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CHAPTER 1

Preliminaries

1.1. Elementary topology

In applied mathematics, we are often faced with analyzing mathematical structures as they
might relate to real-world phenomena. In applying mathematics, real phenomena or objects are
conceptualized as abstract mathematical objects. Collections of such objects are called sets.
The objects in a set of interest may also be related to each other; that is, there is some structure
on the set. We call such structured sets spaces.

ExAMPLES. (1) A vector space (algebraic structure).

(2) The set of integers Z (number theoretical structure or arithmetic structure).

(3) The set of real numbers R or the set of complex numbers C (algebraic and topological
structure).

We start the discussion of spaces by putting forward sets of “points” on which we can talk about
the notions of convergence or limits and associated continuity of functions.

A simple example is a set X with a notion of distance between any two points of X. A
sequence {z,}7°; C X converges to z € X if the distance from z,, to x tends to 0 as n increases.
This definition relies on the following formal concept.

DEFINITION. A metric or distance function on a set is a function d : X x X — R satisfying:
(1) (positivity) for any =,y € X, d(x,y) > 0, and d(z,y) = 0 if and only if z = y;
(2) (symmetry) for any =,y € X, d(z,y) = d(y, z);
(3) (triangle inequality) for any x,y,z € X, d(x,y) < d(zx, z) + d(z,y).
A metric space (X,d) is a set X together with an associated metric d: X x X — R.

ExampLE. (R?|-|) is a metric space, where for z,y € R?, the distance from x to y is

d 1/2
oul = { S w-wrf
i=1
It turns out that the notion of distance or metric is sometimes stronger than what actu-
ally appears in practice. The more fundamental concept upon which much of the mathematics
developed here rests, is that of limits. That is, there are important spaces arising in applied
mathematics that have well defined notions of limits, but these limiting processes are not com-
patible with any metric. We shall see such examples later; let it suffice for now to motivate a
weaker definition of limits.
A sequence of points {x,,}7° ; can be thought of as converging to x if every “neighborhood” of
x contains all but finitely many of the x,,, where a neighborhood is a subset of points containing
x that we think of as “close” to x. Such a structure is called a topology. It is formalized as
follows.
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DEFINITION. A topological space (X,7) is a nonempty set X of points with a family 7 of
subsets, called open, with the properties:
(1) XeT,0eT,
(2) If wj,wy € T, then wy Nwy € T;
(3) If wy € T for all a in some index set Z, then | J,czwa € 7.
The family 7 is called a topology for X. Given A C X, we say that A is closed if its complement
A€ is open.

ExaAMPLE. If X is any nonempty set, we can always define the two topologies:
(1) Ty = {0, X}, called the trivial topology;
(2) 73 consisting of the collection of all subsets of X, called the discrete topology.

PROPOSITION 1.1. The sets 0 and X are both open and closed. Any finite intersection of
open sets is open. Any intersection of closed sets is closed. The union of any finite number of
closed sets is closed.

PROOF. We need only show the last two statements, as the first two follow directly from the
definitions. Let A, C X be closed for a@ € Z. Then one of deMorgan’s laws gives that

(ﬂ Aa> = UAZ is open.
Finally, if J C Z is finite, then

<U Aa)c = ﬂ A¢, is open.
aed acd
O

It is often convenient to define a simpler collection of open sets that immediately generates
a topology.

DEFINITION. Given a topological space (X,7) and an x € X, a base for the topology at x is
a collection Bx of open sets containing x such that for any open F > x, there is B C Bx such
that

reBCE.

A base for the topology B is a collection of open sets that contains a base at x for all x € X.

PROPOSITION 1.2. A collection B of subsets of X is a base for a topology T if and only if
(1) each x € X is contained in some B € B and (2) if x € B1 N By for By, By € B, then there is
some Bz € B such that x € By C By N By. If (1) and (2) are valid, then

T ={FE C X : E is a union of subsets in B} .

PROOF. (=) Since X and B; N By are open, (1) and (2) follow from the definition of a base
at x.

(<) Let 7 be defined as above. Then () € T (the vacuous union), X € 7 by (1), and
arbitrary unions of sets in 7 are again in 7. It remains to show the intersection property. Let
E1,Ey € T, and x € E1 N By (if E1 N Ey = (), there is nothing to prove). Then there are sets
B, By € B such that

.CC631CE1, IEEBQCEQ,
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SO
re€B NByCE1NEy.
Now (2) gives B3 € B such that
r€ By CEiNE;y.
Thus F1 N Ey is a union of elements in B, and is thus in 7. O

We remark that instead of using open sets, one can consider neighborhoods of points x € X,
which are sets N 3 x such that there is an open set E satisfying z € £ C N.

THEOREM 1.3. If (X,d) is a metric space, then (X,7T) is a topological space, where a base
for the topology is given by

T ={By(z):z€ X and r >0},
where
By(z) ={y € X : d(z,y) <r}
is the ball of radius r about x.

PrOOF. Point (1) is clear. For (2), suppose x € B,.(y) N Bs(z). Then z € B,(x) C B,(y) N
By(z), where p = $min(r — d(z,y),s — d(z,z)) > 0. O

Thus metric spaces have a natural topological structure. However, not all topological spaces
are induced as above by a metric, so the class of topological spaces is genuinely richer.

DEFINITION. Let (X,7) be a topological space. The closure of A C X, denoted A, is the
intersection of all closed sets containing A:

PROPOSITION 1.4. A is closed, and is the smallest closed set containing A.

PRrooF. This follows by Proposition 1.1 and the definition. O
DEFINITION. The interior of A C X, denoted A°, is the union of all open sets contained in
A:
4= ) E.
FE open
ECA

PROPOSITION 1.5. A° is open, and is the largest open set contained in A.
Proor. This also follows from Proposition 1.1 and the definition. O

PROPOSITION 1.6. A C A, A= A, AUB=AUB, and A closed = A= A.
ADA° A° =A° (ANB)°=A°NB°, and A open < A= A°.

PROPOSITION 1.7. (A€)° = (A)¢, (A°)¢ = (A°).
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PROOF.

c

r¢ (A ercAsxc m Fexd m F| x¢ U F¢=(A%°.

F closed F' closed F¢ open
FDA FDA FecAe

The second result is similar. O

DEFINITION. A point x € X is an accumulation point of A C X if every open set containing
x intersects A\ {x}. Also, a point x € A is an interior point of A if there is some open set E
such that

rekECA.
Finally, € A is an isolated point if there is an open set E 3 x such that E\ {z} N A = .

PROPOSITION 1.8. For A C X, A is the union of the set of accumulation points of A and A
itself and A° is the union of the interior points of A.

ProoOF. Exercise. O
DEFINITION. A set A C X is dense in X if A = X.

DEFINITION. The boundary of A C X, denoted 0A, is

OA=ANAc.
ProposITION 1.9. If A C X, then OA is closed and
A=A°U0A, A°NOA=1.
Moreover,
0A =0A° ={z € X : every open E > x intersects both A and A°} .

Proor. Exercise. g

DEFINITION. A sequence {x,}>2; C X converges to x € X, or has limit x, if given any open
E > z, there is N > 0 such that x,, € F for all n > N (i.e., the entire tail of the sequence is
contained in F).

PROPOSITION 1.10. If limy, o0 zy, = @, then x is an accumulation point of {xn}22,, inter-
preted as a set.

PRrRoor. Exercise. O

We remark that if = is an accumulation point of {z,}72,, there may be no subsequence
{xn, }32, converging to .

EXAMPLE. Let X be the set of nonnegative integers, and a base 7 = {{0,1,...,i} for
each i > 1}. Then {z,}5°; with z,, = n has 0 as an accumulation point, but no subsequence
converges to 0.

If z, > x € X and z,, — y € X, it is possible that z # y.

ExAMPLE. Let X = {a,b} and 7 = {0,{a},{a,b}}. Then the sequence x, = a for all n
converges to both a and b.

DEFINITION. A topological space (X, 7) is called Hausdorff if given distinct x,y € X, there
are disjoint open sets F; and Es such that x € F; and y € Eb».
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ProposITION 1.11. If (X,T) is Hausdorff, then every set consisting of a single point is
closed. Moreover, limits of sequences are unique.

ProOOF. Exercise. ]

DEFINITION. A point x € X is a strict limit point of A C X if there is a sequence {z,} C
A\ {z} such that lim, o z, = z.

PROPOSITION 1.12. Every x € 0A is either an isolated point, or a strict limit point of A
and A°.

PRrRoor. Exercise. O

Note that if = is an isolated point of X, then x ¢ A°, so JA # JA° in general.
Metric spaces are less suseptible to pathology than general topological spaces.

ProposITION 1.13. If (X, d) is a metric space and {x,}5° is a sequence in X, then x, — x
if and only if, given € > 0, there is N > 0 such that

d(x,zy) <€ Vn>N.
That is, x,, € B:(x) for allm > N.

Proor. If x,, — x, then the tail of the sequence is in every open set £ > z. In particular,
this holds for the open sets B:(x). Conversely, if F is any open set containing z, then the open
balls at = form a base for the topology, so there is some B.(z) C E which contains the tail of
the sequence. O

PROPOSITION 1.14. Every metric space is Hausdorff.
Proor. Exercise. g

ProposITION 1.15. If (z,d) is a metric space and A C X has an accumulation point x,
Then there is some sequence {xn}>> C A such that x, — x.

PRrROOF. Given integer n > 1, there is some x, € B; /n(x), since z is an accumulation point.
Thus z,, — . ]

We avoid problems arising with limits in general topological spaces by the following definition
of continuity.

DEFINITION. A mapping f of a topological space (X,7) into a topological space (Y,S) is
continuous if the inverse image of every open set in Y is open in X.

This agrees with our notion of continuity on R.
We say that f is continuous at a point x € X if given any open set £ C Y containing f(z),
then f~!(E) contains an open set D containing x. That is,

reD and f(D)CE.

A map is continuous if and only if it is continuous at each point of X.

PropoOSITION 1.16. If f: X — Y and g : Y — Z are continuous, then go f : X — Z is
continuous.

PRroor. Exercise. O

PROPOSITION 1.17. If f is continuous and x, — x, then f(x,) — f(x).
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PRroor. Exercise. O

The converse of Proposition 1.17 is false in general. When the hypothesis z,, — z always
implies f(x,) — f(z), we say that f is sequentially continuous.

ProposiTION 1.18. If f : X — Y 1is sequentially continuous, and if X is a metric space,
then f is continuous.

PROOF. Let E C Y be open and A = f~1(FE). We must show that A is open. Suppose not.
Then there is some © € A such that B,(z) ¢ A for all » > 0. Thus for r, = 1/n, n > 1 an
integer, there is some z, € B, (z) N A°. Since x,, — z, f(z,) — f(z) € E. But f(z,) € E°
for all n, so f(r) is an accumulation point of E¢. That is, f(z) € EcNE = OFE. Hence,
f(z) e OENE = 0E N E° = (), a contradiction. O

Suppose we have a map f : X — Y that is both injective (one to one) and surjective (onto),
such that both f and f~! are continuous. Then f and f~! map open sets to open sets. That is
E C X is open if and only if f(F) C Y is open. Therefore f(7) = S, and, from a topological
point of view, X and Y are indistinguishable. Any topological property of X is shared by Y,
and conversely. For example, if z,, — = in X, then f(x,) — f(z) in Y, and conversely (y, — v
in Y = f1(y,) — /~(y) in X).

DEFINITION. A homeomorphism between two topological spaces X and Y is a one-to-one
continuous mapping f of X onto Y for which f~! is also continuous. If there is a homeomorphism
f: X — Y, wesay that X and Y are homeomorphic.

It is possible to define two or more nonhomeomorphic topologies on any set X of at least two
points. If (X,7) and (X,S) are topological spaces, and S D 7, then we say that S is stronger
than 7 or that 7 is weaker than S.

ExAMPLE. The trivial topology is weaker than any other topology. The discrete topology
is stronger than any other topology.

PROPOSITION 1.19. The topology S is stronger than T if and only if the identity mapping
I:(X,S)— (X,7T) is continuous.

PRrROPOSITION 1.20. Given a collection C of subsets of X, there is a weakest topology T
containing C.

PROOF. Since the intersection of topologies is again a topology (prove this),

CCcT= ﬂ S

SOC
S a topology

is the weakest such topology (which is nonempty since the discrete topology is a topology
containing C). O

Given a topological space (X,7) and A C X, we obtain a topology S on A by restriction.
We say that this topology on A is inherited from X. Specifically
S=TNA={E CA: thereis some G C 7 such that E = ANG} .

That S is a topology on A is easily verified. We also say that A is a subspace of X.
Given two topological spaces (X,7) and (Y,S), we can define a topology R on

XxY={(z,y):zeX, yeY},



1.1. ELEMENTARY TOPOLOGY 11

called the product topology, from the base
RB:{E]_XEQ:E]_GT7 EQES}.

It is easily verified that this is indeed a base; moreover, we could replace 7 and S by bases and
obtain the same topology R.

ExamMpLE. If (X,d;) and (X, dy) are metric spaces, then a base for X x Y is
{By(x) x Bs(y) :xz € X, yeY, and r,s >0} .
Moreover, d: (X xY) x (X xY) — R defined by
d((z1,91), (22, y2)) = di(z1,22) + da2(y1, y2)
is a metric that gives the same topology.

EXAMPLE. R? has two equivalent and natural bases for the usual Euclidean topology, the
set of all (open) circles, and the set of all (open) rectangles.

This construction can be generalized to obtain an arbitrary product of spaces. Let (X4, 74)
a € T be a collection of topological spaces. Then X = X,c7X,, defined to be the collection of
all points {xq}aecr With the property that z, € X, for all a € Z, has a product topology with
base

TB:{ X Ey:Ey,eToVacT and E, = X,
acl

for all but a finite number of a« € 7 } .

The projection map m, : X — X, is defined for x = {23} 3ez by Tax = x4, which gives the a-th
coordinate of x.

REMARK. The notation {z,}aez is properly understood as a map g : Z — UyezXq, where
g(a) = x4 € X, for all @« € Z. Then X = X,e7X, is the collection of all such maps, and
To(g) = g(a) is evaluation at o € Z. However, we will continue to use the more informal view
of X as consisting of “points” {xq}aez-

ProroSITION 1.21. Fach 7, is continuous. Furthermore, the product topology is the weakest
topology on X that makes each m, continuous.

Proor. If E, C X, is open, then

ma (Ba) = < Ep

where Eg = Xp for § # a, is a basic open set and so is open. Finite intersections of these sets
must be open, and indeed these form our base. It is therefore obvious that the product topology
as defined must form the weakest topology for which each 7, is continuous. U

ProrosiTiON 1.22. If X,, a € I, and Y are topological spaces, then a function f :
XacTXa — Y is continuous if and only if m, o f is continuous for each o € L.

PRrRoOOF. Exercise. O

ProPOSITION 1.23. If X is Hausdorff and A C X, then A is Hausdorff (in the inherited
topology). If {Xa}taer are Hausdorff, then X ,e1Xo is Hausdorff (in the product topology).

Proor. Exercise. O
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Most topologies of interest have an infinite number of open sets. For such spaces, it is often
difficult to draw conclusions. However, there is an important class of topological space with a
finiteness property.

DEFINITION. Let (X,7) be a topological space and A C X. A collection {F,}aezr C X is
called an open cover of A if A C |Jyer Eo- If every open cover of A contains a finite subcover
(i.e., the collection {E,} can be reduced to a finite number of open sets that still cover A), then
A is called compact.

An interesting point arises right away: Does the compactness of A depend upon the way it is
a subset of X7 Another way to ask this is, if A ; X is compact, is A compact when it is viewed
as a subset of itself? That is, (4,7 N A) is a topological space, and A C A, so is A also compact
in this context? What about the converse? If A is compact in itself, is A compact in X7 It is
easy to verify that both these questions are answered in the affirmative. Thus compactness is a
property of a set, independent of some larger space in which it may live.

The Heine-Borel Theorem states that every closed and bounded subset of R? is compact,
and conversely. The proof is technical and can be found in most introductory books on real
analysis (such as the one by Royden [Roy] or Rudin [Ru0]).

PROPOSITION 1.24. A closed subset of a compact space is compact. A compact subset of a
Hausdorff space is closed.

PROOF. Let X be compact, and F' C X closed. If {E,}aez is an open cover of F, then
{Eua}acz U F€ is an open cover of X. By compactness, there is a finite subcover {Eq }oecs U F€.
But then {E,}nes covers F, so F' is compact.

Suppose X is Hausdorff and K C X is compact. (We write K CC X in this case, and read
it as “K compactly contained in X.”) We claim that K€ is open. Fix y € K¢. For each x € K,
there are open sets F, and G such that x € E,, y € G, and E, NG, = (), since X is Hausdorff.
The sets {E;}zex form an open cover of K, so a finite subcollection {Ey}zea still covers K.

Thus
E=()G.
T€A

is open, contains y, and does not intersect K. Since y is arbitrary, K¢ is open and therefore K
closed. 0

PRrROPOSITION 1.25. The continuous image of a compact set is compact.
PRroor. Exercise. O

An amazing fact about compact spaces is contained in the following theorem. Its proof can
be found in most introductory texts in analysis or topology (see [Roy], [Rul]).

THEOREM 1.26 (Tychonoff). Let {X, }aez be an indexed family of compact topological spaces.
Then the product space X = Xqc7Xo 15 compact in the product topology.

A common way to use compactness in metric spaces is contained in the following result.

PROPOSITION 1.27. If X is a compact metric space and {xy}22 is a sequence in X, then
there is a subsequence {xp, }3, which converges in X.

PROOF. Suppose not. Then the sets

FE, =A{xn, Tpnt1, Tni2, ...}
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have no limit points, which are accumulation points in a metric space, so F}, is closed. Now

ﬂFn:(Da
n=1

so {F¢}22, forms an open cover of X. Hence, for some N, {FS}Y_; covers X. But

N
an ¢ | Fo=Fg .
n=1
This contradiction establishes the result. O

1.2. Lebesgue measure and integration

The Riemann integral is quite satisfactory for continuous functions, or functions with not
too many discontinuities, defined on bounded subsets of R?; however, it is not so satisfactory
for discontinuous functions, nor can it be easily generalized to functions defined on sets outside
R?, such as probability spaces. Measure theory resolves these difficulties. It seeks to measure
the size of relatively arbitrary subsets of some set X. From such a well defined notion of size,
the integral can be defined. We summarize the basic theory here, but omit most of the proofs.
They can be found in most texts in real analysis (see e.g., [Roy], [Ru0], [Ru2]).

It turns out that a consistent measure of subset size cannot be defined for all subsets of a
set X. We must either modify our notion of size or restrict to only certain types of subsets. The
latter course appears a good one since, as we will see, the subsets of R¢ that can be measured
include any set that can be approximated well via rectangles.

DEFINITION. A collection A of subsets of X is called a o-algebra on X if
i) X € A
ii) whenever A € A, A¢ € A;
iii) whenever A, € Aforn=1,2,3,... (ie., countably many A, ), then also | J7>; 4, € A.
PROPOSITION 1.28.

i) 0 e A
i) If A, € A forn=1,2,..., then ()~ An € A.
iii) If A,B €A, then A\ B=AnNB° e A.

PRrRoor. Exercise. O

DEFINITION. By a measure on A, we mean a function u : A — R, where R = [0, +00] for a
positive measure with u # +o0o and R = C for a complexr measure, which is countably additive.
This means that if A, € Aforn=1,2,... and A; N A; =0 for ¢ # j, then

o0 (0.0
N(U An) = ZN(An) .
n=1 n=1
That is, the size or measure of a set is the sum of the measures of countably many disjoint pieces

of the set that fill it up.

PRrorosITION 1.29.
i) u(®) =0.
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i) If A, € A, n=1,2,... N are pairwise disjoint, then

N N
,U/(U An) = Z/’L(A’Vl> :
n=1 n=1
iii) If u is a positive measure and A, B € A with A C B, then

u(A) < ju(B) .
iv) If A, e A, n=1,2,..., and A,, C Apy1 for all n, then

M(U An) = lim M(An) :
n=1
v) If A, € A, n=1,2,..., u(A1) < oo, and Ay, D A4 for all n, then
o
#<m An> = lim u(4,) .
n=1
PROOF. 1) Since p # +00, there is A € A such that p(A) is finite. Now A =AU J;2, 0, so

(A) = u(A) + 3%, (). Thus u(0) = 0.
ii) Let A, =0 for n > N. Then

u(ﬂ ) = u(@ An) = i b(An) = ﬁjlumn) |

iii) Let C = B\ A. Then CNA =10, so
u(A) + pu(C) = m(CUA) = u(B) ,

and p(C) > 0 gives the result.
iv) Let By = Ay and B,, = A, \ A1 for n > 2. Then the {B,} are pairwise disjoint, and,
for any N < oo,

N N
Ay = UlAn— Uan,

SO

n=1 n=1 n=1
N N
= Jm S () = g (U 52
= n—=
= li A

v) Let B, = Ap \ Ant1 and B = ()2, An. Then the B,, and B are pairwise disjoint,

N—-1 o0
AN:Al\UBna and A1:BUUBn.
n=1

n=1
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In consequence of the countable additivity,

(A1) = u(B) + > p(By) < o0,
n=1
. N-1 e’}
1(B) = (A1) = Y u(Bn) = > u(Bn)
n=1 n=N
= u(An) = Y u(By)
n=N

Since the series Y 2 | u(By) converges, the limit as N — oo of the second term on the right-hand
side of the last equation is zero and the result follows. ]

A triple consisting of a set X, a o-algebra A of subsets of X, and a measure p defined on
A, ie., (X, A, p), is called a measure space.

An important o-algebra is one generated by a topology, namely the family B of all Borel
sets in R

DEFINITION. The Borel sets B in R? is the smallest family of subsets of R? with the prop-
erties:
i) each open set is in B;
ii) if A € B, then A € B;
iii) if {A,}22, C B, then | J7, 4, € B.
That is, B contains all open sets and is closed under complements and countable unions.

That there is such a smallest family follows from the facts that the family of all subsets
satisfies (ii)—(iii), and if {Ba}aez is any collection of families satisfying (i)-(iii), then ),z Ba
also satisfies (i)—(iii).

Note that closed sets are in 3, as well as countable intersections by deMorgan’s rule. Obvi-
ously, B is a g-algebra.

REMARK. This definition makes sense relative to the open sets in any topological space.

THEOREM 1.30. There exists a unique positive measure [, called Lebesgue measure, defined
on the Borel sets B of R%, having the properties that if A C B is a rectangle, i.e., there are
numbers a; and b; such that

A:{xeRd:ai<xi ora; <x; and x; < b; or x; <b; V i},

then p(A) = H?Zl(bi —a;) and p is translation invariant, which means that if v € R? and A € B,
then

ulo+ A) = p(A) |
where x + A= {y € R : y =z + 2 for some z € A} € B.

The construction of Lebesgue measure is somewhat tedious, and can be found in most texts
in real analysis (see, e.g., [Roy], [Ru0], [Ru2]). Note that an interesting point arising in this
theorem is to determine why = + A € B if A € B. This follows since the mapping f(y) =y + «
is a homeomorphism of R? onto R, and hence preserves the open sets which generate the Borel
sets.
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A dilemma arises. If A € B is such that u(A) = 0, we say A is a set of measure zero. As
an example, a (d — 1)-dimensional hyperplane has d-dimensional measure zero. If we intersect
the hyperplane with A C R?, the measure should be zero; however, such an intersection may
not be a Borel set. We would like to say that if u(A) =0 and B C A, then p applies to B and
u(B) = 0.

Let the sets of measure zero be

Z={AcR?: 3BeB with u(B)=0 and AC B},
and define the Lebesgue measurable sets M to be
M={ACR?: IBe€B, Z,Zy€ Z such that A= (BUZ)\ Zs} .

We leave it to the reader to verify that M is a o-algebra.
Next extend p: M — [0, 00| by

u(4) = u(B)
where A = (BU Z1) \ Z for some B € B and Z;,Z3 € Z. That this definition is independent
of the decomposition is easily verified, since pu|z = 0.

Thus we have

THEOREM 1.31. There exists a o-algebra M of subsets of R and a positive measure [
M — [0, 00| satisfying the following.
i) Every open set in R? is in M.
ii) If AC Be M and u(B) =0, then A € M and pu(A) = 0.
iii) If A is a rectangle with x; bounded between a; and b;, then p(A) = H?:1(bz‘ —a;).
iv) p is translation invariant: if v € R4, A€ M, then v+ A € M and u(A) = p(z + A).

Sets outside M exist, and are called unmeasurable or non-measurable sets. We shall not
meet any in this course. Moreover, for practical purposes, we might simply restrict M to B in
the following theory with only minor technical differences.

We now consider functions defined on measure spaces, taking values in the extended real
number system R = R U {—o0, +oc}, or in C.

DEFINITION. Suppose  C R? is measurable. A function f : Q — R is measurable if the
inverse image of every open set in R is measurable. A function g : Q — C is measurable if its
real and imaginary parts are measurable.

We remark that measurability depends on M, but not on y! It would be enough to verify
that the sets
Ey={zeQ: f(zx) > a}

are measurable for all @ € R to conclude that f is measurable.

THEOREM 1.32.
i) If f and g are measurable, so are f + g, f — g, fg, max(f,g), and min(f,g).
ii) If f is measurable and g : R — R is continuous, then go f is measurable.
iii) If f is defined on Q C R?, f continuous, and Q measurable, then f is measurable.
iv) If {fn}52, is a sequence of measurable functions, then
inf f, , supf,, liminff,, and limsup f,
n n n—oo n—o0

are measurable functions.
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COROLLARY 1.33. If f is measurable, then so are
fT =max(f,0), f =—min(f,0), and |f|.
Moreover, if { fn}o2, are measurable and converge pointwise, the limit function is measurable.
REMARK. With these definitions, f = f* — f~ and |f| = f™ + f~.
DEFINITION. If X is a set and £ C X, then the function X : X — R given by
wo-{, oir

is called the characteristic function of E. If s : X — R has finite range, then s is called a simple
function.

Of course, if the range of s is {c1,...,¢,} and
Ei={reX:s(x)=0¢},
then

S(I’) = ZciXEi (:B) )
=1

and s is measurable if and only if each E; is measurable.
Every function can be approximated by simple functions.

THEOREM 1.34. Given any function f: Q C RY — R, there is a sequence {s,}°, of simple
functions such that

lim s,(z) = f(x) for any x € Q

n—oo

(i.e., sn converges pointwise to f). If f is measurable, the {s,} can be chosen measurable.
Moreover, if f is bounded, {s,} can be chosen so that the convergence is uniform. If f > 0, then
the {sn} may be chosen to be monotonically increasing at each point.

Proor. If f >0, define forn =1,2,... and ¢ =1,2,... ,n2",

Em-:{:cEQ:i_lﬁf(ﬂf)<i} )

2’fL 2n
Fo={x€Q: f(x)>n}.
Then
i1
sn(z) =) Xg, () + nXp,

271
=1

has the desired properties. In the general case, let f = f* — f~ and approximate f™ and f~ as
above. g

It is now straightforward to define the Lebesgue integral. Let Q € R¢ be measurable and
s : £ — R be a measurable simple function given as

s(z) = ZCiXEi (x) .
i=1
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Then we define the Lebesgue integral of s over €2 to be

n

/Qs(x) dr = Zci,u(Ei) .

i=1
If f:Q — [0,00] is measurable, we define

/Q (@) do = sup /Q s(x) dr

where the supremum is taken over all measurable functions satisfying 0 < s(z) < f(z) for x € Q.
Note that the integral of f may be +oo.
If f is measurable and real-valued, then f = f* — f—, where f* > 0 and f~ > 0. In this

case, define
[ t@iz= [ fraia= [ @

provided at least one of the two integrals on the right is finite.
Finally, if f is complex-valued, apply the above construction to the real and imaginary parts
of f, provided the integrals of these parts are finite.

DEFINITION. We say that a real-valued measurable function f is integrable if the integrals
of fT and f~ are both finite. If only one is finite, then f is not integrable; however, in that case
we assign +00 or —oo to the integral.

ProposITION 1.35. The real-valued measurable function f is integrable over £ if and only
if
/ |f(z)|dz < oo .
Q

DEFINITION. The class of all integrable functions on  C R%, © measurable, is denoted
L(Q) = {measurable f : / |f(z)] dx < oo} .
Q

THEOREM 1.36. If f is Riemann integrable on a compact set K C RY, then f € L(K) and
the Riemann and Lebesgue integrals agree.

Certain properties of the Lebesgue integral are clear from its definition.

PRrROPOSITION 1.37. Assume that all functions and sets appearing below are measurable.

(a) If | f| is bounded on Q and u(2) < oo, then f € L(Q).
(b) Ifa< f <bonQ and u(Q2) < oo, then

on@) < [ Ja)do < bu(s)
Q
(c) If f < g on Q, then

/ﬂf(a:)dwﬁ/gg(m)dm.
(d) If f,g € L(Q), then f+ g€ L(Q) and

|+o@adn= [ f@de+ [ oo
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(e) If f € L(Q) and c € R (or C), then

/cf(x)dx:c/f(x)dx

(f) If f € L(2), then |f| € L(2) and

‘/f dx’</]f )| da

(g) If f € L(2) and A C Q, then f € L(A). If also f >0, then

OS/Af(w)d:vS/ﬂf(x)dw
/Qf(:v)dx:

() If f€ L(Q) and Q= AUB, ANB =0, then

/Qf(ac)dx:/Af(x)dx—l—/Bf(aj)dx

Part (i) has a natural and useful generalization.

THEOREM 1.38. If f € L(Q), ACQ, A, e M forn=1,2,..., AiNA; =0 fori# j, and
A=, Ay, then

(h) If u(2) =0, then

/Af(x) dz = E/A F(z)dz . (1.1)

Moreover, if f >0, the function A : M — R given by
A= [ f@)do
A

PROOF. That A is a positive measure follows from (1.1), which gives the countable additivity.
If (1.1) is valid when f > 0, it will follow for any real or complex valued function via the

decomposition f = fi +ifa = fif — fi +i(fs — f5 ), where f= > 0.
For a characteristic function Xy, E measurable, (1.1) holds since u is countably additive:

/AXE(a:)d wANE) ZMA NE) / X (x

Because of (d) and (e) in Proposition 1.37, (1.1) also holds for any simple function.
If f >0 and s is a simple function such that 0 < s < f, then

AS(x)dm:i/An s(w)dx<iA7Lf(x)dx
Af(:v)d:c:ig?/fls(x)dxﬁg/jqn f(z)dx

1S a positive measure.

Thus
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However, by iterating Proposition 1.37(i), it follows that

Z f(:):)d:r:/ f(:c)dwg/f(x)dx
k=1" Ak Ur=1 4k A
for any n. The last two inequalities imply (1.1) for f. O

From Proposition 1.37(h),(i), it is clear that if A and B are measurable sets and p(A\ B) =

w(B\ A) =0, then
/Af(a:) dx = /Bf(:c) dz

for any integrable f. Moreover, if f and g are integrable and f(x) = g(x) for all z € A\ C where

u(C) =0, then
Afumx:Am@¢p

Thus sets of measure zero are negligible in integration.

If a property P holds for every z € E \ A where pu(A) = 0, then we say that P holds for
almost every x € E, or that P holds almost everywhere on E. We generally abbreviate “almost
everywhere” as “a.e.” (or “p.p.” in French).

PROPOSITION 1.39. If f € L(Q2), where 2 is measurable, and if

'Lf@ym:o

for every measurable A C Q, then f =0 a.e. on €.

PROOF. Suppose not. Decompose f as f = f1 +ife = fi — f{ +i(f5 — f, ). At least one
of fli, f;E is not zero a.e. Let g denote one such component of f. Thus g > 0 and g is not zero
a.e. on €. However, [, g(x)dx = 0 for every measurable A C Q. Let

Ap={ze€Q:g(z)>1/n} .

Then p(A,) =0V nand Ay = Ure; An = {z € Q: g(x) > 0}. But p(Ag) = pUreq An) <
o2 w(Ay) = 0, contradicting the fact that g is not zero a.e. O

We will not use the following, but it is interesting. It shows that Riemann integration is
restricted to a very narrow class of functions, whereas Lebesgue integration is much more general.

PROPOSITION 1.40. If f is bounded on a compact set [a,b] C R, then f is Riemann integrable
on [a,b] if and only if f is continuous at a.e. point of [a,b].

The Lebesgue integral is absolutely continuous in the following sense.

THEOREM 1.41. If f € L(Q), then [, |f|dz — 0 as p(A) — 0, where A C Q is measurable.
That is, given € > 0, there is § > 0 such that

INCIEE

whenever p(A) < 0.
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PROOF. Given € > 0, there is a simple function s(z) such that

/ (@) - s(@)] de < ¢/2 |
A

by the definitionn of the Lebesgue integral. Moreover, by the proof of the existance of s(x), we
know that we can take s(x) bounded:

[s(x)] < M(e)
for some M (€). Then on A C Q measurable,
[ st ds < w(anrce),
so if u(A) < § = €/2M (€), then

/A\f(x)d:cSA|f($)—s(x)]dx+A|s(x)]dx§6/2+6/2:6.
O

The following lemma is easily demonstrated (and left to the reader), but it turns out to be
quite useful.

LEMMA 1.42 (Chebyshev’s Inequality). If f > 0 and Q C R? are measurable, then

p({z € Q: f(z) >a}) < /f

for any o > 0.

We conclude our overview of Lebesgue measure and integration with the three basic con-
vergence theorems, Fubini’s Theorem on integration over product spaces, and the Fundamental
Theorem of Calculus, each without proof. For the first three results, assume that Q C R? is
measurable.

THEOREM 1.43 (Lebesgue’s Monotone Convergence Theorem). If {f,}5° is a sequence of
measurable functions satisfying 0 < fi(x) < fa(z) < --- for a.e. x € Q, then

lim fn( )dx:/§2<nlLrgofn(x)) dx .

n—oo

THEOREM 1.44 (Fatou’s Lemma). If {fn}2 is a sequence of nonnegative, measurable func-
tions, then

/Q(liminffn( ) da:<hm1nf/fn

r—00 n—oo

THEOREM 1.45 (Lebesgue’s Dominated Convergence Theorem). Let {f,}>2, be a sequence
of measurable functions that converge pointwise for a.e. x € Q. If there is a function g € L(Q)
such that

|fn(2)] < g(x) for everyn and a.e. x € €,
then

nh—>Holo fn( )dmz/{)(nlerolOfn(x)) dx .
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THEOREM 1.46 (Fubini’s Theorem). Let f be measurable on R"™™. If at least one of the
integrals

11:/ f(.’,l?,y)dl‘dy,
Rn+m

12=/m< Rnf(w,y)dw) dy
Igz/n( Rmf(w,y)dy> da

exists in the Lebesgue sense (i.e., when f is replaced by |f|) and is finite, then each exists and
L =1=1Is.

Note that in Fubini’s Theorem, the claim is that the following are equivalent:
(i) f e LR™™),
(ii) f(-,y) € L(R™) for a.e. y € R™ and [p, f(z,-)dx € L(R™),
(iil) f(z,-) € L(R™) for a.e. z € R" and [g,, f(-,y)dy € L(R"),
and the three full integrals agree. Among other things, f being measurable on R™*™ implies
that f(-,y) is measurable for a.e. y € R™ and f(z,-) is measurable for a.e. z € R". Note also
that we cannot possibly claim anything about every x € R™ and/or y € R™, but only about
almost every point.

THEOREM 1.47 (Fundamental Theorem of Calculus). If f € L([a,b]) and

Fo) = [ Nors

then F'(x) = f(x) for a.e. x € [a,b]. Conversely, if F is differentiable everywhere (not a.e.!) on
[a,b] and F' € L([a,b]), then

Flz) - Fla) = / “P)dr
for any x € [a,b].

1.3. The Lebesgue spaces L,()

Let @ C R? be measurable and let 0 < p < oo. We denote by L,(2) the class of all
measurable functions f : 2 — R (or C) such that

/ |f(z)]P de < oo . (1.2)
Q

An interesting point arises here. Suppose f and g lie in L,(f2) and that f(z) = g(x) for a.e.
x € . Then as far as integration is concerned, one really cannot distinguish f from g. For
example, if A C € is measurable, then

/ 1P da = / 9P dz .
A A

Thus within the class of L,(f2), f and g are equivalent. This is formalized by modifying the
definition of the elements of L,(§2). We declare two measurable functions that are equal a.e. to
be equivalent, and define the elements of L,(§2) to be the equivalence classes

[f1={9:Q2—=R(orC) : g= f ae.on Q}
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such that one (and hence all) representative function satisfies (1.2). However, for convenience,
we continue to speak of and denote elements of L,(£2) as “functions” which may be modified on
a set of measure zero without consequence. For example, f = 0 in L,(€2) means only that f =0
a.e. in ).

The integral (1.2) arises frequently, so we denote it as

i1 ={ [ If(ar)\pdw}l/p ,

and call it the L,(Q)-norm. (A general definition of norm will be given later, and || - ||, will be
an important example.)

A function f(z) is said to be bounded on Q by K € R if |f(z)| < K for every z € Q. We
modify this for measurable functions.

DEFINITION. A measurable function f : Q — C is essentially bounded on 2 by K if |f(x)| <
K for a.e. x € . The infimum of such K is the essential supremum of |f| on €2, and denoted

ess sup,cq | f(x)].
For p = 0o, we define || f|loc = ess sup,cq |f(z)|. Then for all 0 < p < oo,
Lp(Q) ={f [ fllp < oo} -
PROPOSITION 1.48. If0 < p < oo, then L,(Q) is a vector space and | f||, = 0 if and only if
f=0 a.e. in.

PRrOOF. We first show that L,(€) is closed under addition. For p < oo, f,g € L,(€), and
T € €,

@) + 9@ < (1f@)]+19@)])" <2 (1@ +lg@)P”) -

Integrating, there obtains || f + gll, < 2(||fI[b + Ilg|lh)*/? < co. The case p = oo is clear.
For scalar multiplication, note that for « € R (or C),

lafllp = lal 1 fllp -
so f € Ly(Q) implies aof € L, (). The remark that || f||, = 0 implies f = 0 a.e. is clear. O

These spaces are interrelated in a number of ways.

THEOREM 1.49 (Hélder’s Inequality). Let 1 < p < oo and let g denote the conjugate exponent

defined by
1 1 . ;
Lloy cop=1,0=17p=00)

If f € Ly,(Q) and g € Ly(QQ), then fg € L1(?) and
gl < 1A 1pllgllq -

If 1 < p < o0, equality occurs if and only if | f(z)[P and |g(x)|? are proportional a.e. in Q.

PROOF. The result is clear if p = 1 or p = oo. Suppose 1 < p < oo. The function
u : [0,00) — R given by
1

u(t) = —+ - —t
(t) > T3
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has minimum value 0, attained only with ¢ = 1. For a,b > 0, let ¢t = ab~%/? to obtain from the
previous observation that

B
ab< L+ = (1.3)

p q
with equality if and only if a?/b? = 1. If || f||, = 0 or ||g|l; = 0, then fg = 0 a.e. on 2 and the
result follows. Otherwise let a = |f(z)|/||f|l, and b = |g(x)|/||g]lq and integrate over . O

REMARK. The same proof works for sequences {a, }°°; and {b,}5° ;. The resulting discrete
version of Holder’s inequality is

') [e'e] 1/ [e%¢] 1/
> loat < (2) (Z:lb> "

Inequality (1.3) is extremely useful, and often used when p = ¢ = 2, so we make formal note
of it below.

ProposITION 1.50. If a and b are nonnegative real numbers, 1 < p < oo, and q is the
conjugate exponent to p (i.e., 1/p+1/q=1), then

aP b
ab < —+ — .
b q

Moreover, for any € > 0, then there is C = C(p,€) > 0 such that
ab < ea? + Ob? .
THEOREM 1.51 (Minkowski’s Inequality). If 1 <p < oo and f and g are measurable, then

1+ glly < [[fllp + llgllp -

PRrROOF. If f or g ¢ L,(2), the result is clear, since the right-hand side is infinite. The result
is also clear for p =1 or p = 00, so suppose 1 < p < oo and f,g € Ly(€2). Then

£+l = [ 1)+ g@P de < [ 15@)+ 9P~ (1£@)] +lo(a)l) do

. 1/q
< ([ 1@+ a@noveas) (111 + lol)
by two applications of Holder’s inequality, where 1/p + 1/¢ = 1. Since (p — 1)¢ = p and
1/qg=(p—1)/p,
1f+ gl < 1F + glly™ (1 F 1l + llgllp) -

The integral on the left is finite, so we can cancel terms (unless ||f + g[[, = 0, in which case
there is nothing to prove). O

PROPOSITION 1.52. Suppose Q C R? has finite measure (u(2) < 00) and 1 < p < ¢ < co. If
f e Ly(Q), then f € L,(Q) and

£l < ()" £l -
If f € Lo(R2), then

lim || flp = [[flleo -
P—00
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If f € L,(Q) for 1 <p < oo and there is K > 0 such that
£l < K
then f € Loo(2) and || f]leo < K.

We leave the proof of this as an exercise, though the latter two results are nontrivial.
Let d : Ly(Q) x Ly(£2) — R be defined by

d(f,9) = I1f = gllp -

It is easy to verify with Minkowski’s inequality that d is a metric. Thus L,(€2) is both a metric
space and a vector space. It is an important spoace of functions that arises in many branches of
applied mathematics. It has a rich structure involving topological and algebraic concepts and
their interplay. It is an example of a more general class of spaces called Banach spaces. We
study these in the next chapter.

1.4. Exercises

1. Show that the following define a topology 7 on X, where X is any nonempty set.
(a) T = {0, X}. This is called the trivial topology on X.
(b) Tp = {{x} : v € X} is a base. This is called the discrete topology on X.

(c¢) Let 7 consist of @ and all subsets of X with finite complements. If X is finite, what
topology is this?
2. Let X = {a,b} and T = {0, {a}, X}. Show directly that there is no metric d: X x X — R
that is compatible with the topology. Thus not every topological space is metrizable.
3. Prove that if A C X, then 0A is closed and
A=A°U0A, A°NOA=10.
Moreover,

0A = 0A° = {x € X : every open E containing z intersects both A and A} .

4. Prove that if (X, 7) is Hausdorff, then every set consisting of a single point is closed. More-
over, limits of sequences are unique.

5. Prove that a set A C X is open if and only if, given x € A, there is an open E such that
r € FE CA.

6. Prove that a mapping of X into Y is continuous if and only if the inverse image of every
closed set is closed.

7. Prove that if f is continuous and lim z,, = z, then lim f(z,) = f(x).
n—oo n—oo

8. Suppose that f(x) =y. Let B, be a base at z € X, and C a base at y € Y. Prove that f is
continuous at z if and only if for each C' € C, there is a B € B, such that B C f~1(C).

9. Show that every metric space is Hausdorff.

10. Suppose that F' : X — R. Characterize all topologies 7 on X that make f continuous.
Which is the weakest? Which is the strongest?

11. Construct an infinite open cover of (0,1] that has no finite subcover. Find a sequence in
(0, 1] that does not have a convergent subsequence.
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12.
13.

14.

15.

16.

17.

18.

19.

20.

21.
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Prove that the continuous image of a compact set is compact.

Prove that a one-to-one continuous map of a compact space X onto a Hausdorff space Y is
necessarily a homeomorphism.

Prove that if f : X — R is continuous and X compact, then f takes on its maximum and
minimum values.

Show that the Borel sets B is the collection of all sets that can be constructed by a countable
number of basic set operations, starting from open sets. The basic set operations consist of
taking unions, intersections, or complements.

Prove each of the following.
(a) If f : R? — R is measurable and g : R — R is continuous, then g o f is measurable.
(b) If Q ¢ R? is measurable and f : Q — R is continuous, than f is measurable.
Let € R? be fixed. Define d, for any A C R? by
=y e

Show that d, is a measure on the Borel sets B. This measure is called the Dirac or point
measure at x.

The Divergence Theorem from advanced calculus says that if  C R? has a smooth boundary
and v € (C*(Q))? is a vector-valued function, then

/Qv-v(x) dx:/(mv(a:)-u(x) ds(z) |

where v(z) is the outward pointing unit normal vector to Q for any x € 99, and ds(x) is
the surface differential (i.e., measure) on 9f). Note that here dx is a d-dimensional measure,
and ds is a (d — 1)-dimensional measure.

(a) Interpret the formula when d = 1 in terms of the Dirac measure.
(b) Show that for ¢ € C(Q),
V-(¢pv)=Vo-v+ oV -v.
(c) Let ¢ € C(Q) and apply the Divergence Theorem to the vector ¢v in place of v. We

call this new formula integration by parts. Show that it reduces to ordinary integration by
parts when d = 1.

Prove that if f € £(Q) and g : @ — R, where g and {2 are measurable and g is bounded,
then fg € L£().

Construct an example of a sequence of nonnegative measurable functions from R to R that
shows that strict inequality can result in Fatou’s Lemma.

Let
L <
fn(x): n, l’_n,
0,

lz| >n .
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Show that f,,(z) — 0 uniformly on R, but

/O;fn(x)dx—Q.

Comment on the applicability of the Dominated Convergence Theorem.

Let
17 ng_yglv

f(xay): -1, 0Sy—x2<1,
0, otherwise.

/OOO (/Ooof(:v,y)d:v>dy#/ooo </Ooof(:v,y)dy>dx'

Comment on the applicability of Fubini’s Theorem.

Show that

Suppose that f is integrable on [a, ], and define

Flz) = /m Ft)dt .

Prove that F' is continuous on [a,b]. (In fact, F’ = f a.e., but it is more involved to prove
this.)

Suppose that Q C R% has finite measure and 1 < p < q<oo.
(a) Prove that if f € Ly(Q), then f € L,(92) and

1fllp < (@Y7~ £l
(b) Prove that if f € Loo(12), then

lim [ fllp = [[flloo -
p—o0

(c) Prove that if f € L,(Q) for all 1 < p < oo, and there is K > 0 such that || f||, < K, then
f € Loo(€) and || floe < K.






CHAPTER 2

Normed Linear Spaces and Banach Spaces

2.1. Introduction

Functional Analysis grew out of the late 19th century study of differential and integral
equations arising in physics, but it emerged as a subject in its own right in the first part of
the 20th century. Thus functional analysis is a genuinely 20th century subject, often the first
one a student meets in analysis. For the first sixty or seventy years of this century, functional
analysis was a major topic within mathematics, attracting a large following among both pure
and applied mathematicians. Lately, the pure end of the subject has become the purview of a
more restricted coterie who are concerned with very difficult and often quite subtle issues. On
the other hand, the applications of the basic theory and even of some of its finer elucidations
has grown steadily, to the point where one can no longer intelligently read papers in much
of numerical analysis, partial differential equations and parts of stochastic analysis without a
working knowledge of functional analysis. Indeed, the basic structures of the theory arises in
many other parts of mathematics and its applications.

Our aim in the first section of this course is to expound the elements of the subject with an
eye especially for aspects that lend themselves to applications.

We begin with a formal development as this is the most efficient path.

DEFINITION. Let X be a vector space over R or C. We say X is a normed linear space (NLS
for short) if there is a mapping

-1l X = R =0, 00)

called the norm on X, satisfying the following set of rules which apply to z,y € X and A € R
or C:

[Az[| = [Al =] ,
|zl =0 if and only if =0,
lz 4+ yl| < |lz| + ||yl (triangle inequality).

In situations where more than one NLS is under consideration, it is often convenient to write
| - ||x for the norm on the space X to indicate which norm is connoted.

ExampLEs. Consider R? or C?, with the usual Euclidean length of a vector = denoted |z|.
If we define, for z € R? or C¢,

]l = =],

then (R%, | -||) or (C%, || -|) is a NLS.

Let p lie in the range [1,00) and define the real vector spaces and norms

o0 1/p
l, = {:z ={zp}pl t2n €R and [|zflg, = <Z ]wn]p> < —l—oo} .
n=1

29
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These spaces are NLS’s over R. If the sequences are allowed to have complex values, then ¢, is
a complex NLS. If p = oo, define

loo = {x ={xn}o2q : |lz]ley, = sup |zn| < —I-OO} )
n
Let ¢y C 5 be the linear subspace defined as
co = {{xn}zozl o lim oz, = O} .
n—-+o0o

Another interesting subspace is
Fe { {zn}o, : @, =0 except for a finite }

number of values of n
These normed linear spaces are related to each other; indeed if 1 < p < o0,
f c gp Cco Clu -

Let a and b be real numbers, a < b, with a = —o00 or b = 400 allowed as possible values.
Then
C([a,b]) = {f :[a,b] = R or C: f is continuous and sup |f(z)| < —i—oo} .
z€a,b]
For f € C([a,b]), let
Ifll = sup |f(=z)].

z€la,b]
Here the vector space structure is given by pointwise multiplication and addition; that is

(f+9)(z) = f(z) +g(x)
and
(Af) () = Af(z) .
REMARK. In a good deal of the theory developed here, it will not matter for the outcome
whether the NLS’s are real or complex vector spaces. When this point is moot, we will often

write F rather than R or C. The reader should understand when the symbol F appears that it
stands for either R or for C, and the discussion at that juncture holds for both.

A NLS X is finite dimensional if it is finite dimensional as a vector space, which is to

say there is a finite collection {mj}év:l C X such that any x € X can be written as a linear

;-V:l, ViZ.
T=Mx1+ Aoxo+ -+ ANTN ,

where the \; are scalars (member of the ground field F). Otherwise, X is called infinite dimen-
stonal. Interest here is mainly in infinite-dimensional spaces.

combination of the {x;}

If X isa NLS and || - || and || - ||; are two norms on X, they are said to be equivalent norms
if there exist constants ¢, d > 0 such that
cllzll < flzlly < dlj=] (2.1)

for all x € X. It is a fundamental fact that on a finite-dimensional NLS, any pair of norms is
equivalent, whereas this is not the case in infinite dimensional spaces.
For example, let p lie in the range 1 < p < oo. If x = {x;}32, € £y, let || - || and || - ||1 be

given by
0 1/p
el = llelle, = (Z |xz-|p)
=1
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and

[zl = lzlles = sup [zl -
1>1

These both define norms on ¢, but they are not equivalent.
Let (X, |- ||) be a NLS. Then X is a metric space if we define a metric d on X by

d(z,y) = [lz—yll -
To see this, just note the following: for x,y,z € X,
d(z,z) = [lz — 2| = 0] =0,
O0=d(@y)=lz—y|l = z-y=0
= =y,
d(z,y) = [lz —yll = | = (y — 2l
== 1lly — =l = d(y, z) ,
d(z,y) = |z —yll = llz — 2+ 2z =y
<o =zl + Iz =yl = d(z, 2) + d(z,9) -
Consequently, the concepts of elementary topology are available in any NLS. In particular, we
may talk about open sets and closed sets in a NLS.

A set U C X is open if for each = € U, there is an r > 0 (depending on z in general) such
that

B(zx)={ye X :d(y,x)<r}cCU.
The set B,(z) is referred to as the (open) ball of radius r about z. A set F' C X is closed if
XNF={ye X,y¢ F}isopen. As with any metric space, F' is closed if it is sequentially
closed. That is, a set F' is closed if, whenever {z,,}3° C F and z,, — x for the metric, then it
must be the case that x € F. If || - || and || - ||; are two equivalent norms on a NLS X, then the
collections O and O; of open sets induced by these two norms as just outlined are the same.
Thus topologically, (X, || -|) and (X, || ||1) are indistinguishable.
Recall that a sequence {z,}2°; in a metric space (X, d) is called a Cauchy sequence if

lim d(zp,xm)=0;
n,M—00

or equivalently, given € > 0, there is an N = N(¢) such that if n,m > N, then
d(zp,xm) <€ .

A metric space is called complete if every Cauchy sequence converges. A NLS (X, || - ||) that
is complete as a metric space is called a Banach space after the Polish mathematician Stefan
Banach who was a pioneer in the subject.

ExAMPLES. R? and C? are complete as we learned in advanced calculus or elementary
analysis. The spaces £,, 1 < p < oo are complete, though this requires proof. However, if we
take the space /1 and equip it with the /,.-norm, this is a NLS, but not a Banach space.

To check this, first note that ¢; is a linear subspace of . Indeed, if x = (z1,22,...) € {1,
then

(o, ¢]
@l = suplai] <> Jayl = |al, -
i>1 =
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Hence ¢; with the /,-norm is a NLS. To see it is not complete, consider the following sequence.
Define {yx}72, C 41 by

111 1
— (Ykts Uk ) = 1,7,7,7,...5,0,0,...),
Yk = (Y15 Uk,2 ) ( 2'374 A
k=1,2,3,... . Then {y;}?2, is Cauchy in the {s-norm. For if k& > m, then
9~ Ymlen < —

If 1 were complete in the ¢o-norm, then {y;}7°, would converge to some element z € £;. Thus
we would have that

lyr = 2lee — 0
as k — +o00. But, for j > 1,
Yk — 2 < lyr — 2lew

where y;, ; and z; are the jt"-components of y;, and z, respectively. In consequence, it is seen
that z; = 1/j for all j > 1. However, the element

_(11 11 1 1 )
Z— 727374""7k’]€+17"‘

does not lie in #1, a contradiction.

If X is a linear space over F and d is a metric on X induced from a norm on X, then for all
xz,y,a € X and A € F that

d(x+a,y + a) = d(z,y) and d(Az, \y) = |A|d(z,y) . (2.2)

QUESTION. Suppose X is a linear space over R or C and d is a metric on X satisfying (2.2).
Is it necessarily the case that there is a norm || - || on X such that d(z,y) = ||z — y||?

DEFINITION. A set C in a linear space X over F is convex if whenever x,y € C, then so also
is
te+ (1—t)y
whenever 0 < ¢ < 1.
PROPOSITION 2.1. Suppose (X, || - ||) is a NLS and r > 0. For any x € X, B,(x) is convex.
PROOF. Let y,z € By(z) and t € [0, 1] and compute as follows:
[ty + (1 =)z — | = [[t(y — =) + (1 = )(z — 2)||
<[ty = )| + (1 = ) (z = 2)]]
= [t lly =2l + 1 =] |z — 2|
<tr+(1—-t)r=r.
Thus, B,(x) is convex. O

COROLLARY 2.2. Ifp <1, then || - ||, is not a norm on £p.

To prove this, show the unit ball B;(0) is not convex. It is also easy to see the triangle
inequality does not always hold.



2.1. INTRODUCTION 33

One reason vector spaces are so important and ubiquitous is that they are the natural
domain of definition for linear maps, and the latter pervade mathematics and its applications.
Remember, a linear map is one that commutes with addition and scalar multiplication, so that

Tx+y)=T()+T(y),
T(A\z) = \T'(z)
forz,y € X, A € F.

On the other hand, the natural mappings between topological spaces, and metric spaces in

particular, are the continuous maps. If (X, d) and (Y, p) are two metric spaces and f: X — Y

is a function, then f is continuous if for any = € X and € > 0, there exists a § = d(x,e) > 0
such that

d(z,y) < ¢ implies p(f(x), f(y)) <e.

If (X,]-||x)and (Y,]| - ||y) are NLS’s, then they are simultaneously linear spaces and metric
spaces. Thus one might expect the collection

B(X,Y)={T:X — Y : T is linear and continuous} (2.3)

to be an interesting class of mappings that are consistent with both the algebraic and metric
structures of the underlying spaces. Continuous linear mappings between NLS’s are often called
bounded operators or bounded linear operators or continuous linear operators.

PROPOSITION 2.3. Let X andY be NLS’s and T : X — Y a linear map. The following are
equivalent:

(a) T is continuous,
(b) T is continuous at some point,
(¢) T is bounded on bounded sets.

PROOF. (a = b) Trivial.
(b = c¢) Suppose T is continuous at z¢p € X. Let M be a bounded set in X and let R > 0
be such that M C Bgr(0). By continuity at xo, there is a § = 6(1,z) > 0 such that

|z — xol|x <6 implies ||Tax — Txolly <1. (2.4)
But by linearity Tx — Txg = T(x — xp). Thus, (2.4) is equivalent to the condition
lyllx <& implies |Tylly <1
Hence, it follows readily that if ||y||x < R, then

imly = |57 (), = 5 7 (), <

o] <2

R
)
since

It then transpires that
R
sup{||Tz|ly :z € M} < 5 < +o0 .

(¢ = a) It is supposed that 7" is linear and bounded on bounded sets. In particular, there
is an R > 0 such that
T(B1(0)) € Br(0) .
Let € > 0 be given and let 6 = ¢/R. Suppose ||z — zo||x < 0. Then by homogeneity,

i, =1,
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whence

IN
=

HEER)
I

1
gHTl‘ — T.CC[)”Y .
Thus, if ||z — xg]| < 6, then
[Tz — Txolly <R =¢ .
Therefore T is continuous at xg, and xg was an arbitrary point in X. ]

Let X,Y be NLS’s and let T' € B(X,Y) be a continuous linear operator from X to Y. We
know that T is therefore bounded on any bounded set of X, so the quantity

1Tl = Tlpxy)= sup |Tzlly (2.5)
z€B1(0)

is finite. The notation makes it clear that this mapping || - [[gx,y) : B(X,Y) — [0,00) is
expected to be a norm. There are several things to check.
First, B(X,Y) is a vector space in its own right if we define S + T and AT by
(S+T)(z)=Sz+Tx,
and
(AS)(xz) = ASz .

PROPOSITION 2.4. Let X andY be NLS’s. The formula (2.5) defines a norm on B(X,Y).
Moreover, if T € B(X,Y), then

Tx
|T|| = sup ||Tx|y = sup | Ty '
= P Tellx

IfY is a Banach space, then so is B(X,Y) with this norm.

(2.6)

ProOF. If T is the zero map, then clearly ||T|| = 0. On the other hand, if |T'|| = 0, then T’
vanishes on the closed unit ball. For any = € X, x # 0, write x = ||x||”71H:U = ||z||y. Then y is in
the closed unit ball, so T'(y) = 0. Then T'(z) = ||z||T(y) = 0; thus 7' = 0. Plainly, by definition
of scalar multiplication

AT} = sup [[(AT)(2)lly = |A| sup [[Tz|ly = [A[|T] -
B1(0) B1(0)
The triangle inequality is just as simple:

1T+ 5[ = sup [(T+S)(@)y = sup [T+ Sz|y

x€B1(0) z€B1(0)

< sup {|Tely +Sally |

z€B1(0)

< sw |Taly + sup |Szly = |T]|+|IS]] -
z€B1(0) x€B1(0)

Thus (B(X,Y), | - |x,y)) is indeed a NLS.
The alternative formulas for the norm expressed in (2.6) are straightforward to deduce.
Notice that the last formula makes it obvious that for all z € X and T' € B(X,Y),

ITzlly < 1Tl sy lzllx (2.7)



2.1. INTRODUCTION 35

an inequality that will find frequent use.

The more interesting fact is that B(X,Y’) is complete if we only assume Y is complete.
This simple result has far-reaching consequences. To establish this point, suppose {7},}°2, is a
Cauchy sequence in B(X,Y). We must show it converges in B(X,Y). Let z € X and consider
the sequence {T),z}>2, in Y. Because of (2.7), it follows that

[Tne = Tmzlly < T = Tmll sy llzlly

and thus {T,2}7°  is seen to be Cauchy in Y. As Y is a Banach space, {T,,x}°° ; must converge
to some element of Y that depends upon z of course; call this element Tx. There is thus
established a correspondence

r—Tx

between X and Y. We claim it is a continuous linear correspondence, whence T' € B(X,Y). It
is further asserted that 7,, — T in B(X,Y).
First note that
T(x+y)= lim T,(x+y) = lim {Tyz+ Ty}
n—oo n—oo
= lim T,z + nh_)rglo Twy=Tx+Ty.

n—oo
Similarly, T'(Az) = ATz for x € X and A € F. Thus T is a linear map. Also, T" is a bounded
map. First, remark that {7,,}5° ;, being Cauchy, must be a bounded sequence. For there is an
N such that if n > N, then
1T - Tl <1,
say. By the triangle inequality, this means
[Tnll < [[Twlf + 1,

for n > N. The initial segment, {T1,T5,...,Ty—1} of the sequence is bounded since it is finite,
say ||T5|| < K for 1 < j < N — 1. It therefore transpires that

[Th|] < max{K, |Tn| +1} = M,
say, for all k. From this it follows at once that 7" is a bounded operator; for if € X, then

ITelly = Jim [Tually < limsup [T e 2l x < Mol

n—oo
Finally, we check that T, — T in B(X,Y). Let x € B1(0) in X and observe that
Tz — Thx|ly = lim |Tnzx — Thx|ly = lim |[(Th — Tn)x||
m—0o0 m—00

<limsup |1, — Tullx,y)llzllx <e(n) .

m—00
Since « was an arbitrary element in B (0), this means
I1T = TullBx,y) < e(n)
and because {71}}72, is Cauchy, e(n) — 0 as n — +o0. O

DEFINITION. Let X be a NLS over F. The dual space X* of X is the Banach space B(X,F).
The elements of X* are called bounded linear functionals on X.

REMARK. The dual space is complete because R and C are complete. At first glance, it is
not so clear that X* is interesting to study; it might even reduce to the trivial vector space if
X is large. It will turn out to be quite a fruitful object to understand, however.
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Attention is now turned to the three principal results in the elementary theory of Banach
spaces. These theorems will find frequent use in many parts of the course.

2.2. Hahn-Banach Theorems

The Hahn-Banach theorems enable us to extend linear functionals defined on a subspace to
the entire space. The theory begins with the case when the underlying field F = R is real, and
the first crucial lemma enables us to extend by a single dimension. The main theorem then
follows from this result and an involved induction argument. The corresponding result over C
follows as a corollary from an important observation relating complex and real linear functionals.
In the case of a NLS, we can even extend the functional continuously. But first a definition.

DEFINITION. Let X be a vector space over F. We say that p: X — [0,00) is sublinear if it
satisfies for any z,y € X and A > 0

p(Ax) = Ap(x) (positive homogeneous),
plx +vy) < plx) +p(y) (triangle inequality).
If p also satisfies for any z € X and A € F
p(Az) = Al p(z) ,
then p is said to be a seminorm.
Thus a sublinear function p is a seminorm if and only if it satisfies the stronger homogeneity

property p(Az) = |A|p(z) for any A € F, and a seminorm p is a norm if and only if p(z) = 0
implies that x = 0.

