
COMPUTER
SCIENCE &ENGINEERING

Compiled Acceleration of C
Codes for FPGAs

Walid Najjar
Professor, Computer Science & Engineering
University of California Riverside

W. Najjar - UC Riverside ARSC HPRC Workshop
2

ROCCC

Riverside Optimizing Compiler for
Configurable Computing

 A C/C++ to VHDL compiler
 Built on SUIF 2 and MachSUIF

Objective
 Code acceleration via mapping of circuits to FPGA
 Same speed as hand-written VHDL codes
 Improved productivity

 Allows design and algorithm space exploration
 Keeps the user fully in control

 We automate only what is very well understood

W. Najjar - UC Riverside ARSC HPRC Workshop
3

Motivation

Bridge the semantic gap
 Between algorithms and circuits

Large scale parallelism on FPGAs
 Exploiting it with HDLs can be labor intensive

Bridge the productivity gap
 Translating concise C codes to large scale circuits

W. Najjar - UC Riverside ARSC HPRC Workshop
4

Focus

Extensive compile time optimizations
 Maximize parallelism, speed and throughput
 Minimize area and memory accesses

Optimizations
 Loop level: fine grained parallelism
 Storage level: compiler configured storage for

data reuse
 Circuit level: expression simplification, pipelining

W. Najjar - UC Riverside ARSC HPRC Workshop
5

Target Applications

 Any application that can be accelerated on an FPGA
Embedded domain
 signal, image, video processing, communication,

cryptography, pattern matching
Biological sciences
 Protein folding, DNA and RNA string matching
Network processing
 Virus signature detection, payload parsing
Data mining

W. Najjar - UC Riverside ARSC HPRC Workshop
6

Features

Smart compiling, simple control
 Extensive compile time transformations and

optimizations
 All under user control

Importing existing IP into C code
 Leverage the huge wealth of IP codes when

possible
Not only a compiler
 A design space exploration tool

W. Najjar - UC Riverside ARSC HPRC Workshop
7

What ROCCC would not do

Compile arbitrary code
 Application codes optimized for sequential execution
 FPGA implementation requires other algorithms
 Code generation for FPGAs is hard enough, we cannot also

solve the “dusty deck” problem too!
FPGA as an accelerator
 ROCCC is not intended to compile the whole code to FPGA
 Only compute intensive code segments, typically parallel

loops
Automation: User stays in the loop
 We can automate what we understand very well
 So much that we do not yet know or understand, too early

for full automation

W. Najjar - UC Riverside ARSC HPRC Workshop
8

ROCCC Overview - Current

SUIF2

Loop level analysis

& transformations

C/C++

Area, clock & throughput

estimation

Intermediate C
Machine generated C code

with annotations for readability

MachSUIF
VHDL Code

Generation
VHDL

W. Najjar - UC Riverside ARSC HPRC Workshop
9

Execution Model

A simplified
model
 Decoupled

memory access
from datapath

 Parallel loop
iterations

 Pipelined datapath

Data memory (on or off chip)

Data store

Buffer

Data memory (on or off chip)

Data fetch

Buffer

….
Unrolled loop bodies

Pi
pe

lin
ed

 d
at

ap
at

h

W. Najjar - UC Riverside ARSC HPRC Workshop
10

Outline

Circuit Optimization
 Same clock speed as hand written HDL code
 Throughput of one always

Storage Optimization
 Minimize number of re-fetch from memory

Loop Transformations
 Maximize parallelism
 Understand impact on area, clock and throughput

W. Najjar - UC Riverside ARSC HPRC Workshop
11

Compiled and Hand-written

Prior results
 A factor of 2x in speed between hand-coded HDL

and compiler generated.
 Results from SA-C and StreamsC

Comparison
 Xilinx IP codes from the web site.
 Same codes, written in C and compiled.
 Criteria: Clock rate and Area

W. Najjar - UC Riverside ARSC HPRC Workshop
12

Comparison - Clock Rates

0.971101104Wavelet*
0.735133181DCT
1.049194185FIR
1.000170170Arbitrary LUT
1.000170170cos
1.317220167square root
1.259272216udiv
1.000238238mul_acc
0.679144212bit_correlator

%ClockROCCCXilinxCode

(* hand written by us in VHDL)

Comparable

clock rates

W. Najjar - UC Riverside ARSC HPRC Workshop
13

Performance - Area

1.6524151464Wavelet*
1.76724412DCT
1.09293270FIR
1.00549549Arbitrary LUT
1.00150150cos
2.051199585square root
3.44495144udiv
3.285918mul_acc
2.11199bit_correlator

