector;

e Can be used for function approximation task as well

22

