
COMPUTER
SCIENCE &ENGINEERING

Compiled Acceleration of C
Codes for FPGAs

Walid Najjar
Professor, Computer Science & Engineering
University of California Riverside

W. Najjar - UC Riverside ARSC HPRC Workshop
2

ROCCC

Riverside Optimizing Compiler for
Configurable Computing

 A C/C++ to VHDL compiler
 Built on SUIF 2 and MachSUIF

Objective
 Code acceleration via mapping of circuits to FPGA
 Same speed as hand-written VHDL codes
 Improved productivity

 Allows design and algorithm space exploration
 Keeps the user fully in control

 We automate only what is very well understood

W. Najjar - UC Riverside ARSC HPRC Workshop
3

Motivation

Bridge the semantic gap
 Between algorithms and circuits

Large scale parallelism on FPGAs
 Exploiting it with HDLs can be labor intensive

Bridge the productivity gap
 Translating concise C codes to large scale circuits

W. Najjar - UC Riverside ARSC HPRC Workshop
4

Focus

Extensive compile time optimizations
 Maximize parallelism, speed and throughput
 Minimize area and memory accesses

Optimizations
 Loop level: fine grained parallelism
 Storage level: compiler configured storage for

data reuse
 Circuit level: expression simplification, pipelining

W. Najjar - UC Riverside ARSC HPRC Workshop
5

Target Applications

 Any application that can be accelerated on an FPGA
Embedded domain
 signal, image, video processing, communication,

cryptography, pattern matching
Biological sciences
 Protein folding, DNA and RNA string matching
Network processing
 Virus signature detection, payload parsing
Data mining

W. Najjar - UC Riverside ARSC HPRC Workshop
6

Features

Smart compiling, simple control
 Extensive compile time transformations and

optimizations
 All under user control

Importing existing IP into C code
 Leverage the huge wealth of IP codes when

possible
Not only a compiler
 A design space exploration tool

W. Najjar - UC Riverside ARSC HPRC Workshop
7

What ROCCC would not do

Compile arbitrary code
 Application codes optimized for sequential execution
 FPGA implementation requires other algorithms
 Code generation for FPGAs is hard enough, we cannot also

solve the “dusty deck” problem too!
FPGA as an accelerator
 ROCCC is not intended to compile the whole code to FPGA
 Only compute intensive code segments, typically parallel

loops
Automation: User stays in the loop
 We can automate what we understand very well
 So much that we do not yet know or understand, too early

for full automation

W. Najjar - UC Riverside ARSC HPRC Workshop
8

ROCCC Overview - Current

SUIF2

Loop level analysis

& transformations

C/C++

Area, clock & throughput

estimation

Intermediate C
Machine generated C code

with annotations for readability

MachSUIF
VHDL Code

Generation
VHDL

W. Najjar - UC Riverside ARSC HPRC Workshop
9

Execution Model

A simplified
model
 Decoupled

memory access
from datapath

 Parallel loop
iterations

 Pipelined datapath

Data memory (on or off chip)

Data store

Buffer

Data memory (on or off chip)

Data fetch

Buffer

….
Unrolled loop bodies

Pi
pe

lin
ed

 d
at

ap
at

h

W. Najjar - UC Riverside ARSC HPRC Workshop
10

Outline

Circuit Optimization
 Same clock speed as hand written HDL code
 Throughput of one always

Storage Optimization
 Minimize number of re-fetch from memory

Loop Transformations
 Maximize parallelism
 Understand impact on area, clock and throughput

W. Najjar - UC Riverside ARSC HPRC Workshop
11

Compiled and Hand-written

Prior results
 A factor of 2x in speed between hand-coded HDL

and compiler generated.
 Results from SA-C and StreamsC

Comparison
 Xilinx IP codes from the web site.
 Same codes, written in C and compiled.
 Criteria: Clock rate and Area

W. Najjar - UC Riverside ARSC HPRC Workshop
12

Comparison - Clock Rates

0.971101104Wavelet*
0.735133181DCT
1.049194185FIR
1.000170170Arbitrary LUT
1.000170170cos
1.317220167square root
1.259272216udiv
1.000238238mul_acc
0.679144212bit_correlator

%ClockROCCCXilinxCode

(* hand written by us in VHDL)

Comparable

clock rates

W. Najjar - UC Riverside ARSC HPRC Workshop
13

Performance - Area

1.6524151464Wavelet*
1.76724412DCT
1.09293270FIR
1.00549549Arbitrary LUT
1.00150150cos
2.051199585square root
3.44495144udiv
3.285918mul_acc
2.11199bit_correlator

