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ABSTRACT: Simulation of Urban Operations (UO) requires the ability to create and damage dense, realistic city-
scapes. However, since these databases must be both large and complex, creating appropriate environments for UO is 
difficult at best. For example, a system capable of creating one building per minute would need nearly 42 months to 
generate a present-day ultra-high resolution building (UHRB) database of 1.8 million buildings. Size and complexity of 
urban databases will undoubtedly continue to increase in the future.  
 
During the simulation, a method must be found to damage buildings and other structures in real time, with visual as 
well as semantic (e.g., enclosure / aperture) modifications. Ideally, support would be included for tactical explosives as 
well as large-scale damage from artillery. Rubble and structural integrity should also be appropriately modeled for 
their effects on UO missions. 
 
In this paper, we present our Automated Building Generation System (ABGS) and modification systems (UHRB-Sim), 
representing initial steps towards these goals. Our system can generate simple buildings in under a second and damage 
them in real time, leveraging our experience with dynamic terrain effects. We will review our methodology and present 
a number of future directions to improve the current work. 
 
1 Introduction 
 
One of the reasons why the simulation of Urban Opera-
tions (UO) is a difficult and open problem is that the envi-
ronment the participants require is extremely complex, 
richly attributed, and polygonally intensive [1]. To our 
knowledge, only very small databases (in terms of num-
ber of buildings) have been created to address these re-
quirements, and nothing for the square blocks of struc-
tures (or, indeed, square kilometers) that might be needed 
for a robust simulation. We call these databases ultra-high 
resolution building (UHRB) databases. For discussion 
purposes, we will use as our target the LM STS Jakarta 
database, containing approximately 1,800,000 buildings, 
developed from geospecific and/or geotypical building 
footprints and urban terrain zone (UTZ) information. Two 
views of a portion of the database are shown below in 
Figure 1 and Figure 2. 
 
There are two primary obstacles to UHRB databases: da-
tabase generation and real-time database modification. 

Intricate structures must be compiled within a reasonable 
timeframe - days, not years. Damage to buildings needs to 
be reflected in real-time, not after minutes or hours of 
calculation. To address these issues, we have imple-
mented our prototype UHRB system, promising scalable 
database solutions for UO. 
 
In this paper, we will cover our UHRB process from start 
to finish. We first discuss the ShapeFile generation proc-
ess, which will result in generalized descriptors of our 
attributed buildings. Following this, we discuss how the 
ShapeFiles are turned into floorplan files, in which build-
ing components (walls, rooms, etc.) are generically repre-
sented. Floorplan files are used to generate polygonal 
representations of the buildings, to be used, in turn, with 
integration in the visual and SAF databases. Both floor-
plan and polygonal files are used in the UHRB-Sim, our 
real-time building model simulator. Finally, we briefly 
discuss future directions to make this work a better repre-
sentation of a realistic urban environment. 

 



 
Figure 1: Jakarta View from JSAF Plan View Display 

 

 
Figure 2: Jakarta Visualization 

 
2 Automated Building Generation System (ABGS) 
 
In current systems, compilation time of one minute per 
building (with interiors) is considered fast, particularly 
considering the complexity that a multi-story structure 
may entail. However, to render Jakarta on such a system 
would have required 30,000 computational hours, or 
nearly three and a half computational-years – and this 
excludes the minutes or hours of pre-computation time for 
design of each unique building. Clearly, this is not ac-
ceptable. 
 
The Automated Building Generation System (ABGS) is 
able to generate buildings at a much faster rate. While the 
pre-computation time is still an issue to be addressed, our 
process addresses at least a large portion of the problem. 
 
Typically, municipalities maintain GIS databases of 
building footprints for taxation purposes that are often 
available at a nominal cost. Generally, little other attribu-

tion (e.g., building height) is available. So while the 
ABGS can use geospecific building footprints, other attri-
bution and the interior floorplans have been geotypically 
derived. The system, however, does not preclude the use 
of geospecific attribution and interior floorplans. 
 
2.1 Overview 
 
The ABGS consists of four major phases: 

1. Data Preparation. Start with a set of building 
footprints, linear roads, terrain imagery and Ur-
ban Terrain Zone (UTZ) information. 

2. Attribute Generation. Configure rules for al-
lowable attribute value ranges and probabilistic 
distributions as a function of UTZ and building 
size and assign the values to the building out-
lines. 

3. FloorPlan Generation. Read the 2D building 
ShapeFile, generate an “abstract” XML floorplan 
file for each building. 



4. Polygon Generation. Read each 2D floorplan 
XML file; generate a 3D polygonal model in 
X3D format. 

 
This process is illustrated below in Figure 3. 
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Figure 3: ABGS Process Flow 

 
2.1.1 Building Representation 
 
Several factors were key drivers in the choice of file for-
mats used in the building representations throughout our 
ABGS process. During the requirements gathering and 
assessment phases of this project, we conducted a thor-
ough investigation of available standard formats popular 
for representing models in the Modeling and Simulation 
(M&S) community. 
 
The most significant factor in selecting standard file for-
mats was the ability to leverage and quickly develop ac-
companying software and application programming inter-
faces (APIs) on Win32 as well as Linux platforms. The 
Win32 requirement was driven by the needs of the ABGS, 
which depends on an Open Database Connectivity 
(ODBC) connection, as well as several third-party tools 
which run best under Win32. The Linux requirement was 
driven by the needs of various compilers which translate 
the ABGS output into formats suitable for real-time visu-
alization and constructive simulation.  
 

