
Complex Terrain Databases for Urban Operations

Dr. Stephen J. Adelson
Leo Salemann
Steve Farsai

Dr. Dale D. Miller
Timothy Miller

Melissa E. Nakanishi
Lockheed Martin Simulation, Training & Support

Advanced Simulation Center (ASC)
3605 132nd Ave. SE, Suite 400

Bellevue, WA 98006
425-957-3209

Julio de la Cruz
SFC Paul Ray Smith Simulation and Training Tech-

nology Center
Army RDECOM/STTC

12423 Research Parkway
Orlando, Florida 32826

407 384-3733

sadelson@lads.is.lmco.com, lsaleman@lads.is.lmco.com, stevefarsai@sprintmail.com, dale.d.miller@lmco.com,
tmiller@lads.is.lmco.com, mnakanishi@lads.is.lmco.com, julio.delacruz@us.army.mil

Keywords:

Synthetic environment, SNE, urban operations, databases, simulation

ABSTRACT: Simulation of Urban Operations (UO) requires the ability to create and damage dense, realistic city-
scapes. However, since these databases must be both large and complex, creating appropriate environments for UO is
difficult at best. For example, a system capable of creating one building per minute would need nearly 42 months to
generate a present-day ultra-high resolution building (UHRB) database of 1.8 million buildings. Size and complexity of
urban databases will undoubtedly continue to increase in the future.

During the simulation, a method must be found to damage buildings and other structures in real time, with visual as
well as semantic (e.g., enclosure / aperture) modifications. Ideally, support would be included for tactical explosives as
well as large-scale damage from artillery. Rubble and structural integrity should also be appropriately modeled for
their effects on UO missions.

In this paper, we present our Automated Building Generation System (ABGS) and modification systems (UHRB-Sim),
representing initial steps towards these goals. Our system can generate simple buildings in under a second and damage
them in real time, leveraging our experience with dynamic terrain effects. We will review our methodology and present
a number of future directions to improve the current work.

1 Introduction

One of the reasons why the simulation of Urban Opera-
tions (UO) is a difficult and open problem is that the envi-
ronment the participants require is extremely complex,
richly attributed, and polygonally intensive [1]. To our
knowledge, only very small databases (in terms of num-
ber of buildings) have been created to address these re-
quirements, and nothing for the square blocks of struc-
tures (or, indeed, square kilometers) that might be needed
for a robust simulation. We call these databases ultra-high
resolution building (UHRB) databases. For discussion
purposes, we will use as our target the LM STS Jakarta
database, containing approximately 1,800,000 buildings,
developed from geospecific and/or geotypical building
footprints and urban terrain zone (UTZ) information. Two
views of a portion of the database are shown below in
Figure 1 and Figure 2.

There are two primary obstacles to UHRB databases: da-
tabase generation and real-time database modification.

Intricate structures must be compiled within a reasonable
timeframe - days, not years. Damage to buildings needs to
be reflected in real-time, not after minutes or hours of
calculation. To address these issues, we have imple-
mented our prototype UHRB system, promising scalable
database solutions for UO.

In this paper, we will cover our UHRB process from start
to finish. We first discuss the ShapeFile generation proc-
ess, which will result in generalized descriptors of our
attributed buildings. Following this, we discuss how the
ShapeFiles are turned into floorplan files, in which build-
ing components (walls, rooms, etc.) are generically repre-
sented. Floorplan files are used to generate polygonal
representations of the buildings, to be used, in turn, with
integration in the visual and SAF databases. Both floor-
plan and polygonal files are used in the UHRB-Sim, our
real-time building model simulator. Finally, we briefly
discuss future directions to make this work a better repre-
sentation of a realistic urban environment.

Figure 1: Jakarta View from JSAF Plan View Display

Figure 2: Jakarta Visualization

2 Automated Building Generation System (ABGS)

In current systems, compilation time of one minute per
building (with interiors) is considered fast, particularly
considering the complexity that a multi-story structure
may entail. However, to render Jakarta on such a system
would have required 30,000 computational hours, or
nearly three and a half computational-years – and this
excludes the minutes or hours of pre-computation time for
design of each unique building. Clearly, this is not ac-
ceptable.

The Automated Building Generation System (ABGS) is
able to generate buildings at a much faster rate. While the
pre-computation time is still an issue to be addressed, our
process addresses at least a large portion of the problem.

Typically, municipalities maintain GIS databases of
building footprints for taxation purposes that are often
available at a nominal cost. Generally, little other attribu-

tion (e.g., building height) is available. So while the
ABGS can use geospecific building footprints, other attri-
bution and the interior floorplans have been geotypically
derived. The system, however, does not preclude the use
of geospecific attribution and interior floorplans.

2.1 Overview

The ABGS consists of four major phases:

1. Data Preparation. Start with a set of building
footprints, linear roads, terrain imagery and Ur-
ban Terrain Zone (UTZ) information.

2. Attribute Generation. Configure rules for al-
lowable attribute value ranges and probabilistic
distributions as a function of UTZ and building
size and assign the values to the building out-
lines.

3. FloorPlan Generation. Read the 2D building
ShapeFile, generate an “abstract” XML floorplan
file for each building.

4. Polygon Generation. Read each 2D floorplan
XML file; generate a 3D polygonal model in
X3D format.

This process is illustrated below in Figure 3.

Roads

Bldg FootPrints

Attribution Rules

Attribute Generator Bldg FootPrints
with Attributes Floorplan Generator

Polygon Generator

Bldg XML
floorplan

Bldg XML
floorplan

Bldg XML
floorplan

Bldg XML
floorplan

Bldg X3D
polygons

Bldg X3D
polygons

Bldg X3D
polygons

Bldg X3D
polygons

Source Data

One XML
floorplan
file per
building

One X3D
Polygon file
per building

One shapefile,
containing all
building footprints

Terrain
Imagery

UTZ PolygonsDesignate UTZ
Polygons

Figure 3: ABGS Process Flow

2.1.1 Building Representation

Several factors were key drivers in the choice of file for-
mats used in the building representations throughout our
ABGS process. During the requirements gathering and
assessment phases of this project, we conducted a thor-
ough investigation of available standard formats popular
for representing models in the Modeling and Simulation
(M&S) community.