%Area
(slice)

ROCCCXilinx IPCode Average

area

factor: 2.5

W. Najjar - UC Riverside ARSC HPRC Workshop
14

Efficacy of Pipelining Scheme

Compared three schemes
 ROCCC (us)
 ImpulseC (LANL)
 Constraints solver (IRISA, France)

Benchmarks
 “Datapath” - a simple compute intensive datapath with

feedback within the loop.
 “Control”- a CORDIC algorithm, a doubly nested control-

flow-dominated loop body, with data-dependent
branching within the loop.

W. Najjar - UC Riverside ARSC HPRC Workshop
15

Pipelining - Results

73 M147196122Solver
79 M79.52234NA137ROCCC
58 M117157NA23impulse

CONTROL - 32 bits

25 M51901NA24Impulse

26 M80304433Solver
27 M27125NA12ROCCC

DATAPATH - 32 bits

DATAPATH - 8 bits

36 M1611104 (2%)33Solver
46 M4646NA11ROCCC
29 M59336NA23Impulse

Samples/sFreq.(MHz)SlicesMemoryRateStages

W. Najjar - UC Riverside ARSC HPRC Workshop
16

Comments on the Pipeline

Clock
 ROCCC has the lowest clock cycle but the highest

throughput.
 Both Datapath and Control

Area
 ROCCC has the smallest area on Datapath.
 The largest on Control.

Approach
 No separate controller.
 Control of the pipeline is integrated with the

datapath.

W. Najjar - UC Riverside ARSC HPRC Workshop
17

Storage Optimizations

Objective
 Detect the reuse of data
 Structure on chip storage for that data
 Schedule the access for reuse
 De-allocate storage when data is not needed

All at compile time
Storage optimization reduces bandwidth
pressure

W. Najjar - UC Riverside ARSC HPRC Workshop
18

Window operation: common in
signal and image processing
A window operation: one iteration
of a loop or loop nest.
Window sliding: movement in the
iteration space.
High memory bandwidth pressure.
 Data reuse

Separate reading/writing memories.
 Parallelism

Window Operation

* * * * *
* * * * *
* * * * *
* * * * *

Ref: Guo, Buyukkurt and Najjar, LCTES 2004

W. Najjar - UC Riverside ARSC HPRC Workshop
19

Smart Buffer

Definition
 In data-path storage (registers)
 Configured and scheduled by the compiler
 No register addressing: data is pushed by

controller into the data path every cycle
Parameters
 Determined by the compiler based on

 Window sizes in x and y, stride in x and y
 Data bit width
 Bus width to memory

W. Najjar - UC Riverside ARSC HPRC Workshop
20

Window 1

Smart Buffer Components

Managed set: the set of
elements covered by a
window.
 All live: window available

Kill set: a set consists of
the elements needed to
clear their live signals
after exporting this
window

* * * * * *
* * * * * *
* * * * * *
* * * * * *

Window 0

Kill set of
window 0

W. Najjar - UC Riverside ARSC HPRC Workshop
21

Smart Buffer Code Generation

Compile time analysis
 Relies on window size, strides, data width and

bus width.
 Generates windows and sets in the IR.

Resulting VHDL code
 Is not aware of the concepts of sets and windows.
 Only describes the logical and sequential

relationship between signals/registers
 Automatic code generation

We shift run-time control burden to compiler

W. Najjar - UC Riverside ARSC HPRC Workshop
22

Smart Buffer Re-Read Factor

 Before: each pixel needs
to be read nine times
except the image’s border.
 After: only a small
portion needs to be read
twice:

W
in

d
o
w

.y

strid
e.y

%25.6%100*
32

13
=

!
%100*

.

..

yrSmartBuffe

ystrideyWindow !

Re-read
these rows of

data

S
m

artB
u
ffer.y

Re-read factor on MIPS: 9 times!

