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ABSTRACT

We describe planetesimal accretion calculations in the Kuiper Belt. Our evolution code simulates plan-
etesimal growth in a single annulus and includes velocity evolution but not fragmentation. Test results
match analytic solutions and duplicate previous simulations at 1 AU. In the Kuiper Belt, simulations
without velocity evolution produce a single runaway body with a radius r; = 1000 km on a timescale
7, oc My ef, where M, is the initial mass in the annulus, e, is the initial eccentricity of the planetesimals,
and x ~ 1-2. Runaway growth occurs in 100 Myr for M, ~ 10Mg and ¢, ~ 1073 in a 6 AU annulus
centered at 35 AU. This mass is close to the amount of dusty material expected in a minimum-mass
solar nebula extrapolated into the Kuiper Belt. Simulations with velocity evolution produce runaway
growth on a wide range of timescales. Dynamical friction and viscous stirring increase particle velocities
in models with large (8 km radius) initial bodies. This velocity increase delays runaway growth by a
factor of 2 compared with models without velocity evolution. In contrast, collisional damping dominates
over dynamical friction and viscous stirring in models with small (80-800 m) initial bodies. Collisional
damping decreases the timescale to runaway growth by factors of 4-10 relative to constant-velocity cal-
culations. Simulations with minimum-mass solar nebulae, M, ~ 10M, and small eccentricities, e ~ 103,
reach runaway growth on timescales of 20-40 Myr with 80 m initial bodies, 50-100 Myr with 800 m
bodies, and 75-250 Myr for 8 km initial bodies. These growth times vary linearly with the mass of the
annulus, 7, oc M 1, but are less sensitive to the initial eccentricity than constant-velocity models. In both
sets of models, the timescales to produce 1000+ km objects are comparable to estimated formation
timescales for Neptune. Thus, Pluto-sized objects can form in the outer solar system in parallel with the

condensation of the outermost large planets.
Key words: Kuiper belt objects

1. INTRODUCTION

Current models for planetary formation involve aggre-
gation of solid planetesimals and gas accretion in a circum-
stellar disk (e.g., Hayashi, Nakazawa, & Nakagawa 1985;
Boss 1993; references therein). Large dust grains within the
disk first settle to the midplane. These grains may then
coagulate into successively larger grains (see, e.g.,
Weidenschilling 1980; Weidenschilling & Cuzzi 1985) or
continue to settle in a very thin layer that eventually
becomes gravitationally unstable (see, e.g., Goldreich &
Ward 1973). Both paths produce kilometer-sized planetesi-
mals that collide and merge to produce large bodies such as
planets. Despite the complex and sometimes unknown
physics, many simulations produce objects resembling
known planets on timescales roughly comparable to the
expected lifetime of the protosolar nebula (e.g., Safronov
1969; Greenberg et al. 1978, 1984; Nakagawa et al. 1983;
Wetherill & Stewart 1989, 1993; Spaute et al. 1991,
Kolvoord & Greenberg 1992; Weidenschilling & Davis
1992; Pollack et al. 1996).

Recent observations of slow-moving objects in the outer
solar system offer a new challenge to planetary formation
models. The trans-Neptunian region is now known to
contain several dozen Kuiper Belt objects (KBOs) with esti-
mated radii of 100-300 km (Jewitt, Luu, & Chen 1996). The
orbits of known KBOs suggest a division into at least three
dynamical components with an inner radius of 30 AU and
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an unknown outer radius: (1) the classical KBOs, objects
with roughly circular orbits, (2) the resonant KBOs, objects
in orbital resonance with Neptune (Jewitt et al. 1996), and
(3) the scattered KBOs, objects with large, eccentric orbits
(Luu et al. 1997). Although the known population is still
small, Jewitt et al. (1996) estimate that the region between
30 and 50 AU contains = 70,000 objects larger than 100 km.
The total mass in the classical Kuiper Belt is thus at least
0.1My. This mass probably represents a small fraction of
the initial mass, because dynamical interactions with
Neptune reduce the number of KBOs on short timescales
compared with the age of the solar system (Levison &
Duncan 1993; Malhotra 1996).

Despite these new observations, the origin of KBOs
remains uncertain. Edgeworth (1949) and Kuiper (1951)
first suggested that the Kuiper Belt was a natural extension
of the original solar nebula. Holman & Wisdom (1993) later
showed that small KBOs, once formed, can survive at
30-50 AU for times approaching the age of the solar
system. More recent dynamical studies confirm this conclu-
sion and explain the observed distribution of KBOs in a
general way (Levison & Duncan 1993). The formation
process and timescale for KBOs, however, is still controver-
sial. Planetesimal simulations for plausible protosolar
nebulae at 25-30 AU show that Neptune can grow to its
present size in 10-100 Myr (Fernandez & Ip 1981, 1984; Ip
1989; Pollack et al. 1996). These results suggest that Pluto
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might form on a similar timescale at ~40 AU, because
growth times are not a steep function of semimajor axis (see
Aarseth, Lin, & Palmer 1993; Pollack et al. 1996; references
therein). Nevertheless, Stern (1995, 1996) and Stern &
Colwell (1997a, 1997b) conclude that KBO formation
requires 100-1000 Myr for the conditions expected in the
outer solar system. These limits far exceed the timescale
required to produce Neptune, whose accretion time is con-
strained by the 10-100 Myr lifetime of the protosolar
nebula (see Pollack et al. 1996 and references therein).

In this paper, we attempt to resolve the uncertainties
surrounding KBO production with a new planetesimal
simulation at 35 AU. We have developed an evolution code
to follow the growth and velocity evolution of planetesimals
with a wide range of initial masses. The code matches
analytic models and duplicates Wetherill & Stewart’s (1993,
hereafter WS93) simulation of planetesimal evolution at
1 AU. Our numerical results demonstrate that small bodies
with initial radii of 80 m to 8 km can produce 1000+ km
objects on timescales of 10-100 Myr. We confirm these
calculations with a simple analytic estimate of the growth
time as a function of semimajor axis. This analysis supports
previous estimates of a short growth phase for Neptune,
10-100 Myr, and indicates that Pluto-Charon can form just
outside the current orbit of Neptune on a similar timescale.

We outline the accretion model in § 2, describe our calcu-
lations in § 3, and conclude with a discussion and summary
in § 4. The Appendix contains a complete description of the
algorithms and detailed comparisons with analytic models.

2. ACCRETION MODEL

For our simulations of accretion in the Kuiper Belt, we
adopt Safronov’s (1969) particle-in-a-box method, in which
planetesimals are treated as a statistical ensemble of masses
with a distribution of horizontal and vertical velocities
about a Keplerian orbit. Our simulations begin with a dif-
ferential mass distribution, n(m;), in a single accumulation
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zone centered at a heliocentric distance a, with an inner
radius at a — 1Aa and an outer radius at a + 1Aa. We
approximate the continuous distribution of particle masses
with discrete batches having particle populations nf) and
total masses M(t) (WS93). The average mass of a batch,
my(t) = M (t)/n{t), changes with time as collisions add and
remove bodies from the batch. This procedure naturally
conserves mass and allows a coarser grid than simulations
with fixed mass bins (Wetherill 1990 and references therein;
WS93).

To evolve the mass and velocity distributions in time, we
solve the coagulation and energy conservation equations
for an ensemble of objects with masses ranging from ~ 102
to ~10%% g. The Appendix describes our model in detail
and compares our numerical results with analytic solutions
for standard test cases. We adopt analytic cross sections to
derive collision rates and compute velocity changes from
gas drag and collective interactions such as dynamical fric-
tion and viscous stirring. Our initial approach to this
problem ignores fragmentation, which we will consider in a
later paper. In this study, we focus on developing a good
understanding of planetesimal growth as a function of
initial conditions in the Kuiper Belt.

To test our numerical procedures in detail, we attempt to
duplicate WS93’s simulations of planetary embryo forma-
tion at 1 AU. WS93 (see also Wetherill & Stewart 1989;
Barge & Pellat 1990, 1991, 1993; Spaute et al. 1991; Aarseth
et al. 1993) demonstrated that an ensemble of 8 km objects
can produce 10?¢ g (Moon sized) objects on a 10° yr time-
scale. WS93’s model begins with 8.33 x 10® planetesimals
having radii of 8 km and a velocity dispersion of 4.7 m s~ ?
relative to a Keplerian orbit (Table 1; see also Table 1 of
WS93). Tables 2 and 3 summarize our results using the
WS93 initial conditions with mass-spacing factors of § =
m;, /m; = 1.25 and 1.4 between successive mass batches
and two different analytic cross sections. Figure 1 shows our
reproduction of the WS93 results without fragmentation for

TABLE 1
BAsIC MODEL PARAMETERS

Parameter Symbol 1 AU Models 35 AU Models
Width of annulus (AU) .............. da 0.17 6
Initial velocity (m ™) ............... % 4.7 4.5-45
Particle mass density (g cm ™ 3)...... Po 3 1.5
Relative gas velocity (m s~ 1)........ n 60 30
Time step (YI) «veeevvveernneeennnnennn. ot 0.5 5-250
Number of mass bins ................ N 100-150 64-128
Mass spacing of bins................. o <120 1.40
TABLE 2
MobDEL RESULTS AT 1 AU
6=125 0 =140
Tive F'max M(F 1ra) T max (T 1)
(yr) (k) (kg) N(rpme)  (km) (kg) (L)
5.0 x 10%...... 19.8 9.7 x 10° 3 20.9 1.2 x 10%° 1
1.0 x 10%...... 513.3 1.7 x 10*4 3 4923 1.5 x 10%4 1
2.5 x 10*...... 1167.3 2.0 x 10%° 1 1203.0 22 x 10%° 1
5.0 x 10%...... 1540.8 4.6 x 10%° 3 1515.7 44 x 10%° 1
1.0 x 10°...... 1890.8 8.5 x 10%° 2 1746.7 6.7 x 10*° 3
1.5 x 10%...... 1948.3 9.3 x 10%° 5 2382.7 1.7 x 10%¢ 1

Note.—These results are for the Wetherill & Stewart 1993 prescription of gravitational
focusing, eqgs. (A12)+(A14), as summarized in the main text.
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TABLE 3
MoDEL RESULTS AT 1 AU

Vol. 115

5=125 5 =140

Tve Tinax M 1ra) Timax M7 1)

(1) km) (kg) N tyar) km) (kg) N suar)
50 x 10%...... 198 9.7 x 10*° 3 209 12 x 10%° 1
1.0 x 10*...... 5508 2.1 x 10** 2 4923 1.5 x 10* 1
25 x 10%...... 11675 2.0 x 10%° 1 12230 23 x 10** 1
50 x 10%...... 14586 3.9 x 10%° 4 17350 6.6 x 10*° 2
1.0 x 10°...... 19690 9.6 x 102° 1 21748 1.3 x 10%¢ 1
1.5 x10°...... 21210 12 x 10%° 1 23350 1.7 x 10%° 1

Note.—These results are for an adaptation of the Spaute et al. 1991 prescription of

gravitational focusing, eq. (A16), as summarized in the main text.

0 = 1.25. This simulation produces 14 objects of mass (3—
9) x 10?5 gin 1.5 x 103 yr, which agrees with the results in
WS93 (see their Fig. 12). Our simulation confirms the broad
“plateau” in the cumulative number, N, at logm; = 24-26
and the rough power-law dependence, N, oc m; !, at log
m; = 21-23. The broad plateau extends across a smaller
mass range and becomes more rounded as ¢ increases (Fig.
2). The maximum planetesimal mass, m,,,,, at the conclu-
sion of the calculation depends on both 6 and the cross
sections. We find marginally larger m_,, for the Spaute et al.
(1991) cross sections. In general, m,,, increases as o
increases.

