
Gpib Programming Tutorial
Programming a GPIB based instrument designed at the Electronics Group

© 11 January 2000 Electronics Group,
Free University Amsterdam, The Netherlands
Faculty of Sciences
Phone : +31-20-4447973
Fax : +31-20-4447899 GpibProgTut.wpd (rev. 1.2)
E-mail : rob@nat.vu.nl (Rob Limburg) Project-id [projectnummer]
Web : http://www.few.vu.nl/~elec

Gpib Programming Tutorial i

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

Contents

1 Introduction . 1
1.1 Gpib bus . 1

1.1.1 Gpib bus standard . 1
1.2 Measurement setup . 1

1.2.1 Restrictions . 1
1.2 Gpib Instruments from our group . 1

2 The communication principle . 3
2.1 Commands and queries . 3

2.1.1 Common commands and queries . 3
2.1.2 Compound commands and queries . 4

2.2 Data . 4
2.2.1 Numerical data . 4
2.2.2 Text data . 5
2.2.3 Arbitrary Block data . 5

2.3 Combining commands and queries with data . 6
2.4 Events . 6

3 Construction rules . 8
3.1 More in one line . 8
3.2 Query form . 8
3.3 White spaces . 8
3.4 Omitting the header path . 9
3.5 Abbreviation . 9
3.6 Default headers . 9
3.7 Forgiving listening and precise talking . 10
3.8 Default, minimum and maximum . 10
3.9 Oops, typo! . 11

3.8.1 Error checking . 11
3.8.2 The error queue . 11
3.8.3 It hangs! . 12

4 Instrument status . 13
4.1 Status Byte registers (STB and SRE) . 13
4.2 Serial poll . 14
4.3 Service Request . 14
4.4 Standard Event Status Registers (ESR and ESE) . 14
4.5 Using the status system in your application . 15

5 Reset and Clear . 17

6 Trigger mechanism . 18
6.1 Standard Mechanism . 18

7 Overlapped commands and synchronisation . 19

Gpib Programming Tutorial ii

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

8 Instrument standards . 21
8.1 Standard common commands and queries . 21
8.2 Standard subsystems . 22

8.2.1 Introduction . 22
8.2.2 System sub-system . 22
8.2.3 Micros sub-system . 23

9 Error codes . 26

10 Software revisions . 29

11 Further reading . 30

Appendix A Quick Start . 31
A1 What you need . 31
A2 What you need to know before you begin . 31
A2 What you need to do . 31

Gpib Programming Tutorial 1

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

DeviceSystem Controller
(PC,MAC, Workstation)

Device Device Device

GPIB bus

1 Introduction

If you want to get started quickly and ignore most of the (background) information, go to appendix A
Quick start.

1.1 Gpib bus
In 1965, Hewlett-Packard designed the Hewlett-Packard Interface Bus (HP-IB) to connect their line of
programmable instruments to their computers. Today, the name General Purpose Interface Bus
(GPIB) is more widely used than HP-IB. Despite its long established history, the bus is still very
popular. Today, thousands of different instruments are equipped with this interface.

1.1.1 Gpib bus standard
The GPIB bus is standardised by the IEEE (Institute of Electrical and Electronics Engineers). The
IEEE Standard 488-1975 defined the electrical and mechanical specifications. The ANSI/IEEE 488.2-
1987 standard defined precisely how controllers and instruments should communicate.

Standard Commands for Programmable Instruments (SCPI) took the command structures defined in
IEEE 488.2 and created a single, comprehensive programming command set that is used with any
SCPI instrument.

1.2 Measurement setup
Typically, a measurement setup comprises a system controller (usually a PC or workstation) and at

least one device (instrument). The system controller has to have a gpib controller card. These cards
can be bought from different vendors such as Hewlett-Packard, National Instruments,
Computerboards, Ines and others)
The physical connection is a cable with standard connectors on both sides. The standard connector is
the Amphenol or Cinch Series 57 MICRORIBBON or AMP CHAMP type. The connectors can be
stacked to connect all the devices.

1.2.1 Restrictions
The following restrictions are typical for normal operation:
1. A maximum separation of 4 m between any two devices and an average separation of 2 m

over the entire bus
2. A maximum total cable length of 20 m
3. No more than 15 device loads connected to each bus, with no less than two-thirds powered

on

1.2 Gpib Instruments from our group

NeoNil
Most gpib instruments from our group are constructed around the NeoNil modular computer board.
This computer features a G96 bus which can be used to add plug in cards. These plug in cards carry
the special functionality needed to interact with the ‘outside world’ (e.g. experiment). With these plug

Gpib Programming Tutorial 2

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

in cards an intelligent instrument can be build.
The NeoNil has an gpib interface which conforms to the IEEE488.2 standard.

Plug in cards
The G96 plug in cards can be ‘off the shelf’ developed by our group or can be bought from an plug in
card vendor. Also, custom plug in cards can be developed on demand. These custom plug in cards
come in two favours:

• Prototype quality. These cards are developed usually for incidental/special purposes. The
cards are build using Wire-Wrap techniques on a prototype card. There is usually only one
(1) card build.

• Production quality A PCB (printed circuit board) is designed. Large amount of these cards
can be build.

There is usually no difference in functionality or performance between the two types of cards. Only
the production method differs.
Check the web pages of the Electronics Group for the available ‘off the shelf’ plug in boards or visit
us at T012/T016.

The Software
The software is equally important as the hardware. All the software can be ‘custom’ developed, but
we also maintain standard software components that we can assemble into a new applications.
Custom hardware needs custom software, so it is clear that for those parts new code has to be
developed.
One major software component is the SCPI Engine. This software component allows us to build
modular SCPI based software. All the command, query and data parsing and formatting is done by
the SCPI Engine. This allows us to concentrate on the design of new modules rather than to be
bothered by the syntax intricacies of SCPI and IEEE488.2.

The SCPI Engine supports the separation of independent software parts. In SCPI naming convention
these are called ‘subsystems’. More on this later.

Gpib Programming Tutorial 3

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

System Controller Device
(instrument)

Commands,
queries,

parameter-data
and events

Response-data
and events

Header*

Common Command

Header*

Common Query

?

2 The communication principle

A GPIB instrument receives its information from another device. Usually this is the system controller.
The instrument distinguishes between events,
commands, queries and data. The figure on the
right illustrates the flow of the various information
types.

• Events. The GPIB bus has a number of
special control lines which allow fast and
simple passing of primitive information,
called events. This primitive information is also called ‘Interface Events’ or ‘Interface Mes-
sages’ because they are initiated and processed by the interface hardware. An example of an
event is the IFC (InterFace Clear) event, Which forces the instrument to be able to listen to
the system controller. Events are discussed last in this chapter.

• Commands. Commands are strings which cause the instrument to perform an action, such
as taking measurements or activate a motor.

• Queries. Queries are strings which cause the instrument to generate response. Queries
usually do not cause an instrument to perform an action. Queries always end with a question
mark (?).

• Data units. Data units are used to pass information. Data can be in the form of parameters
which come with commands or queries to the instrument. Data can also be in the form of
response from an instrument.

The GPIB bus operates block oriented, multiple commands, queries and data strings units can be
combined into one line of text. An instrument will start executing commands and queries if a com-
plete line of text has been received. To know when a complete line is transferred, the EOI (End Or
Identify) event has to be generated simultaneously when the last byte is send.