LEMMA 2.5. Let X be a vector space over R and let Y C X be a linear subspace such that
Y #£ X. Let p be sublinear on X and f:Y — R be a linear map such that
f(y) < p(y) (2.8)
forally eY. For a given xg € X \Y, let

Y =span{Y, 20} =Y +Rag={y+ M \xg:y €Y, AeR}.
Then there exists a linear map f :Y — R such that
fly =1 and —p(==2) < f(z) < p(x) (2.9)
forallz €Y.
_ Proor. We need only find f such that f(z) < p(z), since then we also have —f(z) =
f(=2) < p(-2).

Suppose there was such an f. What would it have to look like? Let § = y+ Azg € Y. Then,
by linearity,

F(@) = Fy) +Af(zo) = f(y) + A, (2.10)

where a = f (zg) is some real number. Therefore, such an f , were it to exist, is completely
determined by a. Conversely, a choice of a determines a well-defined linear mapping. Indeed, if

g=y+ Az =y + Nag ,
then
y—1y =N —Naxo .
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The left-hand side lies in Y, while the right-hand side can lie in Y only if A’ — X\ = 0. Thus
A = X and then y = y’. Hence the representation of z in the form y + Azg is unique and so
a choice of f (x9) = « determines a unique linear mapping by using the formula (2.10) as its
definition.

It remains to be seen whether it is possible to choose « so that (2.9) holds. This amounts
to asking that for all y € Y and A € R,

Fy) +Aa = f(y + Axo) < ply + Azo) (2.11)

Now, (2.11) is true for A = 0 by the hypothesis (2.8). If A\ # 0, write y = —Az, or z = —%y.
Then, (2.11) becomes

=A(f(z) = @) < p(=A(z — 20))
or, when A\ < 0,
f(x) —a < p(x — ) ,
and, when A > 0,
—(f(z) = @) < p(—(z — z0)) ,
for all z € Y. This is the same as the two-sided inequality
—p(xo — 2) < fz) —a < p(z — x9)

fx) —plx —z0) <a < f(x)+plao — ) . (2.12)

Thus any choice of « that respects (2.12) for all z € Y leads via (2.10) to a linear map f with
the desired property. Is there such an a7 Let

a = sup f(z) — p(z — o)
zeY

and

b= inf f(z)+p(zo—2).

If it is demonstrated that a < b, then there certainly is such an « and any choice in the non-empty
interval [a,b] will do. But, a calculation shows that for z,y € Y,

f@) = fy) = flz—y) <plx —y) < plx —x0) + plzo —y) ,
on account of (2.8) and the triangle inequality. In consequence, we have
f(@) = p@ —x0) < f(y) + plzo—y)

and this holds for any x,y € Y. Fixing y, we see that

stelpf() p(z —x0) < f(y) +plzo —y) .

As this is valid for every y € Y, it must be the case that
a= wPf( ) = plz —=0) < Inf f(y) +plao —y) =1

The result is thereby established. ([l



38 2. NORMED LINEAR SPACES AND BANACH SPACES

We now want to successively extend f to all of X, one dimension at a time. We can do this
trivially if X \ Y is finite dimensional. If X \Y were to have a countable vector space basis,
we could use ordinary induction. However, not many interesting NLS’s have a countable vector
space basis. We therefore need to consider the most general case of a possibly uncountable
vector space basis, and this requires that we use what is known as transfinite induction.

We begin with some terminology.

DEFINITION. For a set S, an ordering, denoted by <, is a binary relation such that:

(a) z < x for every x € S (reflexivity);

(b) If x <y and y < z, then x = y (antisymmetry);

(¢c) If x <y and y < z, then z < z (transitivity).
A set S is partially ordered if S has an ordering that may apply only to certain pairs of elements
of S, that is, there may be x and y in S such that neither x < y nor y < x holds. In that case,
x and y are said to be incomparable; otherwise they are comparable. A totally ordered set or
chain C'is a partially ordered set such that every pair of elements in C' are comparable.

LEMMA 2.6 (Zorn’s Lemma). Suppose S is a nonempty, partially ordered set. Suppose that
every chain C C S has an upper bound; that is, there is some u € S such that

r<u foralxeC.
Then S has at least one maximal element; that is, there is some m € S such that for any x € S,
m<x = m=ux.

This lemma follows from the Aziom of Choice, which states that given any set S and any
collection of its subsets, we can choose a single element from each subset. In fact, Zorn’s lemma
implies the Axiom of Choice, and is therefore equivalent to it. Since the proof takes us deeply
into logic and far afield from Functional Analysis, we accept Zorn’s lemma as an Axiom of set
theory and proceed.

THEOREM 2.7 (Hahn-Banach Theorem for Real Vector Spaces). Suppose that X is a vector
space over R, Y is a linear subspace, and p is sublinear on X. If f is a linear functional on 'Y
such that

f(x) < p(x) (2.13)
for all x €'Y, then there is a linear functional F' on X such that
Fly =f
(i.e., F' is a linear extension of f) and
—p(—z) < F(z) < p(z)

forallx € X.

PROOF. Let S be the set of all linear extensions g of f, defined on a vector space D(g), and
satisfying the property g(z) < p(z) for all z € D(g). Since f € S, S is not empty. We define a
partial ordering on S by g < h means that h is an extension of g. More precisely, g < h means

that D(g) C D(h) and g(z) = h(z) for all x € D(g).
For any chain C € S, let

D= ] D),

geC
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which is easily seen to be a vector space since C is a chain. Define for x € D

ge(x) = g(z)

for any g € C such that x € D(g). Again, since C is a chain, g¢ is well defined. Moreover, it is
linear and D(g¢) = D. Hence, g¢ is in S and it is an upper bound for the chain C.

We can therefore apply Zorn’s Lemma to conclude that S has at least one maximal element
F. By definition, F' is a linear extension satisfying F'(z) < p(z) for all x € D(F). It remains
to show that D(F') = X. If not, there is some nonzero x € X ~ D(F'), and by the previous
extension result, we can extend F to F on D(F) + Rx. This contradicts the maximality of F,
so F'is a linear extension satisfying our desired properties. U

THEOREM 2.8 (Hahn-Banach Theorem for General Vector Spaces). Suppose that X is a
vector space over F (R or C), Y is a linear subspace, and p is a seminorm on X. If f is a
linear functional on'Y such that

|f(z)] < p(x) (2.14)
for all x € Y, then there is a linear functional F' on X such that
Fly =f
(i.e., F is a linear extension of f) and
|F(x)] < p(x)

forallx € X.

Proor. Write f in terms of its real and imaginary parts, viz. f = g+ ih, where g and h are
real-valued. Clearly g(y + z) = g(y) + ¢9(z) and h(y + z) = h(y) + h(z). If A € R, then

f(Az) = g(Azx) + ih(Ax)
l
M(z) = Ag(z) +iAh(x) .

Taking real and imaginary parts in this relation and combining with the fact that g and h
commute with addition shows them both to be real linear. Moreover, g and h are intimately
related. To see this, remark that for x € Y,

fliz) = if(x) = ig(x) — M(z) = —h(z) + ig(z)
I

g(iz) +ih(iz) .

Taking the real part of this relation leads to
gliz) = —h(z) |
so that, in fact,
f(z) = g(x) —ig(iz) . (2.15)

Since g is the real part of f, clearly for z € Y,

lg(2)| < |f(2)] < ple) (2.16)
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by assumption. Thus ¢ is a real-linear map defined on Y, considered as a vector subspace of X
over R. Because of (2.16), g satisfies the hypotheses of Theorem 2.7, so we obtain an extension
G of g such that G is an R-linear map of X into R which is such that

G ()] < p(x)
for all z € X. Use (2.15) to define F:
F(z)=G(x) —iG(ix) .
It is to be shown that F' is a C-linear extension of f to X and, moreover, for all z € X,
IF(2)| < pla) (2.17)
First we check that F' is C-linear. As it is R-linear, it suffices to show F'(iz) = iF'(x). But this
is true since

F(iz) = G(iz) — iG(—z) = G(iz) + iG(z) = i(G(z) — iG(iz)) = iF (z) .

Inequality (2.17) holds for the following reason. Let € X and write F(z) = re? for some
r > 0. Then, we have

r=|F(z)| = e "F(z) = F(ex) = G(e™"z) < ple”"x) = p(a) ,

since F(e™"z) is real. O

COROLLARY 2.9 (Hahn-Banach Theorem for Normed Linear Spaces). Let X be a NLS over
F (R or C) and let Y be a linear subspace. Let f € Y* be a continuous linear functional on'Y .
Then there is an F' € X* such that

Fly =f
and
[Ellxs = [[flly= -
PRrROOF. Simply apply the Hahn-Banach Theorem to f, using seminorm
p(@) = [flly-llzllx -
We leave the details to the reader. g

2.3. Applications of Hahn-Banach
COROLLARY 2.10. Let X be a NLS and xg # 0 in X. Then there is an f € X* such that
Ifllx-=1 and f(zo) = |zoll .
PROOF. Let Z = Fxg = span{xg}. Define h on Z by

h(Azo) = Al|zol| -
Then h : Z — F and h has norm one on Z since for x € Z, say x = Azg,
|h(@)] = |h(Azo)| = [Alzoll | = [[Azo|l = [l] -

By the Hahn-Banach Theorem, there exists f € X* such that f|z = h and ||f|| = |h||=1. O
COROLLARY 2.11. Let X be a NLS and x € X. There exists an f € X* such that
f@) = 11fllx [l -

The proof is similar to that above.
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COROLLARY 2.12. Let X be a NLS and xg € X. Then

ol = sup 120l
Tl
f#0
— sup |f(z0)] -
fex
Ifll=1

PROOF. In any event, we always have

[f(xo)| _ [1f]lx-llzollx

< = |0l
11l x+ 1Sl x ’
and consequently
J(zo
sup |f (z0)] < llaol] -
rex I llx
J#0

On the other hand, by Corollary 2.11, there is an f € X* such that f(zo) = || f|| ||zol. It follows
that

[f(zo)l - |f(x0)| _ 0
e = [ Fe — ol

fex*
f#0
ProrosITION 2.13. Let X be a NLS. Then X* separates points in X.

PRrROOF. Let z1,20 € X, with 1 # x5. Then z9 — 1 # 0, so by Corollary 1.8, there is an
f € X* so that
flze —x1) #0.
Since f is linear, this means

f(z2) # f(x1),

which is the desired conclusion. 0

COROLLARY 2.14. Let X be a NLS and xo € X such that f(xg) = 0 for all f € X*. Then
Trog — 0.

Proor. This follows from either of the last two results. g

LEMMA 2.15 (Mazur Separation Lemma 1). Let X be a NLS, Y a linear subspace of X and
w € X NY. Suppose

d = dist(w,Y) = inf - .
ist(w,Y) inf |lw—=z|x >0
Then there exists f € X* such that || f||x~ <1,
fw)=d and f(z)=0 foral z€Y .

PROOF. As before, any element x € Z = Y + Fw has a unique representation in the form

x =1y + Aw. Define g : Z — F by
gy +  w) = Xd .

It is easy to see g is F-linear and that ||g||z+ < 1. The latter is true since, if z € Z, x = y+Aw # 0,
then if A\ =0, x € Y and so |f(x)] = 0 < 1, whereas if A # 0, then

A A 1
f( yAw ): d=— d.
ly +Awl )y +Awl 5y +wl
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Since %y = —z €Y, it follows that

1
|+ za.
In consequence, we have
f< Y+ Aw ><d:1'
ly +Awl| )~ d
Use the Hahn-Banach Theorem to extend f to an F' € X* without increasing its norm. The
functional F' meets the requirements in view. O

PROPOSITION 2.16. Let X be a Banach space and X* its dual. If X™* is separable, then so
is X.

PrOOF. Let {f,}5°; be a countable dense subset of X*. Let {x,}® C X, be such that
lznll =1 and |fo(en)l > 5llfull,  n=12,....
Such elements {x,}>° ; exist by definition of the norm on X*.
Let D be the countable set
Do all finite linear combinations of the {z;}22,
with rational coeflicients

We claim that D is dense in X. If D is not dense in X, then there is an element wy € X ~ D.
The point wy is at positive distance from D, for if not, there is a sequence {zn}52, C D such
that z, — wp. As D is closed, this means z € D and that contradicts the choice of wy.

From Lemma 2.15, there is an f € X* such that

flg =0 and f(wo) =d = inf ||z — wol/x -
2€D

Since f € X*, there is a subsequence {f,, }32,; C X* such that f,, x5, f, by density. In
consequence,

1 = Fallses 2 1(F = i) ()]

Hence || fp,|[x+ — 0 as k — oo, and this means f = 0, a contradiction since f(w) =d >0. O

We can also use the Hahn-Banach Theorem to distinguish sets that are not strictly subspaces,
as long as the linear geometry is respected. The next two lemmas consider convex sets.

LEMMA 2.17 (Mazur Separation Lemma 2). Let X be a NLS, C a closed, convex subset of
X such that \x € C whenever x € C and |A\| < 1 (we say that such a set C is balanced). For
any w € X \ C, there exists f € X* such that |f(x)| <1 for all z € C and f(w) > 1.

PROOF. Let B € X be an open ball containing w that does not intersect C. Define the

Minkowski functional p: X — [0,00) by

p(z) =inf{t >0:z2/t € C+ B} .
Since 0 € C, p(z) is indeed finite for every z € X (i.e., eventually every point can be contracted
at least into the ball 0 + B). Moreover, p(x) < 1 for x € C, but p(w) > 1.

We claim that p is a seminorm. First, given x € X, A € F, and ¢t > 0, the condition
Az/t € C + B is equivalent to |A|z/t € (|A\|/A\)(C + B) = C + B, since C' and B are balanced.
Thus

p(Az) = p(|Alz) = [Alp(z) -
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Second, if z,y € X and we choose any s > 0 and r > 0 such that z/r € C+ B and y/s € C + B,
then the convex combination
r X n s Yy Tty

- == €eC+B,
s+rr S+rs sS+r

and so we conclude that
p(z+y) <p(@)+py) -
Now let Y = Fw and define on Y the linear functional
f(Aw) = Ap(w),
so f(w) = p(w) > 1. Now
|f(Aw)| = [A| p(w) = p(Aw) ,
so the Hahn-Banach Theorem gives us a linear extension with the property that
|f(z)] < p(x)
that is, |f(z)] < 1 for z € C C C + B, as required. Finally, f is bounded on B, so it is
continuous. O

Not all convex sets are balanced, so we have the following lemma. We can no longer require
that the entire linear functional be well behaved when F = C, but only its real part.

LEMMA 2.18 (Separating Hyperplane Theorem). Let A and B be disjoint, nonempty, convex
sets in a NLS X.

(a) If A is open, then there is f € X* and v € R such that
Ref(x) <y <Ref(y) Vre A, yeB.

(b) If both A and B are open, then there is f € X* and v € R such that
Ref(z) <v<Ref(y) Vre A, yeB.

(¢) If A is compact and B is closed, then there is f € X* and v € R such that
Ref(x) <y <Ref(y) Vze A, yeB.

PRrOOF. It is sufficient to prove the result for field F = R. Then if F = C, we have a
continuous, real-linear functional g satisfying the separation result. We construct f € X* by
using (2.15):

f(z) = g(x) —ig(iz) .
So we consider now only the case of a real field F = R.
For (a), fix —-we A—B={zx—y:2€ A,y € B} and let

C=A-B+{w},

which is an open, convex neighborhood of 0 in X. Moreover, w & C, since A and B are disjoint.
Define the subspace Y = Rw and the linear functional g : Y — R by

g(tw) =t .
Now let p: X — [0, 00) be the Minkowski functional for C,
plx) =inf{t >0: 2/t C} .

We saw in the previous proof that p is sublinear (it is not necessarily a seminorm, since C' may
not be balanced, but it does satisfy the triangle inequality and positive homogeneity). Since
w ¢ C, p(w) > 1 and ¢g(y) < p(y) for y € Y, so we use the Hahn-Banach Theorem for real
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functionals (Theorem 2.7) to extend g to X linearly. Now g < 1 on C, so also g > —1 on —C,
and we conclude that |g| < 1 on C'N (—C), which is a neighborhood of 0. Thus g is bounded,
and so continuous.

Ifre Aand y € B, thena—b+w € C, so

1>g(a—b+w)=gla) —g(b) +g(w) = g(a) —g(b) +1,

which implies that g(a) < g(b), and the result follows with v = sup,c 4 g(A).

For (b), we use the previous construction. It is left to the reader to show that g(A) is an
open subset of R, since g is linear and A is open. Now both g(A) and g(B) are open subsets
that can intersect only in one point, so they must be disjoint.

For (c), consider S = B — A. Since A is compact, we claim that S is closed. So suppose
there are points x,, € S such that =, = b, — a,, with b, € B and a,, € A and x,, — = in X.
But since A is compact, there is a subsequence (still denoted by a,, for convenience), such that
a, — a € A. But then b, =z, + a, — x+a =0b € B, since B is closed. But this implies that
x € S, and the claim follows.

Since 0 ¢ S, there is some open convex set U € X containing 0 such that U NS is empty.
Let A = A+ %U and B = B — %U. Then A’ and B’ are disjoint, convex, open sets, and so
(b) gives a functional with the desired properties, which hold also for the subsets A C A’ and
BcCB. O

2.4. The Embedding of X into its Double Dual

Let X be a NLS and X™ its dual space. Since X* is a Banach space, it has a dual space X**
which is sometimes referred to as the double dual of X. There is a natural construction whereby

X may be viewed as a subspace of X** that is described now.
For any x € X, define T, = [z] € X** as follows: if f € X*, then

To(f) = [=](f) = f(z) . (2.18)

First, lets check that this is an element of X**. We need to see that [z] is a bounded linear map
on X*. Let f,g € X*, A € F and compute as follows:

[2](f +9) = (f + 9)(x)
= f(x) +g(x)
= [2](f) + [=](9) ,

and

[z](Af) = (Af)(=)
= Af(z)
= Alz](f) -

Thus [z] is a linear map of X* into F. It is bounded since, by Corollary 2.12,

_ I[ 1(f)]
[[2]]lx++ = T = ||| -
f o

Thus, not only is [z] bounded, but its norm in X** is the same as the norm of z in X. Thus we
may view X as a linear subspace of X**, and in this guise, X is faithfully represented in X**.
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DEFINITION. Let (M,d) and (N, p) be two metric spaces and f : M — N. The function f
is called an isometry if f preserves distances, which is to say

p(f(x), f(y)) = d(z,y) .

The spaces M and N are called isometric if there is a surjective isometry f: M — N.

Metric spaces that are isometric are indistinguishable as metric spaces. If the metric spaces
are NLS’s (X, ||x) and (Y,|| |[y) and T : X — Y is a linear isometry, then 7(X) may be
identified with X.

In this terminology, the correspondence F': X — X™** given by

F(z) = [x]

is an isometry. A NLS space X is called reflexive if F is surjective. In this case, X is necessarily
a Banach space.

2.5. The Open Mapping Theorem

The second of the three major principles of elementary functional analysis is the Open
Mapping Theorem (or equivalently the Closed Graph Theorem). The third is the principle of
uniform boundedness (Banach-Steinhaus theorem). Both of these rely on the following theorem
of Baire.

THEOREM 2.19 (Baire Category Theorem). Let X be a complete metric space. Then the
intersection of any countable collection of dense open sets in X is dense in X.

Proor. Let {V;}72, be a countable collection of dense open sets. Let W be any non-empty
open set in X. It is required to show that if V' = (72, Vj, then V.NW # ). Since V; is dense,
W N Vi is a non-empty open set. Thus there is an 1 > 0 and an z; € W, and without loss of
generality, r; < 1, such that

Brl(a?l) cwnv.
Similarly, V5 is open and dense, hence there is an x9 and an ry with 0 < r9 < 1/2 such that
Br2 (332) c VN BT1 (a;l) .
Inductively, we determine x,,,r, with 0 < r,, < 1/n such that
B, (xn) CVoN By, (zp-1), n=234,....
Consider the sequence {z,}>°; just generated. If ¢, 5 > n, then by construction
2
zi, xj € By, (x,) = d(z4,25) < -

This shows that {z;}>° is a Cauchy sequence. As X is complete, there is an = for which z; — x

as i — +o00. Because z; € B, (x,) for i > n, it follows that = € B, (z,), n =1,2,... . Hence
x€Vy,n=1,2,... . Clearly, since x € By, (z1) C W, x € W also. Hence
o
reWn(Va,
n=1
and the proof is complete. O

COROLLARY 2.20. The intersection of countably many dense open subsets of a complete
metric space 1S non-empty.
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DEFINITION. A set A is called nowhere dense if Int(A) = (. A set is called first category if
it is a countable union of nowhere dense sets. Otherwise, it is called second category.

COROLLARY 2.21. A complete metric space is second category.

PrOOF. If X = [J52, M; where each M; is nowhere dense, then X = [J72, Mj, so by
deMorgan’s law,

@Z ﬁ(X\M]) .
j=1

But, for each j, X ~ Mj is open and dense since, by Prop. 1.7,
X\Mj:X\Int(Mj):X .
This contradicts Baire’s theorem. O
THEOREM 2.22 (Open-Mapping Principle). Let X and Y be Banach spaces and let T : X —

Y be a bounded linear surjection. Then T is an open mapping, i.e., T maps open sets to open
sets.

PROOF. It is required to demonstrate that if U is open in X, then T'(U) is open in Y. If
y € T(U), we must show T(U) contains an open set about y. Suppose it is known that there is
an r > 0 for which T'(B1(0)) D B;(0). Let 2 € U be such that Tx = y and let ¢ > 0 be such
that Bi(z) C U. Then, we see that
T(U) D T(Bi(x)) = T(tB1(0) 4 x)

=tT(B1(0)) + Tz D tB.(0) +y

— Brt(y) .
As rt > 0, y is an interior point of T'(U) and the result would be established. Thus attention is

concentrated on showing that 7'(U) D B,(0) for some 7 > 0 when U = B;(0).
We continue to write U for B;(0). Since T is onto,

(o, ¢]
Y =|JTkU).
k=1
Since Y is a complete metric space, at least one of the sets T'(kU), k = 1,2,..., is not nowhere

dense. Hence there is a non-empty open set W such that

Wi CT(kU) for some k > 1.

Multiplying this inclusion by 1/2k yields a non-empty open set W = 5= W included in T'(3U).
Hence there is a yg € Y and an r > 0 such that

B,(yo) CW CT(3U) .

But then, it must be the case that
B,(0) = By(y0) — Yo C Br(y0) — Br(yo) C T(3U) = T(3U) Cc T(U) . (2.19)

The latter inclusion is very nearly the desired conclusion. It is only required to remove the
overbar on the right-hand side. Note that since multiplication by a non-zero constant is a
homeomorphism, (2.19) implies that for any s > 0,

Bys(0) € T(s0) . (2.20)
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Fix y € B,(0) and an ¢ in (0,1). Since T(U) N B, (0) is dense in B, (0), there exists 1 € U
such that
ly — Tally < 37,
where v = re. We proceed by mathematical induction. Let n > 1 and suppose x1,x2,... , Ty
have been chosen so that

ly = Twy — Tag — - — Tap|ly < (%)n’y. (2.21)
Let z=y— (Tz1+---+Txy). Then ||z|| < (1/2)"y, so because of (2.20), there is an x,4; with
lensill < (3)" 2 = (3)"e (2.22)

and _—

Iz = Toanl < (3) 7.
So the induction proceeds and (2.21) and (2.22) hold for all n > 1.

Now because of (2.22), we know that > "_, x; = 5, is Cauchy. Hence, there is an z € X so
that S,, — x as n — 4o0. Clearly

> i 1 n+1
el < S lesll <143 (3) e =14e
Jj=1 2

By continuity of T', T'S,, — Tx as n — +o00. By (2.21), T'S,, — y as n — oo. Hence Tz = y.
Thus we have shown that
T((1+¢)U) > B (0) ,
or, what is the same,
T(U) ) Br/1+5(0) :
That establishes the result. U

COROLLARY 2.23. Let X,Y be Banach spaces and a T bounded, linear surjection that is also
an injection. Then T~ is continuous.

PROOF. This follows since (T-1)~! = T is open, hence T~! is continuous. O

A closely related result is the Closed-Graph Theorem. If XY are sets and f : X — Y a
function, say defined on a subset D C X, the graph of f is the set

graph(f) ={(z,y) e X xY :z € D and y = f(x)} .
It is a subset of the Cartesian product X x Y.

PROPOSITION 2.24. Let X be a topological space, Y a Hausdorff space, and f : X — Y
continuous. Then graph(f) is closed in X x Y.

PROOF. Let U = X x Y ~ graph(f). Claim U is open. Fix (zg,y0) € U, so that yo # f(xo).
Because Y is Hausdorff, there exist open sets V and W with yg € V, f(z9) € W and VNW = (.
Since f is continuous, f~1(W) is open in X. Thus, the open set f~1(W) x V lies in U. O

QUESTION. Is the last result true if we omit the hypothesis that Y is Hausdorff?

In general, if f: X — Y and graph(f) is closed, it is not implied that f is continuous.
However, in special circumstances, the reverse conclusion is implied.

DEFINITION. Let X and Y be NLS’s and let D be a linear subspace of X. SupposeT : D — Y
is linear. Then T is a closed operator if graph(T") is a closed subset of X x Y.
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Since both X and Y are metric spaces, graph(7") being closed means exactly that if {x,,}°°; C
D with

xnﬁx and TwnLy,
then it follows that x € D and y = T'x.

THEOREM 2.25 (Closed Graph Theorem). Let X and Y be Banach spaces and T : X —Y
linear. Then T is continuous iff T is closed.

PROOF. T continuous implies graph(T') is closed on account of Proposition 2.24, since a
Banach space is Hausdorff.

Suppose graph(7T') to be closed. Then graph(T') is a closed linear subspace of the Banach
space X x Y. Hence graph(T) is a Banach space in its own right with the graph norm

[z, To)|| = |zl x + T2y -
Consider the continuous projections IIy and Il; on X x Y given by
IIi(z,y) =2 and Ily(z,y) =y .
If these are restricted to the subspace graph(7'), the following situation obtains:

X xY

graph(T’)

n/ \ng

X Y

The mapping II; is a one-to-one, continuous linear map of the Banach space graph(7’) onto X.
By the Open Mapping Theorem,

;! : X — graph(T)

is continuous. But then
T=Myoll[': X =Y

is continuous since it is the composition of continuous maps. O

COROLLARY 2.26. Let X and Y be Banach spaces and D a linear subspace of X. Let

T:D —Y bea closed linear operator. Then T is bounded if and only if D is a closed subspace
of X.

PROOF. As before, if T' is closed and linear, then graph(7') is a closed linear subspace of the
Banach space X x Y. Hence graph(T") is a Banach space.

If D is closed, it is a Banach space, so the closed graph theorem applied to T : D — Y shows
T to be continuous.

Conversely, suppose T' is bounded as a map from D to Y. Let {z,}7°; C D and suppose
xn — x in X. Since T is bounded, it follows that {T'z,,}>°  is a Cauchy sequence; for

[Tan = Tam|| < [T |lzn = 2m| — 0

as n,m — o0o. Since Y is complete, there is a y € Y such that Tz, — y. But since T is closed,
we infer that x € D and y = T'x. In particular, D has all its limit points, so D is closed. O
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ExXAMPLE. Closed does not imply bounded in general, even for linear operators. Take
X = C(0,1) with the max norm. Let T'f = f’ for f € D = C'(0,1). Consider T as a mapping
of D into X.

T is not bounded. Let f,(z) = 2™ Then || f,| = 1 for all n, but T'f,, = nz" ! so ||Tf,| = n.

T is closed. Let {f,}>2, C D and suppose f, X, f and f] — g. Then, by the Fundamental
Theorem of Calculus,

h@=h@+£ﬂhﬂf

forn =1,2,.... Taking the limit of this equation as n — oo yields

t
£ =10+ [ gryar,
0
so g = f’, by another application of the Fundamental Theorem of Calculus.

2.6. Uniform Boundedness Principle

The third basic result in Banach space theory is the Banach-Steinhauss Theorem, also known
as the Principle of Uniform Boundedness.

THEOREM 2.27 (Uniform Boundedness Principle). Let X be a Banach space, Y a NLS and
{To}aer € B(X,Y) a collection of bounded linear operators from X to Y. Then one of the
following two conclusions must obtain: either

(a) there is a constant M such that for all o € I,
1TallBx,yy <M,

or
(b) there is an x € X such that

sup || Tax|| = o0 .
ael

PROOF. Define the function ¢ : X — [0, o0] by
p(x) = sup [[Toz| ,
a€el
forze X. Forn=1,2,3,..., let
Vi={x € X:p(x)>n}.
For each o € I, the map ¢, defined by
Pa(r) = || Tax]]
is continuous on X since it is the composition of two continuous maps. Thus the sets
{: | Tazl| > n} = 95" ((n, 00))

are open, and consequently,

Vo= ¢a'((n,00))
acl
is a union of open sets, so is itself open. Each Vj, is either dense in X or it is not. If for some
N, Vi is not dense in X, then there is an » > 0 and an zg € X such that

BT(JJ()) NVy = 0.
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Therefore, if x € B,(xg), then ¢(z) < N; thus, if ||z|| < 7, then for all « € I,
[Ta(z0 + 2)[| < N .
Hence if ||z]| < r, then for all a € I,
[Ta(2)]l < [[Ta(z + zo)|| + [ Ta(zo) |l
< N+ ||Taxo|| < 2N .

In consequence, we have

2N
sup [Tol| < —
ael r

and so condition (a) holds.
On the other hand, if all the V,, are dense, then they are all dense and open. By Baire’s

Theorem,
o
Va
n=1
o0

is non-empty. Let € (", Vj,. Then, for all n = 1,2,3,..., ¢(x) > n, and so it follows that
o(z) = +o0. O

2.7. Weak Convergence

There are weaker notions of sequential convergence than that induced by the norm on a NLS.
Some natural ones play an interesting and helpful role in numerical analysis and the theory of
partial differential equations.

DEFINITION. Let X be a NLS and {z,,}7° ; a sequence in X. We say that {z,}>2, converges
weakly to x € X if

f(an) — f(x)
for all f € X*. We write z,, — z or x,, — for weak convergence. Let { a2 be a sequence in
X*and f € X*. We say that f,, converges weak-x if for each x € X

fo(x) = f(2) .
We write f, >, f to indicate weak-* convergence.

PROPOSITION 2.28. Let X be a NLS and {x,}2, a sequence from X . If {x,}°° | converges
weakly, then its weak limit is unique and {||x,||x}72 is bounded. If {f,}5°, C X* converges
weak-, then its weak-+ limit is unique. If in addition X is a Banach space, then {||fnllx*}224
is bounded.

PROOF. Suppose z, — x and x, — y. That means that for any f € X*
f(zn) — f(x)

!
f()

as n — 0o. Consequently f(z) = f(y) for all f € X*, which means 2z = y by the Hahn-Banach
Theorem.
Fix an f € X*. Then the sequence {f(zy)}>2, is bounded in F, say

|f(xn)| < Cf forall n
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since {f(zn)}o2, converges. View z, as the evaluation map E,, € X**. In this context, the
last condition amounts to

| B, (F)] < Cf
for all n. Thus we have a collection of bounded linear maps {E,, }°2 ; in X** = B(X*, F) which
are bounded at each point of their domain X*. By the Uniform Boundedness Principle, which
can be applied since X™* is a Banach space, we must have

sup |y, [lx- < .
n

But by the Hahn-Banach Theorem,

1B, || = [[nllx -

The conclusions for weak-* convergence are left to the reader. g
PROPOSITION 2.29. Let X be a NLS and {x,}5>, C X. Ifx, — z, then ||z| < liminf, . ||zy].
ProoF. Exercise. U
We have actually defined new topologies on X and X™* by these notions of weak convergence.

DEFINITION. Suppose X is a NLS with dual X*. The weak topology on X is the smallest
topology on X such that each f € X™* is continuous. The weak-x topology on X* is the smallest
topology on X* making continuous each evaluation map E, : X* — F, x € X (defined by

EL(f) = [f(x)).

A basic open set containing zero in the weak topology of X is of the form
n
U={zeX:|fix)| <ei=1,...,n}=()f"(B(0)
i=1

for some n, ¢; > 0, and f; € X*. Similarly for the weak-x topology of X*, a basic open set
containing zero is of the form

V={feX":|f(xi)| <e,i=1,...,n}= OE;_I(BEZ.(O))

for some n, €; > 0, and x; € X. The rest of the topology is given by translations and unions of
these. If X is infinite dimensional, these topologies are not compatible with any metric, so some
care is warrented. That our limit processes arise from these topologies is given by the following.

PROPOSITION 2.30. Suppose X is a NLS with dual X*. Let x € X and {x,}52; C X. Then
x,, converges to x in the weak topology if and only if z, = z (i.e., f(xzn) — f(z) inF for every
f € X*). Moreover, if f € X* and {fn}32, C X*, then f,, converges to f in the weak-x topology

if and only if [y AN f (i.e, fu(x) = f(x) in F for every x € X).
Proor. If z,, converges to = in the weak topology, then, since f € X™* is continuous in the

weak topology (by definition), f(z,) — f(z). That is x, = z. Conversely, suppose f(z,) —
f(z)V f e X*. Let U be a basic open set containing x. Then

U=a+{ye X:|fiy)l<ei i=1,...,m}
for some m, €; > 0, and f; € X*. Now there is some N > 0 such that

|f1($n) - fz(x)| = ‘fz(xn - m)’ <&
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for all n > N, since fi(z,) — fi(x), so x, = v+ (z, —x) € U. That is, x converges to x, in the
weak topology. Similar reasoning gives the result for weak-* convergence. O

By Proposition 2.28, the weak and weak-* topologies are Hausdorff. Obviously the weak
topology on X is weaker than the strong or norm topology (for which more than just the linear
functions are continuous).

On X*, we have three topologies, the weak-* topology (weakest for which the evaluation
maps C X*™ are continuous), the weak topology (weakest for which X** maps are continuous),
and the strong or norm topology. The weak-* topology is weaker than the weak topology, which
is weaker than the strong topology. Of course, if X is reflexive, the weak-+ and weak topologies
agree.

It is easier to obtain convergence in weaker topologies, as then there are fewer open sets to
consider. In infinite dimensions, the unit ball is not a compact set. However, if we restrict the
open sets in a cover to weakly open sets, we might hope to obtain compactness. This is in fact
the case in X*.

THEOREM 2.31 (Banach-Alaoglu Theorem). Suppose X is a NLS with dual X*, and B is
the closed unit ball in X* (i.e., Bf = {f € X* : ||f|| < 1}. Then Bf is compact in the weak-x
topology.

By a scaling argument, we can immediately generalize the theorem to show that a closed
unit ball of any radius r > 0 is weak-* compact.

PROOF OF THE BANACH-ALAOGLU THEOREM. For each z € X, let
B, ={AeF: |\ < [} .
Each B, is closed and bounded in F, and so is compact. By Tychonoff’s Theorem,

C= X B,
zeX

is also compact. An element of C' can be viewed as a function g : X — F satisfying |g(z)| < ||z||.
In this way, B7 is the subset of C' consisting of the linear functions. The product topology on C
is the weakest one making all coordinate projection maps g — g(z) continuous. As these maps
are the evaluation maps, the inherited topology on Bj is precisely the weak-* topology.

Since C'is compact, we can complete the proof by showig that B is closed in C.

Since X* is not a metric space when endowed with the weak-* topology, we must consider
an accumulation point g of B. Since every neighborhood of the form

U=g+{heC:|h(x;)| <&, i=1,...,m}
intersects By, given € > 0 and z,y € X, we have an f € B} such that
f=g+h
where

h(@)| < 5
3 )

Thus, since f is linear,
l9(z +y) —g(x) —g(W)| = [h(z +y) — h(z) —h(y)| <e.

As € is arbitrary, g is linear. Moreover,

l9(@)| = [£(z) = hi@)| < [f@)] + 5 < all + 5
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so also |g(z)| < ||z||. That is, g € BY, so Bf is closed. O

What does compactness say about sequences? If the space is metrizable (i.e., there is a metric
that gives the same topology), a sequence in a compact space has a convergent subsequence (see
Proposition 1.27).

THEOREM 2.32. If X is a separable Banach space and K C X* is weak-+ compact, then K
1s metrizable in the weak-* topology.

PROOF. Separability means that we can find a dense subset D = {z,}2°; C X. The
evaluation maps E,, : X* — F, defined by E, (z*) = 2*(z,), are weak-* continuous by definition.
If E,(z*) = E,(y*) for each n, then z* and y* are two continuous functions that agree on the
dense set D, and so they must agree everywhere. That is, the set {E,}° ; is a countable set of
continuous functions that separates points on X*.

Now let Cp, = sup,«c |En(z*)| < 00, since K is compact and E,, is continuous, and define
fn = En/Cy. Then |f,| <1, and

da*,y") =D 27" falz") = fuly")]
n=1

is a metric on K, since the f,, separate points.

We now have two topologies, the weak-* open sets 7, and the open sets 7; generated from
the metric, which we must show coincide. That 74 C 7 is easily seen, since any ball B,(y*) =
{z* € K : d(z*,y*) < r} is the inverse image of the open set (—oo,r) under the continuous
function d(-,y*) (for fixed y*).

To show the opposite inclusion, 7 C 74, let A € 7. Then A¢ C K is 7-closed, and thus
T-compact (Proposition 1.24). But 74 C 7 implies that A€ is also 74-compact by definition, since
any Tg-open cover of A€ is also a T-open cover, which has a finite subcover. Proposition 1.24
now implies that A€ is 74-closed, and thus A € 74. The proof is complete. O

COROLLARY 2.33. If X is a separable Banach space, {fn}°2 1 C X*, and there is some R > 0
such that || fn|| < R for all n, then there is a subsequence {f,,}52, that converges weak-% in X*.

COROLLARY 2.34. If Banach space X is separable and reflexive and {x,}52, C X is a
bounded sequence, then there is a subsequence {x,}°, that converges weakly in X.

COROLLARY 2.35 (Generalized Heine-Borel Theorem). Suppose X is a Banach space with
dual X*, and K C X*. Then K is weak-+ compact if and only if K is weak-+ closed and bounded.

PROOF. Any (weak-x) closed and bounded set K is compact, as it sits in a large closed ball,
which is compact. Conversely, if K is compact, it is closed. It must be bounded, for otherwise
we can find a nonconvergent sequence in K (every weak-* convergent sequence is bounded). O

We close this section with an interesting result that relates weak and strong convergence.

THEOREM 2.36 (Banach-Saks). Suppose that X is a NLS and {z,}2° is a sequence in X
n

that converges weakly to x € X. Then for every n > 1, there are constants af >0, Za? =1,
j=1

n
such that y, = Z a?:rj converges strongly to x.
j=1
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. w . . . . .
That is, whenever x,, — z, there is a sequence ¥, of finite, convex, linear combinations of
the z,, such that y, — x.

PRrooF. Let z, = x, —r1 and z = x — 1, so that z; = 0 is in the sequence and z, 2. Let

n n
M = Za?yj:nzl,ozyzo, and Za}zgl ,
=1 =1

which is convex. The conclusion of the theorem is that z is in M, the (norm) closure of M.
Suppose that this is not the case. Then we can apply the Separating Hyperplane Theorem 2.18
to the closed set M and the compact set {z} to obtain a continuous linear functional f and a
number ~ such that f(z,) <~ but f(z) > ~. Thus limsup,,_,, f(zn) <7, so f(zn) & f(z), and
we have a contradiction to z, — z and must conclude that z € M as required. O

COROLLARY 2.37. Suppose that X is a NLS, and S C X is conver. Then the weak and
strong (norm) closures of S are identical.

PROOF. Let Sv denote the weak closure, and S the usual norm closure. The Banach-Saks
Theorem implies that S¥ C S, since S is convex. But trivially S C S". d

2.8. Conjugate or Dual of an Operator
Suppose X and Y are NLS’s and T' € B(X,Y’). The operator T induces an operator
T :YV* — X*
as follows. Let g € Y* and define T* : X* — F by the formula
(T*g)(x) = g(Tx)
for x € X. Then, T*g € X*. For T*g = g o T is a composition of continuous linear maps,

T g
X —Y—F

\/
T*g
and so is itself continuous and linear. Moreover, if g € Y*, x € X, then
[T*g(x)| = l9(Tz)| < llglly-T=[ly

< lglly=IITl sy lzll x

= (Nl 1Tl )l -
Hence, not only is T*¢ bounded, but

IT*gllx+ < 1Tl Bx ) lglly= - (2.23)

Thus we have defined a correspondence T* : Y* — X™*. In fact, T* is itself a bounded linear
map, which is to say T* € B(Y™*, X*). For linearity, we need to show that for g,h € Y*, A € F,

T*(g+h) = T"g+T"h.,

T*(\g) = XT"g . (224)
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Let x € X and evaluate both sides of these potential equalities at x, viz.
T*(g +h)(2) = (g + B)(Tw) = g(Tx) + h(Tx)
— T*(g)(x) + T*h(x)
= (T"g(g) + T (h))(x)
and
T*(Ag)(z) = (Ag)(Tz) = Ag(Tx)
= \T"g(z) .

As x € X, was arbitrary, it follows that the formulas (2.24) are valid. Thus 7™ is linear. The
fact that 7™ is bounded follows from (2.23), and, moreover,

1T Bey+,x*) < ITlB(x,y) - (2.25)

In fact, equality always holds in the last inequality. To see this, first note that if T' = 0 is the zero
operator, then T* = 0 also and so their norms certainly agree. If T' # 0, then ||T'[|g(xy) > 0.
Let ¢ > 0 be given and let xp € X, ||zo||x = 1 be such that

ITxolly > 1Tl Bx,y) — € -
Let go € Y* be such that ||go||y+ = 1 and
g0(Tzo) = || Tol| -

Such a gg exists by one of the corollaries of the Hahn-Banach Theorem. Then, it transpires that

1T By+x+) 2 IT"gollx= = sup |T"go(x)]

llzllx=1
> |T"go(wo)| = go(T'xo) = || Tzolly
> |Tlxy)— € -
In consequence of these ruminations, it is seen that
1T* | By x+ = 1Tl Bx,y) — €
and € > 0 was arbitrary. Hence
1T Bey+,x*) = ITlB(x,v)

and, along with (2.25), this establishes the result.
The *-mapping T"—— T is thus a norm preserving map

B(X,Y) = B(Y*, X*) .

It has simple properties of its own, for example

(AT + uS)* = AT* + uS* | VS, T e B(X,Y),
(TS)* = S*T* , VSeBX,Y), TeB(Y,Z),
(Ix)* = Ix~,

where Ix is the identity mapping of X to itself.
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ExampPLES. X = RV, T : X — X may be represented by an N x N matrix Mz in the
standard basis, say. Then T* also has a matrix representation in the dual basis and Mp« = M,
the transpose of Myp.

Here is a less elementary, but related example. Let 1 < p < oo and, for f € L,(0,1) and
x € [0,1], set

1
Tf(x) = / K(x,y) /() dy

where K is, say, a bounded measurable function. It is easily determined that 7" is a bounded
linear map of L,(0,1) into itself.
The dual space of L,(0,1) may be realized concretely as follows. If A € L;(0,1), then there
is a unique g € Ly(0, 1), where
1 1
—4+=1,
p q
such that

1
A(f) = dx .
(= [ @)
Write A = A, in this case. What is T*? If A = Ay € Ly(0,1) and f € L,(0,1), then
(T*A)(f) = MTf) = Ag(T'f)

1 1 1

:/0 g(:z:)Tf(a;)da::/O g(CC)/O K(z,y)f(y) dydx
1 1

= | 1) [ Kot dray
1

- [ f@r g .

Thus, it is determined that
1
T*(9)(v) :/0 K(z,y)g(x)dzx .

LEMMA 2.38. Let X,Y be NLS’s and T € B(X,Y). Then T** : X** — Y™ is a bounded
linear extension of T'. If X is reflexive, then T = T**.

PROOF. Let x € X and g € Y*. Realize x as [x] € X**. Then, by definition,
(T [z (9) = [2](T7g) = T"g(x)
=g(Tx) = [Tx](g) ,
and so
T [x] = [Tz] .
Thus T**|x =T . If X = X**, then this means T" = T**. O

LEMMA 2.39. Let X be a Banach space, Y a NLS and T € B(X,Y). Then T has a bounded
inverse defined on all of Y if and only if T* has a bounded inverse defined on all of X*. When
either exists, then

(T—l)* —_ T*—l )
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ProoF. If S =T~! € B(Y, X), then
S*T* = (TS)" = (Iy)* = Iy~ .
This shows that 7™ is one-to-one. The other way around,
T*S* = (ST)" = (Tx)" = Ix~ ,
shows T is onto. Moreover, S* is the inverse of T™, and of course S* is bounded since it is the
dual of a bounded map.
Conversely, if T* € B(Y™*, X*) has a bounded inverse, then applying the preceding argument,
we ascertain that (T**)~! € B(Y**, X**). But,
T**}X — T ,

so T must be one-to-one. Also, since 7™* is onto, it is an open mapping and so 77**(X) is closed
in Y** which is to say that T'(X) is closed in Y**, and hence in Y. Suppose 7" is not onto. Let
y € Y N\ T(X). By the Hahn-Banach Theorem, since T'(X) is closed, there is a y* € Y* such
that

y*|T(X) =0, but y*(y) #0.
But then, for all z € X,
T*y*(z) =y (Tz) =0,
whence T*y* = 0. But y* # 01in Y*, and so T is not one-to-one, a contradiction. It is concluded
that 7' is onto. g

2.9. Exercises

1. Suppose that X is a vector space.

(a) If A, B C X are convex, show that A+ B and AN B are convex. What about AU B and
A\ B?

(b) Show that 24 C A+ A. When is it true that 24 = A 4+ A?
2. Let (X,d) be a metric space.
(a) Show that
p(e,y) = min(1,d(z,y))
is also a metric.
(b) Show that U C X is open in (X, d) if and only if U is open in (X, p).

(c) Repeat the above for
__d(z,y)

3. Let X be a NLS, xg be a fixed vector in X, and a # 0 a fixed scalar. Show that the mappings
r — =+ x9 and x — ax are homeomorphisms of X onto itself.

4. Show that if X is a NLS, then X is homeomorphic to B, (0) for fixed r. [Hint: consider the
xr
]

L+l
5. In R? show that any two norms are equivalent. Hint: Consider the unit sphere, which is
compact.

mapping x +—
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Let X and Y be NLS over the same field, both having the same finite dimension n. Then
prove that X and Y are topologically isomorphic, where a topological isomorphism is defined
to be a mapping that is simultaneously an isomorphism and a homeomorphism.

Show that (C([a,b]),|-|), the set of real-valued continuous functions in the interval [a, b]
with the sup-norm (Ly-norm), is a Banach space.

If f e L,(Q2) show that

£y =sup| [ Fods|=sup [ |7g]ds

Q Q

where the supremum is taken over all g € L4(2) such that ||g|l; < 1 and 1/p+1/q = 1,
where 1 < p,q < 0.

Finite dimensional matrices.

(a) Let M™ ™ be the set of matrices with real valued coefficients a;j, for 1 < i < n and
1 <j<m. For every A € M"*™  define

Show that (M™*™ || -|) is a NLS.
(b) Each A € M™*™ defines a linear map of R" into itself. Show that

JA| = max yTAx,
|z]=|y|=1

where yT is the transpose of y.
(c) Show that each A € M™*™ is continuous.

Let X and Y be NLS and T : X — Y a linear mapping. We define the norm of T" to be

Tx|ly
|T]| = sup I 7] :
z€X 240 ]| x

which is finite. Show that
IT)| = sup ||[Tx|ly = sup ||Tz|y =inf{M : ||Tz|y < M||z|x for all z € X} .

Izl x=1 Izl x <1

Let X be a vector space. We define the convexr hull of A C X to be
n
co(A)={reX:z= Ztiyi, where ¢; € [0,1] and y; € A} .
i=1
(a) Prove that the convex hull is convex, and that it is the intersection of all convex subsets
of X containing A.
(b) If X is a normed linear space, prove that the convex hull of an open set is open.
(¢) If X is a normed linear space, is the convex hull of a closed set always closed?
)

(d) Prove that if X is a normed linear space, then the convex hull of a bounded set is
bounded.
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Prove that if X is a normed linear space and B = B;(0) is the unit ball, then X is infi-
nite dimensional if and only if B contains an infinite collection of non-overlapping balls of
diameter 1/2.

Prove that a subset A of a metric space (X,d) is bounded if and only if every countable
subset of A is bounded.

Consider (¢, ] - [p)-
(a) Prove that ¢, is a Banach space for 1 < p < co. Hint: Use that R is complete.
(b) Show that |- |, is not a norm for 0 < p < 1. Hint: First show the result on R,

If an infinite dimensional vector space X is also a NLS and contains a sequence {e,}°°;
with the property that for every x € X there is a unique sequence of scalars {a,}>2; such
that

|z — (a1e1 4+ ... + apey|| = 0 asn — oo,
then {e, }72; is called a Schauder basis for X, and we have the ezpansion of =

[
Tr = g Qp€n .
n=1

(a) Find a Schauder basis for £,, 1 < p < oco.

(b) Show that if a NLS has a Schauder basis, then it is separable. [Remark: The converse is
not true.]

Let Y be a subspace of a vector space X. The coset of an element z € X with respect to Y
is denoted by x + Y and is defined to be the set

x+Y={2€X:z=z+yforsomeycY}.

Show that the distinct cosets form a partition of X. Show that under algebraic operations
defined by

(1 4+Y)+(224+Y)=(x1+22)+Y and ANz+Y)=\x+Y,

for any 1,22, € X and A in the field, these cosets form a vector space. This space is called
the quotient space of X by (or modulo Y, and it is denoted X/Y.

Let Y be a closed subspace of a NLS X. Show that a norm on the quotient space X/Y is
given for & € X/Y by
2] x/y = inf [[z]/x .
rET

If X and Y are NLS, then the product space X x Y is also a NLS with any of the norms

(@, )l xxy = max(||zx, [[ylly)
or, for any 1 < p < oo,

(@, )y = (2l + Iyl
Why are these norms equivalent?

If X and Y are Banach spaces, prove that X x Y is a Banach space.
Let T : C(]0,1]) — C(]0, 1]) be defined by
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Find the range R(T) of T, and show that 7 is invertible on its range, T~ : R(T) — C([0, 1]).
Is 77! linear and bounded?

Show that on C([a, b]), for any y € C([a,b]) and scalars « and 3, the functionals

b
fitw) = [(a@ut)dt and folz) = ase) + fa(d)
are linear and bounded.

Find the norm of the linear functional f defined on C([—1,1]) by

f(z) = /O w(t)dt — /le(t) dt .

-1

Recall that f = {{z,}32, : only finitely many x, # 0} is a NLS with the sup-norm [{z,}| =
sup,, |zn|. Let T : f — f be defined by

T({antpie) = {naninl, -
Show that T is linear but not continuous (i.e., not bounded).

The space C([a,b]) is the NLS of all continuously differentiable functions defined on [a, b]
with the norm
|zl = sup |z(t)]+ sup |2'(t)] .
tela,b) te[a,b]
(a) Show that || - || is indeed a norm.
(b) Show that f(z) = 2’((a + b)/2) defines a continuous linear functional on C([a, b]).

(c) Show that f defined above is not bounded on the subspace of C([a,b]) consisting of all
continuously differentiable functions with the norm inherited from C(]a, b]).

Suppose X is a vector space. The algebraic dual of X is the set of all linear functionals
on X, and is also a vector space. Suppose also that X is a NLS. Show that X has finite
dimension if and only if the algebraic dual and the dual space X* coincide.

Let X be a NLS and M a nonempty subset. The annihilator M® of M is defined to be the
set of all bounded linear functionals f € X™* such that f restricted to M is zero. Show that
M is a closed subspace of X*. What are X and {0}%?

Define the operator 1" by the formula

b
ﬂmmz/KuMﬂw@.

Suppose that K € Lq([a,b] x [a,b]), where ¢ lies in the range 1 < ¢ < co. Determine the
values of p for which T is necessarily a bounded linear operator from L,(a,b) to Ly(a,b).
In particular, if a and b are both finite, show that K € Lo ([a,b] X [a,b]) implies T" to be
bounded on all the L,-spaces.

Let U = B,(0) = {x : ||z]| < r} be an open ball about 0 in a real normed linear space, and
let y ¢ U. Show that there is a bounded linear functional f that separates U from y. (That
is, U and y lie in opposite half spaces determined by f, which is to say there is an a such
that U lies in {z : f(z) < a} and f(y) > a.)

Prove that Ly([0, 1]) is of the first category in L;([0, 1]). (Recall that a set is of first category
if it is a countable union of nowhere dense sets, and that a set is nowhere dense if its closure
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has an empty interior.) Hint: Show that Ay = {f : || f|l, < k} is closed in Ly but has empty
interior.

If a Banach space X is reflexive, show that X* is also reflexive. (x) Is the converse true?
Give a proof or a counterexample.

Let y = (y1,92, 93, ...) € C® be a vector of complex numbers such that) .~ y;; converges
for every x = (x1, z9, 23, ...) € Co, where Cy = {x € C® : z; — 0 as i — oo}. Prove that

oo
Z lyi| < oo
=1

Let X and Y be normed linear spaces, T € B(X,Y), and {x,}>>, C X. If 2, = =, prove

that Tz, = Tz in Y. Thus a bounded linear operator is weakly sequentially continuous. Is
a weakly sequentially continuous linear operator necessarily bounded?

Suppose that X is a Banach space, M and N are linear subspaces, and that X = M & N,
which means that

X=M+N={m+n:meMmneN}

and M N N is the trivial linear subspace consisting only of the zero element. Let P denote
the projection of X onto M. That is, if z = m + n, then

P(x)=m

Show that P is well defined and linear. Prove that P is bounded if and only if both M and
N are closed.

Let X be a Banach space, Y a NLS, and T,, € B(X,Y) such that {T,z}2, is a Cauchy
sequence in Y. Show that {||7,|}5°°, is bounded. If, in addition, Y is a Banach space, show
that if we define T' by T,,x — Tz, then T € B(X,Y).

Let X be the normed space of sequences of complex numbers x = {x;}°; with only finitely

many nonzero terms and norm defined by ||z|| = sup; |z;|. Let T': X — X be defined by
1 1
y="Tz={x, 3%2, 373, o}

Show that T is a bounded linear map, but that 7! is unbounded. Why does this not
contradict the Open Mapping Theorem?

Give an example of a function that is closed but not continuous.

For each a € R, let E, be the set of all continuous functions f on [—1, 1] such that f(0) = a.
Show that the E, are convex, and that each is dense in Lo([—1, 1]).

Suppose that X, Y, and Z are Banach spaces and that T' : X x Y — Z is bilinear and
continuous. Prove that there is a constant M < oo such that

1T (z,y)l| < M|zl lyl| forall z€ X,y €Y .
Is completeness needed here?

Prove that a bilinear map is continuous if it is continuous at the origin (0, 0).
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Consider X = C([a, b]), the continuous functions defined on [a, b] with the maximum norm.
Let {f.}22, be a sequence in X and suppose that f, = f. Prove that {f,}°2, is pointwise
convergent. That is,

fo(z) — f(x) forall z € [a,b] .
Prove that a weakly convergent sequence in C*([a,b]) is convergent in C([a,b]). (*) Is this
still true when [a, b] is replaced by R?

Let X be a normed linear space and Y a closed subspace. Show that Y is weakly sequentially
closed.

Let X be a normed linear space. We say that a sequence {x,}°°; C X is weakly Cauchy
if {T'z,}72, is Cauchy for all T' € X*, and we say that X is weakly complete if each weak
Cauchy sequence converges weakly. If X is reflexive, prove that X is weakly complete.

Show that every finite dimensional vector space is reflexive.
Show that C([0, 1]) is not reflexive.

If X and Y are Banach spaces, show that £ C B(X,Y) is equicontinuous if, and only if,
there is an M < oo such that |T|| < M for all T € E.

Let X be a Banach space and T' € X* = B(X,F). Identify the range of T* € B(F, X*).
Let X be a Banach space, S,T € B(X, X), and I be the identity map.
(a) Show by example that ST = I does not imply 7S = I.
(b) If T'is compact, show that S(I —T') = I if, and only if, (/ —T)S = I.
(c) If S = (I —T)~! exists for some T' compact, show that I — S is compact.
Let 1 < p < oo and define, for each r € R?, T} : L,(RY) — L,(R?) by
T(f) (@) = flx+r) .
(a) Verify that T,.(f) € L,(R?) and that T} is bounded and linear. What is the norm of 7}.?

(b) Show that as r — s, ||T,.f — T, f||z, — 0. Hint: Use that the set of continuous functions
with compact support are dense in L,(R?) for p < oco.



CHAPTER 3

Hilbert Spaces

The norm of a normed linear space gives a notion of absolute size for the elements of the
space. While this has generated an extremely interesting and useful structure, often one would
like more geometric information about the elements. In this chapter we add to the NLS structure
a notion of “angle” between elements and, in particular, a notion of orthogonality through a
device known as an inner-product.

3.1. Basic properties of inner-products

DEFINITION. An inner-product on a vector space H is a map (+,-) : H x H — F satisfying
the following properties.

(a) The map (-,-) is linear in its first argument; that is, for o, 8 € F and z,y,z € H,

(ax + By, 2) = alz,2) + By, 2) -
(b) The map (-,-) is conjugate symmetric (symmetric if F = R), meaning that for x,y € H,
(z,y) = (v, 2) .
(c) For any z € H, (xz,x) > 0; moreover, (z,x) = 0 if and only if z = 0.

If H has such an inner-product, then H is called an inner-product space (IPS) or a pre-Hilbert
space. Any map satisfying (a) and (b) is said to be sesquilinear (bilinear if F = R).

PROPOSITION 3.1. If (+,-) is sesquilinear on H, then for a,f € F and x,y,z € F,

(z,ay + B2) = a(z,y) + Bla, 2) .
That is, (-, ) is conjugate linear in its second argument.

EXAMPLES. (a) C¢ (or R?) is an IPS with the inner-product
d
(@, y)=z-§= Zﬂfz‘ﬂi
i=1

for any x,y € C%.
(b) Similarly ¢ is an IPS with

oo
=1

(c) For any domain  C R, L(2) has inner-product

(f.9) = /Q F2) 9@ da |
63
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DEFINITION. If (H,(+,-)) is an IPS, we define the map || - || : H — R by
2] = (w,2)"/?
for any z € H. This map is called the induced norm.

LEMMA 3.2 (Cauchy-Schwarz Inequality). If (H,(-,-)) is an IPS with induced norm || - ||,
then for any x,y € H,

(@, )| < =l lyll .
with equality holding if and only if x or y is a multiple of the other.

PrOOF. If y = 0, there is nothing to prove, so assume y # 0. Then for z,y € H and A € F,
0< [l = Ayl® = (& = Ay, = — Ay)
= (z,2) = Az, y) = My, 2) + A (3, 9)
= [l = (My, @) + Ay, ) + M|y ]|
= |lz]|* = 2 Real(A(y, )) + [AP[lyl* -

Let
A= (L?é) '
Iyl
Then
2 2
0< ||xH2 — 92 Real (x7y)(?é:‘r) + \(x,yi\ ||yH2 _ H$||2 _ ’(l’,yg’ ’
[yl Yl Iyl

since (z,y)(y,z) = |(z,y)|? is real. A rearrangement gives the result, with equality only if

COROLLARY 3.3. The induced norm is indeed a norm, and thus an IPS H is a NLS.

PrOOF. For a € F and = € H, ||z| > 0, |jaz| = (az,ax)V/? = |a|(z,2)"/? = |a| ||z|| and
|z|| = 0 if and only if (x,2) = 0 if and only if x = 0.
It remains only to demonstrate the triangle inequality. For x,y € H,

lz+yl? = (z+y,2+y)
= [lz|1* + 2 Real(z,y) + [ly|?
< lz)* + 2/(z, v)| + [lylI?
< lzl1* + 2l lyll + llylI?
= (llzll + llyl)? -
0

Note that the Cauchy-Schwarz inequality gives a notion of angle, as we may define the angle
between x and y from

@)l
1] Iyl
However, generally we consider only the case where 6§ = /2.

cosf =

DEFINITION. If (H,(-,-)) is an IPS, z,y € H, and (x,y) = 0, then we say that x and y are
orthogonal, and denote this fact as = 1 y.
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PROPOSITION 3.4 (Parallelogram Law). If x,y € H, an IPS, then
2+l + llz = ylI* = 2(l|2[1* + [[y*)
PRrRoor. Exercise. O

The parallelogram law can be used to show that not all norms come from an inner-product,
as there are norms that violate the law. The law expresses the geometry of a parallelogram in
R?, generalized to an arbitrary IPS.

LEMMA 3.5. If (H,(-,-)) is an IPS, then (-,-) : H x H — F is continuous.

PROOF. Since H x H is a metric space, it is enough to show sequential continuity. So suppose
that (z,,yn) — (z,y) in H x H; that is, both z,, — = and y,, — y. Then

(Zns Yn) — (@, 9)| = [T, Yn) — (Tn, ¥) + (Tnsy) — (7,9)]
< @ns yn) — (Tn, )| + [0, y) — (2, 9)]
= [(Tn, Yn — Y)| + {20 — 2, 9)|
< znll lyn — yll + lzn — 2| Y]l -

Since z,, — x, ||zy]|| is bounded. Thus [{(x,,yn) — (x,y)| can be made as small as desired by
taking n sufficiently large. O

COROLLARY 3.6. If \y, = X and pup, — p in F and x, — x and y, — y in H, then

(AnZns tnYn) — (AT, py)
PRrOOF. Just note that \,z, — Az and p,y, — uy. 0
DEFINITION. A complete IPS H is called a Hilbert space.

Hilbert spaces are thus Banach spaces.

3.2. Best approximation and orthogonal projections
The following is an important geometric relation in an IPS.

THEOREM 3.7 (Best approximation). Suppose (H, (-,-)) is an IPS and M C H is nonempty,
convex, and complete (i.e., closed if H is Hilbert). If x € H, then there is a uniquey = y(x) € M
such that

dist(x, M) = inf -zl =z -yl .
ist(z, M) = Jnf [lz — 2] = [|lz - y|
We call y the best approximation of or closest point to x from M.

PROOF. Let

0= inf ||z —2z] .
zZeM

If § = 0, we must take x = y. That y = x is in M follows from completeness, since given any
integer n > 1, there is some z, € M such that ||z — z,|| = 1/n, so z, — z € M.
Suppose § > 0. Then = ¢ M and so there is a sequence {y,}>>; C M such that as n — oo,

|z —ynl| = 0p — 0 .
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We claim that {y,} is Cauchy. By the parallelogram law,
lyn = yml® = 1(yn — 2) + (& = ym) ||

=2 (lyn — 21 + Iz = yml?) = llyn + ym — 22|

= 2(82 +62) — 4 Ynt Um _ $H2

2
< 2(82 4 62)) — 467,

since by convexity (yn + ym)/2 € M. Thus as n,m — o0, ||yn — ym| — 0. By completeness,
yn — y for some y € M. Since || - || is continuous, ||z — y|| = 4.

