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ABSTRACT
We describe planetesimal accretion calculations in the Kuiper Belt. Our evolution code simulates plan-

etesimal growth in a single annulus and includes velocity evolution but not fragmentation. Test results
match analytic solutions and duplicate previous simulations at 1 AU. In the Kuiper Belt, simulations
without velocity evolution produce a single runaway body with a radius km on a timescaler

i
Z 1000

where is the initial mass in the annulus, is the initial eccentricity of the planetesimals,q
r
P M0~1e0x , M0 e0and x B 1È2. Runaway growth occurs in 100 Myr for and in a 6 AU annulusM0B 10ME e0B 10~3

centered at 35 AU. This mass is close to the amount of dusty material expected in a minimum-mass
solar nebula extrapolated into the Kuiper Belt. Simulations with velocity evolution produce runaway
growth on a wide range of timescales. Dynamical friction and viscous stirring increase particle velocities
in models with large (8 km radius) initial bodies. This velocity increase delays runaway growth by a
factor of 2 compared with models without velocity evolution. In contrast, collisional damping dominates
over dynamical friction and viscous stirring in models with small (80È800 m) initial bodies. Collisional
damping decreases the timescale to runaway growth by factors of 4È10 relative to constant-velocity cal-
culations. Simulations with minimum-mass solar nebulae, and small eccentricities, eB 10~3,M0D 10ME,reach runaway growth on timescales of 20È40 Myr with 80 m initial bodies, 50È100 Myr with 800 m
bodies, and 75È250 Myr for 8 km initial bodies. These growth times vary linearly with the mass of the
annulus, but are less sensitive to the initial eccentricity than constant-velocity models. In bothq

r
P M0~1,

sets of models, the timescales to produce 1000] km objects are comparable to estimated formation
timescales for Neptune. Thus, Pluto-sized objects can form in the outer solar system in parallel with the
condensation of the outermost large planets.
Key words : Kuiper belt objects

1. INTRODUCTION

Current models for planetary formation involve aggre-
gation of solid planetesimals and gas accretion in a circum-
stellar disk (e.g., Nakazawa, & NakagawaHayashi, 1985 ;

references therein). Large dust grains within theBoss 1993 ;
disk Ðrst settle to the midplane. These grains may then
coagulate into successively larger grains (see, e.g.,

& Cuzzi orWeidenschilling 1980 ; Weidenschilling 1985)
continue to settle in a very thin layer that eventually
becomes gravitationally unstable (see, e.g., &Goldreich
Ward Both paths produce kilometer-sized planetesi-1973).
mals that collide and merge to produce large bodies such as
planets. Despite the complex and sometimes unknown
physics, many simulations produce objects resembling
known planets on timescales roughly comparable to the
expected lifetime of the protosolar nebula (e.g., Safronov

Greenberg et al. et al.1969 ; 1978, 1984 ; Nakagawa 1983 ;
Wetherill & Stewart et al.1989, 1993 ; Spaute 1991 ;

& Greenberg & DavisKolvoord 1992 ; Weidenschilling
et al.1992 ; Pollack 1996).

Recent observations of slow-moving objects in the outer
solar system o†er a new challenge to planetary formation
models. The trans-Neptunian region is now known to
contain several dozen Kuiper Belt objects (KBOs) with esti-
mated radii of 100È300 km Luu, & Chen The(Jewitt, 1996).
orbits of known KBOs suggest a division into at least three
dynamical components with an inner radius of 30 AU and

an unknown outer radius : (1) the classical KBOs, objects
with roughly circular orbits, (2) the resonant KBOs, objects
in orbital resonance with Neptune et al. and(Jewitt 1996),
(3) the scattered KBOs, objects with large, eccentric orbits

et al. Although the known population is still(Luu 1997).
small, et al. estimate that the region betweenJewitt (1996)
30 and 50 AU contains B70,000 objects larger than 100 km.
The total mass in the classical Kuiper Belt is thus at least

This mass probably represents a small fraction of0.1ME.the initial mass, because dynamical interactions with
Neptune reduce the number of KBOs on short timescales
compared with the age of the solar system &(Levison
Duncan 1993 ; Malhotra 1996).

Despite these new observations, the origin of KBOs
remains uncertain. andEdgeworth (1949) Kuiper (1951)
Ðrst suggested that the Kuiper Belt was a natural extension
of the original solar nebula. & Wisdom laterHolman (1993)
showed that small KBOs, once formed, can survive at
30È50 AU for times approaching the age of the solar
system. More recent dynamical studies conÐrm this conclu-
sion and explain the observed distribution of KBOs in a
general way & Duncan The formation(Levison 1993).
process and timescale for KBOs, however, is still controver-
sial. Planetesimal simulations for plausible protosolar
nebulae at 25È30 AU show that Neptune can grow to its
present size in 10È100 Myr (Ferna� ndez & Ip 1981, 1984 ; Ip

et al. These results suggest that Pluto1989 ; Pollack 1996).
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might form on a similar timescale at D40 AU, because
growth times are not a steep function of semimajor axis (see

Lin, & Palmer et al. referencesAarseth, 1993 ; Pollack 1996 ;
therein). Nevertheless, Stern and Stern &(1995, 1996)
Colwell conclude that KBO formation(1997a, 1997b)
requires 100È1000 Myr for the conditions expected in the
outer solar system. These limits far exceed the timescale
required to produce Neptune, whose accretion time is con-
strained by the 10È100 Myr lifetime of the protosolar
nebula (see et al. and references therein).Pollack 1996

In this paper, we attempt to resolve the uncertainties
surrounding KBO production with a new planetesimal
simulation at 35 AU. We have developed an evolution code
to follow the growth and velocity evolution of planetesimals
with a wide range of initial masses. The code matches
analytic models and duplicates &Wetherill StewartÏs (1993,
hereafter simulation of planetesimal evolution atWS93)
1 AU. Our numerical results demonstrate that small bodies
with initial radii of 80 m to 8 km can produce 1000] km
objects on timescales of 10È100 Myr. We conÐrm these
calculations with a simple analytic estimate of the growth
time as a function of semimajor axis. This analysis supports
previous estimates of a short growth phase for Neptune,
10È100 Myr, and indicates that Pluto-Charon can form just
outside the current orbit of Neptune on a similar timescale.

We outline the accretion model in describe our calcu-° 2,
lations in and conclude with a discussion and summary° 3,
in The contains a complete description of the° 4. Appendix
algorithms and detailed comparisons with analytic models.

2. ACCRETION MODEL

For our simulations of accretion in the Kuiper Belt, we
adopt particle-in-a-box method, in whichSafronovÏs (1969)
planetesimals are treated as a statistical ensemble of masses
with a distribution of horizontal and vertical velocities
about a Keplerian orbit. Our simulations begin with a dif-
ferential mass distribution, in a single accumulationn(m

i
),

zone centered at a heliocentric distance a, with an inner
radius at and an outer radius at Wea [ 12*a a ] 12*a.
approximate the continuous distribution of particle masses
with discrete batches having particle populations andn

i
(t)

total masses The average mass of a batch,M
i
(t) (WS93).

changes with time as collisions add andm
i
(t)\ M

i
(t)/n

i
(t),

remove bodies from the batch. This procedure naturally
conserves mass and allows a coarser grid than simulations
with Ðxed mass bins and references therein ;(Wetherill 1990
WS93).

To evolve the mass and velocity distributions in time, we
solve the coagulation and energy conservation equations
for an ensemble of objects with masses ranging from D1012
to D1026 g. The describes our model in detailAppendix
and compares our numerical results with analytic solutions
for standard test cases. We adopt analytic cross sections to
derive collision rates and compute velocity changes from
gas drag and collective interactions such as dynamical fric-
tion and viscous stirring. Our initial approach to this
problem ignores fragmentation, which we will consider in a
later paper. In this study, we focus on developing a good
understanding of planetesimal growth as a function of
initial conditions in the Kuiper Belt.

To test our numerical procedures in detail, we attempt to
duplicate simulations of planetary embryo forma-WS93Ïs
tion at 1 AU. (see also & StewartWS93 Wetherill 1989 ;
Barge & Pellat et al.1990, 1991, 1993 ; Spaute 1991 ; Aarseth
et al. demonstrated that an ensemble of 8 km objects1993)
can produce 1026 g (Moon sized) objects on a 105 yr time-
scale. model begins with 8.33] 108 planetesimalsWS93Ïs
having radii of 8 km and a velocity dispersion of 4.7 m s~1
relative to a Keplerian orbit see also Table 1 of(Table 1 ;

Tables and summarize our results using theWS93). 2 3
initial conditions with mass-spacing factors of d 4WS93

and 1.4 between successive mass batchesm
i`1/mi

\ 1.25
and two di†erent analytic cross sections. shows ourFigure 1
reproduction of the results without fragmentation forWS93

TABLE 1

BASIC MODEL PARAMETERS

Parameter Symbol 1 AU Models 35 AU Models

Width of annulus (AU) . . . . . . . . . . . . . . da 0.17 6
Initial velocity (m s~1) . . . . . . . . . . . . . . . V0 4.7 4.5È45
Particle mass density (g cm~3) . . . . . . o0 3 1.5
Relative gas velocity (m s~1) . . . . . . . . g 60 30
Time step (yr) . . . . . . . . . . . . . . . . . . . . . . . . . dt 0.5 5È250
Number of mass bins . . . . . . . . . . . . . . . . N 100È150 64È128
Mass spacing of bins . . . . . . . . . . . . . . . . . d ¹1.20 1.40

TABLE 2

MODEL RESULTS AT 1 AU

d \ 1.25 d \ 1.40

TIME rmax m(rmax) rmax m(rmax)(yr) (km) (kg) N(rmax) (km) (kg) N(rmax)

5.0] 102 . . . . . . 19.8 9.7] 1019 3 20.9 1.2 ] 1020 1
1.0] 104 . . . . . . 513.3 1.7] 1024 3 492.3 1.5 ] 1024 1
2.5] 104 . . . . . . 1167.3 2.0] 1025 1 1203.0 2.2 ] 1025 1
5.0] 104 . . . . . . 1540.8 4.6] 1025 3 1515.7 4.4 ] 1025 1
1.0] 105 . . . . . . 1890.8 8.5] 1025 2 1746.7 6.7 ] 1025 3
1.5] 105 . . . . . . 1948.3 9.3] 1025 5 2382.7 1.7 ] 1026 1

NOTE.ÈThese results are for the & Stewart prescription of gravitationalWetherill 1993
focusing, eqs. as summarized in the main text.(A12)È(A14),
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TABLE 3

MODEL RESULTS AT 1 AU

d \ 1.25 d \ 1.40

TIME rmax m(rmax) rmax m(rmax)(yr) (km) (kg) N(rmax) (km) (kg) N(rmax)

5.0] 102 . . . . . . 19.8 9.7] 1019 3 20.9 1.2 ] 1020 1
1.0] 104 . . . . . . 550.8 2.1] 1024 2 492.3 1.5 ] 1024 1
2.5] 104 . . . . . . 1167.5 2.0] 1025 1 1223.0 2.3 ] 1025 1
5.0] 104 . . . . . . 1458.6 3.9] 1025 4 1735.0 6.6 ] 1025 2
1.0] 105 . . . . . . 1969.0 9.6] 1025 1 2174.8 1.3 ] 1026 1
1.5] 105 . . . . . . 2121.0 1.2] 1026 1 2335.0 1.7 ] 1026 1

NOTE.ÈThese results are for an adaptation of the et al. prescription ofSpaute 1991
gravitational focusing, as summarized in the main text.eq. (A16),

d \ 1.25. This simulation produces 14 objects of mass (3È
9) ] 1025 g in 1.5 ] 105 yr, which agrees with the results in

(see their Fig. 12). Our simulation conÐrms the broadWS93
““ plateau ÏÏ in the cumulative number, at logN

C
, m

i
\ 24È26

and the rough power-law dependence, at logN
C
Pm

i
~1,

The broad plateau extends across a smallerm
i
\ 21È23.

mass range and becomes more rounded as d increases (Fig.
The maximum planetesimal mass, at the conclu-2). mmax,sion of the calculation depends on both d and the cross

sections. We Ðnd marginally larger for the et al.mmax Spaute
cross sections. In general, increases as d(1991) mmaxincreases.

