
Semantic Caching for Web-Based Spatial
Applications

Sai Sun and Xiaofang Zhou

School of Information Technology and Electrical Engineering
The University of Queensland, Australia

{sunsai, zxf}@itee.uq.edu.au

Abstract. Client-side caching of spatial data is an important yet very
much under investigated issue. Effective caching of vector spatial data
has the potential to greatly improve the performance of spatial applica-
tions in the Web and wireless environments. In this paper, we study the
problem of semantic spatial caching, focusing on effective organization
of spatial data and spatial query trimming to take advantage of cached
data. Semantic caching for spatial data is a much more complex problem
than semantic caching for aspatial data. Several novel ideas are proposed
in this paper for spatial applications. A number of typical spatial applica-
tion scenarios are used to generate spatial query sequences. An extensive
experimental performance study is conducted based on these scenarios
using real spatial data. We demonstrate a significant performance im-
provement using our ideas.

1 Introduction

Geographic applications have been used extensively in the Web environment,
providing online customized digital maps and supporting map-based queries.
However, the overall potential of these applications has yet to be achieved due
to the conflict between large size and high complexity of spatial data and relative
low transmission speed of the Internet [14]. The conflict is even more serious in
the mobile environment which suffers from low bandwidth and low-quality com-
munications (such as frequent network disconnections). Caching pertinent and
frequently queried data on the client side is an effective method to improve sys-
tem performance, since it can reduce network traffic, shorten the response time
and lead to better scalability by reusing local resources [4]. Client-side semantic
data caching has great potential in spatial database systems. It is enabled by
improved processing capacity on the client-side. About ten years ago, clients are
still low-end workstations. Caching is only done on the server side aiming to
avoid disk traffic in typical commercial relational databases [6]. However, with
rapid growth of client-side processing capacity, complex processing required for
spatial caching can now be done at an acceptable speed on the client side. Spa-
tial queries are usually related to each other semantically. Statistical analysis
shows that spatial queries submitted by a client in a limited time interval have
great semantic correlation. Users of ‘location-aware’ websites usually interact

with a map to zoom in or out and pan on the client side by clicking on spatial
objects to request further information. Progressive queries of multiresolution
spatial databases, which are used extensively for decision support systems, data
mining and interactive systems, usually begin with a general scope of parameters
that are iteratively refined in both location and precision until a final satisfac-
tory result is obtained. Semantic caching of highly correlated spatial data on the
client side is helpful to improve spatial query response time. Table 1 shows a
sample of a typical set of queries submitted by a client. Query 0 begins from a
large query scope (query window size 49% = 70%*70%) and low resolution level
(Resolution 13). Query 1, 2 and 3 keep zooming in (Refining window as well
as increasing resolution level). To Query 3, the query window area is 4% of the
whole map and resolution level is 22. Query 4 pans the query window.

Table 1. A typical set of queries in Web-Applicaton

QueryID Query Window (x, y, width, height) Query Resolution

0 0.1, 0.1, 0.7, 0.7 13
1 0.36, 0.13, 0.5, 0.5 15
2 0.42, 0.19, 0.4, 0.4 18
3 0.47, 0.28, 0.2, 0.2 22
4 0.53, 0.31, 0.2, 0.2 22

Compared with standard data, spatial data have some notable properties.
Spatial data tend to be very large and have complex structures; this makes data
organization a significant factor to consider. A good organization method should
compress and cluster data reasonably as it can reduce the size of the storage
and also the time of accessing database, and increase the utilization of client
cache. In this paper, we explore different spatial data organization strategies
based on single resolution, multi-representation and multi-resolution ideas. We
propose a new data organization method named Bit Map which balances data
between the opaque and the fragment ways and allows multi-resolution data
access. Our experiments shows that Bit Map is more flexible and needs less data
than SDO GEOMETRY — the method used in Oracle DBMS, as well as The
multi-representation one. It is especially suitable for semantic caching as it also
maximizes data reuse.

In this paper, we investigate the problem of multi-resolution spatial query
trimming which is much more complex than aspatial query trimming. We focus
on Window Query because it is the basic geometric selection and can be served
as building blocks for more complex spatial operations. We also discuss about
caching coalescence and propose three schemes (reconstruction scheme, fragment
scheme1 and fragment scheme2). Our experiments show that the performance
of fragment scheme1 is better than or comparable to the other two schemes in
all scenarios.

The remainder of this paper is organized as follows. In section 2, we analyze
problems combining with related works. Our approach is introduced in section

3. Section 4 describes experiments and provides experiment results. We conclude
this paper in section 5.

2 Background

2.1 Semantic Cache

Past research on semantic caching focuses mainly on relational database. It in-
cludes: a) query folding [9], [5], which check the satisfiability, equivalence or
implication relationship between a query and a given set of data, then further
decide whether the query is rewriteable according to given data and how to
rewrite. Note that not all queries can be rewritten. In fact, most research in
semantic caching is just based on simple query such as ‘select object from table
where x > a and x < b’. b) caching coherency strategy, which is used to ensure
that cached data are consistent with those stored in server [1]. c) caching coa-
lescence strategy, which decides how to re-organize cache regions after new data
are fetched from database. d) caching replacement policy [4], [2].