To see that y is unique, suppose that for some z € M, ||z — z|| = §. Then the parallelogram
law again shows

ly — z[I> = |(y — z) + (z — 2)|?
=2(ly—2|* + |z — 2I*) = |ly + = — 2=|?
2
— 452 —4H—y+z _ xH
2
<46%2-46°=0.
Thus y = z. O

COROLLARY 3.8. Suppose (H, (-,-)) is an IPS and M is a complete linear subspace. If x € H
and y € M 1s the best approximation to x in M, then

r—y Ll M.
PRrROOF. Let m € M, m # 0. For any A € F, by best approximation,
lz = yl* < llz =y + Am|* = ||z — y|I” + Az — y,m) + A(m, @ —y) + [A*[Jm]®
With A = —(z — y,m)/||m||?, we have
0 < =AX[m|[* = AX[[m|[? + [A[?[[m]|? = —[A[Jm]* ,
so A = 0, which means
(—y,m)=0
for any m € M. That is, x —y L M. O
DEFINITION. Given an IPS H and M C H,
M+ ={zeH:(x,m)=0Yme M} .
The space M1 is referred to as “M-perp.”

PROPOSITION 3.9. Suppose H is an IPS and M C H. Then M~ is a linear subspace of H,
M L M*, and M 0 M* is either {0} or (.

THEOREM 3.10. Suppose (H,(-,-)) is an IPS and M C H is a complete linear subspace.
Then there exist two unique bounded linear surjective mappings
P:H—M and P+:H — M*
defined by (a) and (b) below and having the properties (c)—(g) for any x € H

(a) ||z — Px|| = infyenr | — y|| (i.e., Pz is the best approzimation to x in M),
(b) z = Prx + Ptz (i.e., Pr=1-P),
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(c) ll=ll* = [|Pz]? + | Ptz ,

(d) € M if and only if P*x =0 (i.e., x = Px),

(e) x € M+ if and only if Px =0 (i.e., x = Ptx),

() ||IP|| =1 unless M = {0}, and ||P+| = 1 unless M = H,

(g) PPt =P+P =0, P> =P, and (P+)? = P+ (i.e., P and P+ are orthogonal projection
operators).

Note that (c) is the Pythagorean theorem in an IPS, since Pz | P+x and (b) holds. We call P
and P1 the orthogonal projections of H onto M and M, respectively.

PROOF. By the best approximation theorem, (a) defines P uniquely, and then (b) defines
Pt : H — H uniquely. But if 2 € H, then for m € M,

(Ptz,m) = (z — Pz,m)=0

by Corollary 3.8, so the range of P+ is M.
To see that P and P+ are linear, let o, 3 € F and ,y € H. Then by (b),

az + By = P(az + By) + P*(az + By) ,
and
oz + By = a(Px + Ptz) + B(Py + P1y)
= aPx + 3Py + aPtx + 8Py .
Thus
Pz + 3Py — P(ax + By) = PH(ax + By) — aPta — Py .
Since M and M are vector spaces, the left side above is in M and the right side is in M. So
both sides are in M N M+ = {0}, and so
P(az + By) = aPx + Py,
PY(az + By) = aPta + Py ;
that is, P and P+ are linear.
From the proof of the best approximation theorem, we saw that if x € M, then Px = z;

thus, P is surjective. Also, x = Pz implies x = Px € M, so (d) follows.
If € M*, then since x = Pz + Pz,

¢ — Ptz =Pre MnM*+={0},
so x € Ptx, Pt is surjective, and (e) follows.

If z € H then (e) and (d) imply that PPtz = 0 since Ptz € M+ and P+ Pz = 0 since
Pr € M,s00=PP+=P(I-P)=P—-P?and 0 = P*P = P+(I - Pt) = P — (P})2. That
is, (g) follows.

We obtain (c) by direct computation,

|z = | Pz + Ptz||? = (Pz + P'a, Pz + P'a)
= ||Pz|* + (Pz, P*z) + (Ptx, Pz) + | PLa|? .

The two cross terms on the left vanish since M 1| M=,
Finally, (c) implies that

1P||* = ||z = [|1P*=] < fl=|* ,
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so ||P|| < 1. But if M # {0}, there exists € M \ {0} for which ||Px| = ||z|. Thus ||P] = 1.
Similarly remarks apply to P+. We conclude that P and P+ are bounded and (f) holds. O

COROLLARY 3.11. If (H,(-,-)) is a Hilbert space and M C H is a closed linear subspace,
then Pt is best approzimation of H in M.

PROOF. We have the unique operators Py; and (Py)* from the theorem. Now it is easy to
verify that M~ is closed, since the inner-product is continuous, so we can apply the theorem
also to M~ to obtain the unique operators Py;1 and (Py,1)*. It is not difficult to conclude that
Pys1 = (Py)*, which is best approximation of H in M*. O

3.3. The dual space

We turn now to a discussion of the dual H* of a Hilbert space (H, (-,-)). We first observe
that if y € H, then the functional L, defined by

Ly(z) = (z,y)
is linear in x and bounded by the Cauchy-Schwarz inequality. In fact,
[ Ly (@) <yl ||l
so [[Lyll < lyll. But [Ly(y/llyl)| = llyll, so in fact
Lyl =Nyl -
We conclude that L, € H*, and, as y is arbitrary,
{Ly}tyew C H™ .

We have represented certain members of H* as L, maps; in fact, as we will see, every member
of H* can be so represented. Thus by identifying L, with y, we see that in some sense H is its
own dual.

THEOREM 3.12 (Riesz Representation Theorem). Let (H,(-,-)) be a Hilbert space and L €
H*. Then there is a unique y € H such that

Moreover, ||L|| g+ = ||yl z-

Proor. If L =0 (i.e., Lv = 0V = € H), then take y = 0. Uniqueness is clear, since if
Lz = (z,z), then

0="Lz=(z22) =l

implies z = 0.
Suppose then that L # 0. Let

M =N(L)=ker(L)={x € H: Lz =0} .

As M is the inverse image of the closed set {0} under L, M is closed. Easily M is a vector
space, so M is a closed (i.e., complete) linear subspace of H.

Since L # 0, M # H and M~ # {0} by Theorem 3.10. Let = € M~ \ {0}, normalized so
|z|| = 1. For x € H, let

u= (Lz)z — (Lz)z ,
Lu = (Lz)(Lz) — (Lz)(Lx) =0 .
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Thus u € M and so u L z. That is,
0=(u,z2) = ((La:)z — (L2)x, z) = Lx(z,z) — Lz(x,z) = Lx — Lz(x, 2) ,
or
Lz = Lz(z,2) = (z,(L2)z) .
Uniqueness is trivial, for if
Lz = (z,y1) = (z,y2) Ve H,
then
(x,;1 —y2) =0 VzxzeH.
Substitute x = y; —y2 to conclude y; = yo. Finally, we already saw that ||L| = ||Ly|| = ||y|. O
We define a map R: H — H*, called the Riesz map, by
Rr=L,Vxec H.

The Riesz Representation Theorem says that R is one-to-one and onto. Thus we identify H
with its dual precisely through R: Given x € H there is a unique Rx = L, € H*, and conversely
given L € H*, there is a unique x = R™'L € H such that L = L,. While R is not linear when
F = C, it is conjugate linear:

R(r+y)=Rx+Ry Vz,yeH,
R(A\z)=ARx Vxe€H NcF.

3.4. Orthonormal subsets

In finite dimensions, a vector space is isomorphic to R? for some d < oo, which can be
described by an orthogonal basis. Similar results hold for infinite dimensional Hilbert spaces.

DEFINITION. Suppose H is an IPS and 7 is some index set. A set A = {x4}aez C H is said
to be orthogonal if o, #0V « € T and

To L g (i.e., (xa,z3) =0)
for all o, 8 € Z, aw # (3. Furthermore, if also ||z.|| =1V a € Z, then A is orthonormal (ON).

DEFINITION. If A C H, a Hilbert space, then A is linearly independent if every finite subset
of A is linearly independent. That is, every collection {z;}!"; C A must satisfy the property
that if there are scalars ¢; € F with

n
Z Cil; = 0 (3'1)
i=1
then necessarily ¢; =0 V 1.

PROPOSITION 3.13. If a subset A of a Hilbert space H is orthogonal, then A is linearly
independent.

Proor. If {z;}? ; C A and ¢; € F satisfy (3.1), then for 1 < j <n,

n n
. <Z Ci$ia$j> = cilzizj) = cillz)*

i=1 i=1
As x; # 0, necessarily each ¢; = 0. g



70 3. HILBERT SPACES

Let {x1,...,z,} be linearly independent in a Hilbert space H, and
M = span{z1,... ,z,} ,

which is closed in H as it is finite dimensional. We compute the orthogonal projection of x € H
onto M. That is, we want cy,... ,c, € IF such that Pyx = Z?:l cjrj and Pyx —x L M. That
is, for every 1 <14 < n,

(Pyx, i) = (2, ;)

Now

n

(Pyz, x;) g c; mj,xz ,
J=1

so with
a;j = (x5,x;) and b; = (x,x;)
we have that the n x n matrix A = (a;;) and n-vectors b = (b;) and ¢ = (¢;) satisfy
Ac=0b.

We already know that a unique solution ¢ exists, so A is invertible and the solution ¢ can be
found, giving Pysx.

THEOREM 3.14. Suppose H is a Hilbert space and {uy,... ,u,} C H is ON. Let x € H.
Then the orthogonal projection of x onto M = span{uy,... ,u,} is given by

n

Pyax = Z(m,uz)uz .

=1

Moreover,

n
>l u)? <l -
i=1

PROOF. In this case, the matrix A = ((u;,u;)) = I, so our coefficients ¢ are the values
b= ((z,u;)). The final remark follows from the fact that ||Py;x| < ||z|| and the calculation

n
1Pael® =) Iz, wi)?
1=1

left to the reader. O

We extend this result to larger ON sets. To do so, we need to note a few facts about infinite
series. Let Z be any index set (possibly uncountable!), and {4 }ac7 a series of nonnegative real

numbers. We define
Z To = sup Z To -
acl j ﬁnlte acd

If7Z=N=1{0,1,2,...} is countable, this agrees with the usual definition
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We leave it to the reader to verify that if
Z To < 00,

then at most countably many x, are nonzero.

THEOREM 3.15 (Bessel’s inequality). Let H be a Hilbert space and {uq}act C H an ON set.
Forx e H,

D (@ ua)? < 2] -
acl
PRroOF. By the previous theorem, for any finite J C Z,
D@ ua)? < l=)*
aced
so the same is true of the supremum. O

COROLLARY 3.16. At most countably many of the (x,uy) are nonzero.

In a sense to be made precise below in the Riesz-Fischer Theorem, x € H can be associated
to its coefficients (z,uq) V . We define a space of coefficients below.

DEFINITION. Let 7 be a set. We denote by ¢2(Z) the set
OLI)={f:T—F: Z|f(04)|2 < oo} .
acl

If 7 = N, we have the usual space f5, which is a Hilbert space. In general, we have an
inner-product on ¢9(Z) given by

(fag) = Zf(a)M>

a€l
as the reader can verify. Moreover, ¢2(Z) is complete.

THEOREM 3.17 (Riesz-Fischer Theorem). Let H be a Hilbert space and {uq}acz any ON set
in H. Define the mapping F : H — l3(T) by F(x) = f, where
fala) = xa = (2, ua)

fora € . Then F is a surjective bounded linear map.

PROOF. Denoting the map f; by {Za}acz, the mapping F' is linear since
F(x+y) ={(* +Y)ataez = {(z + ¥, ua) }aez
={(z,ua) + (¥, Ua) }aez
= {(=,ua) }aez + {(Y; Ua) facz
=F(z)+ F(y)
and similarly for scalar multiplication. F' is a bounded map because of Bessell’s inequality

IF@Em =S lzal® < el -
acl

Thus, not only is F' bounded, but

| Fl Br o)) <1 -
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The interesting point is that F' is surjective. Let f € ¢2(Z) and let n € N. If

1
I, = {aEI: |f(a)| > ﬁ} ,
then if |Z,| denotes the number of « in Z,,,
I Zal < 02| 117,z -
Let J = Uy~ Zn. Then J is countable and if § ¢ J, then f(8) = 0. In H, define z,, by

Ty = Z fla@)ug -

a€l,

Since Z, is a finite set, x,, is a well-defined element of H. We expect that {z,}>°, is Cauchy in

H. To see this, let n > m > 1 and compute
Y@< DD f@P

o —aml? = Y f(@)ua

Q€L \Tm €L, ~\Im a€I~Tp,

and the latter is the tail of an absolutely convergent series, and so is as small as we like provided

we take m large enough. Since H is a Hilbert space, there is an x € H such that z, H o As
F is continuous, F'(x,) — F(x). We show that F(z) = f. By continuity of the inner-product,
forael

F(x)(a) = (x,uq) = lim (Jvn,ua)

= hm Zf (ug,ua) = fa) . O
ﬁGIn
THEOREM 3.18. Let H be a Hilbert space. The following are equivalent conditions on an ON

set {uq}aer C H.

(1) {ua}tacz is a mazimal ON set (also called an ON basis for H).

(ii) Span{uq : o € I} is dense in H.
(iii) ||lz[|3 = Y per (@ ua)|? for allz € H.
(iv) (z,y) = Zael’(w:ua)(yvua) for all z,y € H.

PRrROOF. (i) = (ii). Let M = span{u,}. Then M is a closed linear subspace of H. If M
is not all of H, M+ # {0} since H = M + M*. Let + € M+, x # 0, ||z|| = 1. Then the set
{uq : @ € T} U{z} is an ON set, so {uq }ae7 is not maximal, a contradiction.

(i) = (iii). We are assuming M = H in the notation of the last paragraph. Let x € H.
Because of Bessell’s inequality,

lz* = > lzal?

acl
where z, = (2,uq) for o € Z. Let € > 0 be given. Since span{u, : @ € T} is dense, there is a
finite set aq,...,an and constants cq,...,cy such that
N
Hx — Zci“ai <e.
i=1

By the Best Approximation analysis, on the other hand,

N N
H:E— E Ta Uy || < Ha:— g Cilly;
i=1 i=1
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It follows from orthonormality of the {uq }aez that

N 9 N
22 o= 3wt = 2l = Y lwa? = 22 = 3 leal®
i=1 =1

a€cl
In consequence,

lz]? <) fwal® +e,
acl
and € > 0 was arbitrary. Thus equality holds everywhere in Bessell’s inequality.
(ili) = (iv). This follows because in a Hilbert space, the norm determines the inner-
product as we now show. Let x,y € H. Because of (iii), we have

)1 + Iyl + (2, 9) + (y,2) = l|l= + y]*

= Z o + Yol = Z |zal? + Z Yal® + Zxaga + Zjaya ;

ol o€l acl a€el a€el
whereas
2] + [lyl* +i(y, ) —i(z,y) = [|= + iy|]®
= Z |Ta + Z'ya|2 = Z |I‘a|2 + Z |ya|2 +izyo¢ja - izxa?ja .
ael ael a€el ael ael
Since
2] = |zal® and [lyl* = lval®,
acl a€l

it is ascertained that

(33, y) + (33, y) = Z TalYa + Z ZTaYa

a€l ael
and
(:x,y) - (:x,y) = Zwaga - Zmafga )
a€el a€el

and the desired result follows.
(iv) = (i). If {ua}aer is not a maximal ON set, let w € H, u L u, for all & € Z, and
|u|| = 1. Then, because of (iv),

L= [lul® =" |(w,ua)]* =0,
acl
a contradiction. O
COROLLARY 3.19. If {uq }aez is mazimal ON and x € H is infinite dimensional, then there
are o; € L fori=1,2,... such that

[e.e]

xr = Z(w,uai)uai .

i=1
PRroor. Exercise. O

That is, indeed, a maximal ON set is a type of basis for the Hilbert space.

COROLLARY 3.20. If {uq}aez is a mazimal ON set, then the Riesz-Fischer map F : H —
05(7) is a Hilbert space isomorphism.
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THEOREM 3.21. Let H be a Hilbert space and {uq}acz any ON set in H. Then {uq}acz C
{ug}pes where the latter is ON and mazimal.

PRrROOF. The general result follows from transfinite induction. We prove the result assuming
that H is also separable.
Let {7;}72, be dense in H and
M = span{ug }aeT -
Define
ij=1;— Pyij € M+,
where Pp; is orthogonal projection onto M. Then the span of
{tataez U {i‘j};‘il

is dense in H. Define successively for j = 1,2,... (with z; = 21)

N; =span{z,... ,z;} ,
Tjy1 = Tj1 — PN %41 € Nf .
Then the span of

{tataez U {xj}(;il
is dense in H and any two elements are orthogonal. Remove any zero vectors and normalize to
complete the proof by the equivalence of (ii) and (iii) in Theorem 3.18. O

COROLLARY 3.22. Ewvery Hilbert space H is isomorphic to l2(Z) for some Z. Moreover, H
is infinite dimensional and separable if and only if H is isomorphic to f2(N).

We illustrate orthogonality in a Hilbert space by considering Fourier series. If f: R — C
is periodic of period T, then g : R — C defined by g(x) = f(Az) for some X\ # 0 is periodic of
period T'/\. So when considering periodic functions, it is enough to restrict to the case T' = 2.

Let

Ly per(—m,m) ={f :R—C: f € Lo([—m,7m)) and f(x + 2nm) = f(z)
for a.e. x € [, m) and integer n} .

With the inner-product

Go) =~ [ f@)a@de,

Com ),

Lo per(—m, ) is a Hilbert space (it is left to the reader to verify these assertions). The set

{e™ 0% o C Loper(—m,m)

is ON, as can be readily verified.

THEOREM 3.23. The set span{e™@}°° __is dense in Laper(—m, ).

PRrOOF. We first remark that Cpe([—m,7]), the continuous functions defined on [—o0, 00]
that are periodic, are dense in Lg per(—7, ). This follows from the fact that simple functions
are dense in Ly (their limits are used to define the integral). By “rounding out the corners”,
in a manner to be made precise when we study distributions and convolutions, we can show
the density of Cper([—m,7]) in Lo per(—m, 7). Thus it is enough to show that a continuous and

periodic function f of period 27 is the limit of functions in span{e*}* .
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For any integer m > 0, on [—m, 7] let

1 m
o () = e <+C<M> >0
2
where ¢, is defined so that
1 ™
km(z)de =1 . (3.2)
2 J_,

Asm — 00, k() is concentrated about x = 0 but maintains total integral 27 (i.e., ky, /27w — do,
the Dirac distribution to be defined later). Now

2 4 el 4T
4

n=—m

km(z) = cm [ ] € span {e*}m

and so, for some A\, € C,

27 J_ .
1 [T &

_ in(x—y)

= QW/ﬂnE_mA e f(y) dy

— Em: )‘n/ﬂ- efinyf(y) dy einx € span {einx m )
—~ \2r J_, nemm

We claim that in fact f,, — f uniformly in the L., norm, so also in Ls, and the proof will
be complete. By periodicity,

1 ™

fm(x) = o | f@—y)kn(y)dy,
and, by (3.2),
F@) =5 [ F@knln)dy

Thus, for any § > 0,
@) = @) = 52| [~ (e =) = 1)) ]
e
<

If(x —y) — f(@)|kn(y) dy

>~ ﬂ .
- 2i |f(x —y) — f(2)|kn(y) dy
T Js<ly|<m
L ) - Skt iy
T Jlyl<s

Given € > 0, since f is continuous on [—m, |, it is uniformly continuous. Thus there is 6 > 0
such that |f(x —y) — f(z)] < €/2 for all |y| < 4, and the last term on the right side above is
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bounded by /2. For the next to last term, we note that from (3.2),

L Cm i <1+COSJ§)m I
0

T 2
cm [T <1—|—cosa:)m .

> — _— sin x dx
™ 0 2

 (m+Dr’

which implies that
em < (m+1)m.
Now f is continuous on [—, 7|, so there is M > 0 such that |f(x)| < M. Thus for |y| > 4,

km@>su+qmw<1+0%5)m :

5 i
for m large enough. Combining, we have that

4M
1 [ € €
m(x) — < — 2M—d —=c.
) = )| < 50 [ oMy =e

We conclude that f, == f uniformly. O

3.5. Weak Convergence in a Hilbert Space

Because of the Riesz Representation Theorem, a sequence {x,}5° ; from a Hilbert space H
converges weakly to z is and only if

(Tn,y) — (z,9) (3.3)

for all y € H. In fact, if {eq}aez is an ON base for H, then z, =, z if and only if the Fourier
coefficients

n—oo

(Tn, €a) — (2, €q) (3.4)

for all « € 7.

Clearly (3.3) implies (3.4). On the other hand suppose (3.4) is valid and let y € H. Since
{€a}aez is an ON base, we know from the Riesz-Fischer Theorem that span{e, }qe7 is dense in
H. Let € > 0 be given and let {c,}aez be a collection of constants such that ¢, = 0 for all but
a finite number of a and so that z = ) .7 ca€a € span{eq faer satisfies

ly— 2l <e.
Because of (3.4),

(n, 2) = (2, 2)

since z is a finite linear combination of the e,’s. But then,

limsup |(x, — z,y)| < limsup |(z, — x,y — 2)| + limsup |(z,, — z, 2)|
n—oo n—oo n—oo

= limsup | (25 — @,y — 2)|
n—oo

s(mmmw+ww)m—zu
n>1

< Me .
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It follows that
lim |(z, —z,y)| < Me ;

n—oo

and as € > 0 was arbitrary and, provided M is finite and does not depend up ¢, this means that
lim (zn,y) = (z,y) ,
n—oo

as required.
On the other hand {z,}7>; weakly convergent implies it to be weakly bounded, and hence
by the Uniform Boundedness Principle, {o,}22 is bounded in norm.

ExAMPLE. Consider Lo(—m,7) and consider the ON set

{einac 00
n=-—oco *

This sequence converges weakly to zero, for obviously if m is fixed,
(eznx’ ezmz) — O

for n > m. However, as [[e"* — 7| =

and so has no strong limit.

V2 for n # m, the sequence is not Cauchy in norm,

3.6. Basic spectral theory in Banach spaces

We turn now to a discussion of spectral theory, which is concerned with questions of invert-
ibility of an operator. Initially our theory will be developed for operators in any Banach space;
later we will restrict to Hilbert spaces. So let X be a complex Banach space (so F = C) and
T € B(X,X) a bounded linear operator. The range or image of 7" is R(T) C X, and the null
space or kernel is

NT)={zeX:Tx=0}C X .
For A € C, we consider
Tn=T—- A,

where [ is the identity operator on X. There are two possibilities. Either T is one-to-one
(N(T) = {0}) and onto (R(T) = X), i.e., Ty invertible, or it is not.

DEFINITION. If T is invertible, then A is said to be in the resolvent set of T', denoted
p(T) C C. That is,

Aep(T)={peC:T, =T — pul is one-to-one and onto} .
Also, T;l is then called the resolvent operator.
PROPOSITION 3.24. If A € p(T), then T ' € B(X, X).
Proor. This follows from the open mapping theorem. O

If A € Cis not in p(T), then T) is not invertible. In infinite dimensions, there are several
possibilities for why A fails to lie in p(T).

DEFINITION. If A ¢ p(T'), then we say that A lies in the spectrum of T. We denote the
spectrum of T" by

o(T) =C\ p(T) = {n € C: T}, is not both one-to-one and onto} ,



78 3. HILBERT SPACES

and subdivide it into the point spectrum of T,
op(T) = {pn € C: T, is not one-to-one} ,
the continuous spectrum of T,
o.(T) = {p € C: T}, is one-to-one and R(T},) is dense in X, but Tu_l is not bounded} ,
and the residual spectrum of T,
or(T) = {p € C: T, is one-to-one and R(7},) is not dense in X} .

PROPOSITION 3.25. The point, continuous, and residual spectra are disjoint and their union
is o(T).

PROOF. We need only show that if 7), is one-to-one, has dense range, and T, I'is bounded,
then p € p(T), i.e., T, is onto. If so, the proposition is obvious.
Let S =T, ' : R(T,) — X, a bounded linear operator. We note that by density of R(T},)

and completeness of X, S extends to S € B (X, X), defined by
Sy = lim Sy,
for any y € X and y, — y with {y,};2; C R(T},) (the reader should verify that indeed S so

defined is in B(X, X)).
Now for any such y and {y,}°°,

S’yn:Syn:Tu_lynExneX.
but then z, = S’yn — S’y =ux € X, so, since T}, is continuous,
Yn = Tpry — Ty .
Thus T,z = y, and T}, is onto. O
If X € 0p(T), then
N(Ty) # {0} ,
so there are x € X, x # 0, such that Thx = 0; that is,
Tr =X\ .

DEFINITION. The complex numbers in 0,(7") are called eigenvalues, and any = € X such
that  # 0 and

Tx =Mz
is called an eigenfunction or eigenvector of T' corresponding to A € op(T).

LEMMA 3.26. Let X be a Banach space and V € B(X,X) with ||V| < 1. Then I =V €
B(X, X) is one-to-one and onto, hence by the open mapping theorem has a bounded inverse.

PRrOOF. Let N > 0 be an integer and let

N
Sy=T+V4+V2i4. 4 VN ="y,
n=0
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Then Sy € B(X, X) for all N. The sequence {Sy}%_; is Cauchy in B(X,X), for if M > N,
then

M M
1Sm — SN llBx,x) = H Z v DX < Z V1B, x)
n=N41 n=N+1

and this tends to zero as N — oo since = [|[V||g(x,x) < 1 implies > 3% u* < +00. Since
B(X, X) is a Banach space, it follows that there is an S € B(X, X) such that Sy — S.

We now show that (I — V)S = S(I — V) = I. First, for each N = 1,2,..., obviously
V Sy = SyV and hence V commutes with S. Second, notice that

VSNISN+1—[:VN+1+SN—I.
Rearranging gives
(I-V)Sy=1I-VN+L, (3.5)
On the other hand VN*! — 0 in B(X, X) since
VY s < VIR — 0

as N — oo. Since Sy — S in B(X, X), it follows readily that T'Sy — T'S for any T' € B(X, X).
Thus we may take the limit as N — o0 in (3.5) to obtain

(I-V)S=I=8(I-V),

the latter since V and S commute. These two relations imply I — V' to be onto and one-to-one,
respectively. O

COROLLARY 3.27. If V is as above, then
I-v)y't=>vr.
n=0

The latter expression is called the Neumann series for V.

COROLLARY 3.28. Let X be a Banach space. Then the set of invertible operators in B(X, X))
18 open.

PROOF. Let A € B(X,X) be such that A~! € B(X,X). Let ¢ > 0 be such that ¢ <
1/[[A7Y 5(x,x)- Choose any B € B(X, X) with ||B|| < e. Then A+ B is invertible. To see this,
write

A+B=A(I+A"'B)
and note that
1A' Bllpxx) < 1A Isixx)IBlax.x) < ellA  pxx) <1.

Hence I + A~!'B is boundedly invertible, and thus so is A(I + A~!B) since it is a composition
of two invertible operators. O

COROLLARY 3.29. Let T € B(X, X). Then p(T) is an open subset of C.
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PrOOF. If A € p(T), then T'— AI is invertible. Hence T'— Al + B is invertible of || B||p(x,x)
is small enough. In particular,
T— XN —ul

is invertible if |p| is small enough. Thus A € p(T') implies A + p € p(T) if |p| is small enough,
and so p(7T) is open. O

COROLLARY 3.30. Suppose X is a Banach space and T' € B(X, X). If R = ||T'||g(x x), then

o(T) < Br(0) .
PrROOF. We show that if |A| > R, then A € p(T"). But this is straightforward since

1
T—-XN=-\I-3T
(r=57)

and |17 = ‘—}\'HTH <1 O
COROLLARY 3.31. Let X be a Banach space and T € B(X,X). Then o(T) is compact.
PROOF. It is closed and bounded. g

We should caution the reader that we have not shown that o(T") # 0; such is possible. To
continue, we will restrict to certain classes of operators where we can say more.

REMARK. Although we have required T' € B(X, X), much of the theory can be developed
for unbounded linear operators that are densely defined, that is, for a linear operator T' with
domain of definition D(T') C X dense in X, and with range R(T) C X. However, strange things
can happen. For example, let X = Ly(—1,1) and T = d/dz. Then D(T) = C'(-1,1), say,
which is dense in X, but 7" is unbounded (consider f(z) = sinnz € X). Let A € C and note
that

(T — \)eM =0 .
Hence every A € C is an eigenvalue, 0(T) = 0,(T) = C, and p(T) = 0.

3.7. Bounded self-adjoint linear operators

We return now to an operator T' € B(H, H) defined on a Hilbert space H. Because of the
Riesz representation theorem, the adjoint operator T* : H* — H* is also defined on H = H*.
That is, we consider that T* € B(H, H). In this case, we call T* the Hilbert-adjoint operator
for T'. Let us consider its action. If L, € H* for some y € H and x € H, then, by definition,

(T"Ly)(x) = Ly(Tz) = (T,y) .
Now T*L, = L, for some z € H. Call z = T*y, and then T*L, = L+, so
(2, T*y) = (Tz,y) YV z,y € H .

PROPOSITION 3.32. Let H be a Hilbert space and T € B(H,H). Then T = T and
(T*z,y) = (v, Ty) V z,y € H.

ProOF. Exercise. ]
We consider maps T for which T = T*.

DEFINITION. If H is a Hilbert space, T' € B(H, H), and T' = T™ (interpreted as above), then
T is said to be self-adjoint or Hermitian.
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PROPOSITION 3.33. Let H be a Hilbert space and T' € B(H, H).
(a) IfT is self-adjoint, then
(Tz,z) e R YzeH.

(b) If H is a complex Hilbert space, then T is self-adjoint if and only if (Tx,z) is real for
allx € H.

PrOOF. (a) We compute

(Tz,z) = (z,Tz) = (x, T*z) = (Tz,x) €R .
(b) By (a), we need only show the converse. This will follow if we can show that
(Tz,y) = (T"x,y) Va,yecH.

Let a € C and compute

R > (T(m + ay),x + ay)
— (Tz,2) + [Ty, y) + a(Ty, ) + &(Tz,y) .
The first two terms on the right are real, so also the sum of the latter two. Thus
R > &(Tx,y) + a(T*z,y) .

If a = 1, we conclude that the complex parts of (Tx,y) and (T™z,y) agree; if a = 4, the real
parts agree. O

We isolate an important result that is useful in other contexts.

LEMMA 3.34. Suppose X and Y are Banach spaces and T € B(X,Y). Suppose that T is
bounded below, i.e., there is some v > 0 such that

[Tzlly 2 ylzllx VazeX.
Then T is one-to-one and R(T) is closed in'Y .

Proor. That T is one-to-one is clear by linearity. Suppose for n =1,2,..., y, = Txy, is a
sequence in R(T') and that y, — y € Y. Then {y,} 2, is Cauchy, so also is {z,}2° ;. Since X is
complete, there is € X such that x,, — x. Since T is continuous, y, = Tz, — Tx =y € R(T);
that is, R(T') is closed. O

THEOREM 3.35. Let H be a Hilbert space and T' € B(H, H) self-adjoint. Then o,(T) C R.
Moreover, A € p(T) if and only if there is some v > 0 such that

[Tzl = Ayllzl| VaeeH.

~ ProoF. If A € 0(T) and Tz = Az for x # 0, then \(z,v) = (Tz,z) = (z,Tx) = (v, \z) =
Az, x); thus A = \ is real.
If A € p(T), then the final conclusion follows from the boundedness of T L

]l = 1Ty ozl < 175 1Tz
and the fact that T/\_1 Z 0.
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Finally, suppose T is bounded below. By the lemma, T} is one-to-one and R(T}) is closed.
If R(Ty) # H, then there is some ¢ € R(Ty)*, and, ¥V = € H,

0= (Thz,z0) = (Tx,z0) — Az, x0)
= (z,Txo) — Nz, z0)
= (H?,Tj\.f()) .

Thus Tyxo = 0, or Txg = Azg and A € 0,(T). But then A = X € 0,,(T), and T}, is not one-to-one,
a contradiction. Thus R(T)\) = H and X € p(T). O

COROLLARY 3.36. The spectrum o(T) of a bounded self-adjoint linear operator T on a Hilbert
space H is real.

PROOF. Suppose A = a+ i3 € o(T), where o, 3 € R. For any z # 0 in H,
(Tha,z) = (Tz,x) — ANz, x)
and
Tow,2) = (Tz,2) — A, ) |
since (Tx,x) is real. Thus
(Tha,z) — (Dhz, x) = 2iB(x, ) |

or

1 -
Bllal? = o |(Dna,2) = Bz 2)| < [Tl o] -

As z # 0, we see that if 3 # 0, T) is bounded below, and conclude A € p(T'), a contradiction. [

COROLLARY 3.37. The residual spectrum o,(T) of a bounded self-adjoint operator T on a
Hilbert space H is empty.

PRrROOF. Suppose not. Let A € g,. Then T}, is invertible on its range

7o' R(Ty) — H

but
R(T\) # H .
Let
—
y € R(T)) \ {0} .
Then, V x € H,

0= (Thz,y) = (x, Thy) .

Let z = Ty to conclude that Thy = 0, i.e., A € 0,(T). Since o,(T) N o,(T) = 0, we have our
contradiction. O

Thus the spectrum of T is real and consists only of eigenvalues (0,(7")) and the continuous
spectrum. In fact we can bound ¢(7") on the real line.
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PROPOSITION 3.38. Let H be a Hilbert space and T € B(H, H) be a self-adjoint operator.
Then

o(T) C [r,R]
where

r= inf (T'z,x) and R= sup (T'z,x) .
ll=|=1 lz||=1

PROOF. Let ¢ > 0 and let A= R+ c¢ > R. Let x # 0 and compute

(Ta0) = el (7(;55). 55 < lelP.

llzll
On the other hand,
—(Tz = Az,z) = =(Th, ) < || Taz]| ||=]] ,
and
~(Tz = Av,x) = —(Tz,z) + Az|* = ~[|z[]*R + All||* = c|«* .
It is concluded that
[Tox]| = cll]] 5

hence, A € p(T).
A similar argument applies in case A = r — ¢ where ¢ > 0. Write for x # 0

(Ta0) = lal? (7 (55), 55 ) = ol

[El
On the other hand,
(Tx — Ar,x) = (Tha,z) < || Thx| ||| ,

and
(Tx — Az, z) = (Tz,z) — Mz|* > (r = )|z = c|lz]|* ,
so A € p(T). O
We call
(T, )

the Rayleigh quotient of T at x. The result above is that
o(T) C | inf g(2) , 21;ISQ(=’E)
The next two results show the importance of the Rayleigh quotient of a self-adjoint operator.
PROPOSITION 3.39. Let H be a Hilbert space and T € B(H, H) a self-adjoint operator. Then
IT|| = sup |(Tz,z)] .

[J]|=1
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PROOF. Let
M = sup |(Tz,x)| .
ll=f|=1
Obviously,
M <7 .

If T'=0, we are done, so let z € H be such that Tz # 0 and ||z|| = 1. Set
v=|Tz|"?z , w=|Tz|"/Tz.
Then
ol = Jlwl]|* = || T2
and, since T is self-adjoint
(T(v +w),v+ w) - (T(U —w),v — w) =2 {(Tv,w) + (Tw,v)] = 4||Tz|*,
and
’(T(v+w),v+w> — (T(v—w),v—w)’ < ‘(T(v—i—w),v—i—w)’ + ‘(T(U—?U),U—U))‘
<M (o +wl* + o - wl)
=2M (|lv]]* + [[w]®)

=4M||Tz| .
We conclude that
Tz < M,
and, taking the supremum over all such z,
1T} < M .
Thus ||T)| = M. O

PROPOSITION 3.40. Let H be a Hilbert space and T € B(H, H) self-adjoint. Then

r= ”irnlfl(Ta:,a:) co(T)

and

R = sup (Tz,z) € o(T) .
l]|=1

That is, the minimal real number in o(7T) is r, and the maximal number in o(7T) is R, the
infimal and supremal values of the Rayleigh quotient.

Proor. Obviously, A € o(T') if and only if A + o € o(T},), so by such a translation, we may
assume that 0 < r < R. Then ||T|| = R and there is a sequence {z,}7°; such that ||z,| =1
and

1

Tnan:R_*-
(Tan,va) = R~
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Now
| Trza|l* = | T2n — Ranll?
= | Tz,|]? = 2R(Txp, x,) + R
1 2
<2r*—2R(R- ) 2.
n n
Thus Tg is not bounded below, so R ¢ p(T), i.e., R € o(T'). Similar arguments show r €
o(T). O

We know that if 7' € B(H, H) is self-adjoint, then (T'z,x) € R for all x € H.
DEFINITION. If H is a Hilbert space and T' € B(H, H) satisfies
(Tz,z) >0 VxeH,
then T is said to be a positive operator.

PROPOSITION 3.41. Suppose H is a complex Hilbert space and T € B(H,H). Then T is a
positive operator if and only if o(T') > 0. Moreover, if T is positive, then T is self-adjoint.

Proor. This follows from Proposition 3.33 and Proposition 3.38. O

EXAMPLE. Let H = L(2) for some 2 C R% and ¢ : Q — R a positive and bounded function.
Then T : H — H defined by

(Tf)(x) = $(@)f(a) Vel
is a positive operator.
An interesting and useful fact about a positive operator is that it has a square root.

DEFINITION. Let H be a Hilbert space and T' € B(H, H) be positive. An operator S €
B(H, H) is said to be a square root of T if

S2=T.
If, in addition, S is positive, then S is called a positive square root of T, denoted by
S =12,

THEOREM 3.42. FEvery positive operator T € B(H, H), where H is a Hilbert space, has a
unique positive square root.

The proof is long but not difficult. We omit it and refer the interested reader to [Kr,
p. 473-479].

3.8. Compact operators on a Banach space

An important class of operators exhibit a compactness property. We will see examples later.

DEFINITION. Suppose X and Y are NLS. An operator T : X — Y is a compact linear
operator (or completely continuous linear operator) if T is linear and if the closure of the image
of any bounded set M C X is compact, i.e., T(M) C Y is compact. (We call a set with compact
closure precompact.)

PROPOSITION 3.43. Let X and Y be NLS. If T : X — Y 1is a compact linear operator, then
T is bounded, hence continuous.
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PROOF. The unit sphere U = {z € X : ||z|| = 1} in X is bounded, so T'(U) is compact. A
compact set in Y is necessarily bounded, so there is some R > 0 such that
T(U) C Br(0) CY ;
that is,
1T = sup [[Tz]| < R < o0,
zeU

soT € B(X,Y). O
Compactness gives us convergence of subsequences, as the next two lemmas show.

LEMMA 3.44. Suppose (X,d) is a metric space. Then X is compact if and only if every
sequence {xn}o2; C X has a convergent subsequence {n, }72 .

PROOF. Suppose X is compact, but that there is a sequence with no convergent subsequence.
For each n, let

Op = inf d(zp,zm) .
m#n
If, for some n, d,, = 0, then there are x,,, such that
1
% 9
that is, z,,, — =, as k — o0, a contradiction. So ¢,, > 0 V n, and

(e}, 0 (U 6)

is an open cover of X with no finite subcover, contradicting the compactness of X and estab-
lishing the forward implication.

Suppose now that every sequence in X has a convergent subsequence. Let {U,}acz be a
minimal open cover of X. By this we mean that no U, may be removed from the collection if
it is to remain a cover of X. Thus for each o € Z, 3 z, € X such that z, € U, but z, ¢ Ug
VY 8 # «. If T is infinite, we can choose a,, € Z forn = 1,2,... and a subsequence that converges:

d(xp, Tm,, ) <

Lo, —x€X as k— 00.

"k

Now z € U, for some v € Z. But then 3 N > 0 such that for all £ > N, Ta,, € U,, a
contradiction. Thus any minimal open cover is finite, and so X is compact. O

LEMMA 3.45. Let X and Y be NLS’s and T : X — Y linear. Then T is compact if and
only if T maps every bounded sequence {x,}>2, C X onto a sequence {Txzp}22, C Y with a
convergent subsequence.

Proor. If T is compact and {z,}7°; bounded, then the closure in Y of {T'z,} 2, is com-
pact. Since Y is a metric space, the conclusion follows from the previous lemma.

Conversely, suppose every bounded sequence {x,,}72 | gives rise to a convergent subsequence
{Tz,}22 . Let B C X be bounded and consider T'(B). This set is compact if every sequence
{yn}32, C T(B) has a convergent subsequence. For each y,, € 9T (B), choose {ynm}5°_, C T(B)
such that

1
”yn,m - ?JnH < —
m
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and z, ,, € B such that y, m = Tz ;. Then {z,,}22, is bounded and there is a convergent
subsequence

ynk,nk = Txnk,nk — Y S (B) as k' — O .

But then
1Yne = Yl < llynne =yl + lYn, = Ynenel
1
<|NYngmp —Yll +— —0 as k— oo,
ng
SO Yn, — Yy and, by the previous lemma, W is compact. U

Trivial examples of compact operators abound, as shown by the following proposition.

PROPOSITION 3.46. Let X and Y be NLS’s andT : X — Y a linear operator. Then

(a) If X is finite dimensional, then T is compact.
(b) If T is bounded and Y is finite dimensional, then T is compact.
(¢) If X is infinite dimensional, then I : X — X is not compact.

PRrOOF. For (a), we note that necessarily 7" is bounded when T is linear and dim X < oo,
and R(T) is finite dimensional. Thus (a) follows from (b), which is trivial since closed bounded
sets in finite dimensional spaces are compact. The non compactness of such sets in infinite
dimensions gives (c). O

We denote the collection of all compact operators T': X — Y by
C(X,Y)C B(X,Y).

Clearly C(X,Y) is a linear subspace, as a finite linear combination of compact linear operators
is compact. This set is also closed in B(X,Y’) when Y is complete, by the following theorem.

THEOREM 3.47. Suppose X is a NLS and Y a Banach space. Let {1}, C C(X,Y) be
convergent in norm to T € B(X,Y),

T, —T||—0 as n— oo .
Then T € C(X,Y). That is, C(X,Y) is a closed linear subspace of B(X,Y).
PrROOF. We make extensive use of Lemma 3.45. Let {z,}7°; C X be bounded. Then
{Thzp}72, C Y has a convergent subsequence. Denote it by {T1x1,}02;. Then {z1,}72, is

bounded, so {Tox1,}52; has a convergent subsequence. Denote it by {T>z2 ) }22 . Continuing,
we obtain subsequences of {x,}5° ; satisfying

{xk,n}gozl ) {xlc—l—l,n}?zozl Vk

and T,z ,, converges as m — oo. We now apply a diagonalization argument by considering the
sequence

{nn}is = {E)72, C X .

For each n > 1, the sequence {7, }>°_; converges, since convergence depends only on the tail
of the sequence. We claim also that {T'Z,,}>°_; is Cauchy, and therefore T is compact. Let
€ > 0 be given and find N > 1 such that

Ty — T < e .
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Let M bound {z,}52 ;. Then for any &, and Z,,
Tz, — T < || TZn — TNZn|| + | TNTn — TNZm|| + (| TNZm — TZm |
< 2eM + |[TN&n — TNZm|| -
Since the last term above tends to zero as n,m — oo, we have our desired conclusion. ]

EXAMPLE. Let X =Y = /5 and define T € B(X, X) by

1 1
Tx = T(Jfl,ﬂj‘g,.. ) = (iL‘l, 5:1,‘2,5113,. . ) .

If we define

then T;, is compact. But

0o
1

HT—TWQZSWHEM—TﬂFZSW 2: |%F Y. o=
llzll=1 llzll=1 Jj= n+1 Jj= n+l]

the tail of a convergent sequence. Thus T;,, — T', and we conclude that T is compact.

A useful property of a compact operator T' : X — Y is that it is sequentially continuous
when X has the weak topology.

THEOREM 3.48. Suppose X and Y are NLS’s and T € C(X,Y). If {x,}°2, C X is weakly
convergent to x € X, 1t.e.,

Tp —
then we have the norm or strong convergence for a subsequence
Txy, — Tz .

Proor. Let y, = Tx, and y = Tx. We first show that y, — y. Let ¢ € Y* and define
f: X —=Fby

f(z) =9(Tz) .
Then f is clearly linear and continuous, and so
that is,

9(Yn) — 9(v)

and we conclude y, — .
Suppose y, does not converge strongly to y. Then {y, }22; has a subsequence {y,, }7°, such
that

ly = yn, |l > VE (3.6)

for some € > 0. Since {x,}22, converges weakly, it is also bounded. Thus {Tz,, }3, has a
convergent subsequence {TZL‘n } 21 with limit, say, y € Y. That is, Txs, — y as j — oco. But
then also T'rj; — g, so gy = y. But

M — Txﬂj —Y
contradicts (3.6) O
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PROPOSITION 3.49. Suppose X is a NLS, T € C(X,X). Then o,(T) is countable (it could
be empty) and its only possible accumulation point is 0.
PrOOF. Let r > 0 be given. If it can be established that
op(T) N{A A =7}

is finite for any positive r, then the result follows.

Arguing by contradiction, suppose there is an 7 > 0 and a sequence {\,}72 of distinct
eigenvalues of T with |\,| > r > 0, for all n. Let {z,}>2, be corresponding eigenvectors, ,, # 0
of course. The set {z, :n=1,2,...} is a linearly independent set in X, for if

N
Zajxj =0 (37)
7=1

and N is chosen to be minimal with this property consistent with not all the o; being zero, then

N N
0= TAN <Zaja:j> == Zaj()\j - )\N)Ij .
J=1

J=1

Since A\j—An # 0for 1 < j < N, by the minimality of IV, we conclude that o; = 0,1 < 5 < N—1.
But then ay = 0 since xn # 0. We have reached a contradiction unless (3.7) implies a; = 0,
1<j<N.

Define

M, = span{z1,... ,z,} ,

and let x € M. Then =z = 2?21 ajz; for some o € F. Because T'xj = \jx;, T : M,, — M, for

all n. Moreover, as above, for z € M,
n n—1
T,\nx = Z()éj()\j - )\n)xj = Zaj()\j - )\n)ij .
j=1 j=1

Thus it transpires that
Ty (M) C Mn_y, n=12....
Let y € My, \ M,,—1 and let
d = dist{y, M,,_1} > 0.
Then there is a yg € M,,_1 such that
d <y —woll <2d,
say. Let z, = (v — yo)/|ly — yol| so that [|z,|| = 1. Let w € M,,_; be arbitrary and note that

1
o — W =H—y—yo —wH
S e
1
=7Hy—yo—Hy—yonH
ly — yoll
> g1
ly — yoll 2

since yo + ||y — yollw € My—1.
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Thus there is a sequence {z,}72; in X for which z, € My, ||z,]| = 1 and
1

|z, — w|| > 5 for all we M, . (3.8)

Let n > m and consider
Tzy —Tzpm = Apzn — T
where
T=Mon—Tzn+T2m =T, 2n+ T2 .
As above, T\, zn, € Myp—1 and Tz, € M, C M,_;. Thus & € M,_1, and because of (3.8), we
adduce that (z = Z/|\,| € My—1)
1 1
Tz, — Tzm|| = | Al l|2n — ]| > 5\)\,1| > 57 >0.

Thus {7z, }°° ; has no convergent subsequence, and this is contrary to the hypothesis that 7" is
compact and the fact that {z,}7° is a bounded sequence. O

PROPOSITION 3.50. Suppose that X is a NLS and T € C(X,X). If X # 0, then N(T)) is
finite dimensional.

ProoF. If X ¢ 0,(T), then dim{N (7))} = 0, so we can assume X € 0,(T"). Let B be the
closed unit ball in N(T}), so that

B =B1(0) N N(T)) .

Let {x,};2, be any sequence in B. Since B is bounded, there is a subsequence {z,, }32, such
that {T'z,, }7°, converges, say

Tz, — 2z as k— o0 .

But Tx,, = Az,, and A # 0, so x,, — %z = w, say. As B is closed, w € B. Thus B is
sequentially compact, thus compact. Since N(T}) is a Hilbert space, its closed unit ball can be
compact only if

dim N (Ty) < +o0 . O

THEOREM 3.51. Let X be a Banach space and T € C(X,X). If A\ € o(T) and X\ # 0, then
X € 0p(T). That is, all nonzero spectral values are eigenvalues.

PRrROOF. Let A € o(T") and X # 0. If XA ¢ 0,(T'), then T}, is one-to-one but R(T)) # X.
Consider the nested sequence of closed subspaces

X 2RI 2 R(TY 2+ 2R(IF) 2+ .
This sequence must stabilize for some n > 1, which is to say
R(T}) = R(T3™) .
If not, then use the construction in the last proposition to produce a sequence {z,}>>, with
Tn € R(TY) , |lznl =1 n=01,...,
where R(TY) = R(I) = X by convention, having the property

1
lzn — || > g forall ze R(TYH) .
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As before, if n > m, then
Ty —Te, =Thxm — ThTm, + ATm — AT, = AT — T,
where
T =y, +Dha, —Tham,m =Ar .

But z, € R(T}), Taan € R(TY™) C R(TY) and Thzy, € R(TYT). Hence # € R(TY™), and
N 1
Aam =2 = Al |2m — 2l = SIAl -

Hence {x,}5°, is a bounded sequence such that {Tz,}2°; has no convergent subsequence, a
contradiction to the compactness of T
Thus there is an n > 1 for which

R(T{) = R(T3HY)
Let y € X \ R(Ty). Consider T{'y € R(T}) = R(T{"*!). There is an z such that
e =Ty,
SO
TV (y—Thx)=0.
As T) is one-to-one, this means
y—Tha=0,
ie., y € R(T)), a contradiction. O

COROLLARY 3.52 (Fredholm alternative). Suppose X is a Banach space, A € F, X # 0, and
TecC(X,X). Let y € X and consider
(T—MN)x=Thz=y . (3.9)
Either

(a) there exists a unique solution x € X to (3.9) for any y € X; or
(b) there is some y € X with no solution, and if y € X has one solution, then it has
infinitely many solutions.

PROOF. Exercise. Look at the possible spectral values of T O

3.9. Compact self-adjoint operators on a Hilbert space

On a Hilbert space, we can be very specific about the structure of a self-adjoint, compact
operator. In this case, the spectrum is real, countable, and nonzero values are eigenvalues with
finite dimensional eigenspaces. Moreover, if the number of eigenvalues is infinite, then they
converge to 0.

THEOREM 3.53 (Hilbert-Schmidt). Let H be a Hilbert space, T € C(H,H), and T = T*.
There is an ON set {u,} of eigenvectors corresponding to non-zero eigenvalues {\,} of T such
that every x € H has a unique decomposition of the form

T = E Aplp + 0,

where o, € C and v € N(T).
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ProOOF. By Proposition 3.40, there is an eigenvalue A; of T" such that

M| = sup [(Ta,a)] -
[lzl|=1

Let u; be an associated eigenvector, normalized so that ||uj|| = 1. Let Q1 = {u3}*. Then Q) is
a closed linear subspace of H, so (J1 is a Hilbert space in its own right. Moreover, if € 01, we
have by self-adjointness that

(Txvul) = (xaTul) = )‘1('%"“1) =0,

so Tx € Q1. Thus T : Q1 — Q1 and we may conclude by Proposition 3.40 that there is an
eigenvalue Ay with

Let ug be a normalized eigenvector corresponding to Ae. Plainly, u; 1 us. Let

Q={rcQ1:2 Luy} = {u,ua}* .

Arguing inductively, there obtains a sequence of closed linear subspaces {@y, }. At the n-th stage,
we note that if z € Q,, = {u1,... ,u,}*, then for j =1,... ,n,

(Tz,uj) = (x,Tuj) = Nj(z,u;) =0,
so T : @, — Qn. Thus there is an eigenvalue A\, with

[Anta| = sup [(Tz, z)]

[l=]|=1
ren
and an eigenvector uy+1 with ||u,11]] = 1 corresponding to Ap4;.
Two possibilities occur. Either we reach a point where (Tz,z) >0V z € @, but
(Tz,z) =0 (3.10)

for all z € Q11 for some n, or we don’t. If (3.10) obtains, then with Ty = T'|q,,,,, our theory
shows that
T = sup |(Tz,2)| =0 .
$€Qn+1

Hence T vanishes on Qp+1, and Qn+1 C N(T). Equality must hold since T' does not vanish
on span{ut, ... ,u,} \ {0}, as Tz = 370, Ajoju; = 0 only if each a; = 0 (the A; # 0). Thus
Qn+1 = N(T') and we have the orthogonal decomposition from H = span{ui,... ,un} ® Qni1:
Every x € H may be written uniquely as

n
T = g Qjuj +v
Jj=1

for some v € {u1,... ,up}t = Qui1.

If the procedure does not terminate in a finite number of steps, it generates an infinite
sequence of eigenvalues {\,}7°; and eigenvectors {u,}° ;. By our general results, we know
that although the A\, may repeat, each can do so only a finite number of times. Thus

A — 0 as n— 0.
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Let H; be the Hilbert space generated by the ON family {u,}5° ;. Every element z € H is
written uniquely in the form

oo
x = Z(:):, uj)uj + v
j=1

for some v € Hi-, since H = Hy @ Hi-. It remains to check that Hi- = N(T). Let v € Hi,
v # 0. Now,

Hf‘CQn forall n=1,2,...,

so it must obtain that

T T
oo, 1T
o]l o |
The right-hand side tends to zero as n — +o0o, whereas the left-hand side does not depend on
n. It follows that

= |Ans1] -

(Tw,v) =0 for all ve Hi .

Thus To =T 4 L vanishes, as

T3] = sup |[(Tv,v)| =0,
llv]=1
v€H1l

so Hi- C N(T). For z € Hy, for some scalars 3,,

n=1 n=1

n=1
and we conclude that T': Hy — H; is one-to-one and onto (each \,, # 0). Thus N(T')NnH; = {0},
so N(T) = H{-. O

THEOREM 3.54 (Spectral Theorem for Self-Adjoint Compact Operators). Let T' € C(H, H)
be a self-adjoint operator on a Hilbert space H. Then there exists an ON base {vy}act for H
such that each vy is an eigenvector for T'. Moreover, for every x € H,

T = Z Aa(Z,v0)0q (3.11)
a€el

where Ay is the eigenvalue corresponding to v,,.

PRrROOF. Let {u,} be the ON system constructed in the last theorem. Let H; be the closed
subspace containing the {u,}. Let {es}scs be an ON base for Hi-. Then

{estpes U {un}
is an ON base for H. Moreover,

Teg=0 VBeJT,

so the eg are eigenvalues corresponding to the eigenvalue 0.
We know that for x € H,

N
Z(m,un)un

n=1
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converges to x in H. Because 7' is continuous,

N N
Z An (@, up Uy = T(Z(:ﬁ,un))un — Tz .
n=1 n=1
That is, (3.11) holds since A\, = 0 for any index « corresponding to a 3 € J. O

We have represented a self-adjoint 7' € C(H, H) as an infinite, diagonal matrix of its eigen-
values. It should come as no surprise that if 7" is a positive operators, S defined by

Sx = Z \V/ )\a (x,ua)ua
acl
is the positive square root of T'. We leave it to the reader to verify this statement, as well as the
implied fact that S € C(H, H).

PROPOSITION 3.55. Let S,T € C(H,H) be self-adjoint operators on a Hilbert space H.
Suppose ST = T'S. Then there exists on ON base {vqa}acr for H of common eigenvectors of S
and T.

PROOF. Let A € 0(S) and let V), be the corresponding eigenspace. For any z € Vj,
ST =TSx=T(\z) = Tz =Tz V).

Therefore T : V), — V). Now T is self-adjoint on V) and compact, so it has a complete ON set
of T-eigenvectors. This ON set are also eigenvectors for S since everything in V) is such. g

3.10. The Ascoli-Arzela Theorem

We now discuss important examples of compact operators called integral operators. These
are operators of the form

(Tf)(x) = /Q Kz, 9)f () dy .

where f is in an appropriate Hilbert (or Banach) space and K satisfies appropriate hypothesis.
To demonstrate compactness, we will derive a more general result, known as the Ascoli-Arzela
Theorem, about compact metric spaces.

LEMMA 3.56. A compact metric space (M,d) is separable (i.e., it has a countable dense
subset).

PRrOOF. For any integer n > 1, cover M by balls of radius 1/n:
M= | By(x) .
zeM

By compactness, we can extract a finite subcover

Np,
M = Byjn(a}) (3.12)
=1

for some z}' € M. The set

S={a|i=1,... ,Ny;n=1,2...}

)
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is countable, and we claim that it is dense in M. Let z € M and € > 0 be given. For n large
enough that 1/n < e, by (3.12), there is some z! € S such that

T € Bl/n(x;l) ;
that is, d(z,27) < 1/n <e. Thus indeed S is dense. O

THEOREM 3.57 (Ascoli-Arzela). Let (M,d) be a compact metric space and let
C(M)=C(M;F)
denote the Banach space of continuous functions from M to F with the maximum norm

I£]l = max | f(2)] .

Let A C C(M) be a subset that is equibounded and equicontinuous, which is to say, respectively,
that

A C Bg(0)
for some R > 0 and, given € > 0 there is 6 > 0 such that

sup max |f(z) — f(y)] <e. (3.13)
feAd(zy)<s

Then the closure of A, A, is compact in C(M).

ProOF. It suffices by Lemma 3.44 to show that an arbitrary sequence {f,}°2,; C A has a
convergent subsequence. For each fixed x € M, {f,(z)}52 is bounded in F by R, and so it has

n=1
a convergent subsequence. Let {x; };";1 be a countable dense subset of M. By a diagonalization

argument, we can extract a single subsequence {fy, }?°, such that {f,, (z;)}72, converges for
each j. The argument is as follows. Let { fnk(z1)(x1)}z<):1 be convergent, and from the bounded
set { fn.(z1)(T2) 172, select a convergent subsequence {f, (z,)(72)}72,. Continuing, we obtain
indices

{rw(@1)}iZs O {nn(22) 152 O -

such that {f,, @z, (z;)}72, converges for all j < i. Finally, {f,, (z,)}32; is our desired subse-
quence.

Now let € > 0 be given and fix x € M. Let § > 0 correspond to ¢ via (3.13). There exists a
finite subset {Z,,}N_; C {z;}32, such that

N
| Bs(@m) > M,
m=1

since M is compact. Choose Z, such that
d(x,Zp) <9 .
Then for any ¢, j, by (3.13),
Fus(@) = fuy (@)
< fni(@) = fri @) + [ (Ze) = fry (@e)| + [ fn; (Ze) — fr; (@)
< 28+ | fu; (Te) — [, (T0)]

< 2+ 1%2(]\7 | fri(@m) = fr; (@m)] -

(3.14)
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Since each sequence of real numbers { fy, (Z,)}72, is Cauchy, we conclude that {fy, (z)}72 is
also Cauchy. Now define f : M — F by

fl@) = lim fu,(@)

This is the pointwise limit. However, since the right-hand side of (3.14) is independent of z,
we conclude that in fact the convergence is uniform, i.e., the convergence is in the norm of

C(M). 0

THEOREM 3.58. Let Q C R? be bounded and open, and K continuous on Q x Q. Let

X =C(Q) and defineT : X — X by

Tfa) = | Kla)iw)dy
(that T is well defined is easily checked). Then T is compact.

ProoF. Let {f,}72; be bounded in M. We must show that {7f,}22; has a convergent
subsequence. Since €2 is a compact metric space, the Ascoli-Arzela theorem implies the result if
the image of our sequence is equibounded and equicontinuous. The former follows since

1Tl < Ml 1K N axe) /Q da

is bounded independently of n. For equicontinuity, we compute

Thula) = Th)] = | [ (K(@2) = Kl 2)ful)

< Ul sup K (,2) = Ky )] [ do
2€Q Q

Since K is uniformly continuous on  x , the right-side above can be made uniformly small
provided |z — y| is taken small enough. O

By an argument based on the density of C'(£2) in L2(€2), and the fact that the limit of
compact operators is compact, we can extend this result to Ly(£2). The details are left to the
reader.

COROLLARY 3.59. Let Q C RY be bounded and open. Suppose K € Ly(2 x Q) and
T : Ly(Q2) — Lo(QY) is defined as in the previous theorem. Then T is compact.

3.11. Sturm Liouville Theory

Suppose I = [a,b] C R, a; € C*7(I), j = 0,1,2 and ap > 0. We consider the operator
L:C?*(I) — C(I) defined by

(Lz)(t) = ag(t)x" (t) + a1 (t)2'(t) + az(t)z(t) .
Note that L is a bounded linear operator.

THEOREM 3.60 (Picard). Given f € C(I) and zo,x1 € R, there exists a unique solution
x € C*(I) to the initial value problem (IVP)

{Lx:f’ (3.15)

z(z) =x¢ , 2'(a) =z .

Consult a text on ordinary differential equations for a proof.
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COROLLARY 3.61. The null space N (L) is two dimensional.

PROOF. We construct a basis. Solve (3.15) with f = 23 = 0, 9 = 1. Call this solution
2o(t). Clearly zp € N(L). Now solve for z;(t) with f = xz9p = 0, z; = 1. Then any x € N(L)
solves (3.15) with 29 = z(a) and z1 = 2/(a), so

(t) = x(a)z0(t) + 2/ (a)21(t)
by uniqueness. O
Thus, to solve (3.15), we cannot find L™! (it does not exist). Rather, the inverse operator

we desire concerns both L and the initial conditions. Ignoring these conditions for a moment,
we study the structure of L within the context of an inner-product space.

DEFINITION. The formal adjoint of L is denoted L* and defined by L* : C*(I) — C(I)
where

(C_lol‘)” — (C_Lll‘)/ + a2

= apx” + (2ay, — a1)x’ + (ay — @y + az)x

(Lz)(t)

The motivation is the Lo(I) inner-product. If 2,y € C?(I), then
(Lz,y) /
/ aox”§j + a12'y + azxy | dt

= / rL*ydt + [apz'y — x(aoy ) + amgj]g

a

= (z, L*y) + Boundary terms.

DEFINITION. If L = L*, we say that L is formally self-adjoint. If ag,a1, and ao are real-
valued functions, we say that L is real.

