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1 3D Heat Equation

[Oct 27, 2004]

Ref: §1.5 Haberman

Consider an arbitrary 3D subregion V of R3 (V ⊆ R3), with temperature u (x, t)

defined at all points x = (x, y, z) ∈ V . We generalize the ideas of 1-D heat flux to

find an equation governing u. The heat energy in the subregion is defined as

heat energy =

∫ ∫
V

cρu dV

Recall that conservation of energy implies

rate of change

of heat energy
=

heat energy into V from

boundaries per unit time
+

heat energy generated

in solid per unit time

We desire the heat flux through the boundary S of the subregion V , which is

the normal component of the heat flux vector φ, φ · n̂, where n̂ is the outward unit

normal at the boundary S. Hats on vectors denote a unit vector, |n̂| = 1 (length 1).

If the heat flux vector φ is directed inward, then φ · n̂ < 0 and the outward flow of

heat is negative. To compute the total heat energy flowing across the boundaries,

we sum φ · n̂ over the entire closed surface S, denoted by a double integral
∫ ∫

S
dS.

Therefore, the conservation of energy principle becomes

d

dt

∫ ∫ ∫
V

cρu dV = −
∫ ∫

S

φ · n̂ dS +

∫ ∫ ∫
V

QdV (1)
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1.1 Divergence Theorem (a.k.a. Gauss’s Theorem)

For any volume V with closed smooth surface S,∫ ∫ ∫
V

∇ · A dV =

∫ ∫
S

A · n̂ dS

where A is any function that is smooth (i.e. continuously differentiable) for x ∈ V .

Note that

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= êx

∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z

where êx, êy, êz are the unit vectors in the x, y, z directions, respectively. The

divergence of a vector valued function F = (Fx, Fy, Fz) is

∇ · F =
∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
.

The Laplacian of a scalar function F is

∇2F =
∂2F

∂x2
+
∂2F

∂y2
+
∂2F

∂z2
.

Applying the Divergence theorem to (1) gives

d

dt

∫ ∫ ∫
V

cρu dV = −
∫ ∫ ∫

V

∇ · φ dV +

∫ ∫ ∫
V

QdV

Since V is independent of time, the integrals can be combined as∫ ∫ ∫
V

(
cρ
∂u

∂t
+ ∇ · φ−Q

)
dV = 0

Since V is an arbitrary subregion of R3 and the integrand is assumed continuous, the

integrand must be everywhere zero,

cρ
∂u

∂t
+ ∇ · φ−Q = 0 (2)

1.2 Fourier’s Law of Heat Conduction

The 3D generalization of Fourier’s Law of Heat Conduction is (see Appendix to 1.5,

pp 32, Haberman)

φ = −K0∇u (3)

where K0 is called the thermal diffusivity. Substituting (3) into (2) gives

∂u

∂t
= κ∇2u+

Q

cρ
(4)
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where κ = K0/ (cρ). This is the 3D Heat Equation. Normalizing as for the 1D case,

x̃ =
x

l
, t̃ =

κ

l2
t

the dimensional Heat Equation (4) becomes (dropping tildes)

∂u

∂t
= ∇2u+ q, (5)

where q = l2Q/ (κcρ) = l2Q/K0.

2 3D Wave equation

The 1D wave equation can be generalized (Haberman, §4.5) to a 3D wave equation,

in scaled coordinates,

utt = ∇2u (6)

3 Separation of variables in 3D

[Oct 29, 2004]

Ref: Haberman, Ch 7.

We consider simple subregions D ⊆ R3. We assume the boundary conditions are

zero, u = 0 on ∂D, where ∂D denotes the closed surface of D (assumed smooth).

The 3D Heat Problem is

ut = ∇2u, x ∈ D, t > 0,

u (x, t) = 0, x ∈ ∂D, (7)

u (x, 0) = f (x) , x ∈ D.

The 3D wave problem is

utt = ∇2u, x ∈ D, t > 0,

u (x, t) = 0, x ∈ ∂D, (8)

u (x, 0) = f (x) , x ∈ D,

ut (x, 0) = g (x) , x ∈ D.

We separate variables as

u (x, t) = X (x)T (t) (9)
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The 3D Heat Equation implies

T ′

T
=

∇2X

X
= −λ = const (10)

where λ = const since the l.h.s. depends solely on t and the middle X ′′/X depends

solely on x. The 3D wave equation becomes

T ′′

T
=

∇2X

X
= −λ = const (11)

On the boundaries,

X (x) = 0, x ∈ ∂D

3.1 Sturm-Liouville problem

Both the 3D Heat Equation and the 3D Wave Equation lead to the Sturm-Liouville

problem

∇2X + λX = 0, x ∈ D, (12)

X (x) = 0, x ∈ ∂D.

3.2 Positive, real eigenvalues (for Type I BCs)

Ref: §7.4 Haberman

For the Type I BCs assumed here (u (x, t) = 0, for x ∈ ∂D), we now show that

all eigenvalues are positive. To do so, we need a result that combines some vector

calculus with the Divergence Theorem. From vector calculus, for any scalar function

G and vector valued function F,

∇ · (GF) = G∇ · F + F · ∇G (13)

Using the divergence theorem,∫ ∫
S

(GF) · n̂dS =

∫ ∫ ∫
V

∇ · (GF) dV (14)

Substituting (13) into (14) gives∫ ∫
S

(GF) · n̂dS =

∫ ∫ ∫
V

G∇ · FdV +

∫ ∫ ∫
V

F · ∇GdV (15)

Choosing G = v and F = ∇v, for some function v, we have∫ ∫
S

v∇v · n̂dS =

∫ ∫ ∫
V

v∇2vdV +

∫ ∫ ∫
V

∇v · ∇vdV

=

∫ ∫ ∫
V

v∇2vdV +

∫ ∫ ∫
V

|∇v|2 dV. (16)

4



Result (16) holds for any smooth function v defined on a volume V with closed smooth

surface S.

We now apply result (16) to a solution X (x) of the Sturm-Liouville problem (12).

Letting v = X (x), S = ∂D and V = D, Eq. (16) becomes∫ ∫
∂D

X∇X · n̂dS =

∫ ∫ ∫
D

X∇2XdV +

∫ ∫ ∫
D

|∇X|2 dV (17)

Since X (x) = 0 for x ∈ ∂D, ∫ ∫
∂D

X∇X · n̂dS = 0 (18)

Also, from the PDE in (12),∫ ∫ ∫
D

X∇2XdV = −λ
∫ ∫ ∫

D

X2dV (19)

Substituting (18) and (19) into (17) gives

0 = −λ
∫ ∫ ∫

D

X2dV +

∫ ∫ ∫
D

|∇X|2 dV (20)

For non-trivial solutions, X �= 0 at some points in D and hence by continuity of X,∫ ∫ ∫
D
X2dV > 0. Thus (20) can be rearranged,

λ =

∫ ∫ ∫
D
|∇X|2 dV∫ ∫ ∫
D
X2dV

≥ 0 (21)

Since X is real, the the eigenvalue λ is also real.

If ∇X = 0 for all points in D, then integrating and imposing the BC X (x) = 0

for x ∈ ∂D gives X = 0 for all x ∈ D , i.e. the trivial solution. Thus ∇X is nonzero

at some points in D, and hence by continuity of ∇X,
∫ ∫ ∫

D
|∇X|2 dV > 0. Thus,

from (21), λ > 0.

4 Solution for T (t)

Suppose that the Sturm-Liouville problem (12) has eigen-solution Xn (x) and eigen-

value λn, where Xn (x) is non-trivial. Then for the 3D Heat Problem, the problem

for T (t) is, from (10),
T ′

T
= −λ (22)

with solution

Tn (t) = cne
−λnt (23)
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and the corresponding solution to the PDE and BCs is

un (x, t) = Xn (x)Tn (t) = Xn (x) cne
−λnt.

For the 3D Wave Problem, the problem for T (t) is, from (11),

T ′′

T
= −λ (24)

with solution

Tn (t) = αn cos
(√

λnt
)

+ βn sin
(√

λnt
)

(25)

and the corresponding normal mode is (x, t) = Xn (x)Tn (t).