The evolution of particle velocities in our simulations
agrees with the results All of the velocitiesWS93 (Fig. 1b).
increase monotonically with time as a result of viscous stir-
ring. The velocities of the larger bodies increase very slowly,
because dynamical friction transfers their kinetic energy to
the smaller bodies. The simulation maintains a nearly con-
stant ratio of vertical to horizontal velocity, forv

i
/h

i
B 0.53,

all but the most massive bodies, which have Thev
i
/h

i
\ 0.5.

equilibrium ratio of yields SiT/SeT B 0.6, in agreementv
i
/h

iwith Barge & Pellat see also Pellat,(1990, 1991 ; Hornung,
& Barge At the conclusion of the simulation, our1985).
velocities for small bodies, m s~1 at g,h

i
B 500 m

i
D 1019

are roughly 50% higher than those of Our velocitiesWS93.
for large bodies, m s~1 at g, are roughlyh

i
B 10 m

i
D 1026

50% lower than those of We also fail to reproduceWS93.
abrupt drop in at log However, theseWS93Ïs h

i
m

i
\ 24.

di†erencesÈwhich are independent of dÈhave a negligible
e†ect on the Ðnal mass distribution and probably result
from slightly di†erent algorithms for low-velocity collisions.

Gas drag is included in our simulations but has a negligi-
ble impact on the evolution. All of the 1 AU models lose
D0.01% of their initial mass over 1.5] 105 yr. Velocity
changes due to gas drag are essentially zero because the
particle masses are so large.

To understand the sensitivity of these results to initial
conditions, we consider the growth time of planetesimals
from the coagulation equation For most cases of(eq. [A3]).
interest, the growth time for bodies with is approximatelym

i

FIG. 1a FIG. 1b

FIG. 1.ÈResults at 1 AU for and d \ 1.25. (a) Cumulative mass distribution at selected times. The ““ runaway plateau ÏÏ forms at D2 ] 104M0\ 0.667MEyr ; it includes 17% of the total mass at 5 ] 104 yr, 18% of the total mass at 105 yr, and 22% at 1.5 ] 105 yr. (b) Horizontal velocity distribution. Viscous
stirring increases all velocities with time ; dynamical friction brakes the runaway bodies and increases the velocities of the lowest mass bodies.
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FIG. 2a FIG. 2b

FIG. 2.ÈResults at 1 AU for d \ 1.4. The runaway plateau is more poorly resolved as the mass spacing increases. (a) Cumulative mass distribution at
selected times. The ““ runaway plateau ÏÏ includes 12% of the total mass at 5] 104 yr ; this component comprises 18% of the total mass at 105 yr and 22% at
1.5] 105 yr. (b) Horizontal velocity distribution. The horizontal velocities of low-mass objects are 5% larger with d \ 1.4 than with d \ 1.25. Higher mass
bodies have velocities 2È3 times larger than comparable masses in d \ 1.25 simulations.

where is theqB n0/(dn/dt) P Ha*a/n
j
V F

g
(r
i
] r

j
)2, n

jnumber of lower mass bodies, V is the relative velocity, isF
gthe gravitational focusing factor, and are the radii ofr

i
r
jparticles i and j, and H is the vertical scale height. Collisions

between low-mass objects are in the high-velocity regime,
where the gravitational focusing factor is and qPF

g
B 1

This growth time is independent of thea5@2*an
j
~1(r

i
] r

j
)~2.

initial e and i. Gravitational focusing becomes e†ective in
low-velocity collisions of massive objects ; the growth time
then depends on the initial velocity and is qP a5@2*an

j
~1(r

iThe extreme sensitivity of the growth time to] r
j
)~1V 2.

velocity is the reason low-velocity planetesimals experience
runaway growth in our 1 AU simulations &(Wetherill
Stewart Ida & Makino & Ida1989 ; 1992a, 1992b ; Kokubo

see also and references therein). We adopt 10001996 ; WS93
km as a useful reference radius and write the time for 8 km
objects to produce 1000 km objects at 1 AU as

q B q0
A a
1 AU

B5@2A *a
0.17 AU

BA o0
3 g cm~3

B1@3

]
A V0
450 cm s~1

B2A6 ] 1027 g
M0

B
(1)

(see also & Pellat Using our simulations withBarge 1990).
d \ 1.4, we derive the proportionality constant for this stan-
dard case with velocity evolution, yr, and for aq0,v\ 10,700
model with no velocity evolution, yr. Addi-q0,nv \ 3750
tional simulations conÐrm the mass, velocity, and volume
dependence of this relation for factor of 2 variations in a,
*a, and about the values in (see alsoo0, V0, M0 equation (1)

et al. et al.Aarseth 1993 ; Pollack 1996).

3. KUIPER BELT CALCULATIONS

3.1. Starting Conditions
To choose appropriate constraints on planetesimal simu-

lations in the outer solar system, we rely on observations of
other stellar systems and models of the protosolar nebula.
First, current data indicate lifetimes of D5È10 Myr for
typical gaseous disks surrounding nearby preÈmain-
sequence stars and for the solar nebula & Beckwith(Sargent

Edwards, & Skrutskie et al.1993 ; Strom, 1993 ; Russell
We adopt this estimate as a rough lower limit to the1996).

formation timescale of KBOs and assume that interactions
between gas and planetesimals disappear on a similar time-
scale, Myr (see Appendix, Neptune for-q

g
B 10 eq. [A25]).

mation places an upper limit on the KBO growth time,
because Neptune excites KBOs through gravitational per-
turbations. Recent calculations suggest that Neptune can
form in 5È100 Myr & Stewart(Ip 1989 ; Lissauer 1993 ;
Lissauer et al. Once formed, Neptune inhibits KBO1995).
formation at 30È40 AU by increasing particle random
velocities on timescales of 20È100 Myr & Wisdom(Holman

Levison, & Budd We thus adopt 1001993 ; Duncan, 1995).
Myr as a rough upper limit to the KBO formation timescale
at 30È40 AU.

We assume a wide range of starting conditions for KBO
simulations. Our model annulus is centered outside the
orbit of Neptune at 35 AU and has a width of 6 AU. This
annulus can accommodate at least 10È100 isolated bodies1
with g for e¹ 0.01. The simulations begin withm

i
Z 1024

bodies of radius with m, 800 m, and 8 km.N0 r0, r0\ 80
These bodies have small initial eccentricities, eD 10~3 to
10~2 and an equilibrium ratio of inclina-(Malhotra 1995),
tion to eccentricity, b \ SiT/SeT \ 0.6 (Barge & Pellat 1990,

The mass density of each body is Ðxed at 1.5 g1991, 1993).
cm~3. To set we extend the minimum-mass solarN0,

ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ
1 ““ Isolated bodies ÏÏ are planetesimals that cannot collide with one

another, as deÐned in the Appendix following eq. (A4)
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nebula to the Kuiper Belt and integrate the surface density
distribution for solid particles, across the&\ &0(a/a0)~3@2,
6 AU annulus. The dust mass is then atMminB 0.25&0ME32È38 AU AU). Most minimum-mass solar nebula(a0\ 1
models have g cm~2, which sets&0\ 30È60 MminB
(7È15)ME (Weidenschilling 1977 ; Hayashi 1981 ; Bailey

We thus consider models with initial masses of1994). M0\
to allow for additional uncertainty in(1È100)ME &0. Table

compares input parameters for all Kuiper Belt models1
with initial conditions at 1 AU (see also TablesWS93). 4
and summarize other initial conditions and results for the5
Kuiper Belt simulations summarized below.

Our success criteria are based on direct observations of
KBOs. The present-day Kuiper Belt contains at least 70,000
objects with diameters exceeding 100 km at 30È50 AU

& Luu et al. This population is(Jewitt 1995 ; Jewitt 1996).
some fraction of the initial Kuiper Belt population, because
Neptune has eroded the Kuiper Belt over time &(Holman
Wisdom et al. Thus, a successful KBO1993 ; Duncan 1995).
simulation must achieve km in Myr, wherer5Z 50 [ 100

is the radius at which the cumulative number of objectsr5 exceeds 105. Pluto formation is our second success cri-N
Cterion : plausible models must produce one or more objects

with maximum radius km. In models withrmax º 1000
velocity evolution, we end simulations at 100È200 Myr or
when exceeds D1000 km. To evaluate the dependencermaxof runaway growth on the initial conditions, we extend

simulations without velocity evolution to 5000 Myr or to
when exceeds D2000 km.rmax

3.2. Models without Velocity Evolution
To isolate important processes in trans-Neptunian plan-

etesimal evolution, we begin with constant-velocity solu-
tions to the coagulation equation. We ignore fragmentation
and Ðx the velocities for all masses at km s~1h

i
\ 4.0einitand km s~1. The initial eccentricity andv

i
\ 3.6 sin iinitinclination are set at The total mass andiinit\ 0.60einit.kinetic energy remain constant throughout the calculation.

We also adopt a coarse mass-spacing factor, d \ 1.4. This
choice limits our ability to follow runaway growth with
high accuracy during the late stages of the simulation but
allows us to investigate a wide range of initial masses and
velocities with a modest investment of computer time.
Finally, we adopt simple formulae for gravitational focusing
to speed our calculations (see et al.eq. [A16] ; Spaute 1991).

summarizes the initial conditions and results forTable 4
models with and and 10~2.M0\ (1È100)ME einit\ 10~3

shows how evolves with time for a modelFigure 3 N
Cwith an initial planetesimal radius km, total massr0\ 8

and This model begins withM0\ 10ME, einit\ 10~3.
1.87] 1010 initial bodies and produces D42,500 objects
with twice the initial mass after q\ 100 yr. Roughly half the
original population experiences at least one collision by
qB 16 Myr, when the 17 largest bodies have g.m

i
B 1020

TABLE 4

MODEL RESULTS AT 100 Myr (NO FRAGMENTATION, NO VELOCITY EVOLUTION)

M0 r95† r5 rmax q
r(ME) N0 (km) (km) (km) N(rmax) (Myr)

e\ 10~3, r0\ 80 m:
1 . . . . . . . . 1.87] 1015 0.5 0.6 0.9 1 2698
3 . . . . . . . . 5.61] 1015 1.1 1.5 2.2 1 902
10 . . . . . . . 1.87] 1016 3.9 5.4 6.7 1925 270
30 . . . . . . . 5.61] 1016 . . . . . . 8500 1 90
100 . . . . . . 1.87] 1017 . . . . . . 18500 1 27

e\ 10~3, r0\ 800 m:
1 . . . . . . . . 1.87] 1012 1.4 2.2 2.7 1 2340
3 . . . . . . . . 5.61] 1012 2.2 3.0 4.2 4 780
10 . . . . . . . 1.87] 1013 5.5 8.5 10.7 341 234
30 . . . . . . . 5.61] 1013 . . . . . . 18000 2 78
100 . . . . . . 1.87] 1014 . . . . . . 16700 1 23.5

e\ 10~3, r0\ 8000 m:
1 . . . . . . . . 1.87] 109 13.3 16.9 20.7 140 753
3 . . . . . . . . 5.61] 109 19.2 26.8 36.7 91 250
10 . . . . . . . 1.87] 1010 . . . . . . 7585 5 75
30 . . . . . . . 5.61] 1010 . . . . . . 9800 1 25
100 . . . . . . 1.87] 1011 . . . . . . 8700 2 7.5

e\ 10~2, r0\ 80 m:
1 . . . . . . . . 1.87] 1015 0.5 0.6 0.9 1 . . .
3 . . . . . . . . 5.61] 1015 1.1 1.5 1.9 634 . . .
10 . . . . . . . 1.87] 1016 3.1 4.8 6.0 28 2552
30 . . . . . . . 5.61] 1016 9.6 13.2 16.4 323 850
100 . . . . . . 1.87] 1017 33.6 46.5 63.5 5 255

e\ 10~2, r0\ 800 m:
1 . . . . . . . . 1.87] 1012 1.4 2.2 2.4 3195 . . .
3 . . . . . . . . 5.61] 1012 2.2 3.1 3.8 75 . . .
10 . . . . . . . 1.87] 1013 4.4 6.8 7.4 2018 2521
30 . . . . . . . 5.61] 1013 10.8 14.8 18.4 387 840
100 . . . . . . 1.87] 1014 37.6 51.8 65.0 70 251

e\ 10~2, r0\ 8000 m:
1 . . . . . . . . 1.87] 109 10.1 11.6 16.1 1 . . .
3 . . . . . . . . 5.61] 109 11.7 14.9 18.5 8 . . .
10 . . . . . . . 1.87] 1010 13.4 18.5 23.3 298 2146
30 . . . . . . . 5.61] 1010 21.2 29.3 39.9 1 716
100 . . . . . . 1.87] 1011 59.2 81.9 104.2 18 215
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TABLE 5

