
c©1996–2001 Harald Kirsch

bras
another kind of ‘make’

User Manual & Reference

Harald Kirsch
pifpafpuf@gmx.de

March 4, 2002

Contents

1 User Manual 5

1.1 Introduction . 5

1.2 Rules . 6

1.2.1 Syntax . 6

1.2.2 Conditions . 7

1.2.3 Predicates . 8

1.3 Multiple Rules for a Target . 10

1.4 Multi-Target Rules . 11

1.5 Pattern Rules . 12

1.5.1 How pattern rules are used to create real rules 13

1.5.2 How default commands are derived from pattern rules 14

1.5.3 Accessing the generated dependency in the condition 15

1.6 Dependencies in Other Directories . 15

1.7 Including Files Only Once . 16

1.8 Searching for Dependencies . 16

1.9 Use of Automatically Generated Dependencies 17

1.9.1 The ancient way . 17

1.9.2 The modern way . 18

1.10 Explicitly Calling the Reasoning Process 18

1.11 Using Environment Variables . 19

1.12 How Bras Executes . 19

1.12.1 Set env -entries from the command line 19

1.12.2 Read brasfile . 19

1.12.3 Reasoning process . 20

1.12.4 Command execution . 21

2

1.12.5 A note on namespaces . 22

1.13 Compatibility with Older Versions . 23

1.13.1 Always . 23

1.13.2 PatternAlways . 23

1.13.3 Exist . 24

1.13.4 Newer . 24

1.13.5 PatternNewer . 24

1.14 Bras as a Package . 24

1.15 Limitations and Known Bugs . 25

1.16 The Name of the Game . 25

1.17 Credits . 26

2 Reference Guide 27

2.1 Predefined predicates . 27

2.1.1 dcold — is a target older than a dependency cache? 27

2.1.2 md5older — did the md5sum of a dependency change? 27

2.1.3 missing — is a file missing? . 28

2.1.4 notinitialized — was a target not yet called? 28

2.1.5 oldcache — is a dependency cache out-of-date? 29

2.1.6 older — are targets older than dependencies? 29

2.1.7 pairedolder — is i’th target older than i’th dependency? 30

2.1.8 true — always returns true . 31

2.1.9 updated — does a target need an update? 32

2.1.10 varchanged — did a variable’s value change? 32

2.2 Predefined Pattern Rules . 34

2.2.1 c2o — compile C source into object file 34

2.2.2 c++2o — compile C++ source files 35

2.2.3 cdeps — maintain dependency cache for C source files 36

2.2.4 c++deps — maintain dependency cache for C++ source files . . . 36

2.2.5 cli2ch — create command line interface with clig 37

2.2.6 install — install a file . 37

2.2.7 lex2c — (f)lex source to C source 38

2.2.8 o2x — *IXish linking of object files into executable 39

3

2.3 New Commands . 39

2.3.1 .relax. — a do-nothing indicator for rules 40

2.3.2 consider — explicitly call the reasoning process 40

2.3.3 dirns — find namespace associated with directory 41

2.3.4 forget — forget which targets where already considered 41

2.3.5 getenv — set variable from environment of from default 42

2.3.6 include — source file only once . 42

2.3.7 install — install a file . 43

2.3.8 linkvar — link variable to other namespace 43

2.3.9 report — callback for warnings and error messages 44

2.3.10 searchpath — set or get search path 44

2.4 Miscellaneous Commands . 45

2.4.1 cvsknown — return all files CVS knows about 45

2.4.2 makedeps2bras — convert make dependencies 45

2.4.3 packjar — create a java archive from java packages 46

Bibliography 47

Index 48

4

1 User Manual

1.1 Introduction

If you ever used make, you may have noticed that it has a few odd features. Most
annoying to me are

• the crazy syntax (tabs as a structuring element),

• the way variables are expanded (I never found out, when exactly this happens),

• the inability to call makefile s in other directories without breaking the chain of
reasoning [Miller 1997],

• the inability to distinguish between targets that merely need to exist, those that
must be newer than their dependencies, and others which must be made for totally
different reasons,

• the inability to call the reasoning process explicitly without forking a new make,
thereby breaking the chain of reasoning,

• the lack of control structures,

• the lack of decent pattern matching.

It is indisputable that the feature of make — rule based command execution — is most
helpful in many situations; in particular were it seems to be applied most often: condi-
tional compilation of large programs.

My idea was to combine the key features of make with all the niceties of a command lan-
guage, while improving on the misfeatures mentioned above. Bras uses user-supplied
conditions to test if a target must be made. Most of the time they just test, if the tar-
get is older than some other files, like make usually does, but totally different tests are
possible.

Since I personally like Tcl, not the least for its well defined handling of command line
substitution (see Tcl(n) and no flames, please), I ended up with the present solution.
A similar solution might be possible with other command languages.

5

1.2 Rules

1.2.1 Syntax

Unlike in shell-scripts or programming languages like C, Ada or Java, the order of com-
mand execution in brasfile s is not only described with control-structures like if-then-
else, loops, etc., but also by rules. The main ingredients of a rule are explained along
the following example.

Make fft.o { [older fft.o {fft.c fft.h}] } {
cc -o fft.o fft.c

}

The Tcl-procedure Make is used to register a rule in the rule-database. In fact, Make
ist very similar to the Tcl-command proc in that it only declares or registers some code
in the Tcl-engine rather than evaluating anything. Only later, if bras is asked to reason
about the file fft.o , the rule becomes active and actually does something.

Make has three parameters which make up the rule:

target The file fft.o is called the target of the rule. The ultimate goal of writing a
rule is to describe under which conditions the target must be made and how this
is done.

condition The second part of a rule is called the condition. In the example, the condi-
tion is

[older fft.o fft.c fft.h]

The condition must be a Tcl-expression very similar to those used in Tcl’s if -
command. Whenever bras is instructed to build the target fft.o it first evaluates
the condition to find out if it is really necessary to make the target. If evaluation of
the conditon returns true, the target is considered out-of-date and must be built.

command The third part of a rule is called the command. In the example it is the
script

cc -o fft.o fft.c

It can be more or less any piece of ordinary Tcl code. However, commands not
known to Tcl are assumed to be commands of the operating system and are
passed to [exec] for execution (see 1.12.4 for details).

The command is executed only if the condition is true. Bras assumes that the
target is up-to-date after the command has been executed. It does not check if
this is actually true.

6

To tell Bras explicitly that no command needs to be executed, use the string
.relax. possibly surrounded by white space (see 2.3.1).

The general form of a rule is:

Make targets condition command

and its meaning can be described as

Make the targets with command if condition is true.

The first argument of Make can be a list of targets. Bras assumes that all of them are
made whenever the rule’s command is executed.

Most of the power and flexibility of bras depends on the fact that the condition rendering
a target out-of-date can be just any boolean expression. Ancient make on the other
hand knows just one condition: the target does not exist as a file or it is older than some
other files.

1.2.2 Conditions

As said before, a rule’s condition can be just any boolean expression. These expres-
sions however are usually a bit more elaborate than what is most often used in if -
statements. For example to simulate make’s behaviour, the boolean expression must
check if a file exists and if it is older than a bunch of other files. This is not a test readily
available in Tcl, but it can be implemented as a Tcl-procedure.

The procedure older used in the example of the last section implements this test. In
the rest of this document procedures which test something and return a boolean result
are called predicates. There are several other predefined predicates as well which test
certain conditions or relations between files. They are described in appendix 2.1.

A few more words must be said about the execution environment or variable context
whithin which the condition of a rule is evaluated. Consider the following rule:

Make {a b c} {[older $targets X] || [missing $target]} {
do something

}

Its condition tests if any of the targets a, b or c is older than some other file X or if the
target for which the rule was invoked does not exist as a file. The rule demonstrates
the use of the variables targets and target which are set just before the condition
is evaluated:

targets will be set to the list of the targets of the rule which happens to be {a b c }
in this example,

7

target will be set to the target for which the rule was actually invoked. It can be any
of the targets of the rule.