5 Uniqueness of the 3D Heat Problem

We now prove that the solution of the 3D Heat Problem

ut = ∇2u, x ∈ D

u (x, t) = 0, x ∈ ∂D

u (x, 0) = f (x) , x ∈ D

is unique. Let u1, u2 be two solutions. Define v = u1 − u2. Then v satisfies

vt = ∇2v, x ∈ D

v (x, t) = 0, x ∈ ∂D

v (x, 0) = 0, x ∈ D

Let

V (t) =

∫ ∫ ∫
D

v2dV ≥ 0

V (t) ≥ 0 since the integrand v2 (x, t) ≥ 0 for all (x, t). Differentiating in time gives

dV

dt
(t) =

∫ ∫ ∫
D

2vvtdV

Substituting for vt from the PDE yields

dV

dt
(t) =

∫ ∫ ∫
D

2v∇2vdV

By result (16),

dV

dt
(t) = 2

∫ ∫
∂D

v∇v · n̂dS − 2

∫ ∫ ∫
D

|∇v|2 dV
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But on ∂D, v = 0, so that the first integral on the r.h.s. vanishes. Thus

dV

dt
(t) = −2

∫ ∫ ∫
D

|∇v|2 dV ≤ 0

Also, at t = 0,

V (0) =

∫ ∫ ∫
D

v2 (x, 0) dV = 0

Thus V (0) = 0, V (t) ≥ 0 and dV/dt ≤ 0, i.e. V (t) is a non-negative, non-increasing

function that starts at zero. Thus V (t) must be zero for all time t, so that v (x, t)

must be identically zero throughout the volume D for all time, implying the two

solutions are the same, u1 = u2. Thus the solution to the 3D heat problem is unique.

6 Orthogonality of eigen-solutions to

Sturm-Liouville problem

Ref: §7.4 Haberman

Suppose v1, v2 are two eigen-functions with eigenvalues λ1, λ2 of the 3D Sturm-

Liouville problem

∇2v + λv = 0, x ∈ D

v = 0, x ∈ ∂D

Result (15) applied to G = v1 and F = ∇v2 gives∫ ∫
∂D

(v1∇v2) · n̂dS =

∫ ∫ ∫
D

v1∇2v2dV +

∫ ∫ ∫
D

∇v2 · ∇v1dV

Since v1 = 0 on ∂D and ∇2v2 = λ2v2, we have

λ2

∫ ∫ ∫
D

v1v2dV = −
∫ ∫ ∫

D

∇v2 · ∇v1dV (26)

Similarly, applying result (15) to G = v2 and F = ∇v1 gives

λ1

∫ ∫ ∫
D

v1v2dV = −
∫ ∫ ∫

D

∇v2 · ∇v1dV (27)

Subtracting (27) from (26) gives

(λ1 − λ2)

∫ ∫ ∫
D

v1v2dV = 0

Thus if λ1 �= λ2, ∫ ∫ ∫
D

v1v2dV = 0, (28)

and the eigen-functions v1, v2 are orthogonal.
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7 Heat and Wave problems on a 2D rectangle

[Nov. 1, 2004]

Ref: §7.3 Haberman

7.1 Sturm-Liouville Problem on a 2D rectangle

We now consider the special case where the subregion D is a rectangle

D = {(x, y) : 0 ≤ x ≤ x0, 0 ≤ y ≤ y0}

The Sturm-Liouville Problem (12) becomes

∂2v

∂x2
+
∂2v

∂y2
+ λv = 0, (x, y) ∈ D, (29)

v (0, y) = v (x0, y) = 0, 0 ≤ y ≤ y0, (30)

v (x, 0) = v (x, y0) = 0, 0 ≤ x ≤ x0. (31)

Note that in the PDE (29), λ is positive a constant (we showed above that λ had to

be both constant and positive). We employ separation of variables again, this time

in x and y: substituting v (x, y) = X (x) Y (y) into the PDE (29) and dividing by

X (x) Y (y) gives
Y ′′

Y
+ λ = −X

′′

X

Since the l.h.s. depends only on y and the r.h.s. only depends on x, both sides must

equal a constant, say µ,
Y ′′

Y
+ λ = −X

′′

X
= µ (32)

The BCs (30) and (31) imply

X (0)Y (y) = X (x0)Y (y) = 0, 0 ≤ y ≤ y0,

X (x) Y (0) = X (x)Y (y0) = 0, 0 ≤ x ≤ x0.

To have a non-trivial solution, Y (y) must be nonzero for some y ∈ [0, y0] and X (x)

must be nonzero for some x ∈ [0, x0], so that to satisfy the previous 2 equations, we

must have

X (0) = X (x0) = Y (0) = Y (y0) = 0 (33)

The problem for X (x) is the 1D Sturm-Liouville problem

X ′′ + µX = 0, 0 ≤ x ≤ x0 (34)

X (0) = X (x0) = 0
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We solved this problem in the chapter on the 1D Heat Equation. We found that for

non-trivial solutions, µ had to be positive and the solution is

Xm (x) = am sin

(
mπx

x0

)
, µm =

(
mπ

x0

)2

, m = 1, 2, 3, ... (35)

The problem for Y (y) is

Y ′′ + νY = 0, 0 ≤ y ≤ y0, (36)

Y (0) = Y (y0) = 0

where ν = λ− µ. The solutions are the same as those for (34), with ν replacing µ:

Yn (y) = bn sin

(
nπy

y0

)
, νn =

(
nπ

y0

)2

, n = 1, 2, 3, ... (37)

The eigen-solution of the 2D Sturm Liouville problem (29) – (31) is

vmn (x, y) = Xm (x) Yn (y) = cmn sin

(
mπx

x0

)
sin

(
nπy

y0

)
, m, n = 1, 2, 3, ... (38)

with eigenvalue

λmn = µm + νn = π2

(
m2

x2
0

+
n2

y2
0

)
.

See plots in Figure 7.3.2 (p 284) Haberman of vmn (x, y) for various m, n.

7.2 Solution to heat equation on 2D rectangle

The heat problem on the 2D rectangle is the special case of (7),

ut =
∂2u

∂x2
+
∂2u

∂y2
, (x, y) ∈ D, t > 0,

u (x, y, t) = 0, (x, y) ∈ ∂D,

u (x, y, 0) = f (x, y) , (x, y) ∈ D,

where D is the rectangle D = {(x, y) : 0 ≤ x ≤ x0, 0 ≤ y ≤ y0}. We reverse the

separation of variables (9) and substitute solutions (23) and (38) to the T (t) problem

(22) and the Sturm Liouville problem (29) – (31), respectively, to obtain

umn (x, y, t) = Amn sin

(
mπx

x0

)
sin

(
nπy

y0

)
e−λmnt

= Amn sin

(
mπx

x0

)
sin

(
nπy

y0

)
e
−π2

(
m2

x2
0

+ n2

y2
0

)
t
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To satisfy the initial condition, we sum over all m, n to obtain the solution, in

general form,

u (x, y, t) =

∞∑
m=1

∞∑
n=1

umn (x, y, t) =

∞∑
m=1

∞∑
n=1

Amn sin

(
mπx

x0

)
sin

(
nπy

y0

)
e−λmnt

Setting t = 0 and imposing the initial condition u (x, y, 0) = f (x, y) gives

f (x, y) = u (x, y, 0) =

∞∑
m=1

∞∑
n=1

Amnvmn (x, y) =

∞∑
m=1

∞∑
n=1

Amn sin

(
mπx

x0

)
sin

(
nπy

y0

)

where vmn (x, y) = sin
(

mπx
x0

)
sin

(
nπy
y0

)
are the eigen-functions of the 2D Sturm Li-

ouville problem on a rectangle, (29) – (31). Multiplying both sides by vm̂n̂ (x, y) (m̂,

n̂ = 1, 2, 3, ...) and integrating over the rectangle D gives∫ ∫
D

f (x, y) vm̂n̂ (x, y) dA =

∞∑
m=1

∞∑
n=1

Amn

∫ ∫
D

vmn (x, y) vm̂n̂ (x, y)dA (39)

where dA = dxdy. Note that∫ ∫
D

vmn (x, y) vm̂n̂ (x, y) dA =

∫ x0

0

sin

(
mπx

x0

)
sin

(
m̂πx

x0

)
dx

×
∫ y0

0

sin

(
nπy

y0

)
sin

(
n̂πy

y0

)
dy

=

{
1/4, m = m̂ and n = n̂

0, otherwise

Thus (39) becomes ∫ ∫
D

f (x, y) vm̂n̂ (x, y)dA =
Am̂n̂

4

Since m̂, n̂ are dummy variables, we replace m̂ by m and n̂ by n, and rearrange to

obtain

Amn = 4

∫ ∫
D

f (x, y) vm̂n̂ (x, y) dA

= 4

∫ x0

0

∫ y0

0

f (x, y) sin

(
mπx

x0

)
sin

(
nπy

y0

)
dydx (40)