The evolution of particle velocities in our simulations
agrees with the WS93 results (Fig. 1b). All of the velocities
increase monotonically with time as a result of viscous stir-
ring. The velocities of the larger bodies increase very slowly,
because dynamical friction transfers their kinetic energy to
the smaller bodies. The simulation maintains a nearly con-
stant ratio of vertical to horizontal velocity, v;/h; ~ 0.53, for
all but the most massive bodies, which have v;/h; < 0.5. The

max

1010 | IR I IR B [ DAL DA | T"_‘—"”%

1 AU, 8=1.25
no fragmentation

10®

10°

10*

Cumulative Number of Bodies

10?

PETTY TR |

1 027

| ETTen - | T -

10% 10%

Mass [g]
FiG. la

equilibrium ratio of v;/h; yields {i)/<e> ~ 0.6, in agreement
with Barge & Pellat (1990, 1991; see also Hornung, Pellat,
& Barge 1985). At the conclusion of the simulation, our
velocities for small bodies, h; ~ 500 m s~ ! at m; ~ 10'° g,
are roughly 50% higher than those of WS93. Our velocities
for large bodies, h; ~ 10 m s~ ! at m; ~ 10%° g, are roughly
50% lower than those of WS93. We also fail to reproduce
WS93’s abrupt drop in k; at log m; = 24. However, these
differences—which are independent of 6—have a negligible
effect on the final mass distribution and probably result
from slightly different algorithms for low-velocity collisions.

Gas drag is included in our simulations but has a negligi-
ble impact on the evolution. All of the 1 AU models lose
~0.01% of their initial mass over 1.5 x 10> yr. Velocity
changes due to gas drag are essentially zero because the
particle masses are so large.

To understand the sensitivity of these results to initial
conditions, we consider the growth time of planetesimals
from the coagulation equation (eq. [A3]). For most cases of
interest, the growth time for bodies with m; is approximately
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Fi6. 1.—Results at 1 AU for M, = 0.667M and & = 1.25. (a) Cumulative mass distribution at selected times. The “ runaway plateau” forms at ~2 x 10*
yr; it includes 17% of the total mass at 5 x 10* yr, 18% of the total mass at 10° yr, and 22% at 1.5 x 10° yr. (b) Horizontal velocity distribution. Viscous
stirring increases all velocities with time; dynamical friction brakes the runaway bodies and increases the velocities of the lowest mass bodies.
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Fi1G. 2—Results at 1 AU for § = 1.4. The runaway plateau is more poorly resolved as the mass spacing increases. (@) Cumulative mass distribution at
selected times. The “runaway plateau” includes 12% of the total mass at 5 x 10* yr; this component comprises 18% of the total mass at 10° yr and 22% at
1.5 x 10° yr. (b) Horizontal velocity distribution. The horizontal velocities of low-mass objects are 5% larger with § = 1.4 than with § = 1.25. Higher mass
bodies have velocities 2-3 times larger than comparable masses in 6 = 1.25 simulations.

T & no/(dn/dt) oc HaAa/n; VF (r; + r)?, where n; is the
number of lower mass bodies, V is the relative velocity, F, is
the gravitational focusing factor, r; and r; are the radii of
particles i and j, and H is the vertical scale height. Collisions
between low-mass objects are in the high-velocity regime,
where the gravitational focusing factor is F, ~ 1 and 7 oc
a**Aan; '(r; + r;)” > This growth time is independent of the
initial e and i. Gravitational focusing becomes effective in
low-velocity collisions of massive objects; the growth time
then depends on the initial velocity and is 7 oc a**Aan; \(r;
+ r)”'V>. The extreme sensitivity of the growth time to
velocity is the reason low-velocity planetesimals experience
runaway growth in our 1 AU simulations (Wetherill &
Stewart 1989; Ida & Makino 1992a, 1992b; Kokubo & Ida
1996; see also WS93 and references therein). We adopt 1000
km as a useful reference radius and write the time for 8 km
objects to produce 1000 km objects at 1 AU as

a \5? Aa o 1/3
t¥%\1au) \017AaU)\3gem 3

Vo  \(6x10°7 g
8 <450 cm s‘1> ( M, @)

(see also Barge & Pellat 1990). Using our simulations with
¢ = 1.4, we derive the proportionality constant for this stan-
dard case with velocity evolution, 7, , = 10,700 yr, and for a
model with no velocity evolution, 7, ,, = 3750 yr. Addi-
tional simulations confirm the mass, velocity, and volume
dependence of this relation for factor of 2 variations in a,
Aa, py, V,, and M, about the values in equation (1) (see also
Aarseth et al. 1993; Pollack et al. 1996).

3. KUIPER BELT CALCULATIONS

3.1. Starting Conditions
To choose appropriate constraints on planetesimal simu-

lations in the outer solar system, we rely on observations of
other stellar systems and models of the protosolar nebula.
First, current data indicate lifetimes of ~5-10 Myr for
typical gaseous disks surrounding nearby pre-main-
sequence stars and for the solar nebula (Sargent & Beckwith
1993; Strom, Edwards, & Skrutskie 1993; Russell et al.
1996). We adopt this estimate as a rough lower limit to the
formation timescale of KBOs and assume that interactions
between gas and planetesimals disappear on a similar time-
scale, 7, ~ 10 Myr (see Appendix, eq. [A25]). Neptune for-
mation places an upper limit on the KBO growth time,
because Neptune excites KBOs through gravitational per-
turbations. Recent calculations suggest that Neptune can
form in 5-100 Myr (Ip 1989; Lissauer & Stewart 1993;
Lissauer et al. 1995). Once formed, Neptune inhibits KBO
formation at 30-40 AU by increasing particle random
velocities on timescales of 20-100 Myr (Holman & Wisdom
1993; Duncan, Levison, & Budd 1995). We thus adopt 100
Myr as a rough upper limit to the KBO formation timescale
at 30-40 AU.

We assume a wide range of starting conditions for KBO
simulations. Our model annulus is centered outside the
orbit of Neptune at 35 AU and has a width of 6 AU. This
annulus can accommodate at least 10-100 isolated bodies!
with m; = 1024 g for e < 0.01. The simulations begin with
N, bodies of radius r,, with r, = 80 m, 800 m, and 8 km.
These bodies have small initial eccentricities, e ~ 1073 to
10~ 2 (Malhotra 1995), and an equilibrium ratio of inclina-
tion to eccentricity, f = {i)/{e)> = 0.6 (Barge & Pellat 1990,
1991, 1993). The mass density of each body is fixed at 1.5 g
cm™3. To set N,, we extend the minimum-mass solar

1 “Isolated bodies” are planetesimals that cannot collide with one
another, as defined in the Appendix following eq. (A4)
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nebula to the Kuiper Belt and integrate the surface density
distribution for solid particles, T = X(a/a,) />, across the
6 AU annulus. The dust mass is then M,,;, ~ 0.25X, My at
32-38 AU (a, = 1 AU). Most minimum-mass solar nebula
models have X, =30-60 g cm~2, which sets M_, ~
(7-15)My (Weidenschilling 1977; Hayashi 1981; Bailey
1994). We thus consider models with initial masses of M, =
(1-100)M¢;, to allow for additional uncertainty in X,. Table
1 compares input parameters for all Kuiper Belt models
with initial conditions at 1 AU (see also WS93). Tables 4
and 5 summarize other initial conditions and results for the
Kuiper Belt simulations summarized below.

Our success criteria are based on direct observations of
KBOs. The present-day Kuiper Belt contains at least 70,000
objects with diameters exceeding 100 km at 30-50 AU
(Jewitt & Luu 1995; Jewitt et al. 1996). This population is
some fraction of the initial Kuiper Belt population, because
Neptune has eroded the Kuiper Belt over time (Holman &
Wisdom 1993; Duncan et al. 1995). Thus, a successful KBO
simulation must achieve rs = 50 km in < 100 Myr, where
rs is the radius at which the cumulative number of objects
N, exceeds 10°. Pluto formation is our second success cri-
terion: plausible models must produce one or more objects
with maximum radius r,,, > 1000 km. In models with
velocity evolution, we end simulations at 100-200 Myr or
when r,,,,, exceeds ~1000 km. To evaluate the dependence
of runaway growth on the initial conditions, we extend

KENYON & LUU
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simulations without velocity evolution to 5000 Myr or to
whenr,,, exceeds ~2000 km.

max

3.2. Models without Velocity Evolution

To isolate important processes in trans-Neptunian plan-
etesimal evolution, we begin with constant-velocity solu-
tions to the coagulation equation. We ignore fragmentation
and fix the velocities for all masses at h; = 4.0e;,;, km s~ 1
and v; = 3.6 sin i,,;, km s~ 1. The initial eccentricity and
inclination are set at i,,;, = 0.60e,,,,. The total mass and
kinetic energy remain constant throughout the calculation.
We also adopt a coarse mass-spacing factor, 6 = 1.4. This
choice limits our ability to follow runaway growth with
high accuracy during the late stages of the simulation but
allows us to investigate a wide range of initial masses and
velocities with a modest investment of computer time.
Finally, we adopt simple formulae for gravitational focusing
to speed our calculations (see eq. [A16]; Spaute et al. 1991).
Table 4 summarizes the initial conditions and results for
models with M, = (1-100)M and e, ;,, = 103 and 10~ 2.

Figure 3 shows how N evolves with time for a model
with an initial planetesimal radius r, = 8 km, total mass
M, =10Mg, and e, = 107 3. This model begins with
1.87 x 10'° initial bodies and produces ~42,500 objects
with twice the initial mass after t = 100 yr. Roughly half the
original population experiences at least one collision by
7 ~ 16 Myr, when the 17 largest bodies have m; ~ 10%° g.

TABLE 4
MobDEL RESULTS AT 100 Myr (No FRAGMENTATION, NO VELOCITY EVOLUTION)

M, Tgs9, rs T max T

(Mp) No (km)  (km) km) N(tm) — (Myr)
e=10"3r, =80 m:

1........ 1.87 x 103 0.5 0.6 0.9 1 2698

3 5.61 x 10'° 11 1.5 22 1 902

10....... 1.87 x 10'¢ 3.9 54 6.7 1925 270

30....... 5.61 x 10° 8500 1 90

100...... 1.87 x 107 18500 1 27
e=10"3,r, =800 m:

1........ 1.87 x 1012 14 22 2.7 1 2340

3 5.61 x 102 22 3.0 42 4 780

10....... 1.87 x 103 5.5 8.5 10.7 341 234

30....... 5.61 x 103 18000 2 78

100...... 1.87 x 10'# 16700 1 23.5
e=10"3, r, = 8000 m:

1........ 1.87 x 10° 13.3 16.9 20.7 140 753

3. 5.61 x 10° 19.2 26.8 36.7 91 250

10....... 1.87 x 101° 7585 5 75

30....... 5.61 x 10'° 9800 1 25

100...... 1.87 x 10! 8700 2 7.5
e=10"2r, =80 m:

1........ 1.87 x 10*? 0.5 0.6 0.9 1

3. 5.61 x 10*° 11 1.5 19 634

10....... 1.87 x 101° 3.1 4.8 6.0 28 2552

30....... 5.61 x 10'¢ 9.6 13.2 16.4 323 850

100...... 1.87 x 107 33.6 46.5 63.5 5 255
e=10"2r, =800 m:

1. 1.87 x 10'? 14 22 24 3195

3. 5.61 x 102 22 31 3.8 75

10....... 1.87 x 1013 44 6.8 74 2018 2521

30....... 5.61 x 103 10.8 14.8 18.4 387 840

100...... 1.87 x 104 37.6 51.8 65.0 70 251
e=10"2r, = 8000 m:

1. 1.87 x 10° 10.1 11.6 16.1 1

3. 5.61 x 10° 11.7 149 18.5 8

10....... 1.87 x 10*° 134 18.5 233 298 2146

30....... 5.61 x 10'° 21.2 29.3 39.9 1 716

100...... 1.87 x 10! 59.2 81.9 104.2 18 215




No. 5, 1998

ACCRETION IN THE EARLY KUIPER BELT. 1L 2141

TABLE 5
MopEL ResULTS (VELOCITY EVOLUTION, NO FRAGMENTATION)

Ts T'max T
(km)  (km)  N(p) — (Myr)

M, Tgs50,
Mg) N, (km)
e=10"3r, =80 m:
1....... 1.87 x 10*° 0.5
2. 3.74 x 10*5 2.6
3. 5.61 x 1013 2.7
6....... 1.12 x 10'¢ 2.9
10...... 1.87 x 101¢ 2.6
17...... 3.18 x 10 24
30...... 5.61 x 106 2.7
e=10"3r, =800 m:
1....... 1.87 x 1012 14
2. 3.74 x 10*2 2.0
3. 5.61 x 102 2.8
6....... 1.12 x 1013 11.2
10...... 1.87 x 1013 10.6
17...... 3.18 x 103 10.6
30...... 5.61 x 103 10.6
e=10"3, r, = 8000 m:
1....... 1.87 x 10° 11.7
2. 3.74 x 10° 15.3
3. 5.61 x 10° 173
6....... 1.12 x 10t° 27.3
10...... 1.87 x 101° 43.4
17...... 3.18 x 10t° 48.8
30...... 5.61 x 10t° 51.7
e=10"2r,=80 m:
1....... 1.87 x 1013 0.4
2. 3.74 x 10'° 0.7
3. 5.61 x 10'° 1.0
6....... 1.12 x 10t¢ 5.8
10...... 1.87 x 10t¢ 6.3
17...... 3.18 x 10! 6.4
30...... 5.61 x 101 6.4
e=1072r, = 800 m:
1....... 1.87 x 102 14
2. 3.74 x 1012 1.8
3. 5.61 x 10'2 22
6....... 1.12 x 103 3.1
10...... 1.87 x 1013 44
17...... 3.18 x 10*3 139
30...... 5.61 x 10*3 234
e=10"2r, = 8000 m:
1....... 1.87 x 10° 10.1
2. 3.74 x 10° 10.1
3. 5.61 x 10° 11.7
6....... 1.12 x 10'° 13.2
10...... 1.87 x 10*° 134
17...... 3.18 x 101° 17.0
30...... 5.61 x 10%° 28.3

0.8 0.9 6
304 126.1 2 .
33.8 603.4 1 184
44.1 1072.6 1 67
54.1 1000.5 1 32
55.7 1008.5 1 18
74.4 1059.2 1 10
2.3 2.7 9
32 3.7 24
5.4 6.8 1
473 456.9 1 155
51.4 1007.8 1 83
68.2 1022.7 1 46
90.7 1000.3 2 25
17.9 239 8
24.1 327 7
30.6 46.0 4
57.1 123.0 1
90.6 462.4 1 132
101.2 1050.0 1 76
114.2 1017.7 2 44
0.6 0.8 762
12 14 39
1.8 19 1103
46.6 294.7 1 126
60.4 1004.1 1 76
70.0 1002.2 2 43
822 1070.2 1 24
22 2.7 2
2.8 34 2
33 3.8 48
4.9 6.0 1
7.3 8.4 78 .
43.0 74.1 4 130
90.8 1000.5 2 73
13.0 16.3 6
14.3 16.4 303
15.3 18.3 11
17.8 20.7 68
20.8 26.1 2
259 31.0 46 e
45.8 62.3 6 167

Slow growth continues until T &~ 59 Myr, when the three
largest objects have sizes comparable to large KBOs, r; ~
100 km and m; ~ 10*? g. The growth rate of the large
masses then increases considerably because of gravitational
focusing. Runaway growth ensues. The cumulative mass
distribution then follows a power law, N oc r; 27, at low
masses and develops a high-mass shoulder that extends to
larger and larger masses as the simulation proceeds. This
shoulder resembles the runaway plateau observed in 1 AU
models but does not evolve into a true plateau with N ~
const as in Figures 1 and 2. The largest planetesimals reach
T'max = 200 km at T =~ 66 Myr; r,,,, exceeds 1000 km only 9
Myr later. A single runaway body with r,,, ~ 4000 km
begins to sweep up lower mass planetesimals at t ~ 80
Myr; by T ~ 85 Myr, it contains essentially all of the mass
in the annulus.

Simulations with r, = 8 km produce runaway growth
independent of the initial mass in the annulus. Figure 4a

indicates that each model experiences a long, linear growth
phase until r,, ~ 100200 km. The largest objects then
begin a short rapid-growth phase that produces several iso-
lated, runaway bodies with r,,,, ~ 1000 km. These runaway
bodies accumulate all of the lower mass bodies and may
merge to form a single runaway body if the isolation cri-
terion permits. The time to produce runaway bodies with
r; = 1000 km scales with the mass in the annulus, 7, &
753(M,/Mg)~ ' Myr. For comparison, our scaling relation
in equation (1) predicts 7, ~ 775(M/Mg)~! Myr for p, =
1.5gcm™?ina 6 AU annulus centered at 35 AU.

Runaway growth also occurs independently of the initial
radius, r, (Figs. 4a—4c). Because of smaller initial cross sec-
tions, models with r, = 80-800 m take longer to reach the
rapid-growth phase. These models make the transition from
rapid growth to runaway growth more quickly, because it is
easier for 100+ km objects to sweep up small objects with
r < 1 km. In all cases, a single runaway body with r > 1000
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to sizes of 10° km to 10* km in 20-30 Myr.

km eventually accumulates all of the mass in each simula-
tion, although the timescale is quite long, 7, ~ 2700 Myr,
for simulations with M, = My and r, = 80 m. Again, the
runaway growth time scales with mass: 7, %
2340(M,/Mg)~* Myr for r,=800 m and 1, %
2700(M /M)~ ! Myr for r, = 80 m. The small increase in ,
with initial radius for r, < 800 m suggests that models with
ro <80 m will reach runaway growth on timescales of
~3000 Myr, which is ~40 times slower than models with
ro = 8 km.

Our results also confirm the velocity dependence derived
in equation (1). Low-eccentricity simulations with 50%
smaller initial velocities reach runaway growth in 25% of
the time for our standard model; simulations with twice the
initial velocity require 4 times as long to achieve runaway
growth. This simple relation begins to break down as the
eccentricity increases to e ~ 10”2, as outlined below. The
runaway time also scales with the width of the annulus, Aaq,
and the semimajor axis, a, as indicated in equation (1).

High-eccentricity models also achieve runaway growth
but do not follow precisely the velocity scaling in equation
(1). Figure 5 shows the radius evolution for models with
different r, and m, for e = 10”2 (see also Table 4). The
growth time for 1000+ km objects is 7, ~ 20-25(M o/Mg) ~*
Gyr, nearly independent of the initial radius and velocity.
This relation contrasts with the low-eccentricity results,
where the growth time is very sensitive to the initial condi-
tions. In all our simulations, planetesimal growth is orderly
until gravitational focusing becomes important and
runaway growth occurs. However, the radius where gravita-
tional focusing becomes important increases from r; ~ 10
km at e = 1073 to r; ~ 100 km at e = 10~ 2. For models
with small initial bodies, r, < 800 m, the timescale to reach
runaway growth is directly proportional to e. For models
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with large initial eccentricity, the long orderly phase also
“erases” memory of the initial radius. Thus, 7, is nearly
independent of r, for large e. The relatively short orderly
growth phase of low-e models does not erase memory of r;
7, decreases with increasing r, for e, ;, < 0.05. For models
with r, ~ 8 km, gravitational focusing accelerates growth
immediately at low e. These simulations do not have an
orderly growth phase; instead, they follow the 1 AU simula-
tions and satisfy the scaling relation in equation (1).

Before we consider Kuiper Belt simulations with velocity
evolution, our basic result that constant-velocity models
achieve runaway growth deserves some comment. First,
previous simulations at 1 AU show that runaway growth
requires dynamical friction to decrease the velocities of the
largest bodies to the regime where gravitational focusing
becomes important (Wetherill & Stewart 1989, 1993; Barge
& Pellat 1990, 1991 ; Ida 1990; Ida & Makino 1992a, 1992b;
Ohtsuki 1992; Kokubo & Ida 1996). In Kuiper Belt models
with e, ;, = 1073, gravitational focusing factors become
very large at planetesimal masses of 1023 to 102* g. Further
growth of these bodies only enhances gravitational focus-
ing, because the escape velocity increases while the impact
velocities remain low. More massive objects thus “run
away” from their lower mass counterparts. This response
occurs in any constant-velocity simulation as long as bodies
can reach masses at which the escape velocity is large com-
pared with the relative impact velocity, V, ;;/V;; > 1. Models
with e;,;, = 0.1 never reach this limit for plausible M, and
thus do not experience runaway growth. Models with
e S 0.05 always produce runaway bodies, albeit at much
later stages than models with e ;, ~ 10~ 3 (Fig. 5).

Our final comment on runaway growth concerns the
shape of the cumulative number distribution near the end of
the simulation. During runaway growth, models at 1 AU
develop a plateau in the cumulative number distribution
that extends from m; = 1023 g to m; = 1025-102° g (see Figs.
1 and 2). This plateau separates runaway bodies from the
lower mass objects, which are in the orderly growth regime
and have a power-law size distribution, N, ocr; ® for
log m; = 21-24 (WS93; see Figs. 1-2). The Kuiper Belt
simulations also produce a power-law size distribution,
Ncocr7 27 for m; < 10?5 g, but they develop a high-mass
“shoulder ” instead of a marked plateau at runaway growth
(see Fig. 3). To test whether this feature is a function of the
mass resolution as in 1 AU models, we simulated evolution
at 35 AU with 6 = 1.1 and 1.25 for M, = 10M¢ and r, = 8
km. As the mass resolution in the simulation increases from
0 = 1.4 to 6 = 1.1, the high-mass shoulder follows a very
shallow power law, N.ocr; 17 (Fig. 6). This power law
becomes better defined as the mass resolution increases
further, but it never develops into the “runaway plateau”
produced in the 1 AU models (Figs. 1-2). This result sug-
gests that the broad plateau in 1 AU models is the result of
velocity evolution, which reduces the velocity of the most
massive objects and enhances gravitational focusing
(WS93). We will now test this hypothesis by considering
Kuiper Belt models with velocity evolution.

3.3. Models with Velocity Evolution

To understand the importance of velocity evolution in
the Kuiper Belt, we add several physical processes to the
calculation: (1) gas drag, (2) dynamical friction and viscous
stirring from long-range (elastic) collisions, and (3) dynami-
cal friction and viscous stirring from short-range (inelastic)
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and 7, ~ 2700 Myr for r, = 80 m.

collisions. As in our constant-velocity models, we begin
with N, bodies at radii r, = 80 m, 800 m, and 8 km. We
adopt 0 = 1.4 for the mass-spacing factor and use our
simple expression for gravitational focusing, equation (A16).
The initial velocities are h; = 4.0(e;,;,/10"*) m s~ ! and v; =
2.1(e;/10 ) m s~ . The eccentricity and inclination evolve
separately as a result of collisions and collective interactions
(see Appendix, § A3). Table 5 summarizes the initial condi-
tions and results for models with M, = (1-30)M and
inie = 1073t0 1072,

Before describing the results of our simulations, it is
useful to compare various timescales for velocity evolution

at 35 AU. First, gas drag is negligible in models that ignore
fragmentation. A typical simulation at 35 AU loses
~107° % of its total mass as a result of gas drag in
100 Myr. Velocity changes due to gas drag are also insignifi-
cant; the timescale for gas drag to modify the velocity
exceeds 10 Gyr for all masses in our simulation.