PROPOSITION 3.62. The real operator L = agD? + a1 D + ay is formally self-adjoint if and
only if af = a1. In this case,

Lz = (apx’)' + asx = D(agD)x + asx

1.€.,

L =DagD + as .

PROOF. Note that for a real operator,
L* = agD* + (2a} — a1)D + (af — d} + a2) ,

so L = L* if and only if

a1 = 2a6 —ap ,

agzag—a'1+a2 .
That is,

ai=ay and a)=af,

or simply the former condition. Then

Lz = agD*r + ayDx + agx = D(agDx) + agx .
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0

REMARK. If L = agD? + a1 D + as is real but not formally self-adjoint, we can render it so
by a small adjustment using the integrating factor

1
Q) = P ().
P(t) = exp(/ Z;E:; dT) >0,

for which P’ = a1 P/ag. Then
L= f+= Lo = f ,

where

L=QL and f=Qf.
But L is formally self-adjoint, since

Lz =QLx = P2 + Z—;Px’ + asQx
= P2" + P'z' + asQx
= (Pz') + (Z—iP)x
ExXAMPLES. The most important examples are posed for I = (a,b), a or b possibly infinite,

and aj € C*7J(I), where ag > 0 on I (thus ag(a) and ag(b) may vanish — we have excluded
this case, but the theory is similar).

(a) Legendre:

Le=(1-t)z")y, —-1<t<1.

(b) Chebyshev:
Lz =(1-2)"Y2((1 -2y,  —1<t<1.

(c) Laguerre:

Lz = e'(te”ta')’ 0<t<oo.
(d) Bessell: for v € R,

szi(tm')'—lgm, 0<t<l1.
(e) Hermite:

Lx = etQ(efth/)/ , teR.

We now include and generalize the initial conditions, which characterize N(L). Instead of
two conditions at ¢ = a, we consider one condition at each end of I = [a,b], called boundary
conditions (BC’s).

DEFINITION. Let p,q, and w be real-valued functions on I = [a,b], a < b both finite, with
p#0and w > 0. Let a1, a2, 1, and B € R be such that

o +a3#0 and BF+65#£0.



3.11. STURM LIOUVILLE THEORY 99

Then the problem of finding z(t) € C?(I) and A € C such that
Az = Li(pr') + qz] = Az, t € (a,b) ,
arz(a) + agx’(a) =0, (3.16)
Brz(b) + Bz’ (b) =0,

is called a regular Sturm-Liouville (regular SL) problem. It is the eigenvalue problem for A with
the BC's.

We remark that if @ or b are infinite or p vanishes at a or b, the corresponding BC' is lost
and the problem is called a singular SL problem .

EXAMPLE. Let I = [0, 1] and
Az = —2" = Xz te (0,1
{x(()) =z(1)=0 .’ = (3.17)
Then we need to solve
2+ =0,
which as we saw has the 2 dimensional form
z(t) = Asin VAt + beos VAt
for some constants A and B. Now the BC’s imply that
z(0)=B =0,
(1) = Asin VA =0.
Thus either A = 0 or, for some integer n,
VA =nm;
that is, non trivial solutions are given only for the eigenvalues
A = n?n?
and the corresponding eigenfunctions are
xn(t) = sin(nmt)
(or any nonzero multiple).
To analyze a regular SL problem, it is helpful to notice that
A:CHI) — C(D)

has strictly larger range. However, its inverse (with the BC’s), would map C°(I) to C*(I) C
CY(I). So the inverse might be a bounded linear operator with known spectral properties,
which can then be related to A itself. This is the case, and leads us to the classical notion of
a Green’s function. The Green’s function allows us to construct the solution to the boundary
value problem

Ax=f, t e (a,b),
az(a) + e’ (a) =0, (3.18)
Bix(b) + Paz’(b) =0,

for any f € C°(I).
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DEFINITION. A Green'’s function for the regular SL problem (3.16) is a function G : IxI — R
such that

(a) G € C°%I x I) and G € C*(I x I\ D), where D = {(t,t) : t € I} is the diagonal in
I x1I;

(b) For each fixed s € I, G(-, s) satisfies the BC’s of the problem;
(c) A applied to the first variable t of G(t,s), also denoted A;G(t, s), vanishes for (¢,s) €

[xI\D,ie.,
1[0, 0G
AG(,5) = o | 5 (0055 1.0)) + )G,
=0 V t#s;
e e 1
(d) 813{17 E(t’ s) — Slgg E(t, s) = ) for all ¢t € (a,b).

ExAMPLE. Corresponding to (3.17), consider
Ax = —2" = te (0,1
v=-a'=f, e, (3.19)
z(0)=2(1)=0,

for f € CO(I). Let
Then G satisfies (a) and

so (b) holds. Since w =1, p=—1, and ¢ =0,

62
AG(t,s) = —wG(t, s)=0 for s#t
and
oG 0

lim — = —t¢ Iim — =1-—t¢
s—t— Ot ’ s—t+ Ot ’

we also have (¢) and (d). Thus G(t, s) is our Green’s function. Moreover, if we define

1
x(t) :/0 G(t,s)f(s)ds ,
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then 2(0) = (1) = 0 and

(1) = jt{/tc;(t, $)£(s) ds+/1 G(t, 5)f(s) ds}

Lo
=G(t,t)f / Bt (t,s)f(s)ds — G(t,t)f(t) + o —(t,s)f(s)ds
Loa
- [ S,

s"(t) = dt{ ; 8Gfals—i— t 8Gfds}

8 L o2a@
= / 50 —fds —E(t t+)f(t)+/ altgfds

t
——f+/ 8t2fds

Thus we constructed a solution to (3.19) with G(¢, s).
THEOREM 3.63. Suppose that for the reqular SL system

1
Au = ELu = —[(pu) + qu] , t € (a,b) ,

1
w

aju(a) + g/ (a) =0,

Bru(b) + Bou/(b) =0,
on the interval I = [a,b], p € CY(I), w,q € C°(I), and p,w > 0. Suppose also that 0 is not
an eigenvalue (so Au = 0 with the BC'’s implies u = 0). Let uy and ug be any nonzero real
solutions of Au = Lu = 0 such that for uy,

ajuy(a) + asul(a) =0,

and for ug,

Bruz(b) + Pauz(b) =0 .
Define G: I xI —R by

2(t)ur(s) a<s<t<b
G(t,s) = | - 7
,S
w (8)uz(s) a<t<s<b
W ) i

where p(t)w(t) is a nonzero constant and
W (s) = W(s;ui,uz) = ui(s)u’ —2(s) — uj(s)ua(s)

is the Wronskian of u; and us. Then G is a Green’s function for L. Moreover, if G is any
Green’s function for L and f € C°(I), then

b
:/0 G(t,s)f(s)ds (3.20)

is the unique solution of Lu = f satisfying the BC'’s.
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To solve Au = f, just solve Lu = wf:

b
u(t) = / G(t,s)f(s)w(s)ds .
a
We first prove two lemmas concerning the Wronskian.

LEMMA 3.64 (Abel). Let Lu = (pu') + qu satisfy p € C*(I) and ¢ € C°(I). For any positive
w € COI) and A € C, if ug and uz solve

Lu = dwu ,
then
p(E)W (t;u1,u2)
18 constant.
Proor. We compute
0 = Mw(uyug — uguq)
= uyLug — us Luq
= uy (puly + p'uly + qua) — ua(pu + p'ul + qu’)
= plurug — uguf) + p'W
= (W)
O

LEMMA 3.65. Suppose u,v € CY(I). If W(to;u,v) # 0 for some tg € I, then u and v are
linearly independent. If u and v are linearly independent, then W (t;u,v) # 0 for allt € I.

PRrROOF. Suppose for some scalars a and 3,
au(t) + Pu(t) =0,
so also
au'(t) + B (t) =0 .
At t = tg, we have a linear system
[u(to) v(t@](a)(O)
u'(tg) V'(to) g ) \0)”

which is uniquely solvable if the matrix is invertible, i.e., if its determinant, W (t) # 0. Thus
a = =0 and we conclude that u and v are linearly independent.

Conversely, the linear independence of u and v requires the determinant W (t) # 0 for each
tel. d

PRrROOF OF THEOREM 3.63. The existence of u; and us follows from Picard’s Theorem 3.60.
If we use the standard basis

N(L) = span{zp, 21} ,

where
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then
Ul (t) = —OézZo(t) + o121 (t) Z0.

A similar construction at t = b gives ua(t).

If u1 = Aug for some A € C, i.e., u; and usg are linearly dependent, then uy # 0 satisfies both
boundary conditions, since A cannot vanish, and the equation Lu; = 0, contrary to the hypoth-
esis that 0 is not an eigenvalue to the SL problem. Thus u; and uo are linearly independent,
and by our two lemmas pW is a nonzero constant. Thus G(t, s) is well defined.

Clearly G is continuous and C? when t # s, since uy,uz € C?(I). Moreover, G(-, s) satisfies
the BC’s by construction, and A;G is either Au; = 0 or Aug = 0 for ¢t # s. Thus it remains
only to show the jump condition on 0G/Jt of the definition of a Green’s function. But

!/
wtuls) o cicy
Wig={ PV
ot
I”(l%f(s)7 a<t<s<b,
=)
oG, | oG, _ | uy(s)ui(s) uj(s)ua(s) 1
ot (s7,5) ot (s78) = pW W p(s)

If Lu = f has a solution, it must be unique since the difference of two such solutions would
satisfy the eigenvalue problem with eigenvalue 0, and therefore vanish. Thus it remains only to
show that u(t) defined by (3.20) is a solution to Lu = f. We use only (a)—(d) in the definition
of a Green’s function.

Trivially u satisfies the two BC’s by (b) and the next computation. We compute for ¢ € (a,b)

using (a):
(1) = jt(/abg(t’ $)f(s) ds)
= a([atssas) + 5 [ o)
= 50050+ [ 295005 - 90070 + [ % 1,5)506)ds
- [ %505
Then
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using (d). Finally, we use (c) to conclude

Lu(t) = (pu') + qu

b
t +/ AG(t, s)f9s)w(t) ds
= f(t)
as required. O

We define the solution operator

T:C%I) — C°(I)

b
Tf(t) = / G(t, ) f(s) ds .

where G is our Green’s function. Endowing 7" with the Lo(I) innerproduct, we conclude that T’
is a bounded linear operator, since for f € C°(I),

i< [ b (/ 16, 9) f(S)\dS>2dt
</ab/ab]G(t,s)\zds/ab|f(s)\2dsdt

Since G(s,t) = G(t, s) is real, we compute that for f,g € C°(I),

(Tf,9) //Gts s)ds g(t) dt
/ /Gst t)dtds

=(f,Tg)
that is, T is self-adjoint. By the Ascoli-Arzela theorem, we know that T is a compact operator.
The incompleteness of C°(I) is easily rectified, since C°(I) is dense in Lo(I). We extend T
to Lo(I) as follows. Given u € Lo(I), find u, € C°(I) such that u, — wu in Ly(I). Then
boundedness implies that {Tu,}72 ; is Cauchy in Ly(I). So define

Tu= lim Tu, .
n—oo

Then
T: LQ(I) — LQ(I)

is a continuous linear operator. Moreover, it is not difficult to conclude that the extended T
remains compact and self-adjoint.

We know much about the spectral properties of 7. We relate these properties to those of
L =wA.

PROPOSITION 3.66. If A = 0 is not an eigenvalue of the reqular SL problem, then A = 0 is
not an eigenvalue of T either.



3.11. STURM LIOUVILLE THEORY 105

PROOF. Suppose T'f = 0 for some f € Lo(I). Then, with ¢ = (pW)~1,

0= (Tf)(t) = C‘llt{ch(t) / t F(s)ui(s) ds + cuy (t) /t ’ F(s)us(s) ds}

t b
—c{ué/ fur ds+u’1/ fugds} .
a t

b
O:Tf(t):c{uz/tfulds+u1/ fugds},
a t

so, since W (t;u1,uz) # 0, the solution of this linear system is trivial; that is, for each ¢ € [a, b],

t b
/fulds—/quds—O.
a t

f@ui(t) = f()ua(t) =0,

so f =0, since u; and ug cannot both vanish at the same point (W # 0). Thus N(T) = {0}
and 0 ¢ o,(T). O

But

We conclude that

PROPOSITION 3.67. Suppose A # 0. Then X is an eigenvalue of the reqular SL problem if
and only if 1/ is an eigenvalue of T'. Moreover, the corresponding eigenspaces coincide.

ProOF. If f € C°(I) is an eigenfunction for L, then

Lf=Af,
SO
f=TLf=\Tf
shows that
1
Tf=~f.
f=5f
Conversely, suppose f € Ly(I) is an eigenfunction for 7T":
1
Tf=-f.
=5t

Since G is continuous, in fact R(T) C CO(I), so f € C°(I) and

f:LTf:%Lf.

We return to our original operator A = %L. Define the innerproduct on La([)

b —
(f,9)0w = / ft)gt)w(t)dt .
This induces a norm equivalent to the usual Lo(I)-norm, since

0 < mi <w(t) < <
r;lel?w(s) <w(t) < ns’lgfcw(s) 00
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for all t € I. Define K : Ly(I) — Lo(I) by

b
K1) = [ Go)f(spuls)ds.
This is the solution operator for
Au=f.

With the usual innerproduct on Lo(I), K is not self-adjoint; however, with (-,-),, K is self-
adjoint. The proof of the following result is left as an exercise .

PROPOSITION 3.68. The operator K is self-adjoint and compact on (L2(I), (-, )w), 0 ¢
op(K), and

o(K)={0}U{N#0:1/X is an eigenvalue of A} .
Moreover, the eigenspaces of K and A coincide.

We know that dim(N (7)) = dim (/N (K)) is finite. However, we can conclude directly that
eigenfunctions of a regular SL problem are simple (i.e., one dimensional).

PROPOSITION 3.69. The eigenvalues of a reqular SL problem are simple.

PROOF. Suppose u and v are eigenvectors for A # 0 an eigenvalues. Lemma 3.64 tells us
that pW = ¢ for some constant c¢. If ¢ = 0, then as p #£ 0, W = 0 and u and v are linearly
independent. So suppose W (tp) # 0 for some t3. By Lemma 3.65, W # 0 for all t € [a,b].
However, W (a) = 0 by the boundary conditions:

aju(a) + agu'(a) =0,

arv(a) + agv'(a) =0,
is a linear system with a nontrivial solution (a1, as), so W(a), the determinant of the corre-
sponding matrix, vanishes. Thus u and v are linearly independent and A is simple. 0

We summarize what we know about the regular SL problem for A based on the Spectral
Theorem for Compact Self-adjoint operators as applied to K. The details of the proof are left
as an exercise.

THEOREM 3.70. Let a,b € R, a < b, I =[a,b], p€ C*(I), p#0, g€ CO(I), and w € C°(I),
w > 0. Let

1

A = —[DpD + q]

w

be a formally self-adjoint regular SL operator with boundary conditions
aju(a) + agu'(a) =0,

Bru(b) + Pou’(b) =0,

for u € C*(I), where a% + a3 # 0 and 32 + 33 # 0, a;, B; € R. If 0 is not an eigenvalue of A,
then A has a countable collection of real eigenvalues {\,}>2, such that

[An| = 00 as n— oo
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and each eigenspace is one-dimensional. Let {un}22, be the corresponding normalized eigen-

functions. These form an ON basis for (La(I), (-, )w), so if u € La(I),

o0

u= Z(u,un>wun

n=1

and, provided Au € Lo(I),

Ay = i An (U, Up )y

n=1

We saw earlier that the regular SL problem

has eigenvalues
Ap =NT n=12...
and corresponding (normalized) eigenfunctions
un(t) = V2 sin(nnt) .

Given any f € L2(0,1), we have its sine series
oo 1
ft) = Z \/5/ f(s)sinnwsds sinnwt ,
n=1 0

where equality holds for a.e. ¢ € [0, 1], i.e., in Ly(0,1). This shows that L2(0,1) is separable.
By iterating our result, we can decompose any f € Lo(I x I), I = (0,1). For a.e. z € I,

00 1
flx,y) = Z \/5/ f(x,t)sinnwtdt sinnmy
n=1 0

© 1 Xl
=2 Z / Z / f(s,t)sinmmsds sinnrwtdt sinnry sinnrx
n=1"0 m=1"0

= QZ Z / / f(s,t)sinmms sinnrtdsdt sinnrz sinnry .
n=1m=170 70
So Ly(I x I) has the ON basis

00,00

{2 sinnmz sinnwy} 7,

and again Ly([ x I) is separable. Continuing, we can find a countable basis for any La(R),
R=1% d=1,2,.... By dilation and translation, we can replace R by any rectangle, and since
Ly(2) C La(R) whenever Q C R (if we extend the domain of f € Lo(f2) by defining f = 0 on
R\ Q), Ly(2) is separable for any bounded £, but the construction of a basis is not so clear.

EXAMPLE. Let Q = (0,a) x (0,b), and consider a solution u(z,y) of

0*u 0%
_@_Tgﬂ:ﬂx’y)’ (z,y) €,

uw(x,y) =0, (z,y) €0,
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where f € L9(€2). We proceed formally; that is, we compute without justifying our steps.

We justify the final result only. We use the technique of separation of variables.

v(z,y) = X(2)Y (y) is a solution to the eigenvalue problem
X"V - XY" = \XY .

Then
X// Y//
e
X + Y lu’
a constant. Now the B(C’s are
X(0)=X(a)=0,
Y(0)=Y() =0,
so X satisfies a SL problem with
2
M:Mm:<m) y m:1,2, 5
a
Xm(x) = sin (mmc)
a

Now, for each such m,

has solution

That is, for m,n=1,2,...,

= |(5) 4 (5) ]

mnr . nmy
sin —=
b

We know that {vy,,} form a basis for Ly((0,a) x (0,b)), so, rigorously, we expand

f(xv y) = Z Cm,nUm,n ($, y)

m,n

Vm,n($a y) = sin

for the coefficients

fo fo Z,Y)Umn (2, ) dxdy
fo fo (z,y)dx dy

m,n —

Forming

Z\/ivmnxy
Amon

we verify that indeed w is a solution to the problem.

Suppose
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3.12. Exercises

Prove the parallelogram law in a Hilbert space.
On a NLS X, a linear map P : X — X is a projection if P2 = P.

(a) Prove that every projection on a Hilbert space for which ||P|| = 1 is the orthogonal
projection onto some subspace of H.

(b) Prove that in general if P # 0, ||P|| > 1. Show by example that if the Hilbert space H
has at least two dimensions, then there is a nonorthogonal projection defined on H.

Let H be a Hilbert space, and R : H — H™* the Reisz map.
(a) Show that R is conjugate linear.

(b) Show that the map (-, ) g+ : H* x H* — F defined by (L1, La)g+ = (R™ Lo, R™'Ly) g is
an inner product.

Show that if Z is an index set and {x,}qer is a collection of nonnegative real numbers
satisfying
Z To < 00,

then at most countably many of the z, are different from zero.

If {un}aer is @ maximal ON set in a Hilbert space (H, (-,-)), and z € H, show that there
exist at most countably many «; € Z such that

e}

x = Z(:c, Ug,; Ua; -

i=1
Prove that for any index set Z, the space ¢2(Z) is a Hilbert space.
Let H be a Hilbert space and {z,} >, a bounded sequence in H.

(a) Show that {z,}72, has a weakly convergent subsequence.

(b) Suppose that x, 2> 2. Prove that z,, — z if and only if ||z,|| — ||z

n

(c) If &, ™ z, then there exist non-negative constants {{a?}? 1%, such that Za? =1
i=1

and

n
E aj T =y, — x (strong convergence).
=1

Let {z,}72, be an orthonormal set in a Hilbert space H. Let {a,}>2; be a sequence of
non-negative numbers and let

S:{weH:m:anxn and |bn|§anforalln}.

n=1

Show that S is compact if and only if >°° | a2 < cc.

=1"n
Let H be a Hilbert space and Y a subspace (not necessarily closed).

(a) Prove that

YhHt=y and Yi=(1).
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(b) If Y is not trivial, show that P, projection onto Y, has norm 1 and that
(Pz,y) = (z,y)

forallz € Hand y €Y.

Let H be a Hilbert space and P € B(H, H) a projection.

(a) Show that P is an orthogonal projection if and only if P = P*.

(b) If P is an orthogonal projection, find o, (P), o.(P), and o,(P).

Let A be a self-adjoint, compact operator on a Hilbert space. Prove that there are positive
operators P and N such that A = P — N and PN = 0. (An operator T is positive if
(T'z,z) > 0 for all z € H.) Prove the conclusion if A is merely self-adjoint.

Let T' be a compact, positive operator on a complex Hilbert space H. Show that there is a
unique positive operator S on H such that S? = T. Moreover, show that S is compact.

Give an example of a self-adjoint operator on a Hilbert space that has no eigenvalues (see
[Kr], p. 464, no. 9).

Let H be a separable Hilbert space and T a positive operator on H. Let {e,}>2; be an
orthonormal base for H and suppose that tr(T') is finite, where
[e.9]
tr(T) =Y (Ten,en) -
n=1

Show the same is true for any other orthonormal base, and that the sum is independent of
which base is chosen. Show that this is not necessarily true if we omit the assumption that
T is positive.

Let H be a Hilbert space and S € B(H, H). Define |S| to be the square root of S*S. Extend
the definition of trace class to non-positive operators by saying that S is of trace class if
T = |S| is such that tr(T) is finite. Show that the trace class operators form an ideal in
B(H,H).

Show that T' € B(H, H) is a trace class operator if and only if 7= UV where U and V are
Hilbert-Schmidt operators.

Derive a spectral theorem for compact normal operators.

Define the operator T : L2(0,1) — L2(0,1) by

Tu(x) = /0:0 u(y) dy .

Show that 7' is compact, and find the eigenvalues of the self-adjoint compact operator T*7T'.
[Hint: 7™ involves integration, so differentiate twice to get a second order ODE with two
boundary conditions.]

For the differential operator
L=D%+2D,
find a multiplying factor w so that wL is formally self adjoint. Find boundary conditions

on I = [0, 1] which make this operator into a regular Sturm-Liouville problem for which 0 is
not an eigenvalue.
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Give conditions under which the Sturm-Liouville operator
L=DpD+q,
defined over an interval I = [a, b], is a positive operator.
Write the Euler operator
L=2*D*+ D
with the boundary conditions u(1) = u(e) = 0 on the interval [1,e] as a regular Sturm-

Liouville problem with an appropriate weight function w. Find the eigenvalues and eigen-
functions for this problem.






CHAPTER 4

Distributions

The theory of distributions, of “generalized functions,” provides a general setting within
which differentiation may be understood and exploited. It underlies the modern study of differ-
ential equations, optimization, the calculus of variations, and any subject utilizing differentiation.

4.1. The notion of generalized functions

The classic definition of the derivative is rather restrictive. For example, consider the function
defined by

z, >0,
f(x) =

0, x<0.

Then f € C%(—o00,00) and f is differentiable at every point except 0. The derivative of f is the
Heaviside function

1, z>0,
, £<0.

The nondifferentiability of f at 0 creates no particular problem, so should we consider f differ-
entiable on (—o00,00)? The derivative of H is also well defined, except at 0. However, it would
appear that
0, x#0,
H'(z) =
400, =0,

at least in some sense. Can we make a precise statement? That is, can we generalize the notion
of function so that H' is well defined?
We can make a precise statement if we use integration by parts. Recall that if u,¢ €

C1([a,b]), then
b b
/u’gbdwzu@i—/ ud’ dx .

If € C! but u € CY . C', we can define “f; u'vdx” by the expression
b b
ugi)‘a—/ ug dx .
a

If we have enough “test functions” ¢ € C!, then we can determine properties of /. In practice,
we take ¢ € C§°(—00,00) = {p € C*°(—00,00) : 3 R > 0 such that ¢(z) =0V |z| > R} so that
the boundary terms vanish for a — —o0, b — oc.

113
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In our example, we have for all ¢ € C§°,

[rvs=- [

= —/O x¢ dx

= —:cqﬁ‘go —|—/0 ¢dx

:/::Hqﬁdx.

Thus, we identify f’ = H. Moreover,

and we identify H' with evaluation at the origin! We call H'(z) = do(z) the Dirac delta function.
It is essentially zero everywhere except at the origin, where it must be infinite in some sense. It
is not a function; it is a generalized function (or distribution).

We can continue. For example

Obviously, H” = §{, has no well defined value at the origin; nevertheless, we have a precise
statement of the “integral” of d; times any test function ¢ € C§°.

What we have described above can be viewed as a duality pairing between function spaces.
That is, if we let

D = C§°(—00,0)
be a space of test functions, then
f, ff=H, H =6, H' =4

can be viewed as linear functionals on D, since integrals are linear and map to F. For any linear
functional u, we imagine

b

uo) = [uods,
even when the integral is not defined in the Lebesgue sense, and define the derivative of u by

u'(¢) = —u(¢') .

Then also
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and so on for higher derivatives. In our case, precise statements are

=/f¢dx,

F(6) = /f¢ dw—/chd:c— 6,
H'(¢) = —H(¢/) = / HY' dz = $(0) = 60(0)
H(¢) = H(¢") = / H" da = —¢/(0) = —6o(¢') = 6)(0) ,

for any ¢ € D, repeating the integration by parts arguments for the integrals in the second line
(which are now well defined).

We often wish to consider limit processes. To do so in this context would require that the
linear functionals be continuous. That is, we require a topology on D. Unfortunately, no simple
topology will suffice.

4.2. Test Functions

Let Q C R? be a domain, i.e., an open subset.

DEFINITION. If f € C°(Q), the support of f is

supp(f) ={z € Q:|f(z)| >0}t CQ,

the closure (in Q) of the set where f is nonzero. A multi-index o = (a1, ... ,aq) € N is an
ordered d-tuple of nonnegative integers, and

lol=a1+az+-+ag.

O\ 0\
« p— Da pr— — o« . [
g (83:1) <8xd>

be a differential operator of order |«|. Then we can define

C"(Q) ={feC%Q): Df € CO(Q) for all |a] <n},

We let

C®(Q)={feC’Q):D*f € C°Q) forall a}= ﬁ ol(9)
n=1

D(Q) = C5°(NQ) ={f € C™(Q) : supp(f) is compact},
and, if K cC Q (i.e., K compact and K C Q),
Dg ={f € C5°(Q) : supp(f) C K} .
PROPOSITION 4.1. The sets C™(Q2), C*° (), D(Q), and Dk (for any K CC Q with nonempty
interior) are nonempty vector spaces.

PROOF. It is trivial to verify that addition of functions and scalar multiplication are alge-
braically closed operations. Thus, each set is a vector space.
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To see that these spaces are nonempty, we construct an element of D C D(2) C C*(Q2) C
C"(Q). Consider first Cauchy’s infinitely differentiable function ¢ : R — R given by

2
e Ve >0,

P(x) = (4.2)

0, rz < 0.
This function is clearly infinitely differentiable for  # 0, and its m‘* derivative takes the form

Ry (z)e /%" | 2 >0,
¥ (@) =
0, r <0,

for some polynomial divided by z to a power R,,(x). But L’'Hopital’s rule implies that

lir% Rm(:v)e_l/w2 =0,

so in fact (™) is continuous at 0 for all m, and thus ¢ is infinitely differentiable.
Now let ¢(x) = (1 — x)(1 + x). Then ¢ € C§°(R) and supp(¢) = [—1,1]. Finally, for
z € RY,
(z) = d(21)d(w2) ... d(wa) € C*(RY)

has support [—1,1]%. By translation and dilation, we can construct an element of Dy O
COROLLARY 4.2. There exist nonanalytic functions.

That is, there are functions not given by their Taylor series, since the Taylor series of ¥ (x)
about 0 is 0, but ¢ (z) # 0 for z > 0.
We define a norm on C™(2) by

16lnoon =Y 1Dl -
laj<n

Note that if m > n, then [|¢|m.c00 > [|¢]ln,00,0, S0 We have a nested sequence of norms. We
will use these to define convergence in D(2), but we must be careful, as the following example
shows.

ExAMPLE. Take any ¢ € C§°(R) such that supp(¢) = [0,1] and ¢(x) > 0 for z € (0,1)
(for example, we can construct such a function using Cauchy’s infinitely differentiable function
(4.2)). Define for any integer n > 1

n 1 » .
Yal@) =) <o(@ =) € CF(R) ,
j=1
for which supp(¢y,) = [1,n + 1]. Define also

vla) = 3 So(e = i) € C¥(R) ~ CF(R)

Now it is easy to verify that for any m > 0,
D™, =25 D™ ;
that is,

||wn - w”m,oo,]R —0
for each m, but ¢ ¢ C§°(R).
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To insure that D(2) be complete, we will need both uniform convergence and a condition to
force the limit to be compactly supported. The following definition suffices, and gives the usual
topology on C3°(€2), which we denote by D = D(1Q2).

DEFINITION. Let Q C R? be a domain. We denote by D(Q) the vector space C$°(Q2) endowed
with the following notion of convergence: A sequence {¢;}32, C D(£2) converges to ¢ € D(Q) if
and only if there is some fixed K" CC Q such that supp(¢;) C K for all j and

lim [[¢j — lln,co0 =0
J]—00

for all n. Moreover, the sequence is Cauchy if supp(¢;) C K for all j for some fixed K CC Q
and, given € > 0 and n > 0, there exists IV > 0 such that for all j,k > N,

|P; — Okllncon < €.

That is, we have convergence if the ¢; are all localized to a compact set K, and each of
their derivatives converges uniformly. Our definition does not identify open and closed sets;
nevertheless, it does define a topology on D. Unfortunately, D is not metrizable! However, it is
easy to show and left to the reader that D(2) is complete.

THEOREM 4.3. The linear space D()) is complete.

4.3. Distributions

It turns out that, even though D(2) is not a metric space, continuity and sequential con-
tinuity are equivalent for linear functionals. We do not use or prove the following fact, but it
does explain our terminology.

THEOREM 4.4. If T : D(Q2) — F is linear, then T is continuous if and only if T is sequentially
continuous.

DEFINITION. A distribution or generalized function on a domain £ is a (sequentially) con-
tinuous linear functional on D()). The vector space of all distributions is denoted D'(2) (or
D(Q)*). When Q = R9, we often write D for D(R%) and D’ for D'(R%).

As in any linear space, we have the following result.

THEOREM 4.5. If T : D(Q2) — F is linear, then T is sequentially continuous if and only if T
s sequentially continuous at 0 € D.

We recast this result in our case as follows.

THEOREM 4.6. Suppose that T : D(Q) — T is linear. Then T € D'(Q) (i.e., T is continuous)
if and only if for every K CC €, there are n > 0 and C' > 0 such that

IT(¢)| < Cli¢llnoon
for every ¢ € D

PROOF. Suppose that T" € D'(2), but suppose also that the conclusion is false. Then there
is some K CC 2 such that for every n > 0 and m > 0, we have some ¢, ,, € D such that
1T (Pnm)| > mldnmlln,con -
Normalize by setting dn.m = bnm/ (M| dnmllnco) € Di. Then |T(¢; ;)| > 1, but ¢;; — 0 in

D(Q) (since [|¢j.j]lnoo.0 < 195.illj000 = 1/4 for j > n), contradicting the hypothesis.
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For the converse, suppose that ¢; — 0 in D(€2). Then there is some K CC Q such that
supp(¢;) C K for all j, and, by hypothesis, some n and C' such that

T ()| < Cllgjlln,c00 — 0.
That is, T is (sequentially) continuous at 0. O
We proceed by giving some important examples.

DEFINITION.

Li10c(2) = {f : Q — [F| f is measurable and for every K CC Q0 , /K |f(x)| de < oo} :

Note that Li(2) C L1 1oc(2). Any polynomial is in Ly joc(€2) but not in Li(Q), if Q is
unbounded. Elements of Lj jo¢(€2) may not be too singular at a point, but they may grow at
infinity.

EXAMPLE. If f € L1 16c(€), we define Ay € D'(€2) by

- /Q f(2)é(x) dx

for every ¢ € D(2). Now Ay is obviously a linear functional; it is also continuous, since for

¢ € Dk,
Al < [ 15 o) ds < ( / If(a:>\d:c>|!¢Ho,oo,sz

satisfies the requirement of Theorem 4.6.
The mapping f — Ay is one to one in the following sense.

PROPOSITION 4.7 (Lebesgue Lemma). Let f,g € Lioc(Q2). Then Ay = Ay if and only if
f = g almost everywhere.

Proor. If f = g a.e., then obviously Ay = A,. Conversely, suppose Ay = A,. Then
Ay_4 = 0 by linearity. Let

R={zeR%:q;<a<b;,i=1,...,d} CQ

be an arbitrary closed rectangle, and let 1(z) be Cauchy’s infinitely differentiable function on
R given by (4.2). For € > 0, let

¢e(2) = P(e —x)P(z) 2 0

/qbs
/¢5

1, &, (z) =0 for <0, and ®.(z) =1 for x > e.

and

Then supp(¢:) = [0,¢], 0 < P (z) <
Now let

\IIE($) = H(I)E(l‘i — ai)q)g(bi — SL‘Z) € Dpgr .
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If we let the characteristic function of R be

1, zeR,
Xr(z) =
0, z¢ R,

then, pointwise, U.(z) — xgr(x) as ¢ — 0, and Lebesgue’s Dominated Convergence Theorem
implies that

(f —9)¥e — (f —9)xr
in L;(R). Thus

0=Ary(¥) = [ (1= 9@ We@)de— [ (F=g)w)do

as € — 0. So the integral of f — g vanishes over any closed rectangle. From the theory of
Lebesgue integration, we conclude that f — g =0, a.e. 0

We identify f € Li10c(2) with Ay € D'(Q), calling the function f a distribution in this
sense. Since there are distributions that do not arise this way, as we will see, we call distributions
generalized functions: functions are distributions but also more general objects are distributions.

DEFINITION. For T' € D'(Q), if there is f € Lj10c(€2) such that T = Ay, then we call T a
reqular distribution. Otherwise T is a singular distribution.

Because the action of regular distributions is given by integration, people sometimes write,
improperly but conveniently,

7(0)= [ Tods
Q
for T € D'(R2), ¢ € D(2). To be more precise, we will often write

T(¢) =(T,¢) = (T, ) D ,

where the notation (-,-) emphasizes the dual nature of the pairing of elements of D'(€2) and
D(Q) and is sometimes, but not always, ordinary integration on Q (i.e., the standard Lo(2)
inner product).

ExXAMPLE. We let ¢y € D'(€2) be defined by
(00, ¢) = ¢(0)
for every ¢ € D(Q2). Again, linearity is trivial, and
(60, @) = [¢(0)] < [|¢

implies by Theorem 4.6 that dg is continuous. We call §y the Dirac mass, distribution or delta
function at 0. There is clearly no f € Lq 16c(£2) such that 6o = Ay, so &g is a singular distribution.
If = € Q, we also have ¢, € D'(Q2) defined by

(02, 9) = () .

This is the Dirac mass at . This generalized function is often written, improperly, as

6z(§) = d0(§ — ) = do(x = &) .

0,00,
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REMARK. We sketch a proof that D(Q2) is not metrizable. The details are left to the reader.
For K CcC Q,

Dk = ﬂ ker(d;) .
TEQONK

Since ker(d,) is closed, so is Dk (in D(Q2)). It is easy to show that Dx has empty interior in D.
But for a sequence K1 C Ko C --- C Q of compact sets such that

o0
U Kn =0 5
n=1
we have
o
D(Q) = | Dx, -
n=1

Apply the Baire Theorem to conclude that D(£2) is not metrizable.

ExXAMPLE. If i is either a complex Borel measure on €2 or a positive measure on €2 such that
pu(K) < oo for every K CC €, then

M0 = [ o) duta)
defines a distribution, since

[Au(@)] < u(supp(9))]|llo,00,0 -
ExAMPLE. We define a distribution PVL € D'(R) by
<Pvl ¢) = PV/1¢(x) dz = lim l(;5(56) dx
x’ a X o el0 |z|>e x ’

called Cauchy’s principle value of 1/x. Since 1/x ¢ L 1oc(R), we must verify that the limit is
well defined. Fix ¢ € D. Then integration by parts gives

1
[ oo =lo(-2) = d(e)me— [ lald/@)do
lz|>e £ |z|>e

The boundary terms tend to 0:
. BT ¢ - 9 _ / . _
181{{)1[¢>( g) —¢(e)]lne = 1611%1 2—26 elne = —¢'(0) 151?([)151115 =0.

Thus, if supp(¢) C [-R, R] = K, then

R

PV/ﬂl:gi)(x) = —lim In |z|¢(z) dx = —/Rln]a:|¢>/(a:) dz

el0 Jiz|>e —

v [ Lowas] < ([ el a6l

shows that PV (1/z) is a distribution, since the latter integral is finite.

exists, and
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4.4. Operations with distributions

A simple way to define a new distribution from an existing one is to use duality. If T :
D(R2) — D(Q) is sequentially continuous and linear, then 7% : D'(Q2) — D'(Q) satisfies

(u,T¢) = (T"u, §)
for all u € D'(Q), ¢ € D(Q). Obviously T*u = uo T is sequentially continuous and linear.

PROPOSITION 4.8. Ifu € D'(Q) and T : D(QY) — D(Q) is sequentially continuous and linear,
then T*u =uoT € D'(Q).

We use this proposition below to conclude that our linear functionals are distributions;
alternatively, we could have shown the condition of Theorem 4.6, as the reader can verify.

4.4.1. Multiplication by a smooth function. If f € C°°(Q2), we can define T} : D(Q) —
D(Q2) by T¢(¢) = f¢. Obviously Ty is linear and sequentially continuous, by the product rule
for differentiation. Thus, for any u € D'(Q), Tju = uo Ty € D'(Q). But if u = A, is a regular
distribution (i.e., u € Lj 10c(12)),

(T, 6) = (u, Tyd) = {u, £)
- /Q u(a) f(2)d(x) i

= (fu, ) ,
for any ¢ € D(2). We define for any v € D' and f € C°(f2) a new distribution, denoted fu, as
fu= T}‘u, satisfying
(fu,¢) =(u, fé) V¢ eD().
Thus we can multiply any distribution by a smooth function, and
fAy = Ay,

for a regular distribution.

4.4.2. Differentiation. Our most important example is differentiation. Note that D% :
D(Q2) — D(Q) is sequentially continuous for any multi-index «, so (D%)*u = uo D* € D'(Q).
Moreover, for ¢, 9 € C3°(Q),

[ Do ds = (-0 [ ola)p () do
using integration by parts.
DEFINITION. If « is a multi-index and u € D'(Q2), we define D*u € D'(Q2) by
(D%u,¢) = (~1)l*N(u, D) ¥ ¢ eD(Q). (4.3)

We should verify that this definition is consistent with our usual notion of differentiation when
u = A, is a regular distribution.

PROPOSITION 4.9. Suppose u € C"™(2) for n > 0. Let o be a multi-index such that |a] < n,
and denote the classical a-partial derivatives of u by 0%u = 0“u/0z*. Then

D% = DA, = 0% .
That is, the two distributions D*A,, and Aga, agree.
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PROOF. For any ¢ € D(Q),
<DaAU7 ¢> = (_1)|a‘ (Au) Da¢>

where the third equality comes by the ordinary integration by parts formula. Since ¢ is arbitrary,
DA, = 0%u. 0

ExaMpLE. If H(z) is the Heaviside function (4.1), then H € Ly joc(R) is also a distribution,
and, for any ¢ € D(R),

(H',¢) =

¢')
/ Hz
/ ¢ (x) dx

505 ¢> .
Thus H' = 0y, as distributions.

EXAMPLE. Since In|z| € Ljjoc(R) is a distribution, the distributional derivative applied to
¢ €Dis

<D1D|IE|,¢)> = —<1H|$|,D¢>

—/ln|x|¢/(1’) dx

= —lim In |x|¢/ (x) dx
el |z|>e

—tim{ [ 36 de +(0(0) - o(-e) el

el0
= lim qu(x) dx .
€10 Jig|>0 T
Thus DIn |z| = PV (1/x).
PROPOSITION 4.10. If u € D'(Q) and o and § are multi-indices, then
D*DPu = DD = D**Py
ProOF. For ¢ € D(Q),
(D*Du, ¢) = (~1)1*|(Du, D*¢)
= (—1)leHBly, DB D)
- (_1)\/6’|+|a\<u’ DDPg) .
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Thus o and G may be interchanged. Moreover,
(D*DPu,¢) = (~1)l* P {u, D*Dg)
— (_1)Ia+ﬂ|<u7 Da+ﬁ¢>
= (D Pu, ¢) . O
LEMMA 4.11 (Leibniz Rule). Let f € C*(Q), u € D'(Q), and o a multi-index. Then

D(fu) =Y <a> D BfDPy e D' |

BLa s
where
(a) B o!
B} (a=p)pt"
al = ajlas! - ay!, and B < a means that 3 is a multi-index with 3; < «; fori=1,...,d.

If u e C*°(Q), this is just the product rule for differentiation.

PRrROOF. By the previous proposition, we have the theorem if it is true for multi-indices that
have a single nonzero component, say the first component. We proceed by induction on n = |a.
The result holds for n = 0, but we will need the result for n = 1. Denote D* by D}. When
n =1, for any ¢ € D(Q),

<D1(fu)7¢> = _<fu7 D1¢>
= —<U, fD1¢> = _<u’ Dl(f¢) - D1f¢>
= (Dyu, f¢) + (u, D1 f¢)
= (fD1u+ D1 fu, o) ,
and the result holds.
Now assume the result for derivatives up to order n — 1. Then
DY (fu) = DiD}y ™ (fu)

n—1 n—1 ) )

—\ J

]_

n—1

-1 . X . .
> (n ' ><D’f TfDju+ DY fD] )
J

=0
-1

S <

I
(]

n—1 » ) " n—1 i .
. DY fD]u + ( >D" T D

n L
(%) o0l
J
where the last equality follows from the combinatorial identity

() =05+ Go)

and so the induction proceeds. O

=0

n

<

0

<
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ExAMPLE. Consider f(z) = zIn|z|. Since z € C*°(R) and In|z| € D', we have
1
D(zln|z|) =In|z| + xPV(f) .
x

But, for ¢ € D, integration by parts gives
(D(@n fo]), ¢) = —(zIn 2], Do)

= —/a:ln|x|¢>’(x) dx

o 0
:/ (ln|x|—|—1)gb(1‘)dl‘—|—/ (In|z| + 1)¢(x) d
O — 0
={(ln|z|+1,¢) .
Thus
v,

which the reader can prove directly quite easily.

4.4.3. Translations and dilations of R%. Assume Q = R? and define for any fixed z € R?
and A € R, A #£0, the maps 7, : D — D and T) : D — D by

7¢(y) = ¢y —z) and Thé(y) = ¢(\y) ,

for any y € R? These maps translate and dilate the domain. They are clearly sequentially
continuous and linear maps on D.
Given u € D', we define the distributions 7,u and Thu for ¢ € D by

(Tou, @) = (u, T—20)

1

(Thu, ¢) = W<U7T1/,\¢> :

These definitions are clearly consistent with the usual change of variables formulas for integrals
when wu is a regular distribution.

4.4.4. Convolutions. If f, g : R? — F are functions, we define the convolution of f and g,
a function denoted f % g : R* — T, by

(F+)@) = [ @ —9)dy = (o5 Hia).

provided the (Lebesgue) integral exists for almost every z € R?. If we let 7, denote spatial
translation and R denote reflection (i.e., R = T from the previous subsection), then

Fra@ = [ Fw)mR W) dy
This motivates the definition of the convolution of a distribution u € D'(R?) and a test function
¢ € D(RY):
(u* @) (x) = (u, 7xRP) = (RT_pu,¢) , for any z € R?.
Indeed, RT_,u =uo7, 0 R € D' is well defined.
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EXAMPLE. If ¢ € D and z € R?, then

8o * ¢(x) = (o, T ) = P(x) .
If uw € D', then
ux R(0) = (u, ) .
PROPOSITION 4.12. If u € D'(R?) and ¢ € D(RY), then
(a) for any v € R,
Te(ux @) = (Tou) * ¢ = ux (7:9) ,
(b) u* ¢ € C®(RY) and, for any multi-index a,
D(ux* @) = (D) *x ¢ = ux (D) .
REMARK. Since u could be a function in LUOC(Rd), these results hold for functions as well.
PRrOOF. For (a), note that
Te(u* @)(y) = (u* @) (y — ) = (u, 7y RP) ,
(Teu) * ¢(y) = (Teu, Ty RP) = (u, 7y—c R) ,
(u* 720)(y) = (u, 7y R72¢) = (u, 7y RO) .
Part of (b) is easy:
D% * ¢p(x) = (D%, 1, Rp)
= (=1)*(u, D7, Ro)
= (—=1)!*N(u, 7, D* Rg)

= (u, 7, RD%¢)
=ux*xD%(x) .
Now for A > 0 and e € R? a unit vector, let
1
Th = E(I — The) .
Then 96
lim T, = —
Jim ho(z) 96 (2)

pointwise; in fact the convergence is uniform since d¢/de is uniformly continuous (it has a
bounded gradient). Given € > 0, there is 6 > 0 such that

0 0
2w - L) <

whenever |z — y| < J. Thus

Thow) — 92 @) = ‘2/1 (220 + se) 22 (a)) as| <«

whenever |h| < §. Similarly

R%)

DTy = T,,0%¢ L2, pad?

DY -
Oe ’
so we conclude that

Thd)—Dﬁ% as h—0.
Oe
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Now, by part (a), for any = € R?,
Th(u @) (x) = uxTho(x) ,

Slo)
9¢
lim h(u* @) (x) Lim w ho(z) = u * P (z),
since uo 7, 0o R € D'. Thus %(u * @) exists and equals u * %. By iteration, (b) follows. O

If ¢,9 € D, then ¢ x 1) € D, since
supp(¢ * 1) C supp(¢) + supp(¢) .
PROPOSITION 4.13. If ¢,vp € D, u € D', then

(ux @) x b = ux ($x2) .

PROOF. Since ¢ * 1 is uniformly continuous, we may approximate the convolution integral
by a Riemann sum: for A > 0,

rn(z) = Y d(x — kh)p(kh)h?

kezd
and r,(x) — ¢ * 1 (z) uniformly in z as h — 0. Moreover,
D%y — (D%¢) * b = D*(¢ x ¢))
uniformly, and

supp(ry) C supp(¢) + supp(¢) .

We conclude that -

Th—%gﬁ*w.
Thus

ux(px)(x) = l}:?olu* rh(z)

_1 % . d
_%%kédu d(x — kh)(kh)h

—(ux¢) @), O
4.5. Convergence of distributions and approximations to the identity

We endow D'(Q) with its weak topology. Although we will not prove or use the fact, D is
reflexive, so the weak topology on D’(Q) is the weak-* topology. The weak topology on D'(2)
is defined by the following notion of convergence: a sequence {u;}22; C D'(Q2) converges to
u € D'(Q) if and only if

(uj, @) = (u,¢) V¢ eD(Q).
As the following proposition states, D’(2) is (sequentially) complete.

PROPOSITION 4.14. If {u,}5°, € D'(Q) and {{un, $)}5°, C F is Cauchy for all ¢ € D(R),
then u : D — F defined by

u(9) = (u,0) = lim (un,0)

n
defines a distribution.

The existence and linearity of u is clear. We hypothesize pointwise convergence, so the
continuity of u follows from a uniform boundedness principle, which we do not prove here.
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'(Q '(Q
ProposiTION 4.15. If uy, @, u and a is any multi-index, then D%uy, AN D%u.

Proor. For any ¢ € D,
(D%un,¢) = (=1)Nun, D*¢) — (=1)*W(u, D*¢) = (D*u,¢) . O
We leave the following two propositions as exercises.

PROPOSITION 4.16. If u € D'(Q) and « is a multi-index with |«| = 1, then

o1 D'(Q)
flg% E(Thau —u) —— D%,

wherein the first o is interpreted as a unit vector in R%.

PROPOSITION 4.17. Let xg(x) denote the characteristic function of R C R. For e > 0,

1 D'(R)
“Xl-e/2e/2 — do

as € — 0.

DEFINITION. Let ¢ € D(R?) satisfy

(a) ¢ >0,
(b) fgo(x) dr =1,

and define for e > 0

() = 20 (%)
)= —pl=).
Pe gdSD -
Then we call {¢e}e>0 an approximation to the identity.

The following is easily verified.

PROPOSITION 4.18. If {p.}o50 is an approximation to the identity, then

/cpg(a:)dmzl Ve>0

and supp(p:) — {0} ase — 0.
THEOREM 4.19. Let {¢p-}->0 be an approximation to the identity.
(a) Ifyp € D, then v % p. = 1h.
(b) If u € D', then u x @, 2.

Since u * . € C*, we see that C°(R?) C D’ is dense. Moreover, {@. }.~o approximates the
convolution identity dg.

PRrROOF. (a) Let supp(p) C Br(0) for some R > 0. First note that for 0 < e <1,

supp(¥ * ¢e) C supp(¥) + supp(ge) C supp(y)) + Br(0) = K
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is contained in a compact set. If f € C5°(R?), then
froco) = [ 1= o)y
— [ #e—vetee ) ay
— [ #o— et
— [ e2) - f@)ete) s + £ (@)

and this converges uniformly to f(z). Thus for any multi-index «,
Loo
D (th x pe) = (D) * e == D ;

that is, ¥ * ¢ Dx, ¥, and so also ¥ * @ 2, .
(b) Since convolution generates a (continuous) distribution for any fixed =, by (a) and
Proposition 4.13, we have for ¢ € D,

(u, ) = u* Ry(0)
= lim u + (B¢ ¢:)(0)
- ;g%(u * e ) * Ry (0)

COROLLARY 4.20. . = &g * ¢ o do.

4.6. Some Applications to Linear Differential Equations

An operator L : C™(R?) — CY(RY) is called a linear differential operator if there are
functions a, € C°(RY) for all multi-indices a such that

L= ) auD". (4.4)
la|<m

The maximal |a| for which a,, is not identically zero is the order of L.
If a, € C*®°(RY), then we can extend L to

L:D -7,

and this operator is linear and continuous. Given f € D', we have the partial or ordinary
differential equation
Lu=f in D

for which we seek a distributional solution u € D’ such that

(Lu,¢) = (f,¢) VoeD.

We say that any such u is a classical solution if u € C™(R?) satisfies the equation pointwise. If
u is a regular distribution, then wu is called a weak solution (so classical solutions are also weak
solutions). Note that if u € D’ solves the equation, it would fail to be a weak solution if u is a
singular distribution.
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4.6.1. Ordinary differential equations. We consider the case when d = 1.

LEMMA 4.21. Let ¢ € D(R). Then [ ¢(z)dz = 0 if and only if there is some 1) € D(R) such
that ¢ = 1.

The proof is left to the reader.
DEFINITION. A distribution v € D'(R) is a primitive of u € D'(R) if Dv = v’ = w.

THEOREM 4.22. Every u € D/'(R) has infinitely many primitives, and any two differ by a
constant.

PRrROOF. Let

</5 € D(R /qﬁ )dx = 0
={p € DR): therelsl/}ED( ) such that ¢’ = ¢} .
Then Dy is a vector space and v € D’ is a primitive for u if and only if
(u, ) = (v',9h) = =(v,9)) V¢ eD;
that is, by the lemma, if and only if

(v,0) = / (& d£> VéeDy.

Thus v : Dy — F is defined. We extend v to D as follows. Fix ¢1 € D such that [ ¢1(z)dz = 1.
Then any ¢ € D is uniquely decomposed as

Y =0+ (L,Y)o
where ¢ € Dg. Choose ¢ € F and define v, for ¢ € D by

(ve, ) = (ve, @) + (L) (ve, $1) = (v, @) + (L, )

Clearly v, is linear and v.|p, = v. We claim that v, is continuous. If 1, D, 0, then

< wn> L0 and Dy 3 ¢y = ¢ — (1, ha)d1 = 0, as does [*_ $n(€) dé. Therefore (v, ¢,) =
f dn (&) d€) — 0, and so also (v, 1,) — 0. Thus v, for each ¢ € F, is a distribution and

Uc

If v,w € D' are primitives of u, then for ¢ € D expanded as above with ¢ € Dy,
<U - w»ﬂ)) = <U - ’LU,¢> + <U —w, <17d}>¢1>
=0+ <<v—w,¢1>,¢> )

and so
v—w=(v—w, ) €F. O

COROLLARY 4.23. If v’ =0 in D'(R), then u is constant.
COROLLARY 4.24. If a € F, then v = au in D'(R) has only classical solutions given by
u(z) = Ce™

for some C € F.
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PROOF. We have the existence of at least the solutions C'e®*. Let u be any distributional
solution. Note that e € C°(R), so v = e~ *u € D’ and Leibniz rule implies

v = —ae”u+e i =e (U —au) =0.
Thus v = C, a constant, and u = Ce®*. O
COROLLARY 4.25. Let a(x),b(x) € C*°(R). Then the differential equation
v +a(z)u=0b(z) in D'(R) (4.5)

possesses only the classical solutions
u=e A {/ eA®p(&) d¢ + C
0

for any C € F where A is any primitive of a (i.e., A’ = a).

PROOF. If u,v € D' solve the equation, then their difference solves the homogeneous equa-
tion
w' +a(x)w =0 in D'(R).
But, similar to the proof above, such solutions have the form

w = Ce A&

(i.e., (eA®w) =A@y 4+ a(z)eA@w = 0). Thus any solution of the nonhomogeneous equation
(4.5) has the form

u=Ce 4@ 4y

where v is any solution. Since
v = e A@) / eA(E)b(g) d¢
0

is a solution, the result follows. O

Not all equations are so simple.

EXAMPLE. Let us solve
zu' =1 in D'(R).

We know u = In |z| € L 1oc(R) is a solution, since (In|z|) = PV (1/z) and 2PV (1/x) = 1. All
other solutions are given by adding any solution to

zv'=0 in D'(R) .

Since v" € D'(R) may not be a regular distribution, we must not divide by x to conclude v is a
constant (since z = 0 is possible). In fact,

v=c1+coH(x),
for constants c1,co € F, where H(x) is the Heaviside function. To see this, consider
rw=0 in D .
For ¢ € D,
0= (2w, ¢) = (w,z¢) ,
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so we wish to write ¢ in terms of zv for some 1 € D. To this end, let » € D be any function
that is 1 for —e < z < ¢ for some £ > 0 (such a function is easy to construct). Then

8(z) = O)r(x) + (6(z) — SO)r(x))
— $(0)r(a) + /0 (¢/(€) — SO)(£)) de

— $(0)r(z) + 2 /0 (&' (en) — S(O) () dny
= ¢(0)r(x) + zp(x) ,

where .
= / (¢! (zn) — B0} () dny
0

clearly has compact support and 1 € C'°, since differentiation and integration commute when
the integrand is continuously differentiable. Thus

(w, @) = (w, p(0)r) + (w, z¢p) = G(0)(w,T) ;
that is, with ¢ = (w,r),
w = cdy .
Finally, then v' = c2dg and v = ¢ + coH. Our general solution
u=Inl|z|+c1 + coH(x)

is not a classical solution but merely a weak solution.

4.6.2. Partial Differential Equations and Fundamental Solutions. We return to
d > 1 but restrict to the case of constant coefficients in L:
L= ) cD*,
|| <m

where ¢, € F. We associate to L the polynomial

plx) = > caa®,
lal<m

where % = z{* 252 -

-y thus,

L=p(D).
Easily, L is the adjoint of
L= 3 (C1)le,De

|a| <m
since (u, Lo) = (L*u, p) = (Lu, ¢p) for any u € D', ¢ € D.
EXAMPLE. Suppose L is the wave operator:
Y
- o2 Ox?
for (t,z) € R? and ¢ > 0. For every g € C%(R), f(t,x) = g(x — ct) solves Lf = 0. Similarly, if
g € L joc, we obtain a weak solution. In fact, f(¢,x) = do(z — ct) is a distributional solution,
although we need to be more precise. Let u € D'(R?) be defined by

o0

(u,6) = (ol —ct), d(t,0)) = | d(t,et)dt V¢ € D(R?)

—00
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(it is a simple exercise to verify that u is well defined in D’). Then
(Lu, ¢) = (u, L¢) = (u, Lg)

(v (g = 55)0)

= (G en) (= e02)%)

(o G o)

where ¢ € D. Continuing,

o

(Lu, ¢) = /Oo (gt +Caax>1/1(t,ct) dt :/

—00

d
bt ct)dt =0

e}

DEFINITION. If Lu = §q for some u € D', then u is called a fundamental solution of L.

If a fundamental solution w exists, it is not in general unique, since any solution to Lv = 0
gives another fundamental solution u + v. The reason for the name and its importance is given
by the following theorem.

THEOREM 4.26. Ifv € D and u € D' is a fundamental solution for L, then ux is a solution
to

Lv=1.
PROOF. Since Lu = §y, then also
(Lu) x ¢ =g xp =1 .
But
(Lu) x ¢ = L(u*1) . O

THEOREM 4.27 (Malgrange and Ehrenpreis). Every constant coefficient linear partial differ-
ential operator on R® has a fundamental solution.

A proof can be found in [Yo] and [Rul].

ExAMPLE. A fundamental solution of
_O 20
ot? ox?’
where ¢ > 0, is given by
(t,2) = o H(ct — |a]) = o_H(ct — ) H(ct + 2)
u(t,z) = 5 H(ct — |z]) = o _Hlct —z)H(ct + 1) ,
where H is the Heaviside function. That is, we claim

(Lu, ¢) = ¢(0,0) VY ¢ € D'(R?) .
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For convenience, let Dy = at + ¢+ 61, so L =D, D_. Then

(Lu.6) = (w.DD-¢) = [ 5 (et = [s)DyD_g dtda

0 oo 0 00
/c

AL
AL

i
_ 2/0
= - Ooo S o(t.0)dt
= ¢(0,0) = (00, 9) -

ExAMPLE. The Laplace operator is

—oo J—z/c

/OO(D+D¢)(t 4 /e, @) dt do + /0 /OO(DD+¢)(t ~ wfe,x)dt dx}

/ O)(t+z/c,x dxdt—/ / —(D+o)(t — x /e, a;)da;dt}
[D
9

6(t,0) + D4 o(t,0) | dt

0? 0?
A=+ +-——5=V-V=V2.
Ox? Tt Oz
A fundamental solution is given by
1
—|z|, d=1,
2
1
E(z) = %ln\ﬂ, d=2, (4.6)
1 ‘$|27d
_— d>2
dog 2—d ' 7
where
27Td/2
Y4 = a0 (d)2)

is the hyper-volume of the unit ball in R?. (As a side remark the hyper-area of the unit sphere
is dwg.) It is trivial to verify the claim if d = 1: D?$|z| = D1(2H(z) —1) = H' = §y. For d > 2,
we need to show

It is important to recognize that F is a regular distribution, i.e., F € LUOC(Rd). This is clear
everywhere except possibly near x = 0, where for 1 > r > 0 and d = 2, change of variables to

polar coordinates gives
2m
/ ln|x\‘dx——/ / — Inrrdrdf
B;-(0)

1 1
= —§r2lnr+ 17’2 < 00
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and, for d > 2,

/ |E(x)|dx = —/ /T ﬂrd_l dr do
-(0) 51(0) Jo dwa(2 —d)
2

< o0,

2(d—2)
where S1(0) is the unit sphere. Thus we need that

/E(J;)A(b(x) de =¢(0) VoeD.
Let supp(¢) C Bgr(0) and € > 0. Then

/ EA(bda::—/ VE -NVo¢dr + EV¢-vdo
e<|z|<R e<|z|<R |z|=¢
by the divergence theorem, where v € R? is the unit vector normal to the surface || = ¢ pointing
toward 0 (i.e., out of the set ¢ < |z| < R). Another application of the divergence theorem gives
that

/ EAqux:/ AE¢dr — VE - -vodo + EVe-vdo .

e<|z|<R e<|z|<R |x|=¢ |x|=¢

It is an exercise to verify that AE = 0 for x # 0. Moreover,

1 52_d
EV¢-vdo = / —
¢ 51(0) dwd 2—d

Vo veltdo — 0

|z|=¢
as € | 0 for d > 2 and similarly for d = 2. Also
ok

- VE -vpdo = / —(g,0)¢(e,0)e?  do
jo|=e si(0) Or

- / Lel_dgb(e, o)e™ do — ¢(0) .
s

1(0) dwg
Thus

/EA¢ dr = lim EA¢dx = ¢(0) ,
el0 Je<|z|<R

as we needed to show.

If f € D, we can solve
Au=f
by v = E x f. We can extend this result to many f € L; by the following.

THEOREM 4.28. If E(x) is the fundamental solution to the Laplacian given by (4.6) and
f € Li(R?) is such that for almost every x € R?,

E(z —y)f(y) € Li(RY)
(as a function of y), then
u=FExf
is well defined, u € Ll,loc(Rd)7 and
Au=f in D .
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PRrOOF. For any r > 0, using Fubini’s theorem,

/T(m e < /B /'E(l’ —y)f(y) dy dz
// )l dal ()] dy < o< |

since B € Lijoc and f € L1. Thus u € Ly joc.
For ¢ € D, using again Fubini’s theorem,

(Au, §) = (u, Ad)

/qubdx—// z—y)f(y)Ad(z) dy d

_ / Bz — y)Ad(z) dz f(y)dy
:/Euwwﬂw@

~ [owrtwdy=1s.0),
since E(z —y) = E(y — x) and
ExAp=AEx¢p=0§*xdp=0¢.
Thus Au = f in D’ as claimed. O

4.7. Local Structure of D’
We state without proof the following theorem. See [Rul, p. 154] for a proof.

THEOREM 4.29. If u € D'(Q), then there exist continuous functions go, one for each multi-
mdex a, such that

(i) each K CC Q intersects the supports of only finitely many of the go
and

(il)) u = ZDo‘ga.

Thus we see that D’(Q2) consists of nothing more than sums of derivatives of continuous
functions, such that locally on any compact set, the sum is finite. Surely we wanted D’'(2) to
contain at least all such functions. The complicated definition of D’(Q2) we gave has included no
other objects.

4.8. Exercises

1. Lett € Dbefixed and define T : D — Dby T'(¢) = [ ¢(§) d€ 4. Show that T is a continuous
linear map.

2. Show that if ¢ € D(R), then [ ¢(z) dz = 0 if and only if there is ¢ € D(R) such that ¢ = ¢'.
3. Let T}, be the translation operator on D(R): Tho(x) = ¢(x—h). Show that for any ¢ € D(R),

hm (gb Thp) = ¢’ in D(R).
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10.

11.

12.

13.
14.

15.
16.