The most significant factor in selecting standard file for-
mats was the ability to leverage and quickly develop ac-
companying software and application programming inter-
faces (APIs) on Win32 as well as Linux platforms. The
Win32 requirement was driven by the needs of the ABGS,
which depends on an Open Database Connectivity
(ODBC) connection, as well as several third-party tools
which run best under Win32. The Linux requirement was
driven by the needs of various compilers which translate
the ABGS output into formats suitable for real-time visu-
alization and constructive simulation.

The ABGS file formats also had to support a hierarchical
structure, allowing us to model the relationships between
buildings, floor levels, rooms, walls, and windows. An-
other priority was to be able to exchange data with the
UHRB representation used by the OneSAF Objective
System (OOS).

Given these requirements, the XML format and its emerg-
ing X3D specification [2] became the optimal formats.
The XML floorplan format is a derivative of the XML
floorplan format developed by OOS. Our current imple-
mentation produces one XML and one X3D data file per
building in a spatially-organized folder tree on disk. In the
future, we anticipate shifting this storage task to a rela-
tional database, where the XML and X3D data would be
stored as binary large objects (BLOBs). Doing so will
simplify configuration control during the ABGS process,
and should allow faster access to individual buildings than
regular file I/O. Also, several free and commercially
available tools can convert from X3D to a variety of other
formats, including VRML and OpenFlight.

We used the Altova XMLSpy product to create XML
schemas for the two XML data formats (FloorPlan XML
and PolyGen X3D) used in our process. This allowed us
to automatically generate C++ classes and methods for
each of the appropriate building components as repre-
sented in the XML structure for the FloorPlan and Poly-
gon generator applications.

2.2 Data Preparation

The ABGS uses the following source data.

Building Footprints Two-dimensional building out-

lines, typically in ShapeFile for-
mat.

Terrain Imagery Needed if you do not have a com-
plete set of Urban Terrain Zones
(see below). The imagery must
correlate with the building foot-
prints. Resolution should be high
enough to discern even small
structures (one to five meter pix-
els).

Urban Terrain Zones Large 2D polygons, designating
“neighborhoods” of similar build-
ing function and density. Exam-
ples include clustered office
buildings, open-set warehouses,
and close-set houses. This data is
usually manually derived from the
Terrain Imagery, although semi-
automated feature extraction may
be used.

Road Network Linear features, correlating with
the building footprints. The roads
are used for designating which
wall of each building footprint
will become the “front” and have
the main entrance.

The attributes for the Building Footprints, Road Network,
and Urban Terrain Zones are based on the Environmental
Data Model (EDM) for Ultra-High Resolution Buildings
(UHRB) [3]. The EDM provides a precise definition of
UHRB features (floors, rooms, walls) and attributes
(height, surface material, building function). The UHRB-
Sim EDM is derived from the UHRB EDM for the One-
SAF Objective System (OOS). Compared to the OOS
UHRB EDM, the UHRB-Sim EDM has the following
simplifications:

• Dropped Abstract and Generalized features in
favor of a more explicit hierarchy.

• Reduced feature set to the core features neces-
sary for a building with a basic interior.

• Reduced attribution to just those which support a
visual representation.

2.3 Attribute Generation

The Attribute Generation Process consists of the follow-
ing major steps, as shown in Figure 4.

1. Generate Root Segments: Designate one seg-
ment from each building footprint to become the
“front.”

2. Configure Attribution Rules: Configure allow-
able ranges for building height and function,
based on Urban Terrain Zone and footprint size.

3. Generate Attributes: Run the Attribute Genera-
tor to assign attributes.

4. Verification: View the results, perform post-
process edits if necessary.

We will examine each of these in more detail.

2.3.1 Generate Root Segments

The root segment denotes the “front” of the building,
where the main entrance is to be placed. By convention,
the root segment is defined as the first two vertices in the
building footprint polygon. The ABGS includes a tool
which takes the building footprints and the roads as input,
and “re-orders” the vertices in the building footprints such
that the first two will define the footprint segment which
is closest to the nearest road (see Figure 5).

2.3.2 Configure Attribution Rules

The Attribute Generator is driven by a database of Attri-
bution Rules. The Attribution Rules include both allow-
able ranges and the probabilistic distribution of values
within those ranges. The Attribute Generator selects indi-
vidual values at random, based on the probabilistic distri-
bution defined in the Attribution Rules. The result is simi-
lar to rolling a loaded die. The attribution rules are user-
configurable, allowing the user to modify the Attribute
Generator’s behavior without needing to modify software.
While the Attribute Generator does include a complete set
of Attribution Rules, it is always wise to review and mod-
ify the rules whenever buildings are generated for a new
major geographic region (e.g. Western Europe vs. South-
east Asia).

Roads

Bldg FootPrints

Baseline
Attribution

Rules

Generate Attributes

Bldg FootPrints
with Attributes

Terrain
Imagery

Source Data

Root Segment
Generator

UTZ Polygon
Creation

Bldg FootPrints
w/ Root Segs.

UTZ Polygons

Runtime
 Attribution

Rules

Generate
"runtime" Rules

One rule per
allowable UTZ.

One rule
per UTZ
polygon

Review/modify
results

Review/modify
results

Figure 4: Attribute Generation Process

Before

0

12

3

After

0

1 2

3

Figure 5: Root Segment Generation

2.3.2.1 Urban Terrain Zone (UTZ)

The most crucial building attribute is its Urban Terrain
Zone (UTZ) [4] membership. The Urban Terrain Zone is
a classification scheme for identifying groupings of build-
ings within a city based on building function, density and
construction type. Examples of UTZs include close-set
office buildings, attached houses, and open industrial re-
gions.

All other attribution rules are based on a building’s UTZ
membership. For example, building height ranges and
distributions are different between a residential UTZ and
an office high-rise UTZ.

UTZs are assigned to buildings based on two factors:

• The UTZ polygon containing the building foot-
print.

• The size (area) of the building footprint.