MODEL RESULTS (VELOCITY EVOLUTION, NO FRAGMENTATION)

M0 r95† r5 rmax q
r(ME) N0 (km) (km) (km) N(rmax) (Myr)

e\ 10~3, r0\ 80 m:
1 . . . . . . . 1.87] 1015 0.5 0.8 0.9 6 . . .
2 . . . . . . . 3.74] 1015 2.6 30.4 126.1 2 . . .
3 . . . . . . . 5.61] 1015 2.7 33.8 603.4 1 184
6 . . . . . . . 1.12] 1016 2.9 44.1 1072.6 1 67
10 . . . . . . 1.87] 1016 2.6 54.1 1000.5 1 32
17 . . . . . . 3.18] 1016 2.4 55.7 1008.5 1 18
30 . . . . . . 5.61] 1016 2.7 74.4 1059.2 1 10

e\ 10~3, r0\ 800 m:
1 . . . . . . . 1.87] 1012 1.4 2.3 2.7 9 . . .
2 . . . . . . . 3.74] 1012 2.0 3.2 3.7 24 . . .
3 . . . . . . . 5.61] 1012 2.8 5.4 6.8 1 . . .
6 . . . . . . . 1.12] 1013 11.2 47.3 456.9 1 155
10 . . . . . . 1.87] 1013 10.6 51.4 1007.8 1 83
17 . . . . . . 3.18] 1013 10.6 68.2 1022.7 1 46
30 . . . . . . 5.61] 1013 10.6 90.7 1000.3 2 25

e\ 10~3, r0\ 8000 m:
1 . . . . . . . 1.87] 109 11.7 17.9 23.9 8 . . .
2 . . . . . . . 3.74] 109 15.3 24.1 32.7 7 . . .
3 . . . . . . . 5.61] 109 17.3 30.6 46.0 4 . . .
6 . . . . . . . 1.12] 1010 27.3 57.1 123.0 1 . . .
10 . . . . . . 1.87] 1010 43.4 90.6 462.4 1 132
17 . . . . . . 3.18] 1010 48.8 101.2 1050.0 1 76
30 . . . . . . 5.61] 1010 51.7 114.2 1017.7 2 44

e\ 10~2, r0\ 80 m:
1 . . . . . . . 1.87] 1015 0.4 0.6 0.8 762 . . .
2 . . . . . . . 3.74] 1015 0.7 1.2 1.4 39 . . .
3 . . . . . . . 5.61] 1015 1.0 1.8 1.9 1103 . . .
6 . . . . . . . 1.12] 1016 5.8 46.6 294.7 1 126
10 . . . . . . 1.87] 1016 6.3 60.4 1004.1 1 76
17 . . . . . . 3.18] 1016 6.4 70.0 1002.2 2 43
30 . . . . . . 5.61] 1016 6.4 82.2 1070.2 1 24

e\ 10~2, r0\ 800 m:
1 . . . . . . . 1.87] 1012 1.4 2.2 2.7 2 . . .
2 . . . . . . . 3.74] 1012 1.8 2.8 3.4 2 . . .
3 . . . . . . . 5.61] 1012 2.2 3.3 3.8 48 . . .
6 . . . . . . . 1.12] 1013 3.1 4.9 6.0 1 . . .
10 . . . . . . 1.87] 1013 4.4 7.3 8.4 78 . . .
17 . . . . . . 3.18] 1013 13.9 43.0 74.1 4 130
30 . . . . . . 5.61] 1013 23.4 90.8 1000.5 2 73

e\ 10~2, r0\ 8000 m:
1 . . . . . . . 1.87] 109 10.1 13.0 16.3 6 . . .
2 . . . . . . . 3.74] 109 10.1 14.3 16.4 303 . . .
3 . . . . . . . 5.61] 109 11.7 15.3 18.3 11 . . .
6 . . . . . . . 1.12] 1010 13.2 17.8 20.7 68 . . .
10 . . . . . . 1.87] 1010 13.4 20.8 26.1 2 . . .
17 . . . . . . 3.18] 1010 17.0 25.9 31.0 46 . . .
30 . . . . . . 5.61] 1010 28.3 45.8 62.3 6 167

Slow growth continues until qB 59 Myr, when the three
largest objects have sizes comparable to large KBOs, r

i
B

100 km and g. The growth rate of the largem
i
B 1022

masses then increases considerably because of gravitational
focusing. Runaway growth ensues. The cumulative mass
distribution then follows a power law, at lowN

C
P r

i
~2.75,

masses and develops a high-mass shoulder that extends to
larger and larger masses as the simulation proceeds. This
shoulder resembles the runaway plateau observed in 1 AU
models but does not evolve into a true plateau with N

C
B

const as in Figures and The largest planetesimals reach1 2.
km at qB 66 Myr ; exceeds 1000 km only 9rmax B 200 rmaxMyr later. A single runaway body with kmrmaxB 4000

begins to sweep up lower mass planetesimals at qB 80
Myr ; by qB 85 Myr, it contains essentially all of the mass
in the annulus.

Simulations with km produce runaway growthr0\ 8
independent of the initial mass in the annulus. Figure 4a

indicates that each model experiences a long, linear growth
phase until km. The largest objects thenrmaxB 100È200
begin a short rapid-growth phase that produces several iso-
lated, runaway bodies with km. These runawayrmax B 1000
bodies accumulate all of the lower mass bodies and may
merge to form a single runaway body if the isolation cri-
terion permits. The time to produce runaway bodies with

km scales with the mass in the annulus,r
i
\ 1000 q

r
B

Myr. For comparison, our scaling relation753(M0/ME)~1
in predicts Myr forequation (1) q

r
B 775(M0/ME)~1 o0\

1.5 g cm~3 in a 6 AU annulus centered at 35 AU.
Runaway growth also occurs independently of the initial

radius, (Figs. Because of smaller initial cross sec-r0 4aÈ4c).
tions, models with m take longer to reach ther0\ 80È800
rapid-growth phase. These models make the transition from
rapid growth to runaway growth more quickly, because it is
easier for 100] km objects to sweep up small objects with
r \ 1 km. In all cases, a single runaway body with r [ 1000



2142 KENYON & LUU Vol. 115

FIG. 3.ÈCumulative size distribution for km, andM0\ 10ME, r0\ 8
e\ 10~3. The eccentricity of this model is constant in time. Collisional
growth is quasi-linear for 50 Myr until the largest bodies have rmax \ 50
km. Runaway growth begins when km; these bodies then growrmax Z 100
to sizes of 103 km to 104 km in 20È30 Myr.

km eventually accumulates all of the mass in each simula-
tion, although the timescale is quite long, Myr,q

r
B 2700

for simulations with and m. Again, theM0\ME r0\ 80
runaway growth time scales with mass : q

r
B

Myr for m and2340(M0/ME)~1 r0\ 800 q
r
B

Myr for m. The small increase in2700(M0/ME)~1 r0\ 80 q
rwith initial radius for m suggests that models withr0[ 800

m will reach runaway growth on timescales ofr0\ 80
D3000 Myr, which is D40 times slower than models with

km.r0\ 8
Our results also conÐrm the velocity dependence derived

in Low-eccentricity simulations with 50%equation (1).
smaller initial velocities reach runaway growth in 25% of
the time for our standard model ; simulations with twice the
initial velocity require 4 times as long to achieve runaway
growth. This simple relation begins to break down as the
eccentricity increases to eB 10~2, as outlined below. The
runaway time also scales with the width of the annulus, *a,
and the semimajor axis, a, as indicated in equation (1).

High-eccentricity models also achieve runaway growth
but do not follow precisely the velocity scaling in equation

shows the radius evolution for models with(1). Figure 5
di†erent and for e\ 10~2 (see also Ther0 m0 Table 4).
growth time for 1000] km objects is q

r
B 20È25(M0/ME)~1

Gyr, nearly independent of the initial radius and velocity.
This relation contrasts with the low-eccentricity results,
where the growth time is very sensitive to the initial condi-
tions. In all our simulations, planetesimal growth is orderly
until gravitational focusing becomes important and
runaway growth occurs. However, the radius where gravita-
tional focusing becomes important increases from r

i
D 10

km at e\ 10~3 to km at e\ 10~2. For modelsr
i
D 100

with small initial bodies, m, the timescale to reachr0[ 800
runaway growth is directly proportional to e. For models

with large initial eccentricity, the long orderly phase also
““ erases ÏÏ memory of the initial radius. Thus, is nearlyq

rindependent of for large e. The relatively short orderlyr0growth phase of low-e models does not erase memory of r0 ;
decreases with increasing for For modelsq

r
r0 einit[ 0.05.

with km, gravitational focusing accelerates growthr0D 8
immediately at low e. These simulations do not have an
orderly growth phase ; instead, they follow the 1 AU simula-
tions and satisfy the scaling relation in equation (1).

Before we consider Kuiper Belt simulations with velocity
evolution, our basic result that constant-velocity models
achieve runaway growth deserves some comment. First,
previous simulations at 1 AU show that runaway growth
requires dynamical friction to decrease the velocities of the
largest bodies to the regime where gravitational focusing
becomes important (Wetherill & Stewart Barge1989, 1993 ;
& Pellat Ida & Makino1990, 1991 ; Ida 1990 ; 1992a, 1992b ;

& Ida In Kuiper Belt modelsOhtsuki 1992 ; Kokubo 1996).
with gravitational focusing factors becomeeinit\ 10~3,
very large at planetesimal masses of 1023 to 1024 g. Further
growth of these bodies only enhances gravitational focus-
ing, because the escape velocity increases while the impact
velocities remain low. More massive objects thus ““ run
away ÏÏ from their lower mass counterparts. This response
occurs in any constant-velocity simulation as long as bodies
can reach masses at which the escape velocity is large com-
pared with the relative impact velocity, ModelsV

e,ij/Vij
? 1.

with never reach this limit for plausible andeinitZ 0.1 M0thus do not experience runaway growth. Models with
always produce runaway bodies, albeit at mucheinit[ 0.05

later stages than models with einitD 10~3 (Fig. 5).
Our Ðnal comment on runaway growth concerns the

shape of the cumulative number distribution near the end of
the simulation. During runaway growth, models at 1 AU
develop a plateau in the cumulative number distribution
that extends from g to g (see Figs.m

i
\ 1023 m

i
\ 1025È1026

and This plateau separates runaway bodies from the1 2).
lower mass objects, which are in the orderly growth regime
and have a power-law size distribution, forN

C
P r

i
~3

log see Figs. The Kuiper Beltm
i
\ 21È24 (WS93; 1È2).

simulations also produce a power-law size distribution,
for g, but they develop a high-massN

C
P r

i
~2.7 m

i
[ 1025

““ shoulder ÏÏ instead of a marked plateau at runaway growth
(see To test whether this feature is a function of theFig. 3).
mass resolution as in 1 AU models, we simulated evolution
at 35 AU with d \ 1.1 and 1.25 for andM0\ 10ME r0\ 8
km. As the mass resolution in the simulation increases from
d \ 1.4 to d \ 1.1, the high-mass shoulder follows a very
shallow power law, This power lawN

C
P r

i
~1.7 (Fig. 6).

becomes better deÐned as the mass resolution increases
further, but it never develops into the ““ runaway plateau ÏÏ
produced in the 1 AU models (Figs. This result sug-1È2).
gests that the broad plateau in 1 AU models is the result of
velocity evolution, which reduces the velocity of the most
massive objects and enhances gravitational focusing

We will now test this hypothesis by considering(WS93).
Kuiper Belt models with velocity evolution.

3.3. Models with Velocity Evolution
To understand the importance of velocity evolution in

the Kuiper Belt, we add several physical processes to the
calculation : (1) gas drag, (2) dynamical friction and viscous
stirring from long-range (elastic) collisions, and (3) dynami-
cal friction and viscous stirring from short-range (inelastic)
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FIG. 4a FIG. 4b

FIG. 4c

FIG. 4.ÈRadius evolution as a function of initial mass for constant-velocity models, with (a) km, (b) m, and (c) m. The eccentricityr0\ 8 r0\ 800 r0\ 80
is e\ 10~3. The time to runaway growth scales inversely with initial mass, Myr for km, Myr for m,q

r
Bq0(M0/ME)~1 ; q0B 753 r0\ 8 q0B 2340 r0\ 800

and Myr for m.q0B 2700 r0\ 80

collisions. As in our constant-velocity models, we begin
with bodies at radii m, 800 m, and 8 km. WeN0 r0\ 80
adopt d \ 1.4 for the mass-spacing factor and use our
simple expression for gravitational focusing, equation (A16).
The initial velocities are m s~1 andh

i
\ 4.0(einit/10~3) v

i
\

m s~1. The eccentricity and inclination evolve2.1(einit/10~3)
separately as a result of collisions and collective interactions
(see Appendix, summarizes the initial condi-° A3). Table 5
tions and results for models with andM0\ (1È30)MEto 10~2.einit\ 10~3

Before describing the results of our simulations, it is
useful to compare various timescales for velocity evolution

at 35 AU. First, gas drag is negligible in models that ignore
fragmentation. A typical simulation at 35 AU loses
D10~5 % of its total mass as a result of gas drag in
100 Myr. Velocity changes due to gas drag are also insigniÐ-
cant ; the timescale for gas drag to modify the velocity
exceeds 10 Gyr for all masses in our simulation.