2.1 Commands and queries
Commands and queries follow the same syntax rules, except that queries always end with a question
mark. All commands and queries are build up using headers:
Header : A header is a string of maximum 12 characters. There is no distinction between

upper and lowercase. The header may contain digits, but will always starts with a
character or an underscore (_).

There are two types of commands and queries; the common and the compound types. If a header is
longer than 4 characters, it may be abbreviated. See 3.3 Abbreviation on page 9.

2.1.1 Common commands and queries
Common commands and queries are considered to be part of
the IEEE488.2 and/or SCPI standard and thus are instrument
independent. Common commands and queries are used for
general ‘housekeeping’ and for the control of the status register
structure.
Common commands and queries always start with an asterisk
(*). They are simple, non hierarchical and can be used anywhere
at any time.
There are certain common commands and queries mandatory,
others are optional. The standard common commands supported
in our instruments can be found in chapter ‘Instrument
standards’.

Important note : Software drivers of some gpib cards default have EOI disabled! Configure the
driver that EOI is enabled otherwise the instrument will not work!

Gpib Programming Tutorial 4

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

Header

Compound Command

Header

Compound Query

: ?

:

:

:

2.1.2 Compound commands and queries
The instrument specific functionality is controlled with compound commands and queries. Compound
commands and queries represent a hierarchical
structure also called a header tree.
Compound commands and queries are build up
from one or more headers separated by colons
(:). Each header represent a node in the tree, the
leftmost header represents the highest level. The
rightmost header should represent the ‘leaf’
node, which is the lowest level in the tree.
The compound query follows the same rules but
has an question mark appended to its last
header.

For example:
:ad16_:trig:reset
Resets the trigger mechanism of the AD16 plug
in card.

Compound commands are further explained in ‘Construction rules’, from page 8.
As with common commands there are also standard compound commands and queries. These are
all contained in so called subsystems.
Sub-systems are groups of commands and queries which are strongly related. For example, the
AD16 plug in card has a corresponding SCPI subsystem called (suprise!) ad16_ . The standard
subsystems that are present in every programmable instrument from our group are listed in ‘Instru-
ment standards’ at page 29.

2.2 Data
Data is used to pass information. Data is separated into parameters and responses.
Parameters are used to pass information along with commands and queries. This information is
directed towards the instrument.
Responses are used to return information as a reply to queries. This information is directed from the
instrument.
There are different types of data, they can be grouped into numerical, text and block data types. The
purpose is to transfer information in a flexible, human oriented way. Almost all data types are ASCII
encoded, only the binary block data type contains a data field with arbitrary encoding.

2.2.1 Numerical data
Numerical data is used to transfer decimal and non-decimal values.

Decimal numeric data
Decimal numeric data can be represented in three different formats:
• Integer numbers. This form is denoted as NR1 (Numeric Representation 1). Positive or

negative whole numbers. Examples: 4 -23 90
• Real numbers. This form is denoted as NR2 (Numeric Representation 2). Fixed point num-

bers. Examples: 23.45 1.22 -4.55
• Exponential numbers. This form is denoted as NR3 (Numeric Representation 3). Floating

point numbers. Examples: 4.3E-3 -8.9456E8 123E-5
Decimal numeric data may be received with greater precision than the capability of the device, such
values are first rounded to the greatest precision possible.
For example: An power source can adjust its output voltage up to 0.1Volts, having a 100 Volt span.
This power source receives a parameter to set the output voltage with the value of 41.46. The power
source will round the value to 41.5 Volts and set the output voltage accordingly.

Non decimal numerical data
Positive integer numbers can be represented in non decimal numerical data. Three different formats

Gpib Programming Tutorial 5

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

Non-zero
digit Digit 8 bit data

byte

are allowed for the bases 16 (hexadecimal), 8 (octal) and 2 (binary).
• Hexadecimal. Start with ‘#H’ or ‘#h’, followed by digits (0..9) and/or hex characters (A..F,

a..f). Example the decimal value 63 is represented in the hexadecimal format as #H3F or as
#h3f

• Octal. Start with ‘#O’ or ‘#o’, followed by digits (0..7). Example the decimal value 63 is
represented in the octal format as #OH77 or as #o77

• Binary. Start with ‘#B’ or #‘b’, followed by digits (0..1). Example the decimal value 63 is
represented in the binary format as #B111111 or as #b111111

Additional information about the appliance of numerical data can be found in chapter 3 from page 8.

2.2.2 Text data
Text data can be separated into character data and string data.

Character data
Character data is used for information which can be best expressed as mnemonics. Character data
follows the same rules as the headers described in Chapter 2.1:

“A header is a string of maximum 12 characters. There is no distinction between upper and lower-
case. The header may contain digits, but will always starts with a character or an underscore (_).
There are two types of commands and queries; the common and the compound types. If a header is
longer than 4 characters, it may be abbreviated. See 3.3 Abbreviation on page 9.”

Example:
A data acquisition instrument has 3 types of trigger sources available. To select one of these, the
command TRIGger:SELect can be used. It accepts the following character data parameter values;
BUS ,TIMer and EXTernal.

From this example it is clear that these character data values need almost no explanation.

String data
String data is used (in contrast to character data) for more free form textual data. String data may
contain all 7 bit ASCII characters, including the non-printable ones. This data type is very useful
when some form of formatting is required. For instance when text is to be displayed on a terminal or
on a printer.
String data is always placed between single quotes (‘) or double quotes (“).
When string data is delimited by single quotes, double quotes can be freely used. Also, when string
data is delimited by double quotes, single quotes can be freely used.
Special care should be taken when single quotes should be used within string data delimited with
single quotes. The rule here is to insert an extra single quote before the existing single quote. The
two single quotes will be interpreted as one single quote character and not as an delimiter. The same
rule also applies for double quote delimiters.

ASCII response data
ASCII response data is only used in query response directed from the instrument. It is not valid to use
this data format as a parameter. In contrast to string data, ASCII response data is not delimited. It
may contain any 7 bit ASCII characters.

2.2.3 Arbitrary Block data
Arbitrary block data can be used
to transfer data fast without any
encoding. There is no way to
recover the encoding other than
by some formal convention

Gpib Programming Tutorial 6

1 A White space character is defined as a single ASCII character in the range 0..9, 0B..20 (hex).

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

Command/
Query DataWhite

,

(documentation).
The only encoding available is the block length in bytes. This is provided by the header which is
ASCII encoded.
The first character in the header is the ‘#’ followed by a non-zero digit indicating the amount of digits
to follow. The digits that follow represent the amount of data bytes in the arbitrary block data.
Example: (represents a single byte in this example)

#213
the digit ‘2' means that the next 2 digits will form the block length. The block length is 13 bytes.

2.3 Combining commands and queries with data
In the previous sections the basic format of the commands, queries and data is defined. There was
no mention how these elements can be combined into one line.