Area plays a role because 100 square-meter footprints in
an office high rise UTZ should have a different height
distribution compared to 10,000 square-meter footprints.
In fact, 100 square-meter footprints shouldn’t be classi-
fied as office high rises at all. Therefore, the Attribute
Generator detects footprints that are “too big” or “too
small” for their enclosing UTZ and reassigns them. The
reassignment involves finding another UTZ polygon
whose constituent footprint area is a better match, and
assigning the UTZ zone from the new polygon. For ex-
ample, the 100 square-meter footprints in the office high-
rise zone may match a zone for small commercial/retail
buildings. The 100 square-meter footprints’ UTZ attribute
would then be set to “commercial/retail” instead of “of-
fice high rise”.

2.3.2.2 Footprint Area Classification, “Core Classes”

UTZ (re)assignment is controlled by the Attribution
Rules, using the concept of “Core Classes.” During attrib-
ute generation time, the Attribute Generator collects foot-

print area statistics for each UTZ polygon. These statistics
include a natural breaks (Jenks [5]) classification of the
footprints’ area into five classes. Each footprint is then
assigned a class number. The Attribution Rules include a
Core Values table, which specifies which of the five
classes are “Core” classes for each UTZ. Once the classes
have been assigned, the Attribute Generator checks
whether a given footprint’s class matches one of the
“core” classes of its enclosing UTZ. If the footprint is in a
“core” class, it inherits the UTZ zone value from its en-
closing UTZ polygon, if it does not, it inherits its UTZ
value from another UTZ polygon that satisfies two crite-
ria:

1. Average area for core footprints of the UTZ
polygon is a close fit to the area of the footprint
in question.

2. New UTZ polygon is “semantically adjacent” to
the original UTZ polygon.

Semantically adjacent means the new UTZ is typically
found next-door to the original UTZ. For example, single-
family house zones are semantically adjacent to retail
areas, but not to office high rises.

2.3.2.3 Floor Count

Floor Count is a “range-based” attribute. Floor Count
Attribution Rules include a minimum, maximum, mean
and standard distribution for each UTZ. These parameters
are used by the Attribute Generator to create a normal
distribution of the probability that each floor count within
the min/max range may occur. A “loaded die” is then con-
figured and rolled to select the assigned floor count for
each footprint in a given UTZ polygon.

2.3.2.4 Floor Height, Building Height

Floor Height (distance from floor to ceiling of one story,
is inferred from the UTZ. Typical values are 3 to 4 me-
ters. Building height is simply calculated from Floor
Height and Floor Count.

2.3.2.5 Building Function

Building Function is a “discrete” attribute. Unlike floor
count, the allowable building functions (house, office,
store) can not be assembled into a range with a minimum
and maximum. Instead, the Attribution Rules include a
table of all allowable Building Functions for each UTZ.
An explicit probability is defined for each building func-
tion within a given UTZ. Similar to Floor Count, the At-
tribute Generator uses these probabilities to configure a
“loaded die” which is then “rolled” to determine an ex-
plicit Building Function for each footprint.

2.3.3 Generating Attribution

Once the Attribution Rules have been configured, Attrib-
ute Generation can proceed with minimal user interven-
tion. Attribute Generation proceeds in several stages, with
the user able to review/modify the output from each stage,
or to run all stages at once.

The Attribute Generation stages include:

• Classify Building Footprints.
Set up empty tables and fields for the Jenks clas-
sifications.
Gather footprint area statistics.
Assign Jenks classifications.

• (Optional) User can review the class assign-
ments, and modify which classes are defined as
“core” for each UTZ.

• Generate Run-Time Attribution Rules.
Using the “baseline” per-UTZ Attribution Rules,
generate set of “run-time” rules, consisting of an
explicit rule for each individual UTZ polygon.

• (Optional) User can modify Attribution Rules
for each UTZ polygon.

• Derive Building Attributes.
Using the run-time Attribution Rules, derive and
assign attributes to the building footprints.

2.3.4 Verification

In general, the Attribute Generator is highly effective in
assigning reasonable attribution to large data sets cover-
ing a wide area. Due to the probabilistic nature of the at-
tribute generation process, however, it is always wise to
review the final output to make sure it “looks right”. The
final output of the Attribute Generation Process is a set of
building footprints in ShapeFile format. These footprints
can be viewed and edited by standard GIS tools. Items to
look for include:

• Aesthetic Distribution of Height
Height is the first cue anyone uses to identify
buildings and cityscapes. Use a 3D viewer to ex-
trude the building footprints by height. Office
towers should be tall, warehouses and shopping
malls should be shorter, single-family houses
shouldn’t exceed 2-3 stories. The visual “cluster-
ing” of buildings with similar heights should re-
veal office, industrial, residential districts.

• Distribution of Building Function

Most urban terrain zones will have a few domi-
nant functions (houses, apartments) with a
“sprinkling” of supporting functions (stores, gas
stations, libraries).

• Special Cases
The Attribute Generator generates geotypical at-
tribution. For geospecific cases, such as land-
mark buildings or specialized facilities, building
height and function can be set manually.

2.4 Building Interior Generation

The literature is replete with papers from the architectural
community on the automated generation of building inte-
rior layouts [6], [7], [8]. However, most of these tech-
niques rely on nonlinear optimization, which is not scal-
able to the quantities of buildings we envision. Thus we
have developed a more ad hoc approach, leveraging the
native geospatial capabilities of a commercial GIS
(ESRI’s ArcGIS).

Building interiors, rooms, hallways, and doors are created
in a programmatic process based on the spatial and attri-
bution properties of the building. The building footprint is
oriented with the first segment of the building geometry
in the front of the building. From this point; a five part
process begins to create the building interiors within an
ESRI ArcGIS Geodatabase. The Geodatabase contains six
topologically integrated feature classes: (1) Hallway
Lines, (2) Shaft Areas, (3) Hallway Areas (4) Room Ar-
eas, (5) Door Points, and (6) Door Lines. After the build-
ing interiors have been created within the Geodatabase,
they are exported into ESRI ShapeFiles that contains
walls and rooms. Figure 6 shows a sample layout.

Figure 6: Building Interior features

2.4.1 Hallway Lines

The processing begins by creating the hallway centerline.
Hallway centerlines are not created for smaller buildings
or buildings attributed to having a single room. In all
other buildings, the hallway centerlines are based on the
size, shape of the building, and the size of the rooms.

Large buildings will have multiple hallways, while
smaller buildings will have a single hallway (larger build-
ing and smaller rooms will create more hallways, and
vice-versa, smaller building and larger rooms will create
fewer hallways).