4. DISTRIBUTIONS

Prove that D(Q) is not metrizable. [Hint: see the sketch of the proof given in Section 4.3.]
Prove directly that x PV(1/x) = 1.

Let T: D(R) — R.

(a) If T(¢p) = |p(0)|, show T is not a distribution.

(b) If T(¢) = > 72y d(n), show T is a distribution.

(c) fT(p) => 02 D"¢(n), show T is a distribution.

Is it true that &;/, — do in D'? Why or why not?

Determine if the following are distributions.

0o N
(a) > 6n= lim Y 6.
n=1 n=1

N—oo

o0 N
(D) D b1 = lim > by
n=1 n=1

Let Q C R? be open and let {a,}22, be a sequence from © with no accumulation point in
Q. For ¢ € D(12), define

T(¢) = Z )\n ¢(an)7
n=1

where {\,}2°, is a sequence of complex numbers. Show that T' € D'(Q).

1
Prove the Plemelij-Sochozki formula 0= PV(1/x) —imdo(x); that is, for ¢ € D,
T+

1 1
lim { lim /Im () dx} — lim = é(x) da — in(0).

r—0 (=0t e—0t ‘x|26$

o0
Prove that the trigonometric series Z ane™® converges in D’'(R) if there exists a constant
n=-—oo

A >0 and an integer N > 0 such that |a,| < Aln|".

Show the following in D'(R).

(a) nlLI)Ca)O cos(nz)PV(1/z) = 0.

(b) ?}LII;O sin(nz) PV(1/x) = mdp.

(c) lim e PV (1/x) = indy.

Prove that the set of functions ¢ * 1, for ¢ and 1 in D, is dense in D.

Suppose that u € D’ and for any ¢ € D, u * ¢ has compact support. For any v € D/,
show that v x (u * ¢) is well defined. Further define v * u, show that it is in D’, and that

(vxu)xp=vx*(uxae).
Find a general solution to the differential equation D?*T = 0 in D'(R).

Verify that AF = 0 for z # 0, where F is the fundamental solution to the Laplacian given
in the text.
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17. Find a fundamental solution for the operator —D? + I on R.
18. On R3, show that the operator
1
T(¢) = lim

e—0t lz|>e 47T‘:)3|

e %2l () da

is a fundamental solution to the Helmholtz operator —A + k21I.






CHAPTER 5

The Fourier Transform

Fourier analysis began with Jean-Baptiste-Joseph Fourier’s work two centuries ago. Fourier
was concerned with the propagation of heat and invented what we now call Fourier series. He
used a Fourier series representation to express solutions of the linear heat equation. His work
was greeted with suspicion by his contemporaries.

The paradigm that Fourier put forward has proved to be a central conception in analysis
and in the theory of differential equations. The idea is this. Consider for example the linear
heat equation

ou  0%u

E—@, O<.T<].,t>0,

w(0,t) = u(1,t) =0, (5.1)
U(ZL‘,O) = QD(*I) )

in which the ends of the bar are held at constant temperature 0, and the initial temperature
distribution () is given. This might look difficult to solve, so let us try a special case

(x) = sin(nmx) , n=12....
Try for a solution of the form
un(x,t) = Up(t) sin(nmx) .
Then U, has to satisfy
U! sin(nmx) = —n’U, sin(nrx) |

or
We can solve this very easily:

The solution is

up(z,t) = Un(O)eant sin(nmz) .

[e.9]

Now, and here is Fourier’s great conception, suppose we can decompose ¢ into {sin(nmz)}5 ;:

o(z) = Z op sin(nmz) ;
n=1

139
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that is, we represent ¢ in terms of the simple functions sin(nnz), n = 1,2,.... Then we obtain
formally a representation of the solution of (5.1), namely

(0.9}
t) = Zun(:v t) ngne "t gin (nmx) .

In obtaining this, we used the representation in terms of simple harmonic functions {sin(nmwz)}5 ,
to convert the partial differential equation (PDE) (5.1) into a system of ordinary differential
equations (ODE’s) (5.2).

Suppose now the rod was infinitely long, so we want to solve

Ut = Ugy , —00< T <00, t>0,

u(z,0) = p(x) , (5.3)

u(z,t) -0 as = — +oo .
Again, we would like to represent ¢ in terms of harmonic functions, e.g.,

)
—inx
E Yne .

n=-—oo
Any such function is periodic of period 27w, however. It turns out that to represent a general
function, you need the uncountable class

{e_Mx})\eR )
We cannot sum these, but we might be able to integrate them; viz.,
(o]
o) = [ ep .
—00

say for some density p. Suppose we could. As before, we search for a solution in the form

Ul(z,t) :/oo TN E) d

—00

If this is to satisfy (5.3), then

/ emgf(u) d\ = — / e ATN2p(N, 1) dX

. op
—iA\x 2 _
/ e {aﬁA }dx_o,

for all x,t. As x is allowed to wonder over all of R, we conclude that this will hold only when
Op
ot
This collection of ODE’s is easily solved as before:

p(A1) = p(X, 00 .

or

+Ap=0 VAIER. (5.4)

Thus formally, the full solution is

u(x,t) :/ e_i’\we_’\%p()\) A ,

another representation of solutions. These observations that
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(1) functions can be represented in terms of harmonic functions, and
(2) in this representation, PDE’s may be reduced in complexity to ODE’s,

is already enough to warrant further study. The crux of the formula above for u is p — what is
p such that
oo
o) = [ eepyar
—o
Is there such a p, and if so, how do we find it? This leads us directly to the study of the Fourier
transform: F.

The Fourier transform is a linear operator that can be defined naturally for any function in
L1(R%). The definition can be extended to apply to functions in Ls(R?), and then the transform
takes Lg(Rd) onto itself with nice properties. Moreover, the Fourier transform can be applied
to some, but unfortunately not all, distributions, called tempered distributions.

Throughout this chapter we assume that the underlying vector space field F is C.

5.1. The L;(R?) theory
If ¢ € R?, the function
Pe(x) = e = cos(x - €) —isin(x - €) , zeR?,

is a wave in the direction £. Its period in the j¥* direction is 27/ &j. These functions have nice
algebraic and differential properties.

PROPOSITION 5.1.

(a) el =1 and ¢¢ = p_¢ for any € € RY.
(b) @e(w +y) = @e(w)pe(y) for any z,y,€ € RY.
(¢) —Ape = [€]*p¢ for any € € R™.

These are easily verified. Note that the third result says that (¢ is an eigenfunction of the
Laplace operator with eigenvalue —|¢|2.

If f(z) is periodic, we can expand f as a Fourier series using commensurate waves e ¢ (i.e.,
waves of the same period) as mentioned above. If f is not periodic, we need all such waves. This
leads us to the Fourier transform, which has nice algebraic and differential properties similar to
those listed above for e ™€,

DEFINITION. If f € L1(R%), the Fourier transform of f is
FIO = &)= Cm " | J@e " da.
This is well defined since

|f(z)e™ ¢ = |f(2)| € L1(RT) .

We remark that it is possible to define a Fourier transform by any of the following;:

f(x)ei%m'x{ dz |
Rd

f@)et™ dz
Rd

2m)~ 2 [ f(x)et™ dr
Rd
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The choice here affects the form of the results that follow, but not their substance. Different
authors make different choices here, but it is easy to translate results for one definition into
another.

PROPOSITION 5.2. The Fourier transform
F: L1(RY) — Loo(RY)
is a bounded linear operator, and
HfHLOO(]Rd) (2m)” d/QHfHLl (R4) -
The proof is an easy exercise of the definitions.

ExaMmpLE. Consider the characteristic function of [—1,1]%:

1 if-l<z;<l,j=1,...,d,
f(x) = Y
0 otherwise.

f( (27) d/Q/ / e e dy

d
e [ e,
—1

Then

d
2 —1/2 "~ —i& zﬁj
- IJem (e )

_H\/§S1n£] .

PROPOSITION 5.3. If f € L1(R?) and 7, is translation by y (i.e., Typ(z) = o(x —y)), then
(a) (yf)NE) = e ¥Ef(€) VyeRY,
(b) (e*VH)NE) =7y f(6) VyeRY
(c) if r > 0 is given,
) Flra)(©) = f(rte) ;
(d) £(&) = f(=).
The proof is a simple exercise of change of variables.

While the Fourier transform maps L;(R?) into Lo (R?), it does not map onto. Its range is
poorly understood, but it is known to be contained in a set we will call Cv(Rd).

DEFINITION. A continuous function f on R? is said to vanish at infinity if for any € > 0
there is K cC R? such that
|If(z)]<e Vz¢gK.

We define
Cy(RY) = {f € CO(R?) : f vanishes at co} .

PROPOSITION 5.4. The space C,(R?) is a closed linear subspace of Loo(R?).
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PROOF. Suppose that {f,}°%; C C,(R?) and that

Lo

Then f is continuous (the uniform convergence of continuous functions is continuous). Now let
e > 0 be given and choose n such that ||f — fn| 1., < /2 and K CC R? such that | f,(x)| < &/2
for x ¢ K. Then

[f (@) < [f(x) = fu(@)| + [ fu(2)] <€

shows that f € C,(R%). O

LEMMA 5.5 (Riemann-Lebesgue Lemma). The Fourier transform
F:Li(RY) — Cp(RY) G Loo(RY) .

Thus for f € L1(RY),
lim [f(&)]=0 and fe C'(RY).

|§|—o0

PROOF. Let f € Li(R?). There is a sequence of simple functions {f,,}°; such that f,, — f
in L1(R?). Recall that a simple function is a finite linear combination of characteristic functions
of rectangles. If f,, € C,(R?), we are done since

fnL;w}

and C,(R?) is a closed subspace. We know that the Fourier transform of the characteristic
function of [—1,1]% is

By Proposition 5.3, translation and dilation of this cube gives us that the characteristic function
of any rectangle is in C,(R?), and hence also any finite linear combination of these. g

Some nice properties of the Fourier transform are given in the following.
PROPOSITION 5.6. If f,g € L1(R?), then
@ [ f@ga)de= [ stz ds

(b) f#g€ Li(RY) and f+g = (2m)¥/2fg ,

where
[xg(r) = /f(x —y)g(y)dy

is defined for almost every x € R?.
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PROOF. For (a), note that f € Lo and g € Ly implies fg € L1, so the integrals are well
defined. Fubini’s theorem gives the result:

[ F@yg(@)dz = a2 [[ e =rg(a) dydo
=202 [ [ 1) i rg(o) do dy

- / Fw)iy) dy .

The reader can show (b) similarly, using Fubini’s theorem and change of variables, once we know
that f* g € Li(R?). We show this fact below, more generally than we need here. g

THEOREM 5.7 (Generalized Young’s Inequality). Suppose K (z,vy) is measurable on R x R?
and there is some C > 0 such that

/ |K (z,y)|dz < C for almost every y e R?

and

/\K(x,y)\ dy < C for almost every z € R? .

Let the operator T be defined by
7f0) = [ Ko f)dy

If1<p<oo, then T : Ly(RY) — L,(R?) is a bounded linear map with norm |T| < C.

COROLLARY 5.8 (Young’s Inequality). If 1 < p < oo, f € Ly(R%), and g € L1(R%), then
f g€ Ly,(RY) and

Hf*g”Lp(Rd) < ”fHLp(Rd)HgHLl(Rd) .
Just take K(x,y) = g(x — y).

COROLLARY 5.9. The space Li(R?) is an algebra with multiplication defined by the convolu-
tion operation.

PROOF. (Generalized Young’s Inequality) If p = oo, the result is trivial (and, in fact, we
need not assume that [ |K(z,y)|dx < C). If p < oo, let % + % =1 and then

T ()] < / K (2, ) [V K (2, )] VP £ ()] dly

< (1) dy)l/q ([1ten \f(y)\pdy)l/p
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by Hoélder’s inequality. Thus

17117, < o [[ K@l WP dyds
=it [[ 1wyl dsl )P dy

< Cp/q“/!f(y)!pdy

— gl
and the theorem follows since T is clearly linear. ([l

An unresolved question is: Given f, what does f look like? We have the Riemann-Lebesgue
lemma, and the following theorem.

THEOREM 5.10 (Paley-Wiener). If f € C3°(R?), then f extends to an entire holomorphic
function on CY.

Proor. The function

Er— e~ @€
is an entire function for x € R? fixed. The Riemann sums approximating
f©) = Cn) 2 [ f)e s

are entire, and they converge uniformly on compact sets since f € Cg° (RY). Thus we conclude
that f is entire. O

See [Rul] for the converse. Since holomorphic functions do not have compact support, we
see that functions which are localized in space are not localized in Fourier space (and conversely).

5.2. The Schwartz space theory

Since Lo(R?) is not contained in L;(R?), we restrict to a suitable subspace S C La(R%) N
L1(R%) on which to define the Fourier transform before attempting the definition on Lo(R?).

DEFINITION. The Schwartz space or space of functions of rapid decrease is

S =S(RY) = {d) € C*°(RY) : suﬂgl |22 DP ()| < oo for all multi-indices a and ﬂ} .
TEe

That is, ¢ and all its derivatives tend to 0 at infinity faster than any polynomial. As an

example, consider ¢(z) = p(x)e‘“'ﬂ‘*’|2 for any a > 0 and any polynomial p(z).

PROPOSITION 5.11. One has that
CP(RY) G S G Li(RY) N Lao(RY)
thus also S(RY) C L,(R?) ¥V 1 < p < c.
PROOF. The only nontrivial statement is that S C Ly. For ¢ € S,

Jo@ias= [ ECTS /|x|21 6(2)] da
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The former integral is finite, so consider the latter. Since ¢ € S, we can find C' > 0 such that
|z|9T Y o(2)| < C V |z| > 1. Then

/ 6(z)| do = / 2]~ ([ () ) d
2 >1 || >1
<C lz| =41 dx
[ >1

0.0
< ded/ pd=lpd=1 g,
1

:ded/ T_er<oo,
1

where dwy is the measure of the unit sphere. O
Givenn=0,1,2,..., we define for p € S
pnl0) = sup sup(1+ j#2)"2| D% (x)] . (5.5)

Each p,, is a norm on S and p,(¢) < pm(¢) whenever n < m.

PROPOSITION 5.12. The Schwartz class S = {¢ € C : pp(¢p) < 00 ¥V n}, and S is a complete
metric space where the {p,}5°, generate its topology through the metric

] _ N on Pu(dr— é2) _
(1. 62) ;}2 1+ pn(01 — 62)

We remark that for a sequence in S, ¢; — ¢ if and only if p,(¢1 — ¢2) — 0 for all n.
PRrOOF. Clearly S is a vector space and d is a metric. Also
S={peC®:py(¢) <o Vn},

because sums of terms like wap(¢) = sup, |z*DP¢| bound p,(4), and py,(¢) bounds wag(¢) for
n = max(|al, |5]).
It remains to show completeness. Let {¢; };’il be a Cauchy sequence in §. That is,

Pn(¢j—¢k)—>0 as j,k—ocoVn.

Thus, for any o and n > |a],
{41220, }

so there is some 1, o € C° (R9) such that

?Ol is Cauchy in C°(RY)

=

(L+ |22 D¢ == 0 -
But then it follows
T;Z)n,a
(1 + [z[2)n/2
Now ¢; =2 1o, so as distributions D%; == Do S0 tna = (1 + |2[2)2D%)gp,
pn(to0) < 0o V n, and pp(¢; — o) — 0V n. That is, ¢ € S, and ¢; S, 10,0- O

Do L= € CORY) .
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PROPOSITION 5.13. If p(x) is a polynomial, g € S, and o a multi-indez, then each of the
three mappings

fepf, f—gf, ad f—Df

s a continuous linear map from S to S.

PRrOOF. The range of each map is S, by the Leibniz formula for the first two. Each map is
easily seen to be sequentially continuous, thus continuous. O

Since S C Li(R%), we can take the Fourier transform of functions in S.

THEOREM 5.14. If f € § and « is a multi-indez, then

(2) (DS)NE) = (1€)°1(9),
(b) Df(&) = ((—ix)*f(x))" (&).

PROOF. For (a)
r) D 1)(€) = [ D) do

= lim DO f(x)e™ ™ dx
T—00 BT(O)

= lim {/ f(x) (€)%~ dz 4 (boundary terms)} ,
»(0)

r—00
by integration by parts. There are finitely many boundary terms, each evaluated at |z| = r and
the absolute value of any such boundary term is bounded by a constant times | D f(z)| for some

multi-index 3 < «. Since f € S, each of these tends to zero faster than the measure of 9B,(0)
(i.e., faster than rd_l), so each boundary term vanishes. Continuing,

(DP)NE) = (2m)~ 2 / F(@)(i€) e € dx = (i€)° f(€) .

For (b), we wish to interchange integration and differentiation, since

2n) 200 f() = D [ fla)e o

Consider a single derivative

d 2 R . e—ir]-h _ 1
(2m) / D;f(§) = lim /f(x)e_””{dx .
h—0 h
Since
’ew—l’?_ ‘1—0030‘ <1
0 - 02 -
we have
—izjh _ 1

iz f(x)e ¢ ¢

| S lf@l € L
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independently of h, and the Dominated Convergence theorem applies and shows that

A . —ixjh _

iSL‘jh
:/—iacjf(a:)e_m'g dx
= (2m) "2 (= iz f ()" () -

By iteration, we obtain the result for D¢ f . O
LEMMA 5.15. The Fourier transform F : S — S is continuous and linear.

PROOF. We first show that the range is S. For f € S, 2*DPf € Ly, for any multi-indices a
and 5. But then

¢ Df = ¢ ((—in)’f)" = ()Pl (D 27 )"
and so
€2 D5 fllr.e < 2m) =D (@7 f)l|1, < o0,
since D*(2? f) rapidly decreases, and we conclude that f € S.

The linearity of F is clear. Now if { f; 521 C S and f; 5, f, then also f; I, f. Since F is

continuous on L1, fj Leo, f . Similarly we conclude
(D7 ;)" == (@ D)
and thus that fj 5, f- O
In fact, after the following lemma, we show that 7 : S — & is one-to-one and maps onto S.

LEMMA 5.16. If ¢(z) = e 1#1*/2 then ¢ € S and $(&) = ¢(€).

PROOF. The reader can easily verify that ¢ € S. Since

B(€) = (2m) /2 / —lel2/2 i€ g

R4

d
= H(27r)_1/2/ e %3 /2e i€ dzj |
=1 R

we need only show the result for d = 1. This can be accomplished directly using complex contour
integration and Cauchy’s Theorem. An alternate proof is to note that for d = 1, ¢(z) solves

y +ay=0
and ¢(€) solves
0=y +7y=itj +if ,
the same equation. Thus ®/¢ is constant. But ¢(0) = 1 and ¢(0) = (2r)~1/2 fe_x2/2 de =1,
S0 ¢ = ¢. O
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THEOREM 5.17. The Fourier transform F : S — S is a continuous, linear, one-to-one map
of S onto S with a continuous inverse. The map F has period 4, and in fact F? is reflection
about the origin. If f € S, then

f(z) = (2m)~4? / fe)ee de (5.6)

Moreover, if f € L1(R?) and fe L1(RY), then (5.6) holds for almost every x € RY.

Sometimes we write F~1 = ¢ for the inverse Fourier transform:
F o)) = o) = (2m) " [ g(peve .

PrOOF. We first prove (5.6) for f € S. Let ¢ € S and € > 0. Then

[ 1@t ayde = [ seniay - 10 [ o)

as € — 0 by the Domlnated Convergence Theorem since f(ey) — f(0) uniformly. (We have just
shown that e~9¢(e~1z) converges to a multiple of dy in &’.) But also

[ 1@t aydo = [ Fwoer) dn - 600) [ flo)ds
0) [ dwdy=0(0) [ fa)da

() = e 1’2 e 5

SO

Take

to see by the lemma that
£0) = 2m) 2 [ fle)ae
which is (5.6) for z = 0. The general result follows by translation:
F@) = (-2 £)(0)
= )2 [ (o de
— 22 [ ef e

We saw earlier that F : S — § is continuous and linear; it is one-to-one by (5.6). Moreover,

Ff(x) = f(~x)

follows as a simple computation since F and F~! are so similar. Thus F maps onto S, F* = I,
F~1 = F3is continuous. A
It remains to extend (5.6) to L1 (R%). If f, f € L1(R%), then we can define

fol@) = f(z) = (2m)V? / f(e)ee de .
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Then for ¢ € S,

[ 1@t o= [ fw)oe) do
=202 [ fa) [ o)< dg s

= 202 [ [ e oo do de

= [ fo(§)¢() dE
and we conclude by the Lebesgue Lemma that
f(x) = folx)
for almost every z € R?, since ¢(z) is an arbitrary member of S (since F maps onto). O
We conclude the S theory with a result about convolutions.
THEOREM 5.18. If f,g € S, then fxg€ S and
(@m)*(f9)" = f+q .
PRrROOF. We know from the L; theory that
(f+g)" =20 fg,

SO
(f % 9)" = 2m)"2f5 = (2m) " (fg)" |
since F? is reflection. The Fourier inverse then gives

frg=n"(fo" .
We saw in Proposition 5.13 that f§ € S, so also

f*g:f*é:(%r)dﬂ(fg)A eS. O
5.3. The Ly(R%) theory
Recall from Proposition 5.6 that for f,g € S,

/m—/ﬁ.
COROLLARY 5.19. If f,g € S,
[t = [ feaeac

[ta=[1i=[Fa=[Fs.

since § = ¢ is readily verified. O

Proor. We compute

Thus F preserves the Lo inner product on S. Since S C Lo(R?) is dense, we extend F : S
(with Lg topology) — La to F : Ly — Ly by the following general result.



5.3. THE Lg(Rd) THEORY 151

THEOREM 5.20. Suppose X and Y are complete metric spaces and A C X is dense. If
T : A — Y is uniformly continuous, then there is a unique extension T : X — Y which is
continuous.

PRrROOF. Given x € X, take {z;}72; C A such that z; X 2. Let y; = T(x;). Since T is
uniformly continuous, {yj};-";l is Cauchy in Y. Let y; R y and define T(z) = y = lim; o T'(2).

Note that T is well defined since A is dense and limits exist uniquely in a complete metric
space. If T is fully continuous (i.e., not just for limits from A), then any other continuous
extension would necessarily agree with 7', so T" would be unique.

To see that indeed T is continuous, let e > 0 be given. Since T is uniformly continuous,
there is 6 > 0 such that for all x,& € A,

dy (T(x),T(§)) < e whenever dx(z,§) <9 .

Now let z,£ € X such that dx(z,§) < d/3. Choose {z;}32; and {{;}32, in A such that z; X
and §; X, &, and choose N large enough so that for j > N,
dx(,&5) < d(ay, @) + d(w,€) + d(€,&) < 3.
Then
dy (T(2), T()) < dy (T(w), Tx,)) + dy (T(x;), T(E)) + dy (T(€), T(€)) < 3¢
provided j is sufficiently large. That is, T is continuous (but not necessarily uniformly so!). O

COROLLARY 5.21. If X and Y are Banach spaces, A C X 1is dense, and T : A — Y s
continuous and linear, then there is a unique continuous linear extension T : X — Y.

PROOF. A continuous linear map is uniformly continuous, and the extension, defined by
continuity, is necessarily linear. O

THEOREM 5.22 (Plancherel). The Fourier transform extends to a unitary isomorphism of
Ly(R%) to itself. That is,

F: Ly(RY) — Ly(RY)
1 a linear, one-to-one, and onto map such that the Lg(Rd) inner product is preserved:
[ t@g@ias = [ foa@d (57)
Moreover, F*F =1, F* = F~ L ||F|| =1,
Ifllzs = 1fllz, ¥ f € La(RY)

and F? is reflection.

PrOOF. Note that S (in fact C§°) is dense in Ly(R?), and that Corollary 5.19 (i.e., (5.7) on
S) implies uniform continuity of F on S:

R - 1/2 ) 1/2
1l = ( / ffdrc)> - ( / ffda:> — 1l ey

We therefore extend F uniquely to Ly(R%) as a continuous operator. Trivially F is linear and
||| = 1. By continuity, (5.7) on S continues to hold on all of Ly(R%) and F*F = I.
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Similarly we extend F~! : S — Lo to L. For f € Lo, fi €S8, fj — f in Ly, we have
FFf= Jim FF lf; = lim fj =/

and similarly F~!Ff = f. Thus F is one-to-one and onto. Since F? is reflection on S, it is so
on Ly(R%) by continuity (or by the uniqueness of the extension, since reflection on S extends to
reflection on Ly(R%)). O

By the density of S in Ly(R%) and the definition of F as the continuous extension from S
to Lo, many nice properties of F on S extend to Lo(R?) trivially.

COROLLARY 5.23. For all f,g € Lo(R?),

/fgda:—/fgdac.

Proor. Extend Proposition 5.6. O
The following lemma allows us to compute Fourier transforms of Lo functions.

LEMMA 5.24. Let f € Ly(R%).
(a) If f € L1(RY) as well, then the Ly Fourier transform of f is

£(6) = (2m) 2 /R Fae = dr

(i.e., the Ly and Lo Fourier transforms agree).
(b) If R > 0 and

or(€) = (2m) /2 / f(@)e € du |

lz|[<R

then ¢r L2, f .
Similar statements hold for F~1.
PROOF. (a) Since S C L1 N Ly C Lo is dense, we can extend the Ly Fourier transform from

L1 N Ly to Ls. By the uniqueness of the extension, it agrees with the extension from S.
(b) Let xr(x) denote the characteristic function of Br(0). Then

HXRf—fHLg =|xrf—fllz, =0 as R—oo. O
5.4. The S’ Theory

The Fourier transform cannot be defined on all distributions, but it can be defined on a
subset 8" of D’. Here, &’ is the dual of S. Before attempting the definition, we study S and &’.

PROPOSITION 5.25. The inclusion map i : D — S is continuous (i.e., D — S, D is contin-
uously imbedded in S), and D is dense in S.

PROOF. Suppose that ¢; € D and ¢; — ¢ in D. Then there is a compact set K such that
the supports of the ¢; and ¢ are in K, and || D*(¢; — ¢)|/r.. — 0 for every multi-index o. But
this immediately implies that in S,

pali(d5) = i(¢)) = sup sup (1 +[x[*)"*|D*(¢;(z) - ¢(x))|

la|<nzeK

< (SUp(1 +|2?)"?) sup |D*(¢ = d)llL. — 0,

laj<n
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since K is bounded, which shows that i(¢;) — i(¢) in S, i.e., i is continuous.
Let f € S and ¢ € D be such that ¢ =1 on B1(0). For € > 0, set
fe(x) = ¢(ex) f(z) € D .

We claim that f. 35, f, so that D is dense in §. We need to show that for any multi-indices «
and (3,

16 DP(f = )l =0 as 0.
Now f(x) = fo(x) for |z| < 1/e, so consider |x| > 1/e. By Leibniz Rule,

071 = 10l = oo 3 (7) D7 7 - e
v<B K
B\ 1. -
<> ( 1z DO fll . |DY(1 = ¢(e@)) [ pace”
v<B 7
for any multi-index §. This is uniformly small, so the result follows. O

COROLLARY 5.26. If ¢; > ¢, then ¢j > .

PROOF. That is, i(¢;) <> i(¢). O

DEFINITION. The dual of S, the space of continuous linear functionals on S, is denoted S’
and called the space of tempered distributions.

PROPOSITION 5.27. Every tempered distribution u € S’ can be identified naturally with a
unique distribution v € D' by the relation

v=uoi=ulp;

that is, the dual operator i : 8" — D’ is the restriction operator, restricting the domain from S
to D, and i’ is a one-to-one map.

PROOF. If we define v = uoi, then v € D', since i is continuous and linear. If u,w € 8" and
% o1 =woi, then in fact u = w since D is dense in S. O

COROLLARY 5.28. The dual space S' is precisely the subspace of D' consisting of those
functionals that have continuous extensions from D to S. Moreover, these extensions are unique.

EXAMPLE. If « is any multi-index, then
D%y e S .

We can see easily that D%y is continuous as follows. Let @ € D be identically one on a
neighborhood of 0. Then for ¢ € S,

D*8o(v) = (—1)* D*6(0)
is well defined, so D%y : S — F is the composition of multiplication by % (taking S to D) and
D%y : D — F. The latter is continuous. For the former, if ¢; 5, ¢, then each 1¢; is supported

in supp(¢h) and D(4her;) =2 DO () for all a. Thus 1h¢; —> ¢, so multiplication by v is a
continuous operation.

We have the following characterization of S’.



154 5. THE FOURIER TRANSFORM

THEOREM 5.29. Let u be a linear functional on S. Then uw € S’ if and only if there are
C >0 and N > 0 such that

[u(¢)| < Cpn(d) VoeS,
where (5.5) defines pn(¢).

PRrROOF. By linearity, u is continuous if and only if it is continuous at 0. If ¢; € S converges
to 0 and we assume the existence of C' > 0 and N > 0 such that

lu(¢5)] < Con(¢5) — 0,

we see that u is continuous.
Conversely, suppose that no such C' > 0 and N > 0 exist. Then for each j > 0, we can find
1; € S such that p;(v;) =1 and

lu(thj)l = J -
Let ¢; = v;/j, so that ¢; — 0in S (since the p, are nested, the tail of the sequence p,(¢;) <
pi(¢j) < 1/j is eventually small for large j and any fixed n). But u continuous implies that
|u(¢;)| — 0, which contradicts the previous fact that |u(¢;)| = |u(v;)|/5 > 1. O

EXAMPLE (Tempered Ly). If for some N >0 and 1 < p < o0,

f(z) d
—————¢€ L,(RY),
A+ pye © )
then we say that f(x) is a tempered Ly, function (if p = oo, we also say that f is slowly increasing).

Define Ay € S’ by

A/(0) = [ fa)o(w)ds
This is well defined since by Holder’s inequality for 1/p+1/q =1,

000 = | [ i1+ o) P0(e) do

<|timmal, 1o+ ke,

is finite if ¢ = oo (i.e., p = 1), and for g < oo,
10+ o217200E, = [ (14 1) ¥ o(a) 1 ds

= /(1 + |2 NPT (L [2)M g ()] da

< ( Ja+ \x!2>Nq/2de) 11+ a2 og s
< (Cory(®)"

is finite provided M is large enough. By the previous theorem, A is also continuous, so indeed
Ay € §'. Since each of the following spaces is in tempered L, for some p, we have shown:
(a) Lp(RY) C &' for all 1 < p < oo;
(b) S Cc &;
(c¢) a polynomial, and more generally any measurable function majorized by a polynomial,
is a tempered distribution.
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ExXAMPLE. Not every function in LUOC(Rd) is in &’. The reader can readily verify that
e® ¢ S8’ by considering ¢ € S such that the tail looks like e~ 12172,

Generally we endow 8" with the weak-* topology, so that
u;j S, w if and only if u;(¢) —u(p) Voes.
PROPOSITION 5.30. For any 1 <p < oo, L, — &' (L, is continuously imbedded in S’).

L
PROOF. We need to show that if f; — f, then

/(fj—fwdwo Vees,

which is true by Hoélder’s inequality. O
As with distributions, we can define operations on tempered distributions by duality: if

T : S — S is continuous, and linear, then so is 77 : &' — §’. Since F : § — S is continuous
linear, we define the Fourier transform on S’ this way.
PROPOSITION 5.31. If av is a multi-index, x € R?, and f € C®(R?) is such that DPf grows
at most polynomially for all 3, then for u € 8’ and all ¢ € S, the following hold.
(a) (D%, ¢) = (u, (—1)I1D*¢) defines D*u € S'.
fu, @) = (u, fo) defines fue S'.

@) = (u, 7—p @) defines T,u € S’
,®) = (u, R$), where R is reflection about x =0, defines Ru € S'.

¢) = (u, ¢> defines 4 € S'.
(f) <7l,q§> = (u, @) defines i € S'.
Moreover, these operations are continuous on S'.
Note that if ¢ € D, then ¢ ¢ D, so the Fourier transform F is not defined for all u € D'.
We also have convolution defined for u € 8’ and ¢ € S:
(uk @) (x) = (u, 2 R) .
PROPOSITION 5.32. Foru € S’ and ¢ € S,
(a) ux¢p € C>® and

(b) (
(¢) (rzu
(d) (Ru
(e) (a,

D¥ux¢)= (D) xp=u*xD VYV a,
(b) ux ¢ €S8’ (in fact, u* ¢ grows at most polynomially).

PROOF. The proof of (a) is similar to the case of distributions and left to the reader. For
(b), note that

L+ |z +y[? <201+ [2) (1 +[y]?)
SO
pn(7e6) < 2V (L4 [2) V2 p(9) -
Now u € 8, so there are C > 0 and N > 0 such that
lu(¢)] < Cpn(9) ,
SO
Jux ¢l = [u(raRe)| < C2V2(1+ [2)V2pn(9)

shows u *x ¢ € §" and grows at most polynomially. ([l
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Let us study the Fourier transform of tempered distributions. Recall that if f is a tempered
L, function, then Ay € §'.

PROPOSITION 5.33. If f € L1 U Lo, then Ay = A j and Ay = Ay, That is, the Ly and Ly
definitions of the Fourier transform are consistent with the S’ definition.

ProOF. For ¢ € S,
so A F=A I3 A similar computation gives the result for the Fourier inverse transform. O

PROPOSITION 5.34. Ifu € &', then

(a) ©=u,
(b) @ = u,
(¢) &= Ru,
(d) @ = (Ru)" = Ra.
PROOF. By definition, since these hold on S. O

THEOREM 5.35 (Plancherel). The Fourier transform is a continuous, linear, one-to-one
mapping of 8" onto S, of period 4, with a continuous inverse.

PrOOF. If u; g, u, (i.e., (uj,¢) — (u, ¢) for all ¢ € S), then
<aj7¢> = <uj79£> — (u, é) = (4, 9) ,

so 1; — 4; that is, the Fourier transform is continuous. Now

Fu=14=Ru,
SO
Flu=Ru=u=F(Fu=(F)Fu
shows that F has period 4 and has a continuous inverse F~1 = F3. O
ExaMPLE. Consider g € S’. For ¢ € S,
(00, 6) = (do, ) = 8(0) = (2m)~"2 / d(x) dv = ((2m) ™2, ) ,
SO

o = (2m) "2
Conversely, by Proposition 5.34(d),
8o = FH(2m)~ 4% = F(2m)~U*
=)
1= (2m)%25 .

PROPOSITION 5.36. Ifu € S, y € RY, and a is a multi-index, then
(a) (ryu)" = e ¥eq,
(b) Ty = (e *u)",
(c) (D)™ = (i§)*a,
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(d) D4 = ((—i€)*u)".
Proposition 5.31 (b) implies that the products involving tempered distributions are well
defined in &’.

PrOOF. For (a), consider ¢ € S and
(), 8) = (ryu, &) = (u, 7y ) = {u, e €Y = (@, VEg) = (V0 9) .
Results (b)—(d) are shown similarly. O
PROPOSITION 5.37. Ifu € 8" and ¢,¢ € S, then
(a) (ux )" = (2m)2a,
(b) (uxo)*yp =ux(pxv).
PROOF. Let ¢ € S and choose ©; € D with support in K; such that 1; S, ¥ (so also
b S 4f). Now
(0 65} = (wrdniy) = [ d(o)s(o) da

since u * ¢ € C'°° and has polynomial growth. Continuing, this is

[ oo e = (o, [ v yaz)

J

which we see by approximating the integral by Riemann sums and using the linearity and
continuity of u. Continuing, this is

<u, [ o =i dx> w, R % 1)

i, (Rd)*w]) )
2m)/2 (i, (R)" )
2m) /2 (i, i)

= @m0

{
=
=
= (

That is, for all ¢ € S,

((ux )", ) = (2m)2da, )

and (a) follows.
Finally, (b) follows from (a):

((ux ¢) x )" = 2m) "2 P(ux ¢)" = (2m) i
and
(ws (¢ % )" = (2m) (¢ =) it = (2m) i .
Thus
((ux @) x9)" = (ux(p*9))"

and the Fourier inverse gives (b). g
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ExAMPLE (Heat operator). The heat operator for (z,t) € R? x (0, 00) is

0
——A.
ot
It models the flow of heat in space and time. We consider the initial value problem (IVP)
?;Z—Au:(), (z,t) € R? x (0, 00),

u(z,0) = f(x), z e RY,

where f(x) is given. To find a solution, we proceed formally (i.e., without rigor). Assume that
the solution is at least a tempered distribution and take the Fourier transform in x only, for
each fixed t:

du o~ D
a(€,0) = f(€) .

For each fixed ¢ € RY, this is an ordinary differential equation with an initial condition. Its
solution is

a(g,1) = f(&)e
Thus, using Lemma 5.16 and Proposition 5.37,
u(z, 1) = (fe 15

) [f( (Qtidh €_|w‘2/4t) A} v

_ 1 e
_ (27) d/2f*<(2t)d/26 af Y

Define the Gaussian, or heat, kernel

1 —|x|? /4t
K(l‘,t)zme |1/ .

Then
u(z,t) = (f * K(-,1))(x)
should be a solution to our IVP, and K should solve the IVP with f = dg. In fact,

/K(a;,t)dx:f((o,t) =1Vt

and

K(z,t) =t 2Kt %2,1) ,
so K approximates &y as t — 0. Thus the initial condition is satisfied as ¢ — 0", and K controls
how the initial condition (initial heat distribution) dissipates with time. To remove the formality

of the above calculation, we start with K (x,t) defined as above, and note that for f € D and
u = f* K as above,

u—Au=fx (K —AK)=f+0=0.
To extend to f € L,, we use that D is dense in L,. See [Fo, p. 190] for details.
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5.5. Exercises

Compute the Fourier transform of e~ 1*! for z € R.
Compute the Fourier transform of e—alzl?

use the Cauchy Theorem.
If f € L1(R%) and f > 0, show that for every £ # 0, |f(£)] < f(0).

If f € Li(RY) and f(z) = g(|z|) for some g, show that f(€) = h(|¢]) for some h. Can you
relate g and h?

Give an example of a function f € Ly(R?%) which is not in L1 (R%), but such that f € L;(R%).
Under what circumstances can this happen?

, a > 0, directly, where x € R. You will need to

Suppose that f € L,(R%) for some p between 1 and 2.
(a) Show that there are f; € L1(RY) and fy € Lo(R?) such that f = fi + fo.

(b) Define f = fl + fg. Show that this definition is well defined; that is, that it is independent
of the choice of f; and fs.

Suppose that f and g are in Ly(R?). The convolution f g is in Le(R?), so it may not have
a Fourier transform. Nevertheless, prove that f * g = (27)%2(f§)Y is well defined, wherein
the Fourier inverse is given by the usual integration formula.

Find the eigenvalues of the Fourier transform: f =\f.

Compute the Fourier Transforms of the following functions, considered as tempered distri-
butions.

(a) f(
() g(
(c) h(
(d) sinz and cosz for z € R.

Let ¢ € S(RY), ¢(0) = (27)~%?, and @.(z) = ¢ "p(z/€). Prove that ¢, — do and p, —
(27)~%? as e — 0F. In what sense do these convergences take place?

x) =z for z € R.
z) = e 1?l for z € R.
x)

— ¢ilel® for 2 € RY,

z+1
Let 1 < p < oo and suppose f € L,(R). Let g(z) = / f(y) dy. Prove that g € C,(R).

x
Show that the Fourier Transform F : L;(R?) — C,(R%) is not onto. Show, however, that
F(L1(R%)) is dense in C,(RY). [Hint: See Exercise 11.]

Is it possible for there to be a continuous function f defined on R? with the following two
properties?

(a) There is no polynomial P in d variables such that |f(x)| < P(x) for all z € R%.
(b) The distribution ¢ — [ ¢ f dx is tempered.
Let the field be complex and define T : Ly(R?) — Ly(RY) by

Tf(z) = / o2 ) dy
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Use the Fourier transform to show that T is a positive, injective operator, but that T is not
surjective.

When is i a0 € S'(R)?  (Here, dy is the point mass centered at z = k.)
k=1
For f € La(R), define the Hilbert transform of f by Hf = PV<7713:> * f, where the convo-
lution uses ordinary Lebesgue measure.
(a) Show that F(PV(1/x)) = —iy/7/2 sgn(€), where sgn(€) is the sign of .
(b) Show that [ H |1, = | ]z, and HHf = —f.
Let T be a bounded linear transformation mapping Lg(Rd) into itself. If there exists a

bounded measurable function m(§) (a multiplier) such that T}(f) = m(€)f(€) for all f e
Ly(R%), show that then T commutes with translation and ||T|| = ||m/||z... Such operators
are called multiplier operators. (Remark: the converse of this statement is also true.)

Give a careful argument that D(R?) is dense in S. Show also that S is dense in D’ and that
distributions with compact support are dense in S’.

Make an argument that there is no simple way to define the Fourier transform on D’ in the
way we have for &’.

Use the Fourier Transform to find a solution to
2 2
u_@?;_@l;: —a?-a}
Oxry 0zx5
Hint: write your answer in terms of a suitable inverse Fourier transform and a convolution.
Can you find a fundamental solution to the differential operator?



CHAPTER 6

Sobolev Spaces

In this chapter we define and study some important families of Banach spaces of measur-
able functions with distributional derivatives that lie in some L, space (1 < p < o00). We
include spaces of “fractional order” of functions having smoothness between integral numbers
of derivatives, as well as their dual spaces, which contain elements that lack derivatives.

While such spaces arise in a number of contexts, one basic motivation for their study is
to understand the trace of a function. Consider a domain Q C R¢ and its boundary 0. If
f € C°Q), then its trace f|sq is well defined and f|gq € C°(09Q). However, if merely f € La(Q),
then f|oq is not defined, since 9 has measure zero in R?. That is, f is actually the equivalence
class of all functions on €2 that differ on a set of measure zero from any other function in the
class; thus, f|sg can be chosen arbitrarily from the equivalence class. As part of what we will
see, if f € Lo(Q) and 0f /0x; € Lo(Q) for i = 1,... ,d, then in fact f|sq can be defined uniquely,
and, in fact, f|sq has 1/2 derivative.

6.1. Definitions and Basic Properties

We begin by defining Sobolev spaces of functions with an integral number of derivatives.

DEFINITION (Sobolev Spaces). Let © € R? be a domain, 1 < p < oo, and m > 0 be an
integer. The Sobolev space of m derivatives in L, () is

W™P(Q) ={f € L,(Q) : D*f € L,(?) for all multi-indices a such that |a] < m} .

Of course, the elements are equivalence classes of functions that differ only on a set of
measure zero. The derivatives are taken in the sense of distributions.

EXAMPLE. The reader can verify that when Q is bounded, f(z) = |z|* € W™P(Q) if and
only if (¢ — m)p+d > 0.
DEFINITION. For f € W™P(Q), the W™P(Q)-norm is

1/p
ey = { & 10} i p<ox

laj<m

and

| fllwrm.oo ) = E}T;”DafHLOO(Q) if p=o0.

o]
PROPOSITION 6.1.

(@) || - lwmw(q) is indeed a norm.

(b) WOP(Q) = Ly ().

(c) W™mP(Q) — WkP(Q) for allm >k >0 (i.e., W™P is continuously imbedded in W*P ).
The proof is easy and left to the reader.

161
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PROPOSITION 6.2. The space WP () is a Banach space.

PROOF. It remains to show that WP ((2) is complete. Let {u;}32; C W™P(§2) be Cauchy.
Then {D%u;}32, is Cauchy in L,(Q) for all |af < m, and, L,(Q2) being complete, there are
functions u, € Ly(€2) such that

Ly )
D%uj — uq as j — oo .

We let u = ug and claim that D%u = uq. To see this, let ¢ € D and note that
(D%uj, @) — (a, §)
and
(D%, ¢) = (=1)*Nuj, D*¢) — (=1)*N(uw, D*¢) = (D*u, ) .
Thus u, = D%u as distributions, and so also as L,(£2) functions. We conclude that
D%u; e, pay vy la] <m ;
that is,

wm.p
U,j — U .

Certain basic properties of L, spaces hold for W™ spaces.
PROPOSITION 6.3. The space WP (Q) is separable if 1 < p < oo and reflexive if 1 < p < co.

PrOOF. We use strongly the same result known for L,(2), i.e., m = 0. Let N denote the
number of multi-indices of order less than or equal to m. Let

p

N
Ly = Lp(2) x -+ x Lp(Q) = HLP(Q)
N j=1
N times

and define the norm for u € LI])V by

N 1/p
fully = {3 Il ) -
i=1

It is trivial to verify that Lév is a Banach space with properties similar to those of L,: L;V is
separable and reflexive if p > 1, since (Lév)* = L(]]V where 1/p+1/q = 1. Define T': W™P(Q) —
L]]JV by
(Tuw); = D%,
where « is the j% multi-index. Then T is linear and
[Tullpy = llullwms ) -

That is, T'is an isometric isomorphism of W™(Q) onto a subspace W of LI'. Since W™?(()
is complete, W is closed. Thus, since L]]?V is separable, so is W, and since Li,v is reflexive for
1<p<oo,sois W. O

When p = 2, we have a Hilbert space.
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DEFINITION. We denote the m!® order Sobolev space in Ly () by
H™(Q) = W™2(Q) .

PROPOSITION 6.4. The space H™(Q) = W™2(Q) is a separable Hilbert space with the inner
product

(u, ) gm(Q) = Z (D%u, D*v) () 5
|a|<m

where
(f>g)L2(Q)=/Qf(iU)9($)d$

is the usual La(SY) inner product.

When p < oo, a very useful fact about Sobolev spaces is that C'**° functions form a dense
subset. In fact, one can define W™P(Q) to be the completion (i.e., the set of “limits” of Cauchy
sequences) of C*>°(Q) (or even C™(£2)) with respect to the W™P(Q)-norm.

THEOREM 6.5. If1 < p < oo, then
{f € C®(Q) ¢ | Flwmaqa < o} = C(Q) NW™P(Q)
is dense in W™P(Q)).
We need several results before we can prove this theorem.

LEMMA 6.6. Suppose that 1 < p < oo and ¢ € Cgo(Rd) is an approzimate identity supported
in the unit ball about the origin (i.e., ¢ > 0, [p(z)dz = 1, supp(p) C Bi(0), and ¢ (z) =
e~dp(e™1x) fore > 0). If f € L,y(Q) is extended by 0 to R (if necessary), then

(a) QOE * f E Lp(Rd)7
(b) llpe * fllz, < fllz,,

(¢) @ % f 5 f ase—0OF.

ProOF. Conclusions (a) and (b) follow from Young’s inequality. For (c), we use the fact
that continuous functions with compact support are dense in Lp(Rd). Let » > 0 and choose
g € Co(R?) such that

If = glle, <n/3.
Then, using (b),
oz * f = fllL, <llwex (f = 9)llL, + llve xg—gllr, + g — fllL,
<2n/3+[lpexg—gllL, -

Since g has compact support, it is uniformly continuous. Now supp(g) C Bg(0), so supp(p. *
g —g) C Bry2(0) for all e < 1. Choose 0 < ¢ < 1 such that

U
lg(z) — g(y)| < W

whenever |z — y| < 2e, where |Br42(0)| is the measure of the ball. Then for x € Br42(0),
(9= 9)@) = [ eela = 1)(gly) ~ () dy

n
< sup g(y) —9(2)| £ =77
lo—y|<2¢ 3|Br2(0)|1/P
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s0 |lge * g —gllz, <n/3 and |le * f — fllz, <7 is as small as we like. O
COROLLARY 6.7. If ' cC Q or ' = Q =R%, then
per f Oy e ()
PROOF. Extend f by 0 to R? if necessary. For any multi-index a with la] < m,
D%(pe * f) = pex DS,

since p. € D(R?) and f € D'(RY). The subtlety above is whether D®f, on R? after extension
of f, has a d-function on 9€; however, restriction to €’ removes any difficulty:

pe % Df —— Lp(&

since eventually as € — 0, ¢, * D*f involves only values of D f strictly supported in (2. U

L Doy,

PROOF OF THEOREM 6.5. Define Qg = Q_; = () for integer k& > 1
Qp={reQ:|z|] <k and dist(z,00) > 1/k} .

Let ¢ € C§°(52) be such that 0 < ¢p <1, ¢ =1 on O, and ¢, =0 on Qf ;. Let 1)1 = ¢ and
Y = ¢k — ¢r—1 for k > 2, 80 ¢y > 0, ¥y € C5°(Q), supp(¥x) C Qg1 N Q—1, and

Zzpk(:v):l VaeeQ.
k=1

At each z € Q, this sum has at most two nonzero terms. (We say that {1}, is a partition of
unity.)

Now let € > 0 be given and ¢ be an approximate identity as in Lemma 6.6. For f € WP (),
choose, by Corollary 6.7, e > 0 small enough that ¢, < %dist(QkH, 0Q12) and

12y * (U f) = Yrfllwms < 27
Then supp(¢e, * (Vrf)) C Qo ~\ Qg_a, s0 set

g—Z%k (rf) € C,

which is a finite sum at any point x € Q, and note that

1f = gllwme@) < Y kS = @ep % @S lwme <> _27F =

k=1 k=1

The space C§°(2) = D() is dense in a generally smaller Sobolev space.
DEFINITION. We let W;""(2) be the closure in W?(Q) of C§°(Q).

PROPOSITION 6.8. If1 < p < o0, then
(a) Wo"(RT) = W™P(RY),
(b) W"P(Q) — W™P(Q) (continuously imbedded,),
() WP (9) = Ly(9).
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The dual of L,(€) is Ly(€2), when 1 <p < oo and 1/p+1/g = 1. Since W™P(Q) — L,(Q2),
L,(©2) C (W™P(Q2))*. In general, the dual of W"P(Q) is much larger than L,(€2), and consists
of objects that are more general than distributions. We therefore restrict attention here to
Wy "P(); its dual functionals act on functions with m derivatives, so in essence they “lack”
derivatives.

DEFINITION. For 1 <p < oo, 1/p+1/g =1, and m > 0 an integer, let
(W) = W™ (9)

PROPOSITION 6.9. If1 <p < oo (1 < q<o0), W™™4(Q) consists of distributions that have
unique, continuous extensions from D(Q) to Wy P (Q).

PRrROOF. Note that open sets of W™P () defined by || - || p,0, when restricted to C5°(€2), are
also open in D(Q2). That is, D(Q) — W™P (), since inclusion i : D(Q2) — W™P () is continuous
(the inverse image of an open set in W™P(€) is open in D(2)). Thus, given T' € W~"1(Q),
Toi € D'(Q), so T oi has an extension to W;"P(2). That this extension is unique is due to
Theorem 5.20, since D(Q) is dense in WP (€2). O

Extensions of distributions from D(2) to W"™P(Q) are not necessarily unique, since D({2) is
not necessarily dense. Thus (WP (£2))* may contain objects that are not distributions.

6.2. Extensions from Q to R¢

If @ S RY, how are W™P(2) and W™P(R?) related? It would seem plausible that W™?(Q)
is exactly the set of restrictions to € of functions in W™P(R%). However, the boundary of €,
09, plays a subtle role, and our conjecture is true only for reasonable €2, as we will see in this
section. R

The converse to our question is: given f € W™P(Q), can we find f € W™P(R?) such that
f= f on 2. The existence of such an extension f of f can be very useful.

LEMMA 6.10. If Q is a half space in R4, 1 < p < oo, and m > 0 is fized, then there is a
bounded linear extension operator

B 5 W) — W (R
that is, for f € W™P(Q), Ef|q = f and there is some C > 0 such that
IEfllwme@ray < Clfllwme@) -
Note that in fact
| fllwme@) < NEfllwmemay < Cll fllwme@)
so || fllwmr(q) and [|Ef|lyympgay are comparable.
PROOF. Choose a coordinate system so that
Q={zeR?:2;>0}=R% .

If f is defined (almost everywhere) on ]Ri, we extend f to the rest of R¢ by reflection about zq =
0. A simple reflection would not preserve differentiation, so we use the following construction.
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For almost every z € R?, let

f(z) if g > 0,
m+1
Z)\ flw1, o 21, —jzq) if zg <0,

where the numbers \; are deﬁned below. Clearly F is a linear operator.
If f e C™(RY)NW™P(RL), then for any integer k between 0 and m,

Dsf(.%'l, e s Td—1, xd) ifxg >0
DEEf(z) = { & , .
aEf(x) Z(—j)k/\jDsf(xl,... yTd—1, —JTd) if zq <O0.
j=1

We claim that we can choose the \; such that

m+1

d(=NFN=1, k=01,...,m. (6.1)
j=1

If so, then DXE f(x) is continuous as x4 — 0, and so Ef € C™(R?). Thus for |a| < m,

1
m— p

ID*EFI}, oy = ID°FI g /\Z DN o de

P
S Cm,P”DafHLp(Ri) .
Let now f € W™P(R%) N C®(R4), extended by zero. For t > 0, let 7; be translation by ¢ in
the (—egq)-direction:
e f(z) = f(z +teg) .

Translation is continuous in L,(R%), so

L
D f =17 D*f =% DYf as t — 0" .
That is,
wmp(RE)

th—>f

But n.f € C“(Rd ), so in fact C’OO( 4 YyNWmP(RL) is dense in W™P(R4). Thus (6.2) extends
to all of W™P(R%).

We must prove that the \; satisfying (6.1) can be chosen. Let x; = —(j — 1), and define the
(m+1) x (m+ 1) matrix M by

Then (6.1) is the linear system
MX\=e,

where A is the vector of the \;’s and e is the vector of 1’s. Now M is a Vandermonde matrix,
and its determinant is known to be

det M = H (Ij — xl) .
1<i<j<m+1



6.2. EXTENSIONS FROM Q TO R¢ 167

In our case, det M # 0, and so the \;’s exist (uniquely, in fact). O

We can generalize the Lemma through a smooth distortion of the boundary. We first define
what we mean by a smooth boundary.

DEFINITION. For integer m > 0, the bounded domain Q C R¢ has a C™!'-boundary (or
a Lipschitz boundary if m = 0) if there exits a finite number of open sets Q; C R? with the
following properties.

(a) Q; CC R? and 99 C U; Q5.
(b) There are functions 1; : Q; — B1(0) that are one-to-one and onto such that both 1;
and wj_l are of class C™! i.e., 1; € C"™1(€);) and wj_l € C™Y(B(0)).
(¢) ¥j(2;NQ) =BT = B1(0) NRL and ¢;(2; N 9Q) = BT NIRYL.
That is, 0f2 is covered by the €2, Q; can be smoothly distorted by ); into a ball with 02

distorted to the plane z4 = 0. Note that 1 € C"™!(Q) means that v» € C™(Q) and, for all
|a| = m, there is some C' > 0 such that

|DY(x) = D*(y)| < Clo —y| V a,y € Q2
that is, D% is Lipschitz.

THEOREM 6.11. If m > 0, 1 < p < o0, and domain Q C R? has a C™ 1 boundary, then
there is a bounded (possibly nonlinear) extension operator

E: W™P(Q) — WmP(RY) |

PrOOF. If m = 0, Q may be any domain (and we can extend by zero). If m > 1, let {Q}j\;l
and {1/1]-}?7:1 be as in the definition of a C™ 1! boundary. Let Qg CC Q be such that

N
QclJo;.
§=0

Let {¢x}}, be a C* partition of unity subordinate to this covering; that is, ¢, € C*°(R?),
supp(¢y) C §2;, for some jj, between 0 and N, and

M
d gelx)=1 VazeqQ.
k=1

Such a partition is relatively easy to construct (see, e.g., [Ad] or [GT] for a more general
construction). Then for f € W™P(Q) N C>(Q), let fr = dpf € W)P(Q;,). Let Ey be the
extension operator given in the lemma. If j; # 0,

Eo(fi o 95,1) € WP (B1(0)) ,
SO
Eo(fxo ¢;k1) o1y, € W(T)mp(ij) .
Extend this by zero to all of R?. We define E by
M M N
Ef =3 oef+ Y Eo(rf)ow;)) oy, € Wé’”’(U ﬂj> :
k=1

k=1 =0
(x=0) (4x7#0)
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Note that derivatives of Ef are in Lp(Rd) because the v; and w;l € C™~ L1 (ie., derivatives

up to order m of ¢; and w;l are bounded), and so Ef € W™P(R?), Ef|q = f, and
IEflwme@ay < Cllfllwme@)

where C' > 0 depends on m, p, and 2 through the Q; and ;. O

We remark that if @ cC Q € R%, then we can assume that Ef € Wgn’p(fl). To see this,
take any ¢ € CSO(Q) with ¢ = 1 on , and define a new bounded extension operator by ¢Ef.

Many generalizations of this result are possible. In 1961, Calderén gave a proof assuming
only that € is Lipschitz. In 1970, Stein [St] gave a proof where a single operator E can be used
for any values of m and p (and € is merely Lipschitz). Accepting the extension to Lipschitz
domains, we have the following characterization of W™P(2).

COROLLARY 6.12. If Q has a Lipschitz boundary, 1 < p < oo, and m > 0, then
W™P(Q) ={fla: fe W™PR)} .

If we restrict to the WP (Q) spaces, extension by 0 gives a bounded extension operator,
even if € is ill-behaved.

THEOREM 6.13. Suppose 0 C R%, 1 < p < o0, and m > 0. Let E be defined on W3"*(Q) as
the operator that extends the domain of the function to R® by 0; that is, for f € Wyt (Q),

b - S0 e
Then E : W3"P(Q) — W™P(RY).
Of course, then
1 lwme ) = 1Efllwm.way -
PrOOF. If f € Wi"P(Q), then there is a sequence {f;}52, C C5°(?) such that

WP ()
g 2Dy
Let ¢ € D. Then as distributions for |a| < m,
/Daf¢dm<—/Dafj¢dx:(—l)a|/ijagbd:n
Q Q Q
= (-1 [ £D%ds
Q
= (—1)a|/ Ef D% dx
R4
:/ DYEf ¢dx
R4

so ED®f = D*Ef in D'. The former is an Lj jo function on R?, so the Lebesgue Lemma
(Prop. 4.7) implies that the two agree as functions. Thus

1/p
ooy ={ & [ 1D P s} = 1B flwsiusy - O

|laj<m



6.3. THE SOBOLEV IMBEDDING THEOREM 169

6.3. The Sobolev Imbedding Theorem

A measurable function f fails to lie in some L, space either because it blows up or its tail
fails to converge to 0 fast enough (consider |z|~* near 0 or for |z| > R > 0). However, if Q is
bounded and f € W™P(Q), m > 1, the derivative is well behaved, so the function cannot blow
up as fast as an arbitrary function and we expect f € L,(£2) for some g > p.

ExaMPLE. Consider 2 = (0,1/2) and

1
flz) = Tog
for which
, B -1
fla) = z(log x)?

The change of variable y = —logz (z = e7Y) shows f € WH1(Q). In fact, f' € L,(Q) only for
p=1. But f e Ly() for any p > 1.

We give in this section a precise statement to this idea of trading derivatives for bounds in
higher index L, spaces. Surprisingly, if we have enough derivatives, the function will not only
lie in Loy, but it will in fact be continuous. We begin with an important estimate.

THEOREM 6.14 (Sobolev Inequality). If 1 < p < d and

_dp

q:d—p

then there is a constant C' = C(d,p) such that
lull Ly < ClIVull,@ey YV ueCoRY). (6.3)

LEMMA 6.15 (Generalized Holder). If Q C R?%, 1 < p; < oo fori=1,... ,m, and

then for f; € L, (), i

)

=1,...,m
/Q (@) (@) dz < il @) I Fmllz,, ) -

PrROOF. The case m = 1 is clear. We proceed by induction on m, using the usual Holder
inequality. Let p/, be conjugate to py, (i.e., 1/pm + 1/pl, = 1), where we reorder if necessary so
Pm > pi Vi < m. Then

| bade < U il Wl

Now p1/pl,, ... yPm—1/D,, lie in the range from 1 to oo, and

%_{_...4_&
p1 Pm—1

=1,
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so the induction hypothesis can be applied:

) ) 1/p,
Hfl"'fm—lHLp;n — {/|f1|pm...|fm_1|pm dx}

< {(/ |f1|P1 dx)pin/pl </ |fm71|pm*1 dx)p;n/pm_l}l/p/m

= fillzy, - 1 fmallr,,, ., - U

PROOF OF THE SOBOLEV INEQUALITY. Let D; = d/dz;, i = 1,...,d. We begin with the
case p =1 < d. For u € C}(RY),

and so

d 00 1/d—1
i=1 Y T

Integrate this over R? and use generalized Holder in each variable separately for d — 1 functions
each with Lebesgue exponent d — 1. For x1,

d 00 1/d—1
R4 R - —00

=1

0o 1/d-1 d 00 1/d—1
—/ / (/ | D1ul da:1> H(/ | Djul dwi) dzy das - - - day
Ra-1 JR oo o

=2

% 1d-1 , d , noo 1/d—1
- / </ |D1u|dx1> / (/ | Djul dxz) dxydze---dzg
Rad-1 — 0 Ri:Q oo
0o 1/d—1 d 0 1/d—1
< / </ | D1ul dx1> H(/ / | Diu| dz; dgg1> dxy - dsy .
Rd71 co i=2 R J—oc0

Continuing for the other variables, we obtain

d 1/d—1
dfd=1 1. < ( / D.uld >
u(x T | I sul do .
/d| ( )| = il d‘ |

Since for nonnegative numbers ay, ... , an,

and
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(i.e., in R™, |aly, < y/nlale,), we see that

/ ()| ¥4 d < 42 Zd:/ Dy ) e
Rd - d i1 Rd !
1 d/d—1

d/d—1

Thus for Cy a constant depending on d,
HuHLd/dq < CyllVullz, -
For p # 1, we apply (6.4) to |u|” for appropriate v > 0:
-1
k), ., < ~Call sl 19,
<ACall 7, Il

where 1/p+ 1/p’ = 1. We choose 7 so that

vd
i il GV
that is
(d—1)p
v = >0
d—p
and so
vd / dp
= —1 = — =
T = =1p ip 9
Thus

Jully, < ACallul, 19l
and the result follows.
We get a better result if p > d.
LEMMA 6.16. If p > d, then there is a constant C = C(d,p) such that
ull oo (rety < C(diam(€2)? )E_EHVUHLP rey VueCiRY),
where @ = supp(u) and diam(2) is the diameter of Q.