Most of the time, the condition contains just one predicate or is a logical combination of
a few predicates. The followingollowingollowingollowingcates incates incates in

1.2.3 Predicates

Predicates are test-procedures implementing the conditions under which a target is up-
to-date. The standard predicates of bras are described in appendix 2.1. Here we
describe how a predicate works and how new predicates can be written.

Consider the example

set OBJ [list a.o b.o c.o d.o e.o]
Make libX.a {[older $target $OBJ]} {

ar r $target $trigger
}

The rule is used to replace those files of an archive libX.a which are newer than the
archive, i.e. which trigger the command to be executed.

But how is variable trigger initialized? That is a service of the predicate older .

In general a predicate can register a list of variables with the reasoning engine to be
passed to the command. It depends on the predicate, which information might be useful
for the command. However these variables are used by most predicates:

deps is the list of files (or other objects) on which the target — or the predicate test —
depends, i.e. these files must themselves be up-to-date before the predicate can
perform its test. In fact it is the responsibility of the predicate to make sure, they
are up-to-date. Read on to find out how this is easily done.

trigger is a list of files (or other objects) which are particularly responsible for the
target being out-of-date. For the older -predicate $trigger contains all files
which are older than the target.

Now lets look at an example predicate, namely true , which always returns a non-zero
value. Its code is short but demonstrates all that is necessary for a good predicate. To
see more examples have a look at the file predicates.tcl which is part of bras .

1 proc ::bras::p::true {{inDeps {}}} {
2 installPredicate [list deps] inDeps
3
4 ::bras::consider $inDeps

8

5
6 append reason "\nmust always be made"
7 ::bras::concatUnique deps [stripAt $inDeps]
8 $inDeps return 1
9 }

First of all, every predicate should be defined in the namespace ::bras::p . If you
choose a different namespace, you are on your own. It might work or not.

A good predicate should as its first task call installPredicate , which takes two
parameters:

1. A list of variables to be declared such that they end up visible in the execution
environment used to execute the rule’s command. The true -predicate wants to
pass variable deps to the rule’s command. Passing variables is implemented by
linking the variable names via upvar #0 to the namespace used for the com-
mand (which is not ::bras::p).

2. A list of variable names each of which contains a list of dependencies. These
dependencies are expanded by installPredicate along the searchpath
(cf. section 1.8) and the expansions are put back into the variables. The true -
predicate has just one such variable, namely its parameter inDeps .

Next, the predicate should usually call ::bras::consider and pass it the list of all
those targets which must be up-to-date before the predicate can perform its test. Al-
though the true -predicate does not actually perform any test, it takes a list of depen-
dencies as its first argument for the sole purpose of running them through the reasoning
engine. This is useful to combine a list of targets into one (pseudo)-target like in

Make all {[true all-libs all-docs]} {
puts "successfully made $deps"

}

where target all triggers the built-process for all-libs and all-docs .1

The procedure ::bras::consider returns a list of zeros and ones with one entry for
every dependency. The result indicates that a dependency was made anew if and only
if the respective return value is 1. Predicate older uses this in its test, but true does
not need the result.

Before the predicate returns the result of its test, it has two more responsibilities.

1. It has to append an informative string to the variable reason with a leading \n .
This string is printed when bras is called with option -d .

1A better way to combine several targets under one name makes use of the predicate updated , de-
scribed in section 2.1.9.

9

2. It must not forget to update the variables registered with installPredicate .
Because more than one predicate may be called during evaluation of a rule’s con-
dition, the predicate must be careful not to overwrite these variables and should
usually append to them. Currently there is no safe way to register a private vari-
able for a predicate to be passed to the rule’s command.

The return value of a predicate must always be a boolean value.

1.3 Multiple Rules for a Target

It is not uncommon to have more than one rule for a target. In particular when depen-
dency relations are computed automatically, it is not always possible to pool them into
one rule. However one condition must be met by the set of rules mentioning a certain
target: at most one of them may have a non-empty command.

An example for the use of more than one rule is

Make a.o {[older a.o {b.h a.h}]}
Make a.o {[older a.o a.c]}
Make a.o {[older a.o a.h]}

Internally, bras combines all rules for a target into a single one. The conditions of all
the rules without a command are combined by a logical non-short-circuit disjunction
(or), i.e. they will all eventually be evaluated one after another and then the results are
combined with || .

As mentioned above, only one of the rules may have a command. This rule plays
a special role in that bras arranges for its condition to be evaluated first. In effect the
predicates of that condition are the first to enter values into variables like deps which are
passed to the combined rule’s command. Consequently, idioms like [lindex $deps
0] can be used in the command to access just the right dependencies.

Example:

Make a.o {[older a.o {b.h a.h}]}
Make a.o {[older a.o a.c]} {

cc -o $target -c [lindex $deps 0]
}

The condition of the second rule will be evaluated before the condition of the first one.
As a result [lindex $deps 0] will be a.c and not b.h as it would be if the evaluation
order was not reverted.

10

1.4 Multi-Target Rules

Sometimes, a rule’s command generates more than one file (target). A typical exam-
ple is the compilation of several Java source files with one call to the compiler (for
pairedolder see section 2.1.7):

Make {A.class B.class} {
[pairedolder $targets {A.java B.java}]

} {
javac $deps

}

Whenever bras finds several targets in the same rule,

it assumes that the predicate tests all targets at the same time,

i.e. it suffices to evaluate the predicate once. Internally, bras never considers more
than one target at a time. However, if one target of a multi-target rule is considered, the
result of evaluating the predicate is distributed over all targets of that rule. In particular:

• If the predicate says that one target is up-to-date, all of them are marked up-to-
date.

• If the predicate says that target is out-of-date, the command is run and afterwards
it is assumed that all of the rule’s targets are up-to-date.

Extending the example above with the rule

Make classes {[updated {A.class B.class}]} .relax.

consider what happens when

bras classes

is called. The predicate updated checks A.class and B.class in turn. Consider-
ation of A.class will immediately mark B.class as either up-to-date or ”just made”.
When checking B.class , bras does not run pairedolder again — nor the compi-
lation — but (re)uses the result already derived for A.class .

Note: handling of multi-target rules is completely different from GNU make. According
to the documentation, (at least GNU) make interpretes a multi-target rule as if it is a
shortcut for writing the same rule for each of the targets.

11

1.5 Pattern Rules

Pattern rules extend on the idea of make’s suffix or implicit rules and serve two pur-
poses:

1. If there is no rule for a target under consideration, bras tries to find a pattern
rule and uses it to create a rule on the fly. The matching process is described in
section 1.5.1.

2. If a rule with an empty command is triggered, bras tries to find a pattern rule to
substitute its command as a default.

The general form of pattern rules is

PatternMake regexp deptag condition command

The individual elements of a pattern rule are:

regexp is a regular expression used to select targets to which the rule applies,

deptag is used to aid the process of selecting the correct pattern rule. The meaning
of the deptag is described in the following sections.

condition is a test in the same way as for explicit rules,

command is the command to be used in a derived real rule or as a default command.

The details about regexp and deptag are described in sections 1.5.1 and 1.5.2.

An example pattern rule to translate TEX’s DVI-files into PostScript looks like

PatternMake .*\.ps .dvi {[older $target $d]} {
dvips -o $target [lindex $deps 0]

}

Note the use of variable d in the condition. It is a special variable only available in
the condition of a pattern rule. In the example it will contain the file name bla.dvi
whenever the pattern rule is used to build the target bla.ps . See section 1.5.3 for
more details.

When the condition is evaluated, $target will be set to the name of the target under
consideration and $deps will be set to the list of its dependencies, with $d as its first
element. The idiom [lindex $deps 0] is similar to make’s automatic variable $<
and expands $d .

12

1.5.1 How pattern rules are used to create real rules

As mentioned above, pattern rules are used to create a new rule if there is no explicit
rule available for the target under consideration. For a given target, a pattern rule is
selected as described below.

All known pattern rules are checked in the opposite order in which they were specified
so that rules defined later override those defined earlier.

For a pattern rule to be a candidate at all, the given real target must match the pattern
rule’s regular expression. To make sure that the whole word matches, regular expres-
sions of pattern rules get an implicit ˆ and $ prefixed and suffixed. Put another way:
if target is the variable containing the target under consideration and rexp is the
regular expression of a pattern rule, bras executes an equivalent of

regexp "ˆ$rexp\$" $target

to check whether the pattern rule is a candidate or not.