7.3 Solution to wave equation on 2D rectangle

Application: waves on a 2D rectangular membrane (§7.3 Haberman)

10



The solution to the wave equation on the 2D rectangle follows similarly. The

general 3D wave problem (8) becomes

utt =
∂2u

∂x2
+
∂2u

∂y2
, (x, y) ∈ D, t > 0,

u (x, y, t) = 0, (x, y) ∈ ∂D,

u (x, y, 0) = f (x, y) , (x, y) ∈ D,

ut (x, y, 0) = g (x, y) , (x, y) ∈ D,

where D is the rectangle D = {(x, y) : 0 ≤ x ≤ x0, 0 ≤ y ≤ y0}. We reverse the

separation of variables (9) and substitute solutions (25) and (38) to the T (t) problem

(24) and the Sturm Liouville problem (29) – (31), respectively, to obtain

umn (x, y, t) = sin

(
mπx

x0

)
sin

(
nπy

y0

)(
αnm cos

(√
λnmt

)
+ βnm sin

(√
λnmt

))
= Amn sin

(
mπx

x0

)
sin

(
nπy

y0

)
×
(
αnm cos

(
πt

√
m2

x2
0

+
n2

y2
0

)
+ βnm sin

(
πt

√
m2

x2
0

+
n2

y2
0

))
To satisfy the initial condition, we sum over all m, n to obtain the solution, in

general form,

u (x, y, t) =

∞∑
m=1

∞∑
n=1

umn (x, y, t)

Setting t = 0 and imposing the initial conditions

u (x, y, 0) = f (x, y) , ut (x, y, 0) = g (x, y)

gives

f (x, y) = u (x, y, 0) =
∞∑

m=1

∞∑
n=1

αmnvmn (x, y)

=
∞∑

m=1

∞∑
n=1

αmn sin

(
mπx

x0

)
sin

(
nπy

y0

)
g (x, y) = ut (x, y, 0) =

∞∑
m=1

∞∑
n=1

√
λmnβmnvmn (x, y)

=

∞∑
m=1

∞∑
n=1

√
λmnβmn sin

(
mπx

x0

)
sin

(
nπy

y0

)

where vmn (x, y) = sin
(

mπx
x0

)
sin

(
nπy
y0

)
are the eigen-functions of the 2D Sturm Li-

ouville problem on a rectangle, (29) – (31). As above, multiplying both sides by
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vm̂n̂ (x, y) (m̂, n̂ = 1, 2, 3, ...) and integrating over the rectangle D gives

αmn = 4

∫ ∫
D

f (x, y) vmn (x, y)dxdy

βmn =
4√
λmn

∫ ∫
D

g (x, y) vmn (x, y)dxdy

8 Heat and Wave equations on a 2D circle

[Nov 3, 2004]

Ref: §7.7 Haberman

We now consider the special case where the subregion D is the unit circle (we may

assume the circle has radius 1 by choosing the length scale l for the spatial coordinates

as the original radius):

D =
{
(x, y) : x2 + y2 ≤ 1

}
The Sturm-Liouville Problem (12) becomes

∂2v

∂x2
+
∂2v

∂y2
+ λv = 0, (x, y) ∈ D, (41)

v (x, y) = 0, x2 + y2 = 1, (42)

where we already know λ is positive and real. It is natural to introduce polar coor-

dinates via the transformation

x = r cos θ, y = r sin θ, w (r, θ, t) = u (x, y, t)

for

0 ≤ r ≤ 1, −π ≤ θ < π.

You can verify that

∇2v =
∂2v

∂x2
+
∂2v

∂y2
=

1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2

∂2w

∂θ2

The PDE becomes

1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2

∂2w

∂θ2
+ λw = 0, 0 ≤ r ≤ 1, −π ≤ θ < π (43)

The BC (42) requires

w (1, θ) = 0, −π ≤ θ < π. (44)

We use separation of variables by substituting

w (r, θ) = R (r)H (θ) (45)
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into the PDE (43) and multiplying by r2/ (R (r)H (θ)) and then rearranging to obtain

r
d

dr

(
r
dR

dr

)
1

R (r)
+ λr2 = −d

2H

dθ2

1

H (θ)

Again, since the l.h.s. depends only on r and the r.h.s. on θ, both must be equal to

a constant µ,

r
d

dr

(
r
dR

dr

)
1

R (r)
+ λr2 = −d

2H

dθ2

1

H (θ)
= µ (46)

The BC (44) becomes

w (1, θ) = R (1)H (θ) = 0

which, in order to obtain non-trivial solutions (H (θ) �= 0 for some θ), implies

R (1) = 0 (47)

In the original (x, y) coordinates, it is assumed that v (x, y) is smooth (i.e. contin-

uously differentiable) over the circle. When we change to polar coordinates, we need

to introduce an extra condition to guarantee the smoothness of v (x, y), namely, that

w (r,−π) = w (r, π) , wθ (r,−π) = wθ (r, π) . (48)

Substituting (45) gives

H (−π) = H (π) ,
dH

dθ
(−π) =

dH

dθ
(π) . (49)

The solution v (x, y) is also bounded on the circle, which implies R (r) must be

bounded for 0 ≤ r ≤ 1.

The problem for H (θ) is

d2H

dθ2
+ µH (θ) = 0; H (−π) = H (π) ,

dH

dθ
(−π) =

dH

dθ
(π) . (50)

You can show that for µ < 0, we only get the trivial solution H (θ) = 0. For µ = 0,

we have H (θ) = const, which works. For µ > 0, non-trivial solutions are found only

when µ = m2,

Hm (θ) = am cos (mθ) + bm sin (mθ)

Thus, in general, we may assume λ = m2, for m = 0, 1, 2, 3, ...

The equation for R (r) in (46) becomes

r
d

dr

(
r
dR

dr

)
1

R (r)
+ λr2 = µ = m2, m = 0, 1, 2, 3, ...

13



Rearranging gives

r2d
2Rm

dr2
+ r

dRm

dr
+
(
λr2 −m2

)
Rm = 0; Rm (1) = 0, |Rm (0)| <∞ (51)

We know already that λ > 0, so we can let

s =
√
λr, R̄m (s) = Rm (r)

so that (51) becomes

s2d
2R̄m

ds2
+ s

dR̄m

ds
+
(
s2 −m2

)
R̄m = 0; R̄m

(√
λ
)

= 0,
∣∣R̄m (0)

∣∣ <∞ (52)

The ODE is called Bessel’s Equation which, for each m = 0, 1, 2, ... has two linearly

independent solutions, Jm (s) and Ym (s), called the Bessel functions of the first and

second kinds, respectively, of order m. The function Jm (s) is bounded at s = 0;

the function Ym (s) is unbounded at s = 0. The general solution to the ODE is

R̄m (s) = cm1Jm (s) + cm2Ym (s) where cmn are constants of integration. Our bound-

edness criterion
∣∣R̄m (0)

∣∣ <∞ at s = 0 implies c2m = 0. Thus

R̄m (s) = cmJm (s) , Rm (r) = cmJm

(√
λr
)
.

The Bessel Function Jm (s) of the first kind of order m has power series

Jm (s) =
∑
k=0

(−1)k s2k+m

k! (k +m)!22k+m
(53)

Jm (s) can be expressed in many ways, see Handbook of Mathemat-

ical Functions by Abramowitz and Stegun, for tables, plots, and equations. The fact

that Jm (s) is expressed as a power series is not a drawback. It is like sin (x) and

cos (x), which are also associated with power series. Note that the power series (53)

converges absolutely for all s ≥ 0 and converges uniformly on any closed set s ∈ [0, L].