%Area
(slice)

ROCCCXilinx IPCode Average

area

factor: 2.5

W. Najjar - UC Riverside ARSC HPRC Workshop
14

Efficacy of Pipelining Scheme

Compared three schemes
 ROCCC (us)
 ImpulseC (LANL)
 Constraints solver (IRISA, France)

Benchmarks
 “Datapath” - a simple compute intensive datapath with

feedback within the loop.
 “Control”- a CORDIC algorithm, a doubly nested control-

flow-dominated loop body, with data-dependent
branching within the loop.

W. Najjar - UC Riverside ARSC HPRC Workshop
15

Pipelining - Results

73 M147196122Solver
79 M79.52234NA137ROCCC
58 M117157NA23impulse

CONTROL - 32 bits

25 M51901NA24Impulse

26 M80304433Solver
27 M27125NA12ROCCC

DATAPATH - 32 bits

DATAPATH - 8 bits

36 M1611104 (2%)33Solver
46 M4646NA11ROCCC
29 M59336NA23Impulse

Samples/sFreq.(MHz)SlicesMemoryRateStages

W. Najjar - UC Riverside ARSC HPRC Workshop
16

Comments on the Pipeline

Clock
 ROCCC has the lowest clock cycle but the highest

throughput.
 Both Datapath and Control

Area
 ROCCC has the smallest area on Datapath.
 The largest on Control.

Approach
 No separate controller.
 Control of the pipeline is integrated with the

datapath.

W. Najjar - UC Riverside ARSC HPRC Workshop
17

Storage Optimizations

Objective
 Detect the reuse of data
 Structure on chip storage for that data
 Schedule the access for reuse
 De-allocate storage when data is not needed

All at compile time
Storage optimization reduces bandwidth
pressure

W. Najjar - UC Riverside ARSC HPRC Workshop
18

Window operation: common in
signal and image processing
A window operation: one iteration
of a loop or loop nest.
Window sliding: movement in the
iteration space.
High memory bandwidth pressure.
 Data reuse

Separate reading/writing memories.
 Parallelism

Window Operation

* * * * *
* * * * *
* * * * *
* * * * *

Ref: Guo, Buyukkurt and Najjar, LCTES 2004

W. Najjar - UC Riverside ARSC HPRC Workshop
19

Smart Buffer

Definition
 In data-path storage (registers)
 Configured and scheduled by the compiler
 No register addressing: data is pushed by

controller into the data path every cycle
Parameters
 Determined by the compiler based on

 Window sizes in x and y, stride in x and y
 Data bit width
 Bus width to memory

W. Najjar - UC Riverside ARSC HPRC Workshop
20

Window 1

Smart Buffer Components

Managed set: the set of
elements covered by a
window.
 All live: window available

Kill set: a set consists of
the elements needed to
clear their live signals
after exporting this
window

* * * * * *
* * * * * *
* * * * * *
* * * * * *

Window 0

Kill set of
window 0

W. Najjar - UC Riverside ARSC HPRC Workshop
21

Smart Buffer Code Generation

Compile time analysis
 Relies on window size, strides, data width and

bus width.
 Generates windows and sets in the IR.

Resulting VHDL code
 Is not aware of the concepts of sets and windows.
 Only describes the logical and sequential

relationship between signals/registers
 Automatic code generation

We shift run-time control burden to compiler

W. Najjar - UC Riverside ARSC HPRC Workshop
22

Smart Buffer Re-Read Factor

 Before: each pixel needs
to be read nine times
except the image’s border.
 After: only a small
portion needs to be read
twice:

W
in

d
o
w

.y

strid
e.y

%25.6%100*
32

13
=

!
%100*

.

..

yrSmartBuffe

ystrideyWindow !

Re-read
these rows of

data

S
m

artB
u
ffer.y

Re-read factor on MIPS: 9 times!