Now it is time to see how to combine commands, queries and data into one line. Only the basic
format is given here, more information
can be found in chapter 3 Construction
rules.
A Command or a query can be
combined with data. If there is data, the
separation between the command or
query and the data is done with one or
more white spaces1. Multiple data ele-
ments are to be separated with comma’s
(,).
Example:
A software timer can be programmed with a period and a repeat counter. The command to program a
100ms period and a repeat count of 5 could look like:

timer 100,5 ok
timer 100,5 ok, more spaces between header and data
timer100,5 wrong! no space between header and data
timer 100 , 5 ok, extra spaces between data elements

When a query returns multiple response data elements, these elements are also separated with
comma’s (,). The above timer command example can also be given in the query form:
Controller sends:

timer?
The instrument could reply:

100,5

2.4 Events
The GPIB bus has a number of special control lines which allow fast and simple passing of prede-
fined primitive information, called events. This primitive information is also called ‘Interface Events’
or ‘Interface Messages’ because they are initiated and processed by the interface hardware.
Events contain no data, they are either single control line signal levels(“single line events”) or certain
data bus values combined with the ATN control line asserted (“multiline events”).
This section gives a short introduction of the most important events. In order to create a perfect
measurement setup with optimum performance some knowledge of these events is inevitable. Check
chapter 9 on page 30 for more information on further reading.

Some single line events are:
• IFC. InterFace Clear, forces the instrument to be able to listen to the system controller.
• REN. Remote ENable, signal line to claim control over an instrument which can also be

Gpib Programming Tutorial 7

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

operated by a local front panel.
• EOI. End Or Identify. When ATN = 0, used to indicate the end of a data transfer. When ATN

= 1, used by the controller to perform a parallel poll.
• SRQ. Service ReQuest. This allows the instrument to get the attention of the controller. A

very important feature of the GPIB. See 4.5 Service request on page 14.

Some multiline events are:
• DCL. Device CLear. Clears the input and output buffers in all instruments on the bus. See

chapter 5 Reset and Clear on page 17.
• SDC. Selected Device Clear. Clears the input and output buffers in one selected instrument

on the bus. See chapter 5 Reset and Clear on page 17.
• GET. Group Execute Trigger. All instruments on the bus receive a trigger pulse. See chapter

6 Trigger Mechanism on page 18.

Gpib Programming Tutorial 8

2 The length of a single line may never exceed the size of the instrument’s input buffer. An GPIB instrument designed at our group
always has a query (SYSTem:INBuf?) which returns the actual size of the input buffer.

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

3 Construction rules

In “2.3 Combining commands and queries with data” the basic construction rule for creating a
command or query with data is defined.
The Construction rules defined here take it one step further. They are primary intended to make life
easier. Some enhance readability, some enhance performance and others reduce programming
effort.

3.1 More in one line
It is allowed to combine multiple commands and/or queries with their respective data into one single2

line. This has several advantages, some of which become clear in a later stage of this chapter.
The first advantage is speed, the driver software in the controller and in the instrument have over-
head to set up and process a data transfer. The bigger the blocks, the less the overhead per byte.
The second advantage can be clarity. When grouping related commands and queries into one line,
the application program source can become much more readable.
To combine multiple commands and queries with their respective data, a separator must be used.
The semicolon (;) is used as a separator between commands and or queries. This separator is
officially called a “program message unit separator”. This separator is also used in the response to
separate the query response data elements (if any).
Example:
Controller sends: :ad16_:version?;:system:version?
The instrument replies: 1,5,0;1996.0

The first three data fields are from the first query, the result from the last query is separated by a
semicolon (;).

3.2 Query form
All commands have a query counterpart, unless stated otherwise in the documentation. The query
counterpart usually has no effect other than to return the current parameter value. See 3.8 Default,
minimum and maximum for more possibilities with the query counterpart of a command.

It is also possible that only the query exists. In the documentation only the query form is printed (the
header with the question mark). In that case the query can have other effects. For instance reading a
value out of an FIFO (First In, First Out) buffer. This causes the value read to be disposed from the
buffer.

3.3 White spaces
The usage of at least one white space is mandatory in some areas, for instance as a separator
between commands/queries and data.
One or more white spaces may however be used in other areas too:
• Before a command or query.
• Surrounding the data separator (,). Example: trig:level 5 , 10
• Surrounding the command/query separator (;). Example: *cls ; *idn?
• Before the last byte send

It is not allowed: (to avoid common mistakes)
• Between compound command or query headers. Example: :ad16_: anout?
• Inside headers. Example: :ad 16_:anout?
• After the exponent character (‘E’ or ‘e’) in NR3 numeric data. Example: 124.6E 8

Gpib Programming Tutorial 9

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

3.4 Omitting the header path
When using compound commands and/or queries it is possible in some cases to omit the leading
header path. This is a very powerful feature because it can shorten the commands and queries
considerable and reduces the search time within the header tree in the instrument.
The queries:

:system:version?;:system:err?
Omitting the header path for the second query:

:system:version?;err?
The header part (:system) of the second query may be omitted here. The second query does not
specify it’s absolute position (it does not start with (:)). Because the instrument’s parser saves the last
position in the header tree, it can find the err? query when searching from this saved position.

The queries:
:system:version?;:ad16_:anout?

Omitting the header path for the second query:
:system:version?;anout?

Will generate an error as the last saved position is in the :system branch, not in the ad16_ branch.
The anout? query will not be found at the :system level in the header tree.

Omitting the header path of a command or query is only possible within one single line. The first
command or query on a line is assumed to be specified from the root. This also means that the colon
leading the first header on a new line is optional.
Common commands and queries (beginning with a *) do not affect the saved position.

Consider the following:
:ad16_:trigger:count 100;:ad16_:trigger:delay 50;:ad16_:trigger:arm;*trg
Omitting the header paths:

ad16_:trigger:count 100;delay 50;arm;*trg
The first colon and the header paths for the delay and arm commands are omitted resulting in
better performance and good readability.

3.5 Abbreviation
Compound commands or queries are build up using headers. These headers have a short form if
their length exceeds 4 characters. The short form is always 4 characters or less.
The short form should be noted in the documentation. To distinct the short form from the long form
the short form is printed in capitals, the remainder in non-capitals.

Example when the documentation defines:
:SYSTem

:ERRor?
The following is:

:syst:error? valid
:system:err? valid
:syst:err? valid
:syste:err? invalid, :syste is not a short nor a long form

3.6 Default headers
A header tree can contain default headers. Default headers are headers which may be omitted.
Default headers can be used to expand the header tree without losing software compatibility. Very
useful if commands and/or queries need to be added to an existing system. Also, default headers can
be used to shorten certain often used commands or queries.
Default commands or queries are printed between square brackets in the documentation.

Example from the docs:

Gpib Programming Tutorial 10

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

:AD16_
:ANIN

[:READ]? <numeric value> (query only)
:BLOCk? <binary block data> (query only)
:POS

The following is:
:ad16_:anin? valid
:ad16_:anin:read? valid

Consider an instrument with the following header branch:
:SYSTem

:CONFig
:VIEW?

An updated version of this instrument has the same header branch expanded to:
:SYSTem

:CONFig
:VIEW

[:ALL]? (new default header but same functionality)
:REGion (new added header)

The :SYSTem:CONFig:VIEW? query will work on the old and on the new instrument.
The :SYSTem:CONFig:VIEW:ALL? will work on the new instrument only.