Recently, semantic caching in mobile computing environment has received
more attention [10], [12], [3], [8], [13]. Most of them focus on location-dependent
information services (LDIS) and take the movement of mobile client and the
valid region of data into account. Till now, in our best literature review, we have
not found any work done to solve the above issues we discussed in Section 1.

2.2 Data Organization

In traditional spatial systems, spatial data are organized based on geometry.
Here all information of a spatial object is stored as one record in a database.
Consequently geometry elements are opaque to applications and only one reso-
lution level is available to be accessed - the highest level. The advantage of this
technique is that the information of the exact geometry can be accessed directly
and no extra step of reconstruction is needed. However, to solve the Query 0 in
Table 1, 49% data of the whole digital map need to be accessed from database.
If local cache is large enough to save the result, no data need to be fetched to
answer Query 1 to Query 4. However, usually local cache can not provide such
a large space and data have to be abandoned which causes a great waste. An-
other problem of this model is that the response time of Query 0 is dispensable
long. If users finally find the following queries need not be executed, too many
unnecessary data had been fetched. One improvement is to use multiple represen-
tations of spatial objects. Previous work in this area aims to exploit the benefit
of essentially pre-computing of a query result. An object can have up to n repre-
sentations, denoted as O1, O2, . . . , On. Each representation contains all vertexes
of an equal or lower resolution level. Thus all points in Oi also exist in O(i+1).
A representation with a maximum resolution n contains all data of the lower
resolutions. The multi-representation technique is, intuitively, superior in terms
of data retrieval speed for single queries. However the total replication scheme

of multi-representation defeats the purpose of progressively iterating queries as
data in different resolutions are not associated, so duplicated data at a low res-
olution will be retrieved again when a higher resolution is required. Thus, this
model can not well utilize the benefit of cache. Our proposed Bit Map scheme
solves this problem by only storing additional information for every resolution
level except the base level. Every representation at higher resolution δ than the
base level need to be constructed by combining data of base level and additional
information equal to or less the than δ. Therefore, to execute queries in table 1,
data of base level and additional information equal to or less than Resolution
13 will be accessed from database to answer Query 0. In the following queries,
only additional data in the refined area need to be fetched from database and
combined with cached data for construction. The disadvantage of this model is
that extra time jis needed for reconstruction. However, noticing that transmis-
sion usually cost much more time than CPU computing, the extra time can be
ignored.

3 Our Approach

In this section, we introduce our approaches. We focus on three issues, 1) Data
Organization, 2) Window Query trimming, 3) Caching Re-organization.

Figure 1 is a three-layer client-server architecture. The client maintains a
semantic cache C locally, which begins from empty. When users submit a request,
the client formulate a window query Q according to the request, then process
query trimming based on Q and C. If C can not fully answer Q, missing data will
be fetched from database via web server. Then the client re-organize local cache.
Finally, the result of the query is rendered to the user. Additional refinement
may be processed in web server and client side.

DataBase Server

Multi-resolution

Spatial DB

Spatial Query

Processing

Web Server

Spatial Servlets

- Interactions with

Client

-Interactions with

SDBMS

- Refinement (1) of

Query results

- Other tasks

Other Servlets

Client

Spatial Applets

- Interactions with

users

- Query Trimming

- Interactions with

Web Server

- Refinement (2) of

Query results

- Cache management

- Rendering of

spatial data

- Other tasks

Users
Internet

Rewrited

Queries

Spatial Data

Spatial

Queries

Spatial

Data

Fig. 1. System Architecture

3.1 Our Database Organization – Bit Map

An object at lower resolution can be considered as an approximation of the object
at higher resolution, which still maintains important features of this object but

its data complexity is simpler and it needs less storage. We use z-ordering to
fragment spatial objects into series of resolutions. Z-ordering is a method using
a space filling curve to transfer two dimensional data into one dimensional data.
Starting from the fixed map size, space is iteratively decomposed into four same-
size subspaces, named as Peano cells. Each Peano cell is labelled with a unique
number that defines its position in the total z-order, which is called z-value of
this Peano cell [7], as shown in Figure 2(a). Because the decomposition and
encoding is iterative, each child Peano cell’s z-value contains its father Peano
cell’s z-value as a prefix. The longer a z-value is, the smaller the Peano cell
is. When a z-value is long enough(usually 22-28 digits), the Peano cell is small
enough to represent a point. Thus, we can use Peano cells to represent spatial
objects at different resolution [11]. Figure 2(b) shows an approximation at lower
resolution. With additional information, we can extend shadowy Peano cells in
Figure 2(b) to smaller Peano cells in Figure 2(c) with more details and achieve
an approximation at higher resolution.