W. Najjar - UC Riverside ARSC HPRC Workshop
23

Compiler Transformations
Pre-Optimization Passes
 Control Flow Analysis (√)
 Data Flow Analysis (√)
 Dependence Analysis in Loops
 Alias Analysis

General Transforms
 Constant Propagation (√)
 Constant Folding & Identities

(√)
 Copy Propagation (√)
 Dead Store Elimination (√)
 Common Sub Expression

Elimination (√)
 Partial Redundancy Elimination

(√)
 Unreachable Code Elimination

(√)

Memory Transformations
 Scalar Replacement (√)

Loop Level Transformations
 Loop Independent

Conditional Removal (√)
 Loop Peeling (√)
 Index Set Splitting
 Loop Unrolling - Full (√)
 Loop Unrolling - Partial (√)
 Loop Fusion (√)
 Loop Tiling
 Invariant Code Motion (√)
 Strength Reduction

W. Najjar - UC Riverside ARSC HPRC Workshop
24

Examples

FIR
 5 tap, 8 bits

Discrete Wavelet Transform
 5x3 (lossy) 8 bits

Smith-Waterman
 2 bit data path: DNA
 5 bit data path: protein folding

Bloom Filter
 Probabilistic exact string matching

W. Najjar - UC Riverside ARSC HPRC Workshop
25

FIR C Code

FIR 5-tap

for (i=0; i<N; i=i+1) {
C[i] = 3*A[i] + 5*A[i+1] + 7*A[i+2] +
9*A[i+3] – A[i+4];}

W. Najjar - UC Riverside ARSC HPRC Workshop
26

FIR 5-tap

Area: x4, throughput: x12

W. Najjar - UC Riverside ARSC HPRC Workshop
27

DWT C Code
for(i = 0; i<508; i = 1+i) {
 for(j = 0; j<510; j = 1+j {
 sum = (6*image[i][j])>> 3;
 sum = sum+(6* image[i][1+j])>> 3;
 sum = sum+(6* image[i][2+j])>> 3;
 sum = sum+(2* image[1+i][j])>> 3;
 sum = sum+(2* image[1+i][1+j])>> 3;
 sum = sum+(2* image[1+i][2+j])>> 3;
 sum = sum+(-1* image[2+i][j])>> 3;
 sum = sum+(-1* image[2+i][1+j])>> 3;
 sum = sum+(-1* image[2+i][2+j])>> 3;
 sum = sum+(8* image[3+i][j])>> 3;
 sum = sum+(8* image[3+i][1+j])>> 3;
 sum = sum+(8* image[3+i][2+j])>> 3;
 sum = sum+(-4* image[4+i][j])>> 3;
 sum = sum+(-4* image[4+i][1+j])>> 3;
 sum = sum+(-4* image[4+i][2+j])>> 3;
 output[i][j] = sum; } }

W. Najjar - UC Riverside ARSC HPRC Workshop
28

DWT

W. Najjar - UC Riverside ARSC HPRC Workshop
29

Smith-Waterman Code

Dynamic Programming
 Used in protein modeling, bio-informatics, data mining …
 A wave-front algorithm with two input strings

A[i,j] = F(A[i,j-1], A[i-1, j-1], A[i-1, j])

F = CostMatrix(A[i,0],A[0,j])
Our Approach
 “Chunk” the input strings in fixed sizes k
 Build a k x k template hardware by compiling two nested

loops (k each) and fully unrolling both.
 Host strip mines the two outer loops over this template.

W. Najjar - UC Riverside ARSC HPRC Workshop
30

S-W View

A[i,j] A[i,j+1]

A[i+1,j]A[i+1,0]

A[0,j+1]

vertical

input vector

horizontal input

vector
M

IN
M

A
X

A[i,j+1]

A[i,j]
A[i+1,j]

M
U

X

CostMatrix
A[0,j+1]
A[i+1,0]

A[i+1,j+1]

A[i+1,j+1]

W. Najjar - UC Riverside ARSC HPRC Workshop
31

S-W C Code
int One_Cell(int a, int b, int c, int d, int e){
 int t1, t2, xy, sel;
 t1 = min3(a, b, c);
 t2 = max3(a, b, c);
 xy = bitcmb(d, e);
 sel = boollut(xy);
 return boolsel(t1, t2, sel); }
int main(){
 int i, j, N =1024;
 int A[1024][1024];
 for(i=1; i<N; i=i+1)
 for(j=1; j<N; j=j+1)
 A[i][j] = One_Cell(A[i-1][j], A[i][j-1],
 A[i-1][j-1], BH[i-1], BV[j-1]);
}