3.7 Forgiving listening and precise talking
Forgiving listening allows users to loosely specify what they want, whereas the instrument replies in a
consistent manner. An instrument will round its received parameters to the nearest acceptable value.
Consider the AD16 card which will accept positive integer values for its trigger counter.
Example 1:

ad16_:trig:count 3.45;count?
will return:

3
Example 2:

ad16_:trig:count 3.51;count?
will return:

4
Example 3:

ad16_:trig:count 3.51E01;count?
will return:

35

3.8 Default, minimum and maximum
It is possible to specify a maximum, minimum or default value for a most of parameters without
knowing these values.
All numeric and character data types have a specified minimum, maximum and default value. The
designer of the instrument defines the actual values. For instance the instrument will reset all its
values to the defined default values when the instrument is powered up or when it receives a *RST
common command.
The user can also specify these values, the instrument accepts the following for all its numeric and
character data parameters:

MINimum Will select the instrument’s predefined minimum value
MAXimum Will select the instrument’s predefined maximum value
DEFault Will select the instrument’s predefined default value

Gpib Programming Tutorial 11

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

Example:
ad16_:trig:count max;count?

will return:
8192

Also the user can query these values:

Example:
ad16_:trig:count? max

will return:
8192

Note that in the first example count is set to its maximum value (8192) and then queried, in the
second example the maximum value is queried, count is not modified.

3.9 Oops, typo!
Even with forgiving listening, mistakes are easy to make. To help determine what you did wrong,
extensive error checking and error reporting is provided. When you start to work with a new instru-
ment it is very convenient to use some interactive tool where you can type the commands and
queries and see the response from the instrument directly. National Instruments has such a tool
called simplegpib, for HP-VEE the ‘GeneralTest’ utility can be obtained from our group.

3.8.1 Error checking
Error checking is crucial for reliable operation of an instrument and it helps users to track down
programming mistakes.
Error checking is performed on:

I. Syntax of headers, separators and parameters (generates command error)
II. Unknown headers (generates command error)
III. Illegal operation (generates execution error)

1. Parameters out of range
2. Trying to execute a (temporary) disabled command
3. Illegal trigger operation

IV. Query processing (generates query error)
1. Attempt to read response when nothing available
2. Sending a new command or query without reading previous response

V. Internal problems (generates execution error or device dependant error)
1. Hardware problems
2. Software problems (eg. no free memory available)

Errors are reported as an error code with a short description in the error queue (see next section).
Also, summary bits are available for each category (command, execution, device dependant, and
query error) in the status system (see chapter 4 Instrument status).

3.8.2 The error queue
Each time an error occurs the corresponding error (or status) code and a short description (if possi-
ble) is stored in the error queue.
The error queue can be read by the user with the :SYSTem:ERRor? query. This query returns the
first error code with description:

<numeric value>,<string>

Error and status messages are queued using a FIFO (First-In, First-Out) strategy.
The numeric value is in the range [-32768, 32767]. An error/event value of zero indicates that no

Gpib Programming Tutorial 12

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

error or event has occurred. If the queue overflows, the last error/event in the queue is replaced with
the error:

-350,”Queue overflow”
Reading an error/event from the queue removes that error/event from the queue. When all er-
rors/events have been read from the queue, further error/event queries shall return:

0,”No error”

Example:

Controller sends:
syst:err?

The instrument could reply:
-500,”Power up”

Controller sends:
syst:err?

The instrument could reply:
0,”No error”

Command errors specify the character position of the header which caused the error, so it should be
fairly easy to find:
Example:
Controller sends:

ad16_:triz:count 4
The instrument could reply:

-113,”Undefined header; At position 7"
Position 7 is the start of the erroneous header :triz (which should be :trig or :trigger).

3.8.3 It hangs!
A requirement of an IEEE488.2 compatible instrument is that it will not talk when it has nothing to
say. This means when an invalid query is received, the instrument will append an error in the error
queue, but will not send any reply. The controller however, expects a response and will wait for it
until some defined timeout value expires. After that it will probably issue an error to the user.
This is often referred to as a bug, but it isn’t.
After the controller’s timeout period the instrument can be programmed as usual. One can read the
error queue and find out what caused the problem.

It is possible to get an IEEE488.2 instrument to hang, better speaking, to get it into a deadlock
situation. Of course it is also possible that there is fault. To (try to) end such an situation it is best to
first send an IFC (InterFace Clear) interface event and then a DCL (Device CLear). If this doesn’t
help, pushing the reset button or cycling power is the only solution (sigh).

If you did not get the instrument to react in the first place check out if the controller card is configured
as system controller, the gpib-id (default 15) is set correctly and insure that EOI (End Or Identify) is
enabled in your program or software driver.

Gpib Programming Tutorial 13

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

Output
queue

Error/
Event
queue

7
(128)

6
(64)

5
(32)

4
(16)

3
(8)

2
(4)

1
(2)

0
(1)

7
(128)

6
(64)

5
(32)

4
(16)

3
(8)

2
(4)

1
(2)

0
(1)

&

&

&

&

&

&

&

&
>=1
(OR)

7
(128)

RQS
6 (64)
MSS

ESB
5 (32)

MAV
4 (16) 3

(8)

EAV
2 (4) 1

(2)
0
(1)

7
(128)

5
(32)

4
(16)

3
(8)

2
(4)

1
(2)

0
(1)

&

&

&

&

&

&

&

Service
Request

Generation

>=1
(OR)

Power On
User

Request
Command

Error
Execution

Error

Device
Dependen

Error

Query
Error

Request
Control

Operation
Complete

standard Event Status Register (ESR).
Read by *ESR?

Sstandard Event Status
Enable Register (ESE).
Read by *ESE?
Set by *ESE <NRf>

STatus Byte Register (STB).
Read by *STB?
Read by Serial Poll

Service Request Enable
Register (SRE).
Read by *SRE?
Set by *SRE <NRf>

RQS read by serial po

MSS read by *STB?

Message
AVailable
in queue

Errors/
Events

AVailable
in queue*

*)SCPI Engine 0.80 and highe

SRQ

4 Instrument status

IEEE488.2 compatible instruments have to be equipped with a status structure, as shown on the
figure below. The purpose of this structure is to supply information to the controller about the status
of the instrument. Since this structure is part of the IEEE488.2 standard, all instruments will supply
this information in the same consistent manner. Also, the status structure can be programmed in a
way that a certain event will generate a SRQ (Service ReQuest, see 4.5).
The status can be modified and queried by a serial poll and several common commands and queries.
Some parts of the status structure are controlled by the instrument itself, others can be manipulated
by the common commands and queries.

4.1 Status Byte registers (STB and SRE)
The status byte register (STB) is the centre of the status structure. The status register is the register
which is polled in case of a serial poll (see 4.3). Also, the contents of the status register can cause
the generation of a service request (see 4.2).
The status byte has an accompanying enable register, the Service Request Enable register (SRE).
This register controls which bits of the STB could cause generation of a service request.
When the RQS bit in STB is set, a service request will be generated, see 4.2. The controller usually
reacts by performing a serial poll, see 4.3.
Bits 0,1,2,3 and 7 are undefined in the IEEE488.2 standard, the other bits are:

Bit pos. Ordinal value Meaning

Gpib Programming Tutorial 14

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

6 64 RQS, ReQuested Service. This bit is set when the instrument has requested
service by means of the SeRvice Request (SRQ). When the controller reacts
by performing a serial poll, the STatus Byte register (STB) is transmitted with
this bit set. Afand cleared afterwards. It is only set again when a new event
occurs that requires service.
MSS, Master Summary Status. This bit is a summary of the STB and the
SRE register bits 1..5 and 7. Thus it is not cleared when a serial poll occurs.
It is cleared when the event which caused the setting of MSS is cleared or
when the corresponding bits in the SRE register are cleared.