The ABGS file formats also had to support a hierarchical 
structure, allowing us to model the relationships between 
buildings, floor levels, rooms, walls, and windows. An-
other priority was to be able to exchange data with the 
UHRB representation used by the OneSAF Objective 
System (OOS). 
 
Given these requirements, the XML format and its emerg-
ing X3D specification [2] became the optimal formats. 
The XML floorplan format is a derivative of the XML 
floorplan format developed by OOS. Our current imple-
mentation produces one XML and one X3D data file per 
building in a spatially-organized folder tree on disk. In the 
future, we anticipate shifting this storage task to a rela-
tional database, where the XML and X3D data would be 
stored as binary large objects (BLOBs). Doing so will 
simplify configuration control during the ABGS process, 
and should allow faster access to individual buildings than 
regular file I/O. Also, several free and commercially 
available tools can convert from X3D to a variety of other 
formats, including VRML and OpenFlight. 
 



We used the Altova XMLSpy product to create XML 
schemas for the two XML data formats (FloorPlan XML 
and PolyGen X3D) used in our process. This allowed us 
to automatically generate C++ classes and methods for 
each of the appropriate building components as repre-
sented in the XML structure for the FloorPlan and Poly-
gon generator applications. 
 
2.2 Data Preparation 
 
The ABGS uses the following source data. 
 
Building Footprints Two-dimensional building out-

lines, typically in ShapeFile for-
mat. 

Terrain Imagery  Needed if you do not have a com-
plete set of Urban Terrain Zones 
(see below). The imagery must 
correlate with the building foot-
prints. Resolution should be high 
enough to discern even small 
structures (one to five meter pix-
els).  

Urban Terrain Zones  Large 2D polygons, designating 
“neighborhoods” of similar build-
ing function and density. Exam-
ples include clustered office 
buildings, open-set warehouses, 
and close-set houses. This data is 
usually manually derived from the 
Terrain Imagery, although semi-
automated feature extraction may 
be used. 

Road Network  Linear features, correlating with 
the building footprints. The roads 
are used for designating which 
wall of each building footprint 
will become the “front” and have 
the main entrance. 

 
The attributes for the Building Footprints, Road Network, 
and Urban Terrain Zones are based on the Environmental 
Data Model (EDM) for Ultra-High Resolution Buildings 
(UHRB) [3]. The EDM provides a precise definition of 
UHRB features (floors, rooms, walls) and attributes 
(height, surface material, building function). The UHRB-
Sim EDM is derived from the UHRB EDM for the One-
SAF Objective System (OOS). Compared to the OOS 
UHRB EDM, the UHRB-Sim EDM has the following 
simplifications: 
 

• Dropped Abstract and Generalized features in 
favor of a more explicit hierarchy. 

• Reduced feature set to the core features neces-
sary for a building with a basic interior. 

• Reduced attribution to just those which support a 
visual representation. 

 
2.3 Attribute Generation 
 
The Attribute Generation Process consists of the follow-
ing major steps, as shown in Figure 4. 
 

1. Generate Root Segments: Designate one seg-
ment from each building footprint to become the 
“front.” 

2. Configure Attribution Rules: Configure allow-
able ranges for building height and function, 
based on Urban Terrain Zone and footprint size. 

3. Generate Attributes: Run the Attribute Genera-
tor to assign attributes. 

4. Verification: View the results, perform post-
process edits if necessary. 

 
We will examine each of these in more detail. 
 
2.3.1 Generate Root Segments 
 
The root segment denotes the “front” of the building, 
where the main entrance is to be placed. By convention, 
the root segment is defined as the first two vertices in the 
building footprint polygon. The ABGS includes a tool 
which takes the building footprints and the roads as input, 
and “re-orders” the vertices in the building footprints such 
that the first two will define the footprint segment which 
is closest to the nearest road (see Figure 5). 
 
2.3.2 Configure Attribution Rules 
 
The Attribute Generator is driven by a database of Attri-
bution Rules. The Attribution Rules include both allow-
able ranges and the probabilistic distribution of values 
within those ranges. The Attribute Generator selects indi-
vidual values at random, based on the probabilistic distri-
bution defined in the Attribution Rules. The result is simi-
lar to rolling a loaded die. The attribution rules are user-
configurable, allowing the user to modify the Attribute 
Generator’s behavior without needing to modify software. 
While the Attribute Generator does include a complete set 
of Attribution Rules, it is always wise to review and mod-
ify the rules whenever buildings are generated for a new 
major geographic region (e.g. Western Europe vs. South-
east Asia).  
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Figure 5: Root Segment Generation 
 
2.3.2.1 Urban Terrain Zone (UTZ)  
 
The most crucial building attribute is its Urban Terrain 
Zone (UTZ) [4] membership. The Urban Terrain Zone is 
a classification scheme for identifying groupings of build-
ings within a city based on building function, density and 
construction type. Examples of UTZs include close-set 
office buildings, attached houses, and open industrial re-
gions.  
 
All other attribution rules are based on a building’s UTZ 
membership. For example, building height ranges and 
distributions are different between a residential UTZ and 
an office high-rise UTZ.  