W. Najjar - UC Riverside ARSC HPRC Workshop
32

S-W 2x2 Template

for(i = 1;(i< N);i = i+2)
 for(j = 1;(j< N);j = j+2)
 for(tmp0 = 0;(tmp0< 2);tmp0 = tmp0+1)
 for(tmp1 = 0;(tmp1< 2);tmp1 = tmp1+1) {
 int tmp00;
 t1 = min3(A[i+tmp0- 1][j+tmp1],
 A[i+tmp0][j+tmp1- 1],
 A[i+tmp0- 1][j+tmp1- 1]);
 t2 = max3(A[i+tmp0- 1][j+tmp1],
 A[i+tmp0][j+tmp1- 1],
 A[i+tmp0- 1][j+tmp1- 1]);
 xy = bitcmb(BH[i+tmp0- 1], BV[j+tmp1- 1]);
 sel = boollut(xy);
 tmp00 = boolsel(t1, t2, sel);
 A[i+tmp0][j+tmp1] =tmp00;
 }

COMPILER GENERATED

W. Najjar - UC Riverside ARSC HPRC Workshop
33

1

S-W 4x4 Tile Execution

2

2 3

3

3

4

4

4

4

5

5

5 7

6

6

W. Najjar - UC Riverside ARSC HPRC Workshop
34

S-W Results

2-bit data path
ChipP4Chip TileTile

1011010.0121.211.21115263%1488316x16
174870.0122.081.0485835%834412x12
277560.0123.330.67855315%36048x8
529240.0126.350.2933553%8174x4

5-bit data path
2,6582090.01231.92.51111085%139416x16
3,4251460.01241.11.758973%75512x12
5,934960.01271.21.155901%2868x8

15,750560.0121890.67231261%634x4

SpeedupGCUPSPipeli
ne

stages

Clock
(MHz)

Area
(%)

Area
(slices)

Tile

W. Najjar - UC Riverside ARSC HPRC Workshop
35

Bloom Filter

Work in progress
 A bloom filter is a space-efficient data structure

used to test the set membership of an element.
 Adapted to detect virus signature bit patterns in

packets.
Preliminary results
 584 MB/sec on 1173 slices out of 46592 (2%)

W. Najjar - UC Riverside ARSC HPRC Workshop
36

Bloom Filter C Code

for(i=0;i<248;i++)
{ for(j=0;j<7;j++)
 { value = input_stream[i+j];
 temp = value & 0x1;
 for(k=0; k<7; k++)
 {

result_location1 = result_location1 ^ (hash_function1[k]& temp);
result_location2 = result_location2 ^ (hash_function1[k]& temp);
result_location3 = result_location3 ^ (hash_function1[k]& temp);
result_location4 = result_location4 ^ (hash_function1[k]& temp);

 value = value >> 1;
 }
found = bit_array[result_location1] & bit_array[result_location2] &

bit_array[result_location3] & bit_array[result_location4];
 }
}

Compile time

constant, folded

In data-path

Table lookup

W. Najjar - UC Riverside ARSC HPRC Workshop
37

Productivity “Speedup”

8 bytes
16x16 tile

8x8 unrolled
8x unrolled

Transformations

3,40011B-F
12,00013S-W
16,50018DWT
1,1002FIR

VHDLCCode

A ratio of ~ 1,000

W. Najjar - UC Riverside ARSC HPRC Workshop
38

Current and Future Work

(More) Compiler transformations
 Multi-Loop fusion
 Pipelining of tiled code
 Smarter smart buffer

Backend IR for configurable computing
 Supports circuit optimization and generation
 Allow multiple front-ends and multiple targets

W. Najjar - UC Riverside ARSC HPRC Workshop
39

S-W Pipelined Tile

2

2

11

3

3

3

2

2

1

4

4

4

4

3

3

3

2

2

1

5

5

5

4

4

4

4

3

3

3

2

2

1

6

6

4

4

4

4

5

5

5

3

3

3

2

2

1

7

6

6

5

5

5

4

4

4

4

3

3

3

2

2

1

Increase throughput & speedup by (2k -1)

W. Najjar - UC Riverside ARSC HPRC Workshop
40

Smarter Buffer

smart-buffer

0

address

generator 0

smart-buffer

1

address

generator 1

smart-buffer

n

address

generator n

fifo-buffer

0

address

generator 0

fifo-buffer

1

address

generator 1

fifo-buffer

m

address

generator m

scalar data-path

loop &

mem_access

controller

input memory

output memory

data-path

sequencer

W. Najjar - UC Riverside ARSC HPRC Workshop
41

Conclusion

ROCCC can
 Extract and deliver large scale parallelism

 Instruction and loop levels
 Optimize on-chip storage
 High throughput and speedup

www.cs.ucr.edu/roccc

Thank you