Suppose a candidate pattern rule is found for a target, e.g. bla.o . It must then survive
the following two-step test to be taken.

Step 1 derives a dependency from bla.o . It calls a procedure with a name derived
from deptag, namely

::bras::gendep:: deptag $target

to create a dependency name. For example if deptag is .c , bras calls

::bras::gendep::.c $target

to derive a dependency name. The default ::bras::gendep:: deptag looks
like

proc ::bras::gendep:: deptag {target} {
return [::bras::defaultGendep $target deptag]

}

The procedure ::bras::defaultGendep strips the file extension from the tar-
get and suffixes the result with deptag. To change the behaviour of individual de-
pendency generators, it suffices to define it in the namespace ::bras::gendep .
To change the default behaviour of all dependency generators, redefine the pro-
cedure ::bras::defaultGendep . Note however, that this might break some
default rules delivered with bras .

Step 2 subjects the dependency name to searchpath (see section 1.8). If it finds the
dependency name as an existing file, or if it finds a real rule for the dependency,
the pattern rule is taken.

13

If a pattern rule is taken, bras creates a real rule with

• the target under consideration as the rule’s target,

• the given condition as the condition of the new rule and

• the command of the pattern rule as the rule’s command.

It then proceeds as if there had never been a search for a pattern rule.

If no rule is selected after checking all pattern rules as described above, bras tries
one other thing. For each rule which matches the target, a dependency is derived as
described in step 1. Then this is taken as a new target and bras calls the above pattern-
rule selection recursively. It is made sure, that the recursion does not loop infinitely by
not trying any pattern-rule on different recursion levels at the same time.

Ultimately, bras will either run out of pattern-rules, in which case it decides that there
is no rule for the target, or it derives a dependency which either exists as a file or has
an explicit rule. All intermediate pattern-rules are then converted to real rules and the
reasoning proceeds as if there were never any rules missing.

The algorithm is (should be :-) implemented in the file lastMinuteRule.tcl .

1.5.2 How default commands are derived from pattern rules

Besides being rule patterns, pattern rules are also used to define default commands.
The situation described in the last section is one where there is no explicit rule for a
certain target. In that case a rule and a command are derived.

This section describes the procedure taken if there is a rule for a target, however without
a command. A typical situation is described by the following rules.

Make a.o {[older a.o b.h]
Make a.o {[older a.o a.c]
Make a.o {[older a.o a.h]

A single target, a.o , depends on several dependencies which are spread over several
rules. None of the rules defines a command to build the target. To find a command,
bras also uses the pattern rules. Without taking into account the dependencies already
known, bras uses the same algorithm as described in section 1.5.1 to find a pattern
rule for the target. If a rule is found, its condition and its command are added the
target’s rule as described in section 1.32.

In particular the new condition is put in front of all conditions already known for the rule.
Because it will be evaluated first, its dependencies will be in front of $deps when the
command is executed, which is usually a good thing. Read section 1.5.3 for further
details.

2algorithm stolen from make

14

1.5.3 Accessing the generated dependency in the condition

As described in section 1.5.1, a pattern rule is only choosen for a given target if also
the dependency d derived with the dependency tag is either an existing file or has an
explicit rule. This dependency must usually be used in the condition, but when the
condition is written down, its name is of course not yet known. Consequently, the name
must be passed in a variable. Bras arranges for that dependency name to be available
in the variable d, when the condition is executed. An example use of that variable can
be seen in the following pattern rule:

PatternMake .*\.o .c {[older $target $d]} {
$CC -o $target [lindex $deps 0]

}

If the rule is choosen for a target bla.o and its derived dependency bla.c , $d will
expand to bla.c when the condition is executed.

1.6 Dependencies in Other Directories

Most annoying to me when using make is its unwieldy handling of dependencies in
another directory. Calling make recursively after changing to the foreign directory often
breaks the chain of reasoning, because there is no communication between parent-
and child-make as to whether any target was build or whether all targets were up-to-
date. Have a look at [Miller 1997] to understand why make’s behaviour in this area is
normally not what you want.

Bras allows a different solution. Whenever a dependency starts with @and does not
belong to the current directory, bras expects a brasfile in the directory where the
dependency belongs to. It uses the rules found there to reason about the dependency
— if considered as a target. Lets look at an example:

Make bla {[older bla.o @../libfasel/libfasel.a]} {
$CC -c -o $target $CFLAGS $LDFLAGS $deps

}

Whenever the command bras bla is called, the rule is considered, and consequently
all dependencies in turn are considered as a target. In particular @../libfasel/lib-
fasel.a tells bras that there is a subdirectory ../libfasel with a brasfile which
describes how to handle the target libfasel.a locally in that directory. Bras reads
../libfasel/brasfile . Then it changes to directory ../libfasel before execut-
ing any commands for rules in ../libfasel/brasfile .

15

1.7 Including Files Only Once

As described in section 1.6, bras automatically sources the rule file in other directories
if an @-dependency leads there. But this mechanism is not very useful to source a file
with global definitions. Instead, the Tcl-builtin command source could be used, but it
has the disadvantage that it does not guard against sourcing the same file twice.

To make sure a file is sourced exactly once, use the include -command. It takes as its
only parameter the file to read.

Thats the simple truth, but consider the following setup. The main directory of applica-
tion bla has a brasfile and also several subdirectories like lib , extrabla , nobla ,
the targets of which are called from the main brasfile by means of @. What happens,
if you intend to solely work in directory lib for some time? What is the best way within
bla/lib/brasfile to get access to all those global definitions in bla/brasfile ?

Using include ../brasfile will not work, because all rules of bla/brasfile
would be interpreted relative to bla/lib , which is usually wrong. A workaround might
be:

cd ..
include brasfile
cd bla

But this does not set the namespace correctly for the included brasfile . To execute
a brasfile in the same context as it would be executed when called implicitly by an
@-target, use e.g.

include @..

In general, include has one argument which is either a filename or is of the form @dir,
where dir is a directory name. In the latter case, it looks for a brasfile (or Brasfile
or whatever was specified on the command line) and sources the file in the context of
the given directory.

Hint: If the included script needs to know its own name, use the standard Tcl-command
[info script] .

1.8 Searching for Dependencies

In built-environments were source directories are read-only, compiled files must be put
into a different directory than source files. If in addition builts for different platforms
must be supported, source files may be found in different directories depending on the
platform for which the built is performed.

16

One way to support that would be to create explicit rules in a loop for all source files
listed e.g. in variable SRC:

foreach x $SRC {
set base [file root $x]
lappend OBJ build/$base.o
Make build/$base.o {[older $target $platform/$base.c]}

}
Make all {[true $OBJ]} {}

This has at least two drawbacks:

1. The few lines above will become even more elaborate as soon as a source file
may be either platform-specific or generic.

2. Pattern rules are no longer used because all rules are explicitly constructed.

To overcome these drawbacks, the command searchpath was introduced. With one
argument it registers a list of pathnames which are used to locate dependencies, e.g.

searchpath {. ./generic ./unix}

Every (builtin) predicate, before reasoning about its parameters, tries to find them along
the search path if they don’t start with an @and qualify as

[file pathtype ...]==relative

In particular it first tries to find a file with that name along the search path. If it does not
find the file, it then checks if there is an explicit rule for the name in one of the search
paths. The dependency found is then taken as the true dependency. If no file or explicit
rule can be found, the first directory in the search path is assumed to be the correct
one. Therefore the current directory, i.e. a single dot, should almost always be the first
element in the list given to searchpath .

The search path declared with searchpath is local for a directory, i.e. if bras follows
an @-target to a different directory, this directory has its own search path.

To query the current search path, use [searchpath] .

1.9 Use of Automatically Generated Dependencies

1.9.1 The ancient way

Most C-compilers are able to generate makefile-dependencies for source files by de-
termining which files are included with #include directives. For example gcc can be

17

instructed to do so with option -M while SUN’s Solaris C-compiler uses -xM . Because
this is a valuable feature, bras has the ability to read and understand a restricted type
of make-dependencies. The command

sourcedeps file

reads a dependency file created by the C-compiler and creates the appropriate rules.
The command prints a warning if the given file does not exist.