 
UTZs are assigned to buildings based on two factors: 

• The UTZ polygon containing the building foot-
print. 

• The size (area) of the building footprint. 
 
Area plays a role because 100 square-meter footprints in 
an office high rise UTZ should have a different height 
distribution compared to 10,000 square-meter footprints. 
In fact, 100 square-meter footprints shouldn’t be classi-
fied as office high rises at all. Therefore, the Attribute 
Generator detects footprints that are “too big” or “too 
small” for their enclosing UTZ and reassigns them. The 
reassignment involves finding another UTZ polygon 
whose constituent footprint area is a better match, and 
assigning the UTZ zone from the new polygon. For ex-
ample, the 100 square-meter footprints in the office high-
rise zone may match a zone for small commercial/retail 
buildings. The 100 square-meter footprints’ UTZ attribute 
would then be set to “commercial/retail” instead of “of-
fice high rise”. 
 
2.3.2.2 Footprint Area Classification, “Core Classes” 
 
UTZ (re)assignment is controlled by the Attribution 
Rules, using the concept of “Core Classes.” During attrib-
ute generation time, the Attribute Generator collects foot-



print area statistics for each UTZ polygon. These statistics 
include a natural breaks (Jenks [5]) classification of the 
footprints’ area into five classes. Each footprint is then 
assigned a class number. The Attribution Rules include a 
Core Values table, which specifies which of the five 
classes are “Core” classes for each UTZ. Once the classes 
have been assigned, the Attribute Generator checks 
whether a given footprint’s class matches one of the 
“core” classes of its enclosing UTZ. If the footprint is in a 
“core” class, it inherits the UTZ zone value from its en-
closing UTZ polygon, if it does not, it inherits its UTZ 
value from another UTZ polygon that satisfies two crite-
ria: 

1. Average area for core footprints of the UTZ 
polygon is a close fit to the area of the footprint 
in question. 

2. New UTZ polygon is “semantically adjacent” to 
the original UTZ polygon. 

 
Semantically adjacent means the new UTZ is typically 
found next-door to the original UTZ. For example, single-
family house zones are semantically adjacent to retail 
areas, but not to office high rises. 
 
2.3.2.3 Floor Count 
 
Floor Count is a “range-based” attribute. Floor Count 
Attribution Rules include a minimum, maximum, mean 
and standard distribution for each UTZ. These parameters 
are used by the Attribute Generator to create a normal 
distribution of the probability that each floor count within 
the min/max range may occur. A “loaded die” is then con-
figured and rolled to select the assigned floor count for 
each footprint in a given UTZ polygon. 
 
2.3.2.4 Floor Height, Building Height 
 
Floor Height (distance from floor to ceiling of one story, 
is inferred from the UTZ. Typical values are 3 to 4 me-
ters. Building height is simply calculated from Floor 
Height and Floor Count. 
 
2.3.2.5 Building Function 
 
Building Function is a “discrete” attribute. Unlike floor 
count, the allowable building functions (house, office, 
store) can not be assembled into a range with a minimum 
and maximum. Instead, the Attribution Rules include a 
table of all allowable Building Functions for each UTZ. 
An explicit probability is defined for each building func-
tion within a given UTZ. Similar to Floor Count, the At-
tribute Generator uses these probabilities to configure a 
“loaded die” which is then “rolled” to determine an ex-
plicit Building Function for each footprint. 
 

2.3.3 Generating Attribution 
 
Once the Attribution Rules have been configured, Attrib-
ute Generation can proceed with minimal user interven-
tion. Attribute Generation proceeds in several stages, with 
the user able to review/modify the output from each stage, 
or to run all stages at once. 
 
The Attribute Generation stages include: 

• Classify Building Footprints. 
Set up empty tables and fields for the Jenks clas-
sifications. 
Gather footprint area statistics. 
Assign Jenks classifications. 

• (Optional) User can review the class assign-
ments, and modify which classes are defined as 
“core” for each UTZ. 

• Generate Run-Time Attribution Rules. 
Using the “baseline” per-UTZ Attribution Rules, 
generate set of “run-time” rules, consisting of an 
explicit rule for each individual UTZ polygon. 

•  (Optional) User can modify Attribution Rules 
for each UTZ polygon. 

• Derive Building Attributes. 
Using the run-time Attribution Rules, derive and 
assign attributes to the building footprints. 

 
2.3.4 Verification 
 
In general, the Attribute Generator is highly effective in 
assigning reasonable attribution to large data sets cover-
ing a wide area. Due to the probabilistic nature of the at-
tribute generation process, however, it is always wise to 
review the final output to make sure it “looks right”. The 
final output of the Attribute Generation Process is a set of 
building footprints in ShapeFile format. These footprints 
can be viewed and edited by standard GIS tools. Items to 
look for include: 
 

• Aesthetic Distribution of Height 
Height is the first cue anyone uses to identify 
buildings and cityscapes. Use a 3D viewer to ex-
trude the building footprints by height. Office 
towers should be tall, warehouses and shopping 
malls should be shorter, single-family houses 
shouldn’t exceed 2-3 stories. The visual “cluster-
ing” of buildings with similar heights should re-
veal office, industrial, residential districts. 

 
• Distribution of Building Function 

Most urban terrain zones will have a few domi-
nant functions (houses, apartments) with a 
“sprinkling” of supporting functions (stores, gas 
stations, libraries). 