Velocity changes due to elastic and inelastic collisions,
however, are significant. Figure 7a compares timescales,
7,.» = h;/(dh;/dt), for horizontal velocity evolution as a func-
tion of particle mass at 35 AU. The two curves show 7, ;, for
interactions between particles of the same mass with a

power-law size distribution, N.ocr~ 27, and constant
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velocity. These timescales are not integrated over the size
distribution and are relevant only when a simulation has a
small range of masses. Viscous stirring—which tends to
increase particle velocities—is ineffective for m; < 102 kg,
T, & 10° yr, but very effective, 7, , < 10° yr, at m; 2 10*7
kg. Collisional damping is also more effective at large
masses, but the timescale is much less mass sensitive than
viscous stirring. Collisional damping balances viscous stir-
ring for an initial particle mass m, ~ 10'> kg, which corre-
spondstor, ~ Skm.

To illustrate these points in more detail, Figures 7b and
7c plot the integrated timescales, t,,, = > = h;/(dh;/dt), for
the horizontal velocity at two stages of a model with veloc-

ity evolution. In Figure 7b, the maximum mass has m,,,, ~
1014 kg. Collisional damping still dominates viscous stirring
for the lowest masses, but the mass at which the two pro-
cesses balance has moved from m; ~ 10'° kg to m; ~
5 x 10'! kg. Once m,,,, ~ 10'° kg, viscous stirring domi-
nates collisional damping for all masses. Particle velocities
thus increase once massive objects with r; = 100 km are
produced. The timescale for viscous stirring is quite short,
<108 yr, at the lowest masses considered in our models, so
the velocity increases can be large during the 100 Myr time-
scale of a typical simulation.

Figure 8 shows how N, and h; evolve with time in a
model with r, = 8 km, M, = 10My, and e,,;, = 10~ 3. The
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simulation begins with N, = 1.87 x 10'° and produces 762
objects having 8 times the initial mass in 1 Myr. Roughly
half the initial bodies experience at least one collision by 24
Myr, when the largest object has r,,, ~ 37 km. The hori-
zontal velocities then range from i, = 1 ms~! atr; = 37 km
up to h; =7 m s~ ! at r, = 8 km. Orderly growth produces
r; = 100 km objects at 56 Myr, and this population reaches
N ~ 100 at 61 Myr. This phase continues until ~ 100 Myr,
when Charon-sized objects with r; & 500 km begin to grow
rapidly. There are 10 “Charons™ at 110 Myr, 47 at 125
Myr, 107 at 150 Myr, and 202 at 180 Myr, when we ended
the simulation. At 180 Myr, 20 Pluto-sized objects with
r; &~ 1000 km are isolated bodies about to run away from
the rest of the mass distribution.

In contrast to the constant-velocity simulations with low
;1> this model does not immediately enter a rapid-growth
phase once objects with r; & 100 km are first produced.
Viscous stirring and dynamical friction slowly increase the
velocities of low-mass bodies throughout the simulation:
the horizontal velocity increases from h;,;, =4 m s~ ! to
h; ~ 65 m s~ ! at 180 Myr (Fig. 8). This 20-fold increase in
the eccentricity reduces gravitational focusing by a factor of
400 and retards the growth of the most massive objects.
Evolution thus proceeds at a pace between the constant-
velocity simulations with e, ;, = 10 3and ¢,,;, = 1072,

The evolution for simulations with smaller initial masses
is different, because collisional damping then dominates the
velocity evolution (Fig. 7). Figure 9 shows the time evolu-
tion of N and h; for r, = 800 m, M, = 10My, and e,,;, =
1073, This simulation begins with N, = 1.87 x 10!3 and
produces five objects having 8 times the initial mass in 1
Myr. It takes only 7.7 Myr for half the initial objects to
collide at least once. The maximum radius is thenr,, ~ 2.5
km. Velocity damping from inelastic collisions overcomes
viscous stirring, so the particle velocities remain low and do
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not change significantly with mass. As evolution proceeds,
dynamical friction efficiently damps the velocities of the
largest bodies, but collisional damping still maintains
modest velocities at low masses. Bodies with r; = §-10 km
begin to form at 32-33 Myr, when only 11% of the original
objects remain. The evolution soon overtakes ther, = 8 km
model. Orderly growth produces 50 km objects at 45 Myr
and 100 km objects at 48 Myr. Runaway growth begins
shortly thereafter. Charon-sized objects form at 60 Myr and
reach Pluto size at 80-81 Myr.

Simulations with r, = 80 m reach runaway growth on
even faster timescales. Figure 10 shows the time evolution of
N and h; for M, = 10M§, and e;,;, = 10~ 3. At 1 Myr, only
43% of the initial bodies have yet to experience a collision;
33 objects already have r; ~ 270 m. The maximum radius
reaches r,,,, = 800 m in 9 Myr and r,,,, = 8 km in 17 Myr.
The low-mass bodies first lose ~50% of their initial veloc-
ity, h,, =4 m s~ ', and begin to increase in velocity at
17-18 Myr, when viscous stirring from long-range collisions
finally overcomes damping from inelastic collisions. At this
time, the high-mass bodies have low velocities as a result of
dynamical friction, #; ~ 0.01 m s~ !, and begin to grow
rapidly. A runaway plateau in the N distribution develops
at 24 Myr and extends to Charon-sized objects at 25 Myr.
At the conclusion of this simulation at 33 Myr, five Pluto-
sized objects have r; & 900-1000 km. The velocities of these
high-mass objects are then h; ~ 0.03-0.05m s~ 1.

With their long runaway growth times, models with r, =
8 km cannot meet both of our success criteria unless the
initial mass is very large, M, 2 (15-20)Mg. Viscous stirring
and dynamical friction increase the velocities of the small
objects throughout these simulations, which reduces gravi-
tational focusing and delays runaway growth compared
with models with smaller r,. The long approach to runaway
growth allows the production of many large KBOs; simula-
tions with M, =~ (6-20)M have r5 ~ 50-100 km and thus
reach our first success criterion. However, the timescale to
produce 1000+ km objects is 4-5 times longer than models
with r, = 80 m, ie., 7, & 130(M,/10Mg)~ ' Myr. Most of
these models thus fail to make Pluto on a reasonable time-
scale.

Models starting with lower mass objects, r, = 80 and 800
m, meet both success criteria. Although viscous stirring and
dynamical friction stir up the velocities of the lowest mass
objects, the timescale for the velocity to increase is large
compared with models with r, =8 km (see Fig. 7). The
ro =800 m models reach runaway growth faster than
models with r, = 8 km and produce Pluto-sized objects in
7, ~ 83(My/10My)~! Myr for e, = 1073 The com-
bination of smaller particle velocities and a shorter time to
runaway growth results in fewer KBOs compared with
models with r, = 8 km (Fig. 11). Nevertheless, these models
achieve r5 ~ 50-90 km during the runaway growth phase.

Models with r, = 80 m and e, ;, = 10~ % have the shortest
runaway growth times and produce the fewest numbers of
KBOs. The timescale to produce Pluto-sized planets is 7, ~
32(My/10Mg)~! Myr for e;,;, = 1073, which easily allows
Pluto formation in a minimum-mass solar nebula as
Neptune forms at a smaller semimajor axis. These models,
however, struggle to build a population of 10° KBOs
during the runaway growth phase. With relatively low par-
ticle velocities at all masses (see Fig. 10b), objects with r; ~
10-20 km do not grow as rapidly as larger bodies. This
evolution tends to concentrate material in the more massive
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KBOs and reduces the number of lower mass KBOs with
r; & 50-100 km. This smaller 75 in the calculations leads to
partially successful models that yield several Pluto-sized
objects and r5 < 50 km (Table 5).

At large initial eccentricity, planetesimal growth follows
the evolution of low-eccentricity models, but on longer
timescales (Fig. 12). In simulations with r, = 80 and 800 m,
there are enough small bodies for inelastic collisions to
damp the particle velocities substantially. Dynamical fric-
tion further decreases the velocities of the most massive
bodies and allows runaway growth to occur on reasonable
timescales. In simulations with r, = 80 m and e, ;, = 102,
runaway growth is delayed by a factor of ~2.5 compared

with simulations with e;,;, = 10~ 3. This delay increases to a
factor of ~3 for r, =800 m. At r, =8 km, collisional
damping initially reduces particle velocities but is overcome
by viscous stirring when r,,,, & 50 km. At this time, the
velocities are large, ¥; ~ 30 m s~ 1, and growth is slow. None
of these models reach runaway growth on a 100 Myr time-
scale. Runaway growth, if it occurs, is delayed by a factor of
~6 in large-e;,; models compared with that in low-e,;,
models.

Our results for large e;,, thus favor low-mass initial
bodies. Simulations with r, =80 m and e, = 102
produce more KBOs with r; & 50-100 km than their low-
e,y counterparts. The longer orderly growth phase and
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function of time. Collisional growth is quasi-linear until the largest bodies have r,,, = 50-100 km at 50-60 Myr. Runaway growth begins when r

= 500

max ~

km at ~ 100 Myr; these bodies then grow to sizes of 10* km in another 50-80 Myr.

somewhat larger particle velocities at the onset of runaway
growth favor the growth of 50-100 km objects. The r5 for
these mass distributions is at least a factor of 2 larger than
the r5 for low e, ;, (rs ~ 12-15 km for e;;, = 10~ ? compared
with r5 ~ 6-8 km for e;,;, = 10~ %). Models with larger r,
are less successful. For r, = 800 m, runaway growth begins
well after 100 Myr unless M, = (20-30)Mg. Runaway
growth always occurs on a very long timescale, = 150-200
Myr, forry = 8§ km and M, < 30M¢.