5 32 ESB, Event Summary Bit. This is a summary bit of the standard status
registers ESR and ESE.

4 16 MAV, Message AVailable. This bit is set when there is data in the output
queue waiting to be read.

The STatus Byte register (STB) forms a basis in which more registers can have their summary bit.
The ESB bit (5) is an example of that.

4.2 Serial poll
The controller has two ways of obtaining the STatus Byte register (STB) from an instrument, the
*STB? query and a serial poll.
Serial poll is a special GPIB bus sequence to obtain the status byte register. The status byte register
can also be obtained by the *STB? query, so why a special bus sequence for that?
One of the reasons is efficiency, the status register is usually incorporated inside the GPIB interface
chip. This interface chip handles the serial poll completely. This means that the device specific
operations are not interrupted by serial poll processing.
When a *STB? query is used, the instrument has to interrupt current processing, store the query,
parse it, obtain the register, format it and send it to the controller. This difference can be crucial for
reliable instrument operation.

4.3 Service Request
Service request is a powerful mechanism that enables an instrument to get the attention of the host
computer (controller). The processing of the service request is simple but efficient. The instrument
user controls by means of the status structure which events may cause a service request.
The user programmes the Service Request Enable register (SRE) with the bits from the Status Byte
Register (STB) that may cause a service request. This can be data available in the output queue,
some event(s) from the standard Event Status registers (ESR and ESE) or some instrument specific
(bits 0..3,7).
When the controller detects a service request, it does not know which instrument caused the service
request. So the first thing is to inquire who caused it. The controller does this by performing a serial
poll on all instruments. The instrument which caused the service request has it’s RQS bit (6) set. The
controller can further determine the cause of the instrument’s service request by examine the other
bits in the status byte register. See 4.5 for examples.

4.4 Standard Event Status Registers (ESR and ESE)
The standard Event Status Register (ESR) contains the actual status information directly derived

from the instrument. This register is read only. It can be read using the *ESR? common query. This
query will return the contents of the register in NR1 (Numerical Representation #1) format.

The contents of this register will be cleared when read!

Bit pos. Ordinal value Meaning
7 128 Power-on. The power has cycled.
6 64 User request. The instrument operator has issued a request, for instance

Gpib Programming Tutorial 15

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

turning a knob on the front panel.
5 32 Command Error. A command error has occurred.
4 16 Execution error. The instrument was not able to execute a command for

some reason. The reason can be that the supplied data is out of range but
can also be an external event like a safety switch/knob or some hardware /
software error.

3 8 Device Specific Error.
2 4 Query Error. Error occurred during query processing.
1 2 Request Control. The instrument is requesting to become active controller.
0 1 Operation Complete. The instrument has completed all operations. This bit is

used for synchronisation purposes, see chapter 7 for more information.

As can be seen in the figure on page 13,the standard Event Status Enable register (ESE) is used to
control which bits from the ESR are summarized in the ESB bit (5) in the Status Byte register (STB).
By setting bit 5 in the Service Request Enable register (SRE), this can result in a service request.
This ESE register is read/write. It can be controlled by the *ESE command and *ESE? query. The
register is represented in NR1 (Numerical Representation #1) format.
Examples will follow in 4.5.

4.5 Using the status system in your application
The status system can help your application become more aware of the instrument’s current state.
A few examples illustrate some possibilities:

Example to detect command errors:
*ESE 32 Summarize command error bit (5) into ESB bit (5) of the status byte

register
blabla Generates a command error
*STB? Query the Status Byte register

Returns:
32 The Event Status Bit (ESB) (5) is set.
*esr? Get the contents of the ESR and clear it.

Returns:
160 160 = 128+32 thus the Power on bit and the command error bit are

set
*esr? Get the contents of the ESR and clear it.

Returns:
0 No error.

Example to detect command and query errors in a smarter way:
*ESE 36 Summarize command error bit (5) and the query error bit (2) into

ESB bit (5) of the status byte register
blabla? Just send the query, do not try to read the response as this could

lead to a timeout when the query does not exist. This example will
generate a query error.

SPOLL Serial poll the instrument.
Returns:

32 The Event Status Bit (ESB) (5) is set, the MAV bit (4) is not set thus
the query did not generate any response.

A stepper motor controller instrument uses bit 0 in the Status byte to indicate a jammed motor. The
application on the host computer should be notified as soon as possible:

*SRE 1 Generate a service request when bit 0 in the status byte gets
set.

Motor gets jammed:
SRQ Instrument generates a service request.

Gpib Programming Tutorial 16

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

Host computer serial polls all instruments, at a certain moment this one:
SPOLL Serial poll the instrument.

Returns:
65 65= 64 + 1. This instrument caused the SRQ and has bit 0 set.

The host computer interprets bit 0, and takes the appropriate actions (turning off power, notify users
ect).

Gpib Programming Tutorial 17

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

5 Reset and Clear

A GPIB instrument can be initialized via commands and via interface events. Reset and clear is
separated into several layers. The purpose is to control exact the part of the instrument that you
want. For instance if the communication is stalled due to some query error, it is not needed to reset
the whole instrument thereby losing all device specific settings.
The following list the possible ways to reset or clear (parts of) the instrument:

• Power on. This brings the whole instrument into the initial state
• InterFace Clear (IFC interface event). Resets the GPIB bus to its initial state.
• Device Clear (DCL or SDC interface event). Resets the information interchange between

controller and instrument; clears input and output buffer, aborts operations that prevent
processing of new commands/queries. After a device clear the instrument is ready to accept
new commands and/or queries.

• Clear Status command (*CLS). Clears the whole status structure.
• Reset command (*RST). Resets the instrument specific functionality.

In order to get comparable results as cycling power, the controller must send an IFC, DCL or SDC,
*CLS command and a *RST command.

Gpib Programming Tutorial 18

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

Idle
(ignore trigger)

Armed
(wait for trigger)

Running
(process trigger)

Retired
(trigger processed)

TRIGger:ABORt
TRIGger:RESet

TRIGger:ARM
mode = NORMal

trigger
received

TRIGger:ARM

Power On
*RST

mode = ONEShot

6 Trigger mechanism

A GPIB instrument can be BUS triggered by means of a GET interface event, a *TRG common
command. Triggering from any other (internal or external) signal is completely instrument specific.
For an instrument GET and the *TRG command have the same effect but for the measurement
setup there can be differences:

• The *TRG command has to be interpreted, which introduces software delays and jitter. The
GET interface event needs less processing.

• GET applies to all instruments on the same GPIB bus, the *TRG command applies only to
the addressed instrument.

Most of our instruments are modular. To allow flexible operation of our instruments a trigger mecha-
nism had to be selected. This mechanism should allow each independent part of our instrument
(subsystems, see xx) to be programmed in the way it reacts to a trigger.
The next section presents the default mechanism used in our instruments. If an instrument uses a
different approach, refer to it’s documentation.