 



• Special Cases 
The Attribute Generator generates geotypical at-
tribution. For geospecific cases, such as land-
mark buildings or specialized facilities, building 
height and function can be set manually. 

 
2.4 Building Interior Generation 
 
The literature is replete with papers from the architectural 
community on the automated generation of building inte-
rior layouts [6], [7], [8]. However, most of these tech-
niques rely on nonlinear optimization, which is not scal-
able to the quantities of buildings we envision. Thus we 
have developed a more ad hoc approach, leveraging the 
native geospatial capabilities of a commercial GIS 
(ESRI’s ArcGIS). 
 
Building interiors, rooms, hallways, and doors are created 
in a programmatic process based on the spatial and attri-
bution properties of the building. The building footprint is 
oriented with the first segment of the building geometry 
in the front of the building. From this point; a five part 
process begins to create the building interiors within an 
ESRI ArcGIS Geodatabase. The Geodatabase contains six 
topologically integrated feature classes: (1) Hallway 
Lines, (2) Shaft Areas, (3) Hallway Areas (4) Room Ar-
eas, (5) Door Points, and (6) Door Lines. After the build-
ing interiors have been created within the Geodatabase, 
they are exported into ESRI ShapeFiles that contains 
walls and rooms. Figure 6 shows a sample layout. 
 

 
Figure 6: Building Interior features 

 
2.4.1 Hallway Lines 
 
The processing begins by creating the hallway centerline. 
Hallway centerlines are not created for smaller buildings 
or buildings attributed to having a single room. In all 
other buildings, the hallway centerlines are based on the 
size, shape of the building, and the size of the rooms. 

Large buildings will have multiple hallways, while 
smaller buildings will have a single hallway (larger build-
ing and smaller rooms will create more hallways, and 
vice-versa, smaller building and larger rooms will create 
fewer hallways). 
 
2.4.2 Shaft Areas 
 
Shafts are rectangular rooms with a fixed length and 
width, with no ceilings or floors, and are used to contain a 
stairway or an elevator. Shafts are created in all buildings 
with two or more floors. If the building has a hallway; the 
shaft is always connected to the hallway. 
 
2.4.3 Hallway Areas 
 
The hallway centerlines are deconflicted against the shaft 
areas then expanded into area features. Hallways that 
form a three-way or a four-way connection have a junc-
tion area created to split the hallways into single parts. 
This allows their geometry to be treated like a room in 
downstream processing. 
 
2.4.4 Room Areas 
 
Rooms are created for all buildings above a specified size 
and that are attributed to contain multiple rooms. Initially, 
a collection of rectangular rooms based on specified 
length and width is created, like a mesh, to cover the 
buildings. The collection of rooms is rotated to match the 
primary orientation of the building. The rooms that over-
lap with the hallways or shafts, and areas exterior of the 
building, are removed. The final processing step is to 
merge all rooms below a specified area tolerance with the 
neighbor that shares the longest edge. 
 
2.4.5 Door Points and Lines 
 
All buildings have doors placed on the front of the build-
ing. If the building has multiple rooms or shafts, doors are 
placed with the following logic: (1) A shaft can only have 
one door in a predetermined location based on the shaft 
type; (2) A shaft door must be associated with a hallway 
if a hallway exists; (3) Room doors are first placed with 
an associated hallway if a hallway exists; and (4) If hall-
ways do not exist, a door is placed on a room edge that is 
not shared with a shaft. 
 
2.4.6 Export 
 
The feature classes of the Geodatabase are decomposed 
into a collection of walls (segments) and rooms (a collec-
tion of walls) for each building. The walls are broken 
down into three segment types: (1) Door segment, a poly-
line part with four vertices, the two interior vertices repre-
sents the door and the entire segment represents a wall; 



(2) Empty segment, a polyline part with three vertices, 
represents a hole or opening in a wall; and (3) Wall seg-
ment, a polyline part with two vertices represents a wall 
(Figure 7). The rooms are exported as polyline format 
where each part of the room points to a wall segment. 

Door Segment

Empty Segment

Wall Segment

 
Figure 7: Wall segment types 

 
2.5 Floorplan Generation 
 
The FloorPlan Generator (FPGen) application uses build-
ing footprint and attribute data from the attribute genera-
tion process and interior floorplan ShapeFiles to produce 
a high-level abstract representation of the building, in-
cluding both floor levels and features that connect levels 
(stairs, shafts). This representation includes basic geome-
try such as door, window, and wall locations. This basic 
geometry is later used as source for generating renderable 
3-D polygons. This same data is also used as readily tra-
versable structures for constructive simulation entity 
modeling in UO operations.  
 
All building components and associated attributes created 
in FPGen, e.g., rooms and walls, conform to the definition 
and structure of UHRB EDM components. Attribute val-
ues for building components are assigned in one of sev-
eral ways in the FloorPlan Generator: 
 

a) directly from the ShapeFile source (e.g., 
number of floor levels),  

b) default value from UHRB EDM (e.g., num-
ber of doors),  

c) derived (e.g., number of rooms, or window 
width), or 

d) some combination of the above.  
 