2.4.2 Shaft Areas

Shafts are rectangular rooms with a fixed length and
width, with no ceilings or floors, and are used to contain a
stairway or an elevator. Shafts are created in all buildings
with two or more floors. If the building has a hallway; the
shaft is always connected to the hallway.

2.4.3 Hallway Areas

The hallway centerlines are deconflicted against the shaft
areas then expanded into area features. Hallways that
form a three-way or a four-way connection have a junc-
tion area created to split the hallways into single parts.
This allows their geometry to be treated like a room in
downstream processing.

2.4.4 Room Areas

Rooms are created for all buildings above a specified size
and that are attributed to contain multiple rooms. Initially,
a collection of rectangular rooms based on specified
length and width is created, like a mesh, to cover the
buildings. The collection of rooms is rotated to match the
primary orientation of the building. The rooms that over-
lap with the hallways or shafts, and areas exterior of the
building, are removed. The final processing step is to
merge all rooms below a specified area tolerance with the
neighbor that shares the longest edge.

2.4.5 Door Points and Lines

All buildings have doors placed on the front of the build-
ing. If the building has multiple rooms or shafts, doors are
placed with the following logic: (1) A shaft can only have
one door in a predetermined location based on the shaft
type; (2) A shaft door must be associated with a hallway
if a hallway exists; (3) Room doors are first placed with
an associated hallway if a hallway exists; and (4) If hall-
ways do not exist, a door is placed on a room edge that is
not shared with a shaft.

2.4.6 Export

The feature classes of the Geodatabase are decomposed
into a collection of walls (segments) and rooms (a collec-
tion of walls) for each building. The walls are broken
down into three segment types: (1) Door segment, a poly-
line part with four vertices, the two interior vertices repre-
sents the door and the entire segment represents a wall;

(2) Empty segment, a polyline part with three vertices,
represents a hole or opening in a wall; and (3) Wall seg-
ment, a polyline part with two vertices represents a wall
(Figure 7). The rooms are exported as polyline format
where each part of the room points to a wall segment.

Door Segment

Empty Segment

Wall Segment

Figure 7: Wall segment types

2.5 Floorplan Generation

The FloorPlan Generator (FPGen) application uses build-
ing footprint and attribute data from the attribute genera-
tion process and interior floorplan ShapeFiles to produce
a high-level abstract representation of the building, in-
cluding both floor levels and features that connect levels
(stairs, shafts). This representation includes basic geome-
try such as door, window, and wall locations. This basic
geometry is later used as source for generating renderable
3-D polygons. This same data is also used as readily tra-
versable structures for constructive simulation entity
modeling in UO operations.

All building components and associated attributes created
in FPGen, e.g., rooms and walls, conform to the definition
and structure of UHRB EDM components. Attribute val-
ues for building components are assigned in one of sev-
eral ways in the FloorPlan Generator:

a) directly from the ShapeFile source (e.g.,
number of floor levels),

b) default value from UHRB EDM (e.g., num-
ber of doors),

c) derived (e.g., number of rooms, or window
width), or

d) some combination of the above.

Many constraint checks are performed to ensure that de-
fault attributes do not result in the creation of anomalous
building components. For example, windows may not be
created on walls deemed too narrow, or the EDM-
recommended distance between adjacent window widths
may be adjusted to compensate.

Each high level building component for which 3-D po-
lygonal representation is required (e.g., an exterior wall)
is tagged with a unique XML “DEF” attribute. This iden-
tifier will be propagated through the X3D creation process
as well, and utilized by the real-time UHRB-Sim for dam-

age assessment and generation, as discussed in Section
3.3.2.

2.6 Polygonal Generation

The Polygon Generator (PolyGen) application derives 3-
D geometric information from the XML data produced by
the FPGen, and generates an output file in the X3D for-
mat. Geometric data resulting from the Polygon Generator
is comprised of 3-D polygonal facets with color or texture
map information. These polygons are stored as Indexed
Face Set objects according to the X3D specification. Ap-
propriate texture map pattern and scale information is
assigned through a class interface for querying the UHRB
EDM.

PolyGen’s basic algorithm involves traversing the XML
building representation floor by floor, constructing walls,
apertures, floors, and ceilings. These polygons may al-
ready exist in a simplified form, as in the case of walls; be
implicit in the XML, as for floors and ceilings; or simply
be a part of the extended model not included in the floor-
plan, such as “skirt” polygons to surround the base of the
model. The basic difference between the polygonal data
in FPGen output and that in the PolyGen is that cutting
and triangulation occur in PolyGen. For example, a wall
with a door (or other aperture) would be represented in a
FPGen XML file as two overlapping rectangles, with
some attribution (see Figure 8). PolyGen’s job is to “cut
out” the door, generate properly attributed and textured
polygons for the door and wall, and to triangulate the re-
sult for display (see Figure 9).

In the future, PolyGen will also create its own polygonal
structures that are only implicit in the XML representa-
tion, such as individual stairs in a stairwell, or large pieces
of furniture (“fixtures”) in a room.

2.7 File System Organization

On a database like Jakarta, there will be millions of .XML
and .X3D files. Operating system limitations aside, these
files should be organized in some way to aid human read-
ability and comprehension. We have chosen to organize
our files in a quadtree-like file system, based on each
GTRS geotile [9]. A given building’s floorplan and poly-
gon files are placed in a leaf node based upon the geodetic
representation of the building’s placement point. We have
chosen to use an 8-level quadtree, so the leaf nodes are
approximately 500 meters on a side. Numbering the quad
nodes 0 to 3, the location of a building’s polygonal file
might be:

<geotile root>/0/2/1/1/2/3/0/1/bldg5721.x3d

FloorPlan XML Representation Polygonal X3D Representation

Basic outlines, abstract attributes, no
explicit texture information. One wall
polygon, two window polygons.