Unlike the constant-velocity models, simulations with
velocity evolution begin to develop a “runaway plateau” in
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F1G. 9—Same as Fig. 8, but for r, = 800 m. Collisional growth is quasi-linear for 45-50 Myr until the largest bodies have r

the cumulative mass distribution when r,,,, = 500 km (see
Figs. 8-10). In constant-velocity simulations, we found two
power-law cumulative mass distributions, N oc =27 at
low masses and N oc r~1-7% at large masses. The total mass
per mass batch is then roughly constant at low masses and
increases slowly with mass at large masses. In models with
velocity evolution, dynamical friction reduces the velocities
of the largest bodies to ¥; < 0.1 m s~ ! and maintains veloci-
ties of V; ~ 1-10 m s~ ! for smaller objects with r; < 10 km.
As noted by WS93, the increase in the escape velocity with
mass coupled with the decrease in V; produces substantial
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= 50-100 km. The

max

transition to runaway growth requires ~ 10 Myr, when Charon-sized objects form. These bodies grow to sizes of 1000 km in another 20 Myr. The velocities of
the smallest objects increase with time as a result of viscous stirring. Dynamical friction reduces the velocities of the largest objects. The velocity minimum at

3-5 km indicates the batches that contain the largest fraction of the total mass.
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= 50-100 km in 20 Myr and r,,,, = 500 km in only 25 Myr. Runaway growth
~ 1000 km after another 8 Myr. As in Fig. 9, dynamical friction and viscous stirring increase the

velocities of the smallest objects at the expense of the largest objects. Dynamical friction produces a velocity minimum in batches that contain the largest

fraction of the total mass.

increases in the collisional cross sections (see also Wetherill
& Stewart 1989; Barge & Pellat 1990, 1991, 1993; Ida &
Makino 1992a, 1992b; Ohtsuki 1992; Kokubo & Ida 1996).
In our models, the velocity distribution resembles a step
function and produces a steplike increase in the gravita-
tional focusing factors, from F,~ 10-100 at r, ~
10-100 km up to F, ~ 10* at r; ~ 300-1000 km. Runaway
growth then converts the N.ocr™ 7% mass distribution
into N =~ const, because objects with r; ~ 100-200 km
grow too slowly to fill in the power law as objects with
r; 2 500 km run away. At low masses, the size distribution
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FiG. 11.—Evolution of the maximum radius with time for models with
different initial mass (M) and initial radius (r,), for low initial eccentricity
(e = 107 3). The timescale to reach runaway growth decreases with smaller
ro and with larger M.

remains a power law, N.ocr %75, because runaway

growth does not change the size distribution significantly.
To conclude this section, Figure 13 summarizes results
for accretional evolution in the Kuiper Belt with velocity
evolution and no fragmentation. Successful simulations that
produce ~10° KBOs and a few Pluto-sized objects on time-
scales of 100 Myr or less have initial masses somewhat
larger than that predicted for a minimum-mass solar nebula
extrapolated into the Kuiper Belt, M, = 10My, and bodies
with initial radii of r, ~ 800 m to 8 km. Simulations with
smaller initial bodies, r, ~ 80 m, produce Pluto-sized

10* ‘ i
—M0=6ME, r0=80m
——M,;=30M, ,=80m
_ 0=30ME,|‘0=800m
3 - = — -
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F1G. 12—Evolution of the maximum radius as in Fig. 11, for models
with large initial eccentricity (e = 10~ 2). Models with high e require 2-4
times more mass to reach runaway growth on timescales similar to that of
low-e models.
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FiG. 13.—Summary of velocity evolution models for (@) e = 10~3 and (b) e = 10~ 2. Filled circles indicate successful simulations that produce a few
Pluto-sized objects and ~10° KBOs in <100 Myr; open circles indicate simulations that produce no “Plutos” and too few KBOs in <100 Myr; filled
circles within a larger open circle indicate partially successful simulations that produce a few Pluto-sized objects but too few KBOs in <100 Myr.

objects but too few KBOs in 100 Myr. In these partially
successful models, runaway growth removes KBOs from
the mass distribution more rapidly than they are produced
from lower mass objects. This evolution does not occur in
models with larger initial bodies, because collisional
damping is less effective at “ circularizing ” the orbits during
the orderly growth phase. The higher particle velocities in
these models allow formation of more KBOs during the
runaway growth of Charon-sized objects.

Collisional evolution often fails to produce 100+ km
objects on any useful timescale. Simulations with M, ~
(1-6)M g, produce neither Pluto-sized objects nor a substan-
tial number of 1004+ km KBOs in 100 Myr. Large initial
eccentricities exacerbate this problem for models with r, =
800 m, because collisional damping cannot reduce the parti-
cle velocities before 100+ km objects form. These simula-
tions can produce KBOs and “Plutos” on longer
timescales, 100-1000 Myr, in systems where a Neptune-
sized object does not constrain the formation time.
Extrapolating our results to smaller initial masses, simula-
tions with M, < 0.1My, fail to produce KBOs during the
age of the solar system, ~5 Gyr.

3.4. Limitations of the Models

Statistical simulations of planetesimal growth have well-
documented approximations and uncertainties. The model
assumes a homogeneous spatial distribution of planetesi-
mals whose velocities are small compared with the orbital
velocity. These assumptions are good during the early
stages of planetesimal evolution. As planetesimals grow,
dynamical friction can reduce the velocities of high-mass
objects below limits where the statistical approach is valid
(Barge & Pellat 1990). Once this limit is reached, runaway
growth produces a few large bodies that are not distributed
homogeneously in space (WS93; Kokubo & Ida 1996).
These large bodies can then pump up the velocities of the
smallest bodies on short timescales through viscous stirring
(Fig. 7). We end the simulations with velocity evolution
during the runaway growth stage when the basic assump-
tion of a homogeneous distribution of planetesimals begins
to break down. The velocities of low-mass bodies remain
small compared with the Keplerian velocity, but the most

massive objects often have velocities below the low-velocity
limit of the kinetic approximation. We will discuss this
problem below.

The remaining limitations of the statistical approach
involve our implementation of standard algorithms. We
adopt a single accumulation zone and thus cannot follow
the evolution in semimajor axis of a planetesimal swarm
(see Spaute et al. 1991). We use a coarser grid than some
simulations, but this choice has little impact on the results
at 35 AU. At 1 AU, the lag of simulations with § > 1.1
relative to a simulation with 6 = 1.1 increases with increas-
ing d; we find a 12% lag for 6 = 1.4 but only a 2%-3% lag
for 6 = 1.25. At 35 AU, the lag in runaway growth relative
to a 6 = 1.1 model increases from 4%—5% for 6 = 1.4 to
10%-15% at 6 = 2. Our 6 = 1.4 simulations thus overesti-
mate the runaway growth time only by 4%-5% (see also
Wetherill 1990; Kolvoord & Greenberg 1992). This error is
small compared with other uncertainties in the calculation.

Our choice of the initial mass distribution has a modest
impact on our results. We calculated the evolution of
several size distributions with equal mass per mass batch for
Pmin S 7; S Tmax- Simulations with r;, ~ 100-1000 m and
Tmax < @ few km are nearly indistinguishable from simula-
tions with a single starting radius, r, ~ r,,,. In these
models, collisional damping effectively reduces all particle
velocities as described above and allows runaway growth to
occur. Simulations with large r,,, ~ 8 km are similar to
those with a single starting mass, unless r_;, is small. For
T'min S 800 m, collisional damping keeps the particle veloci-
ties small compared with models with a single starting mass.
Runaway growth occurs in these models, but the timescale
to runaway is sensitive to r,;,. We plan to explore this
sensitivity in more detail when we include fragmentation in
the calculation.

The most uncertain approximation in our calculations is
the treatment of low-velocity collisions. During the late
stages of most simulations, the massive bodies have very
low velocities and very large gravitational ranges. The
velocities are often smaller than the Hill velocity, V4, which
invalidates the basic assumptions for our velocity evolution
calculations (Barge & Pellat 1990, 1991, 1993). Barge &
Pellat (1990) and WS93 have developed different approx-
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imations to low-velocity collisions based on Ida’s (1990)
N-body simulations (see also Ohtsuki 1992). We note that
these two approximations produce different velocities for
high-mass planetesimals, which we plan to examine in more
detail when we include fragmentation in our calculations.
The mass evolution of runaway bodies is not affected by our
treatment of velocity evolution in the low-velocity regime.

The large gravitational ranges of the most massive bodies
also invalidate the standard treatment of collisions. We use
the WS93 prescription for isolating the largest bodies from
collisions with one another and adopt the Greenberg et al.
(1991) approach to low-velocity collisions in the two-
dimensional regime. Removing the isolation criteria allows
the largest body to grow more rapidly than the isolated
bodies and reduces the timescale to runaway growth by
5%-10%. Removing the Greenberg et al. (1991) two-
dimensional cross sections has no substantial effect on our
results.

Aside from fragmentation, we have included all impor-
tant physical processes in planetesimal evolution. Our
neglect of fragmentation, however, is a serious limitation. In
previous simulations, fragmentation of relatively strong
bodies with 7, = 1-10 km produces a significant amount of
cratering debris that can be accumulated later by runaway
bodies (e.g., WS93; Barge & Pellat 1993). This process
usually becomes important only in the late stages of calcu-
lations at 1 AU: it slows growth during early stages but
speeds up runaway growth later in the evolution (Barge &
Pellat 1993; WS93). However, collisions between very weak
bodies can disrupt and thereby prevent any growth of icy
planetesimals at modest velocities. The importance of frag-
mentation at a & 35 AU thus depends on the unknown
strength of KBOs.

We can estimate the importance of fragmentation in
Kuiper Belt simulations using Barge & Pellat’s (1993)
results for a reasonable fragmentation model. They adopt
the Housen, Schmidt, & Holsapple (1991) energy prescrip-
tion for planetesimal disruption and derive collisional out-
comes for several test cases. These results are most
appropriate for rocky asteroids, but it is straightforward to
scale them to the weaker, icy bodies that might exist at
35 AU. We consider the two cases recently adopted by
Stern & Colwell (1997a, 1997b): strong, rocky KBOs and
weak, icy KBOs.

Fragmentation does not significantly change our main
conclusions if KBOs are strong objects. According to
Figure 5 of Barge & Pellat (1993), fragmentation modifies
the growth of 10 km bodies only when e = e_,;, ~ 0.025. The
critical eccentricity for fragmentation decreases to e ~
102 for 1 km objects and e, ~2 x 10”3 for 0.1 km
objects (see also Fig. 1 of Stern 1996). Our low-e simulations
never reach these critical values. Fragmentation is impor-
tant in large-e simulations, but most of these models do not
produce KBOs on a reasonable timescale.

The growth of icy KBOs is probably very sensitive to the
timescale for velocity evolution. We expect fragmentation
to dominate the early evolution of all simulations con-
sidered above, because only objects with r; = 20-30 km can
survive collisions and produce larger bodies (see also Stern
& Colwell 1997a, 1997b). As the evolution proceeds,
however, inelastic collisions should damp the velocities of
bodies with r; < 1 km, while dynamical friction damps the
velocities of the most massive objects (see Fig. 7). These
damping timescales are short compared with the viscous
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stirring timescales, so the particle velocities decrease on
relatively short timescales, ~ 10 Myr. This damping is prob-
ably sufficient to allow the growth of 1-10 km objects on
timescales similar to those found in our models without
fragmentation. Smaller bodies may not grow unless
dynamical friction is very efficient. We will explore this
possibility in our second paper.

4. DISCUSSION AND SUMMARY

We have developed a time-dependent planetesimal evolu-
tion program similar to the WS93 code used to simulate the
formation of terrestrial embryos from small bodies. The
program incorporates coagulation with realistic cross sec-
tions and velocity evolution using the statistical formula-
tion of Barge & Pellat (1990, 1991; see also Hornung et al.
1985). Our numerical solutions to the coagulation equation
agree with analytic solutions for three standard test cases.
Our results also agree with WS93’s simulation of the forma-
tion of Earth at 1 AU. The present models do not incorpor-
ate fragmentation of bodies during collisions. We will
include fragmentation in a separate paper.