Many constraint checks are performed to ensure that de-
fault attributes do not result in the creation of anomalous 
building components. For example, windows may not be 
created on walls deemed too narrow, or the EDM-
recommended distance between adjacent window widths 
may be adjusted to compensate. 
 
Each high level building component for which 3-D po-
lygonal representation is required (e.g., an exterior wall) 
is tagged with a unique XML “DEF” attribute. This iden-
tifier will be propagated through the X3D creation process 
as well, and utilized by the real-time UHRB-Sim for dam-

age assessment and generation, as discussed in Section 
3.3.2. 
 
2.6 Polygonal Generation 
 
The Polygon Generator (PolyGen) application derives 3-
D geometric information from the XML data produced by 
the FPGen, and generates an output file in the X3D for-
mat. Geometric data resulting from the Polygon Generator 
is comprised of 3-D polygonal facets with color or texture 
map information. These polygons are stored as Indexed 
Face Set objects according to the X3D specification. Ap-
propriate texture map pattern and scale information is 
assigned through a class interface for querying the UHRB 
EDM.  
 
PolyGen’s basic algorithm involves traversing the XML 
building representation floor by floor, constructing walls, 
apertures, floors, and ceilings. These polygons may al-
ready exist in a simplified form, as in the case of walls; be 
implicit in the XML, as for floors and ceilings; or simply 
be a part of the extended model not included in the floor-
plan, such as “skirt” polygons to surround the base of the 
model. The basic difference between the polygonal data 
in FPGen output and that in the PolyGen is that cutting 
and triangulation occur in PolyGen. For example, a wall 
with a door (or other aperture) would be represented in a 
FPGen XML file as two overlapping rectangles, with 
some attribution (see Figure 8). PolyGen’s job is to “cut 
out” the door, generate properly attributed and textured 
polygons for the door and wall, and to triangulate the re-
sult for display (see Figure 9).  
 
In the future, PolyGen will also create its own polygonal 
structures that are only implicit in the XML representa-
tion, such as individual stairs in a stairwell, or large pieces 
of furniture (“fixtures”) in a room. 
 
2.7 File System Organization 
 
On a database like Jakarta, there will be millions of .XML 
and .X3D files. Operating system limitations aside, these 
files should be organized in some way to aid human read-
ability and comprehension. We have chosen to organize 
our files in a quadtree-like file system, based on each 
GTRS geotile [9]. A given building’s floorplan and poly-
gon files are placed in a leaf node based upon the geodetic 
representation of the building’s placement point. We have 
chosen to use an 8-level quadtree, so the leaf nodes are 
approximately 500 meters on a side. Numbering the quad 
nodes 0 to 3, the location of a building’s polygonal file 
might be: 
 

<geotile root>/0/2/1/1/2/3/0/1/bldg5721.x3d 
 

 



FloorPlan XML Representation Polygonal X3D Representation

Basic outlines, abstract attributes, no
explicit texture information.  One wall
polygon, two window polygons.

Window polygons clipped into wall
polygon.  Explicitly textured.  Seven
wall polygons, two window polygons  

Figure 8: FloorPlan vs. Polygon Representation 
 

  
Figure 9: Wireframe and Filled Output of PolyGen 

 
 
3 Real-Time Modification System: UHRB-Sim 
 
The heart of the real-time modification system is the Ul-
tra-High Resolution Building Simulator, or UHRB-Sim. 
The UHRB-Sim is a variant of the Dynamic Terrain 
Simulator (DTSim) platform [10], and uses the same 
software framework as the RunwaySim, Hydrogeologic 
Simulator (HydroSim) [11], and Dynamic Terrain Scribe 
(DTScribe). UHRB-Sim can be executed as a single proc-
ess with any or all of these other components in the DT 
architecture. Figure 10 illustrates a building with breach 
holes in several of its surfaces. 
 
The purpose of the UHRB-Sim is to listen for building-
damaging munition detonations on the communications 
network, locate potentially affected structures, perform 
damage assessment, and transmit model changes to other 
members of the simulation. We now look at each of these 
operations in more detail. 

 

 
Figure 10: A Damaged UHRB 

 



3.1 Detonation Detection 
 
Munition detonations are expressed in our system as a 
detonation interaction containing information such as 
munition type, detonation location, impact vector and 
speed (if appropriate), and other miscellaneous informa-
tion that can be of use to some federates (e.g., fuse type). 
UHRB-Sim registers to receive these detonations from the 
Federation, and checks them against a list of damaging 
munitions, pre-generated as a reader file. For the initial 
implementation, only C4 was listed as a damaging muni-
tion. There are other detonations that might interest the 
UHRB-Sim, from cosmetic damage caused by small arms 
fire to collateral damage from nearby artillery impacts. 
These can be easily added later by editing the reader file 
appropriately. 
 
3.2 Locating Affected Structures 
 
The reader file also contains a blast radius for each dam-
aging munition. Given the detonation location and blast 
radius, it is a simple matter to locate the structures that 
may be damaged by the blast. 
 
While it would be a straightforward to search the file sys-
tem described in Section 2.7, it is far more efficient to 
utilize the MSO database system. This is a small database, 
distributed with the CTDB database, which includes ref-
erences to multi-state objects (MSOs), spatially organized 
by patch. We have incorporated UHRB structures into the 
MSO database by adding support for a file reference 
name and a bounding box, which serves as a first-order 
test for potential building damage. 
 