PROOF. Suppose u € C¢(R?). For any unit vector e,

6u(
0 86

so integrate over e € S1(0), the unit sphere:

dwgqu(x) = /S / Vu(z —re) - edrd®©
1

1
/V“ D T

u(z) = x—er dr—/ Vu(x —er)-edr

171

(6.4)

(6.5)



172 6. SOBOLEV SPACES

where wy is the volume of the unit ball.
Now suppose supp(u) C By(z). Then for 1/p+1/p’ =1,

u(@)] < - IVl 1, 0

and

e A N
P B1(0)

= dwy /1 p(l=d)p'+d=1 g,
0
_ dwq (1—d)p/+d|'
(1—d)p +d 0
provided (1 —d)p’ +d > 0, i.e., p > d. So there is Cy, > 0 such that
u(z)] < CaplVullL, -
If Q = supp(u) ¢ B1(0), for x € , consider the change of variable
r—x
v= diam(€2)
where T is the average of x on 2. Apply the result to
a(y) = u( diam(Q)y + z) . O

< 00

S Bl(O) ,

We summarize and extend the two previous results in the following lemma.

LEMMA 6.17. Let Q C R? and 1 < p < 0.
(a) If1 <p<dand q=dp/(d—p), then there is a constant C > 0 independent of Q0 such
that for all u € WyP(Q),
[ullz,) < ClIVullL, @) - (6.6)
(b) If p = d and Q is bounded, then there is a constant Cq > 0 depending on the measure
of Q such that for all u € Wy (),
[ull Ly < CallVullLyo) Va<oo, (6.7)

where Cq depends also on q. Moreover, if p=d =1, ¢ = 0o is allowed.
(c) If d < p < 00 and 2 is bounded, then there is a constant C' > 0 independent of ) such

that for all u € WyP(9Q),

@.\H
S| \H

]l 7o) < C(diam(Q)) a7 ||Vl 1, q) - (6.8)

Moreover, Wy (Q) C C(Q).

PRrOOF. For (6.6) and (6.8), we extend (6.3) and (6.5) by density. Note that a sequence in
C5°(€2), Cauchy in Wol’p(Q), is also Cauchy in Ly(Q) if 1 < p < d and in C°(Q) if p > d, since
we can apply (6.3) or (6.5) to the difference of elements of the sequence. Moreover, when p > d
and  bounded, the uniform limit of continuous functions in C§°(Q2) C C(2) is continuous on
Q, so W, P(Q) € C(Q).

Consider (6.7). The case d = 1 is a consequence of the Fundamental Theorem of Calculus and
left to the reader. Since €2 is bounded, the Holder inequality implies L,, () C L;,(2) whenever
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p1 > po. Thusif p=d>1andu € Wol’d(ﬂ), also u € Wol’pi(Q) forany 1 <p~ <p=d. We
apply (6.6) to obtain that

[ullz,@) < ClVaully @) < C1Q|“P/4 V|10
for ¢ < dp~/(d — p~), which can be made as large as we like by taking p~ close to d. O

COROLLARY 6.18 (Poincaré). If Q C R is bounded, m > 0 and 1 < p < oo, then the norm
on Wy"P(Q) is equivalent to

1/p
ibigroe = { X 1D} -

laf=m

PROOF. Repeatedly use the Sobolev Inequality (6.6) (or (6.7) or (6.8) for larger p) and the
fact that Lq(2) C L,(Q) for ¢ > p. O

That is, only the highest order derivatives are needed in the Wy""(€2)-norm. This is an
important result that we will use later when studying boundary value problems.

DEFINITION. We let
CL(Q) = {u e CI(Q) : D*u € Loo(Q) ¥ || < j} .
This is a Banach space containing C7(2). We come now to our main result.

THEOREM 6.19 (Sobolev Imbedding Theorem). Let Q C R, j > 0 and m > 1 integers, and
1 < p<oo. The following continuous imbeddings hold.

(a) If mp < d, then

. | d
W) < WHQ) Y finite g < - _fn .

with g > p if Q) is unbounded.
(b) If mp > d and Q bounded, then
WP (Q) < CR(Q) -
Moreover, if Q has a bounded extension operator on WIt™P  or if @ = R?, then the following
hold.
(¢) If mp <d, then

WIHTMP(Q) s WH(Q) Y finite ¢ < g dp

—mp
with ¢ > p if Q unbounded.
(d) If mp > d then
WITmP(Q) < C5(9) .

PRrROOF. We begin with some remarks that simplify our task.

Note that the results for j = 0 extend immediately to the case for j > 0. We claim the
results for m = 1 also extend by iteration to the case m > 1. The critical exponent g, that
separates case (a) from (b), or (c¢) from (d), satisfies for m = 1,2, ...,

dp
d—mp
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which implies that for 0 < k& < m,

o = dp _ _dg
TTd—(k+p  d—g

When we apply the m = 1 result successively to a series of Lebesgue exponents, we never change
case; thus, we obtain the final result for m > 1.

We also claim that the results for Q = R? imply the results for Q # R¢ through the bounded
extension operator E. If u € W™P(Q), then Fu € W™P(R?) and we apply the result to Eu.
The boundedness of E allows us to restrict back to 2. For the W["(Q2) spaces, we have F
defined by extension by 0 for any domain, so the argument can be applied to this case as well.

We have simplified our task to the case of @ =R? m =1, and j = 0.

Consider the case of p < d, and take any v € WP(R?) such that [vllwre@ey < 1. We wish

to apply (6.6) or (6.7) to v. To do so, we must restrict to a bounded domain and lie in Wol’p.
Let R = (—1,1)% be a cube centered at 0, and R = (—2,2)? DD R. Let 3 € Z? be any vector
with integer components. Clearly

R =R +5) =&+ 0)
B B

is decomposed into bounded domains; however, v|g; g does not lie in W(} P(R+ ). Let
E: WY(R) — WyP(R)

be a bounded extension operator with bounding constant C'r. By translation we define the
extension operator

Ey: W'(R+B) — WP (R +5)
i.e., by
Ej(y) = B(r_p¥) = E(y(- - ) -

Obviously the bounding constant for Fg is also Cg.
Now we can apply (6.6) or (6.7) to

Es(v|r+p)
to obtain, for appropriate q,
1Es(vIr+8)ll L, (15 < CsIIVEs(Wr48) 1, (45) -
where Cy is independent of 3. Thus
o0 ey < IEsColmea)l2 50
< C§lIVEg(v]r+p)
< C5CE |l
< C5C vl

”qu(RJrB)
Wp(R)
Wb (R4B)
since p < ¢ and [[v[[y1p ey < 1. Summing over 3 gives

[oll L, ®e) < C

for some C > 0, since the union of the R + 3 cover R? a finite number of times.
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If now u € WHP(R?), u # 0, let

u
(%

B HUHWLP(Rd)
to obtain

Jull L, ey < Cllullwemay ;

thus, (a) and (c) follow.
Finally the argument for p > d, i.e., (b) and (d), is similar, since again our bounding constant
in (6.8) is independent of 3. This completes the proof. O

REMARK. The extension operator need only work for W1P(Q), since we iterated the one
derivative case. Thus Lipschitz domains satisfy the requirements. Most domains of interest
(e.g., any polygon or polytope) have Lipschitz boundaries.

6.4. Compactness
We have an important compactness result for Sobolev spaces.

THEOREM 6.20 (Rellich-Kondrachov). If Q C R? is a bounded domain with a Lipschitz
boundary, 1 < p < oo, and j > 0 and m > 1 are integers, then WIT™P(Q) and WJT™P(Q) are
compactly imbedded in W34(Q) V 1 < g < dp/(d — mp) if mp < d, and in CI(Q) if mp > d.

PROOF. (Sketch only — see, e.g., [Ad, p. 144-8] or [GT, p. 167-8].) We show the result for
Wy (), and use extension to bounded Q D Q for W™P(2). We show for j = 0 and m = 1,

and iterate for the general result.
If p > d, let B be any ball. For u € Wol’p(Q), let

7,
U = — u(x) dz
5= 5] Jp )

be the average of v on B. In a manner similar to the proof of Lemma 6.16, for a.e. x € B,

fu(z) — up| < C /B V(e — )| [y dy .

This is enough to show equicontinuity of the functions, and then the Ascoli-Arzeld Theorem
implies compactness in C%(Q).

If p < d, we assume initially that ¢ = 1. Let A C I/VO1 P(Q) be a bounded set. By density we
may assume A C C}(£2). We may also assume HuHWOLp(Q) <1Vue A For e C§B(0)) an

approximation to the identity and € > 0, let
A ={uxp.:ue A} .

we estimate |u x ¢c| and |V(u % ¢.)| to see that A. is bounded and equicontinuous in C%(),
so it is precompact in C°(Q) by the Ascoli-Arzeld Theorem, and so also precompact in Ly (2).
Next, we estimate

/|u(x)—u*<pa(x)|dx§5/ |Du| dx
Q Q

S0 u * . is uniformly close to u in Lq(2). It follows that A is precompact in L1 (2) as well.
For 1 < ¢ <dp/(d — p), we use Holder and (6.6) or (6.7) to show

ey < Cllulld, oIVl 32y
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where A+ (1 — A\)(1/p — 1/d) = 1/q. Thus boundedness in Wol’p(Q) and convergence in L1 ()
implies convergence in L, (). O

COROLLARY 6.21. IfQ C R? is bounded, 1 < p < oo, and {u;j}52, C WIitmp(Q) is a bounded
sequence, then there exists a subsequence {uj }3, C {u;}32; which converges in W74(Q) for
q < dp/(d —mp) if mp <d, and in C7(Q) if mp > d.

This result is often used in the following way. Suppose

WmP(Q
uj Au as j — oo weakly .

Then {u;} is bounded, so there is a subsequence for which

wm=1r(Q)
uj, ——— u as k — oo strongly .

6.5. The H® Sobolev Spaces

In this section we give an alternate definition of W 2(R%) = H™(R?) which has a natural
extension to nonintegral values of m. These fractional order spaces will be useful in the next
section on traces.

If f € S(R), then
Df =icf .
This is an example of a multiplier operator T : S — S defined by
T(f) = (m(€)f(€)"

where m(§), called the symbol of the operator, is in C°°(R) and has polynomial growth. For
T = D, m(§) = i£. While ¢ is smooth, it is not invertible, so D is a troublesome operator.
However T = 1 — D? has

(L=DP)H" =1 +E)f(©) .

and (1 4 £2) is well behaved, even though it involves two derivatives of f. What is the square
root of this operator? Let f,g € S and compute using the Lo-inner product:

(Tf,9) = (Tf,3) = (1 +€)F,8) = (L + )2, (1 +€2)12) .
Thus T = S? where
(SHN=(1+EH2f©)

and S is like D (S = (1 — D?)'/?),
We are thus led to consider in R? the symbol for (I — A)'Y/2, which is

bi(6) = (L+ €)' e S'(RY) .
Then by (€) is like D in RY. For other order derivatives, we generalize for s € R to
bs(€) = (L + [ € S'(RY) .

In fact by(¢) € C°(R?) and all derivatives grow at most polynomially. Thus we can multiply
tempered distributions by bs(§) by Proposition 5.31.
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DEFINITION. For s € R, let A*: 8" — &’ be given by
(Au)(E) = (1 + ¢2)"2a(e)
for all u € §’. We call A® the Bessel potential of order s.
REMARK. If u € S, then
Au(z) = (27) Y 2by * u(z) .

PROPOSITION 6.22. For any s € R, A* : 8" — &' is a continuous, linear, one-to-one, and
onto map. Moreover

ASTE=ASAY Vs, teR
and
(AL =A"".

DEFINITION. For s € R, let
HRY) ={uec S :Awue LyRY},
and for u € H*(RY), let
[ullrs = 1A ][y ey -

We note that H™(RY) has been defined previously as W™2(R%). Our definitions will coincide,
as we will see.

PROPOSITION 6.23. For all s € R, || - ||gs s a norm, and for uw € H®,

1/2
fulla- = el = { [ -+ lePrlaePa)
Moreover, H = L.
PROOF. Apply the Plancherel Theorem. O

TECHNICAL LEMMA. For integer m > 0, there are constants C,Co > 0 such that

Ci(1+ 2?2 < "2k < Cy(1+ 2™
k=0
for all x > 0.

ProOOF. We need constants ¢y, co > 0 such that
m 2
a(1+22)m < (Zxk> <e(l42)™ Va>0.
k=0
Consider

f@) = G5 € C(0.00))
Since f(0) =1 and lim,_, f(z) =1, f(ac) has a maximum on [0, c0), which gives cy. Similarly
g(x) = 1/f(z) has a maximum, giving c O

_.|_
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THEOREM 6.24. If m > 0 is an integer, then
H™RY) = wm™2(RY) .
Proor. If u € W™2(R%), then D*u € Lo ¥V |a| < m. But then
€FlaE)l €Ly VE<m,
which is equivalent by the lemma to saying that
(L+ €)™ 2la(e)] € La -

That is, uw € H m(Rd). For u € H™, we reverse the steps above to conclude that u € W™2.
Moreover, we have shown that the norms are equivalent. ]

PROPOSITION 6.25. A compatible inner product on H*(R?) for any s € R is given by
(u,v) s = (A°u, Av)p, = /AsuAsvdx

for all u,v € Hs(Rd). Moreover, S C H® is dense, and H?® is a Hilbert space.
PROOF. It is easy to verify that (u,v)gs is an inner product, and easily
ull3z = (u,u)pgs ¥V u€ H .
Given € > 0 and u € H?, there is f € § such that
(1 + €130 — fllz, <,
since S is dense in Ly. But
g=Q+g*)2fes,
SO
lu = gllas = (1 + €)@ = g)llz, <<,
showing that S is dense in H*®. Finally, if {u;}72, C H* is Cauchy, then

fi = 1+ €)%y
gives a Cauchy sequence in Lo. Let f; L2, f and let
v
g=((+1e®2r) e e
Then

luj = gllgs = I1fi = flle. =0
as j — oo. Thus H?® is complete. O

These Hilbert spaces form a one-parameter family { H*}scr. They are also nested.
PROPOSITION 6.26. If s > t, then H® C H'.
Proor. If u € H®, then

lul%, = / (14 €2) a(e) 2 de
< / (1 + [6P)°a(€)? da = [ullZs -



6.5. THE H® SOBOLEV SPACES 179

We note that the negative index spaces are dual to the positive ones.
PROPOSITION 6.27. If s > 0, then we may identify (H®)* with H™*® by the pairing
(u,v) = (A°u, A™%v),
for allu e H® and v € H™%.
PrOOF. By the Riesz Theorem, (H*)* is isomorphic to H® by the pairing
(u, w) = (u,w)gs
for all w € H® and w € H® = (H®)*. But then
v=((+ ]§|2)5121)V ceH™
gives a one-to-one correspondence between H~° and H®. Moreover,
Follis = ol .
so we have H ™% isomorphic to H® = (H*%)*. O
COROLLARY 6.28. For all integral m, H™ = W™2,
PROOF. For m >0, W2 = (Wénz)* = (W™2)* since our domain is all of R?. O
Finally, let us consider restriction to a domain Q C R%.
DEFINITION. If Q ¢ R is a domain and s > 0, let
H3(Q) = {u|q : u € H(RY)} .

Moreover, let Hg(€2) be constructed as follows. Map functions in C§°(Q2) to C5°(RY) by extending
by zero. Take the closure of this space in H*(R%). Finally, restrict back to Q. We say more
concisely but imprecisely that Hg(f) is the completion in H*(R%) of C5°(Q).

Let us elaborate on our definition of H*(2). Let
Z ={uec H*(RY) : ulg = 0} .
Then Z C H S(Rd) is a closed subspace, so we can define the quotient space
HRY/Z ={z+Z:x€ H(Q)} ;
that is, for x € H*(R%), let
T=x+72

be the coset of x, and let H*(R%)/Z be the set of cosets (or equivalence classes where x,y €
H?*(RY) are equivalent if x —y € Z, so & = §j). Then H*(R%)/Z is a vector space, and a norm is
given by
i’ s d - lnf i‘ s lenf {E—I—Z s dy — PLZB s dy
12| s (mety /2 sea (| prs (mety Z€Z|| | s (ray = [1P7 2| g1 (may
TET

where PZL is H*(R%)-orthogonal projection onto Z+. We also have an inner product defined by

(& 9) msrayz = 5102 + 90 Homay iz = 1% = 930 gy 2}
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wherein we assume the field F = R. Moreover, H*(R%)/Z is a Hilbert space. We leave these
facts for the reader to verify. Now define

7 H*(RY)/Z — H*(Q)
by
m(Z)=7(x+ 2Z) =x|q .
This map is well defined, since if & = ¢, then z|g = y|q. Moreover, 7 is linear, one-to-one, and

onto. So we define for z,y € H*(2)

. 1 o . ~
ol = I~ @ ez = _n 1olirgey

Flo=z

and
(@ y) s Q) = (W_l(x)aﬂ_l(y))Hs(Rd)/z = i{Hl‘ + y”%{S(Q) = [lz — Z/||12qs((z)} )
so that H*(2) becomes a Hilbert space.
PROPOSITION 6.29. If Q C R? is a domain and s > 0, then H*(Q) is a Hilbert space.
Moreover, for any constant C > 1, given u € H*(Q), there is @ € H*(RY) such that
Cliull sy = [l s ray -

If s = m is an integer, then we had previously defined H™(Q) as W™2(Q). If Q has a
Lipschitz boundary, the two definitions coincide, with equivalent, but not equal, norms. This
can be seen by considering the bounded extension operator

E:Wm™2(Q) - Wm(RY) |
for which u € W™?2(Q) implies
| Eullymemay < Cllullwmeq) < CllEullyym.2gay -
Since W™2(R9) is the same as H™(R?), with equivalent norms,

u m == lnf v m
|| ”H () vEHm(Rd) ” HH (R%)
v|g=u
< [[Bull gm(gay < CillEullyymzgay
< Collullwmz2q) < C2 erlﬁfz(Rd) vl wm.2(ra
v|g=u
<Cs; inf |[v]lgmmge = Csllullgm@q) -
veEH™ (RY)
vlg=u

Thus our two definitions of H™(€)) are consistent, and, depending on the norm used, the constant
in the previous proposition may be different than described (i.e., not necessarily any C' > 1).
Summarizing, we have the following result.

PROPOSITION 6.30. If Q C R? has a Lipschitz boundary and m > 0 is an integer, then
H™(Q) = W™2(Q)
and the H™(Q) and W™2(Q) norms are equivalent.
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6.6. A trace theorem

Given a domain Q C R? and a function f : Q@ — R, the trace of f is its value on the
boundary of Q; i.e., the trace is f|sq, provided this makes sense. We give a precise meaning and
construction when f belongs to a Sobolev space.

We begin by restricting functions to lower dimensional hypersurfaces. Let 0 < k < d be an
integer, and decompose

R =R*F x R¥.
If ¢ € CO(R?), then the restriction map
R:C'(RY) — CORYF)
is defined by
Ro(2') = ¢(2/,0) Vo' e RIF
wherein 0 € R,

THEOREM 6.31. Let k and d be integers with 0 < k < d. The restriction map R extends to
a bounded linear map from H*(RY) onto H*~*/2(R=F), provided that s > k/2.

PROOF. Since S is dense in our two Sobolev spaces, it is enough to consider u € S(R?)
where R is well defined. Let v = Ru € S(R%F).
The Sobolev norm involves the Fourier transform, so we compute for y € R4—*

o(y) = (2m)@H/2 / ¢V (n) di |
Rd—k

But, with ¢ = (n,¢) € R™* x R¥, this is

o(y) = uly, 0) = (2m) 2 / W0 4(e) de
]Rd
— (2m)-(a-h)/2 /

R

- eIy [(27T)_k/2 /Rk w(n, <) dg} dn .
Thus
o(n) = (2m) k)2 / a(n, €)d¢ |

RFE
Introduce (1 4+ |n|2 4 [¢[2)*/2(1 + || + |¢|*)~*/? into the integral above and apply Hélder’s
inequality to obtain

[o(n)|* < (27r)k/ [a(n, Q) (1 + |n* + ICIQ)SdC/ (L + Inl* + [¢]*)~ d¢ .
Rk Rk

The second factor on the right is

/Rk(l + >+ [¢)?) 7 d¢ = k'wk/o (L+ )+ %)~ 5r* Lar .
With the change of variable
1+ 2p=r,
this is

k_ o0 _ _
kwr(1+n?)2 8/0 (14 p*) %" tdp,
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which is finite provided —2s + k — 1 < —1, i.e., s > k/2. Combining, we have shown that there
is a constant C' > 0 such that

[o(n)2(1 + [nf*)*~% < 02/ [a(n, O (1 + [n* +[¢[*)° dC .

Rk
Integrating in 1 gives the bound
[0l grs=sr2(ra—ry < Cllull ey -
Thus R is a bounded linear operator mapping into H® /2 (RIF),
To see that R maps onto H5~*/2(R%%) let v € S(RY*) and extend v to & € C(R?) by
a(y,z) =v(y) VyeRIF 2eRF.
Now let ¢ € C§°(R¥) be such that (z) = 1 for |2| < 1 and ¥(z) = 0 for |z| > 2. Then
uly, 2) = y(2)aly, z) € SRY)
and Ru = wv. g
REMARK. We saw in the Sobolev Imbedding Theorem that
H*(R?) — C(RY)
for s > d/2. Thus we can even restrict to a point (k = d above).

If Q@ C RY has a bounded extension operator E : H*(Q) — H*(R?), and if 99 is C"™! smooth
for some m > 0, we can extend our result. If {Qj}év: 1 and v; are as given in the definition of
C™! smooth, Q is open and Q¢ C 2, and Q C U;V:o Q, let {(bk},i‘il be a C*° partition of unity
subordinate to the cover, so supp(¢x) C €25, for some ji. Then define for v € H*(Q),

up = E(wgu) o9p; ! Bi(0) = F
souy € H§(B1(0)) provided m+1 > s. We restrict u to 92 by restricting ug to S = B1(0)N{zq =
0}. Since supp(ug) CC B;(0), we can extend by zero and apply Theorem 6.31 to obtain

lukll grs-1r2(5y < Crllugl| s By (0)) -

We need to combine the u; and change variables back to € and 0.
It is possible to continue for general s > 0; however, the technical details become intense.
We will instead restrict to integral m > 0, as this is the case used in the next chapter.
Summing on k, we obtain

M M M
S ekl agsy < Cr D Nkl mgsy oy < Co 3 k) 065 2 gpa -
k=1 k=1 k=1

using the bound on E. Since m is an integer, the final norm merely involves Lo norms of (weak)
derivatives of (wpu) ot ~!. The Leibniz rule, Chain rule, and change of variables imply that each
such norm is bounded by the H" () norm of w:

M M
S urlszgsy < C2 D0 M@n) 0 U3 12 m gay < Collulimqey -
k=1 k=1

Let the trace of u, yyu, be defined for a.e. z € 02 by
M

You(x) = (E(wku) © %;1) (¢jk (x)) :

k=1
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Then we clearly have after change of variable

M M
Ioul3aany < Co S lulZags) < Co - lurlpmosjogs) < Colluldpmegy - (6.9)
k=1 k=1

That is, for u € H™(R), we can define its trace yu on 0 as a function in L(09);

Yo : H™(Q) — L2(09) is a well defined, bounded linear operator. (The above computations

carry over to nonintegral m, as can be seen by using the equivalent norms of the next section.

Since we do not prove that those norms are indeed equivalent, we have restricted to integral m.)
Let

Z={ue H"(Q):vu=0 on 00} ;
this set is well defined by (6.9), and is in fact closed in H™(2). We therefore define
H™12(00) = {you € Ly(8Q) : u € H™(Q)} ,

which is isomorphic to H™(Q)/Z. While H™1/2(9Q) C Ly(99), we expect that such functions
are in fact smoother. A norm is given by

w|| grm— = inf u||gmiq) - 6.10
fulzrn-srsomy = _inf ey (6.10)
You=u
Note that this construction gives immediately the trace theorem
Youll gm-172(50) < Cllullgm )

where C' = 1. If an equivalent norm is used for H™~1/2(9Q), C # 1 is likely. While we do
not have a constructive definition of H™1/2(9Q) and its norm that allow us to see explicitly
the smoothness of such functions, by analogy to Theorem 6.31 for Q = R%, we recognize that

H™=/2(9Q) functions have intermediate smoothness. The equivalent norm of the next section
gives a constructive sense to this statement. We summarize our results.

THEOREM 6.32. Let Q C R? have a Lipschitz boundary. The trace operator ~o : C°(Q) —
CO(0R) defined by restriction, i.e., (you)(x) = u(x) V x € 09, extends to a bounded linear map

o : H™(Q) 22 H™=1/2(0Q)
for any integer m > 1.

We can extend this result to higher order derivatives. Tangential derivatives of ygu are well
defined, since if D, is any derivative in a direction tangential to 9€2, then

Diyvou=D;Fu=FED;u=~D;u.
However, derivatives normal to €2 are more delicate.

DEFINITION. Let v € R? be the unit outward normal vector to 9S2. Then for u € C1(Q),

0
D,,u:—u:Vu-u on 0f2
v
is the normal derivative of uw on 02. If j > 0 is an integer, let

o j_aju
%= D=
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THEOREM 6.33 (Trace Theorem). Let Q C R? have a C™ b1 N C%1 boundary for some
integer m > 0. The map v : C™(Q) — (C°(0Q))™*! defined by
Fyu = (’YO%’Yan st 77mu)

extends to a bounded linear map

v Hm+1(Q) _onto, HHm*jH/Q(aQ) )
j=0
PROOF. Let u € H™(Q)NC>®(Q), which is dense because of the existence of an extension
operator. Then iterate the single derivative result for ~o:
You € H™V2(8Q) | ~yiu = (Vu-v) € H™V2(09Q) |
You = vo(V(Vu - v) -v) € H"32(8Q) , etc.,

wherein we require 9€) to be smooth eventually so that derivatives of v can be taken, and wherein
we have assumed that the vector field v on 9 has been extended locally into Q (that this can
be done follows from the Tubular Neighborhood Theorem from topology).

To see that v maps onto, take

ve [[H™H200)nC>09) ,
j=0
and construct 9 € C°°(2) N H™(Q) such that
YU = v
as follows. If 9Q C R?~! we define ¥ as a polynomial
(2, xq) = vo(z') + vi(a)xg + -+ ﬁ”m(xl)xgn

for z/ € R4! and 24 € R, and then multiply by a smooth test function v (x4) that is identically
equal to 1 near x4 = 0. If 9 is curved, we decompose 92 and map it according to the definition
of a C™~ b1 boundary, and then apply the above construction. O

Recall that
m m,2
Hy* (Q) = W™ (Q)

is the closure of C§°(Q) in W™2(). Since yu = 0 for u € C§°(f2), the same is true for any
u € HJ'(2). That is, u and its m — 1 derivatives (normal and/or tangential) vanish on 0S.

THEOREM 6.34. If m > 1 is an integer and Q C RY has a C™ Y1 boundary, then
Hp'(Q) ={ue H"(Q) : yu = 0} = ker(7) .
PROOF. As mentioned above, HJ*(2) C ker(y). We need to show the opposite inclusion.

. . -1,1 . _ md
égam, by a mapping argument of the C™ boundary, we need only consider the case 2 = R{.
et

u € ker(y) N C§C(RY) |

we saw earlier that C§°(R?) is dense in H™(R%). Let ¢ € C*(R) be such that (t) = 1 for
t>2and ¢(t) =0 for t <1. For j > 1, let

%(t) - lb(nt) )
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which converges to 1 on {t > 0} as n — oo. Then 1, (z4)u(z) € C§°(RL). We claim that

H™(RY)
Un(xg)u(r) —— u(x) as n — oo .

If so, then u € HJ"(R%) as desired.
Let a € Z¢ be a multi-index such that || < m and let o = (3,¢) where 8 € Z%! and £ > 0.
Then

Ny
D (Ypu — u) = D5D2(¢nu —u) = kzo <I<:> Df;_k(lbn — 1)D5D§u ,

and we need to show that this tends to 0 in LQ(Ri) as n — oo. It is enough to show this for
each

DS F (4, — 1)DPDEu = n* ¥ D (4 — 1)|0, D° Dl
which is clear if k = ¢, since the measure of {x : () — 1 > 0} tends to 0. If & < ¢, our

expression is supported in {x € R‘i : % <zg < %}, SO

D5 (W =~ VDDl s < Con? ) [

2/n
/ |DPDEu(a’, xq)? dag da’
Rd-1 J1/n

Taylor’s theorem implies that for z = (2/,24) € R? and j < m,

1 -
Dhu(z',zq) = Dju(2’,0) + -+ + mei u(z',0)
1 Zq ) .
S — — YR DI 1) dt
+(]-k—1)'/() (xd ) du(xa ) )

which reduces to the last term since yu = 0. Thus for j =m — |B| = < m,

"Dﬁ_k(¢n - 1)D5D§u”%2(ﬂgi)

2/n Tq 2
< Con2=h) / / / (xq — ) *1DPDhu(a’ t) dt| dxyda’
Ri-1 J1/n 0
2/n 2/n 2
< Oy p=2(0=k=1) </ |DP Dou(a’,t)] dt> drgdz’
Ra-1 J1/n 0

1 2/n '
< C’4n2/ 2/ |DP D5u(a’,t))? dt da’
Rd—1 n 0
—0 as n— o0

since the measure of the inner integral tends to 0. Thus the claim is established and the proof
is complete. O

6.7. The W*P(Q) Sobolev Spaces

We can generalize some of the Lo(€2) results of the last two sections to L,(2), and the results
for integral numbers of derivatives to nonintegral. We summarize a few of the important results.
See [Ad] for details and precise statements.
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DEFINITION. Suppose Q C R%, 1 < p < oo, and s > 0 such that s = m + o where 0 < o < 1
and m is an integer. Then we define for a smooth function w,

[Du(z) = Dou()? o\
fulbwesioy = {lelfymny + 3 [ [ 2280z

laf=m

if p < oo, and otherwise

_ |D%u(x) = D*u(y)]
l|ul[ys.00 (@) = maxq [|ul[yym.c(q), max ess sup = .
|a|=m z,yeN ‘.Z' - y‘

PROPOSITION 6.35. For any 1 <p < oo, ||« |lws»(q) is a norm.

DEFINITION. We let W*P(Q) be the completion of C°°(£2) under the || - |[yys.p(q)-norm, and
WyP(9) is the completion of C§°().

PROPOSITION 6.36. If Q = R? or Q has a Lipschitz boundary, then

We(Q) = H*(Q) and W3?(Q) = Hj(Q) .

Thus we have an equivalent norm on H*(£2) given above.

If 1 < p < oo and m = s is nonintegral, then we have analogues of the Sobolev Imbedding
Theorem, the Rellich-Kondrachov Theorem, and the Trace Theorem. For the Trace Theorem,
every time a trace is taken on a hypersurface of one less dimension (as from Q to 99), 1/p
derivative is lost, rather than 1/2.

6.8. Exercises

1. Prove that for f € H'(R), | f1l 11 ey 1s equivalent to

{[Larimiora)”

Can you generalize this to H*(RY)?
2. Prove that if f € H}(0,1), then there is some constant C' > 0 such that

11 2s0,) < ClLF a0,y -

If instead f € {g € H'(0,1) fo x)dx = 0}, prove a similar estimate.

3. Prove that dg € (H'(R%))* for d > 2, but that &y € (H'(R))*. You will need to define what
o applied to f € H*(R) means.

4. Prove that H'(0,1) is continuously imbedded in Cp(0,1). Recall that Cp(0,1) is the set of
bounded and continuous functions on (0, 1).

5. Interpolation inequalities.
(a) Show that for f € H(R?) and 0 < s < 1, |fllecaty < 1715 o) | F1L55py. Can you
generalize this result to f € H"(R?) for r > 0?
(b) If 99 is smooth, show that there is a constant C such that for all f € H'(Q), [|f|l1200) <
C\|f|]1/2 Hf||1/2 [Hint: Show for d =1 on (0, 1) by considering

FOP = flap = [ iR



10.

11.

12.

13.
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For d > 1, flatten out 992 and use a (d = 1)-type proof in the normal direction.]
Prove that H*(R?) is imbedded in C%(R?) if s > d/2 by completing the following outline.

(a) Show that/ (14 |€2)* de < oo.
]Rd

(b) If ¢ € S and = € RY, write ¢(z) as the Fourier inversion integral of ¢. Introduce
1= (1+]€%)*(14]€|%)* into the integral and apply Hélder to obtain the result for Schwartz
class functions.

(c) Use density to extend the above result to H*(R9).
Suppose that g = w* f, where f € Lo(R) and @(§) = /|£|. Determine s such that g € H*(R).

Elliptic regularity theory shows that if the domain @ C R? has a smooth boundary and
f € H5(), then —Au = f in Q, u = 0 on JQ, has a unique solution u € H*T2. For what
values of s will u be continuous? Can you be sure that a fundamental solution is continuous?
The answers depend on d.

Suppose that Q C R? is a bounded set and {U; }j\le is a finite collection of open sets in RY

N
that cover the closure of  (i.e., Q C U Uj). Prove that there exists a finite C°° partition
j=1
of unity in 2 subordinate to the cover. That is, construct {¢x}2L, such that ¢ € C§°(RY),
¢, C Uj, for some ji, and

Suppose that Q C R? is a domain and {U, }ae7 is a collection of open sets in R? that cover €

(i.e., Q C U Ua), Prove that there exists a locally finite partition of unity in Q subordinate
ael
to the cover. That is, there exists a sequence {¢;}32, C Cg° (R) such that

(i) For every K compactly contained in 2, all but finitely many of the ¢; vanish on K.
oo

(ii) Each ¢; > 0 and ij(a:) =1 for every x € Q.
j=1

(iii) For each j, the support of v; is contained in some Uy, a;j € Z.
Hints: Let S be a countable dense subset of € (e.g., points with rational coordinates).
Consider the countable collection of balls B = {B,(z) C R? : r is rational, € S, and
B.(z) C U, for some a € T}. Order the balls and construct on B; = B, (x;) a function
¢; € Cgo(B]) such that 0 < ¢; < 1 and ¢; = 1 on Brj/2($j)~ Then ¢, = ¢ and Y =
(1 - ¢1)(1 - ¢j—1)¢j should work.

Suppose that f; € H2(Q) for j = 1,2,..., f; > f weakly in H'(Q), and Df; > g,, weakly
in Ly(f2) for all multi-indices o such that |a| = 2. Show that f € H?(), D®f = g, and
fj — f strongly in in H().

Suppose that Q € R? and f; = f and g; = g weakly in H'(Q) . Show that V(f;g;) — V(f9g)
as a distribution. Find all p in [1, o] such that the convergence can be taken weakly in L,(€2).

Counterexamples.
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(a) No imbedding of WP(Q) < L,(Q) for 1 < p < d and ¢ > dp/(d — p). Let Q@ C R? be
bounded and contain 0, and let f(z) = |z|* Find « so that f € WhP(Q) but f & Ly(9).
(b) No imbedding of W1P(Q) — C%(Q2) for 1 < p < d. Note that in the previous case, f is
not bounded. What can you say about which (negative) Sobolev spaces the Dirac mass lies
in?

(c) No imbedding of W'P(Q) « Loo(Q) for 1 < p = d. Let Q@ ¢ R* = Br(0) and let
f(z) = log(log(4R/|z|)). Show f € WLP(Bg(0)).

(d) C*° N W is not dense in W1, Show that if Q = (—1,1) and u(x) = |z|, then
u € WL but u(x) is not the limit of C*° functions in the W1*°-norm.



CHAPTER 7

Boundary Value Problems

We consider in this chapter certain partial differential equations (PDE’s) important in science
and engineering. Our equations are posed on a bounded Lipschitz domain Q@ C R¢, where
typically d is 1, 2, or 3. We also impose auxiliary conditions on the boundary 92 of the domain,
called boundary conditions (BC’s). A PDE together with its BC’s constitute a boundary value
problem (BVP). We tacitly assume throughout most of this chapter that the underlying field
F=R.

It will be helpful to make the following remark before we begin. The Divergence Theorem
implies that for vector 1 € (C*(Q))? and scalar ¢ € C*(Q),

[ @oae= [ ovviow). (7.1)
Q o0

where v is the unit outward normal vector (which is defined almost everywhere on the boundary
of a Lipschitz domain) and do is the (d — 1)-dimensional measure on 0f). Since

V(oy)=Vo- -9+ ¢V -9,

we have the integration-by-parts formula in R?
/¢V~z/1dx:—/v¢-1/1dx+/ oY -vdo(z) . (7.2)
Q Q o0

By density, we extend this formula immediately to the case where merely ¢ € H'(2) and
Y € (H'(2))?. Note that the Trace Theorem 6.33 gives meaning to the boundary integral.

7.1. Second Order Elliptic Partial Differential Equations

Let © C R? be some bounded Lipschitz domain. The general second order elliptic PDE in
divergence form for the unknown function w is

-V (aVu+bu)+cu=f inQ, (7.3)

where a is a d x d matrix, b is a d-vector, and ¢ and f are functions. To be physically relevant
and mathematically well posed, it is often the case that ¢ > 0, |b| is not too large (in a sense to
be made clear later), and the matrix a is uniformly positive definite, as defined below.

DEFINITION. If Q C R? is a domain and a : O — R%*? is a matrix, then a is positive definite
if for a.e. x € €,

a(z)¢ >0 VEeRT, €40,

and a is merely positive semidefinite if only ¢Ta(z)¢ > 0. Moreover, a is uniformly positive
definite if there is some constant a, > 0 such that for a.e. z € §,

Ta(z)e > alé)?  VEER?.

189
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We remark that positive definiteness of a insures that
aVu-Vu>0.

The positivity of this term can be exploited mathematically. It is also related to physical
principles. In many applications, Vu is the direction of a force and aVu is the direction of a
response. Positive definiteness says that the response is generally in the direction of the force,
possibly deflected a bit, but never more than 90°.

7.1.1. Practical examples. We provide some examples of systems governed by (7.3).

EXAMPLE (Steady-state conduction of heat). Let © C R? be a solid body, u(x) the temper-
ature of the body at x € Q, and f(x) an external source or sink of heat energy. The heat flux
is a vector in the direction of heat flow, with magnitude given as the amount of heat energy
that passes through an infinitesimal planar region orthogonal to the direction of flow divided by
the area of the infinitesimal region, per unit time. Fourier’s Law of Heat Conduction says that
the heat flux is —aVu, where a(z), the thermal conductivity of the body, is positive definite.
Thus, heat flows generally from hot to cold. Finally, s(z) is the specific heat of the body; it
measures the amount of heat energy that can be stored per unit volume of the body per degree
of temperature. The physical principle governing the system is energy conservation. If V' C (),
then the total heat inside V is fv sudz. Changes in time in this total must agree with the
external heat added due to f minus the heat lost due to movement through 9V; thus,

(jt/vsuda::/vfdx—/av(—aVu)-Vda(x),

where, as always, v is the outer unit normal vector. Applying the Divergence Theorem, the last
term is

/aVaVu-z/da(x) = /VV-(aVu)dx :

and so, assuming the derivative may be moved inside the integral,

A(%T—V-(a%))dxzfvfdx.

This holds for every V' C Q with a reasonable boundary. By a modification of Lebesgue’s
Lemma, we conclude that, except on a set of measure zero,
O(su)
ot
In steady-state, the time derivative vanishes, and we have (7.3) with b = 0 and ¢ = 0. But
suppose that f(z) = f(u(z),z) depends on the temperature itself; that is, the external world
will add or subtract heat at x depending on the temperature found there. For example, a room
2 may have a thermostatically controlled heater/air conditioner f = F(u,z). Suppose further
that F'(u,x) = ¢(z)(upef(x) — u) for some ¢ > 0 and reference temperature uef(x). Then
J(su)
ot
and, in steady-state, we have (7.3) with b = 0 and f = cuyes. Note that if ¢ > 0 and u < ugf,
then F' > 0 and heat energy is added, tending to increase u. Conversely, if © > wupf, u tends
to decrease. In fact, in time, u — wuws. However, if ¢ < 0, we have a potentially unphysical
situation, in which hot areas (i.e., u > u.f) tend to get even hotter and cold areas even colder.
The steady-state configuration would be to have u = 400 in the hot regions and u = —oo in the

—V-(aVu)=f. (7.4)

— V- (aVu) = c(tpes — u) , (7.5)
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cold regions! Thus ¢ > 0 should be demanded on physical grounds (later it will be required on
mathematical grounds as well).

EXAMPLE (The electrostatic potential). Let u be the electrostatic potential, for which the
electric flux is —aVu for some a measuring the electrostatic permitivity of the medium Q.
Conservation of charge over an arbitrary volume in €2, the Divergence Theorem, and the Lebesgue
Lemma give (7.3) with ¢ =0 and b = 0, where f represents the electrostatic charges.

EXAMPLE (Steady-state fluid flow in a porous medium). The equations of steady-state flow
of a nearly incompressible, single phase fluid in a porous medium are similar to those for the
flow of heat. In this case, u is the fluid pressure. Darcy’s Law gives the volumetric fluid flux
(also called the Darcy velocity) as —a(Vu — gp), where a is the permeability of the medium 2
divided by the fluid viscosity, g is the gravitational vector, and p is the fluid density. The total
mass in volume V C Q is fv pdz, and this quantity changes in time due to external sources (or
sinks, if negative, such as wells) represented by f and mass flow through 0V. The mass flux is
given by multiplying the volumetric flux by p. That is, with ¢ being time,

4 pdr = / fdx — / —pa(Vu — gp) - vdo(x)
dt Jy 1% ov

z/vfda:+/vv-[pa(wgp)]d:c,

and we conclude that, provided we can take the time derivative inside the integral,
dp
5~V lpa(Vu—gp)]= 7.

Generally speaking, p = p(u) depends on the pressure u through an equation-of-state, so this

is a time dependent, nonlinear equation. If we assume steady-state flow, we can drop the first

term. We might also simplify the equation-of-state if p(u) & pg is nearly constant (at least over

the pressures being encountered). One choice uses

p(u) = po + v(u —ug) ,

where v and ug are fixed (note that these are the first two terms in a Taylor approximation of
p about ug). Substituting this in the equation above results in

—V -{al(po + v(u — uo))Vu — g(po + 7(u —u0))*|} = f .

This is still nonlinear, so a further simplification would be to linearize the equation (i.e., assume
u =~ ug and drop all higher order terms involving u — ug). Since Vu = V(u — ug), we obtain
finally

=V {poalVu — g(po + 2v(u — uo))]} = f
which is (7.3) with a replaced by pga, ¢ = 0, b = —2ppagy, and f replaced by f— V - [poag(po —
2yug)]-

7.1.2. Boundary conditions (BC’s). In each of the previous examples, we determined
the equation governing the behavior of the system, given the external forcing term f distributed
over the domain §2. However, the description of each system is incomplete, since we must also
describe the external interaction with the world through its boundary 0.

These boundary conditions generally take one of three forms, though many others are possi-
ble depending on the system being modeled. Let 02 be decomposed into I'p, I'y, and I'g, where
the three parts of the boundary are open, contained in 92, cover 9 (i.e., 92 = TpUT Ny UTR),
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and are mutually disjoint (so Tp NIy =Tp NI =Txy NTr = 0). We specify the boundary
conditions as

—(aVu+bu) - v =gn on 'y , (7.7)
—(aVu+bu) - v = gr(u —ur) on g, (7.8)

where up, ug, gy, and ggr are functions with ggr > 0. We call (7.6) a Dirichlet BC, (7.7) a
Neumann BC, and (7.8) a Robin BC.

The Dirichlet BC fixes the value of the (trace of) the unknown function. In the heat con-
duction example, this would correspond to specifying the temperature on I'p.

The Neumann BC fixes the normal component of the flux —(aVu + bu) - v. The PDE
controls the tangential component, as this component of the flux does not leave the domain in
an infinitesimal sense. However, the normal component is the flux into or out of the domain,
and so it may be fixed in certain cases. In the heat conduction example, gy = 0 would represent
a perfectly insulated boundary, as no heat flux may cross the boundary. If instead heat is added
to (or taken away from) the domain through some external heater (or refrigerator), we would
specify this through nonzero gy .

The Robin BC is a combination of the first two types. It specifies that the flux is proportional
to the deviation of u from ug. If u = ug, there is no flux; otherwise, the flux tends to drive u
to upg, since gg > 0 and a is positive definite. This is a natural boundary condition for the heat
conduction problem when the external world is held at a fixed temperature ur and the body
adjusts to it. We will no longer discuss the Robin condition, but instead concentrate on the
Dirichlet and Neumann BC’s.

The PDE (7.3) and the BC’s (7.6)—(7.8) constitute our boundary value problem (BVP). As
we will see, this problem is well posed, which means that there exists a unique solution to the
system, and that it varies continuously in some norm with respect to changes in the data f, up,
and gn.

7.2. A Variational Problem and Minimization of Energy

For ease of exposition, let us consider the Dirichlet BVP
{—V-(aVu)—i—cu:f in Q,

U= Up onTp, (7.9)

where we have set b = 0 and I'p = 9€2. To make classical sense of this problem, we would expect
u € C%(Q) N C%N), so we would need to require that f € C°(Q), a € (C1(Q))™*?, ¢ € CO(Q),
and up € C°(00). Often in practice these functions are not so well behaved, so we therefore
interpret the problem in a weak or distributional sense.

If merely f € La(Q), a € (WH(Q))4*4, and ¢ € Ly (9), then we should expect u € H2(Q).
Moreover, then u|gq € H3/2(89Q) is well defined by the trace theorem. Thus the BVP has a
mathematically precise and consistent meaning formulated as: If f, a, and ¢ are as stated and
up € H32(0Q), then find u € H?(Q) such that (7.9) holds. This is not an easy problem;
fortunately, we can find a better formulation using ideas of duality from distribution theory.

We first proceed formally: we will justify the calculations a bit later. We first multiply the
PDE by a test function v € D(£2), integrate in z, and integrate by parts. This is

/(—V-(aVu)—i—cu)vdm:/(aVu-Vv—{—cuv)dx:/fvdx.
Q Q Q
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We have evened out the required smoothness of v and v, requiring only that each has a single
derivative. Now if we only ask that f € H™Y(Q), a € (Loo(2))?, and ¢ € Loo(), then
we should expect that u € H'(Q); moreover, we merely need v € H{(Q). This is much less
restrictive than asking for u € H?(f2), so it should be easier to find such a solution satisfying
the PDE. Moreover, u|gq € H'/2(99) is still a nice function, and only requires up € H'/2(9Q).

REMARK. Above we wanted to take cu in the same space as f, which was trivially achieved
for ¢ € Loo(€2). The Sobolev Imbedding Theorem allows us to do better. For example, suppose
indeed that v € H'(Q) and that we want cu € L2(Q) (to avoid negative index spaces). Then in
fact u € Ly(2) for any finite ¢ < 2d/(d—2) if d > 2 and u € Cp() C Loo(2) if d = 1. Thus we
can take

Ly(Q) ifd=1,
c€ Lote(Q) ifd=2forany e>0,
Ly ifd>3,
and obtain cu € Ly(Q) as desired.

With this reduced regularity requirement on u (u € H(2), not H?(Q2)), we can reformulate
the problem rigorously as a variational problem. Our PDE (7.9) involves a linear operator

=-V-aV+c:H(Q) - HQ),
which we will transform into a bilinear operator
B:HY(Q)x HY(Q) - R..

Assume that u € H'(Q) solves the PDE (we will show existence of a solution later), and take a
test function v € H}(2). Then

(=V - (aVu) + cu,v) g1 g2 = (f;v) g1 g2 -
Let {v;}32, C D(Q2) be a sequence converging to v in HZ(Q). Then
(=V- (GVU)W>H*1,H3 = ].hjgo<—v : avu?”ﬁH*l,Hé
= 115&<—v -aVu,v;)p p
= ?lim (aVu,Vvj)p p
= ].EIE:(GVU, Vi) Ly )
= J(aVu, VU)L2(Q) ,
where the “Lo(Q)”-inner product is actually the one for (L2(2))?. Thus
(aVu, V), ) + (cu,v)y0) = (f,0) g1 mp -
Let us define B by
B(u,v) = (aVu, Vv) ) + (1, ) 1,() Vu,v € HY(Q) ,
and F : H}(Q) — R by
F(v) =(/, U>H—1,Hg )
then the PDE has been reduced to the variational problem:
Find u € H(Q) such that

B(u,v) = F(v) Yo € HY(Q) .
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What about the boundary condition? Recall that the trace operator
Yot HY(Q) 23 HY2(0Q) .

Thus there is some @p € H () such that yo(@p) = up € H/2(dQ). Tt is therefore required
that

u € Hy(Q) +ap ,
so that vo(u) = y9(tp) = up. For convenience, we no longer distinguish between up and its
extension up. We summarize our construction below.

THEOREM 7.1. If Q C R? is a domain with a Lipschitz boundary, and f € H™1(Q), a €

(Loo(2))¥*4 ¢ € Loo(R), and up € HY(Q), then the BVP for u € H(),
-V - (aVu) +cu = m ),

(aVu) d (7.10)

u=up on o,

18 equivalent to the variational problem:
Find u € H}(Q) 4+ up such that

B(u,v) = F(v)  Yve H}Q), (7.11)
where B+ HY(Q) x HY(Q) — R is
B(u,v) = (aVu, Vo)1, ) + (cu, v) 1,()
and F : H}(Q) — R is
F(v) = (f,0)m-1.m@) -

Actually, we showed that a solution to the BVP (7.10) gives a solution to the variational
problem (7.11). By reversing the steps above, we see the converse implication. Note also that
above we have extended the integration by parts formula (7.2) to the case where ¢ = v € H}(Q)
and merely ¢ = —aVu € (L2(Q))%.

The connection between the BVP (7.10) and the variational problem (7.11) is further illu-
minated by considering the following energy functional.

DEFINITION. If @ symmetric (i.e., a = al), then the energy functional J : H(Q) — R for
(7.10) is given by

J(U) = % [(aVv, VU)LZ(Q) + (CU, U)LQ(Q)] (7 12)
= (f,0) a-1),m1 ) T (@Vup, Vo) 1,) + (cup, v)1,(0) - '

We will study the calculus of variations in Chapter 8; however, we can easily make a simple
computation here. We claim that any solution of (7.10), minus up, minimizes the “energy”
J(v). To see this, let v € H}(2) and compute

J(u—up+v) = J(u—up) = (aVu, Vv)r,q) + (ct,v) 1) = (f,0) g-1(0),H010)
+ %[(aVv, V) ) + (cv, U)LQ(Q)] )

using that a is symmetric. If u satisfies (7.11), then

(7.13)

Ju—up+v)—Ju—up)= %[(QVU,VU)LZ(Q) + (CU,U)L2(Q):| >0,

provided that a is positive definite and ¢ > 0. Thus every function in H}(Q2) has “energy” at
least as great as u — up.
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Conversely, if u —up € H () is to minimize the energy J(v), then replacing in (7.13) v by
ev for € € R, € £ 0, we see that the difference quotient

HJ(u—up + ev) — J(u —up)] = (aVu, Vo) @) + (€, v) Ly 0) — <f,v>H71(Q)7Hé(Q)

+ 5[(aVv, Vv) 1) + (c0,0) 1)

must be nonnegative if € > 0 and nonpositive if € < 0. Taking ¢ — 0 on the right-hand side
shows that the first three terms must be both nonnegative and nonpositive, i.e., zero; thus, u
must satisfy (7.11). Note that as ¢ — 0, the left-hand side is a kind of derivative of J at u — up.
At the minimum, we have a critical point where the derivative vanishes.

(7.14)

THEOREM 7.2. If the hypotheses of Theorem 7.1 hold, and if ¢ > 0 and a is symmetric and
positive definite, then (7.10) and (7.11) are also equivalent to the minimization problem:

Find u € H}(Q) 4+ up such that
J(u—up) < J(v) Yo € HY(Q) (7.15)
where J is given above by (7.12).

The physical principles of conservation or energy minimization are equivalent in this context,
and they are connected by the variational problem: (1) it is the weak form of the BVP, given
by multiplying by a test function, integrating, and integrating by parts to even out the number
of derivatives on the solution and the test function, and (2) the variational problem also gives
the critical point of the energy functional where it is minimized.

7.3. The Closed Range Theorem and operators bounded below

We continue with an abstract study of equation solvability that will be needed in the next
section. In this section, we do not require the field to be real. We begin with a basic definition.

DEFINITION. Let X be a NLS and Z C X. Then the orthogonal complement of Z is
Zt={z" e X*: (a5 2)xx=0Vz€ Z}.

PROPOSITION 7.3. Let X be a NLS and Z C X a linear subspace. Then the following hold:
(a) Z*+ is closed in X*;
(b) Z C (ZH)*;
(c) Z is closed in X if and only if Z = (Z+)*.

The linearity of Z is needed only for (c). Of course, (Z+)t C X**, so we have used the
natural inclusion X C X™** implicitly above.

ProoF. For (a), suppose that we have a sequence {y; 721 C Z1* that converges in X* to y.

But then for any z € Z,

0= (yj,2)x*x = (¥, 2)x* x ,
soy € Z+ and Zt is closed. Result (b) is a direct consequence of the definitions: for z € Z C
X C X** we want that z € (Z+)1, i.e., that (z,y) x= x = (z,y) x x~ = 0 for all y € Z*, which
holds.

Finally, for (c), that Z is closed follows from (a). For the other implication suppose Z is
closed. We have (b), so we only need to show that (Z+)* C Z. Suppose that there is some
nonzero = € (Z1+)+ such that x ¢ Z. Now the Hahn-Banach Theorem, specifically Lemma, 2.15,
gives us the existence of f € ((Z+)1)* such that f(z) # 0 but f(z) =0 for all z € Z, since Z is
linear. That is, f € Z+, so x cannot be in (Z+)*, a contradiction. O
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PROPOSITION 7.4. Let X andY be NLS’s and A : X — Y a bounded linear operator. Then
R(A)*" = N(A%)
where R(A) is the range of A and N(A*) is the null space of A*.
PROOF. We note that y € R(A)* if and only if for every z € X,
0= (y, Az)y»y = (A*y,z)x» x ,
which is true if and only if A*y = 0. O

We have now immediately the following important theorem.

THEOREM 7.5 (Closed Range Theorem). Let X and Y be NLS’s and A: X — Y a bounded
linear operator. Then R(A) is closed in'Y if and only if R(A) = N(A*)*.

This theorem has implications for a class of operators that often arise.

DEFINITION. Let X and Y be NLS’s and A : X — Y. We say that A is bounded below if
there is some constant v > 0 such that

[Azlly = 7llzllx  VeeX.

A linear operator that is bounded below is one-to-one. If it also mapped onto Y, it would
have a continuous inverse. We can determine whether R(A) =Y by the Closed Range Theorem.

THEOREM 7.6. Let X andY be Banach spaces and A : X —'Y a continuous linear operator.
Then the following are equivalent:

(a) A is bounded below;
(b) A is injective and R(A) is closed;
(c) A is injective and R(A) = N(A*)*.

PRrROOF. The Closed Range Theorem gives the equivalence of (b) and (c). Suppose (a). Then
A is injective. Let {y;}32; C R(A) converge to y € Y. Choose z; € X so that Az; = y; (the
choice is unique), and note that

ly; — yelly = Az — zp)lly > 7llzj — 21l x

implies that {x;}32; is Cauchy. Let z; — z € X and define y = Az € R(A). Since A is
continuous, y; = Az; — Az =y, and R(A) is closed.

Conversely, suppose (b). Then R(A), being closed, is a Banach space itself. Thus 4 : X —
R(A) is invertible, with continuous inverse by the Open Mapping Theorem 2.22. For z € X,
compute

|lx = A7 Azl x < A7 Az]ly
which gives (a) with constant v = 1/||A71||. O
COROLLARY 7.7. Let X and Y be Banach spaces and A : X — Y a continuous linear

operator. Then A is continuously invertible if and only if A is bounded below and N(A*) = {0}
(i.e., A* is injective).
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7.4. The Lax-Milgram Theorem

It is easy at this stage to prove existence of a unique solution to (7.10), or equivalently,
(7.11), provided that a is symmetric and uniformly positive definite, ¢ > 0, and both these
functions are bounded. This is because B(,-) is then an inner-product on H{ (), and this
inner-product is equivalent to the usual one. To see these facts, we easily note that B is bilinear
and symmetric (since a is symmetric), and B(v,v) > 0. We will show that B(v,v) = 0 implies
v = 0 in a moment, which will show that B is an inner-product. For the equivalence with the
HE(Q) inner-product, we have the upper bound

B(v,v) = (aVv, Vo) + (cv,v) < |lall (1. @yxal Voll7,00) + el a@1vl12,0) < CillvlZ ) -

for some constant C7. A lower bound is easy to obtain if ¢ is strictly positive, i.e., bounded
below by a positive constant. But we allow merely ¢ > 0 by using the Poincaré inequality, which
is a direct consequence of Cor. 6.18.

THEOREM 7.8 (Poincaré Inequality). If Q@ C R is bounded, then there is some constant C
such that

ol ) < ClVollLy@) Yo € Hy() . (7.16)
Now we have that
B(v,v) = (aVv, Vv) + (cv,v) > a*HVUH%Q(Q) > (a*/Cz)HUHIQLIé(Q) ,

and now both B(v,v) = 0 implies v = 0 and the equivalence of norms is established.
Problem (7.11) becomes:

Find w = u —up € H}(Q) such that
B(w,v) = F(v) — Blup,v) = F(v) Yv € H(Q).
Now F : H} () — R is linear and bounded:
|F(v)] < |F()| + |B(up, )| < (IFlla-1() + Cllunllm @) 1]l g3 -

where, again, C' depends on the Lo (9)-norms of @ and ¢. Thus F' € (H}(Q))* = H~(Q), and
we seek to represent I as w € H}(Q2) through the inner-product B. The Riesz Representation
Theorem 3.12 gives us a unique such w. We have proved the following theorem.

THEOREM 7.9. IfQ C R? is a Lipschitz domain, f € H=Y(Q), up € H'(Q), a € (Lo ()44
is uniformly positive definite and symmetric on Q, and ¢ > 0 is in Loo(Q2), then there is a
unique solution u € HY(Q) to the BVP (7.10) and, equivalently, the variational problem (7.11).
Moreover, there is a constant C > 0 such that

ull g1y < C(IIF|lg-1(0) + llupllm ) - (7.17)
This last inequality is a consequence of the facts that
[ullz ) < lwllgy@) + llunlla e

and
||w||§{é(9) < CB(w,w) = CF(w) < C(|Fllg-1) + lupll g @) lwllm o) -
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REMARK. We leave it as an exercise to show that u is independent of the extension of up
from 0X) to all of Q. This extension is not unique, and we have merely that once the extension
for up is fixed, then w is unique. That is, w depends on the extension. The reader should
show that the sum v = w + up does not depend on the extension chosen. Moreover, since the
extension operator is bounded, that is,

lunllmr@) < Cllubllgizee)

we can modify (7.17) so that it reads

lull ) < CUIFIE-1(@) + lunll grzp0)
and thereby refers only to the raw data itself and not the extension.
For more general problems, where either a is not symmetric, or b # 0 in the original Dirichlet
problem (7.9), B is no longer symmetric, so it cannot be an inner-product. We need a gener-

alization of the Riesz theorem to handle this case. In fact, we present this generalization for
Banach spaces rather than restricting to Hilbert spaces.

THEOREM 7.10 (Generalized Lax-Milgram Theorem). Let X' and Y be real Banach spaces,
and suppose that Y is reflerive, B : X XY — R is bilinear, and X C X be a closed subspace.
Assume also the following three conditions:

(a) B is continuous on X XY, i.e., there is some M > 0 such that
1B(z,y)| < Mllz|lxlylly  Vzed, yeY;
(b) B satisfies the inf-sup condition on X x Y, i.e., there is some v > 0 such that
inf sup B(z,y) >v>0;
rzeX yEY
lella=1 gy =1
(¢) and B satisfies the nondegeneracy condition on X that

sup B(z,y) >0 VyeY, y#0.
zeX

If xg € X and F € Y™, then there is a unique u solving the abstract variational problem:
Findu e X +x9g C X such that

B(u,v) = F(v) YoeY . (7.18)
Moreover,

1 M
Julle < 21l + (7 ; 1) leollx - (7.19)

We remark that (b) is often written equivalently as

B(zx,
sup () > llz||x Ve e X .
ey lylly
y7#0

In our context, X = H'(Q), X =Y = H}(Q), and z¢ = up.

PROOF. Assume first that 2o = 0. For each fixed x € X, B(z,-) defines a linear functional
on Y, since B is linear in each variable separately, so certainly the second. Let A represent the
operator that takes z to B(z,y):

(Az,y) = Az(y) = B(z,y) Vee X, yeY .
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Since (a) gives that

[(Az,y)| = |B(z,y)| < (M|[=]|x)llylly ,
Az is a continuous linear functional, i.e., A : X — Y™*. Moreover, A itself is linear, since B is
linear in its first variable, and therefore A is a continuous linear operator:

[Azlly~ = sup (Az,y) < M| .

lylly=1
We reformulate (7.18) in terms of A as the problem of finding u € X such that
Au=F .
Now (b) implies that
[Az|y+ > ylzlx  VzeX, (7.20)

so A is bounded below and w, if it exists, must be unique (i.e., A is one-to-one). Since X is
closed (Theorem 7.6), it is a Banach space and we conclude that the range of A, R(A), is closed
in Y*. The Closed Range Theorem 7.5 now implies that R(A) = N(A*)*. We wish to show
that N(A*) = {0}, so that A maps onto. Suppose that for some y € Y = Y** y € N(A*); that
is,
B(z,y) = (Az,y) =0 Vre X.
But (c) implies then that y = 0. So we have that A has a bounded inverse, with ||[A~L|| < 1/y
by (7.20), and u = A~1F solves our problem.
Finally, we compute

_ _ 1
lullx = 1A Flle < AT Flly~ < SIE -

The theorem is established when xg = 0.
If 29 # 0, we reduce to the previous case, since (7.18) is equivalent to:

Find w € X such that
B(w,v) = F(v) YveY,
where u = w4+ 29 € X + 29 C X and
F(v) = F(v) — B(zo,v) .
Now F € Y* and
|E(0)| < [F(0)] +|B(wo,v)| < (IFlly+ + Mllaollx)[vlly -

Thus the previous result gives
1
Jw]lx < ;(HFHY* + Mlzollx) .

and so
Jullx < flw+zollx < [lwllx + [[zollx
gives the desired bound. O

When X =Y is a Hilbert space, things are a bit simpler.