6.1 Standard Mechanism

The triggering of most of our instruments follow or extent the state diagram below.

At power-on, system reset or *RST the trigger
mechanism comes into the ‘Idle’ state. In this
state all triggers are ignored.

When a TRIGger:ARM command is received,
the trigger mechanism comes into the ‘Armed’
state. The subsystem is now ready to react on
a trigger. In this state the trigger mechanism
forbids modification of the trigger settings be-
cause it needs to react quickly to a trigger
event.

When a trigger is received the mechanism
comes into the ‘Running’ state. In this state
the system is processing the trigger. Triggers
received during that process are ignored and
reported as errors.

When the trigger is processed, the mechanism
comes into the ‘Retired’ state.
In the NORMal mode the mechanism falls di-
rectly to the ‘Armed’ state waiting for the next
trigger to arrive.
In the ONEShot mode, it stays in the ‘Retired’ state until it is forced out. It can be forced into the ‘Idle’
state by the TRIGger:ABORt or the TRIGger:RESet command. It can also be forced back into the
‘Armed’ state by the TRIGger:ARM command.

The trigger mechanism is reset by the TRIGger:RESet command, it forces the mechanism to the
‘Idle’ state and resets the mode to NORMal and the source to BUS. The TRIGger:ABORt command
just forces the ‘Idle’ state but leaves the mode and source settings unaffected.

Gpib Programming Tutorial 19

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

7 Overlapped commands and synchronisation

Normally commands and queries are processed sequentially, they are processed in the order as they
are received and the next one is started only when the current one has finished.
Sometimes the designed of an instrument decides to implement some commands to operate in
background. When the associated command is received, a background task is started which will
continue to run while the instrument can process new commands and queries send by the user. This
increases flexibility but unfortunately also increases complexity. Therefore the designer will only
implement this feature when there is real advantage to the user.

In the IEEE488.2 standard these background tasks are called overlapped commands, so this will be
used here also.

An example of a good overlapped command implementation:
Consider a (stepper) motor controller which implements a :HOMe command to bring the
motor in the homing position . This operation can take a number of seconds. Normally the
motor controller would be unable to handle commands and queries during that operation. By
implementing this command ‘overlapped’ the controller can perform other requests while the
motor is moving towards home.

To consider a potential problem:
The same instrument also implements the :FORWard command which moves the motor
forward over a specified distance. Imagine that the motor controller is moving the motor
backwards towards the home position after receiving the :HOMe command. At that time the
motor controller receives the :FORWard command. It would be undesirable to abort the
homing process and move the motor forwards. There has to be some synchronisation
between commands to ensure that this kind of problems do not occur.

Hopefully the designer of an instrument will implement the necessary synchronisation to correctly
operate the instrument. In the previous example there was mention about synchronisation between
commands however there can also be need for synchronisation between host computer and instru-
ment.
For implementing synchronisation between host computer (controller) and instrument the IEEE488.2
standard has defined two commands and a query.

Cmnd/Query Meaning When to use

*WAI Wait command.
Wait until all pending commands and
queries are processed.
The following
:HOME;*WAI;:FORWARD
ensures that :FORWARD is not started
until :HOME has finished.

To force synchronisation between
commands and/or queries. (the control-
ler will not know the length of the wait-
ing period *WAI introduces).

*OPC? OPeration Complete query.
This query returns '1' when all pending
commands and/or queries are finished.
During the period that there are pend-
ing commands and/or queries this
query gives NO response! While the
controller is waiting for the response the
whole bus is stalled until the instrument
is idle (or the controller times out).

Synchronisation between controller and
instrument for short waiting periods.
When the delay is too long (several
seconds) a controller timeout can occur
resulting in an error situation. So it is
not advisable for unpredictable or long
delays.

Gpib Programming Tutorial 20

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

*OPC OPeration Complete command.
Set the Operation Complete bit in the
Event Status Register to '1' when all
pending commands and/or queries are
finished.
The controller can read this bit with the
*ESR? query. The controller can also
manipulate the status system in a way
that, for instance, the instrument will
notify the controller with a SRQ.

Synchronisation between controller and
instrument. Suitable for short, long and
unpredictable delays.
Knowledge of the status system man-
datory.

Gpib Programming Tutorial 21

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

8 Instrument standards

8.1 Standard common commands and queries

The following table lists the available common commands and queries available in all GPIB based
instruments from our group.

General
*RST Reset command. Abort all activities and initialize the device. See page 17,Reset and

clear.
*IDN? Identification query. Returns an identification string in the following format:

'Manufacturer, Model, Serial number, Firmware level'
*TST? Self test query. Perform a self-test. Returns ‘0' if self test completed without errors,

all other values determine an error cause.
*TRG Trigger command. Execute trigger function(s). This command has the same effect as

the IEEE488.1 Group Execute Trigger (GET) interface-message. See page 18
Trigger Mechanism.

Synchronisation (See page 19, Overlapped commands and synchronisation)
*OPC Operation Complete command. Set the Operation Complete bit in the Standard

Event Status Register if all commands and queries are finished.
*OPC? Operation Complete query. Return ASCII '1' as soon as all commands and queries

are finished.
*WAI Wait To Continue command. Wait until all commands and queries are finished.

Instrument Status (See page 13,Instrument status)
*CLS Clear Status command. Clears the whole status structure.
*ESE Standard Event Status Enable command. Modify the contents of the Event Status

Enable Register.
*ESE? Standard Event Status Enable query. Return the contents of the Event Status Enable

Register.
*ESR? Standard Event Status Register query. Return the contents of the Event Status

Register.
*SRE Service Request Enable command. Modify the contents of the Service Request

Enable Register.
*SRE? Service Request Enable query. Return the contents of the Service Request Enable

Register.
*STB? Status Byte query. Return the contents of the Status Byte Register.

Gpib Programming Tutorial 22

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

8.2 Standard subsystems

8.2.1 Introduction
As mentioned before, the header tree is a hierarchical structure that can comfortably reflect the
modular structure of our instruments. The header tree is divided into subsystems.
Sub-systems are groups of commands and queries which are strongly related. For example, the
AD16 plug in card has a corresponding SCPI subsystem called ad16_ . The standard subsystems
that are present in every programmable instrument from our group are listed here.

8.2.2 System sub-system

:SYSTem (Node)
The SYSTem subsystem provides the user with commands and queries that are not related to
instrument performance.

:ERRor? (Query only)
Get the next entry from the instrument’s error/event queue. Returns <error/status value>, an integer,
followed by <description> which is a string.

Error and status messages are queued using a FIFO (First-In, First-Out) strategy.
Items in this queue contain an integer in the range [-32768, 32767] denoting an error/event number
and associated descriptive text. An error/event value of zero indicates that no error or event has
occurred. If the queue overflows, the last error/event in the queue is replaced with the error:

-350,”Queue overflow”
Reading an error/event from the queue removes that error/event from the queue. When all er-
rors/events have been read from the queue, further error/event queries shall return:

0,”No error”

Example:
Controller sends: :syst:err?
Instrument could reply: -500,”Power up”

Controller sends: :syst:err?
Instrument could reply: 0,”No error”

See also ‘Oops typo!’ from page 11.