1.9.2 The modern way

Q: When must a C source be compiled?

A: If either the file itself or at least one of the files which are directly or indirectly included
was modified.

Consequently, the dependency list for an object file must contain the C source file as
well as all included files. Editing one of the files of that list can result in the deletion
or addition of an included file, thereby changing the dependency structure itself and
rendering the dependency list out of date. Therefore a static dependency list which was
written down or generated the other day will soon be out of date.

Bras allows to update the dependency list as necessary. An example how this can be
done for the relation between object files and C source files can be found in the files
c2o.rule (2.2.1) and cdeps.rule (2.2.4). To use them, include them both into your
brasfile with

include $::bras::base/c2o.rule
include $::bras::base/cdeps.rule

The mechanism uses the builtin predicates dcold and oldcache which are described
in appendix 2.1. For other programming languages similar schemes can be imple-
mented. (Send me your patches, please!)

1.10 Explicitly Calling the Reasoning Process

Normally the reasoning process is invoked automagically for the first target found in the
brasfile or for the targets mentioned on the command line. However, sometimes it
might be necessary to call it explicitly, in particular within a rule’s script. In a makefile
make is exec ed recursively in such situations. The disadvantage of this approach is,
that results of the reasoning which was already performed by the parent process are
not available to the child process. Consequently the child starts all over again. Bras
allows to call the reasoning process explicitly without exec . Just call

18

consider targets

to let bras consider and update the given target. The result of consider is a list of zeros
and ones, one for each target in the argument list. A one is returned if and only if the
respective target was made. An error is returned, if one of the targets cannot be made.

1.11 Using Environment Variables

One of the nicer features of make is its ability to override variable values in the makefile
with values from the command line or from the environment with var=value or -e on
the command line respectively.

A similar feature exists in bras . To set a variable in a way that it can be overridden by
the environment or on the command line, use getenv instead of set in your brasfiles.
Example:

getenv prefix /usr/local

This will either set prefix to $env(prefix) or to /usr/local if the latter does not
exist. If you require an environment variable to be set, leave out the default as in

getenv BLA

If there is no variable with name BLA in the environment, this will result in a Tcl-error.

1.12 How Bras Executes

There are the following major phases of operation performed strictly in sequence.

1.12.1 Set env -entries from the command line

All definitions like var=value found on the command line are entered into the global
array env thereby overriding the respective values from the environment.

1.12.2 Read brasfile

The brasfile is read and executed. This is very similar to what the source -command
does. However, sourcing occurs in a dedicated (anonymous) namespace which is tied
to the directory in which the brasfile is found. Consequently, procedures and vari-
ables set in the brasfile will end up in that namespace if they are not explicitly put

19

into another one. This automatically shields the operations of the the brasfile s in
different directories from each other. For example it allows to reuse the variable name
SOURCESin every brasfile of a multi directory built environment. See linkvar
(p. 43) and dirns (p 41 for ways to communicate information between the directory
related namespaces.

The command to define rules, Make, only records rules in an internal database. In
particular, no command specified in a rule is executed.

Beside Make, every Tcl-command can be used in a brasfile . They are executed as
in every other Tcl-script. Useful examples are setting global variables or if -statements
including or excluding system-specific rules.

1.12.3 Reasoning process

Either the targets given on the command line or the targets of the very first rule found in
brasfile are considered in turn. Considering a target can have three different results.

1. The target is up-to-date.

2. The target is not up-to-date but there is a way to built it.

3. The target is not up-to-date, but something necessary for building it is missing and
cannot be build.

Checking a target is a recursive process. It requires consideration of the target’s depen-
dencies. The exact order and interpretation of recursive calls of the reasoning process
are described below.3

• If the target starts with the character @, bras changes to the directory of the target
and reads the brasfile found there. Any directory part is removed from the targets
name.

• If the target was considered already along another line of reasoning, it is not checked
again. Instead the result computed before is immediately returned.

• If no rule is applicable for the target, bras tries to make one up as desribed in sec-
tion 1.5.1. If none can be constructed, the reasoning process returns immediately with
one of two results: If the target denotes an existing file, it reports that the target is
up-to-date. Otherwise it reports that the target is not up-to-date and cannot be built.

• If there are rules for the target none of which specifies a command to update the
target, a command is constructed as described in section 1.5.2. If no command can
be made bras merely prints a warning later, if it is decided that the target needs an
update.

3The most precise description of what bras does is in the source file consider.tcl . I do my best to
match it as closely as possible.

20

• All conditions of a rule are evaluated in turn and their results are combined with a
logical disjunction (or). Predicates called during that evaluation will eventually expand
their arguments along the search path and pass them recursively to the reasoning pro-
cess before they perform their own test. The predicates are executed in the namespace
in which the brasfile was sourced. Consequently they have access to all variables
which are defined in the brasfile .

• Finally, the rule’s command is executed if the disjunction of the conditions returns a
non-zero value. Details on how this is done can be found in section 1.12.4.

1.12.4 Command execution

All commands derived from rules are executed in the namespace of the brasfile
in which they were defined. This is also true for commands which were derived via
pattern rules. Before the command is executed, the namespace will have the following
variables set.

targets contains the list of targets for that rule,

target is the name of the target for which the rule was invoked,

In addition, many predicates set one or both of the following variables:

deps is the list of the rule’s dependencies (note that [lindex $deps 0] is mostly
equivalent to make’s variable $<). It usually depends on the predicate what exactly
a dependency is. Usually these are the files or targets which must be up-to-date
before a predicate can perform its test.

trigger contains those elements of deps which rendered the target out-of-date. The
contents of this variable again depend on predicate.

After setting these variables and changing to the right directory, a rule’s command is
executed. Non-internal commands are automatically passed to exec . But please re-
member that bras is basically Tcl and unlike sh , it does no globbing on the command
line. Consequently, the rule

Always clean {} {
rm -f *.o *.a *˜

}

does not work as expected. You have to resort to

Always clean {}
rm -f [glob -nocomplain -- *.o *.a *˜]

}

21

A delicate problem is variable substitution in external commands. Suppose CFLAGSis
set to "-g -Wall" and there is a command like

cc $CFLAGS -c [lindex $deps 0]

If external commands were only exec ’ed you could not expect this to work, because it
were equivalent to the tcl-script

exec cc $CFLAGS -c [lindex $deps 0]

which calls cc with just 3 arguments resulting effectively in

cc "-g -Wall" -c whatever.c

To make it work, bras actually does

eval exec cc $CFLAGS -c $target

but beware of unwanted flattening in commands containing braces: Due to eval one
level of braces disappears and

sed -e {s/ˆ[/]*//} bla >bli

is flattened by eval to

exec sed -e s/ˆ[/]*// bla >bli

resulting in complaints about the unknown command in [/] . The remedy is an extra
level of braces.

1.12.5 A note on namespaces

As mentioned above, every brasfile is executed in its own autogenerated names-
pace. This shields brasfile s in different directories from each other. In particular,
variables set and read without namespace qualification normally reference instances
local to the namespace.

However, it is easy to forget that variables set globally, e.g.

set ::CFLAGS -g

22

can be seen in every namespace. This is true also for subsequently setting the vari-
able . If, for example, the above is executed in one brasfile and another brasfile
later calls

set CFLAGS -O2

the global variable is changed because it existed before. To explictly reference the
namespace-local variable in cases where you suspect an already defined global, use

variable CFLAGS
set CFLAGS -O2

1.13 Compatibility with Older Versions

Up to version 0.8.x, bras had a different and less flexible concept of writing rules. The
condition was implicitely given by the name of the command to register a rule. There
were rule commands like Newer , Exist and Always as well as respective pattern
rules. To be compatible with older versions, these commands are still maintained but
are translated internally into calls to Make.

The translation is rather trivial and can be found at the end of the file makeRule.tcl .
Since these commands are useful shortcuts in many common situations, they are listed
below with their translation into the new scheme.