We have considered two simple cases of planetesimal
evolution in a 6 AU-wide annulus centered at 35 AU.
Models without velocity evolution invariably produce
several large bodies that accrete practically all of the
material in the annulus. The runaway growth in these simu-
lations occurs without dynamical friction or gas drag;itisa
direct consequence of gravitational focusing. The time
required to produce a runaway body in our models scales
inversely with the initial mass of the annulus and with the
initial radii and velocities of the planetesimals. For bodies
with r, = 80-8000 m and e;;, = 1073, our simulations
produce runaway growth in 100 Myr for annular masses of
roughly (10-30)Mg. The timescale for runaway growth
increases to 700-2000 Myr for e = 1072 A minimum-
mass solar nebula with £ oc R™3/? contains (7-15)My, in a
6 AU-wide annulus centered at 35 AU. These models thus
reach runaway growth in a minimum-mass nebula on time-
scales comparable to the maximum formation timescale for
Neptune (~ 50-100 Myr; Lissauer et al. 1995; Pollack et al.
1996). Runaway growth on much shorter timescales, ~ 10
Myr, requires annular masses that far exceed the minimum-
mass solar nebula, ~100My in a 6 AU-wide annulus for
i = 1072t0 1073,

Models with velocity evolution produce runaway growth
on a much wider range of timescales compared with
constant-velocity calculations. First, dynamical friction and
viscous stirring dominate the evolution of models with rela-
tively large (8 km) initial bodies. The velocities of these
bodies thus increase as collisions produce more massive
objects. This velocity increase delays runaway growth by
factors of 2 or more compared with constant velocity evolu-
tion. The delay in the runaway growth time increases with
increasing e, ;,. In contrast, collisional damping dominates
the evolution of models with smaller (80-800 m) initial
bodies. These bodies “cool” until the largest objects have
radii of 10-20 km. Dynamical friction and viscous stirring
then “heat up” the small bodies, but this heating is small
compared with the velocity increases of the r, =8 km
models. For e, ;, = 103, collisional damping enhances col-
lision rates and decreases the timescale to runaway growth
by factors of 4-12 compared with constant-velocity calcu-
lations. Our simulations of minimum-mass solar nebulae
with e;,;, = 1073 reach runaway growth on timescales of
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20-40 Myr for 80 m initial bodies, 50—-100 Myr for 800 m
bodies, and 75-250 Myr for 8 km bodies. These timescales
increase by factors of 2-4 for e, ;, = 10~ 2.

The formation of runaway bodies in constant-velocity
simulations is surprising. Previous simulations demon-
strated a need for dynamical friction, which decreases the
velocities of the most massive objects (Wetherill & Stewart
1989, 1993; Barge & Pellat 1990, 1991; Ohtsuki 1992; Ida &
Makino 1992a, 1992b; Kokubo & Ida 1996). Gravitational
focusing then allows these bodies to sweep up lower mass
bodies very rapidly. Kokubo & Ida (1996) summarize neces-
sary and sufficient conditions for runaway growth and show
that the ratio of the maximum mass of planetesimals to
their mean mass increases dramatically during runaway
growth. Our constant-velocity simulations satisfy the
“necessary ” condition for runaway growth,

2RH,ijQ < Vij < Ve,ij s (2)
but do not meet the “sufficient ” condition,
av
—<0, 3
im A3)

because our velocities are constant with mass, dV/dm = 0.
Nevertheless, the maximum mass, M,,,,, of each constant-
velocity simulation increases much more rapidly than the
mean mass, <{m;y (Fig. 14). In Figure 14a, the ratio
M,../<m;> increases slowly during the orderly growth
phase and then increases rapidly when several isolated
bodies begin to accrete most of the mass in the annulus.
This runaway growth is not as extreme as that seen in
models with velocity evolution. We derive M_,,./<m;> ~
10° in constant-velocity models, compared with
M, /<{m> ~ 108-101° in models with velocity evolution
(Fig. 14b). Dynamical friction is responsible for the larger
increase in M,,,./{m;» in models with velocity evolution.
Although the constant-velocity simulations are artificial,
they are a useful guide to planetesimal growth in the outer
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F16. 14—Evolution of M,
later stages of many simulations indicates runaway growth.
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solar system. Our results show that collisional damping by
small bodies can overcome viscous stirring and keep parti-
cle velocities low at a = 35 AU. The relative efficiency of
collisional damping should increase with a, because the col-
lision rates decrease more rapidly with a than do the
damping rates (v oc @~ >/? VS. Tgum, oc @~ >/). The situ-
ation in the outer solar system differs markedly from condi-
tions at small a. In our simulations at 1 AU, bodies with
r; & 80—-800 m grow to 10 km objects in ~ 1000 yr. As in the
35 AU simulations described above, collisional damping
reduces the velocities of the small bodies by a factor of ~2
in 1000 yr. In contrast to our 35 AU models, viscous stirring
and dynamical friction act quickly to increase velocities
once larger bodies are produced at 1 AU. Aside from the
longer timescale to reach runaway growth, this evolution
then follows closely the simulations in Figures 1 and 2.

With these considerations in mind, we suggest a modest
modification to the sufficient condition for runaway growth,

v

<0, @

instead of the condition in equation (3). This condition
maintains the relative growth rate necessary for runaway in
a three-dimensional system,

1 dm 13
M dr oM 5
(see Kokubo & Ida 1996), when the gravitational focusing
factoris large (e.g., V;; S V..;))-

In addition to this new criterion for runaway growth, our
simulations show that Neptune and Pluto can grow in
parallel at a ~ 30-35 AU. For a minimum-mass solar
nebula, previous calculations indicate that Neptune reached
its current size in no longer than 50-100 Myr (Ip 1989;
Lissauer et al. 1995; Pollack et al. 1996). In our models of
minimum-mass solar nebulae at 35 AU, 800 m objects grow
to Pluto-sized planets on similar timescales. However,
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/{m} as a function of time: (a) constant-velocity models; (b) with velocity evolution. The rapid increase in M,,,,/{m) at the



2152 KENYON & LUU

recent observations indicate a much shorter lifetime, ~5-10
Myr, for gaseous disks surrounding nearby pre-main-
sequence stars (Sargent & Beckwith 1993; Strom et al. 1993;
Russell et al. 1996; see also Fernandez 1997). If our solar
system evolved on a similar timescale, the formation of the
gas-rich outer planets requires solar nebulae with masses
2-5 times larger than the minimum-mass solar nebula, M ;,
(Lissauer et al. 1995; Pollack et al. 1996). Neptune then
attains its current size in 5-10 Myr. At 35 AU, objects reach
1000 km sizes in 10-20 Myr for M, ~ (2-3)M,,;, and in
5-10 Myr for M, =~ 5M,;,, assuming that the initial bodies
have small masses and eccentricities. Fragmentation should
not change these conclusions unless collisional erosion can
prevent the formation of 1 km bodies from smaller building
blocks.

Our Kuiper Belt simulation produce Pluto-sized objects
on reasonable timescales for other plausible solar nebula
models. In particular, Cameron’s (1995 and references
therein) detailed disk models for the protosolar nebula have
a shallower density distribution, ¥ = ¥(a/a,)” !, than the
minimum-mass model we considered above to derive our
success criteria (see also Ruden & Lin 1986; Ruden &
Pollack 1991). Cameron’s model contains ~100M¢ in our 6
AU annulus. The growth time for 1000+ km objects scales
simply from results with smaller disk masses. For models
with velocity evolution, we estimate 7, &~ 3 Myr for r, = 80
m, 7, & 8§ Myr for r, = 800 m, and 7, ~ 15 Myr forr, = 8
km. Although all of these models can produce Pluto-sized
objects before Neptune reaches its final mass, models with
ro = 8 km produce more KBOs with r; ~ 100-300 km, as
outlined in § 3.3.

These results—together with recent dynamical calcu-
lations of Malhotra (1993, 1995, 1996)—suggest a self-
consistent picture for the formation of Pluto-Charon in the
outer solar system. In this picture, Pluto and Charon begin
as ~ 1 km planetesimals at a ~ 35-40 AU and grow to their
present sizes on a timescale of 10—100 Myr. Both objects are
runaway bodies more massive than the bulk of the plan-
etesimal mass distribution and have low velocities due to
collisional damping and dynamical friction. At a somewhat
smaller semimajor axis, a ~ 25-30 AU, Neptune accretes its
current mass in 10-100 Myr and migrates radially outward
through the protosolar disk during the late stages of giant
planet formation (Malhotra 1993; Pollack et al. 1996;
Fernandez & Ip 1996; see also Ipatov 1989, 1991). During
this outward migration, Neptune captures Pluto-Charon in
the 3:2 resonance (Malhotra 1995). This capture should
effectively end further growth of Pluto-Charon, because the
orbital elements increase to e ~ 0.2 and i ~ 10° on a short
timescale, ~ 10 Myr, inside the resonance (Malhotra 1995).
High-velocity collisions within the resonance should also
hinder growth as in our large-e models. Neptune also cap-
tures other KBOs at a ~ 35-40 AU into the 3:2 and other
resonances (Malhotra 1996; see also Jewitt et al. 1996).
Further growth of these objects is also slowed because of
rapidly increasing velocities (Malhotra 1995, 1996;
Morbidelli, Thomas, & Moons 1995; Davis & Farinella
1997). As long as collisional erosion does not decrease sig-
nificantly the radii of captured KBOs, this sequence of
events accounts for the general aspects of the mass distribu-
tion and orbital elements of observed KBOs in a simple
way.

This picture for the formation of Neptune, Pluto-Charon,
and KBOs differs from those of Stern (1995, 1996) and Stern
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& Colwell (1997a, 1997b), who studied KBO evolution at
40-70 AU. Stern & Colwell concluded that the formation of
Neptune and KBOs, including Pluto-Charon, requires
~100-1000 Myr because of the low collision rates at
a ~ 30-50 AU. Stern & Colwell’s (1997a; see also Stern
1995, 1996) timescale for KBO formation is a factor of
10-20 longer than our timescale. Their results also conflict
with the more detailed gas dynamic calculations of Pollack
et al. (1996). Although the exact origin of this discrepancy is
unclear, we suspect mass spacing, collision rates, and (less
probably) fragmentation may be responsible. Our mass
spacing, 6 = 1.4, should produce more accurate estimates
for the growth time than § = 2 (Stern & Colwell 1997a) or
0 =4 (Stern 1996). We estimate 10%-20% delays in
runaway growth for 6 = 2 and expect very long delays for
0 = 4. In addition, our collision rates include a factor, f.;,
that accounts for the Gaussian distribution of impact
velocities (Greenzweig & Lissauer 1992; see eq. [A12]).
Neglecting this factor delays runaway growth by a factor of
3 (see also WS93). Stern (1995) does not include this factor
in his cross section (see his eq. [5]) and thus derives much
longer growth times. As noted above, our neglect of frag-
mentation encourages runaway growth. We do not think
that including this process should delay runaway growth by
another factor of 3, for reasons outlined earlier, and we plan
to test this suspicion in our next paper.

However the theoretical issues may be resolved, several
consequences of our accretion models can be tested with
additional observations. All models that reach runaway
growth produce 10-100 Pluto-sized objects with radii
Tmax & 1000-2000 km and a roughly power-law mass dis-
tribution with a maximum radius at ~(0.1-0.2)r,, (see
Figs. 8-10). If Pluto and Charon are runaway bodies pro-
duced at a ~ 35-40 AU, there should be several additional
“Plutos” with similar orbital elements. Malhotra (1995)
reached a similar conclusion and noted that recent searches
have not excluded the possibility of several additional such
bodies in 3:2 orbital resonance with Neptune. The accre-
tion models also predict a cumulative power-law distribu-
tion, Noocr™3, for objects with r < 100-200 km. By
analogy with WS93, this shape is fairly independent of frag-
mentation as long as collisions produce overall growth
instead of disruption. The best fit to the observed distribu-
tion is shallower than expected, N oc ¥~ 2, but the data are
not yet accurate enough to preclude our model prediction
(Jewitt et al. 1996). Larger surveys will provide a better test
of this prediction (Luu et al. 1997).