W. Najjar - UC Riverside ARSC HPRC Workshop
23

Compiler Transformations
Pre-Optimization Passes
 Control Flow Analysis (√)
 Data Flow Analysis (√)
 Dependence Analysis in Loops
 Alias Analysis

General Transforms
 Constant Propagation (√)
 Constant Folding & Identities

(√)
 Copy Propagation (√)
 Dead Store Elimination (√)
 Common Sub Expression

Elimination (√)
 Partial Redundancy Elimination

(√)
 Unreachable Code Elimination

(√)

Memory Transformations
 Scalar Replacement (√)

Loop Level Transformations
 Loop Independent

Conditional Removal (√)
 Loop Peeling (√)
 Index Set Splitting
 Loop Unrolling - Full (√)
 Loop Unrolling - Partial (√)
 Loop Fusion (√)
 Loop Tiling
 Invariant Code Motion (√)
 Strength Reduction

W. Najjar - UC Riverside ARSC HPRC Workshop
24

Examples

FIR
 5 tap, 8 bits

Discrete Wavelet Transform
 5x3 (lossy) 8 bits

Smith-Waterman
 2 bit data path: DNA
 5 bit data path: protein folding

Bloom Filter
 Probabilistic exact string matching

W. Najjar - UC Riverside ARSC HPRC Workshop
25

FIR C Code

FIR 5-tap

for (i=0; i<N; i=i+1) {
C[i] = 3*A[i] + 5*A[i+1] + 7*A[i+2] +
9*A[i+3] – A[i+4];}

W. Najjar - UC Riverside ARSC HPRC Workshop
26

FIR 5-tap

Area: x4, throughput: x12

W. Najjar - UC Riverside ARSC HPRC Workshop
27

DWT C Code
for(i = 0; i<508; i = 1+i) {
 for(j = 0; j<510; j = 1+j {
 sum = (6*image[i][j])>> 3;
 sum = sum+(6* image[i][1+j])>> 3;
 sum = sum+(6* image[i][2+j])>> 3;
 sum = sum+(2* image[1+i][j])>> 3;
 sum = sum+(2* image[1+i][1+j])>> 3;
 sum = sum+(2* image[1+i][2+j])>> 3;
 sum = sum+(-1* image[2+i][j])>> 3;
 sum = sum+(-1* image[2+i][1+j])>> 3;
 sum = sum+(-1* image[2+i][2+j])>> 3;
 sum = sum+(8* image[3+i][j])>> 3;
 sum = sum+(8* image[3+i][1+j])>> 3;
 sum = sum+(8* image[3+i][2+j])>> 3;
 sum = sum+(-4* image[4+i][j])>> 3;
 sum = sum+(-4* image[4+i][1+j])>> 3;
 sum = sum+(-4* image[4+i][2+j])>> 3;
 output[i][j] = sum; } }

W. Najjar - UC Riverside ARSC HPRC Workshop
28

DWT

W. Najjar - UC Riverside ARSC HPRC Workshop
29

Smith-Waterman Code

Dynamic Programming
 Used in protein modeling, bio-informatics, data mining …
 A wave-front algorithm with two input strings

A[i,j] = F(A[i,j-1], A[i-1, j-1], A[i-1, j])

F = CostMatrix(A[i,0],A[0,j])
Our Approach
 “Chunk” the input strings in fixed sizes k
 Build a k x k template hardware by compiling two nested

loops (k each) and fully unrolling both.
 Host strip mines the two outer loops over this template.

W. Najjar - UC Riverside ARSC HPRC Workshop
30

S-W View

A[i,j] A[i,j+1]

A[i+1,j]A[i+1,0]

A[0,j+1]

vertical

input vector

horizontal input

vector
M

IN
M

A
X

A[i,j+1]

A[i,j]
A[i+1,j]

M
U

X

CostMatrix
A[0,j+1]
A[i+1,0]

A[i+1,j+1]

A[i+1,j+1]

W. Najjar - UC Riverside ARSC HPRC Workshop
31

S-W C Code
int One_Cell(int a, int b, int c, int d, int e){
 int t1, t2, xy, sel;
 t1 = min3(a, b, c);
 t2 = max3(a, b, c);
 xy = bitcmb(d, e);
 sel = boollut(xy);
 return boolsel(t1, t2, sel); }
int main(){
 int i, j, N =1024;
 int A[1024][1024];
 for(i=1; i<N; i=i+1)
 for(j=1; j<N; j=j+1)
 A[i][j] = One_Cell(A[i-1][j], A[i][j-1],
 A[i-1][j-1], BH[i-1], BV[j-1]);
}