COROLLARY 7.11 (Lax-Milgram Theorem). Let X' be a real Hilbert space with closed subspace
X. Let B: X x X — R be a bilinear functional satisfying the following two conditions:

(i) B is continuous on X, i.e., there is some M > 0 such that
[B(z,y)| < Mllz|xlyllx Yo,y d;
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(ii) B is coercive (or elliptic) on X i.e., there is some v > 0 such that
B(z,z) > v||z||% Vee X .
If xg € X and F € X*, then there is a unique u solving the abstract variational problem:
Findu e X +x9 C X such that
B(u,v) = F(v) Voe X . (7.21)

Moreover,
1 M
Julle < 2Pl + (7 n 1) ol (7.22)

PROOF. The corollary is just a special case of the theorem except that (ii) has replaced (b)
and (c). We claim that (ii) implies both (b) and (c), so the corollary follows.
Easily, we have (c), since for any y € X,

sup B(z,y) > B(y,y) > 7|ly|% >0
rxeX

whenever y # 0. Similarly, for any x € X with norm one,

sup  B(z,y) = B(z,z) =27 >0,
yeX
lyllx=1
so the infimum over all such z is bounded below by -y, which is (b). O

The Generalized Lax-Milgram Theorem gives the existence of a bounded linear solution
operator S : Y* x & — X such that S(F,z¢) = u € X + xo C X satisfies

B(S(F,x),v) = F(v) YoeY .

The bound on S is given by (7.19). This bound shows that the solution varies continuously with
the data. That is, by linearity,

1 M
IS(Fy20) = S(G.)l < TP = Gl + (7 n 1) 2o — vollx

So if the data (F,xo) is perturbed a bit to (G, yo), then the solution S(F,xo) changes by a small
amount to S(G,yp), where the magnitudes of the changes are measured in the norms as above.

7.5. Application to second order elliptic equations

We consider again the BVP (7.10), in the form of the variational problem (7.11). To apply
the Lax-Milgram Theorem, we set X = H'(Q), X = Y = H}(Q), and 290 = up. Now B :
H'(Q) x H'(Q) — R is continuous, since a and ¢ are bounded:

|B(u,v)| = [(aVu, V) 1,0y + (cu, v) 1,0
< lall(zoo @)yexall Vel Ly@) IVl Ly@) + el o @ llull @ v] @
< Mllull oy llvll o) »

by Holder’s inequality for some M > 0 depending on the bounds for a and ¢. Coercivity is more
interesting. We will only assume that ¢ > 0, since in practice, often ¢ = 0. Using that a is
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uniformly positive definite and €2 is bounded, we compute
B(u,u) = (aVu, Vu) @) + (cu, u) 1,0
> a.(Vu, V) ) = axl|Vull7, o
> (ax/C?)|ullfq »

for some C' > 0 by Poincaré’s inequality. Thus there exists a unique solution u € H&(Q) + up,
and

C? C?*M
lulle < el + (520 +1) Rl -

*

Note that the boundary condition u = up on € is enforced by out selection of the trial
space H}(Q) 4+ up, i.e., the space within which we seek a solution has every member satisfying
the boundary condition. Because of this, we call the Dirichlet BC an essential BC for this
problem.

7.5.1. The general Dirichlet problem. Consider more generally the full elliptic equation
(7.3) with a Dirichlet BC:

—V - (aVu+bu) +cu=f in Q,
{ u=up on 0f) .

We leave it to the reader to show that an equivalent variational problem is:
Find u € H}(Q) + up such that

B(u,v) = F(v) Yo € HY(Q)
where
B(u,v) = (aVu, Vv) ) + (bu, Vv) 1,0y + () Ly @)
F(v) = (f,0) m-1(),m (@) -

Now if b € (Loo(€2))? (and @ and ¢ are bounded as before), then the bilinear form is bounded.
For coercivity, assume again that ¢ > 0 and a is uniformly positive definite. Then for v € HE(Q),

B(v,v) = (aVv, V), ) + (bv, VV) 1, ) + (cv,0) 1, ()

2 a*vaUH%Q(Q) o ‘(b’U, VU)LQ(Q)|

> (alIVoll Ly (@) = 18l Lo @101 Lo @) V] o) -
Poincaré’s inequality tells us that for some Cp > 0,

x|Vl o) = 10l po@pyallvllLo@) = (ax — CrIbll (1. ()2) 1Vl Lo -
To continue in the present context, we must assume that for some « > 0,
Ay — CPHbH(LOO(Q))d >a>0 ; (723)

this restricts the size of b relative to a. Then we have that

«
B(v,v) > a||VvH%2(Q) > THHUH%N(Q) )
P

and the Lax-Milgram Theorem gives us a unique solution to the problem as well as the continuous
dependence result. Note that in this general case, if a is not symmetric or b # 0, then B is not
symmetric, so B cannot be an inner-product. However, continuity and coercivity show that the
diagonal of B (i.e., u = v) is equivalent to the square of the H}(2)-norm.
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7.5.2. The Neumann problem with lowest order term. We turn now to the Neumann
BVP

(7.24)

—V - (aVu)+cu=f in Q,
{ —aVu-v=g on 0F) ,

wherein we have set b = 0 for simplicity. This problem is more delicate than the Dirichlet
problem, since for u € H'(2), we have no meaning in general for aVu - v. We proceed formally

to derive a variational problem by assuming that v and the test function v are in, say C*°(12).
Then the Divergence Theorem can be applied to obtain

—/V-(aVu)vdx:/aVu'Vvdaz—/ aVu-vovdx ,
Q Q o0

or, using the boundary condition and assuming that f and g are nice functions,

(aVu, Vo), + (cu,v)ry0) = (f,0)12) — (9:) Ly 00) -
These integrals are well defined on H'(2), so we have the variational problem:
Find u € H'(Q) such that
B(u,v) = F(v) Yve HYQ), (7.25)
where B : H'(Q) x H'(Q) — R is
B(u,v) = (aVu, Vo) ,@) + (cu,v),(q)
and F: H'(Q) — R is
F(v) = (f,v) @) m1@) — (9 0) g-1/200),H1/2() - (7.26)
It is clear that we will require that f € (H'(Q))*. Moreover, for v € H'(Q), its trace is in
H'Y2(Q), so we merely require g € H~/2(Q), the dual of H'/2(Q).

A solution of (7.25) will be called a weak solution of (7.24). These problems are not strictly
equivalent, because of the boundary condition. For the PDE, consider u satisfying the variational
problem. Restrict to test functions v € D(Q2) to avoid 02 and use the Divergence Theorem, as
in the case of the Dirichlet boundary condition, to see that the differential equation in (7.24) is
satisfied in the sense of distributions. This argument can be reversed to see that a solution in
H'(Q) to the PDE gives a solution to the variational problem for v € D(f2), and for v € H(Q)
by density. The boundary condition will be satisfied only in some weak sense, i.e., only in the
sense of the variational form.

If in fact the solution happens to be in, say, H(Q), then aVu - v € HY2(0Q) and the
argument above can be modified to show that indeed —aVu - v = g. Of course in this case, we
must then have that g € H/2(9Q), and, moreover, that f € Ly(Q). So suppose that u € H?(Q)

solves the variational problem (and f and g are as stated). Restrict now to test functions
v e HY Q) NC>®(Q) to show that

B(u,v) = (aVu, Vo) ,q) + (cu, v) L, ()
= —(V - (aVu),v)r,) + (aVu - v,v)1,00) + (cu,v) 1, 0)
=F() = (f,v)r,) — (9,V) Ly (00) -

Using test functions v € C§° shows again by the Lebesgue Lemma that the PDE is satisfied.
Thus, we have that

(aVu-v,v)1,00) = —(9,0)L,09) »
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and another application of the Lebesgue Lemma (this time on 02) shows that indeed —aVu-v =
g in Ly(99), and therefore also in H'/2(9€). That is, a smoother solution of (7.25) also solves
(7.24). The converse can be shown to hold as well by reversing the steps above, up to the
statement that indeed u € H?(Q). But this latter fact follows from the Elliptic Regularity
Theorem 7.13 to be given at the end of this section.

Let us now apply the Lax-Milgram Theorem to our variational problem (7.25) to obtain the
existence and uniqueness of a solution. We have seen that the bilinear form B is continuous if
a and ¢ are bounded functions. For coercivity, we require that a be uniformly positive definite
and that c is uniformly positive: there exists ¢, > 0 such that

c(x) >ce >0 for a.e. z € Q.

This is required rather than merely ¢ > 0 since H'(£2) does not satisfy a Poincaré inequality.
Now we compute

(aVu, Vu) Lyq) + (cu,u) py) > al|Vullg, ) + cllullg, o
> min(a*,c*)HuH?p(Q) )

which is the coercivity of the form B. We now conclude that there is a unique solution of the
variational problem (7.25) which varies continuously with the data. Moreover, if the solution is
more regular (i.e., u € H?(12)), then (7.24) has a solution as well. (But is it unique?)

Note that the boundary condition —aVu -v = g on 0f2 is not enforced by the trial space
H'(Q), since most elements of this space do not satisfy the boundary condition. Rather, the
BC is imposed in a weak sense as noted above. In this case, the Neumann BC is said to be a
natural BC.

7.5.3. The Neumann problem with no zeroth order term. In this subsection, we
also require that €2 be connected. If it is not, consider each connected piece separately.

Often the Neumann problem (7.24) is posed with ¢ = 0, in which case the problem is
degenerate in the sense that coercivity of B is lost. In that case, the solution cannot be unique,
since any constant function solves the homogeneous problem (i.e., the problem for data f = g =
0).

The problem is that the kernel of the operator V is larger than {0}, and this kernel intersects
the kernel of the boundary operator —ad/dv. In fact, this intersection is

Z ={v € H'(Q) : v is constant a.e. on Q} ,

which is a closed subspace isomorphic to R. If we “mod out” by R, we can recover uniqueness.
One way to do this is to insist that the solution have average zero. Let

HY(Q) = {u c H(Q): / u(z) de = 0},
Q
which is isomorphic to H'(Q2)/R, ie, H 1(Q) modulo constant functions, and so is a Hilbert
space. To prove coercivity of B on H'(§), we need a Poincaré inequality, which follows.

THEOREM 7.12. If Q C R? is a bounded and connected domain, then there is some constant
C > 0 such that

[0l Ly() < ClIVOlLy) Yo HY(Q) . (7.27)

PROOF. Suppose not. Then we can find a sequence {u,}>, ¢ H'(Q) such that

[unllro@) =1 and  [[Vug| o) <1/n,
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and so
Vu, — 0 strongly in La(2) .

Furthermore, |ul[z1(q) < V2, so we conclude both that

w

Up — U weakly in H'(Q)

and, by the Rellich-Kondrachov Theorem 6.20, for a subsequence,

Up — U strongly in La(Q) .
That is, Vu, — 0 and Vu, = Vu, so we conclude that Vu = 0. Thus u is a constant (since
is connected) and has average zero, so v = 0. But this contradicts the fact that

L= |Junllry) — lullzo@) =0,
and the inequality claimed in the theorem must hold. O

On a connected domain, then, we have for u € H'(Q)
B(u,u) = (aVu, Vo) 1,) > a:l|Vul?, 0y > CllullF g,

for some constant C' > 0, that is, coercivity of B. Thus we conclude from the Lax-Milgram

Theorem that a solution exists and is unique for the variational problem:
Find v € H'(Q) such that
B(u,v) = F(v) Yo e HY(Q), (7.28)
where B(u,u) = (aVu,Vv)r,) and F is defined in (7.26), provided that
F e (HY(Q)".
Often we prefer to formulate the Neumann problem in H'(Q) rather than in H'(€) and

accept the nonuniqueness. Actually, we pose the problem uniquely as:
Find v € H'(Q) such that
B(u,v) = F(v) Yve HY(Q). (7.29)
In that case, for any a € R,
B(u,v + a) = B(u,v) ,
so if we have a solution u € H'(£2), then also
F(v) = B(u,v) = Blu,v+a) = F(v+a) = F(v) + F(«)

implies that F'(«) = 0 is required. That is, R C ker(F’). This condition is called a compatibility
condition, and it says that the kernel of B(u,-) is contained in the kernel of F’; that is, f and g
must satisfy

(£, D@y — (9 D p-1/20),me@) =0

/Q f(@)do = /a g(a) do(a)

provided that f and g are integrable.

The compatibility condition is necessary for obtaining a solution, but is it sufficient? Note
that (c) of the Generalized Lax-Milgram Theorem 7.10 is not satisfied. The reformulated prob-
lem (7.29) only requires F' € (H'(£2))*. However, the compatibility condition actually says that
F € (H'(Q))*; moreover, it also says that we can restrict the test functions to v € H(2). Thus
(7.29) is equivalent to (7.28), which we already saw had a unique solution.

which is to say
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In abstract terms, we have the following situation. The problem is naturally posed for v and
v in a Hilbert space X. However, there is nonuniqueness because the set {u € X : B(u,v) =
O0Vve X} ={veX:B(u,v) =0Vu € X} is contained in the kernel of the natural BC. But the
problem is well behaved when posed over X/Y', which requires F' € (X/Y)*. The compatibility
condition is precisely the condition that an element F' € X* is actually in (X/Y)*.

7.5.4. Elliptic regularity. We close this section with an important result from the theory
of elliptic PDE’s. See, e.g., [GT] or [Fo] for a proof. This result can be used to prove the
equivalence of the BVP and the variational problem in the case of Neumann BC’s.

THEOREM 7.13 (Elliptic Regularity). Suppose that k > 0 is an integer, @ C R? is a bounded
domain with a C*L1(Q)-boundary, a € (WkTL(Q))4%4 s uniformly positive definite, b €
(WhtLeo(Q))e, and ¢ € WF+22°(Q) is nonnegative. Suppose also that the bilinear form B :
HY(Q) x H(Q) — R,

B(u,v) = (aVu, Vo) ,@) + (bu, VV) 1, 0) + (cu, v) Ly @)
s continuous and coercive on X, for X given below.
(a) If f € H*(Q), up € H*2(Q), and X = HL(SY), then the Dirichlet problem:
Find u € H}(Q) + up such that

B(u,v) = (f,0)1,00) v € Hy(Q), (7.30)
has a unique solution u € H**2(Q) satisfying, for constant C' > 0 independent of f, u,
and up,
[ull g2y < C(I1Flame) + llunll grrsrz o)) -
Moreover, k = —1 1s allowed in this case.

(b) If f € H*(Q), g € H*Y2(09Q), and X = H'(Q), then the Neumann problem:
Find u € HY(Q) such that

B(uvv) = (f?v)Lz(Q) - (gav)Lz(aﬂ) Vo € HI(Q) ) (731)

has a unique solution u € HFT2(Q) satisfying, for constant C' > 0 independent of f, u,
and g,

Jull grresziy < C U ar) + 9l mrr2a0)) -
7.6. Galerkin approximations

Often we wish to find some simple approximation to our BVP. This could be for computa-
tional purposes, to obtain an explicit approximation of the solution, or for theoretical purposes to
prove some property of the solution. We present here Galerkin methods, which give a framework
for such approximation.

THEOREM 7.14. Suppose that H is a Hilbert space with closed subspaces
HycH,cCc---CH

o0
such that the closure of U H,, is H. Suppose also that B : H x H — R is a continuous, coercive

n=0
bilinear form on H and that F' € H*. Then the variational problems, one for each n,
Find u,, € H,, such that

B(up,v,) = F(vy) Yv, € Hy, , (7.32)
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have unique solutions. The same problem posed on H also has a unique solution v € H, and
Uy — U m H .

Moreover, if M and vy are respectively the continuity and coercivity constants for B, then for
any n,

M
lu—upllg < — inf ||ju—v|lg - (7.33)

Un n

Furthermore, if B is symmetric, then for any n,

lu—unlp < inf flu—ovalp (7.34)

Un n
where || - |p = B(-,-)'/? is the energy norm.

REMARK. Estimate (7.33) says that the approximation of u by w,, in H,, is quasi-optimal in
the H-norm; that is, up to the constant factor M /v, u, is the best approximation to u in H,.
When B is symmetric, ||-|| g is indeed a norm, as the reader can verify, equivalent to the H-norm
by continuity and coercivity. Estimate (7.34) says that the Galerkin approximation u, € H, is
optimal in the energy norm.

Proor. We have both
B(up,vy) = F(vy) Yu, € H, ,
and
B(u,v) = F(v) Yve H .
Existence of unique solutions is given by the Lax-Milgram Theorem. Since H, C H, restrict
v = v, € H, in the latter and subtract to obtain that
B(u — up,v,) =0 Yu, € H, .

(We remark that in some cases B gives an inner-product, so in that case this relation says that
the error u—u,, is B-orthogonal to H,; thus, this relation is referred to as Galerkin orthogonality.)
Replace vy, by (v —u,) — (u — v,) € Hy, for any v, € H, to obtain that

B(u — up,u —uy) = Bu— up,u —vy) Y, € Hy, . (7.35)
Thus,
Y —unlfr < Blu—tn,u—un) = Blu —tp,u—vg) < Mllu—upl|mllu—vall
and (7.33) follows. If B is symmetric, then B is an inner-product, and the Cauchy-Schwarz
inequality applied to (7.35) gives
Ju— unHQB = B(u— up,u —up) = B(u — un,u —vy) < [Ju—unl|pllu— w5,

and (7.34) follows.

o0
Finally, since U H,, is dense in H, there are ¢, € H, such that ¢, — u in H as n — oo.
n=0
Then
M M
lu—upllg < — inf [u—on|z < 7Hu — ¢nllm

So up, — uwin H as n — oo. O



7.6. GALERKIN APPROXIMATIONS 207

If (7.32) represents the equation for the critical point of an energy functional J : H — R,

then for any n,
inf = > = inf .
nf J(vy) = J(uy) > J(u) Inf J(v)

That is, we find the function with minimal energy in the space H, to approximate u. In this
minimization form, the method is called a Ritz method.

In the theory of finite element methods, one attempts to define explicitly the spaces H, C H
in such a way that the equations (7.32) can be solved easily and so that the optimal error

i B
onf fu—ovnlla

is quantifiably small. Such Galerkin finite element methods are extremely effective for computing
approximate solutions to elliptic BVP’s, and for many other types of equations as well. We now
present a simple example.

EXAMPLE. Suppose that Q2 = (0,1) C R and f € L3(0,1). Consider the BVP

—u = on (0,1)
! 1 (7.36)
u(0) =u(1l)=0.
The equivalent variational problem is:
Find u € HZ(0,1) such that
(W, N, = (f,v), Yo € HH0,1) . (7.37)

We now construct a suitable finite element decomposition of Hg(0,1). Let n > 1 be an
integer, and define h = h,, = 1/n and a grid x; = ih for i = 0,1, ...,n of spacing h. Let

H, = Hy = {v € C°0,1) : v(0) = v(1) = 0 and v(z) is a first degree
polynomial on [z;_1,x;] for i = 1,2,...,n} ;

that is, H}, consists of the continuous, piecewise linear functions. Note that Hj C Hol((), 1), and
Hj, is a finite dimensional vector space. We leave it to the reader to show that the closure of
o0

U Hj, is dense in HZ(0,1). In fact, one can show that there is a constant C' > 0 such that for
n=1

any v € H}(0,1) N H?(0, 1),

min |[v —wvp| g < Cv|lg2h - (7.38)
v, €Hp,

The Galerkin finite element approximation is:
Find wup, € Hy, such that

(s h)Ls = (fson)r,  Yon € Hy, (7.39)
If u solves (7.37), then Theorem 7.14 implies that

lu—uplgr <C min |ju—vp|g1 < Cllullg2h < C[|f([Lo0
v, €Hp,

using elliptic regularity. That is, the finite element approximations converge to the true solution
linearly in the grid spacing h.
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The problem (7.39) is easily solved, e.g., by computer, since it reduces to a problem in linear
algebra. For each ¢ = 1,2,...,n — 1, let ¢y, ; € H}, be such that

Cfo i,
(ﬁ’""l(%)_{1 ifi—j.

Then {qﬁh,i}?:_ll forms a vector space basis for H}, and so there are coefficients a; € R such that
n—1
up(x) =Y o ()
Jj=1

and (7.39) reduces to

n—1

Z aj((b/h,jﬂ gb;L,i)Lz = (fa ¢h,i>L2 Vi = 17 27 sy T 1 3

j=1

since it is sufficient to test against the basis functions ¢y ;. Let the (n — 1) x (n — 1) matrix M

be defined by
Mij = (65> Shi)La
and the (n — 1)-vectors a and b by

aj = a; and bi = (fs ni)Ly -

Then our problem is simply Ma = b, and the coefficients of uj are given from the solution
a = M~1b (why is this matrix invertible?).

7.7. Green’s functions

Let £ be a linear partial differential operator, such as is given in (7.3). Often we can find a
fundamental solution F € D’ satisfying

LE =,

wherein &y is the Dirac delta function or point mass at the origin. If for the moment we consider
that £ has constant coefficients, then we know from the Malgrange and Ehrenpreis Theorem 4.27,
that such a fundamental solution exists. It is not unique, but for f € D, say, the equation Lu = f
has a solution ©u = E * f. However, u, defined this way, will generally fail to satisfy any imposed
boundary condition. To resolve this difficulty, we define a special fundamental solution in this
section. For maximum generality, we will often proceed formally, assuming sufficient smoothness
of all quantities involved to justify the calculations.

Let B denote a linear boundary condition operator (which generally involves the traces
and/or -1, and represents a Dirichlet, Neumann, or Robin boundary condition). For reasonable
f and g, we consider the BVP

{ﬁu =f in Q (7.40)

Bu=g on 0N .

Initially we will consider the homogeneous case where g = 0.
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DEFINITION. Suppose  C R?, L is a linear partial differential operator, and B is a homo-
geneous linear boundary condition. We call G : Q x Q — R a Green’s function for £ and B if,
for any f € D, a weak solution u of (7.40) with g = 0 is given by

/ G(z,y) f (7.41)

We assume here that 02 is smooth enough to support the definition of the boundary condition.
PROPOSITION 7.15. The Green’s function G(-,y) : Q@ — R is a fundamental solution for L
with the point mass §y(-) = do(- —y): for a.e. y € Q,
L,G(x,y) = do(x —y) forz € Q

(wherein we indicate that L acts on the variable x by writing Ly instead). Moreover, G(x,y)
satisfies the homogeneous boundary condition

B.G(z,y) =0 for x € 02 .
PRrOOF. For any f € D, we have u defined by (7.41), which solves Lu = f. We would like
to calculate

ﬂmzcmm=64Guwwwm%3égcwwﬁwm%

which would indicate the result, but we need to justify moving £ inside the integral. So for

¢ € D(Q),
Aﬂmmmm=lfwmwmm
= / u(z) L P(x) dx
Q

- [ | e s o) dyds
//nyﬁ* z) f(y) dz dy

/EG()@ﬂ)@,
Q

showing that
<£$G(vy)7 ¢> = Qs(y) )
that is, L,G(z,y) = oy(z).
That G(z,y) satisfies a homogeneous Dirichlet condition in z is clear. Other boundary
conditions involve normal derivatives, and it can be shown as above that G must satisfy them. [

REMARK. For a fundamental solution of a constant coefficient operator, LFE = §g, translation

implies that
LoE(x —y) = 6y(x)

which can be understood as giving the response of the operator at z € RY, E(x —y), to a
point disturbance &, at y € R%. Multiplying by the weight f(y) and integrating (i.e., adding
the responses) gives the solution w = E x f. When boundary conditions are imposed, a point
disturbance at y is not necessarily translation equivalent to a disturbance at ¢ # y. This is also
true of nonconstant coefficient operators. Thus the more general form of the Green’s function
being a function of two variables is required: G(z,y) is the response of the operator at = € Q to
a point disturbance at y € €1, subject also to the boundary conditions.
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Given a fundamental solution E that is sufficiently smooth outside the origin, we can con-
struct the Green’s function by solving a related BVP. For almost every y € €2, solve

Lywy(z) =0 for z € Q|
Bywy(x) = By E(x —y) for z € 002,

and then
G(z,y) = E(xr — y) — wy(z)

is the Green’s function. Note that indeed £,G(z,y) = do(x — y) is a fundamental solution, and
that this one is special in that B,G(x,y) = 0 on 0S.

It is generally difficult to find an explicit expression for the Green’s function, except in
special cases. However, its existence implies that the inverse operator of (£, ) is an integral
operator, and thus has many important properties, such as compactness. When G can be found
explicitly, it can be a powerful tool both theoretically and computationally.

We now consider the nonhomogeneous BVP (7.40). Suppose that there is ug defined in Q
such that Bug = g on 9. Then, if w = u — uy,

Lw=f— Lu in Q,
{ J = b (7.42)

Bw =0 on 0F2 ,

and this problem has a Green’s function G(z,y). Thus our solution is

u(z) = w(z) + uo(x /G z,y)( — Lug(y)) dy + uo(z) .

This formula has limited utility, since we cannot easily find ug.

In some cases, the Green’s function can be used to define a different integral operator involv-
ing an integral on 092 which involves g directly. To illustrate, consider (7.40) with £ = —A 41,
where [ is the identity operator. Now L£,G(x,y) = dy(x), so this fact and integration by parts
implies that

:/QKIG(m,y)u(a:)da:
= / G(z,y) u(z)dx +/ V.G(z,y) - Vu(z)dr — V.G(z,y) - vu(z)do(x)
Q Q o0

= / G(z,y) Lu(z)dx + G(z,y)Vu(z) - vdo(x) — V.G(z,y) - vu(z)do(z) .
Q o0 o0

If B imposes the Dirichlet BC, so u = up, then since Lu = f and G(x,y) itself satisfies the
homogeneous boundary conditions in x, we have simply

/ G(z,y) f(z)dx — VIG(az,y) -vup(z)do(x) .

This is called the Poisson integral formula. If instead B imposes the Neumann BC, so —Vu-v = g,
then

/ G(z,y) f(z)dx — G(z,y) g(x)do(z) .

o0
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We remark that when a compatibility condition condition is required, it is not always possible
to obtain the Green’s function directly. For example, if £ = —A and we have the nonhomoge-
neous Neumann problem, then [, d,(z) dz =1 # 0 as is required. So, instead we solve

MG y) =)~ 1/10] i,

—V.G(z,y) - v=0 on 01 ,
where || is the measure of 2. Then our BVP (7.40) has the extra condition that the average
of u vanishes. Thus, as above,

u(y) = —/ ALG(z,y) u(z) dz
Q
= / V.G(z,y) - Vu(z)dr — V.G(z,y) - vu(z)do(z)
Q oN

:_/ G(a,y) Au(z)dz + | Glz,y)Vu(z) - vdo(x)
Q o

:AG@@ﬂ@M G(x,y) g(x) do(x) .

o

7.8. Exercises
1. If A is a positive definite matrix, show that its eigenvalues are positive. Conversely, prove
that if A is symmetric and has positive eigenvalues, then A is positive definite.

2. Suppose that the hypotheses of the Generalized Lax-Milgram Theorem 7.10 are satisfied.
Suppose also that zg 1 and zg2 are in X are such that the sets X + z91 = X + x02. Prove
that the solutions u; € X + 0,1 and uy € X + x¢ 2 of the abstract variational problem (7.18)
agree (i.e., u; = ug). What does this result say about Dirichlet boundary value problems?

3. Suppose that we wish to find u € H?(f2) solving the nonlinear problem —Au + cu? = f €
Ly(Q), where Q C R? is a bounded Lipschitz domain. For consistency, we would require
that cu? € La(Q). Determine the smallest p such that if ¢ € L,(£2), you can be certain that
this is true, if indeed it is possible. The answer depends on d.

4. Suppose Q C R? is a connected Lipschitz domain and V C € has positive measure. Let
H={ue H(Q):uly =0}.

(a) Why is H a Hilbert space?
(b) Prove the following Poincaré inequality: there is some C' > 0 such that
lully@) < ClIVullpy0)  Vue H .

5. Suppose that Q C R is a smooth, bounded, connected domain. Let
H:{ueHQ(Q):/u(m)dszanqu-uzOon@Q} .
Q

Show that H is a Hilbert space, and prove that there exists C' > 0 such that for any v € H,

lull iy < C Y 1Dl L) -
|a|=2
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Suppose Q € R? is a C! domain. Consider the biharmonic BVP
Au=f in Q,
Vu-v=gyg on 0 ,
U =up on 0 ,
wherein A%y = AAu is the application of the Laplace operator twice.

(a) Determine appropriate Sobolev spaces within which the functions u, f, g, and up should
lie, and formulate an appropriate variational problem for the BVP. Show that the two prob-
lems are equivalent.

(b) Show that there is a unique solution to the variational problem. [Hint: use the Elliptic
Regularity Theorem to prove coercivity of the bilinear form.]

(c) What are the natural BC’s for this problem?

(d) For simplicity, let up and g vanish and define the energy functional

J(w) = /Q (1A0(@)]? — 2f(2) v(a)) de |
Prove that minimization of J is equivalent to the variational problem.

Suppose 2 C R? is a Lipschitz domain. Consider the Stokes problem for vector v and scalar
p given by

—Au+Vp=f in Q,

V-u=0 in Q,
u=0 on 0f2 ,
where the first equation holds for each coordinate (i.e., —Au; + 0p/0x; = f; for each
j = 1,...,d). This problem is not a minimization problem; rather, it is a saddle-point
problem, in that we minimize some energy subject to the constraint V - u = 0. However, if
we work over the constrained space, we can handle this problem by the ideas of this chapter.
Let
H={ve (H)?:V -u=0}.

(a) Verify that H is a Hilbert space.

(b) Determine an appropriate Sobolev space for f, and formulate an appropriate variational
problem for the constrained Stokes problem.

(c) Show that there is a unique solution to the variational problem.

Show that for f € La(R?), there exists a unique solution u € H*(R?) of the boundary value
problem

{—Au—l—u:f in R? |

u—0 as |z| — oo .

Consider the boundary value problem for u(z,y) : R? — R such that
eV =f for (x,y) € (0,1)%,
u(0,y) =0, u(l,y) = cos(y) , forye(0,1).
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Rewrite this as a variational problem and show that there exists a unique solution. Be sure
to define your function spaces carefully and identify where f must lie.

Let Q € R? be a bounded domain with a Lipschitz boundary, f € Ly(), and o > 0.
Consider the Robin boundary value problem

—Autu=f in Q,
Ou

+au=0 on 0f) .
ov

(a) For this problem, formulate a variational principle

B(u,v) = (f,v) Yo e HY(Q) .

(b) Show that this problem has a unique weak solution.

Let Q = [0,1]%, define
H#(Q) = {’U e HY(R) : v is periodic of period 1 in each direction and / vdr = O} ,
Q

and consider the problem of finding a periodic solution u € H#(Q) of
—Au=f onQ,

where f € Ly(2).
(a) Define precisely what it means for v € H'(R?) to be periodic of period 1 in each direction.
(b) Show that H;E(Q) is a Hilbert space.
(c) Show that there is a unique solution to the partial differential equation.
Consider

B(u,v) = (aVu, Vo)1, ) + (bu, V) 1, ) + (cu, v) 1,(0)
(a) Derive a condition on b to insure that B is coercive on H'(£2) when a is uniformly positive
definite and c is uniformly positive.

(b) Suppose b = 0. If ¢ < 0, is B not coercive? Show that this is true on H'(Q), but that
by restricting how negative ¢ may be, B is still coercive on H&(Q)

Modify the statement of Theorem 7.14 to allow for nonhomogeneous essential boundary
conditions, and prove the result.

Consider the finite element method in Section 7.6.
(a) Modify the method to account for nonhomogeneous Neumann conditions.
(b) Modify the method to account for nonhomogeneous Dirichlet conditions.

Compute explicitly the finite element solution to (7.36) using f(z) = 2%(1 — z) and n = 4.
How does this approximation compare to the true solution?

Let Hj be the set of continuous piecewise linear functions defined on the grid z; = jh,
where h = 1/n for some integer n > 0. Let the interpolation operator Z, : Hi(0,1) — Hj,
be defined by

Tho(zj) = v(z;) Vi=1,2,..,n—1.
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(a) Show that Zj, is well defined, and that it is continuous. [Hint: use the Sobolev Imbedding
Theorem.]
(b) Show that there is a constant C' > 0 independent of h such that
v = Zhollgr (2 105) < Clvliaz; o)l
[Hint: change variables so that the domain becomes (0,1), where the result is trivial by
Poincaré’s inequality.]
(¢) Show that (7.38) holds.
17.  Consider the problem (7.36).
(a) Find the Green’s function.

(b) Instead impose Neumann BC’s, and find the Green’s function. [Hint: recall that now we
require —(8?/022)G (x,y) = 6,(x) — 1.]



CHAPTER 8

Differential Calculus in Banach Spaces
and the Calculus of Variations

In this chapter, we move away from the rigid, albeit very useful confines of linear maps and
consider maps f : U — Y, not necessarily linear, where U is an open set in a Banach space X
and Y is also a Banach space.

As in finite-dimensional calculus, we begin the analysis of such functions by effecting a local
approximation. In one-variable calculus, we are used to writing

f(x) = fxo) + f'(z0)(x — x0) (8.1)

when f : R — R is continuously differentiable, say. This amounts to approximating f by an
affine function, a translation of a linear mapping. This procedure allows the method of linear
functional analysis to be brought to bear upon understanding a nonlinear function f.

8.1. Differentiation

In attempting to generalize the notion of a derivative to more than one dimension, one
realizes immediately that the one-variable calculus formula

Fe) — 1 TE TP = @)

2
lim Y (8.2)

cannot be taken over intact. First, the quantity 1/h has no meaning in higher dimensions.
Secondly, whatever f’(x) might be, it is plainly not going to be a number. Instead, just as in
multivariable calculus, it is a precise version of (8.1) that readily generalizes, and not (8.2). We
digress briefly for a definition.

DEFINITION. Suppose X,Y are NLS'sand f: X — Y. If
1f ()l

—— —0 ash—0,
12| x

we say that as h tends to 0, f is “little oh” of h, and we denote this as
1f (M)lly = o(l[h]lx) -

DEFINITION. Let f: U — Y where U C X is open and X and Y are normed linear spaces.
Let x € U. We say that f is Fréchet-differentiable at x if there is an element A € B(X,Y') such
that if

R(xz,h) = f(x + h) — f(x) — Ah (8.3)

then
1

T Ry =0 (34)

215
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as h — 0in X, i.e.,
1Rz, h)lly = of|[h]lx) -
When it exists, we call A the Fréchet-derivative of f at z; it is denoted variously by
A=A, = f'(z) =Df(z) . (8.5)
Notice that this generalizes the one-dimensional idea of being differentiable. Indeed, if
f € CYR), then

flz+h) - f(x)
h

R, h) = fla+ ) — f(x) — f'(a)h = [ - f’(az)] h

and so

R )| |fain) - @)
- —\ N

as h — 0 in R. Note that B(R,R) = R, and thus that the product f’(z)h may be viewed as the
linear mapping that sends h to f’(z)h.
We can also think of D f as a mapping of X x X into Y via the correspondence

(z,h) — f'(@)h .

PROPOSITION 8.1. If f is Fréchet differentiable, then D f(x) is unique and f is continuous
at x.

PROOF. Suppose A, B € B(X,Y) are such that
f(x+h) = f(x) = Ah = Ra(z,h)

and
f(x+h)— f(z) — Bh = Rp(z,h) ,
where
IRaGW)ly o . IBs@ )y
1Al x 1Al x

as h — 0 in X. It follows that

1
A - B”B(X,Y) =— sup [[Ah— Bh|y
€ |Ihllx=¢

|Rp(x,h) — Ra(z,h)|ly

= sup

Al x=e |l x
h h
S sup M + sup M ,
mix== lAllx " pape= Allx

and the right-hand side may be made as small as we like by taking € small enough. Thus A = B.
Continuity of f at x is straightforward since

1f(@+h) = f(@)lly =Df(@)h+ Rz, h)|ly
< [Df @) Bx ) lIhlly + [[R(z, Ry
and the right-hand side tends to 0 as h — 0 in X. g
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In fact, we have much more than mere continuity. The following result is often useful. It
says that when f is differentiable, it is locally Lipschitz.

LEMMA 8.2 (Local-Lipschitz property). If f: U — Y is differentiable at x € U, then given
e >0, there is a 6 = 6(x,e) > 0 such that for all h with ||h||x <0,

1f@+h) = F@)ly < (IDF@) ey +2) IAlx - (8.6)

PRrROOF. Simply write

flx+h)— f(x) = R(z,h) + Df(z)h . (8.7)
Since f is differentiable at z, given £ > 0, there is a § > 0 such that ||h||x < ¢ implies
IRG Wl __
1]l x
Then (8.7) implies the advertised results. O

ExampLEs. 1. If f(z) = Bx, where B € B(X,Y), then f is Fréchet-differentiable every-
where and

Df(x)=B

for all z € X.
2. Let X = H be a Hilbert-space over R. Let f(z) = (x, Az)g where A € B(H, H). Then,
f+H —Rand

f@+h) = f(z) = (x,Ah)g + (h, Ax)u + (h, Ah)u
- ((A* + A)z, h) + (h, Ah)g -
H
Hence if we define, for z, h € X,
D h=((A"+ A)x,h
f@h = ((A"+Aa,h)
then
1f (z +h) = f(x) = Df(@)h]y < [PIX1AlBxy) -
Thus Df(x) € H* = B(H,R) is the Riesz-map associated with the element (A* + A)x.
3. Let f:R"™ — R and suppose f € C*(R"), which is to say 0;f exists and is continuous on
R™, 1 <i<n. Then Df(z) € B(R",R) is defined by
Df(x)h=Vf(x)-h.
4. Let f:R"™ — R™ and suppose f € C*(R", R™), which is to say each of the component

functions f = (f1,...,fm) as a R-valued function, having all its first partial derivatives, and
each of these is continuous. Then f is Fréchet-differentiable and

Df(x)h = [0;fi(z)|h

where the latter is matrix multiplication and the matrix itself is the usual Jacobian matrix.
That is, Df(z) € B(R™,R™) is an m x n matrix, and the ith component of D f(z)h is

> 0 filx)h; .
j=1
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5. Let ¢ € L,(R™), where p > 1, p an integer, and define

flo)= | #@)de.
Then f: L,(R") — R, f is Fréchet-differentiable and

Df()h=p / N (@)h(x) d .

n

There is a differentiability notion weaker than Fréchet-differentiable, but still occasionally
useful. In this conception, we only ask the function f to be differentiable in a specified direction.
Let h € X and consider the Y-valued function of the real variable ¢:

g(t) = f(x +th) .
DEFINITION. Suppose f : X — Y. Then f is Gateauz-differentiable at x in the direction
h € X if there is an A € B(X,Y) such that
FF G+ th) — f(x) ~ tAR] — 0
as t — 0. The Gateaux-derivative is denoted by
A= Dpf(z) .

Moreover, f is Gateauz-differentiable at x if it is Gateaux-differentiable at x in every direction
helX.

PROPOSITION 8.3. If f is Fréchet-differentiable, then it is Gateauz-differentiable.

REMARK. The converse is not valid. The function f : R? — R given by

0, ifIL’QZO,
f) = {x?/mg, if zg #0

is not continuous at the origin. For instance f((¢,t3)) — 1 as t — 0, but f(0) = 0. However, f
is Gateaux-differentiable at (0,0) in every direction h since

f(th) — f(0) _ f@h) _ JO if hy =0,
t(h3/hy) if ha #0 .
The limit as t — 0 exists and is zero, whatever the value of h.

THEOREM 8.4 (Chain Rule). Let X,Y, Z be NLS’s andU C X open, V CY open, f:U —Y
and gV — Z. Let x € U and y = f(x) € V. Suppose g is Fréchet-differentiable at y and
f is Gateaux- (respectively, Fréchet-) differentiable at x. Then go f is Gateauz- (respectively,
Fréchet-) differentiable at x and

D(go f)(z) = Dg(y) o Df(x) .

PROOF. The proof is given for the case where both maps are Fréchet differentiable. The
proof for the Gateaux case is similar. Write

Ry(x,h) = f(z +h) = f(x) = Df(x)h

t t

and

Ry(y, k) = gy + k) — g(y) — Dg(y)k .
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By assumption,

By, ) Y0 as h 50 (8.8)
172
and
Rg”(g”‘k) 20 as k50, (8.9)
Define
u=u(h)=fx+h)— flx)=f(r+h)—y. (8.10)

By continuity, u(h) — 0 as h — 0. Now consider the difference

g(f(x +h) = g(f(x)) = g(f(z + h)) — 9(y)
= Dg()[f(z +h) =y + Re(y, u)
= Dg()[Df(x)h + Ry (z, h)] + Ry(y, u)
= Dg(y)Df(x)h + R(z,h) ,
where
R(xz,h) = Dg(y)R¢(x,h) + Ry(y,u) .
We must show that R(x,h) = o(]|h||x) as h — 0. Notice that
1Dg(y) Ry (x, )|z [Ry(x, bl
1Pl 171l
because of (8.8). The second term is slightly more interesting. We are trying to show
1Ry (y, u)llz
12l
as h — 0. This does not follow immediately from (8.9). However, the local-Lipschitz property
comes to our rescue.
If w =0, then Ry(y,u) = 0. If not, then multiply and divide by ||u|ly to reach

1Ry, w)llz _ [1Re(y, w)l ully (8.12)

17/l lully — [I2llx

Let € > 0 be given and suppose without loss of generality that ¢ < 1. There is a ¢ > 0 such
that if ||k|ly < o, then

—0 as h—0

<|[DgW)B(v,2)

~0 (8.11)

[[[ly
On the other hand, because of (8.6), there is a § > 0 such that ||| x < J implies
lu®)ly = 1@+ h) = f@)ly < (IDF@)Beey) + 1) IRlx <o (8.14)

(simply choose d so that 6(||Df(z)|px,y) + 1) < o in addition to it satisfying the smallness
requirement in Lemma 8.2). With this choice of ¢, if ||h]|x < d, then (8.12) implies

Ry(y,
W = 5(||Df(m>\|B<X7Y> * 1) '

The result follows. O
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PROPOSITION 8.5 (Mean-Value Theorem for Curves). Let Y be a NLS and ¢ : [a,b] — Y be
continuous, where a < b are real numbers. Suppose ¢'(t) exists on (a,b) and that [|¢'(t)||pr,y) <
M. Then

lp(b) = w(a)lly < M(b—a) . (8.15)

REMARK. Every bounded linear operator from R to Y is given by ¢ — ty for some fixed
y € Y. Hence we may identify ¢'(¢) with this element y. Notice in this case that y can be
obtained by the elementary limit

t —(t
y = (1) = lim plt+s) — o)
s—0 S
PRrROOF. Fix an ¢ > 0 and suppose € < 1. For any ¢ € (a,b), there is a §; = (¢, ) such that
if |s — t| < 0, then
le(s) — o)y < (M +¢)[s — ] (8.16)
by the Local-Lipschitz Lemma 8.2). Let

S(t) = {s € [a,b] : (8.16) holds} U {¢} ,

which is open by continuity of . Let S(t) be the connected component of S(t) containing ¢.
Thenif a <a <b<b,

The sets S(t) are open, being connected components of the open set S (t). Hence by compactness,
there is a finite sub-cover, say S(a), S(t1),...,S(b) where @ < #; < --- < b. This allows us to
form a partition of [a,b], into N intervals, say

&:t0<t2<"'<t2N:l~7,

in such a way that S(togy2) N S(tar) # 0 for all k. Choose points tor11 € S(tar+2) N S(tak),
enrich the partition to

d:t0<t1<t2<-~<t2N:[~?,
and note that

le(tri1) — o(tr)lly < (M 4 €)|tpi1 — til
for all k. Hence

2N
le(d) — @@y < llets) = olte-1)lly
k=1

2N
S(M+e)) (th—th1) = (M+e)(b—a).
k=1
By continuity, we may take the limit on b—band @ — a, and the same inequality holds. Since
e > 0 was arbitrary, (8.15) follows. O

REMARK. The Mean-Value Theorem for curves can be used to give reasonable conditions
under which Gateaux-differentiability implies Fréchet-differentiability. Here is another corollary
of this result.
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THEOREM 8.6 (Mean-Value Theorem). Let X,Y be NLS’s and U C X open. Let f : U —Y
be Fréchet-differentiable everywhere in U and suppose the line segment
C={tra+(1—t)x; : 0<t <1}
s contained in U. Then

1f (z2) = f(z1)[ly < sup IDf () Bxy)llee = 21llx - (8.17)

PROOF. Define ¢ : [0,1] — Y by
o(t) = f(1 =)oy + twg) = f(21 + t(zz — 21)) = f(7(2))
where v : [0,1] — X. Certainly ¢ is differentiable on [0, 1] by the chain rule. By Proposition 8.5,
1f(z2) — f@)lly = lle(1) = 0(0)]ly < sup [l¢'(#)]ly -
0<t<1

but, the chain rule insures that
¢'(t) = Df(y(t)) o' (t) = Df(v(t))(z2 — 21) ,
SO

le" Oy < IDF (v Bxy)llee — zillx

< sup [|Df (@) px,yv)llw2 — 21llx - O
zel
One can generalize the discussion immediately to partial Fréchet-differentiability. Suppose
X1,..., X, are NLS’s over F and Y another NLS. Let
X=X1 X - xXnp

be the Cartesian product of the X;’s, let the vector-space operations be carried out componen-
twise, and let the norm be any of the equivalent functions

m 1/p
lallx = (Z ||a:z~|r§(i) = [[Qletllxe, - lemllxa) - (8.18)
j=1

where p € [1,00] and z = (x1,... ,2y). Of course, X is a Banach space if and only if X; is a
Banach space, 1 < i < m. Conversely, we could begin with a direct sum decomposition

X=X1®--®Xn,
with norms || - ||x, = || - ||x, and associate this with the equivalent Banach space X x - -+ x Xp,.

DEFINITION. Let X = X7 x --- x X,;, as above. Let U C X beopenand F : U — Y.

Let z = (z1,...,2m,) € U and fix an integer k € [1,m]. For z near zj in Xy, the point
(T1y... yTh—1,2,Tht1,--- ,Tm) lies in U, since U is open. Define
fk(z) = F(;Ula-" y Lhk—1y %5 Tht-15 - - - 7xm) .

Then fi maps an open subset of X into Y. If f has a Fréchet derivative at z = xj, then we
say F has a kth-partial derivative at x and define

DyF(x) = D fi(xx) -
Notice that Dy F(z) € B(Xg,Y).
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PROPOSITION 8.7. Let X = X1 X --- x X,,, be the Cartesian product of NLS’s, U C X open,
and F : U —'Y, another NLS. Suppose D;F(x) exists for x € U and 1 < j < m, and that these
linear maps are continuous as a function of x at xo € U. Then F is Fréchet-differentiable at xg

and for h = (hy,... ,hp) € X,

DF(xo)h =Y _ D;F(zo)h; . (8.19)
j=1
PROOF. The right-hand side of (8.19) defines a bounded linear map on X. Indeed, it may
be written as

m
Ah = Z D]F(xo) (e} H]h
j=1
where II; : X — X is the projection on the jth-component. So A is a sum of compositions of
bounded operators and so is itself a bounded operator. Define

U(h):F<1'0+h)—F($0)—Ah .

It suffices to show that ¢ : X — Y is such that
a(h)

1Al x

as h — 0. Let € > 0 be given. Because F' is partially Fréchet-differentiable and A is linear, it
follows immediately from the chain rule that o is partially Fréchet-differentiable in h and

Dj()'(h) = D]’F(I‘O + h) — D]F(Io) .

Since the partial Fréchet-derivatives are continuous as a function of = at x( it follows there is a
§ > 0 such that if |h°||x < d, then

1D (h°)|Ip(x,y) <€ for 1<j<m. (8.20)

— 0

On the other hand,
lo(h)lly < [lo(h°) = (0, A, ... ho)lly + 10/(0, A3, - .., hin) — (0,0, h3, ... hy)ly
4+ ]|0(0,. .. ,0,h2) —o(0,...,0)|ly .
Thus, if ||h||x < d, then by the Mean-Value Theorem applied to the mappings
oi(h;) =0o(0,...,0,hj,hd 1, ... hD,)
it is determined on the basis of (8.20) that

o (h;) — o (0)]ly < tShl)p” | Do (thj) | Bx, vl llx;
€|0,

(8.21)

= tst(l)pl] ||Dj0(0’ -0, thj? h?‘—&—l’ s ’hgn)”B(Xj,Y) thHXj
€|0,

<ellbyly, , for 1<j<m.

Choosing in (8.18) the ¢;-norm on X, it follows from (8.21) and the last inequalities that for
1h%]x <0,

lo(R)lly < &> [Ihyllx, = ellhlx -
j=1



8.2. NONLINEAR EQUATIONS 223

(If another £,-norm is used in (8.18), we merely get a fixed constant multiple of the right-hand
side above.) The result follows. O

8.2. Nonlinear Equations

Developed here are some helpful techniques for understanding when a nonlinear equation
has a solution.

DEFINITION. Let (X, d) be a metric space and T': X — X. The mapping 7T is a contraction
if there is a 8 with 0 < 6 < 1 such that

d(Tz,Ty) < 0d(z,y) forall z,ye X .
A fized point of the mapping T is an x € X such that z = Tx.

A contraction map is a Lipschitz map with Lipschitz constant less than 1. Such maps are
also continuous.

THEOREM 8.8 (Banach Contraction-Mapping Principle). Let (X, d) be a complete metric
space and T a contraction mapping of X. Then there is a unique fixed point of T in X.

PROOF. If there were two fixed points x and y, then
d(z,y) = d(T>,Ty) < 0d(z,y) ,

and since d(z,y) > 0 and 0 < 6 < 1, it follows that d(z,y) = 0, whence z = y.

For existence of a fixed point, argue as follows. Fix an zg € X and let x1 = Tz, o = Txy
and so on. We claim the sequence {z,,}>2, of iterates is a Cauchy sequence.

If this {z,}2, is Cauchy, then since (X,d) is complete, there is an Z such that z,, — Z.
But then Tz, — T'Z by continuity. Since T'x,, = 11, it follows that Tz = Z.

To see {z,,}72 is a Cauchy sequence, first notice that

d(zy,22) = d(Txo, Tz1) < 0d(x0,271) .
Continuing in this manner,
d(xn, Tpt1) = d(Txp—1,Txy) < 0d(zp—1,2y)
forn =1,2,3,... . In consequence, we derive by induction that
d(xn, Tpt1) < 0"d(xo,21) , for n=0,1,2,... .
Thus, if n > 0 is fixed and m > n, then
d(Xn, Tm) < d(Tpy Tps1) + A(Tpg1, Tos2) + - + d(Tm—1, Tm)
<0+ -+ 0" Nd(xo, 21)
=0"(1+ -+ 0™ " Nd(wg, 21)

1 _ em—n
=0" T d(xo, 1)
en
< .
< g0, 1)
As 0 < 1, the right-hand side of the last inequality can be made as small as desired, independently
of m, by taking n large enough. O

Not only does this result provide existence and uniqueness, but the proof is constructive.
Indeed, the proof consists of generating a sequence of approximations to x = T'x.
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COROLLARY 8.9 (Fixed Point Iteration). Suppose that (X, d) be a complete metric space, T
a contraction mapping of X with contraction constant 6, and o € X. If the sequence {x,}72
is defined successively by rn41 = Txy for n = 0,1,2,..., then x, — x, where x is the unique
fized point of T in X. Moreover,

1-6

ExAMPLE. Consider the initial value prooblem (IVP)

d(xp,x) < d(xo,x1) .

ug = cos(u(t)), t>0,

u(0) = ug -
We would like to obtain a solution to the problem, at least up to some final time 7" > 0, using
the fixed point theorem. At the outset we require two things: a complete metric space within
which to seek a solution, and a map on that space for which a fixed point is the solution to our

problem. It is not easy to handle the differential operator directly in this context, so we remove
it through integration:

u(t) = ug —i—/o cos(u(s)) ds .

Now it is natural to seek a continuous function as a solution, say in X = C%([0, T]), for some as
yet unknown 7" > 0. It is also natural to consider the function

t
F(u) = ug —I—/ cos(u(s))ds
0
which clearly takes X to X and has a fixed point at the solution to our IVP. To see if F' is
contractive, consider two functions v and v in X and compute

|F(u) — F(v)||p., = sup /0 (cos(u(s)) — cos(v(s))) ds

o<t<T

= sup

ot /0 (=sin(w(s))(u(s) —v(s)) ds

<Tlu =2l

wherein we have used the ordinary mean value theorem for functions of a real variable. So, if
we take T = 1/2, we have a unique solution by the Banach Contraction Mapping Theorem.
Since T is a fixed number independent of the solution u, we can iterate this process, starting at
t =1/2 (with “initial condition” u(1/2)) to extend the solution uniquely to ¢t = 1, and so on, to
obtain a solution for all time.

EXAMPLE. Let k € Li(R), ¢ € Cp(R) and consider the nonlinear operator

Bulet) = @)+ [ [ nlo = u)(uls) + 0 9)dyds

We claim that there exists T = T'(||¢]lc) > 0 such that ® has a fixed point in the space
X =Cp(R x [0,T)).

Since x is in L1 (R), ®u makes sense. If u € Cp(R), then it is an easy exercise to see du € X.
Indeed, ®u is C! in the temporal variable and continuous in 2 by the Dominated Convergence
Theorem.
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Let R > 0 and Bpg the closed ball of radius R about 0 in X. We want to show if R and T
are chosen well, ® : B — Bp is a contraction. Let u,v € Br and consider

|Pu — Pv||x =  sup ‘// w(x —y)(u—v+u? —v?)dyds
(z,t)ERX[0,T]

<T sup / lk(x —y)(u— v+ u? —v?)|dy
(z,t)eRX[0,T] J—o0

< Tl (Jlu = vllx + u? = v?)lx)

< Tl (1 ullx + ol ) u = vllx

< T6lle, (1 +2R)[lu — v x -
Let
0 =T(1+2R)|xL, ,

choose R = 2||¢|| ., and then choose T so that § = 1/2. With these choices, ® is contractive on
Bpr and if u € By, then indeed
[Pullx = [|Pu — ®0[|x + (|90 x
< Oflu =0l x + ¢l Lo

1 1
<= ~-R=R.
_2R+2R R

That is, ® : Bp — Bpg, ® is contractive, and Bpg, being closed, is a complete metric space. We
conclude that there exists a unique u € Bgr such that

u= dPu .
Why do we care? Consider

ou Ou ou P
n + 9z + 2u£ — 92201 =0, (8.22)

a nonlinear, dispersive wave equation. Write it as
(1-— 8§)ut = —uy —2uu, = f .

The left-hand side is a nice operator, at least from the point of view of the Fourier Transform,
as we will see in a moment, while the terms defining f are more troublesome. Take the Fourier
transform on z to reach

1 .

— 7.

1+¢

whence, by taking the inverse Fourier transform, it is formally deduced that

(]' + 52)7:% = f , o le, =

ut:F;*f:—Fg*(ur—i—2uux):—f@*(u+u2)z

where

f(x) = V2rF! ( ! > _Lewl

14 &2
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Let k = —F, € L1(R) to conclude
up(z,t) = K * (u + u?) .

Now integrate over [0,t] and use the Fundamental Theorem of Calculus with constant of inte-
gration u(z,0) = p(z) € Cp(R) to reach

) = @)+ [ ws ks,

which has the form with which we started the example. Thus our fixed point ®u = u is formally
a solution to (8.22), at least up to the time 7', with the initial condition u(z,0) = ¢(z).

COROLLARY 8.10. Let X be a Banach space and f : X — X a differentiable mapping.
Suppose ||Df(z)||px,x) < £ <1 for x € Bg(0). If there is an w9 € Br(0) such that B,(xg) C
Br(0) for some r > || f(xo0) — xol|/(1 — k), then f has a fized point in Br(0). Moreover, there

is exactly one fized point in B, (xq).

That is, a map f which is locally contractive and for which we can find a point not moved
too far by f has a fixed point, and the iteration

ro, 71 = f(w0), x2 = f(w1),---,

generates a sequence that converges to a fixed point.

PROOF. In fact, we show that f is a contraction mapping of B,(zg). First, by the Mean-
Value Theorem, for any x,y € Bg(0),

1f (@) = f)ll < &lle —yll -
Hence f is contractive. The Contraction-Mapping Theorem will apply as soon as we know that
f maps B, (x0) into itself, since B,(x¢) is a complete metric space. By the triangle inequality, if
x € Br(xp),

1 (@) = zoll < [[f (@) = f(zo)ll + IIf (o) — ol
<Kz —axol| + (1 —r)r <r. O

THEOREM 8.11 (Simplified Newton Method). Let X,Y be Banach spaces and f: X —Y a
differentiable mapping. Suppose A = D f(xo) has a bounded inverse and that

Il - A'Df(2)| <k <1 (8.23)

for all x € B,(xg), for some r > 0. Let

(1—r)r
A= B x)
Then the equation
flx) =y

has a unique solution x € By (xo) whenever y € Bs(f(xo)).
PROOF. Let y € Bs(f(x0)) be given and define a mapping g, : X — X by
gy =3 — AL (f() — ) (8.24)
Notice that g,(z) = « if and only if f(z) = y. Note also that
Dgy(x) = I — A™'Df(x)
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by the chain rule. By assumption, [|Dgy(z)|lpx,x) < & < 1 for x € B, (z9). Moreover, by the
choice of y and 4,

lgy(z0) — wollx = [[A™ (f(z0) — y)llx < (L —r)r .

The hypotheses of Corollary 8.10 are verified, g, is a contractive map of B, (o), and the con-
clusion follows. O

REMARK. If Df(z) is continuous as a function of x, then Hypothesis (8.23) is true for
r small enough. Thus another conclusion is that at any point = where D f(x) is boundedly
invertible, there is an 7 > 0 and a § > 0 such that f(B,(z)) D Bs(f(z)) and f is one-to-one on
B.(x) N f~Y(Bs(f(x))). Hence there is a possibly smaller ball B;(z) such that f is one-to-one
on By(z) and f(B(z)) D Bs(f(z)) for some s > 0.

Notice the algorithm that is implied by the proof. Given y, start with a guess zg and form
the sequence

Tnt+1 = gy(xn) = Tp — A_l(f(xn) - y) :

If things are as in the theorem, the sequence converges to the solution of f(x) =y in B, (xo).
Notice that if x is the solution, then

|zn — 2| x = llgy(zn-1) — gy(2)| x
< kllzn-1 -zl x
<.
< K"||lxo — z||x -

More can be shown. We leave the rather lengthy proof of the following result to the reader.

THEOREM 8.12 (Newton-Kantorovich Method). Let X,Y be Banach spaces and f: X —Y
a differentiable mapping. Assume that there is an xg € X and an r > 0 such that
(i) A= Df(xo) has a bounded inverse, and
(ii) [Df(z1) = Df(@2)lpx,y) < Ellzr — 22|
for all x1,x9 € By(xg). Let y € Y and set
e= A7 (f(z0) = y)llx -

For any y such that

<o and derl| A pyx) <1,

N3

the equation

y = f(x)
has a unique solution in By.(xy). Moreover, the solution is obtained as the limit of the Newton-
iterates

T = o — Df(a) " (f(21) — y)
starting at xo. The convergence is asymptotically quadratic; that is,

|21 — arllx < Cllag — apalx
for k large, where C' does not depend on k.

THEOREM 8.13 (Inverse Function Theorem I). Suppose the hypotheses of the Simplified New-
ton Method hold. Then the inverse mapping f~1 : Bs(f(x0)) — By(z0) is Lipschitz.
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PROOF. Let y1,y2 € Bs(f(z9)) and let x1,x2 be the unique points in B,(xg) such that
flx;) =y, for i = 1,2. Fix ay € Bs(f(xo)), y = yo = f(xo) for example, and reconsider the
mapping g, defined in (8.24). As shown, g, is a contraction mapping of B,(zg) into itself with
Lipschitz constant £ < 1. Then

17 ) = F w)llx = llon — 22lx
= lgy(z1) — gy(z2) + A7 (f(22) — f(21))lIx
< klley — 22llx + 1A By lve — wlly -

It follows that

1A~ 5 Y, X
a1 — ol € =2 gy —
and hence that f~! is Lipschitz with constant at most A~ gy, x)/(1 — &). O

Earlier, we agreed that two Banach spaces X and Y are isomorphic if thereisa T € B(X,Y)
which is one-to-one and onto (and hence with bounded inverse by the Open Mapping Theorem).
Isomorphic Banach spaces are indistinguishable as Banach spaces. A local version of this idea
is now introduced.

DEFINITION. Let X,Y be Banach spaces and U C X, V C Y open sets. Let f: U — V be
one-to-one and onto. Then f is called a diffeomorphism on U and U is diffeomorphic to V if
both f and f~! are C', which is to say f and f~! are Fréchet differentiable throughout U and
V', respectively, and their derivatives are continuous on U and V', respectively. That is, the map

#— Df(z) and y+—— Df™'(y)
is continuous from U to B(X,Y) and V to B(Y, X), respectively.

THEOREM 8.14 (Inverse Function Theorem II). Let X,Y be Banach spaces. Let xg € X be
such that f is C' in a neighborhood of xo and Df(xq) is an isomorphism. Then there is an
open set U C X with xo € U and an open set V. .C'Y with f(xo) € V such that f : U —V is a
diffeomorphism. Moreover, fory € V, z € U, y = f(x),

D(f")(y) = (Df()~" .

Before presenting the proof, we derive an interesting lemma. Let GL(X,Y) denote the set
of all isomorphisms of X onto Y. Of course, GL(X,Y) C B(X,Y).

LEMMA 8.15. Let X andY be Banach spaces. Then GL(X,Y") is an open subset of B(X,Y).
If GL(X,Y) # 0, then the mapping Jxy : GL(X,Y) — GL(Y, X) given by Jxy(A) = A~! is

one-to-one, onto, and continuous.

PRrROOF. If GL(X,Y) = (), there is nothing to prove. Clearly Jy xJxy = I and JxyJy x =
I, so Jxy is both one-to-one and onto (but certainly not linear!). Let A € GL(X,Y) and H €
B(X,Y). We claim that if [|H||g(x,y) < 0/||A~"||p(v,x) where § < 1, then A+ H € GL(X,Y)
also. To prove this, one need only show A + H is one-to-one and onto.

We know that for any |z| < 1,

Lta) = (o),
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so consider the operators

N
Sy=AT'Y (-HAT), N=12,...,
n=0
in B(Y, X). The sequence {Sn}3_; is Cauchy in B(Y, X) since, for M > N,
M
1Sm = Snllpvx) < 1A Berxy Y IHAT)
n=N+1
M
<A B x) Z (||H||B(X,Y)HA_lH)%(Y,X) (8.25)
n=N+1
M
< ||A_1||B(Y,X) Z " — 0
n=N+1

as N — +o0. Hence Sy — S in B(Y, X). Notice that
(A+H)S:]\}im (A+ H)SN
N N

S . —1\n _ . —1\n+1
= Jim [ - (—HA YN+

But as |[HA7'| <0 <1, (HAH)Y — 0in B(Y,Y). It is concluded that (A + H)S = I, and a
similar calculation shows S(A+ H) = I. Thus A+ H is one-to-one and onto, hence in GL(X,Y).
For use in a moment, notice that ||S| gy, x) < |A7 |pry,x)/(1 — 0), by an argument similar to
(8.25).