Velocity changes due to elastic and inelastic collisions,
however, are signiÐcant. compares timescales,Figure 7a

for horizontal velocity evolution as a func-q
v,h\ h

i
/(dh

i
/dt),

tion of particle mass at 35 AU. The two curves show forq
v,hinteractions between particles of the same mass with a

power-law size distribution, and constantN
C
P r~2.7,
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FIG. 5a FIG. 5b

FIG. 5c

FIG. 5.ÈSame as but with eccentricity e\ 10~2 : (a) km, (b) m, and (c) mFig. 4, r0\ 8 r0\ 800 r0\ 80

velocity. These timescales are not integrated over the size
distribution and are relevant only when a simulation has a
small range of masses. Viscous stirringÈwhich tends to
increase particle velocitiesÈis ine†ective for kg,m

i
[ 1013

yr, but very e†ective, yr, atq
v,hB 1016 q

v,h [ 106 m
i
Z 1017

kg. Collisional damping is also more e†ective at large
masses, but the timescale is much less mass sensitive than
viscous stirring. Collisional damping balances viscous stir-
ring for an initial particle mass kg, which corre-m0B 1015
sponds to km.r0B 5

To illustrate these points in more detail, Figures and7b
plot the integrated timescales, for7c q

v,h \;
i/1N h

i
/(dh

i
/dt),

the horizontal velocity at two stages of a model with veloc-

ity evolution. In Figure 7b, the maximum mass has mmax B
1014 kg. Collisional damping still dominates viscous stirring
for the lowest masses, but the mass at which the two pro-
cesses balance has moved from kg tom

i
B 1015 m

i
B

5 ] 1011 kg. Once kg, viscous stirring domi-mmax B 1019
nates collisional damping for all masses. Particle velocities
thus increase once massive objects with km arer

i
Z 100

produced. The timescale for viscous stirring is quite short,
yr, at the lowest masses considered in our models, so[106

the velocity increases can be large during the 100 Myr time-
scale of a typical simulation.

shows how and evolve with time in aFigure 8 N
C

h
imodel with km, and Ther0\ 8 M0\ 10ME, einit\ 10~3.
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FIG. 6.ÈCumulative size distribution for a constant-velocity model
with d \ 1.1 for km, and e\ 10~3. This model pro-M0\ 10ME, r0\ 8
duces a cumulative size distribution with two distinct power laws : N

C
P

r~2.7 for 8 km and for 300 km.km [ r
i
[ 300 N

C
P r~1.7 km [ r

i
[ 5000

simulation begins with and produces 762N0\ 1.87] 1010
objects having 8 times the initial mass in 1 Myr. Roughly
half the initial bodies experience at least one collision by 24
Myr, when the largest object has km. The hori-rmaxB 37
zontal velocities then range from m s~1 at kmh

i
\ 1 r

i
\ 37

up to m s~1 at km. Orderly growth producesh
i
\ 7 r

i
\ 8

km objects at 56 Myr, and this population reachesr
i
\ 100

at 61 Myr. This phase continues until D100 Myr,N
C
B 100

when Charon-sized objects with km begin to growr
i
B 500

rapidly. There are 10 ““ Charons ÏÏ at 110 Myr, 47 at 125
Myr, 107 at 150 Myr, and 202 at 180 Myr, when we ended
the simulation. At 180 Myr, 20 Pluto-sized objects with

km are isolated bodies about to run away fromr
i
B 1000

the rest of the mass distribution.
In contrast to the constant-velocity simulations with low

this model does not immediately enter a rapid-growtheinit,phase once objects with km are Ðrst produced.r
i
B 100

Viscous stirring and dynamical friction slowly increase the
velocities of low-mass bodies throughout the simulation :
the horizontal velocity increases from m s~1 tohinit\ 4

m s~1 at 180 Myr This 20-fold increase inh
i
B 65 (Fig. 8).

the eccentricity reduces gravitational focusing by a factor of
400 and retards the growth of the most massive objects.
Evolution thus proceeds at a pace between the constant-
velocity simulations with andeinit\ 10~3 einit\ 10~2.

The evolution for simulations with smaller initial masses
is di†erent, because collisional damping then dominates the
velocity evolution shows the time evolu-(Fig. 7). Figure 9
tion of and for m, andN

C
h
i

r0\ 800 M0\ 10ME, einit\10~3. This simulation begins with andN0\ 1.87] 1013
produces Ðve objects having 8 times the initial mass in 1
Myr. It takes only 7.7 Myr for half the initial objects to
collide at least once. The maximum radius is then rmax B 2.5
km. Velocity damping from inelastic collisions overcomes
viscous stirring, so the particle velocities remain low and do

not change signiÐcantly with mass. As evolution proceeds,
dynamical friction efficiently damps the velocities of the
largest bodies, but collisional damping still maintains
modest velocities at low masses. Bodies with kmr

i
\ 8È10

begin to form at 32È33 Myr, when only 11% of the original
objects remain. The evolution soon overtakes the kmr0\ 8
model. Orderly growth produces 50 km objects at 45 Myr
and 100 km objects at 48 Myr. Runaway growth begins
shortly thereafter. Charon-sized objects form at 60 Myr and
reach Pluto size at 80È81 Myr.

Simulations with m reach runaway growth onr0\ 80
even faster timescales. shows the time evolution ofFigure 10

and for and At 1 Myr, onlyN
C

h
i

M0\ 10ME einit\ 10~3.
43% of the initial bodies have yet to experience a collision ;
33 objects already have m. The maximum radiusr

i
B 270

reaches m in 9 Myr and km in 17 Myr.rmax \ 800 rmax\ 8
The low-mass bodies Ðrst lose D50% of their initial veloc-
ity, m s~1, and begin to increase in velocity athinit\ 4
17È18 Myr, when viscous stirring from long-range collisions
Ðnally overcomes damping from inelastic collisions. At this
time, the high-mass bodies have low velocities as a result of
dynamical friction, m s~1, and begin to growh

i
B 0.01

rapidly. A runaway plateau in the distribution developsN
Cat 24 Myr and extends to Charon-sized objects at 25 Myr.

At the conclusion of this simulation at 33 Myr, Ðve Pluto-
sized objects have km. The velocities of theser

i
B 900È1000

high-mass objects are then m s~1.h
i
B 0.03È0.05

With their long runaway growth times, models with r0\
km cannot meet both of our success criteria unless the8

initial mass is very large, Viscous stirringM0Z (15È20)ME.and dynamical friction increase the velocities of the small
objects throughout these simulations, which reduces gravi-
tational focusing and delays runaway growth compared
with models with smaller The long approach to runawayr0.
growth allows the production of many large KBOs; simula-
tions with have km and thusM0B (6È20)ME r5B 50È100
reach our Ðrst success criterion. However, the timescale to
produce 1000] km objects is 4È5 times longer than models
with m, i.e., Myr. Most ofr0 \ 80 q

r
B 130(M0/10ME)~1

these models thus fail to make Pluto on a reasonable time-
scale.

Models starting with lower mass objects, and 800r0\ 80
m, meet both success criteria. Although viscous stirring and
dynamical friction stir up the velocities of the lowest mass
objects, the timescale for the velocity to increase is large
compared with models with km (see Ther0\ 8 Fig. 7).

m models reach runaway growth faster thanr0\ 800
models with km and produce Pluto-sized objects inr0\ 8

Myr for The com-q
r
B 83(M0/10ME)~1 einit\ 10~3.

bination of smaller particle velocities and a shorter time to
runaway growth results in fewer KBOs compared with
models with km Nevertheless, these modelsr0\ 8 (Fig. 11).
achieve km during the runaway growth phase.r5B 50È90

Models with m and have the shortestr0\ 80 einit\ 10~3
runaway growth times and produce the fewest numbers of
KBOs. The timescale to produce Pluto-sized planets is q

r
B

Myr for which easily allows32(M0/10ME)~1 einit\ 10~3,
Pluto formation in a minimum-mass solar nebula as
Neptune forms at a smaller semimajor axis. These models,
however, struggle to build a population of 105 KBOs
during the runaway growth phase. With relatively low par-
ticle velocities at all masses (see objects withFig. 10b), r

i
B

10È20 km do not grow as rapidly as larger bodies. This
evolution tends to concentrate material in the more massive
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FIG. 7a FIG. 7b

FIG. 7c

FIG. 7.ÈTimescales for viscous stirring (solid curve) and collisional damping (dashed curve) as a function of mass. (a) The two curves show the timescales
for interactions only between particles of the same mass for a realistic cumulative mass distribution. The two plots curve up at high masses because of the
small number of particles. Collisional damping balances the velocity increase due to viscous stirring at D1015 kg. (b) Timescales integrated over all particles
during the initial stages, D10 Myr, of a model with velocity evolution. Collisional damping overcomes velocity increases from viscous stirring only for

kg. (c) As in (b), but for a late stage in the growth process, 15È16 Myr. The integrated e†ects of viscous stirring now increase the velocities of allm
i
[ 1012

particles.

KBOs and reduces the number of lower mass KBOs with
km. This smaller in the calculations leads tor

i
B 50È100 r5partially successful models that yield several Pluto-sized

objects and kmr5[ 50 (Table 5).
At large initial eccentricity, planetesimal growth follows

the evolution of low-eccentricity models, but on longer
timescales In simulations with and 800 m,(Fig. 12). r0\ 80
there are enough small bodies for inelastic collisions to
damp the particle velocities substantially. Dynamical fric-
tion further decreases the velocities of the most massive
bodies and allows runaway growth to occur on reasonable
timescales. In simulations with m andr0\ 80 einit\ 10~2,
runaway growth is delayed by a factor of D2.5 compared

with simulations with This delay increases to aeinit\ 10~3.
factor of D3 for m. At km, collisionalr0\ 800 r0 \ 8
damping initially reduces particle velocities but is overcome
by viscous stirring when km. At this time, thermax B 50
velocities are large, m s~1, and growth is slow. NoneV

i
B 30

of these models reach runaway growth on a 100 Myr time-
scale. Runaway growth, if it occurs, is delayed by a factor of
D6 in models compared with that inlarge-einit low-einitmodels.