Window polygons clipped into wall
polygon. Explicitly textured. Seven
wall polygons, two window polygons

Figure 8: FloorPlan vs. Polygon Representation

Figure 9: Wireframe and Filled Output of PolyGen

3 Real-Time Modification System: UHRB-Sim

The heart of the real-time modification system is the Ul-
tra-High Resolution Building Simulator, or UHRB-Sim.
The UHRB-Sim is a variant of the Dynamic Terrain
Simulator (DTSim) platform [10], and uses the same
software framework as the RunwaySim, Hydrogeologic
Simulator (HydroSim) [11], and Dynamic Terrain Scribe
(DTScribe). UHRB-Sim can be executed as a single proc-
ess with any or all of these other components in the DT
architecture. Figure 10 illustrates a building with breach
holes in several of its surfaces.

The purpose of the UHRB-Sim is to listen for building-
damaging munition detonations on the communications
network, locate potentially affected structures, perform
damage assessment, and transmit model changes to other
members of the simulation. We now look at each of these
operations in more detail.

Figure 10: A Damaged UHRB

3.1 Detonation Detection

Munition detonations are expressed in our system as a
detonation interaction containing information such as
munition type, detonation location, impact vector and
speed (if appropriate), and other miscellaneous informa-
tion that can be of use to some federates (e.g., fuse type).
UHRB-Sim registers to receive these detonations from the
Federation, and checks them against a list of damaging
munitions, pre-generated as a reader file. For the initial
implementation, only C4 was listed as a damaging muni-
tion. There are other detonations that might interest the
UHRB-Sim, from cosmetic damage caused by small arms
fire to collateral damage from nearby artillery impacts.
These can be easily added later by editing the reader file
appropriately.

3.2 Locating Affected Structures

The reader file also contains a blast radius for each dam-
aging munition. Given the detonation location and blast
radius, it is a simple matter to locate the structures that
may be damaged by the blast.

While it would be a straightforward to search the file sys-
tem described in Section 2.7, it is far more efficient to
utilize the MSO database system. This is a small database,
distributed with the CTDB database, which includes ref-
erences to multi-state objects (MSOs), spatially organized
by patch. We have incorporated UHRB structures into the
MSO database by adding support for a file reference
name and a bounding box, which serves as a first-order
test for potential building damage.

The reference name is a combination of the geotile name,
quadtree path, and file name. An example based on the
building in Section 2.7 might be
“gh0203_02112301_bldg5721”. Therefore, given that the
building’s bounding box is within the detonation blast
radius, we can immediately locate the building floorplan
file for damage assessment.

3.3 Damage Assessment

Our damage assessment must be performed in two stages:
first for adding apertures to the floorplan XML file, and
second to physically damage building (X3D) polygons.
We use a concept of a “damage sphere” to represent
detonation damage to the building. While we recognize
that this is not realistic for all detonations and materials, it
allows fast damage assessment with reasonable results for
small detonations such as C4. We address methods for
improving damage assessment in Section 4.

The basic implementation of the damage sphere is to cre-
ate a jagged circle (a 15- point circle with some perturba-

tions), and project it orthogonally to the surface. We also
shrink the radius of the circle based on distance from
detonation to the plane of the damaged surface to ap-
proximate a sphere.

3.3.1 Floorplan Damage Assessment

In damaging the floorplan, we take advantage of the in-
herent ordering of the surfaces of the floorplan to avoid
attempting to damage all surfaces of building. For exam-
ple, if a floor level is outside of the blast radius, it follows
that all the walls and rooms of that floor level will be un-
damaged by the blast.

Floorplan damage is not clipped. New apertures may ex-
tend outside of the surfaces they belong to, and this will
not cause difficulties. This will allow us to delay any
clipping until the polygonal damage stage, with certain
benefits, as we shall see.

The floorplan damage assessment algorithm is summa-
rized as follows:

Generate a 15-point blast outline

For each floor level N:

If floor level N does NOT intersect the blast radius
in altitude, continue

For each wall of floor level N that orthogonally in-
tersects the blast radius:

Project the blast outline orthogonally to the
wall, save the name of the wall and the pro-
jected outline.

For each room of floor level N that intersects the
blast radius:

Project the blast outline to the floor and ceil-
ing of floor level N.

For each room on floor level N that intersects

the blast radius, associate room name with
the floor and ceiling-projected blast outline

Send all information to the polygonal damage code.

3.3.2 Polygonal Damage Assessment

Polygonal damage is actually quite straightforward. Be-
cause of naming conventions used during the XML/X3D
file generation, we know that any given floorplan struc-
ture is represented by one or more polygonal sets contain-
ing a unique, derivable name. For example, the floorplan
structure “F0E0_ExteriorWall” is represented in the poly-
gon file as polygon sets named
“F0E0_ExteriorWallOutside”,

“F0E0_ExteriorWallInside”, and “F0E0A0_Door”. By
searching for a unique wall “F0E0…”, we can locate all
polygons which represent the abstract floorplan wall, in-
cluding any apertures (windows, doors, etc).

Polygonal damage simply involves gathering the poly-
gons representing damaged floorplan structures and clip-
ping them against their associated projected blast outline.
While clipping is not particularly quick (we use an im-
plementation of the Weiler clipper), there are no addi-
tional calculations that need to be performed to determine
which polygons to damage. Therefore, the overall opera-
tion of polygonal damage is of minimal execution time.
The method becomes even more effective as buildings
grow in complexity. The more floorplan structures that
are not damaged, the larger the percentage of polygons
ignored when clipping.

Of course, since all clipping is postponed until this stage,
there will be cases in which we discover that no polygon
representing a floorplan structure actually falls within the
blast outline (see Figure 11). When this occurs, we re-
move the appropriate floorplan damage from the saved
file.

Building Polygon

Damage
Damage bounding box

Figure 11: Example in which model of damage does

not intersect building

3.4 Model Change Notification

Abstract and polygonal changes are sent as separate inter-
actions in order to minimize traffic to receiving Federates.
UHRB polygon change structures have been merged into
our terrain polygonal change structures. Although they go
out as separate interactions, this allows us to reuse exist-
ing code and structures.

Like any other DT interaction, these changes are transmit-
ted to the DT Scribe, which validates and records the in-
teractions for latecomers, and then retransmits them to the
interested federates. Among these federates is the UHRB-
Sim itself, which will receive the validated changes and
utilize a specialized XML API to incorporate the changes
into the appropriate (temporary copies of the) floorplan
and polygonal files. This action facilitates changes-in-
changes. The next time the same building is modified, the
changed building files will be accessed. A reset is simply
implemented by removing the temporary file, thereby
restoring the original files for access.