To see this, note that each term in the sum satisfies∣∣∣∣∣ (−1)k s2k+m

k! (k +m)!22k+m

∣∣∣∣∣ ≤ L2k+m

k! (k +m)!22k+m

Note that the sum of numbers ∑
k=0

L2k+m

k! (k +m)!22k+m

converges by the Ratio Test, since the ratio of successive terms in the sum is∣∣∣∣∣∣
L2(k+1)+m

(k+1)!(k+1+m)!22(k+1)+m

L2k+m

k!(k+m)!22k+m

∣∣∣∣∣∣ =
L2

(k + 1) (k + 1 +m) 4
≤ L2

(k + 1)2 4
=

(
L

2 (k + 1)

)2

14



Thus for k > N = 	L/2
,∣∣∣∣∣∣
L2(k+1)+m

(k+1)!(k+1+m)!22(k+1)+m

L2k+m

k!(k+m)!22k+m

∣∣∣∣∣∣ <
(

L

2 (N + 1)

)2

< 1

Since the upper bound is less than one and is independent of the summation index k,

then by the Ratio test, the sum converges absolutely. By the Weirstrass M-Test, the

infinite sum in (53) converges uniformly on [0, L]. Since L is arbitrary, the infinite

sum in (53) converges uniformly on any closed subinterval [0, L] of the real axis.

Each Bessel function Jm (s) has an infinite number of zeros (roots) for s > 0. Let

Jm,n be the n’th such zero for the function Jm (s). Note that

1 2 3

J0 (s) J0,1 = 2.4048 J0,2 = 5.5001 J0,3 = 8.6537

J1 (s) J1,1 = 3.852 J1,2 = 7.016 J1,3 = 10.173

The second BC requires

Rm (1) = R̄m

(√
λ
)

= Jm

(√
λ
)

= 0

This has an infinite number of solutions, namely
√
λ = Jm,n for n = 1, 2, 3, .... Thus

the eigenvalues are

λmn = J2
m,n, m, n = 1, 2, 3, ...

with corresponding eigen-functions Jm (rJm,n). The separable solutions are thus

vmn (x, y) = wmn (r, θ) =


J0 (rJ0,n) n = 1, 2, 3, ...

Jm (rJm,n) sin (mθ) m,n = 1, 2, 3, ...

Jm (rJm,n) cos (mθ)

(54)

8.1 Solution to heat equation on the 2D circle

The heat problem on the 2D circle is the special case of (7),

ut =
∂2u

∂x2
+
∂2u

∂y2
, (x, y) ∈ D, t > 0,

u (x, y, t) = 0, (x, y) ∈ ∂D,

u (x, y, 0) = f (x, y) , (x, y) ∈ D,

where D is the circle D = {(x, y) : x2 + y2 ≤ 1}. We reverse the separation of vari-

ables (9) and substitute solutions (23) and (38) to the T (t) problem (22) and the

Sturm Liouville problem (41) – (42), respectively, to obtain

umn (x, y, t) = Amnvmne
−λmnt = Amnvmne

−J2
m,nt

15



where vmn is given in (54).

To satisfy the initial condition, we sum over all m, n to obtain the solution, in

general form,

u (x, y, t) =

∞∑
m=1

∞∑
n=1

umn (x, y, t) =

∞∑
m=1

∞∑
n=1

Amnvmn (x, y) e−λmnt

Setting t = 0 and imposing the initial condition u (x, y, 0) = f (x, y) gives

f (x, y) = u (x, y, 0) =
∞∑

m=1

∞∑
n=1

Amnvmn (x, y)

We can use orthogonality relations to find Amn.

9 The Heat Problem on a square with inhomoge-

neous BC

[Nov 8, 2004]

We now consider the case of the heat problem on a 2D square of scaled side length

1, where a hot spot exists on the left side:

ut = ∇2u, (x, y) ∈ D

u (x, y, t) =

{
u0/ε {x = 0, |y − y0| < ε/2}

0 otherwise on ∂D

u (x, y, 0) = f (x, y)

where the hot spot is confined to the left side: 0 ≤ y0 − ε/2 ≤ y ≤ y0 + ε/2 ≤ 1.

As in the 1D case, we first find the equilibrium solution uE (x, y), which satisfies the

PDE and the BCs,

∇2uE = 0, (x, y) ∈ D

uE (x, y) =

{
u0/ε {x = 0, |y − y0| < ε/2}

0 otherwise on ∂D

We proceed via separation of variables: uE (x, y) = X (x) Y (y), so that the PDE

becomes

−X
′′

X
=
Y ′′

Y
= −λ

where λ is constant since the l.h.s. depends only on x and the middle only on y. The

BCs are

Y (0) = Y (1) = 0, X (1) = 0

16



and

X (0)Y (y) =

{
u0/ε |y − y0| < ε/2

0 otherwise

We first solve for Y (y), since we have 2 easy BCs:

Y ′′ + λY = 0; Y (0) = Y (1) = 0

The non-trivial solutions, as we have found before, are Yn = sin (nπy) with λn = n2π2,

for each n = 1, 2, 3, ... Now we consider at X (x):

X ′′ − n2π2X = 0

and hence

X (x) = c1e
nπx + c2e

−nπx

An equivalent and more convenient way to write this is

X (x) = c3 sinh nπ (1 − x) + c4 cosh nπ (1 − x)

Imposing the BC at x = 1 gives

X (1) = c4 = 0

and hence

X (x) = c3 sinhnπ (1 − x)

Thus the equilibrium solution to this point is

uE (x, y) =

∞∑
n=1

An sinh (nπ (1 − x)) sin (nπy)

You can check that this satisfies the BCs on x = 1 and y = 0, 1. Also, from the BC

on x = 0, we have

uE (0, y) =

∞∑
n=1

An sinh (nπ) sin (nπy) =

{
u0/ε |y − y0| < ε/2

0 otherwise

Multiplying both sides by sin (mπy) an integrating in y gives

∞∑
n=1

An sinh (nπ)

∫ 1

0

sin (nπy) sin (mπy) dy =

∫ y0+ε/2

y0−ε/2

u0

ε
sin (mπy) dy

From the orthogonality of sin’s, we have

Am sinh (mπ)
1

2
=

∫ y0+ε/2

y0−ε/2

u0

ε
sin (mπy) dy

17



Thus,

Am =
2u0

ε sinh (mπ)

∫ y0+ε/2

y0−ε/2

sin (mπy)dy

=
2u0

ε sinh (mπ)

[
−cos (mπy)

mπ

]y0+ε/2

y0−ε/2

=
2u0

εmπ sinh (mπ)
(cos (mπ (y0 − ε/2)) − cos (mπ (y0 + ε/2)))

=
4u0 sin (mπy0) sin

(
mπε

2

)
εmπ sinh (mπ)

Thus

uE (x, y) =
4u0

επ

∞∑
n=1

sin (nπy0) sin
(

nπε
2

)
n sinh (nπ)

sinh (nπ (1 − x)) sin (nπy)

To solve the transient problem, we proceed as in 1-D by defining the function

v (x, y, t) = u (x, y, t) − uE (x, y)

so that v (x, y, t) satisfies

vt = ∇2v

v = 0 on ∂D

v (x, y, 0) = f (x, y) − uE (x, y)

9.1 First term approximation

To approximate the equilibrium solution uE (x, y), note that

sinh nπ (1 − x)

sinh nπ
=
enπ(1−x) − e−nπ(1−x)

enπ − e−nπ

For sufficiently large n, we have

sinh nπ (1 − x)

sinh nπ
≈ enπ(1−x)

enπ
= e−nπx

Thus the terms decrease in magnitude (x > 0) and hence uE (x, y) can be approxi-

mated the first term in the series,

uE (x, y) ≈ 4u0

επ

sin (πy0) sin
(

πε
2

)
sinh (π)

sinh (π (1 − x)) sin (πy)

A plot of sinh (π (1 − x)) sin (πy) is given below. The temperature in the center of

the square is approximately

uE

(
1

2
,
1

2

)
≈ 4u0

επ

sin (πy0) sin
(

πε
2

)
sinh (π)

sinh
(π

2

)
sin

(π
2

)
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Figure 1: Plot of sinh (π(1 − x)) sin(πy).