The reference name is a combination of the geotile name, 
quadtree path, and file name. An example based on the 
building in Section 2.7 might be 
“gh0203_02112301_bldg5721”. Therefore, given that the 
building’s bounding box is within the detonation blast 
radius, we can immediately locate the building floorplan 
file for damage assessment. 
 
3.3 Damage Assessment 
 
Our damage assessment must be performed in two stages: 
first for adding apertures to the floorplan XML file, and 
second to physically damage building (X3D) polygons. 
We use a concept of a “damage sphere” to represent 
detonation damage to the building. While we recognize 
that this is not realistic for all detonations and materials, it 
allows fast damage assessment with reasonable results for 
small detonations such as C4. We address methods for 
improving damage assessment in Section 4. 
 
The basic implementation of the damage sphere is to cre-
ate a jagged circle (a 15- point circle with some perturba-

tions), and project it orthogonally to the surface. We also 
shrink the radius of the circle based on distance from 
detonation to the plane of the damaged surface to ap-
proximate a sphere. 
 
3.3.1 Floorplan Damage Assessment 
 
In damaging the floorplan, we take advantage of the in-
herent ordering of the surfaces of the floorplan to avoid 
attempting to damage all surfaces of building. For exam-
ple, if a floor level is outside of the blast radius, it follows 
that all the walls and rooms of that floor level will be un-
damaged by the blast. 
 
Floorplan damage is not clipped. New apertures may ex-
tend outside of the surfaces they belong to, and this will 
not cause difficulties. This will allow us to delay any 
clipping until the polygonal damage stage, with certain 
benefits, as we shall see.  
 
The floorplan damage assessment algorithm is summa-
rized as follows: 
 
Generate a 15-point blast outline 
 
For each floor level N: 

If floor level N does NOT intersect the blast radius 
in altitude, continue 
 
For each wall of floor level N that orthogonally in-
tersects the blast radius: 

Project the blast outline orthogonally to the 
wall, save the name of the wall and the pro-
jected outline. 

 
For each room of floor level N that intersects the 
blast radius: 

Project the blast outline to the floor and ceil-
ing of floor level N. 

 
For each room on floor level N that intersects 

the blast radius, associate room name with 
the floor and ceiling-projected blast outline 

 
Send all information to the polygonal damage code. 
 
3.3.2 Polygonal Damage Assessment 
 
Polygonal damage is actually quite straightforward. Be-
cause of naming conventions used during the XML/X3D 
file generation, we know that any given floorplan struc-
ture is represented by one or more polygonal sets contain-
ing a unique, derivable name. For example, the floorplan 
structure “F0E0_ExteriorWall” is represented in the poly-
gon file as polygon sets named 
“F0E0_ExteriorWallOutside”, 



“F0E0_ExteriorWallInside”, and “F0E0A0_Door”. By 
searching for a unique wall “F0E0…”, we can locate all 
polygons which represent the abstract floorplan wall, in-
cluding any apertures (windows, doors, etc).  
 
Polygonal damage simply involves gathering the poly-
gons representing damaged floorplan structures and clip-
ping them against their associated projected blast outline. 
While clipping is not particularly quick (we use an im-
plementation of the Weiler clipper), there are no addi-
tional calculations that need to be performed to determine 
which polygons to damage. Therefore, the overall opera-
tion of polygonal damage is of minimal execution time. 
The method becomes even more effective as buildings 
grow in complexity. The more floorplan structures that 
are not damaged, the larger the percentage of polygons 
ignored when clipping. 
 
Of course, since all clipping is postponed until this stage, 
there will be cases in which we discover that no polygon 
representing a floorplan structure actually falls within the 
blast outline (see Figure 11). When this occurs, we re-
move the appropriate floorplan damage from the saved 
file. 
 

Building Polygon 

Damage 
Damage bounding box 

 
Figure 11: Example in which model of damage does 

not intersect building 

 
3.4 Model Change Notification 
 
Abstract and polygonal changes are sent as separate inter-
actions in order to minimize traffic to receiving Federates. 
UHRB polygon change structures have been merged into 
our terrain polygonal change structures. Although they go 
out as separate interactions, this allows us to reuse exist-
ing code and structures. 
 

Like any other DT interaction, these changes are transmit-
ted to the DT Scribe, which validates and records the in-
teractions for latecomers, and then retransmits them to the 
interested federates. Among these federates is the UHRB-
Sim itself, which will receive the validated changes and 
utilize a specialized XML API to incorporate the changes 
into the appropriate (temporary copies of the) floorplan 
and polygonal files. This action facilitates changes-in-
changes. The next time the same building is modified, the 
changed building files will be accessed. A reset is simply 
implemented by removing the temporary file, thereby 
restoring the original files for access. 
 
3.5 Extensions to the OOS UHRB Environmental 

Data Model (EDM) to adequately describe 
damage  

 
In October, 2003, a two-day meeting was held at the 
RDECOM Simulation Technology Center for require-
ments discovery to extend the OOS EDM [3] to better 
support building damage. Present were representatives 
from OOS, COMBATXXI, and the ERDC Waterways Ex-
periment Station (WES) (with expertise in physics-based 
modeling of damage to buildings). In preparation for the 
EDM review, a set of potential requirements was com-
piled from various documents pertaining to urban opera-
tions. Army doctrine was studied to determine the factors 
in an urban environment that are significant to urban op-
erations. Some of the topics addressed in FM 3-06, Urban 
Operations, June 2003, FM 3-06.11, Combined Arms 
Operations in Urban Terrain (formerly FM 90-10-1), Feb-
ruary 2002 and Joint Publication 3-06, Doctrine for Joint 
Urban Operations, September 2002 are shown in Table 1. 
 