W. Najjar - UC Riverside ARSC HPRC Workshop
32

S-W 2x2 Template

for(i = 1;(i< N);i = i+2)
 for(j = 1;(j< N);j = j+2)
 for(tmp0 = 0;(tmp0< 2);tmp0 = tmp0+1)
 for(tmp1 = 0;(tmp1< 2);tmp1 = tmp1+1) {
 int tmp00;
 t1 = min3(A[i+tmp0- 1][j+tmp1],
 A[i+tmp0][j+tmp1- 1],
 A[i+tmp0- 1][j+tmp1- 1]);
 t2 = max3(A[i+tmp0- 1][j+tmp1],
 A[i+tmp0][j+tmp1- 1],
 A[i+tmp0- 1][j+tmp1- 1]);
 xy = bitcmb(BH[i+tmp0- 1], BV[j+tmp1- 1]);
 sel = boollut(xy);
 tmp00 = boolsel(t1, t2, sel);
 A[i+tmp0][j+tmp1] =tmp00;
 }

COMPILER GENERATED

W. Najjar - UC Riverside ARSC HPRC Workshop
33

1

S-W 4x4 Tile Execution

2

2 3

3

3

4

4

4

4

5

5

5 7

6

6

W. Najjar - UC Riverside ARSC HPRC Workshop
34

S-W Results

2-bit data path
ChipP4Chip TileTile

1011010.0121.211.21115263%1488316x16
174870.0122.081.0485835%834412x12
277560.0123.330.67855315%36048x8
529240.0126.350.2933553%8174x4

5-bit data path
2,6582090.01231.92.51111085%139416x16
3,4251460.01241.11.758973%75512x12
5,934960.01271.21.155901%2868x8

15,750560.0121890.67231261%634x4

SpeedupGCUPSPipeli
ne

stages

Clock
(MHz)

Area
(%)

Area
(slices)

Tile

W. Najjar - UC Riverside ARSC HPRC Workshop
35

Bloom Filter

Work in progress
 A bloom filter is a space-efficient data structure

used to test the set membership of an element.
 Adapted to detect virus signature bit patterns in

packets.
Preliminary results
 584 MB/sec on 1173 slices out of 46592 (2%)

W. Najjar - UC Riverside ARSC HPRC Workshop
36

Bloom Filter C Code

for(i=0;i<248;i++)
{ for(j=0;j<7;j++)
 { value = input_stream[i+j];
 temp = value & 0x1;
 for(k=0; k<7; k++)
 {

result_location1 = result_location1 ^ (hash_function1[k]& temp);
result_location2 = result_location2 ^ (hash_function1[k]& temp);
result_location3 = result_location3 ^ (hash_function1[k]& temp);
result_location4 = result_location4 ^ (hash_function1[k]& temp);

 value = value >> 1;
 }
found = bit_array[result_location1] & bit_array[result_location2] &

bit_array[result_location3] & bit_array[result_location4];
 }
}

Compile time

constant, folded

In data-path

Table lookup

W. Najjar - UC Riverside ARSC HPRC Workshop
37

Productivity “Speedup”

8 bytes
16x16 tile

8x8 unrolled
8x unrolled

Transformations

3,40011B-F
12,00013S-W
16,50018DWT
1,1002FIR

VHDLCCode

A ratio of ~ 1,000

W. Najjar - UC Riverside ARSC HPRC Workshop
38

Current and Future Work

(More) Compiler transformations
 Multi-Loop fusion
 Pipelining of tiled code
 Smarter smart buffer

Backend IR for configurable computing
 Supports circuit optimization and generation
 Allow multiple front-ends and multiple targets

W. Najjar - UC Riverside ARSC HPRC Workshop
39

S-W Pipelined Tile

2

2

11

3

3

3

2

2

1

4

4

4

4

3

3

3

2

2

1

5

5

5

4

4

4

4

3

3

3

2

2

1

6

6

4

4

4

4

5

5

5

3

3

3

2

2

1

7

6

6

5

5

5

4

4

4

4

3

3

3

2

2

1

Increase throughput & speedup by (2k -1)

W. Najjar - UC Riverside ARSC HPRC Workshop
40

Smarter Buffer

smart-buffer

0

address

generator 0

smart-buffer

1

address

generator 1

smart-buffer

n

address

generator n

fifo-buffer

0

address

generator 0

fifo-buffer

1

address

generator 1

fifo-buffer

m

address

generator m

scalar data-path

loop &

mem_access

controller

input memory

output memory

data-path

sequencer

W. Najjar - UC Riverside ARSC HPRC Workshop
41

Conclusion

ROCCC can
 Extract and deliver large scale parallelism

 Instruction and loop levels
 Optimize on-chip storage
 High throughput and speedup

www.cs.ucr.edu/roccc

Thank you