9.2 Easy way to find steady-state temperature at center

For y0 = 1/2 and ε = 1, we have

uE

(
1

2
,
1

2

)
≈ 4u0

π

sinh
(

π
2

)
sinh (π)

≈ u0

4
.

It turns out there is a much easier way to derive this last result. Consider a plate

with BCs u = u0 on one side, and u = 0 on the other 3 sides. Let α = uE

(
1
2
, 1

2

)
.

Rotating the plate by 90o will not alter uE

(
1
2
, 1

2

)
, since this is the center of the plate.

Let uEsum be the sums of the solutions corresponding to the BC u = u0 on each of the

four different sides. Then by linearity, uEsum = u0 on all sides and hence uEsum = u0

across the plate. Thus

u0 = uEsum

(
1

2
,
1

2

)
= 4α

Hence α = uE

(
1
2
, 1

2

)
= u0/4.
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9.3 Placement of hot spot for hottest steady-state center

Note that

uE

(
1

2
,
1

2

)
≈ 4u0

επ

sin (πy0) sin
(

πε
2

)
sinh (π)

sinh
(π

2

)
=

4u0

π

sinh
(

π
2

)
sinh (π)

sin (πy0) sin
(

πε
2

)
ε

≈ u0

4
sin (πy0)

2

π

[
sin

(
πε
2

)
πε
2

]
≈ u0

4
sin (πy0)

2

π

=
u0

2π
sin (πy0)

for small ε. Thus the steady-state center temperature is hottest when the hot spot is

placed in the center of the side, i.e. y0 = 1/2.

10 Heat problem on a circle with inhomogeneous

BC

[Nov 10, 2004]

Consider the heat problem

ut = ∇2u, (x, y) ∈ D

u (x, y, t) = g (x, y) , (x, y) ∈ ∂D

u (x, y, 0) = f (x, y)

where D = {(x, y) : x2 + y2 ≤ 1} is a circle (disc) of radius 1. To solve the problem,

we must first introduce the steady-state u = uE (x, y) which satisfies the PDE and

BCs,

∇2uE = 0, (x, y) ∈ D,

uE (x, y) = g (x, y) , (x, y) ∈ ∂D.

As before, switch to polar coordinates via

x = r cos θ, y = r sin θ, wE (r, θ) = uE (x, y)

for

0 ≤ r ≤ 1, −π ≤ θ < π.
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The problem for uE becomes

1

r

∂

∂r

(
r
∂wE

∂r

)
+

1

r2

∂2wE

∂θ2
= 0, 0 ≤ r ≤ 1, −π ≤ θ < π (55)

w (r,−π) = w (r, π) , wθ (r,−π) = wθ (r, π) , (56)

|w (0, θ)| <∞ (57)

w (1, θ) = ĝ (θ) , −π ≤ θ < π (58)

where ĝ (θ) = g (x, y) for (x, y) ∈ ∂D and θ = arctan (y/x).

We separate variables

w (r, θ) = R (r)H (θ)

and the PDE becomes

r

R (r)

d

dr

(
r
dR

dr

)
= −d

2H

dθ2

1

H (θ)

Since the l.h.s. depends only on r and the r.h.s. on θ, both must be equal to a

constant µ,
r

R (r)

d

dr

(
r
dR

dr

)
= −d

2H

dθ2

1

H (θ)
= µ

The problem for H (θ) is, as before,

d2H

dθ2
+ µH (θ) = 0; H (−π) = H (π) ,

dH

dθ
(−π) =

dH

dθ
(π) ,

with eigen-solutions

Hm (θ) = am cos (mθ) + bm sin (mθ) , m = 0, 1, 2, ...

The problem for R (r) is

0 = r
d

dr

(
r
dR

dr

)
−m2R = r2d

2R

dr2
+ r

dR

dr
−m2R

Try R (r) = rα to obtain the auxiliary equation

α (α− 1) + α−m2 = 0

whose solutions are α = ±m. Thus for each m, the solution is Rm (r) = c1r
m+c2r

−m.

For m > 0, r−m blows up as r → 0. Our boundedness criterion (57) implies c2 = 0.

Hence

Rm (r) = cmr
m
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where cm are constants to be found by imposing the BC (58). The separable solutions

satisfying the PDE (55) and conditions (56) to (57), are

wm (r, θ) = rm (Am cos (mθ) +Bm sin (mθ)) , m = 0, 1, 2, ...

The full solution is the infinite sum of these over m,

uE (x, y) = wE (r, θ) =
∞∑

m=0

rm (Am cos (mθ) +Bm sin (mθ)) (59)

We still need to find the Am, Bm.

Imposing the BC (58) gives

∞∑
m=0

(Am cos (mθ) +Bm sin (mθ)) = ĝ (θ) (60)

The orthogonality relations are∫ π

−π

cos (mθ) sin (nθ) dθ = 0∫ π

−π

{
cos (mθ) cos (nθ)

sin (mθ) sin (nθ)

}
dθ =

{
π, m = n

0, m �= n
, (m > 0) .

Multiplying (60) by sinnθ or cosnθ and applying these orthogonality relations gives

A0 =
1

2π

∫ π

−π

ĝ (θ) dθ

Am =
1

π

∫ π

−π

ĝ (θ) cos (mθ) dθ (61)

Bm =
1

π

∫ π

−π

ĝ (θ) sin (mθ) dθ

10.1 Hot spot on boundary

Suppose

ĝ (θ) =

{
u0

θ0+π
−π ≤ θ ≤ θ0

0 otherwise

which models a hot spot on the boundary. The Fourier coefficients in (61) are thus

A0 =
u0

2π
, Am =

u0

mπ (θ0 + π)
sin (mθ0)

Bm = − u0

mπ (θ0 + π)
(cos (mθ0) − (−1)m)

Thus the steady-state solution is

uE =
u0

2π
+

∞∑
m=1

rm

(
u0 sin (mθ0)

mπ (θ0 + π)
cos (mθ) − u0 (cos (mθ0) − (−1)m)

mπ (θ0 + π)
sin (mθ)

)
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Figure 2: Setup for hot spot problem on circle.

10.2 Interpretation

[Nov 12, 2004]

The convergence of the infinite series is rapid if r  1. If r ≈ 1, many terms are

required for accuracy.

The center temperature (r = 0) at equilibrium (steady-state) is

uE (0, 0) = wE (0, θ) =
u0

2π
=

1

2π

∫ π

−π

ĝ (θ) dθ

i.e., the mean temperature of the circumference. This is a special case of the Mean

Value Property of solutions to Laplace’s Equation ∇2u = 0.

We now consider plots of uE (x, y) for some interesting cases. We draw the level

curves (isotherms) uE = const as solid lines. Recall from vector calculus that the

gradient of uE, denoted by ∇uE, is perpendicular to the level curves. Recall also

from the physics that the flux of heat is proportional to ∇uE. Thus heat flows along

the lines parallel to ∇uE. Note that the heat flows even though the temperature is in

steady-state. It is just that the temperature itself at any given point does not change.

We call these lines the “heat flow lines” or the “orthogonal trajectories”, and draw

these as dashed lines in the figure below.

Note that lines of symmetry correspond to (heat) flow lines. To see this, let nl

be the normal to a line of symmetry. Then the flux at a point on the line is ∇u · nl.

Rotate the image about the line of symmetry. The arrow for the normal to the line of
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Figure 3: Plots of steady-state temperature due to a hot segment on boundary.

symmetry is now pointing in the opposite direction, i.e. −nl, and the flux is −∇u ·nl.

But since the solution is the same, the flux across the line must still be ∇u ·nl. Thus

∇u · nl = −∇u · nl

which implies ∇u·nl = 0. Thus there is no flux across lines of symmetry. Equivalently,

∇u is perpendicular to the normal to the lines of symmetry, and hence ∇u is parallel

to the lines of symmetry. Thus the lines of symmetry are flow lines. Identifying the

lines of symmetry help draw the level curves, which are perpendicular to the flow

lines. Also, lines of symmetry can be thought of as an insulating boundary, since

∇u · nl = 0. See Problem 2 of Assnt 5.

(i) θ0 = 0. Then

uE =
u0

2π
− 2u0

π2

∞∑
m=1

r2n−1 sin ((2n− 1) θ)

2n− 1

Use the BCs for the boundary. Note that the solution is symmetric with respect

to the y-axis (i.e. even in x). The solution is discontinuous at {y = 0, x = ±1}, or

{r = 1, θ = 0, π}. See plot.