Finally, our results suggest that KBO formation is likely
in other solar systems. KBOs can grow in the dusty disks
that surround many nearby main-sequence stars, if the disk
masses are within an order of magnitude of the
“maximum” disk masses for « Lyr, « PsA, and f Pic
(Backman & Paresce 1993). Stars with disk masses near the
minimum dust masses of these well-studied A-type stars
probably have few, if any, KBOs but could have many
objects with r; ~ 1-10 km. Observations of nearby pre—
main-sequence stars also indicate substantial masses, M, 2
10°Mg, in circumstellar disks with radii of 100-1000 AU
(e.g., Sargent & Beckwith 1993; see also Beckwith &
Sargent 1996). These data imply M, ~ (10-100)Mg, in the
Kuiper Belt. With formation timescales of 1-10 Myr, KBOs
can grow in massive circumstellar disks during the pre—
main-sequence contraction phase of a low-mass star (see
Kenyon & Hartmann 1995 and references therein). In a less
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massive disk, KBOs grow while the central star is on the
main sequence. We expect no KBO formation in circum-
stellar disks with very low masses, M; < 10M. These disks
can produce 1-10 km objects at a = 30 AU, unless fragmen-
tation prevents growth of icy bodies. We will explore this
possibility in a subsequent paper.
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APPENDIX
Al. OVERVIEW

Our evolution model follows procedures developed for other planetary formation calculations, including Safronov (1969),
Greenberg et al. (1978, 1984), and WS93. We assume planetesimals are a statistical ensemble of masses with a distribution of
horizontal and vertical velocities about a single Keplerian orbit. We consider a cylindrical annulus of width Aa and height H,
centered at a radius a from the Sun. Particles in the annulus have a horizontal velocity h,(t) and vertical velocity v,(t) relative to
an orbit with mean Keplerian velocity Vi (see Lissauer & Stewart 1993). These velocities are related to the eccentricity, e;, and
inclination, i;, through

Vi=(Ge + 5sin?i)Vg, (AT)
with
h}=3e?Vvi, ov}=%sin?iVE. (A2)

We approximate the continuous distribution of particle masses with discrete batches having an integral number of particles,
n(t), and total masses M(t) (WS93). The average mass of a batch, mJ(t) = M(t)/n(t), evolves with time as collisions add and
remove bodies from the batch. This procedure naturally conserves mass and allows a coarser grid than simulations with fixed
mass bins (Wetherill 1990; see also Ohtsuki & Nakagawa 1988; Kolvoord & Greenberg 1992).

To follow the evolution of particle number, we solve the coagulation equations for all mass bins, k, during a time step, ot:

oy, = Ot(e;; Ajjmin; — m Ayn) — omy oq (A3)
OM, = 6t(e;; A;jnnjmy —

where A;; is the cross section, €;; = 7 for i =j and €;; = 1 for i # j. The three terms in equations (A3)-(A4) represent (1)
mergers of m; and m; into a body of mass m;, = m; + m;, (2) loss of m; through mergers with other bodies, and (3) loss of m; by
gas drag. This treatment assumes (1) that each body can collide with every other body and (2) that bodies do not fragment
during collisions. Assumption 1 is correct for all but the very largest bodies, which become isolated from one another as their
orbits circularize because of dynamical friction (see below). We correct equations (A3)—(A4) for this effect by calculating the
“gravitational range” of the largest bodies—R, ; = K aRy ;;, ., + 2ae; (WS93)—where K, = 2(3)'/* and Ry ;; = [(m; + m))/
(3 M)]'” is the mutual Hill radius. As in WS93, the isolated bodies are the N largest bodies that satisfy the summation
Yimx R, ; > Aa. Assumption 2 is rarely correct, because all collisions produce some debris unless the relative velocity of
the two particles is very low (see, e.g., WS93). In this paper, we concentrate on planetesimal growth and assume that all
collisions result in mergers. We will consider the effects of fragmentation in a separate paper.

To calculate the appropriate index k for a specific collision between batches i and j, we first calculate a fixed grid of masses,
my, for [ = 1to N,,,, and 6 = m, /m,. The mass spacing, J, is constant throughout a calculation; N ,, increases with time as
more batches fill with particles. When a collision produces n, bodies with m,, we augment either batch / when m, <
(m;m; )1/? or batch I + 1 when m, > (m;m,,)'/?. A complete cycle through all mass batches produces new values for n, and
M,, which yield new values for the average mass per bin, m, = M,/n,. This process conserves mass and provides a good
description of coagulation when ¢ is small (see below).

Besides collisions, several processes contribute to the velocity evolution of growing planetesimals, including dynamical
friction, gas drag, and viscous stirring. We assume that all collisions between mass batches conserve the horizontal and
vertical components of kinetic energy, E, ; = 3m;h? and E,; = 3m;v?. The change in the two components of kinetic energy
due to collisions is

my Ay nmy) — my 5"k,gd > (A4

OEfo = —3[0(my hi) = dnm; h?) + onm;h})] (A%)
OES, = —3[0(my v) = onm; v?) + onm;v)] (A6)
for each pair of collisions between m; and m;. In these expressions, én; < 0 represents the change in n; due to collisions with
particles in batch j. Batch k loses kinetic energy because of collisions with other batches (i.e., on, > 0). We also calculate the

evolution of h; and v; due to gas drag (Adachi, Hayashi, & Nakazawa 1976) and collective interactions, such as dynamical
friction and viscous stirring, using a statistical treatment of the appropriate Boltzmann and Fokker-Planck equations
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(Hornung et al. 1985; see § A3 below). The complete change in the horizontal and vertical kinetic energies is thus
OE, . = OEy + OEL, + SE™ + OEy, , (A7)
OE, ) = OEX + OE& + OE™, + OE¥,, (A8)

where the superscripts “gd” (gas drag), “in”’ (1ne1ast1c), and “Ir’ (long-range elastic collisions, such as viscous stirring and
dynamical friction) refer to a specific type of velocity evolution outlined below (see also Barge & Pellat 1990, 1991; WS93).

We solve the complete set of evolution equations (eqs. [A3], [A4], [A7], and [A8]) using an explicit method that
automatically prevents large changes (>0.1%) in the dynamical variables—n;, M, h;, and v,—by limiting the time step. As in
WS93, we require integer values for n; and dn;. Section A4 compares our numerical procedures with analytic results from
Wetherill (1990; see also Ohtsuki & Nakagawa 1988; Ohtsuki, Nakagawa, & Nakazawa 1990). Section 2 of the main text
compares calculations at 1 AU with results from WS93. In both cases, our procedures reproduce the expected results. Before
describing the analytic results, we first describe in detail our treatment of the collision rates (§ A2) and the velocity evolution

§ A3).

A2. COLLISION RATE

Approximations to the collision rates between planetesimals are in the spirit of kinetic theory, where the number of
collisions is the product of the local density, the relative velocity, and a cross section. WS93 express the number of collisions
between a single body, m;, and all of the bodies, m;, as

n.
nc,ij = acoll<4HaJA ) ij gt](r + r) 5t (A9)

where r; and r; are the radii of the two bodies, V7, = V7 + V7 is the relative velocity, and F, ; is the gravitational focusing
factor. The constant factor o, accounts for the Gaussian distribution of particle velocities and the difference between the
collisional frequencies of particles on Keplerian orbits and those in a box (Greenzweig & Lissauer 1992; WS93). The relative
velocities and scale height depend on the individual particle velocities:

2071w + 0DV, V=i + 0 + k] +0)'? (A10)

(WS93), where Q is the Keplerian angular frequency. The total number of collisions for m; is simply n;n.; the cross section
appropriate for equations (A3)(A4) is then

1
A= acon<4HaA ) i F i + r])2 (A11)
We consider two approaches to compute the gravitational focusing factor, F ;;. In the first case, we follow WS93 and set
V2.
Fyij= Fws,ij = Eij<1 + Beon ﬁ) ) (A12)
ij

where V2, = 2G(m; + m))/(r; + r;) is the mutual escape velocity. The extra factors account for the Gaussian distribution of
impact velocities (8.3 Greenzwelg & Lissauer 1992) and the deviations from two-body focusing at low relative velocities (E;;; s
Greenzweig & Lissauer 1990). We adopt WS93’s prescription for the variation of f; as a function of the relative velocity in
Hill units, Vy ;; = V,;/(Ry,; Vx/a):

2.7, if Vgij>2,
Beon = 1.0+ 1.7V, — 1), fl1<Vy; <2, (A13)
1.0, if V<1,
and we set
1, if V;; >0.13V, ;;,
E;; = {4(e* + sin® l)llek iV, <0137, ,, (A14)
n? sin i
where E, = ¢/ (1 — k? sin? 0)"/2d6 for k* = 3/(4[1 + (sin i)/e]) (Greenzweig & Lissauer 1990; Greenberg et al. 1991).
At very low velocmes (Va1 < 2.3), we adopt the two-body collisional cross sections of Greenberg et al. (1991):
V:i.\ ViR
14+ —&d | T 01 if V<23,
vV} ) Vi Re ’
FZBJJ' = V2.\12 1. R H (AIS)
05(1+=57) -LE if Vi < 2.3, 015 < Upton
VT V RT r; _|_r H,ij > VH,ij H,crit »

where Ry = a[(m; + m;))/(1 M )]*'” is the Tisserand radius, V; = 1.1QAay is the Tisserand velocity, Aa; = 2. 5Ry is the half-
width of the feeding zone, vy ;; = v;;/V} is the relative vertical velocity in Hill units, and vy ; < 0.7 sin (0.9[(r; + r;)/

RH 1]]1/2)
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In our second approach to gravitational focusing, we modify the piecewise analytic approximation of Spaute et al. (1991):

1 + ﬁcoll( e, 1]/ 1)2 lf > 00321/e ij »
Fg ;= 424042V, /V)'>,  if 0. 01 < V,/V,.; <0032, (A16)
10706.916 , if V;,/V,,; <001,

with B, as defined above. These expressions are continuous and serve as a check on the more detailed expressions for Fyy ;;.
For very low velocity encounters, we use the two-body cross sections for F,; defined above.

In these approximations to the cross section, the transition from Fyg or Fgto F,p at V;; & 2.3 is not smooth. To effect a
smooth transition, we set

F,, = {(1 — Xap,i)Fws.ij + X28,ij F28.ij » (A17)
(1 — X2p,i)Fs,ij + X28,ijF 28,3 »
where
0, if Vig;;>33,
Xop,i; = 0.5V, i — 2.3) , if 1.3 < Vy,;; <33, (A18)
1, if Vg, <13.

A3. VELOCITY EVOLUTION

As noted above, kinetic models approximate planetesimal orbital elements as a mean square random velocity, V? (Safronov
1969; Stewart & Wetherill 1988; WS93 and references therein). We divide this velocity into horizontal, h;, and vertical, v;,
components that are related to V;, e, and i (see eqs. [A1]-[A2]). Hornung et al. (1985) have derived analytic expressions for the
time evolution of planetesimal velocities using a kinetic approximation to average over the velocity distribution function.
WS93 reformulated some of these results in terms of the eccentricity and inclination, and we adopt their expressions here for
simplicity (see also Stewart & Wetherill 1988). We calculate velocity changes due to (1) gas drag, which decreases particle
velocities and causes particles to spiral in through the disk; (2) dynamical friction from elastic collisions, which transfers
kinetic energy from larger to smaller bodies; (3) viscous stirring from elastic collisions, which taps the solar gravitational field
to increase the velocities of all bodies; and (4) collisional damping from inelastic collisions (see also Hornung et al. 1985; Barge
& Pellat 1990, 1991; Ohtsuki 1992).