Our results for large thus favor low-mass initialeinitbodies. Simulations with m andr0\ 80 einit\ 10~2
produce more KBOs with km than theirr

i
B 50È100 low-

counterparts. The longer orderly growth phase andeinit
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FIG. 8a FIG. 8b

FIG. 8.ÈModel with km, and e\ 10~3, with velocity evolution : (a) cumulative size distribution and (b) horizontal velocity as aM0\ 10ME, r0\ 8
function of time. Collisional growth is quasi-linear until the largest bodies have km at 50È60 Myr. Runaway growth begins whenrmax \ 50È100 rmax Z 500
km at D100 Myr ; these bodies then grow to sizes of 103 km in another 50È80 Myr.

somewhat larger particle velocities at the onset of runaway
growth favor the growth of 50È100 km objects. The forr5these mass distributions is at least a factor of 2 larger than
the for low km for comparedr5 einit (r5B 12È15 einit\ 10~2
with km for Models with largerr5 B 6È8 einit\ 10~3). r0are less successful. For m, runaway growth beginsr0\ 800
well after 100 Myr unless RunawayM0Z (20È30)ME.growth always occurs on a very long timescale, Z 150È200
Myr, for km andr0\ 8 M0[ 30ME.Unlike the constant-velocity models, simulations with
velocity evolution begin to develop a ““ runaway plateau ÏÏ in

the cumulative mass distribution when km (seermax Z 500
Figs. In constant-velocity simulations, we found two8È10).
power-law cumulative mass distributions, atN

C
P r~2.75

low masses and at large masses. The total massN
C
P r~1.75

per mass batch is then roughly constant at low masses and
increases slowly with mass at large masses. In models with
velocity evolution, dynamical friction reduces the velocities
of the largest bodies to m s~1 and maintains veloci-V

i
[ 0.1

ties of m s~1 for smaller objects with km.V
i
D 1È10 r

i
[ 10

As noted by the increase in the escape velocity withWS93,
mass coupled with the decrease in produces substantialV

i

FIG. 9a FIG. 9b

FIG. 9.ÈSame as but for m. Collisional growth is quasi-linear for 45È50 Myr until the largest bodies have km. TheFig. 8, r0\ 800 rmax \ 50È100
transition to runaway growth requires D10 Myr, when Charon-sized objects form. These bodies grow to sizes of 1000 km in another 20 Myr. The velocities of
the smallest objects increase with time as a result of viscous stirring. Dynamical friction reduces the velocities of the largest objects. The velocity minimum at
3È5 km indicates the batches that contain the largest fraction of the total mass.
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FIG. 10a FIG. 10b

FIG. 10.ÈSame as but for m. The largest bodies reach km in 20 Myr and km in only 25 Myr. Runaway growthFig. 8, r0\ 80 rmax \ 50È100 rmax \ 500
begins at 25 Myr, and the largest bodies achieve km after another 8 Myr. As in dynamical friction and viscous stirring increase thermax D 1000 Fig. 9,
velocities of the smallest objects at the expense of the largest objects. Dynamical friction produces a velocity minimum in batches that contain the largest
fraction of the total mass.

increases in the collisional cross sections (see also Wetherill
& Stewart Barge & Pellat Ida &1989 ; 1990, 1991, 1993 ;
Makino & Ida1992a, 1992b ; Ohtsuki 1992 ; Kokubo 1996).
In our models, the velocity distribution resembles a step
function and produces a steplike increase in the gravita-
tional focusing factors, from atF

g
D 10È100 r

i
D

10È100 km up to at km. RunawayF
g
D 104 r

i
D 300È1000

growth then converts the mass distributionN
C
P r~1.75

into because objects with kmN
C
B const, r

i
D 100È200

grow too slowly to Ðll in the power law as objects with
km run away. At low masses, the size distributionr

i
Z 500

FIG. 11.ÈEvolution of the maximum radius with time for models with
di†erent initial mass and initial radius for low initial eccentricity(M0) (r0),(e\ 10~3). The timescale to reach runaway growth decreases with smaller

and with largerr0 M0.

remains a power law, because runawayN
C
P r~2.75,

growth does not change the size distribution signiÐcantly.
To conclude this section, summarizes resultsFigure 13

for accretional evolution in the Kuiper Belt with velocity
evolution and no fragmentation. Successful simulations that
produce D105 KBOs and a few Pluto-sized objects on time-
scales of 100 Myr or less have initial masses somewhat
larger than that predicted for a minimum-mass solar nebula
extrapolated into the Kuiper Belt, and bodiesM0Z 10ME,with initial radii of m to 8 km. Simulations withr0B 800
smaller initial bodies, m, produce Pluto-sizedr0D 80

FIG. 12.ÈEvolution of the maximum radius as in for modelsFig. 11,
with large initial eccentricity (e\ 10~2). Models with high e require 2È4
times more mass to reach runaway growth on timescales similar to that of
low-e models.
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FIG. 13.ÈSummary of velocity evolution models for (a) e\ 10~3 and (b) e\ 10~2. Filled circles indicate successful simulations that produce a few
Pluto-sized objects and D105 KBOs in ¹100 Myr ; open circles indicate simulations that produce no ““ Plutos ÏÏ and too few KBOs in ¹100 Myr ; Ðlled
circles within a larger open circle indicate partially successful simulations that produce a few Pluto-sized objects but too few KBOs in ¹100 Myr.

objects but too few KBOs in 100 Myr. In these partially
successful models, runaway growth removes KBOs from
the mass distribution more rapidly than they are produced
from lower mass objects. This evolution does not occur in
models with larger initial bodies, because collisional
damping is less e†ective at ““ circularizing ÏÏ the orbits during
the orderly growth phase. The higher particle velocities in
these models allow formation of more KBOs during the
runaway growth of Charon-sized objects.

Collisional evolution often fails to produce 100] km
objects on any useful timescale. Simulations with M0 B

produce neither Pluto-sized objects nor a substan-(1È6)MEtial number of 100] km KBOs in 100 Myr. Large initial
eccentricities exacerbate this problem for models with r0Z
800 m, because collisional damping cannot reduce the parti-
cle velocities before 100] km objects form. These simula-
tions can produce KBOs and ““ Plutos ÏÏ on longer
timescales, 100È1000 Myr, in systems where a Neptune-
sized object does not constrain the formation time.
Extrapolating our results to smaller initial masses, simula-
tions with fail to produce KBOs during theM0[ 0.1MEage of the solar system, D5 Gyr.

3.4. L imitations of the Models
Statistical simulations of planetesimal growth have well-

documented approximations and uncertainties. The model
assumes a homogeneous spatial distribution of planetesi-
mals whose velocities are small compared with the orbital
velocity. These assumptions are good during the early
stages of planetesimal evolution. As planetesimals grow,
dynamical friction can reduce the velocities of high-mass
objects below limits where the statistical approach is valid

& Pellat Once this limit is reached, runaway(Barge 1990).
growth produces a few large bodies that are not distributed
homogeneously in space & Ida(WS93; Kokubo 1996).
These large bodies can then pump up the velocities of the
smallest bodies on short timescales through viscous stirring

We end the simulations with velocity evolution(Fig. 7).
during the runaway growth stage when the basic assump-
tion of a homogeneous distribution of planetesimals begins
to break down. The velocities of low-mass bodies remain
small compared with the Keplerian velocity, but the most

massive objects often have velocities below the low-velocity
limit of the kinetic approximation. We will discuss this
problem below.

The remaining limitations of the statistical approach
involve our implementation of standard algorithms. We
adopt a single accumulation zone and thus cannot follow
the evolution in semimajor axis of a planetesimal swarm
(see et al. We use a coarser grid than someSpaute 1991).
simulations, but this choice has little impact on the results
at 35 AU. At 1 AU, the lag of simulations with d [ 1.1
relative to a simulation with d \ 1.1 increases with increas-
ing d ; we Ðnd a 12% lag for d \ 1.4 but only a 2%È3% lag
for d \ 1.25. At 35 AU, the lag in runaway growth relative
to a d \ 1.1 model increases from 4%È5% for d \ 1.4 to
10%È15% at d \ 2. Our d \ 1.4 simulations thus overesti-
mate the runaway growth time only by 4%È5% (see also

& Greenberg This error isWetherill 1990 ; Kolvoord 1992).
small compared with other uncertainties in the calculation.

Our choice of the initial mass distribution has a modest
impact on our results. We calculated the evolution of
several size distributions with equal mass per mass batch for

Simulations with m andrmin[ r
i
[ rmax. rminD 100È1000
few km are nearly indistinguishable from simula-rmax [ a

tions with a single starting radius, In theser0B rmax.models, collisional damping e†ectively reduces all particle
velocities as described above and allows runaway growth to
occur. Simulations with large km are similar tormaxB 8
those with a single starting mass, unless is small. Forrminm, collisional damping keeps the particle veloci-rmin[ 800
ties small compared with models with a single starting mass.
Runaway growth occurs in these models, but the timescale
to runaway is sensitive to We plan to explore thisrmin.sensitivity in more detail when we include fragmentation in
the calculation.

The most uncertain approximation in our calculations is
the treatment of low-velocity collisions. During the late
stages of most simulations, the massive bodies have very
low velocities and very large gravitational ranges. The
velocities are often smaller than the Hill velocity, whichVH,
invalidates the basic assumptions for our velocity evolution
calculations (Barge & Pellat &1990, 1991, 1993). Barge
Pellat and have developed di†erent approx-(1990) WS93
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imations to low-velocity collisions based on IdaÏs (1990)
N-body simulations (see also We note thatOhtsuki 1992).
these two approximations produce di†erent velocities for
high-mass planetesimals, which we plan to examine in more
detail when we include fragmentation in our calculations.
The mass evolution of runaway bodies is not a†ected by our
treatment of velocity evolution in the low-velocity regime.

The large gravitational ranges of the most massive bodies
also invalidate the standard treatment of collisions. We use
the prescription for isolating the largest bodies fromWS93
collisions with one another and adopt the et al.Greenberg

approach to low-velocity collisions in the two-(1991)
dimensional regime. Removing the isolation criteria allows
the largest body to grow more rapidly than the isolated
bodies and reduces the timescale to runaway growth by
5%È10%. Removing the et al. two-Greenberg (1991)
dimensional cross sections has no substantial e†ect on our
results.

Aside from fragmentation, we have included all impor-
tant physical processes in planetesimal evolution. Our
neglect of fragmentation, however, is a serious limitation. In
previous simulations, fragmentation of relatively strong
bodies with km produces a signiÐcant amount ofr

i
Z 1È10

cratering debris that can be accumulated later by runaway
bodies (e.g., & Pellat This processWS93; Barge 1993).
usually becomes important only in the late stages of calcu-
lations at 1 AU: it slows growth during early stages but
speeds up runaway growth later in the evolution &(Barge
Pellat However, collisions between very weak1993 ; WS93).
bodies can disrupt and thereby prevent any growth of icy
planetesimals at modest velocities. The importance of frag-
mentation at a B 35 AU thus depends on the unknown
strength of KBOs.

We can estimate the importance of fragmentation in
Kuiper Belt simulations using & PellatÏsBarge (1993)
results for a reasonable fragmentation model. They adopt
the Schmidt, & Holsapple energy prescrip-Housen, (1991)
tion for planetesimal disruption and derive collisional out-
comes for several test cases. These results are most
appropriate for rocky asteroids, but it is straightforward to
scale them to the weaker, icy bodies that might exist at
35 AU. We consider the two cases recently adopted by
Stern & Colwell strong, rocky KBOs and(1997a, 1997b) :
weak, icy KBOs.

Fragmentation does not signiÐcantly change our main
conclusions if KBOs are strong objects. According to
Figure 5 of & Pellat fragmentation modiÐesBarge (1993),
the growth of 10 km bodies only when TheeZ ecritB 0.025.
critical eccentricity for fragmentation decreases to ecritB10~2 for 1 km objects and for 0.1 kmecritB 2 ] 10~3
objects (see also Fig. 1 of Our low-e simulationsStern 1996).
never reach these critical values. Fragmentation is impor-
tant in large-e simulations, but most of these models do not
produce KBOs on a reasonable timescale.

The growth of icy KBOs is probably very sensitive to the
timescale for velocity evolution. We expect fragmentation
to dominate the early evolution of all simulations con-
sidered above, because only objects with km canr

i
Z 20È30

survive collisions and produce larger bodies (see also Stern
& Colwell As the evolution proceeds,1997a, 1997b).
however, inelastic collisions should damp the velocities of
bodies with km, while dynamical friction damps ther

i
[ 1

velocities of the most massive objects (see TheseFig. 7).
damping timescales are short compared with the viscous

stirring timescales, so the particle velocities decrease on
relatively short timescales, D10 Myr. This damping is prob-
ably sufficient to allow the growth of 1È10 km objects on
timescales similar to those found in our models without
fragmentation. Smaller bodies may not grow unless
dynamical friction is very efficient. We will explore this
possibility in our second paper.

4. DISCUSSION AND SUMMARY

We have developed a time-dependent planetesimal evolu-
tion program similar to the code used to simulate theWS93
formation of terrestrial embryos from small bodies. The
program incorporates coagulation with realistic cross sec-
tions and velocity evolution using the statistical formula-
tion of Barge & Pellat see also et al.(1990, 1991 ; Hornung

Our numerical solutions to the coagulation equation1985).
agree with analytic solutions for three standard test cases.
Our results also agree with simulation of the forma-WS93Ïs
tion of Earth at 1 AU. The present models do not incorpor-
ate fragmentation of bodies during collisions. We will
include fragmentation in a separate paper.