(ii) −π < θ0 < −π/2. The sum for uE is messy, so we use intuition. We start

with the boundary conditions and use continuity in the interior of the plate to obtain

a qualitative idea of the level curves and heat flow lines. See plot.

(iii) θ0 → −π+ (a heat spot). Again, use intuition to obtain a qualitative sketch

of the level curves and heat flow lines. Note that the temperature at the hot point is

infinite. See plot.
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11 Mean Value Property

Theorem [Mean Value Property] Suppose v (x, y) satisfies Laplace’s equation in

a 2D domain D,

∇2v = 0, (x, y) ∈ D. (62)

Then at any point (x0, y0) in D, v equals the mean value of the temperature around

any circle centered at (x0, y0) and contained in D,

v (x0, y0) =
1

2π

∫ π

−π

v (x0 +R cos θ, y0 +R sin θ) dθ. (63)

Note that the curve {(x0 +R cos θ, y0 +R sin θ) : −π ≤ θ < π} traces the circle of

radius R centered at (x0, y0).

Proof: To prove the Mean Value Property, we first consider Laplace’s equation

(62) on the unit circle centered at the origin (x, y) = (0, 0). We already solved this

problem, above, when we solved for the steady-state temperature uE that took the

value ĝ (θ) on the boundary. The solution is Eqs. (59) and (61). Setting r = 0 in

(59) gives the center value

uE (0, 0) = A0 =
1

2π

∫ π

−π

ĝ (θ) dθ (64)

On the boundary of the circle (of radius 1), (x, y) = (cos θ, sin θ) and the BC implies

that uE = ĝ (θ) on that boundary. Thus, ĝ (θ) = uE (cos θ, sin θ) and (64) becomes

uE (0, 0) = A0 =
1

2π

∫ π

−π

uE (cos θ, sin θ) dθ. (65)

To prove the Mean Value Property, we consider the region

B(x0,y0) (R) =
{
(x, y) : (x− x0)

2 + (y − y0)
2 ≤ R2

}
,

which is a circle of radius R centered at (x, y) = (x0, y0). Since B(x0,y0) (R) ⊆ D,

Laplace’s equation (62) holds on this circle. Thus

∇2v = 0, (x, y) ∈ B(x0,y0) (R) . (66)

We make the change of variable

x̂ =
x− x0

R
, ŷ =

y − y0

R
, uE (x̂, ŷ) = v (x, y) (67)

to map the circle B(x0,y0) (R) into the unit circle {(x̂, ŷ) : x̂2 + ŷ2 ≤ 1}. Laplace’s

equation (66) becomes

∇̂2uE = 0, (x̂, ŷ) ∈ {(x̂, ŷ) : x̂2 + ŷ2 ≤ 1
}
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where ∇̂2 = (∂2/∂x̂2, ∂2/∂ŷ2). The solution is given by Eqs. (59) and (61), and we

found the center value above in Eq. (65). Reversing the change of variable (67) in

Eq. (65) gives

v (x0, y0) =
1

2π

∫ π

−π

v (x0 +R cos θ, y0 +R sin θ) dθ

as required. �
For the heat equation, the Mean Value Property implies the equilibrium tempera-

ture at any point (x0, y0) in D equals the mean value of the temperature around any

circle centered at (x0, y0) and contained in D.

12 Maximum Principle

Theorem [Maximum Principle] Suppose v (x, y) satisfies Laplace’s equation in a

2D domain D,

∇2v = 0, (x, y) ∈ D.

Then the function v takes its maximum and minimum on the boundary of D, ∂D.

Proof: Let (x0, y0) be any interior point of D, i.e. (x, y) is not on the boundary

∂D of D. The Mean Value Property implies that for any circle of radius R centered

at (x0, y0),

v (x0, y0) =
1

2π

∫ π

−π

v (x0 +R cos θ, y0 +R sin θ) dθ

= Average of v on boundary of circle

But the the average of a set of numbers is always between the minimum and maximum

of those numbers. Thus the average value of v (x, y) on the boundary must be between

the minimum and maximum value of v (x, y) on the boundary, and hence v (x0, y0) is

between the minimum and maximum values of v (x, y) on the boundary. �
For the heat equation, this implies the equilibrium temperature cannot attain its

maximum in the interior, unless temperature is constant everywhere.
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13 Eigenvalues on different domains

[Nov 15, 2004]

Definition Rayleigh Quotient

R (v) =

∫ ∫ ∫
D
∇v · ∇vdV∫ ∫ ∫
D
v2dV

(68)

Theorem Given a domain D ⊆ R3 and any function v that is piecewise smooth

on D, non-zero at some points on the interior of D, and zero on all of ∂D, then the

smallest eigenvalue of the Laplacian on D satisfies

λ ≤ R (v)

and R (h) = λ if and only if h (x) is an eigen-solution of the Sturm Liouville problem

on D.

Sketch Proof: We use result (16) derived for any smooth function v defined on

a volume V with closed smooth surface S.∫ ∫
∂D

v∇v · n̂dS =

∫ ∫ ∫
D

v∇2vdV +

∫ ∫ ∫
D

∇v · ∇vdV

In the statement of the theorem, we assumed that v = 0 on ∂D, and hence∫ ∫ ∫
D

∇v · ∇vdV = −
∫ ∫ ∫

D

v∇2vdV (69)

Let {φn} be an orthonormal basis of eigen-functions on D, i.e. all the functions φn

which satisfy

∇2φn + λnφn = 0, x ∈ D

φn = 0, x ∈ ∂D

and ∫ ∫ ∫
D

φnφmdV =

{
1, m = n

0, m �= n

We can expand v in the eigen-functions,

v (x) =
∞∑

n=1

Anφn (x)

where the An are constants. Assuming we can differentiate the sum termwise, we

have

∇2v =
∞∑

n=1

An∇2φn = −
∞∑

n=1

λnAnφn (70)
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The orthonormality property (i.e., the orthogonality property with
∫ ∫ ∫

D
φ2

ndV = 1)

implies ∫ ∫ ∫
D

v2dV =

∞∑
n=1

∞∑
m=1

AnAm

∫ ∫ ∫
D

φnφmdV =

∞∑
n=1

A2
n (71)

and, from (70),∫ ∫ ∫
D

v∇2vdV = −
∞∑

m=1

∞∑
n=1

λnAnAm

∫ ∫ ∫
D

φnφmdV = −
∞∑

n=1

λnA
2
n (72)

Substituting (72) into (69) gives∫ ∫ ∫
D

∇v · ∇vdV = −
∫ ∫ ∫

D

v∇2vdV =

∞∑
n=1

λnA
2
n (73)

Substituting (71) and (73) into (68) gives

R (v) =

∫ ∫ ∫
D
∇v · ∇vdV∫ ∫ ∫
D
v2dV

=

∑∞
n=1 λnA

2
n∑∞

n=1A
2
n

We assume the eigen-functions are arranged in increasing order. In particular, λn ≥
λ1. Thus

R (v) ≥
∑∞

n=1 λ1A
2
n∑∞

n=1A
2
n

= λ1

∑∞
n=1A

2
n∑∞

n=1A
2
n

= λ1.

Also, equality holds (i.e., R (v) = λ1) if and only if v is an eigen-function for the

eigenvalue λ1. Otherwise there will be a λn > λ1 such that An �= 0 and R (v) > λ1.

The above is not a complete proof, because we have not shown that the sums converge

or that they can be differentiated termwise. �

Theorem If two domains D̂ and D in R2 satisfy

D � D̂ i.e., D ⊂ D̂ but D �= D̂,

then the smallest eigenvalues of the Sturm-Liouville problems on D and D̂, λ1 and

λ̂1, respectively, satisfy

λ̂1 < λ1

In other words, the domain D̂ that contains the sub-domain D is associated with a

smaller eigenvalue.