:DATE <numeric_value>,<numeric_value>,<numeric_value>
Queries or sets the internal calender. The first parameter is the year, followed by the month and the
day.

Example:
Controller sends: :syst:date?
instrument could reply: 99,12,31
Example:
Controller sends: :syst:date 99,1,1
Date will now be set to januari 1st 1999.

:TIME <numeric_value>,<numeric_value>,<numeric_value>
Queries or sets the internal clock. The first parameter is the hour, followed by the minute and the
second.

Example:
Controller sends: :syst:time?
Instrument could reply: 16,48,14

Gpib Programming Tutorial 23

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

Example:
Controller sends: :syst:time 23,59,1
Time will now be set to 23:59:1.

:VERSion? (Query only)
Returns the SCPI version number for which this instrument complies.

Example:
Controller sends: :syst:vers?
Instrument could reply: 1996.0

8.2.3 Micros sub-system

:MICRos (Node)
The Micros subsystem provides the user with some support for the underlying Micros operating
system.

:INFo (Node)
INFo commands provide some information about the underlying hardware and operating system.

[:ID?] (Default, Query only)
Returns a string containing operating system identification information.
Example
Controller sends: :micros:info:id?
Instrument could reply: Micros 3.2.3, (c) Rob Limburg Vrije Universiteit

Amsterdam

:CPU? (Query only)
Returns a string containing microprocessor identification information.
Example:
Controller sends: :micros:info:cpu?
Instrument could reply: Scc68070

:RELease? (Query only)
Returns an unsigned integer (NR1) indicating operating system release.
Example:
Controller sends: :micros:info:rel?
Instrument could reply: 323

:SYSTem? (Query only)
Returns a string containing hardware platform identification information.
Example:
Controller sends: :micros:info:syst?
Instrument could reply: NeoNil

:MEM (Node)
MEM commands provide information about the amount of available memory (RAM) in the system.

:CONTigous? (Query only)
Returns an unsigned integer (NR1) indicating the size (in bytes) of the biggest contiguous block of

Gpib Programming Tutorial 24

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

free memory.
Example:
Controller sends: :micros:mem:cont?
Instrument could reply: 1558206

[:TOTal?] (Default, Query only)
Returns an unsigned integer (NR1) indicating the total amount (in bytes) of free memory.
Example:
Controller sends: :micros:mem:tot?
Instrument could reply: 1844708

:STReam (Node)
STReam commands give the user the ability to control the (other) communication channels available
on the system. Streams are flexible data channels provided by the Micros operating system. A
stream is opened by calling the OPEN query. This query returns an unsigned integer. This value has
to be passed with all subsequent STReam commands and queries.

:OPEN <string>,<string> (Query only)
Open a stream with the given stream and protocol-name. The first string has to contain the stream
name and the second string the protocol name. This query returns a non decimal unsigned integer
which is the stream-handle.
If the stream could be opened, the stream-handle is unequal to 0 and FFFFFFFFhex. If the stream
could not be opened, an error is appended to the error/status queue.
Example:
Controller sends: :micros:stream:open “SERIAL1”,”RS232"
instrument could reply: #H1DFD4
Some of the available streams are listed at the end of this section.

:CLOSe <numeric_value>
Close the stream. If the stream could not be closed, an error is appended to the error/status queue.
Example:
Controller sends: :micros:stream:close #H1DFD4
Now the stream is closed, output buffer will be flushed, input buffer cleared.

:READ? <numeric_value> (Query only)
Reads data from the stream referenced by the <numeric_value>. This query returns the data in the
arbitrary block form.
Note that this query is non-blocking, only data resident in the input buffer is returned.
Example:
Controller sends: :micros:stream:read? #H1DFD4
Instrument could reply: #211Hello dude!

:WRITe <numeric_value>,<arbitrary_block>
Sends data to the stream referenced by <numeric_value>. The data is in arbitrary block form.
Example:
Controller sends: :micros:stream:write #H1DFD4, #212Hello world!
The data will now be sent to the stream.

Some of the available streams on the NeoNil computerboard:

SERIAL1 (rs232 port 1 on front panel NeoNil):
Stream 'SERIAL1'
Protocol 'RS232[:OPTION1=X][:OPTIONn=Y]'

Gpib Programming Tutorial 25

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

Protocol options:
B=X[,Y] Buffer size in bytes.

B=X bytes voor input en output buffer,
B=X/Y X bytes voor input en Y bytes voor output.

I=X Interrupt priority level 0..32767
R=X BaudRate = X bits/sec, possible values:

50,75,110,134,150,200,300,600,1200,1050,1800,
2000,2400,4800,7200,9600,19200 of 38400

P=NO ODD EVEN Parity off, odd or even.
C=X Character length = 5,6,7 or 8 bits.
S=X Stopbit length = 1 or 2 bits
F=NO HARD SOFT Flow control = none, hardware(RTS-CTS) or software (Xon-Xoff).

Default configuration:
buffer size 1Kbyte
interrupt prio. 30000
baud rate 9600 baud
parity No
char. length 8
stop bit length 1
flow control XonXoff

SERIAL2 (rs232 port 2 on front panel NeoNil):
Stream 'SERIAL2'
Protocol 'RS232[:OPTION1=X][:OPTIONn=Y]'

Protocol options:
B=X[,Y] Buffer size in bytes.

B=X bytes voor input en output buffer,
B=X/Y X bytes voor input en Y bytes voor
output.

L=X Interrupt Level 0..7
I=X Interrupt priority level 0..32767
R=X baudRate = X baud:

75,150,300,1200,2400,4800,9600 or 19200 baud.
P=NO ODD EVEN Parity off,odd or even.
C=X Character length = 5,6,7 or 8 bits.
S=X Stopbit length = 1 or 2 bits.
F=NO HARD SOFT Flow control = none, hardware(RTS-CTS) or

software (Xon-Xoff).

Default configuration:
buffer size 1Kbyte
interrupt level 3
interrupt prio. 30000
baud rate 9600 baud
parity No
char. length 8
stop bit length 1
flow control XonXoff

Gpib Programming Tutorial 26

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

9 Error codes

Errors are divided into command errors, execution errors, query errors and instrument specific errors.
Refer to section 3.9 for more information on errors. Here only the codes and the meanings are
defined. Not all codes listed here can be generated by our instruments.
Negative error codes are defined by SCPI, positive numbers are instrument specific.

0 No error

Command errors. The command error bit in the standard Event Status Register (ESR) is set to ‘1'
when such an error occurs.

-100 Command error (one of the following is used if approriate)
-101 Invalid character. An element contains a character which is invalid for that type of element.

For example a command containing am ampersand: :SETUP&
-102 Syntax error. An unrecognized command or data type was encountered.
-103 Invalid separator. The instrument’s parser was expecting a separator and encountered an

illegal character. For instance the semicolon was omitted after a program message unit.
-104 Data type error. The instrument’s parser detected a data element of different type than

expected. For example, a numerical data element was expected but a arbitrary block data
element was detected.

-105 GET not allowed. A group execute trigger interface event was detected within a line of
commands and/or queries.