For continuity, it suffices to take A € GL(X,Y’) and show that (A+H)~! — A=l in B(Y, X)
as H — 0in B(X,Y). But, as S = (A+ H)~!, this amounts to showing S — A~! — 0 as H — 0.
Now,

S—A'=GA-T)A'=(S(A+H)-SH-DNA"'=-SHA™".
Hence
1S — A I pvx) < ISIsvo lH By 1A I Bv,x) — 0
as H — 0 since || A7 g(y,x) is fixed and [|S|| prv,x) < [A7 | v, x)/ (1 — 0) is bounded indepen-
dently of H. O

PROOF OF THE INVERSE FUNCTION THEOREM II. Let A = Df(xg). Since f is a C!-
mapping, Df(z) — A in B(X,Y) as x — x¢ in X, so there is an ' > 0 such that
— 1
11 = A7 Df ()| px.x) < 5
for all z € By (zo).
Because of Lemma 8.15, there is an 7’ with 0 < 7”7 < ¢/ such that Df(x) has a bounded
inverse for all x € B (xg). It is further adduced that Df(z)~! — A™! as 2 — z¢. In
consequence, for 0 < r < 7" and for z € B,(x),

IDf(x) Mprx) <2047 I px) -
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Appealing now to the Simplified Newton Method, it is concluded that there is an r > 0 and a
6 > 0 such that f: U — V is one-to-one, and onto, where

V = Bs(f(zo)) with 6= r

2||A71||B(Y,X)
and
U=B.(zo)n fYV).

It remains to establish that f~! is a C' mapping with the indicated derivative. Suppose it
is known that

Df_l(y) = Df<m)_l , when y= f(.%') ’ (826>

where x € U and y € V. In this case, the mapping from y to D f~!(y) is obtained in three steps,
namely

y— ') — Df(f' (W) — Df(f () =Df y),
vy L x 2L px,v) L B(Y, X) .

As all three of these components is continuous, so is the composite.
Thus it is only necessary to establish (8.26). To this end, fix y € V and let k& be small enough
that y + k also liesin V. If v = f~1(y) and h = f~1(y + k) — z, then

1F 7y + k) = [ y) = Df (@) " kllx = |h = Df (@) " [f(z + h) = f(2)]]x
= |Df(z)" [f(z + h) = f(z) — Df()h]x (8.27)

< 2| A7 g I (@ +h) = fz) = Df(x)h]y .

The right-hand side of (8.27) tends to 0 as h — 0 in X since f is differentiable at z. Hence if
we show that h — 0 as k — 0, it follows that f~! is differentiable at y = f(z) and that

Df ' y) = Df(x)~" .
The theorem is thereby established because of our earlier remarks. But,
1Al = 1f "y + &) = 1 W) llx < MKy
since f~! is Lipschitz (see Theorem 8.13). O
THEOREM 8.16 (Implicit Function Theorem). Let X,Y, Z be Banach spaces and suppose
f:ZxX->Y

to be a C'-mapping defined at least in a neighborhood of a point (29, o). Denote by yo the image
f(z0,0). Suppose Dy f(z0,20) € GL(X,Y). Then there are open sets

W cZz, UcCcX, VcCcy
with zo € W, xg € U and yo € V and a unique mapping
g WxV-=U
such that
f(z,9(z,9) =y (8.28)

for all (z,y) € W x V. Moreover, g is C* and
Dy(z,9)(n,¢) = Daf(2,2) "1 (¢ = D2 f(z,2)n)
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for (z,y) e W xV and (n,{) € Zx Y.

REMARK. If Z = {0} is the trivial Banach space, this result recovers the Inverse Function
Theorem.

PROOF. Define an auxiliary mapping f by

A~

f(z,2) = (2, f(z,2)) .
Then f: Z x X — Z xY and f is C! since both its components are. Moreover, from Proposi-
tion 8.7 it is adduced that

Df(z,2)(n,¢) = (0, D=f (z,2)n + Do f (2, 2)¢)
for (z,x) in the domain of f and (1, ¢) € Zx X. If D, f(z, ) is an invertible element of B(X,Y),
then Df is an invertible element of B(Z x X, Z x Y') and its inverse is given by

Df(z,2)7 (n,¢) = (n, Daf(2,2) 7 (¢ — Do f(z,2)7) ,

as one checks immediately. The Inverse Function Theorem implies f is a diffeomorphism from
some open set U about (z0,0) to an open set V containing (20,Y0). By continuity of the
projections onto components in Z x X, there are open sets W and V in Z and Y, respectively,
such that W x V C V. By construction

F =) = (2,9(2,y))
where ¢ is a C'-mapping. And, since
(z9) = F(F 1 (z0) = f(2,9(29) = (2, f(z,9(2,)) ,

g solves the equation (8.28). O

COROLLARY 8.17. Let f be as in Theorem 8.16. Then there is a unique C'-branch of
solutions of the equation

f(zy) =wo

defined in a neighborhood of (2o, o).

PROOF. Let h(z) = g(z,%0) in the Implicit Function Theorem. Then h is C*, h(z) = o,
and

f(z,0(2)) = yo
for z near zg. ]
ExAMPLE. The eigenvalues of an n X n matrix are given as the roots of the characterictis
polynomial
p(A,\) =det(A— ) .

In fact, p is a polynomial in A\ and all entries of A, so it is C' as a function p : C"*" x C — C.
Fix Ap and )¢ such that )y is a simple (i.e., nonrepeated) root of Ag. Then Daop(Ag, Ag) # 0
(i.e., Dap(Ap, No) € GL(C,C)), so every matrix A near Ap has a unique eigenvalue

A=9(4,0) =g(4),

where § is C'. As we change A continuously from Ay, the eigenvalue A\ changes continuously
until possibly it becomes a repeated eigenvalue, at which point a bifurcation may occur. A
bifurcation cannot occur otherwise.
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ExaMPLE. Consider the ordinary differential initial value problem
W=1l-ute", 0<t,
u(0)=0.

If € = 0, this is a well posed linear problem with solution
up(t) =1—e*

which exists for all time ¢. It is natural to consider if there is a solution for € > 0. Note that if
€ is very large, then we have essentially the equation

w = ee?
which has solution
w(t) = —log(l —et) o0 ast — 1/e.

Thus we do not have a solution w for all time. The Implicit Function Theorem clarifies the
situation. Our parameter space is Z = R, and our function space is X = {f € C1(0,0) : f(0) =
0}. We have a mapping T': Z x X — Y = C°(0, 00) defined by

T(e,u)=u —1+u— e,
which is C'; in fact, the partial derivatives are
DzT(e,u)(z,v) = ze* and DxT(e,u)(z,v) =1 +v— eve® .

Now DxT(0,u)(z,v) = v+ v maps one-to-one and onto, since we can uniquely solve v/ +v = f
by using an integrating factor. Thus the Implicit Function Theorem gives us an ¢y > such that
for || < €p, there exists a solution defined for all time. Moreover, there is a unique solution in
a neighborhood of ug in X.

8.3. Higher Derivatives

Here, consideration is given to higher-order Fréchet derivatives. The development starts
with some helpful preliminaries.

DEFINITION. Let X, Y be vector spaces over F. A n-linear map is a function
f:iXx-xX—Y
—_—
n-components

for which f is linear in each argument separately. The set of all n-linear maps from X to Y is
denoted B"(X,Y). By convention, we take BY(X,Y) =Y.

ProposiTIiON 8.18. Let X,Y be NLS’s and let n € N. The following are equivalent for
feB"(X,)Y).
(i) f is continuous,
(ii) f is continuous at 0,
(iii) f is bounded, which is to say there is a constant M such that

(@1, mn)lly < Mzalx - fleallx -

We denote by B™"(X,Y’) the subspace of B"(X,Y) of all bounded n-linear maps, and we let
BY(X,Y) =Y. Moreover, BY(X,Y) = B(X,Y).
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PROPOSITION 8.19. Let X,Y be NLS’s and n € N. For f € B"(X,Y), define

[fllBrxyy = sup [[f(z1,... z)lly -
z,€X:

€X:
llz:| <1
1<i<n

Then || - || gn(x,y) is @ norm on B"(X,Y) and if Y is complete, so is B"(X,Y).

PROPOSITION 8.20. Let k, £ be non-negative integers and X,Y NLS’s. Then B*¥(X, BY(X,Y))
is isomorphic to B¥YY(X,Y) and the norms are the same.

PROOF. Let n = k + ¢ and define J : B*(X, BY(X,Y)) — B"(X,Y) by

(JA) (@1, yzn) = flx1, .oy 2k) (Tpg1y ooy Tn)
This makes sense because f(x1,...,x) € BYX,Y). Clearly Jf € B*(X,Y), and
1T f B (xyy = S 1Tf (@1, n)lly
1<i<n
= sup [f(x1,... 7xk)HBZ(X,Y)

il <1
1<i<k

= [ fllBr(x,B¢(x,y)) »
so Jf € BYX,Y). For g € B*(X,Y), define § € B*(X,B*(X,Y)) by
g1, k) (X1, oy Tn) = g(T1, .00y Ty)
A straightforward calculation shows that
9]l 5 (x,Bex,v)) < N9llBrxyy

so g € B’“(X7 BZ(X,Y)) and Jg = g. Thus J is a one-to-one, onto, bounded linear map, so it
also has a bounded inverse and is in fact an isomorphism. Moreover, J is norm-preserving by
the above bounds (i.e., |Jf n(x,v) = I fll g (x,5¢(x,v))- O

DEFINITION. Let X,Y be Banach spaces and f : X — Y. For n = 2,3,..., define f to be
n-times Fréchet differentiable in a neighborhood of a point x if f is (n — 1)-times differentiable
in a neighborhood of x and the mapping z +— D"~ ! f(x) is Fréchet differentiable near x. Define

D"f(x) = DD" ' f(x) , n=23,....

Notice that
f:X->Y,
Df:X — B(X,Y),
D?’f=D(Df): X — B(X,B(X,Y)) = B¥X,Y),

D"f=D(D"'f): X - B(X,B"(X,Y)) = B"(X,Y) .
ExampLEs. 1. If A € B(X,Y), then DA(z) = A for all . Hence
D?A(z) =0 for all z .
This is because
DA(x+h)— DA(x) =0

for all z.
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2. Let X = H be a Hilbert space, F =R, and A € B(H, H). Define f: H — R by

f(z) = (z, Az)n

Then, Df(x) = R((A+A*)z), where R denotes the Riesz map. That is, Df(z) € B(H,R) = H*,
and for y € H,

Df(z)(y) = (y, A"z + Az)g
To compute the second derivative, form the difference
[Df(x+h) = Df(x)ly = (y,(A+ A") (@ + h) = (A+ A%)z) = (y, (A + A)h) ,
for y € H. Thus it is determined that
D*f(z)(y. h) = (y,(A+ A")h) .

Note that D2 f(z) does not depend on x, so D3 f(x) = 0.
3. Let K € Loo(I x I) where I = [a,b] C R. Define F': L,(I) — Ly(I) by

/K:Uy

for p e N and x € I. Then, DF(g) € B(Ly(I), Ly(I)) and

DF(g)h = p/IK(x,y)gpl(y)h(y) dy ,

since the Binomial Theorem gives the expansion

F(g+h)—F(g9) = /IK(w,y)[(ng h)P — g*1dy

= /IK(w,y) [pg”l(y)h(y) + (g)g“(y)h2(y) +-- | dy,

wherein all but the first term is higher-order in h. Thus it follows readily that

DF(g+ h)u— DF(g)u = p/IK(x, Y) [(g + )Py — gp_lu] dy

=p(p—-1) /K(w, y)[gP " 2hu] dy + terms cubic in h,u .
I
It follows formally, and can be verified under strict hypotheses, that

D2F(g)(h, k) = p(p — 1) /ny P=2(y)h(y)k(y) dy |

LEMMA 8.21 (Schwarz). Let X,Y be Banach spaces, U an open subset of X and f:U —Y
have two derivatives. Then D?f(x) is a symmetric bilinear mapping.

Proor. Consider the difference
g(h,k) = f(x +h+k) — f(x+h) = f(z+k)+ f(z) — D*f(z)(h, k) ,
so that
|D?f(x)(h, k) = D f(2)(k, h)lly = [|g(h, k) — g(k, 1) ||y
< llg(h, k) = g(0,k)lly + [|9(0, k) — g(k, h)|ly
= [lg(h, k) — g(0,k)lly + ll9(0, h) — g(k, 2)|ly

Y
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since ¢g(0, k) = ¢g(0, h) = 0. But the right-hand side of the last equality is bounded above by the
Mean Value Theorem as

lg(h, k) — 9(0, k)lly < sup || Digl pex bl x
lg(k, h) = g(0, h)lly < sup [[Digllpx yv)llkllx -

Differentiate g partially with respect to the first variable h to obtain
Dig(h,k)h = Df(x + h+ k)h — Df(x + h)h — D*f(x)(h, k)
= Df(x +h+k)h— Df(x)h — D*f(z)(h, h + k)
— [Df(z+ h)h — Df(x)h — D*f(x)(h, h)] .
For ||h||x, ||k|lx small, it follows from the definition of the Fréchet derivative of Df that
[1D1g(h, B)l(x,vy = o(l[hllx + [[kllx) -
Thus we have established that
ID?f () (R, k) = D? f () (k, 1) |y = o(|[Ellx + [Ihllx) (12]lx + [[Ellx)
and it follows from bilinearity that in fact
D2f(2)(h, k) = D2 (x)(k, h)
for all h, k € X. O

COROLLARY 8.22. Let f, X, Y and U be as in Lemma 8.21, but suppose f has n > 2
derivatives in U. Then D" f(x) is symmetric under permutation of its arguments. That is, if T
is an n X n symmetric permutation matriz, then

D" f(z)(h1,...  hn) = D" f(x)(m(h1,... ,hn)) -
PROOF. This follows by induction from the fact that D" f(x) = D*(D"2f)(z). O

THEOREM 8.23 (Taylor’s Formula). Let X,Y be Banach spaces, U C X open and suppose
f:U =Y hasn deriwatives throughout U. Then for h small,

1 1
fle+h)= f(x)+ Df(z)h + §D2f(a:)(h, h)+---+ ED”f(x)(h, oo h)+ Ry(x,h) (8.29)
and
[ R, b)[ly
12l
as h — 0 in X, i.e., [|Rn(z, h)|ly = o([|h[%).
PROOF. We first note in general that if F' € B"(X,Y’) is symmetric and g is defined by
g(h)=F(h,... h),
then
Dg(h)k =mF(h,... hk) .

This follows by straightforward calculation. For m = 1, F' is just a linear map and the result is
already known. For m = 2, for example, just compute

g(h+k)—g(h)—2F(h,k) =F(h+k,h+k)— F(h,h) —2F(h,k) = F(k,k) ,
and
IF(k, B)lly < Cllk[% ,
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showing g is differentiable and that Dg(h) = 2F(h,-).

For the theorem, the case n = 1 just reproduces the definition of f being differentiable at
x. We initiate an induction on n, supposing the result valid for all functions f satisfying the
hypotheses for k& < n, where n > 2. Let f satisfy the hypotheses for & = n. Define R, as in
(8.29) and notice that

1

DRy (z,h) = Df(x + h) — Df(z) — D*f(x)(h,") — -+ — (G

D"f(x)(h,... ,h,-).
That is,

Df(x+h) = Df(x) + D2f(z)(h,) + - + (nil)!D”f(x)(h, - h,") + DaRy(x,h)

which is the (n — 1)st Taylor expansion of D f, and by induction we conclude that
| D2 Ry (z, h) | B(x,v)

n—1 — 0
1[I
as h — 0. On the other hand, by the Mean-Value Theorem, if ||h||x is sufficiently small, then
||Rn($,7’:)”Y _ [[Rn(z,h) —fn(%o)HY < 1D2 B (2, O‘}i)IHB(XvY) 0
1721 [172[1% 0<as<l 1211%
as h — 0. O

8.4. Extrema

DEFINITION. Let X be aset and f: X — R. A point xg € X is a minimum if f(xo) < f(z)
for all x € X; it is a mazimum if f(z9) > f(x) for all x € X. An extrema is a point which is
a maximum or a minimum. If X has a topology, we say z is a relative (or local) minimum if
there is an open set U C X with zg € U such that

fzo) < f(z)
for all x € U. Similarly, if
f(zo) = f()

for all x € U, then zg is a relative mazimum. If equality is disallowed above when x # zq, the
(relative) minimum or maximum is said to be strict.

THEOREM 8.24. Let X be a NLS, let U be an open set in X and let f: U — R be differen-
tiable. If xg € U is a relative mazimum or minimum, then D f(xo) = 0.

Proor. We show the theorem when x is a relative minimum; the other case is similar. We
argue by contradiction, so suppose that D f(x) is not the zero map. Then there is some h # 0
such that D f(xg)h # 0. By possibly reversing the sign of h, we may assume that D f(xq)h < 0.
Let tp > 0 be small enough that z¢ + th € U for |t| < to and consider for such ¢

1 1
n [f(xo + th) — f(x0)] = n [Df(xo)(th) + Ri(zo,th)]
1
= Df(l'o)h + ZRl(.%'o,th) .
The quantity Ri(xo,th)/t — 0 as t — 0. Hence for t; < ¢y small enough and [¢| < {1,

1 1
e th)| < 1D o
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It follows that for |t| < t1,
1
f(zo +th) = f(xo) +t |Df(zo)h + ¥R1($0,th) < f(zo) ,

provided we choose ¢ > 0. This contradiction proves the result for relative minima. Similar
ruminations establish the conclusion for relative maxima. O

DEFINITION. A critical point of a mapping f: U — Y, where U is open in X, is a point zg
where D f(xo) = 0. This is also referred to as a stationary point by some authors.

COROLLARY 8.25. If f : U — R 1is differentiable, then the relative extrema of f in U are
critical points of f.

DEFINITION. Let X be a vector space over R, U C X a convex subset, and f: U — R. We
say that f is convex if whenever x;,z9 € U and A € (0, 1), then

f(/\xl -+ (1 — )\).732) < )\f(.fl?l) + (1 — /\)f(.fvg) .

We say that f is concave if the opposite inequality holds. Moreover, we say that f is strictly
convex or concave if equality is not allowed above.

PROPOSITION 8.26. Linear functionals on X are both convex and concave (but not strictly
so). If a,b > 0 and f,g are convezx, then af+bg is conver, and if at least one of f or g is strictly
convex, then so is af + bg. Furthermore, f is (strictly) convex if and only if —f is (strictly)
concave.

We leave the proof as an easy exercise of the definitions.

PropoSITION 8.27. Let X be a NLS, U a convex subset of X, and f : U — R convexr and
differentiable. Then, for x,y € U,

f(y) = @) + Df(x)(y — ) ,

and, if Df(x) = 0, then x is a minimum of f in U. Moreover, if f is strictly convez, then for

T FY,
fy) > f(z) + Df(x)(y —2) ,
and Df(x) = 0 implies that f has a strict and therefore unique minimum.
PROOF. By convexity, for A € [0,1],
M@y + A =Nf(x) = flz+ Ay —2)) ,

whence

fa+ Ay — 1) - (@)
fl) - f@) . .

Take the limit as A — 0 on the right-hand side to obtain the desired result.
We leave the proof of the strictly convex case to the reader. 0

EXAMPLE. Let Q C R?, f € Ly(Q), and assume that the underlying field is real. Define
J: H}(Q) — R by

J(v) = 5IVolZ,@) = (f;0)Ly@) -
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We claim that ||Vv||%2(m is strictly convex. To verify this, let v,w € H(Q) and A € (0,1).
Then

IV 0w + (1= Nw)l[F,0)
= N[ Voll7, ) + 1 =N [VulZ,q) + 221 = X) (Vo, Vo) @)
= AIVolZ,9) + (1= DIVl — A1 = N[IVlZ, ) + IVwll],q — 2(Ve, V) L,q)
= A[Vol2, ) + (L= NIVl 0) = AL =A) (V(0 = w), V(0 = w)) @)
<AIVolZ, ) + (L= NVl

unless v — w is identically constant on each connected component of Q. As v —w € H}(Q),
v =w on J), and so v = w everywhere. That is, we have strict inequality whenever v # w, and
so we conclude that ”UH%Z(Q) is strictly convex. By Prop. 8.26, we conclude that J(v) is also
strictly convex. Moreover,

DJ(u,v) = (Vu, Vv) ) — (f;0)1o0) -
We conclude that u € H}(Q) satisfies the boundary value problem
(Vu, Vu) 1,0) = (f,0) 10
if and only if v minimizes the “energy functional” J(v) over Hg(Q):
J(u) < J(v) forallv € HYQ),v #u .
Moreover, such a function u is unique.

Local convexity suffices to verify that a critical point is a relative extrema. More generally,
we can examine the second derivative.

THEOREM 8.28. If X is a NLS and f : X — R is twice differentiable at a relative minimum
x € X, then

D2f(x)(h,h) >0 forallhe X .
Proor. By Taylor’s formula
f(@ £ M) = [(z) & Df ()M + 5 XD f(2)(h, h) + o(N*[A][%)
so we conclude that

>0

o f@ AR+ f(z— Ah) —2f(x)
D2f(a)(h. ) = lim >

if z is a local minimum. O
REMARK. In infinite dimensions, it is not the case that Df(z) = 0 and D?f(x)(h,h) > 0

for all A # 0 implies that = is a local minimum. For example consider the function f : ¢ — R
defined by

o0

f<m>=2(;—xk) a2

k=1
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where © = (x1)72, € f2. Note that f is well defined on ¢y (i.e., the sum converges). Direct
calculation shows that

prwm =" (2 sn) e

k=1
D2f(a)(h ) = Y (5 621 ) 12
k=1

so f(0) =0, Df(0) = 0, and D2f(0)(h,h) > 0 for all h # 0. However, let 2* be the element of
{9 such that xf is 0 if j # k and 2/k if j = k. We compute that f(2¥) < 0, in spite of the fact
that 2 — 0 as k — oo. Thus 0 is not a local minimum of f.

THEOREM 8.29 (Second Derivative Test). Let X be a NLS, and f : X — R have two
derivatives at a critical point x € X. If there is some constant ¢ > 0 such that

D2f(z)(h,h) > ¢c||h|% forallhe X ,

then x 1s a strict local minimum point.

PrOOF. By Taylor’s Theorem, for any € > 0, there is § > 0 such that for ||h||x <,

@+ h) = F(@) — LD2f(2)(h, b)| < elhlk |
since the Taylor remainder is o(||h|%). Thus,
f(@+h) = f@) = D2 (@) (h,h) — elll% > (de - o)lIAl% ,
and taking € = ¢/4, we conclude that
f(@+h) = f2)+ elnlk

i.e., f has a local minimum at z. O

REMARK. This theorem is not as general as it appears. If we define the bilinear form

(h,k)x = D*f(z)(h, k) ,

we easily verify that, with the assumption of the Second Derivative Test, that in fact (h,k)x is
an inner product, which induces a norm equivalent to the original. Thus in fact X must be a
pre-Hilbert space, and it makes no sense to attempt use of the theorem when X is known not
to be pre-Hilbert.

8.5. The Euler-Lagrange Equations

A common problem in science and engineering applications is to find extrema of a functional
that involves an integral of a function. We will consider this situation via the following problem.
Let a < b,

f:la,b] x R" xR" - R
and define the functional F : C1([a,b]) — R by

b
F(y) =/ flx,y(z),y (x)) dz .
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With « and § given in R", let
Cl

0.5([a,b],R") = {v : [a,b] — R™ | v has a continuous first derivative,

v(a) = o, and v(b) = B} .
Our goal is to find y € Céﬁ([a, b], R™) such that

F(y) = min F(v) .
(y) vECéﬁ(%a,b},R”) ()

ExaMPLE. Find y(x) € C!([a,b]) such that y(a) = « and y(b) = B and the surface of
revolution of the graph of y about the z-axis has minimal area. Recall that a differential of arc

length is given by
ds = \/T+ (y (@) dz |

so our area as a function of the curve y is

b
Aly) = / 2my(x)/1+ (@) da (8.30)

If a and 3 are zero, Cj¢([a,b],R™) = Cj([a,b],R") is a Banach space with the W' ([a, b))
(Sobolev space) maximum norm, and our minimum is found at a critical point. However, in
general C’Clt’ 5([@, b],R™) is not a linear vector space. Rather it is an affine space, a translate of a
vector space. To see this, let

1
l(z) = m[a(b — )+ B(z — a)]
be the linear function connecting (a, ) to (b, 3). Then

Cy 5(la,b],R™) = Cq([a,b], R™) + £ .

To solve our problem, then, we need to consider any fixed element of C;“ g such as ¢(x), and

all possible “admissible variations” h of it that lie in C&; that is, we minimize F'(v) by searching
among all possible “competing functions” v = £+ h € Colt 3> where h € C43, for the one that

minimizes F(v), if any. On C}, we can find the derivative of F(£ + h) as a function of h, and
thereby restrict our search to the critical points. We call such a point y = £+ h a critical point
for F' defined on Coléy 5- We present a general result on the derivative of F* of the form considered
in this section.

THEOREM 8.30. If f € C([a,b] x R x R") and
Fw) = [ S @) e
then F : C'([a,b]) — R is continuously differentiable and
DR = [ '[Da (s y(), /() ) + Ds (o) f () B (2] i

for all h € C([a,b]).
PrOOF. Let A be defined by

b
Ah = / [Daf (z,y(2),y'(2)) h(z) + D3 f(z,y(z),y'(z)) '(z)] dz
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which is clearly a bounded linear functional on C, since the norm of any v € C' is

vl = max([Jo]| o, 10']] 2. ) -

Now

b 1
d
F(y+h)—F(y):/ / sy + thyy + ) di do
a JO

b 1
_ / / Dof(z,y +th,y +th')h + Dsf(x,y + th,y +th') I dt dz |
a JO

SO

b 1
[F(y+h) = F(y) — Ah| < / /0 |[D2f(z,y + th,y' +th') — Daf(z,y,y/) h| dt dz

b 1
+/ / \[Dsf(z,y +th,y +th') — Dsf(z,y,y)] K| dtdx .
a 0

Since Dyf and Dsf are uniformly continuous on compact sets, the right-hand side is o(||h),
and we conclude that DF(y) = A.

It remains to show that DF(y) is continuous. But this follows from uniform continuity of
Dsf and Dsf, and from the computation

b
|DF(y + h)k — DF(y)k| < / \[Daf(z,y+ h,y/ + 1) — Daf(x,y,y)] k| d

b
+ / ’[D3f($ay + h7y/ + h/) + D3f(90,y,2/,)] k/| dx ’
which tends to 0 as ||k — 0 for any k € C'([a,b]) with ||k|| < 1. O
THEOREM 8.31. Suppose f € Cl([a,b] x R* x R"), y € C’Clyﬂ([a, b)), and

b
F(y) Z/ flz,y(x),y (z)) dz .

Then vy is a critical point for F if and only if the curve x — D3 f(x,y(z),y (z)) is C*([a,b]) and
y satisfies the Euler-Lagrange Equations

d
Dy f(x,y,y") — —Dsf(x,y,4) =0 .

dx
In component form,the Euler-Lagrange Equations are
0 d 0
iziif;, k:17...7n,
Oy, dx Oy,

or

d
fyk = %fy;c, k= 1, IR AN

The converse implication of the Theorem is easily shown from the previous result after
integrating by parts, since h € C’é. The direct implication follows easily from the previous result
and the following Lemma. We leave the details to the reader.

LeEMMA 8.32 (Dubois-Reymond). Let ¢ and 9 lie in C°([a,b],R"™). Then
(i) f; o(x) - W (z)dz =0 for all h € C} if and only if ¢ is identically constant.
(ii) f;[cp(x) ~h(x) +(x) - B (x)]dz = 0 for all h € C} if and only if v € C! and ¢’ = ¢.
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PROOF. Both converse implications are trivial after integrating by parts. For the direct
implication of (i), let

1 b
¢z [ v,

and note that then
0= [ o) H@ar= [ (ow) ) Wiz o
Take ' '
h= [ (ets) -~ @)ds e .
so that b’ = ¢ — . We thereby demon:trate that
le—lle, =0,

and conclude that ¢ = ¢ (almost everywhere, but both functions are continuous, so everywhere).
For the direct implication of (ii), let

o= [ ots)s.

so that ® = ¢. Then the hypothesis of (ii) shows that

b b b
d
/ [@—w].h'dx:/ [(I)-h’(:c)+<p-h]da::/ L@ hydr =0,
a a a dx
since h vanishes at a and b. We conclude from (i) that ® — ) is constant. Since ® is C*, so is
P, and ¢ = @' = . O
DEFINITION. Solutions of the Euler-Lagrange equations are called extremals.

ExaMPLE. We illustrate the theory by finding the shortest path between two points. Suppose
y(z) is apath in C! s([a, b]), which connects (a, @) to (b, 8). Then we seek to minimize the length
functional

1) = [ ViT @R
over all such y. The integrand is ’
fltyy) = V1+ (@),
so the Euler-Lagrange equations become simply
(Dsf) =0,

and so we conclude that for some constant c,
1+ @))( (@) = .

(o) = 4y 5
y - 1_027

if ¢2 # 1, and there is no solution otherwise. In any case, y'(z) is constant, so the only critical
paths are lines, and there is a unique such line in C! 5([a,b]). Since L(y) is convex, this path is

Thus,
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necessarily a minimum, and we conclude the well-known maxim: the shortest distance between
two points is a straight line.

ExXaAMPLE. Many problems have no solutions. For example, consider the problem of min-
imizing the length of the curve y € C'([0,1]) such that y(0) = y(1) = 0 and 3’(0) = 1. The
minimum approaches 1, but is never attained by a C'-function.

It is generally not easy to solve the Euler-Lagrange equations. They constitute a nonlinear
second order ordinary differential equation for y(z). To see this, suppose that y € C?([a, b]) and
compute

Dyf = (D3f) = DiDsf + DaDsf y/ + D3fy"
or, provided D2 f(z,y,%/) is invertible,
y" = (D3f) " (Dof — D1Dsf — DaDsf /) .

DEFINITION. If y is an extremal and D3 f(z,y,y’) is invertible for all z € [a, b], then we call
y a reqular extremal.

PROPOSITION 8.33. If f € C2([a,b] x R® x R™) and y € C*([a,b]) is a reqular extremal, then
y € C*([a, b]).

In this case, we can reduce the problem to first order.

THEOREM 8.34. If f € C?*([a,b] x R™ x R"™), f(z,y,2) = f(y,2) only, and y € C*([a,b]) is
a reqular extremal, then y' D3f — f is constant.

PrOOF. Simply compute
(Y Dsf — f) =y" Dsf +y'(Dsf) — f
=y"Dsf +y Dof — (D2f y + Dsfy") =0,
using the Euler-Lagrange equation for the extremal. O

EXAMPLE. We reconsider the problem of finding y(x) € C([a,b]) such that y(a) = o and
y(b) = [ and the surface of revolution of the graph of y about the z-axis has minimal area. The
area as a function of the curve is given in (8.30), so

fy,y') = 2my(2) V1 + (v (2))* .
Note that

, 27
Dgf(y,y)ZW%O,

unless y = 0. Thus our nonzero extremals are regular, so we can use the theorem to find them.
For some constant C,

21y (i)

e 2my(1+ (y)?)* = 2nC

which implies that

/ l,/y2_02.

y==
Applying separation of variables, we need to integrate
dy dx

/yz_czzﬁ’
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which, for some constant A, gives us the solution
y(x) = C cosh(z/C + A) ,
which is called a catenary. Suppose that a = 0, so that C' = «// cosh A and

y(b)=p0= coa cosh <COSh)\b+ A) .

(07

That is, we determine C' once we have A, which must solve the above equation. There may or
may not be solutions A (i.e., there may not be regular extremals). It is a fact, which we will
not prove (see [Sa, pp. 62ff.]), that the minimal area is given either by a regular extremal or
the Goldschmidt solution, which is the piecewise graph that uses straight lines to connect the
points (0, a) to (0,0), (0,0) to (b,0), and finally (b,0) to (b,3). This is not a C*! curve, so it is
technically inadmissible, but it has area Ag = m(a?+ 32). If there are no extremals, then, given
e > 0, we have C! curves approximating the Goldschmidt solution such that the area is greater
than but within € of Agq.

EXAMPLE (The Brachistochrone problem with a free end). Sometimes one does not impose
a condition at one end. An example is the Brachistochrone problem. Consider a particle moving
under the influence of gravity in the xy-plane, where y points upwards. We assume that the
particle starts from rest at the position (0,0) and slides frictionlessly along a curve y(z), moving
in the z-direction a distance b > 0 and falling an unspecified distance (see Fig. 1). We wish to
minimize the total travel time. Let the final position be (b, 3), where 5 < 0 is unspecified. We
assume that the curve

y € CH([0,b]) = {v e C*([0,b]) : v(0) = 0} .

The steeper the curve, the faster it will move; however, it must convert some of this speed into
motion in the z-direction to travel distance b. To derive the travel time functional T'(y), we
note that Newton’s Law implies that for a mass m traveling on the arc s with angle 6 from the
downward direction (see Fig. 1),

&*m cosf@ =m d—y
az ~ MICRT =M

where g is the gravitational constant. The mass cancels and

1d (ds\* _d*sds _ dy
2dt\dt) ~dzar Yar-

so we conclude that for some constant C,

2
<ds) =29y +C .

m

dt
But at ¢t = 0, both the speed and y(0) are zero, so C' = 0, and
ds
& _ gy .
di g9y

Now the travel time is given by

Ca [t e
T(y)‘/dt‘/@‘o 2y

We need a general result to deal with the free end.
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1

B+ dx

FI1GURE 1. The Brachistochrone problem.

THEOREM 8.35. If y € C?([a,b]) minimizes

/fmy (2)) da

subject only to the single constraint that y(a) = o € R, then y must satisfy the Euler Lagrange
equations and Dsf(b,y(b),y' (b)) = 0.

PROOF. We simply compute for y € C}([a,b]) + o and h € C1([a, b])

b b
DF@)h = [ (Daf s Dof ) da = [ (Daf b= (Daf) ) do + Daf(by(8).5/4) (o)
a a
If he C’&O([a, b]), we derive the Euler-Lagrange equations, and otherwise we obtain the second
condition at x = b. O

ExXAMPLE (The Brachistochrone problem with a free end, continued). Since we are looking
for a minimum, we can drop the factor 1/2¢ and concentrate on

L+ (@)

fly,y') = y

This is independent of z, so we solve

N2
/Dsf =1 = Cr = o (e TGP

Yy
ﬂ/%dy:x—C%
/ C’12—y

This is solved using a trigonometric substitution, so we let

y = C?sin(¢/2) = (1 — cos $)/2C?

or

and then
x = (¢ —sing)/20% 4+ C, .
Applying the initial condition (¢ = 0), we determine that the curve is
(x,y) = C(¢p —sing,1 — cos ¢)
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for some constant C'. This is a cycloid. Now C' is determined by the auxiliary condition
1 y'(b)
Vi) V1+ ()72

0= D3f(y(b),y (b)) =

which requires

oy dy (dx _1_ sin ¢(b)
O_y(b)_clcﬁ(clé) T T—coso() |

Thus ¢(b) = 7 (since ¢ € [0,7]), so C = b/m and the solution is complete.

8.6. Constrained Extrema and Lagrange Multipliers

When discussing the Euler-Lagrange equations, we considered the problem of finding relative
extrema of a nonlinear functional in C’Clt’ 3> which is an affine translate of a Banach space. We can
phrase this differently: we found extrema in the Banach space C! subject to the linear constraint
that the function agrees with « and (8 at its endpoints. We consider now the more general
problem of finding relative extrema of a nonlinear functional subject to a possibly nonlinear
constraint.

Let X be a Banach space, U C X open, and f : U — R. To describe our constraint, we
assume that there are functions g; : X — R for ¢ = 1, ..., m that define the set M C U by

M ={zeU:g(x)=0for all i} .

Our problem is to find the relative extrema of f restricted to M. Note that M is not necessarily
open, so we must discuss what happens on OM. To rephrase our problem: Find the relative
extrema of f(z) on U subject to the constraints

g1(z) =...=gn(x)=0. (8.31)

ExaMPLE. Consider a thin membrane stretched over a rigid frame. We describe this as
follows. Let ©Q € R? be open in the zy-plane and suppose that there is a function f : 992 — R
which describes the z-coordinate (height) of the rigid frame. That is, the frame is

{(z,y,2) : 2 = f(z,y) for all (z,y) € ON} .

We let u : 2 — R be the height of the membrane. The membrane will assume that shape that
minimizes the energy, subject to the constraint that it attaches to the rigid frame. The energy
functional E : H*(Q2) — R is a sum of the elastic energy and the gravitational potential energy:

E(u) = / [%CWU\Q + gu]dz |
Q

where ¢ is a constant related to the elasticity of the membrane and g is the gravitational constant.
We minimize E subject to the constraint that the trace of w, vo(u), agrees with f on the
boundary, that is, that G(u) = 0, where G : H'(Q) — R is defined by

Glu) = /a o) = flds.

To find the relative extrema of f(x) on U subject to the constraints (8.31), we can instead
solve un unconstrained problem, albeit in more dimensions. Define H : X x R™ — R by

H(z,A\) = f(z) + Mg1(z) + ... + Angm(x) . (8.32)
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The critical points of H are given by solving for a root of the system of equations defined by
the partial derivatives

DlH(x’ )‘) Df(:E) + )\ng1($) +o Tt )‘ngm(x) ’
DQH(x7)‘) = gl(l') ;

Dm-&-lH(SUa )‘) = gm(x) .

Such a critical point satisfies the m constraints and an additional condition which is necessary
for an extrema, as we now prove.

THEOREM 8.36 (Lagrange Multiplier Theorem). Let X be a Banach space, U C X open,
and f,g; : U = R, 1 =1,...,m, be continuously differentiable. If x € M is a relative extrema for
flar, where

M ={x€U:gix)=0 forall i} ,
then there is a nonzero A = (Ao, ..., Am) € R™ T such that
XD f(x) +MDgi(z) + ... + A Dgm(z) =0 . (8.33)

That is, to find a local extrema in M, we need only consider points that satisfy (8.33). We
search through the unconstrained space U for such points z, and then we must verify that in
fact x € M holds. Two possibilities arise for z € U. If {Dg;(x)}", is linearly independent,
the only nontrivial way to satisfy (8.33) is to take A\g # 0. Otherwise, {Dg;(x)}", is linearly
dependent, and (8.33) is satisfied for a nonzero A with \g = 0.

Our method of search then is clear. (1) First we find critical points of H as defined above in
(8.32). These points automatically satisfy both (8.33) and = € M. These points are potential
relative extrema. (2) Second, we find points 2 € U where {Dg;(z)}"; is linearly dependent.
Then (8.33) is satisfied, so we must further check to see if indeed x € M, i.e., each g;(z) = 0.
If so, x is also a potential relative extrema. (3) Finally, we determine if the potential relative
extrema are indeed extrema or not. Often, the constraints are chosen so that {Dg;(z)}", is
always linearly independent, and the second step does not arise. (We remark that if we want
extrema on M, then we would also need to chect points on M)

PROOF OF THE LAGRANGE MULTIPLIER THEOREM. Suppose that x is a local minimum of
flar; the case of a local maximum is similar. Then we can find an open set V' C U such that
xz €V and

flx) < f(y) forallye MNV .
Define F : V. — R™*! by

F(y)=(f),91()s - gm(y)) -

Since z is a local minimum on M, for any € > 0,
(f(x) —¢€,0,...,0) # F(y) forallyeV .

Thus, we conclude that F' does not map V' onto an open neighborhood of F(x) = (f(x),0,...,0) €
R™+1

Suppose that DF(z) maps X onto R™t!. Then construct a space X = span{vy, ..., vyp1} C
X where we choose each v; such that DF(z)(v;) = e;, the standard unit vector in the ith
direction in R™!. Let X = {v € X : x + v € V}, and define the function h : X — R™"! by
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h(v) = F(z+v). Now Dh(0) = DF(x) maps X onto R™*! is invertible, so the Inverse Function
Theorem implies that h maps an open subset S of X containing 0 onto an open subset of R”+1
containing h(0) = F(z). But then x +.5 C V is an open set that contradicts our previous
conclusion regarding F'.

Thus DF(x) cannot map onto all of R™*! and so it maps onto a proper subspace. There
then is some nonzero vector A € R™*! orthogonal to DF(z)(X). Thus

MDf(x)(y) + MDgi(z)(y) + ... + AmDgm(x)(y) =0,

for any y € X, and we conclude that this linear conbination of the operators must vanish, i.e.,
(8.33) holds. O

EXAMPLE. The Isoperimetric Problem can be stated as follows: among all rectifiable curves
in R% from (—1,0) to (1,0) with length ¢, find the one enclosing the greatest area. We need to
maximize the functional

1
Au) = / u(t) dt
—1
subject to the constraint

1
L) = /_1 T WD) dt = ¢

over the set u € Cfo([—1,1]) with u > 0. Let

1

H(u,\) = A(u) + A\[L(u') — 4] = /_1 hoy(u, ') dt

ha(u,u') = u+ A1+ (W/(t)2—£4/2 .

To find a critical point of the system, we need to find both D, H and DyH. For the former, it is
given by considering A fixed and solving the Euler-Lagrange equations: Dahy = (Dsh))’. That
is,

where

so for some constant C1,

Solving for v’ yields
t—C
Another integration gives a constant Co and
N —(t—C1)2+Cy,
or, rearranging, we obtain the equation of a circular arc
(u(t) — Co)* + (t — C1)* = \?

with center (C1,C2) of radius A. The partial derivative Dy H simply recovers the constraint that
the arc length is ¢, and the requirement that u € Cpo([—1,1]) says that it must go through the

u'(t) =
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points u(—1) = (=1,0) and u(1) = (1,0). We leave it to the reader to complete the example
by showing that these conditions uniquely determine C; = 0, Cy, and A = /1 + C3, where Cy
satisfies the transcendental equation

/ l
L+ 05 = 2[m — tan=1(1/C9)]

Moreover, the reader may justify that a maximum is obtained at this critical point.

We also need to check the condition DL(u') = 0. Again the Euler-Lagrange equations allow
us to find these points easily. The result, left to the reader, is that for some constant C' of
integration,

Ul_ic
- J1-C’

which means that v is a straight line. The fixed ends imply that u = 0, and so we do not satisfy
the length constraint unless ¢ = 2, a trivial case to analyze.
As a corollary, among curves of fixed lengths, the circle encloses the region of greatest area.

8.7. Lower Semi-Continuity and Existence of Minima

Whether there exists a minimum of a functional is an important question. If a minimum
exists, we can locate it by analyzing critical points. Perhaps the simplest criterion for the
existence of a minimum is to consider convex functionals, as we have done previously. Next
simplest is perhaps to note that a continuous function on a compact set attains its minimum.

However, in an infinite dimensional Banach space X, bounded sets are not compact; that
is, compact sets are very small. This observation suggests that, at least when X is reflexive,
we consider using the weak topology, since then the Banach-Alaoglu Theorem 2.31 implies that
bounded sets are weakly compact. The problem now is that many interesting functionals are
not weakly continuous, such as the norm itself. For the norm, it is easily seen that:

If w, = u, then liminf ||u,|| > |Ju|| ,
n—oo
with inequality possible. We are lead to consider a weaker notion of continuity.

DEFINITION. Let X be a topological space. A function f : X — (—o0, o] is said to be lower
semicontinuous (l.s.c.) if whenever lim,,_, o x,, = x, then

liminf f(z,) > f(z) .
n—oo
PROPOSITION 8.37. Let X be a topological space and f : X — (—oo,00]. Then f is lower
semicontinuous if and only if the sets
Ay ={z e X: f(x) < a}
are closed for all a € R.
PROOF. Suppose f is L.s.c. Let x,, € A, be such that x, — x € X. Then
f(2) < liminf f(z,) <o,
n—oo

sox € A, and A, is closed.
Suppose now each A, is closed. Then

A ={z e X : f(z) > a}
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is open. Let =, — = € X, and suppose that x € A¢, for some « (i.e., f(z) > «). Then there is
some N, > 0 such that for all n > N,, =, € AS, and so liminf, .~ f(x,) > a. In other words,
whenever f(z) > «, liminf, o f(z,) > «a, so we conclude that

lﬂgff(xn) >sup{a: f(z) > a} = f(x) .
O

THEOREM 8.38. If M is compact and f : M — (—o0, 0] is lower semicontinuous, then f is
bounded below and takes on its minumum value.

x NTJ (x) E [ ) ]

If A = —o0, choose a sequence x,, € M such that f(x,) < —n for all n > 1. Since M is compact,
there is € M such that, for some subsequence, z,, — = as ¢ — co. But

f(x) < liminff(wm) = -0,

contradicting that f maps into (—oo, 00]. Thus A > —o0o, and f is bounded below.
Now choose a sequence x,, € M such that f(z,) < A+ 1/n, and again extract a convergent
subsequence z,, — x € M as i — oco. We compute

A < f(z) <liminf f(zy,) <liminf(A+1/n) = A,
1—00 1—00
and we conclude that f(z) = A attains its minimum at x. O

The previous results apply to general topological spaces. For reflexive Banach spaces, we
have both the strong (or norm) and weak topologies.

THEOREM 8.39. Let M be a weakly closed subspace of a reflexive Banach space X. If f :
M — (=00, 00| is weakly lower semicontinuous and, for some a, Ay = {x € X : f(z) < a} is
bounded and nonempty, then f is bounded from below and there is some xo € M such that

f(xo) = afjgi]\%f(fﬂ) :

PROOF. By the Banach-Alaoglu Theorem 2.31, A, is compact, so f| A, attains its minimum.
But for x € M \ Aq, f(z) > a > min,c 5 f(z), and the theorem follows. O

It is important to determine when a function is weakly lower semicontinuous. The following
requirement is left to the reader, and its near converse follows.

PROPOSITION 8.40. If X is a Banach space and f : X — (—o00,00] is weakly lower semicon-
tinuous, then f is strongly lower semicontinuous.

THEOREM 8.41. Suppose X is a Banach space and f : X — (—oo,00|. If V ={z € X :
f(x) < oo} is a subspace of X, and if f is both convex on V and strongly lower semicontinuous,
then f is weakly lower semicontinuous.

PRrROOF. For a € R, let A, = {x € X : f(x) < a} be as usual. Since f is strongly ls.c.,
Prop. 8.37 implies that A, is closed in the strong (i.e., norm) topology. But f being convex on V'
implies that A, is also convex. A strongly closed convex set is weakly closed (see Corollary 2.37),
so we conclude that f is weakly L.s.c. O
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LEMMA 8.42. Let f : C — [0,00) be convex, Q a domain in R, and 1 < p < oo. Then
F:Ly,(Q2) — [0,00], defined by

H@zlﬁmeM,

1s norm and weak l.s.c.

PROOF. Since F' is convex, it is enough to prove the norm l.s.c. property. Let uw, — w in
L,(€2) and choose a subsequence such that

lim F(up,) = liminf F(u,)

1—00 n— oo

and up,(z) — u(x) for almost every x € Q. Then f(up,(z)) — f(u(x)) for a.e. z, since f being
convex is also continuous. Fatou’s lemma finally implies that

F(u) <liminf F(uy,) = liminf F(u,) .

O

COROLLARY 8.43. If Q is a domain in R? and 1 < p,q < oo, then the Ly(Q)-norm is weakly
l.s.c. on Ly(Q).

We close this section with two examples that illustrate the concepts.
EXAMPLE. Let f € C§°(R™) and consider the differential equation
—Au+ulul+u=7f.
Let us show that there is a solution. Let
F(u) = /Rd (315> + Sl + 3uf® - fu) de
which may be +oo for some u. Now if v € C§°(RY),
DF(u)(v) = / (Vu- Vo + |ujuv + wv — fv) da
R4

:/d(—Au+u]u|+u—f)vd$
R

which vanishes if and only if the differential equation is satisfied. Since F' is clearly convex, there
will be a solution to the differential equation if F' takes on its minimum.
Now

F(w) 2 3IVul?, za) — 1 g lullagmay > 21V, oy — 1712, gy

so the set {u € Ly(R?) : F(u) < 1} is bounded by 4(1 + HfH%Q(Rd)), and nonempty (since it
contains u = 0). We will complete the proof if we can show that F is Ls.c.
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The last term of F' is weakly continuous, and the second and third terms are weakly l.s.c.,
since they are norm Ls.c. and the space is convex. For the first term, let u, — w in Ly. Then

|Vl L, = sup (1, V)L, |
pe(C§)e, ||¢ll2=1
= sup (=, ) L, |
PE(CG), (19l 2=1
< sup i [(<4), un) L, |
Ye(C§O)?, [l 2=1"""°
= sup lim |(¢, Vug)L,|

YeE(C3)e, Il 2=1"""
< liminf ||Vu,| L,
n—oo
by Cauchy-Schwartz. Thus the first term is l.s.c. as well.

ExaMPLE (Geodesics). Let M C R? be closed and let  :
(i.e., v is continuous and +/, as a distribution, is in L([0,1]; R

1
Liy) = / 7/ (8)] ds

THEOREM 8.44. Suppose M C R? be closed. If x,yy € M and there is at least one rectifiable
curve v : [0,1] — M with v(0) = « and (1) = y, then there exists a rectifiable curve 7 : [0,1] —
M such that %(0) =z, (1) =y, and

L(¥) = inf{L(y)|y : [0,1] — M is rectifiable and v(0) = z,v(1) =y} .

Such a minimizing curve is called a geodesic.

[0,1] — M be a rectifiable curve
d) )

The length of ~ is

Note that a geodesic is the shortest path on some manifold M (i.e., surface in RY) between
two points. One exists provided only that the two points can be joined within M. Note that
a geodesic may not be unique (e.g., consider joining points (—1,0) and (1,0) within the unit
circle).

PROOF. We would like to use Theorem 8.39; however, L' is not reflexive. We need two key
ideas to resolve this difficulty. We expect that 7' is constant along a geodesic, so define

1
BO) = [ 1) ds

and let us try to minimize F in L?([0,1]). This is the first key idea.
Define

Y = {f € L2([0,1;RY) : 74(s) = x—l—/s f(t)dt € M for all s € [0,1] and v¢(1) :y} .
0

These are the derivatives of rectifiable curves from x to y. Since the map f — fos f(t)dt
is a continuous linear functional, Y is weakly closed in L?([0,1];R?). Since 7} = f, define
E:Y —[0,00) by

1
B(f) = B(y;) = /0 F(s) ds .

Clearly |- | is convex, so E is weakly Ls.c. by Lemma 8.42. Let

Ay ={feY E(f)<a},
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so that by definition A, is bounded for any «. If A, is not empty for some «, then there is a
minimizer fy of E, by Theorem 8.39.

Now we need the second key idea. Given any rectifiable v, define its geodesic reparameteri-
zation v* by

1 5 / *
()= 15 / ()] dt € 0,1] and ~*(T(s)) = 7(s) |

which is well defined since T' is nondecreasing and T'(s) is constant only where + is also constant.
But

() = (7)) =N o) =7 (e T

7 (s)] = L(v)

is constant. Moreover, L(v*) = L(v), and so
E(y") = L(v")*.
Now at least one « exists by hypothesis, so the reparameterized v* has F (:y*) < 00. Thus,

for some «, A, is nonempty, and we conclude that we have a minimizer fy of E.
Finally, for any rectifiable curve,

E(y) > L(y)* = L(Y")* = E(v") .
Thus a curve of minimal energy E must have |y/| constant. So, for any rectifiable v = ¢ (where
f=9,
L(y) = E(v)'/? = E()'? = E(fo)'/* = E(v,) "/ = L(vy,)

and ~yy, is our geodesic. O

8.8. Exercises
1. Let X, Yi, Y5, and Z be normed linear spaces and P : Y] X Yo — Z be a continuous bilinear
map (so P is a “product” between Y] and Y5).
(a) Show that for y;,9; € Y,
DP(y1,y2) (1, §2) = P(y1,92) + P, 42) -
(b) If f: X — Y] x Ys is differentiable, show that for h € X,
D(Po f)(x) h = P(Dfi(x) h, f2(x)) + P(fi(x), D fa(x) h) .
2. Let X be a real Hilbert space and A;, Ay € B(X,X), and define f(z) = (z, A1z)x Az,
Show that D f(x) exists for all € X by finding an explicit expression for it.
3. Let X = C([0,1]) be the space of bounded continuous functions on [0, 1] and, for v € X,

define F'(u / K(z,y) f(u(y)) dy, where K : [0,1] x [0,1] — R is continuous and f is

a Cl-mapplng of R into R. Find the Fréchet derivative DF(u) of F at uw € X. Is the map
u +— DF(u) continuous?

4. Suppose X and Y are Banach spaces, and f : X — Y is differentiable with derivative
Df(xz) € B(X,Y) being a compact operator for any € X. Prove that f is also compact.
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Set up and apply the contraction mapping principle to show that the problem
_u$x+u_6u2:f(m)7 rz€eR,

has a unique smooth bounded solution if € > 0 is small enough, where f(z) € S(R) is smooth
and dies at infinity.

Use the contraction-mapping theorem to show that the Fredholm Integral Equation

b
f@) = ola) + A [ K@) i) dy
has a unique solution f € C(]a,b]), provided that A is sufficiently small, wherein ¢ € C(]a, b))
and K € C([a,b] x [a,b]).

Suppose that F' is a compact linear operator on a Banach space X, that xg = F(xg) is a
fixed point of F' and that 1 is not an eigenvalue of DF(zp). Prove that xo is an isolated
fixed point.

Consider the first-order differential equation
o' (t) + u(t) = cos(u(t))
posed as an initial-value problem for ¢ > 0 with initial condition
u(0) = up .

(a) Use the contraction-mapping theorem to show that there is exactly one solution u cor-
responding to any given ug € R.
(b) Prove that there is a number £ such that tlggo u(t) = & for any solution u, independent
of the value of uyg.
Set up and apply the contraction mapping principle to show that the boundary value problem

—Upp +u—eu? = f(x), x€(0,400),

u(0) = u(+o00) =0,

has a unique smooth solution if € > 0 is small enough, where f(z) is a smooth compactly
supported function on (0, +00).

Consider the partial differential equation

3
%_6f61;2_6u3:f’ —OO<IE<OO,t>O,
u(x,0) =g(z) .

Use the Fourier transform and a contraction mapping argument to show that there exists a
solution for small enough e. In what spaces should f and g lie?

Surjective Mapping Theorem: Let X and Y be Banach spaces, U C X beopen, f: U — Y be
C', and zg € U. If Df(x0) has a bounded right inverse, then f(U) contains a neighborhood

of f(zo).

(a) Prove this theorem from the Inverse Function Theorem. Hint: Let R be the right inverse
of Df(xo) and consider g : V. — Y where g(y) = f(zo+Ry) and V ={y € Y : 20+ Ry € U}.

(b) Prove that if y € Y is sufficiently close to f(x¢), there is at least one solution to f(z) = y.
Let X and Y be Banach spaces.
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(a) Let F and G take X to Y be C! on X, and let H(x,¢) = F(x) + ¢G(x) for ¢ € R. If
H(x0,0) =0 and DF'(z9) is invertible, show that there exists z € X such that H(z,e) =0
for e sufficiently close to 0.

(b) For small €, prove that there is a solution w € H?(0,7) to
w' =w+ew?, w(0)=w(r)=0.
Prove that for sufficiently small € > 0, there is at least one solution to the functional equation

f(x) +Sinx/oo fle—y) fly)dy=ee P 2R,

such that f € LY(R).

Let X and Y be Banach spaces, and let U C X be open and convex. Let F': U — Y be
an n-times Fréchet differentiable operator. Let x € U and h € X. Prove that in Taylor’s
formula, the remainder is actually bounded as

1

[ Ry—1(z, h)|| = =1l

F(x+h)—F(z)— DF(x)h+---+

D" 1 F(z)(h,... ,h)H

< sup [[D"F(x+ ah)|[|p]"™ .
0<a<1

Prove that if X is a NLS, U a convex subset of X, and f : U — R is strictly convex and
differentiable, then, for x,y € U, = # v,

fy) > f(z) + Df(z)(y — ),
and D f(x) = 0 implies that f has a strict and therefore unique minimum.

Let © € R? have a smooth boundary, and let g(z) be real with g € H'(Q). Consider the
BVP

—Au+u=0, inQ,
{u =g, ondf).

(a) Write this as a variational problem.

(b) Define an appropriate energy functional J(v) and find DJ(v).

(c¢) Relate the BVP to a constrained minimization of J(v).

Let Q C R™ have a smooth boundary, A(z) be an n x n real matrix with components in

L>(Q), and let c¢(x), f(z) be real with ¢ € L=(Q) and f € L*(Q2). Consider the BVP
-V -AVu+cu=f, inQ,
{ =0, onodf.
(a) Write this as a variational problem.
(b) Assume that A is symmetric and uniformly positive definite and ¢ is uniformly positive.
Define the energy functional J : H} — R by J(v) = % /Q {|A1/2Vv\2 +clv|* —2fv}dz. Find
DJ(v).

(c) Prove that for u € H}, the following are equivalent: (i) u is the solution of the BVP; (ii)
DJ(u) = 0; (iii) v minimizes J(v).
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Let X and Y be Banach spaces, U C X an open set, and f : U — Y Fréchet differentiable.
Suppose that f is compact, in the sense that for any z € U, if B,(x) C U, then f(B,(z)) is
precompact in Y. If 29 € U, prove that D f(x¢) is a compact linear operator.

5
= u'(z))? — 1]2 da.
Lot Fu) = [ [(u/()? = 1%
(a) Find all extremals in C'([—1,5]) such that u(—1) = 1 and u(5) = 5.

(b) Decide if any extremal from (a) is a minimum of F. Consider u(z) = |z|.

Consider the functional
1
Plo) = [ 10(e)? = y(a) o (@) .
defined for y € C1([0, 1]).

(a) Find all extremals.
(b) If we require y(0) = 0, show by example that there is no minimum.
(c) If we require y(0) = y(1) = 0, show that the extremal is a minimum. Hint: note that
yy' = (3v%)"
Find all extremals of /2
" 2 2

|10 @) + 00)* + 2000

under the condition y(0) = y(7/2) = 0.

Suppose that we wish to minimize

1
N /0 fla,y(x), ' (2),y" (x)) da

over the set of y(z) € C?([0, 1]) such that y(0) = a, ¥'(0) = 3, y(1) = ~, and ¢'(1) = §. That
is, with C3([0,1]) = {u € C?([0,1]) : u(0) = '(0) = u(1) = v/(1) = 0}, y € CF([0 71]) p(x),
where p is the cubic polynomial that matches the boundary conditions.

(a) Find a differential equation, similar to the Euler-Lagrange equation, that must be satis-
fied by the minimum (if it exists).

(b) Apply your equation to find the extremal(s) of

1
Fly) = /0 (" ()% dx

where y(0) = 4/(0) = ¢/(1) = 0 but y(1) = 1, and justify that each extremal is a (possibly
nonstrict) minimum.

Prove the theorem: If f and ¢ map R? to R and have continuous partial derivatives up to
second order, and if u € C?([a,b]), u(a) = o and u(b) = 3, minimizes

/ f (@, u(@), (x)) da
subject to the constraint

b
/ g(z,u(x), v (z))de =0,
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then there is a nontrivial linear combination h = puf 4+ Ag such that u(x) satisfies the Euler-
Lagrange equation for h.

Consider the functional
b
Ba,.1) = [ Play().y/@)ds .
a
(a) If F' = F(y,y’) only, prove that the Euler-Lagrange equations reduce to

d
—(F —y'F;)=0.

(b) Among all continuous curves y(z) joining the points (0, 1) and (1,cosh(1)), find the one
which generates the minimum area when rotated about the z-axis. Recall that this area is

A:QW/ly\/l—i—(y’)?dac.
0
/\/ﬁdfi(?? zln(t—l-\/tz—Cz).]

Consider the functional
/2
Tl = [ 10 + 002 + 2000

and the boundary conditions

z(0)=y(0) =0 and z(nr/2)=y(r/2)=1.

[Hint:

(a) Find the Euler-Lagrange equations for the functional.

(b) Find all extremals.

(c¢) Find a global minimum, if it exists, or show it does not exist.
(d) Find a global maximum, if it exists, or show it does not exist.

Consider the problem of finding a C! curve that minimizes

1
/0 [/ (0))? - 1]t

subject to the conditions that y(0) = y(1) = 0 and
1
| o=,
0

(a) Remove the integral constraint by incorporating a Lagrange multiplier, and find the
FEuler equations.

(b) Find all extremals to this problem.

(c¢) Find the solution to the problem.

(d) Use your result to find the best constant C' in the inequality
yllz20,1) < CllY'lI2(0,1)

for functions that satisfy y(0) = y(1) = 0.
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27.

28.

29.

30.

8. DIFFERENTIAL CALCULUS IN BANACH SPACES AND THE CALCULUS OF VARIATIONS
Find the C? curve y(t) that minimizes the functional
1
| 6@y + w2 a
0

subject to the endpoint constraints
y(0) =0 and y(1)=1

/Oly(t)dt:O.

Find the form of the curve in the plane (not the curve itself), of minimal length, joining
(0,0) to (1,0) such that the area bounded by the curve, the z and y axes, and the line z = 1
has area 7/8.

and the constraint

Solve the constrained Brachistochrone problem: In a vertical plane, find a C'-curve joining
(0,0) to (b,3), b and 8 positive and given, such that if the curve represents a track along
which a particle slides without friction under the influence of a constant gravitational force
of magnitude g, the time of travel is minimal. Note that this travel time is given by the
functinal

@2

29(8 — y(z))

Consider a stream between the lines x = 0 and x = 1, with speed v(x) in the y-direction. A

boat leaves the shore at (0,0) and travels with constant speed ¢ > 0. The problem is to find
the path y(x) of minimal crossing time, where the terminal point (1, 3) is unspecified.

X .

(a) Find conditions on y so that it satisfies the Euler-Lagrange constraint. Hint: the crossing

time is .
2(1 N2\ — 2 o/
t:/ VAEL+ (Y)?) —v o
0

2 _ 12
(b) What free endpoint constraint (transversality condition) is required?

(c) If v is constant, find y.
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