Table 1: Urban Operation Requirements from Army Doc-

trine 
Construction Materials and 
Methods 

Engineer Tasks in UO 

Rubble Fragmentation Effects 
Toxic Industrial Materials 
(TIM) 

Building Entry 

Weapons Effects on Shanty-
towns 

Intentional Rubbling 

Infrastructure Defending a Building 
Mobility Fire Prevention 
Removal of Features by De-
fending Forces 

Defending Rooftops 

Burned Out Modern Build-
ings 

Small Arms and Machine 
Guns for Breaching 

Door Breaching Trapped and Injured Sur-
vivors 

 
Also used as a resource for the requirements analysis 
were the inputs and outputs to physics based models for 
structural damage. The models considered were: 



• BLASTX 4.2, March 2001 
• A Simplified Analytical Model of Penetration 

with Lateral Loading (SAMPLL) 
• ConWep Penetration 
• PENCURV 
• CATS-JACE 

 
A sample of the parameters used in these models are 
given in Table 2. 
 

Table 2: Physics Based Model Inputs and Outputs 
Ambient Pressure 
Ambient Temperature 
Concrete Compressive Strength (MPa) 
Concrete Thickness (cm) 
Global thermal conductivity of walls in all rooms 
Layer thickness 
Material type 
Number of Openings 
Number of Rooms 
Opening geometry 
Oxygen Fraction 
Room type: general room, L-shaped room, tunnel room 
S number 
Soil Type 
Target locations 
Wall geometry 
Wood Density 
Wood Hardness (kg) 
Wood Thickness 
 
These requirements, along with the attributes to support 
structural weapons effect for the WES Structural Weap-
ons Effect (SWE) API, a Java-based application pro-
gramming interface to provide structural weapons effects 
functionality, were then compared against the OOS EDMs 
for Terrain, Atmosphere, Ocean and Space (AOS) and the 
Ultra-High Resolution Buildings (UHRB). These results 
were reviewed to determine which of these requirements 
were important, if they were satisfied by the OOS EDM, 
and what revisions were needed to support them. The 
changes resulting from the meeting are given in Table 3. 
 

Table 3: OOS EDM Modifications 
Require-
ment 

OOS EDM modification 

Flooding 
buildings or 
subsurface 
areas 

Added MAXI-
MUM_STANDING_WATER_DEPTH 
to FLOOR_LEVEL 

Unstable 
structure 
from partial 
damage 

Added new attribute STRUC-
TURE_STABLE to BUILDING 

Toxic In-
dustrial 
Materials 
(TIM) 

Added new attributes HAZARD-
OUS_GAS and EXPLOSIVE_GAS to 
room features. Also added TEAR_GAS, 
NATURAL_GAS, GASO-
LINE_VAPOR, LIQ-
UID_PETROLEUM_GAS enumera-
tions to HAZARDOUS_GAS_TYPE 
and applied to COMPART-
MENT_ROOM_INTERIOR features. 

Rubble Added RUBBLE 2DGRID. Added 
MEAN_OBJECT_DIAMETER. 

Weapons 
Effects on 
Shanty-
towns 

Added SHANTY_TOWN enumeration 
to URBAN_TERRAIN_ZONE_TYPE 
of BUILT_UP_REGION 

Defending 
a Building  

Added SANDBAG as an enumeration 
to PRIMARY_MATERIAL_TYPE and 
SURFACE_MATERIAL_TYPE of 
WALL. 

ConWep 
Penetration  

No change necessary. THICKNESS is 
applied to ROOF_ASSEMBLY, 
FLOOR, and EXTERIOR_WALL 

ConWep 
Cratering 

Added THICKNESS and 
STEEL_CONCRETE_REINFORCEM
ENT_RATIO to ROAD and RUNWAY 

Obscurants Added EXTINC-
TION_COEFFICIENT_LOSS_QD_BY
_EM_BAND and new attribute VISIB-
LITY_OK to COMPART-
MENT_ROOM_INTERIOR features 
(ROOM, HALLWAY, CLOSET, 
CATWALK, BALCONY, ATRIUM, 
ANTE_ROOM) 

Reinforced 
con-
crete/maso
nry- 

Added PRESTRESSED_CONCRETE 
as an enumeration to wall construction 
types. 

 
4 Future Directions 
Our implementation of the ABGS and UHRB-Sim are an 
acceptable first version, but as with all initial implementa-
tions, some assumptions and limitations apply. In this 
section, we discuss some future research that could be 
directed at this system to resolve some of these limita-
tions. 
4.1 More complex buildings 
After real-time damage functions, the most difficult part 
of UHRB is creating realistic, complex buildings in a rea-



sonable amount of time. While there are tools available to 
manually create good interiors, or to import existing CAD 
data, these tools operate on a scale of minutes, if not 
hours, and usually require a human in the loop. If the da-
tabase is to contain more than a handful of “complete” 
buildings, better and more automated techniques must be 
developed. 
 