-108 Parameter not allowed.
-109 Missing parameter.
-110 Command header error.
-111 Header separator error
-112 Program header too long.
-113 Undefined header.
-114 Header suffix out of range.
-120 Numeric data error.
-121 Invalid character in number.
-123 Exponent too large.
-124 Too many digits.
-128 Numeric data not allowed.
-130 Suffix error.
-131 Invalid suffix.
-134 Suffix too long.
-138 Suffix not allowed.
-140 Character data error
-141 Invalid character.
-144 Character data too long.
-148 Character data not allowed
-150 String data error.
-151 Invalid string data
-158 String data not allowed
-160 Block data error
-161 Invalid block data
-168 Block data not allowed
-170 Expression error
-171 Invalid expression
-178 Expression data not allowed
-180 Macro error.
-181 Invalid outside macro definition.
-183 Invalid inside macro definition
-184 Macro parameter error

Gpib Programming Tutorial 27

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

Execution errors. The execution error bit in the standard Event Status Register (ESR) is set to ‘1'
when such an error occurs.

-200 Execution error.
-201 Invalid while in local
-202 Settings lost due to rtl
-203 Command protected
-210 Trigger error
-211 Trigger ignored
-212 Arm ignored
-213 Init ignored
-214 Trigger deadlock
-215 Arm deadlock
-220 Parameter error
-221 Settings conflict
-222 Data out of range
-223 Too much data
-224 Illegal parameter
-225 Out of memory
-226 Lists not same length
-230 Data corrupt or stale
-231 Data questionable
-232 Invalid format
-233 Invalid version
-240 Hardware error
-241 Hardware missing
-250 Mass storage error
-251 Missing mass storage
-252 Missing media
-253 Corrupt media
-254 Media full
-255 Directory full
-256 Filename not found
-257 File name error
-258 Media protected
-260 Expression execution error
-261 Math error in expression
-270 Macro exec error
-271 Macro syntax error
-272 Macro execution error
-273 Illegal macro label
-274 Macro parameter execution error
-275 Macro definition too long
-276 Macro recursion error
-277 Macro redefinition not allowed
-278 Macro header not found
-280 Program error
-281 Cannot create program
-282 Illegal program name
-283 Illegal variable name
-284 Program currently running
-285 Program syntax error
-286 Program runtime error
-290 Memory use error
-291 Out of program memory
-292 Referenced name does not exist
-293 Referenced name already exist

Gpib Programming Tutorial 28

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

-294 Incompatible type

Device specific errors. The device dependant error bit in the standard Event Status Register (ESR) is
set to ‘1' when such an error occurs.

-300 Device specific error
-310 System error
-311 Memory error
-312 Pud memory lost
-313 Calibration memory lost
-314 Save recall memory lost
-315 Configuration memory lost
-320 Storage fault
-321 Out of internal memory
-330 Self test failed
-340 Calibration failed
-350 Queue overflow
-360 Communication error
-361 Parity error
-362 Framing error
-363 Input buffer overrun

Query errors. The query error bit in the standard Event Status Register (ESR) is set to ‘1' when such
an error occurs.

-400 Query error
-410 Query interrupted
-420 Query unterminated
-430 Query deadlocked
-440 Query unterminated

Other SCPI defined error values. The corresponding bit in the standard Event Status Register (ESR)
is set to ‘1' when such an event occurs.

-500 Power on
-600 User request
-700 Request control
-800 Operation complete

Gpib Programming Tutorial 29

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

10 Software revisions

A programmable instrument from our group is a modular design. There is no such thing as ‘the’
instrument software revision. Instead, a few software revisions are mentioned here which could be of
interest of the user.

SCPI Engine revision
The SCPI Engine is the ‘engine’ of the programmable instrument’s command and query processing.
The revision level is contained in the *IDN? query response.

GPIB stream revision
This software revision is only used internally. The GPIB stream handles all interaction with the GPIB
bus (GPIB bus driver).

SCPI standard version
The SCPI standard itself is changing over time. The instruments developed in our group are (at this
time) mostly SCPI 1996 complient.
The SCPI standard version is returned by the :SYSTem:VERSion? query.

Sub-system version(s)
Important (long lasting with more or less continuous development) subsystems have version levels.
This software revision is returned by the

:<subsys-name>:VERSion?
query. It returns three unsigned numeric values representing the version level of this subsystem:

<major>,<minor>,<patch>
The major version indicates the level on overall behaviour of the subsystem. A major level 2 subsys-
tem is likely to give problems when expecting a major level 1.
The minor version level indicates the syntax level. A minor level 2 subsystem is likely to have more
commands or queries than a minor level 1 subsystem. It could also have some minor modifications
to existing commands. Your application software (LabView, HP-VEE, etc) should work with little or no
modifications.
The patch version level indicates the changes to the subsystem which do not affect the behaviour,
and do not add or modify the existing commands.
Example:
Controller sends: ad16_:vers?
Instrument could reply: 1,3,3

Gpib Programming Tutorial 30

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

11 Further reading

The IEEE488.2 and SCPI standard documents:

• ANSI/IEEE Std 488.1-1987, IEEE Standard Digital Interface for Programmable Instrumenta-
tion.
Publisher: The Institute of Electrical and Electronics Engineers, New York
ISBN : 471-62222-2

• ANSI/IEEE Std 488.2-1987, IEEE Standard Digital Interface for Programmable Instrumenta-
tion.
Publisher: The Institute of Electrical and Electronics Engineers, New York
ISBN : -

• SCPI 1996, Standard Commands for Programmable Instruments.
Publisher: SCPI Consortium, La Mesa
ISBN: -

More readable:

• Automatic Measurement Control, a tutorial on SCPI and IEEE488.2 by John M.Pieper.
Publisher: ACEA / Rohde & Schwarz
ISBN : -

From our group (download at our web site):

The AD16 data acquisition board.
• AD16 SCPI Subsystem.
• AD16 SCPI Quick Reference Card

The STEPPER, RUNNER and TWISTER motion control boards.
t.b.a.

Gpib Programming Tutorial 31

Electronics Group (http://www.few.vu.nl/~elec) Free University Amsterdam, Faculty of Sciences

Appendix A Quick Start

This appendix shows you how to get started with an programmable instrument from the Electronics
Group.

A1 What you need

• A computer with a gpib controller card (we can advise you which card to purchase)
• A gpib cable (we can provide this)
• The instrument with a power cord
• 240 Volts outlets with protective ground

A2 What you need to know before you begin

• Never connect two computer (peripherals) while power is on.
• Always use instruments in a 240Volts protective ground connection
• Make sure the protective grounds are from the same group (tie them as close to each other

as possibly can)

A2 What you need to do

I. If it is not done already, install the gpib controller card in the computer. Follow the directions
of the manufacturer. Make sure it is configured as system-controller.

II. Place the instrument at the desired location, connect the cable.
III. Boot the computer.
IV. Select the gpib-id on the front panel of the instrument (default 15)
V. Turn on the instrument
VI. Make sure the software driver in your computer has EOI (End Or Identify) enabled!
VII. Use a software tool to communicate with the instrument.

Some notes:

Most gpib card manufactures have some simple tool to do troubleshooting. You can simply enter a
command or query and see the results.
The Electronics Group also has a simple utility written in HP-VEE. This can be downloaded from our
web site.