1.13.1 Always

Always targets deps command

is equivalent to

Make targets {[true deps] } command

1.13.2 PatternAlways

PatternAlways regexp deptag command

is equivalent to

PatternMake regexp deptag {[true $d] } command

23

1.13.3 Exist

Exist targets command

is equivalent to

Make targets {[missing targets] } command

1.13.4 Newer

Newer targets deps command

is equivalent to

Make targets {[older targets deps] } command

1.13.5 PatternNewer

PatternNewer regexp deptag command

is equivalent to

PatternMake regexp deptag {[older target $d] } command

1.14 Bras as a Package

Since Version 0.99.1 bras can be used as a package in any Tcl-script. In the future
this will be better documented. In short, it should suffice to have

package require bras
namespace import ::bras::*

somewhere at the beginning of your script to be able to use bras ’ commands Make,
consider and so on. Most command line options of bras can be set by calling
::bras::configure .

If you use bras in a Tk-application, call the command ::bras::forget (p. 41) before
reconsidering targets. Otherwise bras knows that it considered them before and thinks
there is nothing to do.

You may also want to redefine the procedure ::bras::report (p. 44) to redirect all
kinds of output into a widget.

24

In addition some care is necessary with regard to namespaces. If a brasfile is read
implicitly by following an @-target or explicitly with include @ dir for some directory dir,
a namespace is set up for that directory. Now, whenever a target is considered in that
directory, either by

1. cd dir
consider somefile

or by calling an @-target like

2. consider @ dir /somefile

the namespace for that directory will be used. In particular, the rule’s condition will be
evaluated in that namespace as well as the rule’s command.

The problem arises mainly if something like number (1) above is called before and after
a brasfile for dir is read. Before, the namespace will be :: , i.e. the global context,
and afterwards it will be the namespace set up for that directory. See section 2.3.3
and 2.3.8 for more information on dirns and linkvar respetively.

1.15 Limitations and Known Bugs

Please report bugs to the author.

1. Since I did not yet test bras with a really big project like say Xemacs or Tcl/Tk , I
don’t know if the recursive inclusion of many brasfile s will lead to performance
problems.

2. Parallel execution of several commands (as gnu make’s option -j) is not yet sup-
ported.

3. A hack to translate makefile s to brasfile s is not available.

4. As normal in Tcl, parameters of exec are not passed through glob , which may
lead to surprising error messages about non-existing files like *.o .

5. The rule-files containing default pattern-rules are not very elaborate.

6. Although Tcl is a portable platform, bras may still contain a few *nixisms.

1.16 The Name of the Game

First I wanted to call it brassel which is the imperative of brasseln , a verb you
probably won’t find in the dictionary. You may need to ask someone from around Köln,

25

but be prepared to get the answer that (s)he knows what it means but cannot explain it.
I think the description ”‘working concentrated, busily but without stress”’ is quite close
to the real meaning.

Well, since brassel is much to long for a good Un*x utility, I shortened it to bras . It
rhymes on the german word Faß.

1.17 Credits

Some people helped to push bras into the right direction. I would like to thank them.

• nemo@gsyc.inf.uc3m.es (Fco. J. Ballesteros) after looking at a very early ver-
sion had the idea to allow the definition of new types of rules.

• Jason Gunthorpe <jgg@debian.org> started experiments with bras to get rid
of the make/automake -combination with bras . The resulting long discussions
resulted in several changes and enhancements of bras . In particular commands
to fine-tune the rule-base were added, the semantics of pattern-rules was revised
and the DependsFile -rule was born.

• Paul Duffin <pduffin@hursley.ibm.com> wanted to have the search path for
dependencies.

• Paul D.Smith <psmith@gnu.org> explained some of the inner workings of make
to me so that I was able to plagiate them.

26

2 Reference Guide

2.1 Predefined predicates

Bras comes with a set of predicates which cover the most common tasks and allow to
mimic the function of make. If you develop a useful new predicate, send me the source.

2.1.1 dcold — is a target older than a dependency cache?

Synopsis:
dcold target cache

Description:
The predicate dcold checks if a file is out-of-date with respect to its dependency
cache. A dependency cache is used to store all files an object file depends on,
i.e. the respective source file as well as those source files which are (recursively)
included by the first one.

The predicate expands $cache along the search path and then passes it to the
reasoning process to make sure the file is up-to-date. It then checks with the pred-
icate older if the target is older than any of the files listed in the file $cache .

Example:
See file c2o.rule for an example of how to use dcold .

2.1.2 md5older — did the md5sum of a dependency change?

Synopsis:
md5older target deps

27

Description:
The predicate md5older maintains for the given target a cache file which contains
the md5sums of the given dependencies. It returns true if either the cache file
does not exist or if at least one of the dependencies has an md5sum not listed or
different from the one in the cache file. These dependencies will be communicated
to the rule’s command in variable trigger . If the cache file does not exist, all
dependencies will show up in trigger . The list of all dependencies can be
picked up in deps .

The name of the cache file is target .md5 .

Note: Unlike predicate older , md5older does not test whether the target does
exist as a file. Consequently, if you run bras and then delete the target, it will not
be rebuilt automatically if you only use md5older . Instead use a condition like

[or [md5older ...] [missing ...]]

2.1.3 missing — is a file missing?

Synopsis:
missing name

Description:
The predicate missing returns true if and only if the given file does not exist. In
that case, its name will be appended to the variable trigger and can be found
therein by the command associated with rule to which the predicate belongs.

Example:
Make /usr/local/lib/bla {[missing $target]} {

file mkdir $target
}

2.1.4 notinitialized — was a target not yet called?

Synopsis:
notinitialized targets

Description:
This predicate maintains an internal list of those targets for which it was called
before. If one of its arguments is not yet on the list, it returns true .

Please note that notinitialized does not call consider for its arguments.

28

Example:
Make {paramA paramB paramC} {[notinitialized $targets]} {

source paramfile
assumes that variables paramA ... are set

}

This predicate is mainly useful in applications with a GUI which make use of
forget (p. 41) because otherwise a target is never considered more than once.
As shown above, it can be used to initialize variables from a source-file once.

2.1.5 oldcache — is a dependency cache out-of-date?

Synopsis:
oldcache cache client

Description:
The predicate oldcache checks if the given dependency cache ($cache) is out-
of-date.

A dependency cache is typically used to store all the files an object file depends
on, in particular the respective source file, i.e. its client, as well as any other source
files which are (recursively) included by the client.

The dependency cache is out-of-date, if it either does not exist, if it is older than
the client-file, or if it is older than any of the files listed in itself. Here older is meant
in the sense of predicate older .

This predicate sets the variables trigger and deps for the command of the rule
to which it belongs. The client file will be listed before any files it includes.

Example:
See file cdeps.rule for an example of how to use oldcache .

2.1.6 older — are targets older than dependencies?

Synopsis:
older targets deps

29

Description:
The predicate older returns true to the reasoning process, if any of the names
listed in its first parameter either does not exist or is older than any of the files listed
in its second argument. Before older performs its test, it expands all elements in
deps along the search path and passes them to the reasoning process to make
sure they are up-to-date. If after considering a dependency there is still no file with
that name, older uses the result returned by the reasoning process to decide if
this dependency was just made. If the result is true, the dependency is considered
very new, otherwise it is considered very old. If however the dependency exists
as a file, its modification time is used.

2.1.7 pairedolder — is i’th target older than i’th dependency?

Synopsis:
pairedolder targets deps

Description:
For every element of the list targets, the predicate checks if it does not exist as a
file or is older than the respective element in deps. Contrast this with the predicate
older which checks every element of targets against every element of deps.

All dependencies are considered before the comparison starts. If a dependency is
nevertheless not available as a file, the report returned by the reasoning process
replaces the file modification time: if the dependency was made, it is treated as
being newer than the respective target, otherwise it is supposed to be older.

Example:
The main reason to introduce this predicate was to support Java compilation.

The Java case
As of today (Feb. 2002) the typical Java Development Kit (jdk) does not
help in generating decent make- or rather bras -dependency informa-
tion. But even if jikes ’ option +M comes to the rescue, there is the
problem that class files can be mutually dependent. The resulting de-
pendency loop can not be handled by bras .
Anyway, in newsgroups it seems to be agreed upon that it is best to
compile all source files in one call to the Java compiler. This is what is
supported by pairedolder as demonstrated below.