We have considered two simple cases of planetesimal
evolution in a 6 AUÈwide annulus centered at 35 AU.
Models without velocity evolution invariably produce
several large bodies that accrete practically all of the
material in the annulus. The runaway growth in these simu-
lations occurs without dynamical friction or gas drag ; it is a
direct consequence of gravitational focusing. The time
required to produce a runaway body in our models scales
inversely with the initial mass of the annulus and with the
initial radii and velocities of the planetesimals. For bodies
with m and our simulationsr0\ 80È8000 einit\ 10~3,
produce runaway growth in 100 Myr for annular masses of
roughly The timescale for runaway growth(10È30)ME.increases to 700È2000 Myr for e\ 10~2. A minimum-
mass solar nebula with &P R~3@2 contains in a(7È15)ME6 AUÈwide annulus centered at 35 AU. These models thus
reach runaway growth in a minimum-mass nebula on time-
scales comparable to the maximum formation timescale for
Neptune (D50È100 Myr ; et al. et al.Lissauer 1995 ; Pollack

Runaway growth on much shorter timescales, D101996).
Myr, requires annular masses that far exceed the minimum-
mass solar nebula, in a 6 AUÈwide annulus forD100MEto 10~3.einit\ 10~2

Models with velocity evolution produce runaway growth
on a much wider range of timescales compared with
constant-velocity calculations. First, dynamical friction and
viscous stirring dominate the evolution of models with rela-
tively large (8 km) initial bodies. The velocities of these
bodies thus increase as collisions produce more massive
objects. This velocity increase delays runaway growth by
factors of 2 or more compared with constant velocity evolu-
tion. The delay in the runaway growth time increases with
increasing In contrast, collisional damping dominateseinit.the evolution of models with smaller (80È800 m) initial
bodies. These bodies ““ cool ÏÏ until the largest objects have
radii of 10È20 km. Dynamical friction and viscous stirring
then ““ heat up ÏÏ the small bodies, but this heating is small
compared with the velocity increases of the kmr0\ 8
models. For collisional damping enhances col-einit\ 10~3,
lision rates and decreases the timescale to runaway growth
by factors of 4È12 compared with constant-velocity calcu-
lations. Our simulations of minimum-mass solar nebulae
with reach runaway growth on timescales ofeinit\ 10~3
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20È40 Myr for 80 m initial bodies, 50È100 Myr for 800 m
bodies, and 75È250 Myr for 8 km bodies. These timescales
increase by factors of 2È4 for einit\ 10~2.

The formation of runaway bodies in constant-velocity
simulations is surprising. Previous simulations demon-
strated a need for dynamical friction, which decreases the
velocities of the most massive objects (Wetherill & Stewart

Barge & Pellat Ida &1989, 1993 ; 1990, 1991 ; Ohtsuki 1992 ;
Makino & Ida Gravitational1992a, 1992b ; Kokubo 1996).
focusing then allows these bodies to sweep up lower mass
bodies very rapidly. & Ida summarize neces-Kokubo (1996)
sary and sufficient conditions for runaway growth and show
that the ratio of the maximum mass of planetesimals to
their mean mass increases dramatically during runaway
growth. Our constant-velocity simulations satisfy the
““ necessary ÏÏ condition for runaway growth,

2RH,ij )[ V
ij

[ V
e,ij , (2)

but do not meet the ““ sufficient ÏÏ condition,

dV
dm

\ 0 , (3)

because our velocities are constant with mass, dV /dm\ 0.
Nevertheless, the maximum mass, of each constant-Mmax,velocity simulation increases much more rapidly than the
mean mass, (Fig. 14). In the ratioSm

i
T Figure 14a,

increases slowly during the orderly growthMmax/Sm
i
T

phase and then increases rapidly when several isolated
bodies begin to accrete most of the mass in the annulus.
This runaway growth is not as extreme as that seen in
models with velocity evolution. We derive Mmax/Sm

i
T B

106 in constant-velocity models, compared with
in models with velocity evolutionMmax/Sm

i
T B 108È1010
Dynamical friction is responsible for the larger(Fig. 14b).

increase in in models with velocity evolution.Mmax/Sm
i
T

Although the constant-velocity simulations are artiÐcial,
they are a useful guide to planetesimal growth in the outer

solar system. Our results show that collisional damping by
small bodies can overcome viscous stirring and keep parti-
cle velocities low at a \ 35 AU. The relative efficiency of
collisional damping should increase with a, because the col-
lision rates decrease more rapidly with a than do the
damping rates vs. The situ-(qcollP a~5@2 qdampP a~3@2).
ation in the outer solar system di†ers markedly from condi-
tions at small a. In our simulations at 1 AU, bodies with

m grow to 10 km objects in D1000 yr. As in ther
i
B 80È800

35 AU simulations described above, collisional damping
reduces the velocities of the small bodies by a factor of D2
in 1000 yr. In contrast to our 35 AU models, viscous stirring
and dynamical friction act quickly to increase velocities
once larger bodies are produced at 1 AU. Aside from the
longer timescale to reach runaway growth, this evolution
then follows closely the simulations in Figures and1 2.

With these considerations in mind, we suggest a modest
modiÐcation to the sufficient condition for runaway growth,

dV
dm

¹ 0 , (4)

instead of the condition in This conditionequation (3).
maintains the relative growth rate necessary for runaway in
a three-dimensional system,

1
M

dm
dt

P M1@3 (5)

(see & Ida when the gravitational focusingKokubo 1996),
factor is large (e.g., V

ij
[ V

e,ij).In addition to this new criterion for runaway growth, our
simulations show that Neptune and Pluto can grow in
parallel at a B 30È35 AU. For a minimum-mass solar
nebula, previous calculations indicate that Neptune reached
its current size in no longer than 50È100 Myr (Ip 1989 ;

et al. et al. In our models ofLissauer 1995 ; Pollack 1996).
minimum-mass solar nebulae at 35 AU, 800 m objects grow
to Pluto-sized planets on similar timescales. However,

FIG. 14a FIG. 14b

FIG. 14.ÈEvolution of as a function of time : (a) constant-velocity models ; (b) with velocity evolution. The rapid increase in at theMmax/SmT Mmax/SmT
later stages of many simulations indicates runaway growth.
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recent observations indicate a much shorter lifetime, D5È10
Myr, for gaseous disks surrounding nearby preÈmain-
sequence stars & Beckwith et al.(Sargent 1993 ; Strom 1993 ;

et al. see also If our solarRussell 1996 ; Ferna� ndez 1997).
system evolved on a similar timescale, the formation of the
gas-rich outer planets requires solar nebulae with masses
2È5 times larger than the minimum-mass solar nebula, Mminet al. et al. Neptune then(Lissauer 1995 ; Pollack 1996).
attains its current size in 5È10 Myr. At 35 AU, objects reach
1000 km sizes in 10È20 Myr for and inM0B (2È3)Mmin5È10 Myr for assuming that the initial bodiesM0B 5Mmin,have small masses and eccentricities. Fragmentation should
not change these conclusions unless collisional erosion can
prevent the formation of 1 km bodies from smaller building
blocks.

Our Kuiper Belt simulation produce Pluto-sized objects
on reasonable timescales for other plausible solar nebula
models. In particular, and referencesCameronÏs (1995
therein) detailed disk models for the protosolar nebula have
a shallower density distribution, than the&\ &0(a/a0)~1,
minimum-mass model we considered above to derive our
success criteria (see also & Lin &Ruden 1986 ; Ruden
Pollack CameronÏs model contains in our 61991). D100MEAU annulus. The growth time for 1000] km objects scales
simply from results with smaller disk masses. For models
with velocity evolution, we estimate Myr forq

r
B 3 r0\ 80

m, Myr for m, and Myr forq
r
B 8 r0\ 800 q

r
B 15 r0\ 8

km. Although all of these models can produce Pluto-sized
objects before Neptune reaches its Ðnal mass, models with

km produce more KBOs with km, asr0\ 8 r
i
D 100È300

outlined in ° 3.3.
These resultsÈtogether with recent dynamical calcu-

lations of Malhotra a self-(1993, 1995, 1996)Èsuggest
consistent picture for the formation of Pluto-Charon in the
outer solar system. In this picture, Pluto and Charon begin
as D1 km planetesimals at a D 35È40 AU and grow to their
present sizes on a timescale of 10È100 Myr. Both objects are
runaway bodies more massive than the bulk of the plan-
etesimal mass distribution and have low velocities due to
collisional damping and dynamical friction. At a somewhat
smaller semimajor axis, a B 25È30 AU, Neptune accretes its
current mass in 10È100 Myr and migrates radially outward
through the protosolar disk during the late stages of giant
planet formation et al.(Malhotra 1993 ; Pollack 1996 ;

& Ip see also Ipatov DuringFerna� ndez 1996 ; 1989, 1991).
this outward migration, Neptune captures Pluto-Charon in
the 3 :2 resonance This capture should(Malhotra 1995).
e†ectively end further growth of Pluto-Charon, because the
orbital elements increase to eD 0.2 and i D 10¡ on a short
timescale, D10 Myr, inside the resonance (Malhotra 1995).
High-velocity collisions within the resonance should also
hinder growth as in our large-e models. Neptune also cap-
tures other KBOs at a B 35È40 AU into the 3 :2 and other
resonances see also et al.(Malhotra 1996 ; Jewitt 1996).
Further growth of these objects is also slowed because of
rapidly increasing velocities (Malhotra 1995, 1996 ;

Thomas, & Moons & FarinellaMorbidelli, 1995 ; Davis
As long as collisional erosion does not decrease sig-1997).

niÐcantly the radii of captured KBOs, this sequence of
events accounts for the general aspects of the mass distribu-
tion and orbital elements of observed KBOs in a simple
way.

This picture for the formation of Neptune, Pluto-Charon,
and KBOs di†ers from those of Stern and Stern(1995, 1996)

& Colwell who studied KBO evolution at(1997a, 1997b),
40È70 AU. Stern & Colwell concluded that the formation of
Neptune and KBOs, including Pluto-Charon, requires
D100È1000 Myr because of the low collision rates at
a B 30È50 AU. & see also SternStern ColwellÏs (1997a ;

timescale for KBO formation is a factor of1995, 1996)
10È20 longer than our timescale. Their results also conÑict
with the more detailed gas dynamic calculations of Pollack
et al. Although the exact origin of this discrepancy is(1996).
unclear, we suspect mass spacing, collision rates, and (less
probably) fragmentation may be responsible. Our mass
spacing, d \ 1.4, should produce more accurate estimates
for the growth time than d \ 2 & Colwell or(Stern 1997a)
d \ 4 We estimate 10%È20% delays in(Stern 1996).
runaway growth for d \ 2 and expect very long delays for
d \ 4. In addition, our collision rates include a factor, bcoll,that accounts for the Gaussian distribution of impact
velocities & Lissauer see(Greenzweig 1992 ; eq. [A12]).
Neglecting this factor delays runaway growth by a factor of
3 (see also does not include this factorWS93). Stern (1995)
in his cross section (see his eq. [5]) and thus derives much
longer growth times. As noted above, our neglect of frag-
mentation encourages runaway growth. We do not think
that including this process should delay runaway growth by
another factor of 3, for reasons outlined earlier, and we plan
to test this suspicion in our next paper.

However the theoretical issues may be resolved, several
consequences of our accretion models can be tested with
additional observations. All models that reach runaway
growth produce 10È100 Pluto-sized objects with radii

km and a roughly power-law mass dis-rmax B 1000È2000
tribution with a maximum radius at (seeD(0.1È0.2)rmaxFigs. If Pluto and Charon are runaway bodies pro-8È10).
duced at a B 35È40 AU, there should be several additional
““ Plutos ÏÏ with similar orbital elements. Malhotra (1995)
reached a similar conclusion and noted that recent searches
have not excluded the possibility of several additional such
bodies in 3 :2 orbital resonance with Neptune. The accre-
tion models also predict a cumulative power-law distribu-
tion, for objects with km. ByN

C
P r~3, r [ 100È200

analogy with this shape is fairly independent of frag-WS93,
mentation as long as collisions produce overall growth
instead of disruption. The best Ðt to the observed distribu-
tion is shallower than expected, but the data areN

C
P r~2,

not yet accurate enough to preclude our model prediction
et al. Larger surveys will provide a better test(Jewitt 1996).

of this prediction et al.(Luu 1997).
Finally, our results suggest that KBO formation is likely

in other solar systems. KBOs can grow in the dusty disks
that surround many nearby main-sequence stars, if the disk
masses are within an order of magnitude of the
““ maximum ÏÏ disk masses for a Lyr, a PsA, and b Pic

& Paresce Stars with disk masses near the(Backman 1993).
minimum dust masses of these well-studied A-type stars
probably have few, if any, KBOs but could have many
objects with km. Observations of nearby preÈr

i
D 1È10

main-sequence stars also indicate substantial masses, M
d
Z

in circumstellar disks with radii of 100È1000 AU103ME,(e.g., & Beckwith see also &Sargent 1993 ; Beckwith
Sargent These data imply in the1996). M0D (10È100)MEKuiper Belt. With formation timescales of 1È10 Myr, KBOs
can grow in massive circumstellar disks during the preÈ
main-sequence contraction phase of a low-mass star (see

& Hartmann and references therein). In a lessKenyon 1995
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massive disk, KBOs grow while the central star is on the
main sequence. We expect no KBO formation in circum-
stellar disks with very low masses, These disksM

d
[ 10ME.can produce 1È10 km objects at AU, unless fragmen-a Z 30

tation prevents growth of icy bodies. We will explore this
possibility in a subsequent paper.
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APPENDIX

A1. OVERVIEW

Our evolution model follows procedures developed for other planetary formation calculations, including Safronov (1969),
Greenberg et al. and We assume planetesimals are a statistical ensemble of masses with a distribution of(1978, 1984), WS93.
horizontal and vertical velocities about a single Keplerian orbit. We consider a cylindrical annulus of width *a and height H,
centered at a radius a from the Sun. Particles in the annulus have a horizontal velocity and vertical velocity relative toh

i
(t) v

i
(t)

an orbit with mean Keplerian velocity (see & Stewart These velocities are related to the eccentricity, andVK Lissauer 1993). e
i
,

inclination, throughi
i
,

V
i
2 \ (58e

i
2] 12 sin2 i

i
)V K2 , (A1)

with

h
i
2\ 58e

i
2 V K2 , v

i
2\ 12 sin2 i

i
V K2 . (A2)

We approximate the continuous distribution of particle masses with discrete batches having an integral number of particles,
and total masses The average mass of a batch, evolves with time as collisions add andn

i
(t), M

i
(t) (WS93). m

i
(t) \ M

i
(t)/n

i
(t),

remove bodies from the batch. This procedure naturally conserves mass and allows a coarser grid than simulations with Ðxed
mass bins see also & Nakagawa & Greenberg(Wetherill 1990 ; Ohtsuki 1988 ; Kolvoord 1992).