The time evolution of the eccentricity and inclination for long-range, elastic encounters is

de? N Cl ) di NG
VS, i r J 4J VS, i r i A ’? J A19
dt = (”1 Hlj)e ( 0) dt j;l 2ﬂ12] (”ll ”l])ll z ( )
for viscous stirring and
deéf i al C, 2 2 diﬁf l
—"—2 ' (m.e? — m,e?)K, + 4K,) , L. — m.i®K A20
dt = 2 (mJeJ lel)( r 0) dt =) Zﬁ lll) z ( )

for dynamlcal friction (WS93, Appendix C). In these expressions, e;, e;, i;, and i; are the eccentricity and inclination of each
body, 7 = (i? + i?)/(e} + €}) is the ratio of inclination to eccentnclty, and Clr =16G?p(In A + 0.55)/V(e? + €})** is a
function of the dens1ty of partlcles in batch j and the relative horizontal velocity of the mass batches (WS93). The functlons J,,
Jo, J., K,, Ky, and K are definite integrals that are functions only of ;; (Hornung et al. 1985; Barge & Pellat 1990, 1991;
WS93; Ohtsuki 1992 describes a similar approach to velocity evolution).

The time evolution of e and i due to collisional damping is

d

oo, = Z Cin [ -m; ei2 —(m; + mj)eiz](lr + 41,) , (A21)
j=
diizn’i i C .2 '2
a = L e Umii it = mt m)iFll (A22)
j=0

where C;, = a o €;;p; Vij F,y{r; + 1;)* and p; is the mass density (Hornung et al. 1985; see also Ohtsuki 1992). We include
terms from the collision rate, oy, €;;, and F_;;, for consistency. The integrals, I(;), Io(B;;), and I(B;,), are listed in the
appendices to Hornung et al. (1985). We integrate these expressions numerically. The I, integral often diverges; we set
I,=1— (I, + I,) to avoid these divergences.

In addition to dynamical friction and viscous stirring, we also consider velocity evolution due to gas drag. Gas drag reduces
the velocities of all mass batches and also removes material from each mass match. The inward drift of material is

A9 2097 + 0.64i + ) L (A23)
Vk 7o
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(Adachi et al. 1976), where 7 is the gas velocity relative to the local Keplerian velocity, V. We adopt n = 60 m s~ ! for
calculations at 1 AU (WS93) and n = 30 m s~ * for calculations at 35 AU (Adachi et al. 1976). The characteristic drift time is

365( m; \Y3(1AU\/10"° gcm™3
=22 T A24
To CD <1021 g> < a )( pg ) K » ( )

where C, = 0.5 is the drag coefficient, p, = 1.18 x 10~ °[a/(1 AU)]~''/* is the gas density (Nakagawa, Hayashi, & Nakazawa
1983), and Ty is the orbital period (see Adachi et al. 1976; WS93). To simulate the disappearance of gas in the protosolar
nebula, we decrease the gas density with time:

pg(t) = Pg,0 €Xp (_t/‘cg) (A25)

with p, o = 1.18 x 10™°[a/(1 AU)]~ “/4(M0/Mmm) g cm ™ ? (Ruden & Lin 1986; Ruden & Pollack 1991; WS93). The radial
decrease of the gas density follows models for minimum-mass solar nebulae; the mass dependence allows the density to scale
with the mass of the annulus.

The number of bodies lost from the calculation at each time step depends on their effectiveness at crossing Aa. We set the
number of bodies lost from a batch as

5ng Aa 5t

¢ A26
This expression is used in equations (A3)-(A4).
Finally, we adopt Wetherill & Stewart’s (1989) expression for velocity damping due to gas drag:
dV, —nCp s 2
dt - 2mi pg Vg ri s (A27)

where C;, = 0.5 is the drag coefficient and V, = [V(V; + n)]"/? is the mean relative velocity of the gas.
We convert the differential equations, (A19)—(A22) and (A27), into a kinetic energy form in two steps. We use f; to derive the
appropriate horizontal and vertical components of the velocity, ¥, in equation (A27). Equation (A2) similarly yields éh; and

ov; in terms of de; and Ji;, where
de? di?
de = 6t< dt) 0i} = 5t< dt) (A28)

These substitutions yield

Cpp,Vir?
gd\2 _ _ TCpPg Vgl £d\2 2 512
(0h%Y) 5t|:2mi(1 n 08/?12):| (0v%)* = 0.8B; oh; , (A29)
iny2 5 d 12[1 i in2 1 . dlzn i

(6h™M* = VK ot ) (ovi)* = 5 sin 2 iV ot i) (A30)

del ; dej; 1 diZ,;  di;

12 VS, i df,i 1.r 2 __ . VS, i df,i
(Oh)* = VK 5t< it +—dt ), (ov;) 2 sin 2 iVZ 6t< it + e ) (A31)

We multiply these relations by m; for substitution into equations (A7)—(AS).

A4. TESTS OF THE EVOLUTION CODE

To test the validity of our numerical techniques, we compare our results with several test cases (see Ohtsuki & Nakagawa
1988; Ohtsuki et al. 1990; Wetherill 1990). The coagulation equations (eqs. [A3]-[A4]) have analytic solutions for three
s1mp1e forms of the cross section, 4;;. Von Smoluchowski (1916) first solved the coagulation equation for 4;; = «, = const.
Trubnikov (1971) described solutions for 4;; = B.(m; + m;) and A;; = y.m;m;. Wetherill (1990) identified an inconsistency in
Trubnikov’s results for 4;; = y.m;m; and showed that this cross section produces runaway growth. Tanaka & Nakazawa
(1994) verified Wetherill’s new solution and placed limits on the validity of the coagulation equation during runaway growth.

The analytic solutions to the coagulation equation provide rigorous tests of numerical methods. Two simple cases, 4;; = a,
and 4;; = B.(m; + m)), do not lead to runaway growth, but they test the ability of numerical codes to reach a target mass at a
specified time. They also yield estimates for mass conservation over many time steps. Numerical solutions for 4;; = y. m;m;
are challenging, because runaway growth requires a careful, automatic procedure for changing the time step. In all three cases,
the time lag between the analytic and numerical solutions depends on the mass ratio between consecutive batches, &
(Wetherill 1990). These tests thus yield a quantitative measure of the largest allowed value for 6 (Ohtsuki & Nakagawa 1988;
Ohtsuki et al. 1990; Wetherill 1990).

To compare our numerical results with analytic solutions, we follow conventions established by Ohtsuki et al. (1988) and
Wetherill (1990). For 4;; = o, and A4;; = B.(m; + m,), we plot log N;m? as a function of log m;. We evaluate log N, as a function
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of log m, and the fractional mass in the small-body swarm and the runaway body as a function of a dimensionless time for
A;j = y.m;m;. The numerical calculations do not have regular mass intervals, so we calculate N = dN/om, where

ON = Ny + 3(Nys1 + Ny—1) om=m s —m_y. (A32)

Wetherill (1990) describes analytic solutions for each cross section in detail. The A4;; = «, case has the simplest solution. Ifn,
is the initial number of particles with mass m;, the number of bodies with mass m, = km; at a time ¢ is

me=no fX(1—f)"1, (A33)

where f = 1/(1 + 45,) and 5, = o, n, t is the dimensionless time (see also Silk & Takahashi 1979; Ohtsuki & Nakagawa 1988).
The solution for 4;; = f.(m; + m;) has a similar form:

k—1

k
me=no = f(L =)  exp [—k(L 1], (a34)

where f = exp (—1,) and n, = fB.n,t. In both of these expressions, fis the fraction of bodies with m; that have yet to undergo a
collision at time t.

Models with 4;; = y.m;m; lead to runaway growth when n; = yn,t = 1 (Wetherill 1990; Barge & Pellat 1990; Tanaka &
Nakazawa 1994). The number distribution forn; < 1is

)k—l

k
= o — (/2 exp (—kn) (A39)

This solution fails to conserve mass for 5 > 1; a single runaway body then contains most of the total mass. The mass of the
runaway body forn; > 1is

ma=myoxp | — [ 3 Knnoin | (a36)

(Wetherill 1990; Tanaka & Nakazawa 1993, 1994).

Figure 15 compares our results for 6 = 1.25 with the analytic solution for 4;; = «,. The agreement is good and again
improves as ¢ decreases. Our results for 6 = 1.4-1.6 are consistent with the analytic solution, although we have too few mass
batches to make reliable comparisons when 5, < 10-20. We did not attempt numerical models for 6 = 1.6-2 (the maximum
allowed), but we expect that these will produce satisfactory results for n > 100.

Figure 16 shows results for A4;; = B.(m; + m;) and 6 = 1.25. The agreement between our calculation and the analytic
solution is quite good and improves as J increases. We find a slight excess of low-mass bodies in our numerical results
compared with the analytic solution. Wetherill’s Figure 4 contains a similar excess. The peak of our normalized number
distribution lags the analytic result by 1.4%. This lag decreases with ¢ and is less than 1% for § = 1.10.

Log [M*n(M,1)]

n=10

n =100

n = 1000
n = 10,000

Log (Mass/MO)

FI16. 15.—Evolution of the mass distribution for a constant cross section, 4;; = «,. The solid curves plot analytic results for four values of 5; the symbols
indicate results of the numerical simulations.
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FI1G. 16.—Same as Fig. 15, but for 4;; = (M, + M)

Figures 17 and 18 summarize our results for 4;; = y.m;m; and 6 = 1.25 for n < 1. The numerical solution follows the
analytic model very closely for n; < 0.95 and then begins to diverge at large masses as 5 approaches unity (Fig. 17). The
numerical model begins runaway growth at #; = 1.012 and lags the analytic model by 1.2%. The numerical runaway begins
much closer to the predicted result, n; = 1.005, for 6 = 1.08. Larger values for é produce runaways that are delayed by much
longer factors. The lag is 2.7% for 6 = 1.4 and 8.7% for 6 = 2. Wetherill (1990) quotes similar results for his numerical models
with § = 1.07 and § = 1.25.

Figure 18 describes the evolution of the runaway-growth model for 6 = 1.08 and 53 > 1. The calculated mass distribution
initially lags the analytic result by less than 1% for #; marginally larger than 1 (see also WS93) but matches the analytic result
almost exactly at n; = 1.05 (Fig. 18a). The calculation continues to match the analytic result until n; ~ 5. Figure 18b plots the
mass of the runaway body for 3 > 1. The calculated mass agrees with the analytic prediction, equation (A36), to 1% or better
for all n; > 1. Models with 6 = 1.25 have greater difficulty reaching large n as a result of their poorer mass resolution. These

Log [M?n(M,1)]

Log (Mass/MO)

F16. 17.—Evolution of the mass distribution for 4;; = y, M; M. The solid curves plot analytic results for four values of #; the symbols indicate results of
the numerical simulations.
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Fic. 18.—Runaway growth for 4;; = y, M; M. (a) Evolution of the residual mass distribution for four values of # > 1. The simulations lag the analytic
model for n & 1 and then follow it closely for larger #. (b) Evolution of the mass of the runaway body for the simulation (circles) and the analytic model (solid

curve) as a function of .

models have larger n, at high masses, which reduces the time step considerably compared with models with small 6. The
calculation then requires a significant amount of computer time and does not agree as well with the analytic predictions. Our
models with 6 > 1.4 fail to reach 55 ~ 1.1 if we maintain our criterion of small on, per time step. Relaxing this criterion allows
reasonable time steps but produces very poor agreement, = 20%, with the analytic solution.

These results confirm our limits on én, for the Kuiper Belt simulation described in the main text, < 0.1% per time step, for
0 = 1.08-1.4. Models with larger ¢ fail to follow growth properly unless the time steps are unreasonably small.
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