To compile all Java source files found in a directory, use:

30

set JAVAC javac
set JFLAGS ""
set JAVA [glob *.java]
regsub -all {[.]java} $JAVA .class CLASSES
Make $CLASSES {[pairedolder $CLASSES $JAVA]} {

$JAVAC $JFLAGS $deps
}

When bras is asked to consider any one of the class files, it will compile all source
files, but only if any of them is newer than the respective class file.

It is convenient to add the following shortcut target to the brasfile :

Make classes {[updated $CLASSES 0]} .relax.

It allows to just call

bras classes

on the command line to compile all Java source files.

2.1.8 true — always returns true

Synopsis:
true deps

Description:
The predicate true expands all its arguments along the search path and passes
them to the reasoning process to make sure they are up-to-date. The are also
passed to the command of the rule to which the predicate belongs in the variable
deps .

Note:
This predicate breaks the chain of reasoning because it always returns 1 (true).
Use of updated is recommended if this is not intended.

31

2.1.9 updated — does a target need an update?

Synopsis:
updated deps

Description:
The reasoning process is called for all given dependencies. If any of them is
updated during that process, updated returns true .

This predicate is normally used to check the dependencies of targets which them-
selves are no file targets. Compare this to the predicate older (p. 2.1.6) which
yields true if the target does not exist, even if none of the dependencies is out-
of-date. In contrast, normally you don’t even pass the target to updated .

Example:
The following rule combines the update decision about the three libraries into one
target, namely libs , which is then used as a shortcut representing the three
libraries.

Make libs {[updated {libR.a libS.a libT.a}]} {
Nothing to be done here, libs is not a file target.
It only serves as a shortcut to combine in an
OR-like fashion the results of considering the
dependencies.

}
Make program {[older $target {... libs ...}]} {

#compilation or other things
}

2.1.10 varchanged — did a variable’s value change?

Synopsis:
varchanged varnames cachefile

Description:
The predicate varchanged tests if any of the given variables is different from
their value as found in cachefile. The list varnames may contain names of scalar
variables, array elements or arrays, however in almost all cases those names must
be fully namespace qualified, i.e. they must start with :: .

The test proceeds as follows:

• If the cachefile does not exist, the predicate returns true. Otherwise the file
is source d in, i.e. it must contain Tcl code.

32

• If a name mentioned in varnames is not found in cachefile, the predicate
returns true.

• If the value — or values, in case of an array name — referenced by a name in
varnames differs from what is found in cachefile, the predicate returns true.

• Otherwise, the predicate returns false.

All names in varnames are considered as targets before the test is run. Those
names the values of which were found to differ from those in cachefile will show
up in the automatic variable trigger .

Example:
Suppose a parameter file is used to store parameters of algorithms, and you want
an algorithm to be run only if a parameter relevant to that algorithm changes. Con-
sequently the result produced by an algorithm shall not depend on the parameter
file as a whole, but only on that particular parameter.

The following code shows an example with two result files, two input files and one
parameter file:

##
$Revision: 1.2 $, $Date: 2000/06/22 11:33:00 $
##
Always all {resultA resultB} {
}

Make resultB {
[or [older $target inputB] [varchanged ::paramB $target.cache]]

} {
echo $paramB >$target; # a fake computation
echo "set paramB $paramB" >$target.cache

}

Exist inputB {
touch $target

}

Make resultA {
[or [older $target inputA] [varchanged ::paramA $target.cache]]

} {
echo $paramA >resultA; # a fake computation
echo "set paramA $paramA" >$target.cache

}

Exist inputA {
touch $target

}

Make {::paramA ::paramB} {[notinitialized $targets]} {

33

include params
}
##

When bras is called to make resultA it acts according to rule

Make resultA ...

In particular it checks the predicate

[varchanged ::paramA $target.cache]

to see if variable ::paramA has changed according to the given cache file. Pred-
icate varchanged first considers ::paramA as a target, which allows the last
rule to initialize it from a parameter file (see page 28 for notinitialized). Af-
ter that, the cache file, if available, is read and the current value of ::paramA is
compared to what is found in the cache file. If the cache file does not exist, if it
does not set ::paramA or if the current value is different from the stored one,
varchanged returnes true. As a consequence, the associated script is run and
updates the files resultA and resultA.cache .

Note that the cache file should normally be written at the same time as the compu-
tation is performed to keep it up-to-date. Also note that the cache file is of course
not the same file as the parameter file.

2.2 Predefined Pattern Rules

The distribution contains a small collection of pattern rules. To use them you have to
include them explicitly in your rule file. For example to load the rule to install files, use

include [file join $::bras::base install.rule]

The following sections describe most available rules. Check the distribution for .rule -
files for recent additions not covered by the documentation below.

2.2.1 c2o — compile C source into object file

Synopsis:
include [file join $::bras::base cdeps.rule]
include [file join $::bras::base c2o.rule]

Description:
Compiles C source files into object files.

34

Target:
{.*\[.]o(bj)? }

Dependency:
The dependency is derived from the target by replacing the target’s suffix with .c .

Predicate:
The target is checked with dcold (see 2.1.1) against its dependency cache file
maintained by dcold .

Command:
$CC -o $target -c $CFLAGS [lindex $deps 0]

For C++ use c++2o.rule instead.

2.2.2 c++2o — compile C++ source files

Synopsis:
include [file join $::bras::base c++deps.rule]
include [file join $::bras::base c++2o.rule]

Description:
Compiles C++ source files into object files.

Target:
{.*\[.]o(bj)? }

Dependency:
The file c++2o.rule actually contains 4 pattern rules which relate the target to
a dependency with one of the suffixes .C , .cc , .cxx or .cpp .

Predicate:
The target is checked with dcold (see 2.1.1) against its dependency cache file
maintained by dcold .

Command:
$CXX -o $target -c $CXXFLAGS [lindex $deps 0]

35

2.2.3 cdeps — maintain dependency cache for C source files

Synopsis:
include [file join $::bras::base cdeps.rule]

Description:
Maintains a dependency cache for a source file.

Target:
{.*\[.]dc }

Dependency:
The dependency is derived from the target by replacing the target’s suffix with .c .

Predicate:
The target is checked with oldcache (see 2.1.5) against the dependency.

Command:
::bras::updateCacheC \

$target [lindex $deps 0] CC DEPOPTS CDEPEXCLUDE

Set DEPOPTSto the options which instruct your C compiler to emit dependency
information for make. Optionally set the variable CDEPEXCLUDEto a regular ex-
pression for dependencies which need not be in the dependency list. A good
candidate on *NIX systems is ˆ/usr/.* .

For C++ use c++deps instead.

2.2.4 c++deps — maintain dependency cache for C++ source files

Synopsis:
include [file join $::bras::base c++deps.rule]

Description:
Maintains a dependency cache for a source file.

Target:
{.*\[.]dc }

Dependency:
The dependency is derived from the target by replacing the target’s suffix with one
of the suffixes .C , .cc , .cxx or .cpp .

Predicate:
The target is checked with oldcache (see 2.1.5) against the dependency.

36

Command:
::bras::updateCacheC \

$target [lindex $deps 0] CXX CXXDEPOPTS CXXDEPEXCLUDE

Set CXXDEPOPTSto the options which instruct your C++ compiler to emit depen-
dency information for make. Optionally set the variable CXXDEPEXCLUDEto a
regular expression for dependencies which need not be in the dependency list. A
good candidate on *NIX systems is ˆ/usr/.* .

2.2.5 cli2ch — create command line interface with clig

Synopsis:
include [file join $::bras::base cli2ch.rule]

Description:
Uses clig [Kirsch 2000] to create C source and header files for a command line
interpreter based on a description in a .cli file.

Target:
{.*\.[ch] }

Dependency:
The dependency is derived from the target by replacing the target’s suffix with
.cli .

Predicate:
The target is checked against the dependency by means of the older predicate
(see 2.1.6).

Command:
The program clig is run to create the C source and header file.