To follow the evolution of particle number, we solve the coagulation equations for all mass bins, k, during a time step, dt :
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where is the cross section, for i \ j and for The three terms in equations (A3)È(A4) represent (1)A
ij

v
ij
\ 12 v

ij
\ 1 iD j.

mergers of and into a body of mass (2) loss of through mergers with other bodies, and (3) loss of bym
i

m
j

m
k
\ m

i
] m

j
, m

k
m

kgas drag. This treatment assumes (1) that each body can collide with every other body and (2) that bodies do not fragment
during collisions. Assumption 1 is correct for all but the very largest bodies, which become isolated from one another as their
orbits circularize because of dynamical friction (see below). We correct equations (A3)È(A4) for this e†ect by calculating the
““ gravitational range ÏÏ of the largest andbodiesÈR

g,i\ K1 aRH,iimid
] 2ae

i
(WS93)Èwhere K1\ 2(3)1@2 RH,ij \ [(m

i
] m

j
)/

(3 is the mutual Hill radius. As in the isolated bodies are the N largest bodies that satisfy the summationM
_

)]1@3 WS93,
Assumption 2 is rarely correct, because all collisions produce some debris unless the relative velocity of;

imin
imax n

i
R

g,i º*a.
the two particles is very low (see, e.g., In this paper, we concentrate on planetesimal growth and assume that allWS93).
collisions result in mergers. We will consider the e†ects of fragmentation in a separate paper.

To calculate the appropriate index k for a speciÐc collision between batches i and j, we Ðrst calculate a Ðxed grid of masses,
for l\ 1 to and The mass spacing, d, is constant throughout a calculation ; increases with time asm

l
, Nmax d \ m

l`1/ml
. Nmaxmore batches Ðll with particles. When a collision produces bodies with we augment either batch l whenn

k
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k
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or batch l ] 1 when A complete cycle through all mass batches produces new values for and(m
l
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k
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l
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kwhich yield new values for the average mass per bin, This process conserves mass and provides a goodM
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k
\M

k
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k
.

description of coagulation when d is small (see below).
Besides collisions, several processes contribute to the velocity evolution of growing planetesimals, including dynamical

friction, gas drag, and viscous stirring. We assume that all collisions between mass batches conserve the horizontal and
vertical components of kinetic energy, and The change in the two components of kinetic energyE
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due to collisions is
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for each pair of collisions between and In these expressions, represents the change in due to collisions withm
i

m
j
. dn

i
¹ 0 n

iparticles in batch j. Batch k loses kinetic energy because of collisions with other batches (i.e., We also calculate thedn
k
[ 0).

evolution of and due to gas drag Hayashi, & Nakazawa and collective interactions, such as dynamicalh
i

v
i

(Adachi, 1976)
friction and viscous stirring, using a statistical treatment of the appropriate Boltzmann and Fokker-Planck equations
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et al. see ° A3 below). The complete change in the horizontal and vertical kinetic energies is thus(Hornung 1985 ;

dE
h,k \ dE

h,kco ] dE
h,kgd ] dE

h,kin ] dE
h,klr , (A7)

dE
v,k \ dE

v,kco ] dE
v,kgd ] dE

v,kin ] dE
v,klr , (A8)

where the superscripts ““ gd ÏÏ (gas drag), ““ in ÏÏ (inelastic), and ““ lr ÏÏ (long-range elastic collisions, such as viscous stirring and
dynamical friction) refer to a speciÐc type of velocity evolution outlined below (see also Barge & Pellat 1990, 1991 ; WS93).

We solve the complete set of evolution equations (eqs. and using an explicit method that[A3], [A4], [A7], [A8])
automatically prevents large changes ([0.1%) in the dynamical and limiting the time step. As invariablesÈn

i
, M

i
, h

i
, v

i
Èby

we require integer values for and Section A4 compares our numerical procedures with analytic results fromWS93, n
i

dn
i
.

see also & Nakagawa Nakagawa, & Nakazawa of the main textWetherill (1990 ; Ohtsuki 1988 ; Ohtsuki, 1990). Section 2
compares calculations at 1 AU with results from In both cases, our procedures reproduce the expected results. BeforeWS93.
describing the analytic results, we Ðrst describe in detail our treatment of the collision rates (° A2) and the velocity evolution
(° A3).

A2. COLLISION RATE

Approximations to the collision rates between planetesimals are in the spirit of kinetic theory, where the number of
collisions is the product of the local density, the relative velocity, and a cross section. express the number of collisionsWS93
between a single body, and all of the bodies, asm

i
, m

j
,

n
c,ij\ acoll

A n
j

4Ha*a
B
V
ij
F

g,ij(ri] r
j
)2dt , (A9)

where and are the radii of the two bodies, is the relative velocity, and is the gravitational focusingr
i

r
j

V
ij
2 \ V

i
2] V

j
2 F

g,ijfactor. The constant factor accounts for the Gaussian distribution of particle velocities and the di†erence between theacollcollisional frequencies of particles on Keplerian orbits and those in a box & Lissauer The relative(Greenzweig 1992 ; WS93).
velocities and scale height depend on the individual particle velocities :

H \ J2)~1(v
i
2] v

j
2)1@2 , V

ij
\ (h

i
2] v

i
2 ] h

j
2] v

j
2)1@2 (A10)

where ) is the Keplerian angular frequency. The total number of collisions for is simply the cross section(WS93), m
i

n
i
n
c
;

appropriate for equations is then(A3)È(A4)

A
ij
\ acoll

A 1
4Ha *a

B
V
ij
F

g,ij(ri] r
j
)2 . (A11)

We consider two approaches to compute the gravitational focusing factor, In the Ðrst case, we follow and setF
g,ij. WS93

F
g,ij \ FWS,ij \ E

ij

A
1 ] bcoll

V
e,ij2

V
ij
2
B

, (A12)

where is the mutual escape velocity. The extra factors account for the Gaussian distribution ofV
e,ij2 \ 2G(m

i
] m

j
)/(r

i
] r

j
)

impact velocities & Lissauer and the deviations from two-body focusing at low relative velocities(bcoll ; Greenzweig 1992) (E
ij
;

& Lissauer We adopt prescription for the variation of as a function of the relative velocity inGreenzweig 1990). WS93Ïs bcollHill units, VH,ij\ V
ij
/(RH,ijVK/a) :

bcoll\
72.7 ,
1.0] 1.7(VH,ij [ 1) ,
1.0 ,

if VH,ij [ 2 ,
if 1 ¹ VH,ij¹ 2 ,
if VH,ij \ 1 ,

(A13)

and we set

E
ij
\
71 ,
4(e2] sin2 i)1@2E

k
n2 sin i

,

if V
ij

[ 0.13V
e,ij ,

if V
ij

¹ 0.13V
e,ij ,

(A14)

where for k2\ 3/(4[1] (sin i)/e]) & Lissauer et al.E
k
\ /0n@2 (1[ k2 sin2 h)1@2dh (Greenzweig 1990 ; Greenberg 1991).

At very low velocities we adopt the two-body collisional cross sections of et al.(VH,ij \ 2.3), Greenberg (1991) :

F2B,ij \g
A
1 ] V

e,ij2
V T2
B VT

V
ij

RH
RT

,

0.5
A
1 ] V

e,ij2
V T2
B1@2 VT

V
ij

RH
RT

H
r
i
] r

j
,

if VH,ij \ 2.3 ,

if VH,ij \ 2.3, vH,ij \ vH,crit ,
(A15)

where is the Tisserand radius, is the Tisserand velocity, is the half-RT\ a[(m
i
] m

j
)/(1 M

_
)]2@5 VT\ 1.1)*aT *aT\ 2.5RHwidth of the feeding zone, is the relative vertical velocity in Hill units, andvH,ij\ v

ij
/VH vH,crit\ 0.7 sin (0.9[(r

i
] r

j
)/

RH,ij]1@2).
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In our second approach to gravitational focusing, we modify the piecewise analytic approximation of et al.Spaute (1991) :

FS,ij\
71 ] bcoll(Ve,ij/Vij

)2 ,
42.4042(V

e,ij/Vij
)1.2 ,

10706.916 ,

if V
ij

[ 0.032V
e,ij ,

if 0.01\ V
ij
/V

e,ij ¹ 0.032 ,
if V

ij
/V

e,ij ¹ 0.01 ,
(A16)

with as deÐned above. These expressions are continuous and serve as a check on the more detailed expressions forbcoll FWS,ij.For very low velocity encounters, we use the two-body cross sections for deÐned above.F2BIn these approximations to the cross section, the transition from or to at is not smooth. To e†ect aFWS FS F2B VH,ij B 2.3
smooth transition, we set

F
g,ij \

G(1[ x2B,ij)FWS,ij] x2B,ij F2B,ij ,
(1[ x2B,ij)FS,ij] x2B,ij F2B,ij ,

(A17)

where

x2B,ij \
70 ,
0.5(VH,ij [ 2.3) ,
1 ,

if VH,ij[ 3.3 ,
if 1.3\ VH,ij\ 3.3 ,
if VH,ij\ 1.3 .

(A18)

A3. VELOCITY EVOLUTION

As noted above, kinetic models approximate planetesimal orbital elements as a mean square random velocity,V
i
2 (Safronov

& Wetherill and references therein). We divide this velocity into horizontal, and vertical,1969 ; Stewart 1988 ; WS93 h
i
, v

i
,

components that are related to e, and i (see eqs. et al. have derived analytic expressions for theV
i
, [A1]È[A2]). Hornung (1985)

time evolution of planetesimal velocities using a kinetic approximation to average over the velocity distribution function.
reformulated some of these results in terms of the eccentricity and inclination, and we adopt their expressions here forWS93

simplicity (see also & Wetherill We calculate velocity changes due to (1) gas drag, which decreases particleStewart 1988).
velocities and causes particles to spiral in through the disk ; (2) dynamical friction from elastic collisions, which transfers
kinetic energy from larger to smaller bodies ; (3) viscous stirring from elastic collisions, which taps the solar gravitational Ðeld
to increase the velocities of all bodies ; and (4) collisional damping from inelastic collisions (see also et al. BargeHornung 1985 ;
& Pellat 1990, 1991 ; Ohtsuki 1992).