Secondly, our EDM needs to be extended. For example, 
currently all building walls are vertical, all ceilings hori-
zontal, and all rooms on one floor have the same ceiling 
height. These are certainly reasonable assumptions that 
cover most situations, but completeness (not to mention 
simulation of artistic design) requires a somewhat more 
flexible abstract representation. 
 
4.2 Level of Detail 
 
One issue we are already working on for visual and SAF 
systems is the ability to add levels of detail to our build-
ings. LODs will be the critical issue for visualization as 
building polygonal count skyrockets with complexity. 
Our system will already support LODs, damaging the first 
LOD only. We are not yet certain if there is a need to 
change lower levels of detail and, if so, how to best repre-
sent the damage. 
 
4.3 Structures Other Than Buildings  
 
Our initial implementation has focused on buildings, but 
the technique could be applied to other structures which 
are typically considered difficult to physically model, 
including tunnels, multi-level bridges, subways, sewers, 
sky bridges, and so forth. Each of these structures cer-
tainly has their own modeling challenges, but this tech-
nique provides a generally applicable means of achieving 
this modeling. 
 
4.4 Incremental database creation 
 
Even if a complex building could be fully generated in 
one second – and certainly, additional building complex-
ity could be added to any level of sophistication – it 
would still require 22 computing-days to create the Ja-
karta terrain database. This turn around time is inconven-
ient at best, particularly when database errors are discov-
ered at the end of that time. 
 
To solve this problem, we are developing the ability to 
incrementally build databases, so that individual buildings 
can be substituted easily. For the initial database, build-
ings may be partially (or completely) absent, or they may 
simply be extruded shells with the correct footprint. These 
will serve as placeholders in the database until the build-
ings of interest are created and verified. 
 

Further, a distributable building integration tool might be 
developed, which would allow distribution of the initial 
database for testing purposes (scenario development, ter-
rain verification, etc.). Later, the building files could be 
distributed, and each site incorporate them using their 
local copy of the building integration tool. In this way, 
databases of arbitrary complexity might be designed and 
distributed in the most efficient way to the customer. 
 
4.5 More robust damage simulation 
 
Our damage model is currently primitive, based upon the 
Army field manual description that 10 lbs of C4 at chest 
height will create a hole “large enough for a man to fit 
through” [12]. We feel that the damage model in our sys-
tem as it currently exists fits this description to an accept-
able level. However, we do not account for building con-
struction material when damaging a building, nor that a 
near surface might absorb much of the damage that would 
otherwise reach a farther surface. Furthermore, enlarging 
the damage sphere to simulate more powerful detonations 
can result in unrealistic appearing building damage. 
 
Given some access to subject matter experts, it would be 
simple enough to extend the munition reader file to in-
clude damage to various building materials. More difficult 
would be a quick approximation of a physics-based dam-
age model. However, we are working on these issues. 
 
4.5.1 Rubble 
 
Our current implementation of damage simply vaporizes 
the damaged portions of building; expedient, and reason-
able for building “mouse holes”, but not appropriate for 
damage on a larger scale. We are currently studying how 
best to support rubble and debris from building damage. 
 
4.5.2 External damage assessment plugins 
 
Ideally, damage would be handled by a true physics-based 
model, either as a callable library or as a separate process 
that could be accessed by the UHRB-Sim. It would also 
be necessary to find a model that could operate in real-
time, and interface in some way with our floorplan poly-
gons. 
 
4.6 More variable attribution 
 
The Attribute Generator currently assigns building height, 
floor count, and function. More attributes can be sup-
ported by updating the Attribution Rules database. Valu-
able attributes to support include: 

• Roof Style: Can be used to determine shaped 
roofs (pitched, curved, saw tooth, …) 



• Building Construction Type: Can be used to 
help infer placement interior features such as 
rooms, hallways. 

• Exterior Surface Pattern: Can be used to de-
rive visual textures. 

• Color: Can be used to derive visual textures. 
 
As more attributes are supported, an “inference tree” will 
need to be developed to identify “primary” attributes 
which are derived based on UTZ, vs. “secondary attrib-
utes” which are derived from primary attributes, and so 
on.  
 
4.7 More optimized storage 
 
Our current implementation produces one XML and one 
X3D data file per building in a spatially-organized folder 
tree on disk. In the future, we anticipate shifting this stor-
age task to a relational database, where the XML and 
X3D data would be stored as binary large objects 
(BLOBs). Doing so will simplify configuration control 
during the ABGS process, and should allow faster access 
to individual buildings than regular file I/O. 
 
5 Summary 
 
We have demonstrated how our Automated Building 
Generation Systems and our real-time simulation system, 
UHRB-Sim, can be used to effectively support UO opera-
tions in dense urban environments. Our database genera-
tion system can create buildings in under a second, given 
abstract ShapeFiles gathered from authoritative or syn-
thetic sources. UHRB-Sim, like the DTSim from which it 
is descended, is a scaleable solution for real-time building 
damage, easily extended to incorporate external, physics-
based damage models. 
 
Much work remains to be done, including ever more 
complex models, incremental database releases, integra-
tion of damage models, and extensions into other struc-
tures that can be modeled with this technology. However, 
we believe that this system displays many of the qualities 
one would wish in a fully functional system, and presents 
a strong framework for future development. 
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