3.5 Extensions to the OOS UHRB Environmental

Data Model (EDM) to adequately describe
damage

In October, 2003, a two-day meeting was held at the
RDECOM Simulation Technology Center for require-
ments discovery to extend the OOS EDM [3] to better
support building damage. Present were representatives
from OOS, COMBATXXI, and the ERDC Waterways Ex-
periment Station (WES) (with expertise in physics-based
modeling of damage to buildings). In preparation for the
EDM review, a set of potential requirements was com-
piled from various documents pertaining to urban opera-
tions. Army doctrine was studied to determine the factors
in an urban environment that are significant to urban op-
erations. Some of the topics addressed in FM 3-06, Urban
Operations, June 2003, FM 3-06.11, Combined Arms
Operations in Urban Terrain (formerly FM 90-10-1), Feb-
ruary 2002 and Joint Publication 3-06, Doctrine for Joint
Urban Operations, September 2002 are shown in Table 1.

Table 1: Urban Operation Requirements from Army Doc-

trine
Construction Materials and
Methods

Engineer Tasks in UO

Rubble Fragmentation Effects
Toxic Industrial Materials
(TIM)

Building Entry

Weapons Effects on Shanty-
towns

Intentional Rubbling

Infrastructure Defending a Building
Mobility Fire Prevention
Removal of Features by De-
fending Forces

Defending Rooftops

Burned Out Modern Build-
ings

Small Arms and Machine
Guns for Breaching

Door Breaching Trapped and Injured Sur-
vivors

Also used as a resource for the requirements analysis
were the inputs and outputs to physics based models for
structural damage. The models considered were:

• BLASTX 4.2, March 2001
• A Simplified Analytical Model of Penetration

with Lateral Loading (SAMPLL)
• ConWep Penetration
• PENCURV
• CATS-JACE

A sample of the parameters used in these models are
given in Table 2.

Table 2: Physics Based Model Inputs and Outputs
Ambient Pressure
Ambient Temperature
Concrete Compressive Strength (MPa)
Concrete Thickness (cm)
Global thermal conductivity of walls in all rooms
Layer thickness
Material type
Number of Openings
Number of Rooms
Opening geometry
Oxygen Fraction
Room type: general room, L-shaped room, tunnel room
S number
Soil Type
Target locations
Wall geometry
Wood Density
Wood Hardness (kg)
Wood Thickness

These requirements, along with the attributes to support
structural weapons effect for the WES Structural Weap-
ons Effect (SWE) API, a Java-based application pro-
gramming interface to provide structural weapons effects
functionality, were then compared against the OOS EDMs
for Terrain, Atmosphere, Ocean and Space (AOS) and the
Ultra-High Resolution Buildings (UHRB). These results
were reviewed to determine which of these requirements
were important, if they were satisfied by the OOS EDM,
and what revisions were needed to support them. The
changes resulting from the meeting are given in Table 3.

Table 3: OOS EDM Modifications
Require-
ment

OOS EDM modification

Flooding
buildings or
subsurface
areas

Added MAXI-
MUM_STANDING_WATER_DEPTH
to FLOOR_LEVEL

Unstable
structure
from partial
damage

Added new attribute STRUC-
TURE_STABLE to BUILDING

Toxic In-
dustrial
Materials
(TIM)

Added new attributes HAZARD-
OUS_GAS and EXPLOSIVE_GAS to
room features. Also added TEAR_GAS,
NATURAL_GAS, GASO-
LINE_VAPOR, LIQ-
UID_PETROLEUM_GAS enumera-
tions to HAZARDOUS_GAS_TYPE
and applied to COMPART-
MENT_ROOM_INTERIOR features.

Rubble Added RUBBLE 2DGRID. Added
MEAN_OBJECT_DIAMETER.

Weapons
Effects on
Shanty-
towns

Added SHANTY_TOWN enumeration
to URBAN_TERRAIN_ZONE_TYPE
of BUILT_UP_REGION

Defending
a Building

Added SANDBAG as an enumeration
to PRIMARY_MATERIAL_TYPE and
SURFACE_MATERIAL_TYPE of
WALL.

ConWep
Penetration

No change necessary. THICKNESS is
applied to ROOF_ASSEMBLY,
FLOOR, and EXTERIOR_WALL

ConWep
Cratering

Added THICKNESS and
STEEL_CONCRETE_REINFORCEM
ENT_RATIO to ROAD and RUNWAY

Obscurants Added EXTINC-
TION_COEFFICIENT_LOSS_QD_BY
_EM_BAND and new attribute VISIB-
LITY_OK to COMPART-
MENT_ROOM_INTERIOR features
(ROOM, HALLWAY, CLOSET,
CATWALK, BALCONY, ATRIUM,
ANTE_ROOM)

Reinforced
con-
crete/maso
nry-

Added PRESTRESSED_CONCRETE
as an enumeration to wall construction
types.

4 Future Directions
Our implementation of the ABGS and UHRB-Sim are an
acceptable first version, but as with all initial implementa-
tions, some assumptions and limitations apply. In this
section, we discuss some future research that could be
directed at this system to resolve some of these limita-
tions.
4.1 More complex buildings
After real-time damage functions, the most difficult part
of UHRB is creating realistic, complex buildings in a rea-

sonable amount of time. While there are tools available to
manually create good interiors, or to import existing CAD
data, these tools operate on a scale of minutes, if not
hours, and usually require a human in the loop. If the da-
tabase is to contain more than a handful of “complete”
buildings, better and more automated techniques must be
developed.

Secondly, our EDM needs to be extended. For example,
currently all building walls are vertical, all ceilings hori-
zontal, and all rooms on one floor have the same ceiling
height. These are certainly reasonable assumptions that
cover most situations, but completeness (not to mention
simulation of artistic design) requires a somewhat more
flexible abstract representation.

4.2 Level of Detail

One issue we are already working on for visual and SAF
systems is the ability to add levels of detail to our build-
ings. LODs will be the critical issue for visualization as
building polygonal count skyrockets with complexity.
Our system will already support LODs, damaging the first
LOD only. We are not yet certain if there is a need to
change lower levels of detail and, if so, how to best repre-
sent the damage.