Proof: Note that the Sturm-Liouville problems are

∇2v + λv = 0, (x, y) ∈ D

v = 0, (x, y) ∈ ∂D
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∇2v̂ + λ̂v̂ = 0, (x, y) ∈ D̂

v̂ = 0, (x, y) ∈ ∂D̂

Let v1 be the eigen-function corresponding to λ1 on D. Then, as we have proven

before,

λ1 = R (v1) , (74)

where R (v) is the Rayleigh Quotient. Extend the function v1 continuously from D

to D̂ to obtain a function v̂1 on D̂ which satisfies

v̂1 =

{
v1 (x, y) , (x, y) ∈ D

0 (x, y) ∈ D̂, (x, y) /∈ D

The extension is continuous, since v1 is zero on the boundary of D. Applying the

previous theorem to the region D̂ and function v̂1 (which satisfies all the requirements

of the theorem) gives

λ̂1 ≤ R (v̂1) .

Equality happens only if v̂1 is the eigen-function corresponding to λ̂1.

Useful fact [stated without proof]: the eigen-function(s) corresponding to the

smallest eigenvalue λ̂1 on D̂ are nonzero in the interior of D̂. This is the crux of the

proof. Haberman does not prove this in general, but states it on p. 164.

From the useful fact, v̂1 cannot be an eigen-function corresponding to λ̂1 on D̂,

since it is zero in the interior of D̂ (outside D). Thus, as the previous theorem states,

λ̂1 < R (v̂1) . (75)

Since v̂1 = 0 outside D, the integrals over D̂ in the Rayleigh quotient reduce to

integrals over D, where v̂1 = v1, and hence

R (v̂1) = R (v1) . (76)

Combining (74), (75), and (76) gives the result,

λ̂1 < λ1.

�
Example: Consider two regions, D1 is a rectangle of length x0, height y0 and D2

is a circle of radius R. Recall that the smallest eigenvalue on the rectangle D1 is

λ11 = π2

(
1

x2
0

+
1

y2
0

)
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The smallest eigenvalue on the circle of radius 1 is λ01 = J2
0,1 where the first zero

of the Bessel function J0 (s) of the first kind is J0,1 = 2.4048. Since
√
λ multiplied

r in the Bessel function, then for a circle of radius R, we’d rescale by the change of

variable r̂ = r/R, so that Jm

(√
λr
)

= Jm

(√
λ

R2 r̂
)

where r̂ goes from 0 to 1. Thus

on the circle of radius R, the smallest eigenvalue is

λ01 =

(
J0,1

R

)2

, J0,1 = 2.4048.

Suppose the rectangle is actually a square of side length 2R. Then

λ11 =
π2

2R2
=

4.934

R2
, λ01 =

(
J0,1

R

)2

=
5.7831

R2

Thus, λ11 < λ01, which confirms the second theorem, since D2 ⊂ D1, i.e., the circle

is contained inside the square.

Now consider the function

v (r) = 1 −
( r
R

)2

You can show that

∇v · ∇v =

(
dv

dr

)2

,

and

R (v) =

∫ ∫
D2

∇v · ∇vdA∫ ∫
D2
v2dA

=

∫ π

−π

∫ R

0

(
dv
dr

)2
rdrdθ∫ π

−π

∫ R

0
v2rdrdθ

=
6

R2
> λ01

This confirms the first theorem, since v (r) is smooth on D2, v (R) = 0 (zero on the

boundary of D2), and v is nonzero in the interior.

13.1 Faber-Kahn inequality

Thinking about the heat problem on a 2D plate, what shape of plate will cool the

slowest? It is a geometrical fact that of all shapes of equal area, the circle (disc) has

the smallest circumference. Thus, on physical grounds, we expect the circle to cool

the slowest. Faber and Krahn proved this in the 1920s.

Faber-Kahn inequality For all domains D ⊂ R2 of equal area, the disc has the

smallest first eigenvalue λ1.

Example. Consider the circle of radius 1 and the square of side length
√
π. Then

both the square and circle have the same area. The first eigenvalues for the square

and circle are, respectively,

λ1SQ = π2

(
1

π
+

1

π

)
= 2π = 6.28, λ1CIRC = (J0,1)

2 = 5.7831

and hence λ1SQ > λ1CIRC , as the Faber-Kahn inequality states.
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14 Nodal lines

Consider the Sturm-Liouville problem

∇2v + λv = 0, x ∈ D

v = 0, x ∈ ∂D

Nodal lines are the curves where the eigen-functions of the Sturm-Liouville problem

are zero. For the solution to the vibrating membrane problem, the normal modes

unm (x, y, t) are zero on the nodal lines, for all time. These are like nodes on the 1D

string. Here we consider the nodal lines for the square and the disc (circle).

14.1 Nodal lines for the square

[Nov 17, 2004]

See Haberman, p. 292.

For the square, the eigen-functions and eigenvalues are a special case of those we

found for the rectangle, with side length x0 = y0 = a,

vmn (x, y) = sin
(mπx

a

)
sin

(mπy
a

)
, λmn =

π2

a2

(
m2 + n2

)
, n,m = 1, 2, 3, ...

The nodal lines are the lines on which vmn (x, y) = 0, and are

x =
ka

m
, y =

la

n
, 1 ≤ k ≤ m− 1, 1 ≤ l ≤ n− 1

for m,n ≥ 2. Note that v11 (x, y) has no nodal lines on the interior - it is only zero

on boundary ∂D. Since λmn = λnm, then the function fnm = Avmn +Bvnm is also an

eigen-function with eigenvalue λmn, for any constants A, B. The nodal lines for fnm

can be quite interesting.

Examples: we draw the nodal lines on the interior and also the lines around the

boundary, where vnm = 0.

(i) m = 1, n = 1.

v11 = sin
(πx
a

)
sin

(πy
a

)
This is positive on the interior and zero on the boundary. Thus the nodal lines are

simply the square boundary ∂D

(ii) m = 1, n = 2.

v12 = sin
(πx
a

)
sin

(
2πy

a

)
The nodal lines are the boundary ∂D and the horizontal line y = a/2.
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(iii) m = 1, n = 3

v13 = sin
(πx
a

)
sin

(
3πy

a

)
The nodal lines are the boundary ∂D and the horizontal lines y = a/3, 2a/3.

(iv) m = 3, n = 1

v31 = sin

(
3πx

a

)
sin

(πy
a

)
The nodal lines are the boundary ∂D and the vertical lines x = a/3, 2a/3.

(v) Consider v13 − v31. Since λ31 = λ13 = 10π2/a2, this is a solution to

∇2v +
10π2

a2
v = 0, x ∈ D

v = 0, x ∈ ∂D

To find the nodal lines, we use the identity sin 3θ = (sin θ)
(
3 − 4 sin2 θ

)
to write

v13 = sin
(πx
a

)
sin

(πy
a

)(
3 − 4 sin2

(πy
a

))
v31 = sin

(πx
a

)
sin

(πy
a

)(
3 − 4 sin2

(πx
a

))
v13 − v31 = 4 sin

(πx
a

)
sin

(πy
a

)(
sin2

(πx
a

)
− sin2

(πy
a

))
The nodal lines are the boundary of the square, ∂D, and lines such that

0 = sin2
(πx
a

)
− sin2

(πy
a

)
=
(
sin

(πx
a

)
− sin

(πy
a

))(
sin

(πx
a

)
+ sin

(πy
a

))
i.e.,

sin
(πx
a

)
= sin

(
±πy
a

)
Note that

sinψ = sinϕ

if ψ − ϕ = 2kπ or ψ + ϕ = (2k − 1) π for any integer k. Thus the nodal lines are

given by

sin
(πy
a

)
= sin

(πx
a

)
=⇒ πy

a
− πx

a
= 2kπ,

πy

a
+
πx

a
= (2k − 1)π

sin
(πx
a

)
= sin

(
−πy
a

)
=⇒ πx

a
−
(
−πy
a

)
= 2kπ,

πx

a
+
(
−πy
a

)
= (2k − 1)π

Hence the nodal lines are

y = ±x+ la

for all integers l. We’re only concerned with the nodal lines that intersect the interior

of the square plate:

y = x, y = −x+ a
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Thus the nodal lines of v13 − v31 are the sides and diagonals of the square

Let DT be the isosceles right triangle whose hypotenuse lies on the bottom hor-

izontal side of the square The function v13 − v31 is zero on the boundary

∂DT , positive on the interior of DT , and thus satisfies the Sturm-Liouville problem

∇2v +
10π2

a2
v = 0, x ∈ DT

v = 0, x ∈ ∂DT

Hence v13 − v31 is the eigen-function corresponding to the first eigenvalue λ13 of

the Sturm-Liouville problem on the triangle DT . In this case, we found the eigen-

function without using separation of variables, which would have been complicated

on the triangle. NOTE: this is half the triangle considered in problem 4 of Assnt 5,

but you use a similar solution method.