The time evolution of the eccentricity and inclination for long-range, elastic encounters is

devs,i2
dt

\ ;
j/1

N Clr
4

(m
i
] m

j
)e

i
2(J

r
] 4Jh) ,

divs,i2
dt

\ ;
j/1

N Clr
2b

ij
2 (m

i
] m

j
)i
i
2 J

z
(A19)

for viscous stirring and

dedf,i2
dt

\ ;
j/1

N Clr
2

(m
j
e
j
2[ m

i
e
i
2)(K

r
] 4Kh) ,

didf,i2
dt

\ ;
j/1

N Clr
2b

ij
2 (m

j
i
j
2[ m

i
i
i
2)K

z
(A20)

for dynamical friction Appendix C). In these expressions, and are the eccentricity and inclination of each(WS93, e
i
, e

j
, i

i
, i

jbody, is the ratio of inclination to eccentricity, and is ab
ij
2 \ (i

i
2] i

j
2)/(e

i
2] e

j
2) Clr\ 16G2o

j
(ln"] 0.55)/V K3(e

i
2 ] e

j
2)3@2

function of the density of particles in batch j and the relative horizontal velocity of the mass batches The functions(WS93). J
r
,

and are deÐnite integrals that are functions only of et al. Barge & PellatJh, J
z
, K

r
, Kh, K

z
b
ij

(Hornung 1985 ; 1990, 1991 ;
describes a similar approach to velocity evolution).WS93 ; Ohtsuki 1992

The time evolution of e and i due to collisional damping is

dein,i2
dt

\ ;
j/0

i Cin
2

[m
j
e
j
2[ m

i
e
i
2[ (m

i
] m

j
)e

i
2](I

r
] 4Ih) , (A21)

diin,i2
dt

\ ;
j/0

i Cin
b
ij
2 [m

j
i
j
2[ m

i
i
i
2 [ (m

i
] m

j
)i
i
2]I

z
, (A22)

where and is the mass density et al. see also We includeCin\ acoll vijoj
V
ij
F

g,ij(ri] r
j
)2 o

j
(Hornung 1985 ; Ohtsuki 1992).

terms from the collision rate, and for consistency. The integrals, and are listed in theacoll, v
ij
, F

g,ij, I
r
(b

ij
), Ih(bij

), I
z
(b

ij
),

appendices to et al. We integrate these expressions numerically. The integral often diverges ; we setHornung (1985). I
zto avoid these divergences.I

z
\ I[ (I

r
] Ih)In addition to dynamical friction and viscous stirring, we also consider velocity evolution due to gas drag. Gas drag reduces

the velocities of all mass batches and also removes material from each mass match. The inward drift of material is

*a
a

\ 2(0.97e] 0.64i] g/VK)
g
VK

dt
q0

(A23)
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et al. where g is the gas velocity relative to the local Keplerian velocity, We adopt g \ 60 m s~1 for(Adachi 1976), VK.
calculations at 1 AU and g \ 30 m s~1 for calculations at 35 AU et al. The characteristic drift time is(WS93) (Adachi 1976).

q0\ 365
C

D

A m
i

1021 g
B1@3A1 AU

a
BA10~9 g cm~3

o
g

B
TK , (A24)

where is the drag coefficient, AU)]~11@4 is the gas density Hayashi, & NakazawaC
D

\ 0.5 o
g
\ 1.18] 10~9[a/(1 (Nakagawa,

and is the orbital period (see et al. To simulate the disappearance of gas in the protosolar1983), TK Adachi 1976 ; WS93).
nebula, we decrease the gas density with time :

o
g
(t) \ o

g,0 exp ([t/q
g
) (A25)

with g cm~3 & Lin & Pollack The radialo
g,0\ 1.18 ] 10~9[a/(1 AU)]~11@4(M0/Mmin) (Ruden 1986 ; Ruden 1991 ; WS93).

decrease of the gas density follows models for minimum-mass solar nebulae ; the mass dependence allows the density to scale
with the mass of the annulus.

The number of bodies lost from the calculation at each time step depends on their e†ectiveness at crossing *a. We set the
number of bodies lost from a batch as

dngd,i
n
i

\ *a
a

dt
q0

. (A26)

This expression is used in equations (A3)È(A4).
Finally, we adopt & StewartÏs expression for velocity damping due to gas drag :Wetherill (1989)

dV
i

dt
\ [nC

D
2m

i
o
g
V

g
2 r

i
2 , (A27)

where is the drag coefficient and is the mean relative velocity of the gas.C
D

\ 0.5 V
g
\ [V

i
(V

i
] g)]1@2

We convert the di†erential equations, (A19)È(A22) and (A27), into a kinetic energy form in two steps. We use to derive theb
iappropriate horizontal and vertical components of the velocity, in similarly yields andV

i
, equation (A27). Equation (A2) dh

iin terms of and wheredv
i

de
i

di
i
,

de
i
2\ dt

Ade2
dt
B

, di
i
2\ dt

Adi2
dt
B

. (A28)

These substitutions yield

(dh
i
gd)2 \ [dt

C nC
D

o
g
V

g
2 r

i
2

2m
i
(1] 0.8b

i
2)
D

, (dv
i
gd)2\ 0.8b

i
2 dh

i
2 , (A29)

(dh
i
in)2\ 5

8
V K2 dt

Adein,i2
dt
B

, (dv
i
in)2\ 1

2
sin 2 iV K2 dt

Adiin,i2
dt
B

, (A30)

(dh
i
lr)2\ 5

8
V K2 dt

Adevs,i2
dt

] dedf,i2
dt
B

, (dv
i
lr)2 \ 1

2
sin 2 iV K2 dt

Adivs,i2
dt

] didf,i2
dt
B

. (A31)

We multiply these relations by for substitution into equationsm
i

(A7)È(A8).

A4. TESTS OF THE EVOLUTION CODE

To test the validity of our numerical techniques, we compare our results with several test cases (see & NakagawaOhtsuki
et al. The coagulation equations (eqs. have analytic solutions for three1988 ; Ohtsuki 1990 ; Wetherill 1990). [A3]È[A4])

simple forms of the cross section, Smoluchowski Ðrst solved the coagulation equation forA
ij
. Von (1916) A

ij
\ a

c
\ const.

described solutions for and identiÐed an inconsistency inTrubnikov (1971) A
ij

\b
c
(m

i
] m

j
) A

ij
\ c

c
m

i
m

j
. Wetherill (1990)

TrubnikovÏs results for and showed that this cross section produces runaway growth. & NakazawaA
ij
\ c

c
m

i
m

j
Tanaka

veriÐed WetherillÏs new solution and placed limits on the validity of the coagulation equation during runaway growth.(1994)
The analytic solutions to the coagulation equation provide rigorous tests of numerical methods. Two simple cases, A

ij
\ a

cand do not lead to runaway growth, but they test the ability of numerical codes to reach a target mass at aA
ij
\b

c
(m

i
] m

j
),

speciÐed time. They also yield estimates for mass conservation over many time steps. Numerical solutions for A
ij
\ c

c
m

i
m

jare challenging, because runaway growth requires a careful, automatic procedure for changing the time step. In all three cases,
the time lag between the analytic and numerical solutions depends on the mass ratio between consecutive batches, d

These tests thus yield a quantitative measure of the largest allowed value for d & Nakagawa(Wetherill 1990). (Ohtsuki 1988 ;
et al.Ohtsuki 1990 ; Wetherill 1990).

To compare our numerical results with analytic solutions, we follow conventions established by et al. andOhtsuki (1988)
For and we plot log as a function of log We evaluate log as a functionWetherill (1990). A

ij
\ a

c
A

ij
\ b

c
(m

i
] m

j
), N

i
m

i
2 m

i
. N

k
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of log and the fractional mass in the small-body swarm and the runaway body as a function of a dimensionless time form
k The numerical calculations do not have regular mass intervals, so we calculate N \ dN/dm, whereA

ij
\ c

c
m

i
m

j
.

dN \ N
k
] 12(N

k`1] N
k~1) , dm\ m

k`1[ m
k~1 . (A32)

describes analytic solutions for each cross section in detail. The case has the simplest solution. IfWetherill (1990) A
ij
\ a

c
n0is the initial number of particles with mass the number of bodies with mass at a time t ism

i
, m

k
\ km

i
n
k
\ n0 f 2(1[ f )k~1 , (A33)

where and is the dimensionless time (see also & Takahashi & Nakagawaf\ 1/(1 ] 12g1) g1\ a
c
n0 t Silk 1979 ; Ohtsuki 1988).

The solution for has a similar form:A
ij
\ b

c
(m

i
] m

j
)

n
k
\ n0

kk~1
k !

f (1 [ f )k~1 exp [[k(1 [ f )] , (A34)

where and In both of these expressions, f is the fraction of bodies with that have yet to undergo af\ exp ([g2) g2\ b
c
n0 t. m

icollision at time t.
Models with lead to runaway growth when & Pellat &A

ij
\ c

c
m

i
m

j
g3\ cn0 t \ 1 (Wetherill 1990 ; Barge 1990 ; Tanaka

Nakazawa The number distribution for is1994). g3 ¹ 1

n
k
\ n0

(2k)k~1
k !k

(g3/2)k~1 exp ([kg3) . (A35)

This solution fails to conserve mass for a single runaway body then contains most of the total mass. The mass of theg3[ 1 ;
runaway body for isg3[ 1

m
R

\ n0 exp
C
[
P

;
k/1

N
k2(n

k
/n0)dg@

D
(A36)

Tanaka & Nakazawa(Wetherill 1990 ; 1993, 1994).
compares our results for d \ 1.25 with the analytic solution for The agreement is good and againFigure 15 A

ij
\ a

c
.

improves as d decreases. Our results for d \ 1.4È1.6 are consistent with the analytic solution, although we have too few mass
batches to make reliable comparisons when We did not attempt numerical models for d \ 1.6È2 (the maximumg1\ 10È20.
allowed), but we expect that these will produce satisfactory results for g [ 100.

shows results for and d \ 1.25. The agreement between our calculation and the analyticFigure 16 A
ij
\ b

c
(m

i
] m

j
)

solution is quite good and improves as d increases. We Ðnd a slight excess of low-mass bodies in our numerical results
compared with the analytic solution. WetherillÏs Figure 4 contains a similar excess. The peak of our normalized number
distribution lags the analytic result by 1.4%. This lag decreases with d and is less than 1% for d \ 1.10.

FIG. 15.ÈEvolution of the mass distribution for a constant cross section, The solid curves plot analytic results for four values of g ; the symbolsA
ij

\ a
c
.

indicate results of the numerical simulations.
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FIG. 16.ÈSame as but forFig. 15, A
ij
\b

c
(M

i
] M

j
)

Figures and summarize our results for and d \ 1.25 for g ¹ 1. The numerical solution follows the17 18 A
ij
\ c

c
m

i
m

janalytic model very closely for and then begins to diverge at large masses as g approaches unity (Fig. 17). Theg3\ 0.95
numerical model begins runaway growth at and lags the analytic model by 1.2%. The numerical runaway beginsg3\ 1.012
much closer to the predicted result, for d \ 1.08. Larger values for d produce runaways that are delayed by muchg3\ 1.005,
longer factors. The lag is 2.7% for d \ 1.4 and 8.7% for d \ 2. quotes similar results for his numerical modelsWetherill (1990)
with d \ 1.07 and d \ 1.25.

describes the evolution of the runaway-growth model for d \ 1.08 and The calculated mass distributionFigure 18 g3[ 1.
initially lags the analytic result by less than 1% for marginally larger than 1 (see also but matches the analytic resultg3 WS93)
almost exactly at (Fig. 18a). The calculation continues to match the analytic result until Figure 18b plots theg3\ 1.05 g3B 5.
mass of the runaway body for The calculated mass agrees with the analytic prediction, to 1% or betterg3º 1. equation (A36),
for all Models with d \ 1.25 have greater difficulty reaching large as a result of their poorer mass resolution. Theseg3º 1. g3

FIG. 17.ÈEvolution of the mass distribution for The solid curves plot analytic results for four values of g ; the symbols indicate results ofA
ij
\ c

c
M

i
M

j
.

the numerical simulations.
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FIG. 18a FIG. 18b

FIG. 18.ÈRunaway growth for (a) Evolution of the residual mass distribution for four values of g [ 1. The simulations lag the analyticA
ij

\ c
c
M

i
M

j
.

model for g B 1 and then follow it closely for larger g. (b) Evolution of the mass of the runaway body for the simulation (circles) and the analytic model (solid
curve) as a function of g.

models have larger at high masses, which reduces the time step considerably compared with models with small d. Then
kcalculation then requires a signiÐcant amount of computer time and does not agree as well with the analytic predictions. Our

models with d º 1.4 fail to reach if we maintain our criterion of small per time step. Relaxing this criterion allowsg3B 1.1 dn
kreasonable time steps but produces very poor agreement, with the analytic solution.Z 20%,

These results conÐrm our limits on for the Kuiper Belt simulation described in the main text, per time step, fordn
k

[ 0.1%
d \ 1.08È1.4. Models with larger d fail to follow growth properly unless the time steps are unreasonably small.
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