4.3 Structures Other Than Buildings

Our initial implementation has focused on buildings, but
the technique could be applied to other structures which
are typically considered difficult to physically model,
including tunnels, multi-level bridges, subways, sewers,
sky bridges, and so forth. Each of these structures cer-
tainly has their own modeling challenges, but this tech-
nique provides a generally applicable means of achieving
this modeling.

4.4 Incremental database creation

Even if a complex building could be fully generated in
one second – and certainly, additional building complex-
ity could be added to any level of sophistication – it
would still require 22 computing-days to create the Ja-
karta terrain database. This turn around time is inconven-
ient at best, particularly when database errors are discov-
ered at the end of that time.

To solve this problem, we are developing the ability to
incrementally build databases, so that individual buildings
can be substituted easily. For the initial database, build-
ings may be partially (or completely) absent, or they may
simply be extruded shells with the correct footprint. These
will serve as placeholders in the database until the build-
ings of interest are created and verified.

Further, a distributable building integration tool might be
developed, which would allow distribution of the initial
database for testing purposes (scenario development, ter-
rain verification, etc.). Later, the building files could be
distributed, and each site incorporate them using their
local copy of the building integration tool. In this way,
databases of arbitrary complexity might be designed and
distributed in the most efficient way to the customer.

4.5 More robust damage simulation

Our damage model is currently primitive, based upon the
Army field manual description that 10 lbs of C4 at chest
height will create a hole “large enough for a man to fit
through” [12]. We feel that the damage model in our sys-
tem as it currently exists fits this description to an accept-
able level. However, we do not account for building con-
struction material when damaging a building, nor that a
near surface might absorb much of the damage that would
otherwise reach a farther surface. Furthermore, enlarging
the damage sphere to simulate more powerful detonations
can result in unrealistic appearing building damage.

Given some access to subject matter experts, it would be
simple enough to extend the munition reader file to in-
clude damage to various building materials. More difficult
would be a quick approximation of a physics-based dam-
age model. However, we are working on these issues.

4.5.1 Rubble

Our current implementation of damage simply vaporizes
the damaged portions of building; expedient, and reason-
able for building “mouse holes”, but not appropriate for
damage on a larger scale. We are currently studying how
best to support rubble and debris from building damage.

4.5.2 External damage assessment plugins

Ideally, damage would be handled by a true physics-based
model, either as a callable library or as a separate process
that could be accessed by the UHRB-Sim. It would also
be necessary to find a model that could operate in real-
time, and interface in some way with our floorplan poly-
gons.

4.6 More variable attribution

The Attribute Generator currently assigns building height,
floor count, and function. More attributes can be sup-
ported by updating the Attribution Rules database. Valu-
able attributes to support include:

• Roof Style: Can be used to determine shaped
roofs (pitched, curved, saw tooth, …)

• Building Construction Type: Can be used to
help infer placement interior features such as
rooms, hallways.

• Exterior Surface Pattern: Can be used to de-
rive visual textures.

• Color: Can be used to derive visual textures.

As more attributes are supported, an “inference tree” will
need to be developed to identify “primary” attributes
which are derived based on UTZ, vs. “secondary attrib-
utes” which are derived from primary attributes, and so
on.

4.7 More optimized storage

Our current implementation produces one XML and one
X3D data file per building in a spatially-organized folder
tree on disk. In the future, we anticipate shifting this stor-
age task to a relational database, where the XML and
X3D data would be stored as binary large objects
(BLOBs). Doing so will simplify configuration control
during the ABGS process, and should allow faster access
to individual buildings than regular file I/O.

5 Summary

We have demonstrated how our Automated Building
Generation Systems and our real-time simulation system,
UHRB-Sim, can be used to effectively support UO opera-
tions in dense urban environments. Our database genera-
tion system can create buildings in under a second, given
abstract ShapeFiles gathered from authoritative or syn-
thetic sources. UHRB-Sim, like the DTSim from which it
is descended, is a scaleable solution for real-time building
damage, easily extended to incorporate external, physics-
based damage models.

Much work remains to be done, including ever more
complex models, incremental database releases, integra-
tion of damage models, and extensions into other struc-
tures that can be modeled with this technology. However,
we believe that this system displays many of the qualities
one would wish in a fully functional system, and presents
a strong framework for future development.

6 Acknowledgments

The capabilities described in the paper have been funded
by several sponsors. The ABGS development was funded
using internal Lockheed Martin funds. Currently, RDE-
COM Simulation Technology Center is funding additional
plug-ins to the ABGS. The UHRB-Sim is being funded by
the AMSO MOUT Focus Area Collaborative Team
(FACT). The Jakarta terrain database was funded by the
Joint Experimentation Directorate (J9) at USJFCOM. We
thank each of these sponsors for their investments.

7 References

[1] S Crino: “Representation of Urban Operations in

Military Models and Simulations”, Proceedings of
the 2002 Fall Simulation and Interoperability Work-
shop, paper 01F-SIW-021, September 2001.

[2] Web3D consortium: “Information technology —
Computer graphics and image processing — Extensi-
ble 3D (X3D)”, ISO/IEC 19775:200x, available on-
line at http://www.web3d.org/specifications/ISO-
IEC-19775/index.html.

[3] D. Miller, et al.: “An Environmental Data Model for
the OneSAF Objective System”, Proceedings of the
2002 Fall Simulation and Interoperability Workshop,
paper 02F-SIW-082, September 2002.

[4] Liu, J. and Ellefsen, Richard. Small business innova-
tive research, Phase II: Final scientific and technical
report, Volume 1 and volume 2: UTZ-based urban
terrain feature database. Sunnyvale, CA: TERA Re-
search Incorporated, 1996.

[5] Jenks, G. Optimal Data Classification for Choropleth
Maps. Occasional Paper 2, Department of Geogra-
phy, University of Kansas, 1977.

[6] J. J. Michalek et al., Architectural Layout Design
Optimization, Eng. Opt., 2002, Vol. 34(5), pp. 461–
484.

[7] J. J. Michalek et al., . Interactive design optimization
of architectural layouts. Eng. Opt., 2002, Vol. 34(5).

[8] B. Medjdoub and B. Yannou, Separating topology
and geometry in space planning. Computer-Aided
Design, Vol. 32, pp. 39–61, 1999.