(vi) With v13, v31 given above, adding gives

v13 + v31 = 4 sin
(πx
a

)
sin

(πy
a

){3

2
−
(
sin2

(πx
a

)
+ sin2

(πy
a

))}
The nodal lines for v13 + v31 are thus the square boundary and the closed nodal line

defined by

sin2
(πx
a

)
+ sin2

(πy
a

)
=

3

2
.

Let Dc be the area contained within this closed nodal line. The function − (v13 + v31)

is zero on the boundary ∂Dc, positive on the interior of Dc, and thus satisfies the

Sturm-Liouville problem

∇2v +
10π2

a2
v = 0, x ∈ Dc

v = 0, x ∈ ∂Dc

Hence − (v13 + v31) is the eigen-function corresponding to the first eigenvalue λ13 of

the Sturm-Liouville problem on Dc.

(vii) Find the first eigenvalue on the right triangle

D =
{

0 ≤ y ≤
√

3x, 0 ≤ x ≤ 1
}
.

Note that separation of variables is ugly, because you’d have to impose the BC

X (x) Y
(√

3x
)

= 0

We proceed by placing the triangle inside a rectangle of horizontal and vertical side

lengths 1 and
√

3, respectively. The sides of the rectangle coincide with the per-

pendicular sides of the triangle. Thus, all eigen-functions vmn for the rectangle are
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already zero on two sides of the triangle. However, any particular eigen-function vmn

will not be zero on the triangle’s hypotenuse, since all the nodal lines of vmn are

horizontal or vertical. Thus we need to add multiple eigen-functions. However, to

satisfy the Sturm-Liouville problem, all the eigen-functions must be associated with

the same eigenvalue. For the rectangle with side lengths
√

3 and 1, the eigenvalues

are given by

λmn = π2

(
m2

1
+
n2

3

)
=
π2

3

(
3m2 + n2

)
We create a table of 3m2 + n2 and look for eigenvalues that have multiple eigen-

functions.
n, m 1 2 3 4

1 4 13 28

2 7 16 31

3 12 21 36

4 19 28 43

5 28 37

The smallest value of 3m2 +n2 that is the same for multiple sets of (m,n) is 28. Thus

λ31 = λ24 = λ15 = 28π2/3

has multiple eigen-functions. We add the corresponding eigen-functions and set them

to zero along y =
√

3x,

Av31 +Bv24 + Cv15 = 0.

If we can find the constants A, B, C then we’re done - we’ve found the first (smallest)

eigenvalue 28π2/3 and eigen-function Av31+Bv24+Cv15 on the triangleD. Otherwise,

if we can’t solve for A, B, C, we look for the next largest value of 3m2 + n2 that

repeats, and try again.

14.2 Nodal lines for the disc (circle)

[See Haberman, p. 321]

For the disc of radius 1, we found the eigen-functions and eigenvalues to be

vmnS = Jm (rJm,n) sinmθ, vmnC = Jm (rJm,n) cosmθ

with

λmn = π2J2
m,n, n,m = 1, 2, 3, ...

The nodal lines are the lines on which vmnC = 0 or vmnS = 0.

Examples.
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(i) m = 0, n = 1.

v01 = J0 (rJ0,1)

The nodal lines are the boundary of the disc (circle of radius 1).

(ii) m = 0, n = 2.

v02 = J0 (rJ0,2)

The nodal lines are two concentric circles, one of radius r = 1, the other or radius

r = J0,1/J0,2 < 1.

(iii) m = 1 , n = 1 and sine.

v11S = J0 (rJ1,1) sin θ

The nodal lines are the boundary (circle of radius 1) and the line θ = −π, 0, π

(horizontal diameter)

15 Steady-state temperature in a 3D cylinder

Suppose a 3D cylinder of radius a and height L has temperature u (r, θ, z, t). We

assume the axis of the cylinder is on the z-axis and (r, θ, z) are cylindrical coordinates.

Initially, the temperature is u (r, θ, z, 0). The ends are kept at a temperature of u = 0

and sides kept at u (a, θ, z, t) = g (θ, z). The steady-state temperature uE (r, θ, z) in

the 3D cylinder is given by

∇2uE = 0, −π ≤ θ < π, 0 ≤ r ≤ a, 0 ≤ z ≤ L, (77)

uE (r, θ, 0) = uE (r, θ, L) = 0, −π ≤ θ < π, 0 ≤ r ≤ a, (78)

uE (a, θ, z) = g (θ, z) , −π ≤ θ < π, 0 ≤ z ≤ L.

In cylindrical coordinates (r, θ, z), the Laplacian operator becomes

∇2v =
1

r

∂

∂r

(
r
∂v

∂r

)
+

1

r2

∂2v

∂θ2
+
∂2v

∂z2

We separate variables as

v (r, θ, z) = R (r)H (θ)Z (z)

so that (77) becomes

1

rR (r)

d

dr

(
r
dR (r)

dr

)
+

1

r2

d2H

dθ2
+

1

Z (z)

d2Z (z)

dz2
= 0.
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Rearranging gives

1

rR (r)

d

dr

(
r
dR (r)

dr

)
+

1

r2

d2H

dθ2
= − 1

Z (z)

d2Z (z)

dz2
= λ (79)

where λ is constant since the l.h.s. depends only on r, θ while the middle depends

only on z.

The function Z (z) satisfies

d2Z

dz2
+ λZ = 0

The BCs at z = 0, L imply

0 = u (r, θ, 0) = R (r)H (θ)Z (0)

0 = u (r, θ, L) = R (r)H (θ)Z (L)

To obtain non-trivial solutions, we must have

Z (0) = 0 = Z (L) .

As we’ve shown many times before, the solution for Z (z) is, up to a multiplicative

constant,

Z (z) = sin
(nπz
L

)
, λn =

(nπ
L

)2

, n = 1, 2, 3, ...

And this also shows that the constant λ = λn.

Multiplying Eq. (79) by r2 gives

r

Rn (r)

d

dr

(
r
dRn (r)

dr

)
− λnr

2 = −d
2Hn

dθ2
= µ (80)

where µ is constant since the l.h.s. depends only on r and the middle only on θ.

Note: solving for Hn (θ) looks easier, until you realize that we don’t have nice BCs

on Hn (θ).

Multiplying (80) by Rn (r) gives

r
d

dr

(
r
dR (r)

dr

)
− (

λr2 + µ
)
R (r) = 0

Change variables to s =
√
λnr, R̄n (s) = Rn (r), so that

s
d

ds

(
s
dR̄n (s)

ds

)
− (

s2 + µ
)
R̄n (r) = 0

If µ = m2 for some m = 1, 2, 3, ..., we have

s
d

ds

(
s
dR̄nm (s)

ds

)
− (

s2 +m2
)
R̄mn (r) = 0
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which is the Modified Bessel Equation with tabulated solutions Im (s) and Km (s)

called the modified Bessel functions of order m of the first and second kinds, respec-

tively We assume µ = m2, so that

R̄mn (r) = c1mIm (s) + c2mKm (s)

Transforming back to r = s/
√
λn gives

Rmn (r) = c1mIm

(nπr
L

)
+ c2mKm

(nπr
L

)
Since the Im’s are regular (bounded) at r = 0, while the Km’s are singular (blow up),

and since Rmn (r) must be bounded, we must have c2m = 0, or

Rmn (r) = c1mIm

(nπr
L

)
The corresponding solutions for H (θ) satisfy

d2Hm

dθ2
+m2Hm = 0, m = 0, 1, 2, 3, ...

and hence Hm (θ) = Am cosmθ +Bm sinmθ.

Thus the general solution is, by combining constants,

uE (r, θ, z) =

∞∑
m=0

∞∑
n=1

Im

(nπr
L

)
sin

(nπz
L

)
[Amn cos (mθ) +Bm sin (mθ)]

In theory, we can now impose the condition u (a, θ, z) = g (θ, z) and find Amn, Bmn

using orthogonality of sin, cos.
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