2.2.6 install — install a file

Synopsis:
include [file join $::bras::base install.rule]

Description:
The rule creates a relation between a file to be installed somewhere in the system
and a file in the local directory or search path (see 1.8). If the local file is older
than the target, the function ::bras::install (see section 2.3.7) is used to
install the file. To identify a target as a file to be installed, it must look like

/some/installation/dir/theFile/0755

37

On UNIX, the trailing octal number will be used to set the access permissions of
the installed file. On other platforms, it is simply ignored.

In addition to the behaviour described above, bras also looks for a local file
theFile.fixed . Sometimes a path must be edited into a script or documen-
tation file just before it is copied to its final destination. It is expected that the late
fix results in a local file with suffix .fixed .

Target:
[file join .* .* {0[0-9][0-9][0-9]}]

Dependency:
The dependency is generated by stripping from the target the trailing permissions
as well as any directories. Before the resulting plain dependency, the dependency
with suffix .fixed is tried.

Predicate:
The older predicate (see section 2.1.6) is used to check if the target to be in-
stalled is out of date with respect to the local file.

Command:
The target with permissions removed, the dependency found and then the per-
missions are passed to ::bras::install (see section 2.3.7).

2.2.7 lex2c — (f)lex source to C source

Synopsis:
include [file join $::bras::base lex2c.rule]

Description:
Relates a C source file *.c to a (f)lex source file *.lex . In particular, (f)lex is
called with option -t to make sure that the output file is not called lex.yy.c .

Target:
{.*[.]c}

Dependency:
The suffix .c replaced by .lex .

Predicate:
older (see 2.1.6)

Command:
$LEX $LEXFLAGS -t [lindex $deps 0] >$target

38

2.2.8 o2x — *IXish linking of object files into executable

Synopsis:
include [file join $::bras::base o2x.rule]

Description:
Maintains an executable in relation to an object file. Since an executable usu-
ally depends on several object files, this pattern rule is mainly of use to implicitly
define a command to link the files rather than deriving the dependency relation
automatically (see the discussion in section 1.5.2). The dependency relation with
all the object files must usually be described by other means.

Target:
A name which does not contain a dot, i.e. {[ˆ.]* }

Dependency:
The dependency is derived from the target by suffixing it with .o .

Predicate:
The target is checked against the dependency by means of the older predicate
(see 2.1.6).

Command:
$CC -o $target $CFLAGS $LDFLAGS $deps $LDLIBS

2.3 New Commands

The commands described in this section are all declared in the namespace ::bras .
They are all automatically imported into the global namespace when bras starts. How-
ever, when using bras as a package, they do not appear automatically in the global
namespace and must be imported with

namespace import ::bras::*

after the call to package require .

39

2.3.1 .relax. — a do-nothing indicator for rules

Synopsis:
.relax.

Description:
Used in place of a rule’s command, .relax. indicates explicitly that there is
nothing to do for the target. Contrast this with using

1. the empty string. It means that there is no command at all and will eventually
trigger a warning messages, if no other rule for the target is available wich
has a command.

2. a string of white space. If the target is rendered out-of-date, it is actually
executed, does of course nothing, but emits a message like

making target

To suppress the message, use .relax. instead of the string of white space.

Note:
Although it looks like a Tcl command, .relax. is none. Bras does not evaluate
it. It only applies a string compare to a rule’s command to find out if it is equal
to .relax. . As an added convenience, white space space is trimmed before
comparison.

Example:
The indicator .relax. is most conveniently used for default targets which only
delegate work to a bunch of other targets but don’t themselves represent files to
be made.

Make all {[updated [progs docs]]} {
.relax.

}

2.3.2 consider — explicitly call the reasoning process

Synopsis:
consider targets

Description:
The command calls the reasoning process explicitly for the given targets. In most
cases, the reasoning process is called explicitly for a given target by specifying it
on the bras -commandline. All other invocations happen automatically by recur-
sively considering dependencies of targets under consideration. However, just in
case the need arises, here is the command to invoke the reasoning process.

40

Example:
A truly useful example were the need arises to call consider is the maintenance
of dependency caches as shown in the distribution file cdeps.rule .

2.3.3 dirns — find namespace associated with directory

Synopsis:
dirns dir

Description:
Retrieves the name of the namespace associated with the brasfile in directory
dir. The association is created only when a brasfile in dir is sourced either
implicitly by following an @-target or explicitly by include @ dir . If no such as-
sociation was created before, the global namespace :: is returned.

Example:
Use a configuration option defined in the brasfile
of the parent directory to change behaviour.
if {[set [dirns ..]::XYZOPTION]} {

...
} else {

...
}

2.3.4 forget — forget which targets where already considered

Synopsis:
forget ?targets dirs?

Description:
Both parameters targets and dirs can be glob-patterns. They describe which
targets bras shall mark as “not yet considered’ in which directories. If dirs is not
given, bras forgets the matching targets in all directories. If no argument is given,
bras forgets all targets.

The functions is normally not useful if bras is invoked on the command line. How-
ever if the bras -package is used in a Tk-application, forget allows to reconsider
targets after the user changed some settings.

41

2.3.5 getenv — set variable from environment of from default

Synopsis:
getenv name ?default?

Description:
The command copies the element of env with the given name into a variable of
the same name. If the optional default value is not given and an element of the
given name does not exist in env , an error message is printed and bras exits. If
a default value is given, it is taken instead of the missing entry in env .

Example:
A typical use of getenv is to set compiler switches like CFLAGS:

getenv CFLAGS {-W -Wall -g}

Please note that bras allows to set elements of env on the command line (see
section 1.12.1), so the above default can be overridden by calling bras like

/home/bobo> bras CFLAGS=’-O2 -W -Wall’

2.3.6 include — source file only once

Synopsis:
include @ dir
include file

Description:
Like source , include reads and executes a Tcl-file. In contrast to source ,
include makes sure to source every file only once.

If the parameter is the name of a directory prefixed with @, the brasfile of the
given directory is sourced in the same way as if bras had followed an @-target to
that directory. In particular, the file is sourced within its own namespace.

The name of the brasfile used depends on the name of the file where this
command is found in. If bras was called with option -f specifying a special
name, that name is also used in the destination directory.

If the parameter given does not start with @, the file is sourced in the global names-
pace.

Example:
The form

include @..

42

is most often used in brasfile s of subdirectories to include a standard rule file
of the parent directory. It allows to call bras in the subdirectory alone and still
having all global definitions of ../brasfile .

2.3.7 install — install a file

Synopsis:
install target source {perm {}}

Description:
Installs a file source as a file target. Before file source is copied onto the tar-
get, the targets directory is made with with the command [file mkdir] . On
UNIX, the target’s access permissions are set as requested by perm. On other
platforms, perm is ignored. This command is used by the pattern rule defined in
install.rule (see 2.2.6).

2.3.8 linkvar — link variable to other namespace

Synopsis:
linkvar varname ?varname? . . . dir

Description:
Make the variables given into aliases for variables of the same name in the names-
pace associated with the brasfile in directory dir. For this to work, the brasfile
in dir must have been sourced already either implicitly by following an @-target or
explicitly by include @ dir .

Example:
use same CFLAGS as in parent directory
linkvar CFLAGS ..

43

2.3.9 report — callback for warnings and error messages

Synopsis:
report type text ?newline?

Description:
Bras uses this function to produce all kinds of output on the console. If you want
this output to go anywhere else, redefine this procedure such that it matches the
interface described here.

The possible values of parameter type and their meaning is described in the
following table.

parameter printed on meaning
warn stderr warning messages
-v stdout output triggered by option -v
-ve stdout output triggered by option -ve
-d stdout output triggered by option -d
norm stdout normal output without options

The default implementation of report prints with puts and suppresses the trail-
ing newline only, if parameter newline is explicitly set to 0.

2.3.10 searchpath — set or get search path

Synopsis:
searchpath ?new path?

Description:
Without an argument, the search path set for the current directory is returned. If
none is set, the empty string is returned. If an argument is given, it is the list of
directories where bras searches for dependencies (see section 1.8).

Note that the searchpath is local to a given directory, i.e. if bras follows an @-
target to another directory, that directory has its own search path.