[9] P.Birkel, et al.: “Pushing the Envelope Toward a
Common Process for the Generation of Terrain Data
Bases across Federations”, Proceedings of the 1999
Spring Simulation and Interoperability Workshop,
paper 99S-SIW-016, March 1999.

[10] D. Miller, et al.: “Dynamic Terrain in the Environ-
ment Federation”, Proceedings of the 2000 Spring
Simulation and Interoperability Workshop, paper
00S-SIW-015, March 2000.

[11] S. Adelson: “A Scaleable Solution for the Hydro-
geologic Simulator - Environment Federation”, Pro-
ceedings of the 2002 Spring Simulation and Interop-
erability Workshop, paper 02S-SIW-017, March
2002.

[12] Army Field Manual FM 90-10: “Military Operations
on Urbanized Terrain (MOUT)”, 15 August 1979.

Author Biographies

DR. STEPHEN J. ADELSON is a senior software engi-
neer at Lockheed Martin Simulation, Training and Sup-
port Advanced Simulation Center in Bellevue, WA. He
contributed to all aspects of the DARPA and USATEC
projects Dynamic Terrain and Objects in a Virtual World,
with a special interest in the repoly service, which allows

dynamic terrain modifications of all sizes (a result of en-
gineering or munition damage) and database tailoring
aimed towards specific training goals. He was an integral
developer in the first phase of the DMSO-sponsored Dy-
namic Terrain in the Environment Federation project, and
continued as a primary developer of the latest incarnation
of the Hydrogeologic Simulator federate in the FY 2000
and 2001 follow-on projects. Dr. Adelson received his
Ph.D. in computer science from the Georgia Institute of
Technology in 1993, with a specialty in efficient graphics
algorithms for VR, simulation, and animation. Before
joining LM STS-ASC in 1996, he served as a postdoctoral
research associate at Los Alamos National Laboratory,
researching advanced computer simulation algorithms and
web-based tools for collaboration.

STEVE FARSAI was a senior software engineer at
Lockheed Martin Simulation, Training and Support Ad-
vanced Simulation Center in Bellevue, WA.. Mr. Farsai
received his B.S. degree in Computer Science from the
University of Washington in 1986 and has been employed
at Lockheed Martin for 15 years. He was one of the key
developers of the S1000 terrain database generation tools
used in the construction of Synthetic Environments (SE)
for Modeling and Simulation (M&S). He led the devel-
opment of the S1000 platform-independent API used in
applications generating specialized native synthetic envi-
ronments for CGF systems such as ModSAF, JSAF, One-
SAF, and CCTT. Mr. Farsai has developed a user-
interactive toolkit for forward engineering and reverse
engineering environmental data models represented in
relational database form enabling representation in alter-
native entity-relationship form. Mr. Farsai was an origi-
nal member of the 6-person industry-wide selected team
to conceive and design the Synthetic Environment Data
Representation and Interchange Specification (SEDRIS).
Most recently, Mr. Farsai was the lead engineer on the
Floorplan Generator reported on herein.

LEO SALEMANN is a senior staff software engineer
with Lockheed Martin Simulation, Training and Support
Advanced Simulation Center in Bellevue, WA. He re-
ceived his Bachelor's of Science in Computer Science &
Engineering from the University of Washington in 1993
and has been working for the LM STS Bellevue office
ever since. Leo is an expert in object-oriented develop-
ment in Visual Basic as well as UNIX/C environments.
Leo contributed to the WARSIM/TDFS program from
1998 to 2003, and has participated in the design, imple-
mentation, documentation, and testing phases. His focus
has been in the User Interface and Application layers, in
which he was primary author of numerous mission critical
software components. Leo's previous work includes train-
ing, documentation, release generation and customer sup-
port for the Vistaworks real-time visualization software,
and the GT200 image generator.

DR. DALE D. MILLER is the manager of Advanced
Technology Development for the Advanced Simulation
Center group of Lockheed Martin Information Systems.
He led the projects Dynamic Terrain and Objects in a
Virtual World and the Terrain Database Generation &
Technology for Synthetic Environments both sponsored by
DARPA and USATEC. He was also the technical leader
for the terrain database and terrain data fusion develop-
ment for the WARSIM Program. He was the Principal
Investigator for the OOS EDM development and is cur-
rently leading environmental data modeling activities for
the AMSO / TEC Environmental Database IPT. Dr.
Miller received his Ph.D. in Mathematics from the Uni-
versity of Washington in 1976.

TIMOTHY MILLER is a geologist/geomorphologist
and GIS applications developer with Lockheed Martin
Simulation, Training and Support Advanced Simulation
Center. He has 15 years of experience in all aspects of
GIS, application and data development, relational data-
base development and management, and web-based ap-
plication development. He led the GIS activities for the
STOW Terrain Scenario Generation and Archiving
(TSGA), the JSIMS Terrain Data Fusion System (TDFS)
programs, and the Geospatial-Intelligence Database Inte-
gration (GIDI) project. He also has been involved in all
aspects of simulation Terrain Databases (TDB) genera-
tion, including software and data generation development.
In TDB construction, he has been involved with the syn-
thesis of available digital data sources and developing
new data sets for accurate representation of real world
phenomena.

MELISSA NAKANISHI is an environmental data mod-
eler with Lockheed Martin Simulation, Training and Sup-
port Advanced Simulation Center. She had lead responsi-
bility for developing and maintaining the OOS EDM-T,
and has developed EDMs for several legacy M&S and
C4I systems, including Janus, CASTFOREM, BBS, and
the Joint Common Data Model (JCDM).

JULIO DE LA CRUZ is the lead for synthetic natural
environment and simulation technologies at the Simula-
tion Technology and Training Center, Research Devel-
opment and Engineering Command (RDECOM-STTC).
Mr. de la Cruz has an undergraduate degree in Electrical
Engineering from the City College of New York and a
Master degree of science from Texas A&M University.
Mr. de la Cruz has over fifteen years experience in gov-
ernment and private sector. Mr. DeLaCruz oversees re-
search and science and technology objectives focused in
the development of current Database Generation Sys-
tems/tools technology to address the defined Army need
in Modeling and Simulation.