Example:
You may want to make the search path dependent on the platform on which you
are building.

searchpath [list . ../generic ../$tcl_platform(platform)]

44

2.4 Miscellaneous Commands

The commands described in this section are (hopefully) of general interest when using
bras . They are all defined in namespace ::bras and are not automatically imported.
To use them, either call them with their fully qualified name, e.g. ::bras::packjar ,
or import them with namespace import .

2.4.1 cvsknown — return all files CVS knows about

Synopsis:
::bras::cvsknown

Description:
The procedure recursively finds the files CVS/Entries and returns the catenated
list of file names it finds in them. Consequently, the result is a list of all files CVS
knows about in the current directory and its subdirectories.

Example:
The procedure can be used to keep an archive file of a CVS-module up-to-date
with respect of the file in the module.

set module [file tail [pwd]]
Make ${module}.tar.gz {

[older $target [::bras::cvsknown]]
} {

export module from CVS and pack it
}

Only if $module.tar.gz is actually considered for update the rather expensive
procedure ::bras::cvsknown is run. When other targets are considered, it is
never executed.

2.4.2 makedeps2bras — convert make dependencies

Synopsis:
::bras::makedeps2bras text exclude

Description:
The command assumes that text contains make dependencies like they are au-
tomatically generated by some compilers, e.g. with gcc -M or jikes +M . In par-
ticular the text should contain lines like

45

target: dep1 dep2
target: dep3 dep4

Continuation lines are allowed. The command fetches only the dependencies, as-
suming that all targets mentioned are the same. If exclude is not the empty string,
it should be a regular expression. Dependencies which match this expression will
not be included in the resulting list. An example would be ˆ/usr/.* .

Example:
Take a look at the file updateCacheC.tcl of the distribution to see how this
command is used.

2.4.3 packjar — create a java archive from java packages

Synopsis:
::bras::packjar jar pkgroot pkgdirs ?glob?

Description:
The command creates a java archive in the file jar. It packs files matching the
pattern specified in glob in any of the package directories listed in pkgdirs. The
default pattern is *.class . Package directories are interpreted relative to pkg-
root.

Example:
To pack all class files as well as all PNG-images of the package text.regexp ,
use

set PKGROOT [file dir [file dir [pwd]]]
set PKG [file join [split text.regexp .]]
::bras::packjar Regexp.jar $PKGROOT \

$PKG [list *.class *.png]

46

Bibliography

[Miller 1997] P. Miller: Recursive Make Considered Harmful. http://www.pcug.org
.au/˜millerp/rmch/recu-make-cons-harm.html is included in the bras -distribution as
recu-make-cons-harm.ps.gz

[Kirsch 2000] H. Kirsch: Command Line Interpreter Generator. http://wsd.iitb.fhg.de/˜kir
/clighome/

47

http://www.pcug.org.au/~millerp/rmch/recu-make-cons-harm.html
http://www.pcug.org.au/~millerp/rmch/recu-make-cons-harm.html
http://wsd.iitb.fhg.de/~kir/clighome/
http://wsd.iitb.fhg.de/~kir/clighome/

Index

Symbols
.C . 35, 36
.cc . 35, 36
.cpp .35, 36
.cxx .35, 36
.relax. 7, 31, 40
.rule . 34
::bras::configure24
::bras::consider 40
::bras::cvsknown 45
::bras::dirns 41
::bras::forget 24, 41
::bras::getenv42
::bras::include 42
::bras::install37, 43
::bras::linkvar 43
::bras::makedeps2bras 45
::bras::packjar 46
::bras::report 24, 44
@-dependency.15, 16
@-target . 20, 25

in search path 17
@.. .16
$< . 21
install

rule . 37

A
Always .23

B
bugs . 25

C
C . 34
C++. 35, 36
c++2o . 35
c++2o.rule . 35

c++deps . 36
c2o .34
c2o.rule . 18
CC. 35, 36, 39
CDEPEXCLUDE. 36
cdeps .36
cdeps.rule . 18
CFLAGS. 35, 39
clig . 37
command . 6

braces . 22
execution . 21
from pattern . 14
glob . 21
variable substitution.22

condition . 6, 7
consider . 9, 40
consider

explicitly calling 18
consider.tcl . 20
cvsknown . 45
CXX. 35, 37
CXXDEPEXCLUDE. 37
CXXDEPOPTS. 37
CXXFLAGS. 35

D
d .12, 15
dcold . 18
defaultGendep 13
depencency

autogenerated 17
dependency

from make . 18
in C. .18
in condition . 15
in other directory.15

48

locate. .17
searching for.16

DEPOPTS. 36
deps . 8, 10, 14, 21
dirns . 41

E
env

set on command line.19
environment variables.19
execution model . 19
Exist . 23

F
forget . 24, 41

G
gendep .13
getenv . 19, 42
glob

in command . 21
global variable . 23
global definition

include . 16

I
include .16, 25, 42
install . 37, 43
install.rule . 43
installPredicate 9, 10

J
Java . 11, 30
javac . 30
jikes . 30

L
lastMinuteRule.tcl 14
LDFLAGS. 39
LDLIBS .39
lex2c . 38
linkvar . 43

M
Make . 6, 24
make . 45

makedeps2bras 45
multi-target . 11

N
namespace.19, 21, 22, 25

::bras::p .9
Newer . 23

O
o2x .39
oldcache . 18
older . 38
older . 6
option

-d . 9

P
package

bras . 24
packjar . 46
pairedolder . 30
PatternMake . 12
platform

built for . 16
predicate . 7, 8
predicates.tcl 8

R
reason . 9
reasoning process 20
report . 24, 44
rule . 7

implicit .12
multi-target . 11
multiple . 10
pattern . 12
real . 13
suffix . 12

rule files . 34

S
searchpath 9, 13, 17, 21
source .16

T
target . 6

49

target .21
targets . 21
trigger .8, 21
true . 8, 31

U
updated . 11, 31

V
variable

global. .23

50

	User Manual
	Introduction
	Rules
	Syntax
	Conditions
	Predicates

	Multiple Rules for a Target
	Multi-Target Rules
	Pattern Rules
	How pattern rules are used to create real rules
	How default commands are derived from pattern rules
	Accessing the generated dependency in the condition

	Dependencies in Other Directories
	Including Files Only Once
	Searching for Dependencies
	Use of Automatically Generated Dependencies
	The ancient way
	The modern way

	Explicitly Calling the Reasoning Process
	Using Environment Variables
	How Bras Executes
	Set env-entries from the command line
	Read brasfile
	Reasoning process
	Command execution
	A note on namespaces

	Compatibility with Older Versions
	Always
	PatternAlways
	Exist
	Newer
	PatternNewer

	Bras as a Package
	Limitations and Known Bugs
	The Name of the Game
	Credits

	Reference Guide
	Predefined predicates
	dcold --- is a target older than a dependency cache?
	md5older --- did the md5sum of a dependency change?
	missing --- is a file missing?
	notinitialized --- was a target not yet called?
	oldcache --- is a dependency cache out-of-date?
	older --- are targets older than dependencies?
	pairedolder --- is i'th target older than i'th dependency?
	true --- always returns true
	updated --- does a target need an update?
	varchanged --- did a variable's value change?

	Predefined Pattern Rules
	c2o --- compile C source into object file
	c++2o --- compile C++ source files
	cdeps --- maintain dependency cache for C source files
	c++deps --- maintain dependency cache for C++ source files
	cli2ch --- create command line interface with clig
	install --- install a file
	lex2c --- (f)lex source to C source
	o2x --- *IXish linking of object files into executable

	New Commands
	.relax. --- a do-nothing indicator for rules
	consider --- explicitly call the reasoning process
	dirns --- find namespace associated with directory
	forget --- forget which targets where already considered
	getenv --- set variable from environment of from default
	include --- source file only once
	install --- install a file
	linkvar --- link variable to other namespace
	report --- callback for warnings and error messages
	searchpath --- set or get search path

	Miscellaneous Commands
	cvsknown --- return all files CVS knows about
	makedeps2bras --- convert make dependencies
	packjar --- create a java archive from java packages

	Bibliography
	Index