0 1

0 1 0 1

1

0

1

0

1

0

(a) Z-Ordering
(b) Approximation in lower

resolution

(c) Approximation in higher

resolution
(d) Original Object

Fig. 2. Using Z-ordering to fragment spatial objects into series of resolutions

Bit Map scheme chooses a certain resolution level as the base level. Each ge-
ometry point at the base level is stored as a variable array. For higher levels, ad-
ditional information is provided to extend the approximation to the finer polygon
with more details. Thus we use relation R(ObjectID, BLData, AData,Delta)
to describe Bit Map, where BLData stores the approximations at the base level;
AData stores the additional information to reconstruct data at higher resolu-
tion, Delta denotes the resolution of data. A spatial object i will have n tuples
as (i, bldate, ∅, bl), (i, ∅, a1data, a1), ..., (i, ∅, a(n−1)data, a(n−1)) in R. To an arbi-
trary Oδ, all data with resolution level equal to or less than δ need to be fetched
to reconstruct the spatial object O at resolution δ. Figure 3 is an example about
the data in Bit Map. At base level bl, we have a point ‘12002330’ and it expands
to two new points in level a1 (‘120023302’ and ‘120023303’). ‘120023302’ further
expands to three new points in level a2. They are ‘1200233020’, ‘1200233022’
and ‘1200233023’. Note that if the change in the number of points between ad-
jacent resolution levels is small, several continuous levels can be integrated into
a single level. Bit map provides a reasonable, natural method to cluster points
to different resolution levels. Because this method uses the common prefix to

construct data iteratively, the reduplication between points is well avoided. In
our experiments, data stored with this method occupy 21.501MB, whereas data
stored as geometry class of Oracle 9i need 33.438MB. If data is stored by multi-
representation technology, same series of resolutions need 152.313MB.

Fig. 3. Bit Map

The algorithm to create R(ObjectID, BLData, AData, Delta) is:
1)Choose a proper z-value length (n) as the highest resolution level, and

encode spatial objects at this level as Z(ObjectID, PointID, z, delta), where z
is the z-value for the point, delta is the resolution value given to the vertex, which
is calculated as the number of digits of the longest common prefix between the
two end points of the line.

2)Choose resolution bl as base resolution level and constructing BLData at
resolution bl. To a spatial object o, using the following SQL to choose points:

select substring(z, 1, bl)
from Z

where ObjectID = o and delta ≤ bl

order by PointID

Thus, the BLData of o is (o, bldata, ∅, bl), where bldata is the digital sequence
of substring(z, 1, bl).

3)Constructing AData at resolution ai.
select substring(z, ai − 1, ai)
from Z

where ObjectID = o and delta = ai

order by PointID

The collection of substring(z, ai−1, ai) is the additional information aidata.
Because it is impossible to estimate the exact number of how many Peano cell
at ai will be extended from its father Peano cell at ai−1, we add a binary bit to
flag it (0 - the next Peano cell is extended from the same father Peano cell; 1 -
the end of extension in the same father Peano cell and the next cell is extended
from a different father Peano cell). Thus, the ADATA is (i, ∅, a1data, a1), ...,
(i, ∅, a(n−1)data, a(n−1))

3.2 Query Trimming

In this study, we focus on Window Query, the most common query in spatial
database. Dealing with more complex spatial queries is an important direction
of our future research. A window query Q of a multi-resolution spatial relation
R, described as Q〈WQ, δ〉, finds all objects at resolution level δ with at least one
point in common with window WQ. Under the above data organization scheme
Bit Map, we can define the following constraint formula to describe a semantic
region or a general query:

Definition 1. Given a spatial relation R(ObjectID, BLData, AData, Delta), a
constraint formula, denoted as 〈W, δ1, δ2〉 (δ1 ≤ δ2 and δ1 ≥ bl), describes the
data (at resolution δ1 to δ2) of spatial objects intersecting window W on R. When
δ1 = bl, it describes the data answering the window query 〈W, δ2〉.

For a general query Q〈WQ, δQ
1 , δQ

2 〉 and a semantic region S〈WS , δS
1 , δS

2 〉,
Table 2 gives a conclusion of query trimming, where P denotes Probe query and
R denotes Remainder Query.

Table 2. Multi-resolution Window Query trimming

WS Disjoint WQ WS contains WQ WQ contains WS WS intersects WQ

δS
1 > δQ

2 P:∅ P:∅ P:∅ P:∅
or

δS
2 < δQ

1 R:〈WQ, δQ
1 , δQ

2 〉 R:〈WQ, δQ
1 , δQ

2 〉 R:〈WQ, δQ
1 , δQ

2 〉 R:〈WQ, δQ
1 , δQ

2 〉
δS
1 ≤ δQ

1 P:∅ P:〈WQ, δQ
1 , δQ

2 〉 P:〈WS , δQ
1 , δQ

2 〉 P:〈WQ

⋂
WS , δQ

1 , δQ
2 〉

and

δS
2 ≥ δQ

2 R:〈WQ, δQ
1 , δQ

2 〉 R: ∅ R:〈WQ

⋂
¬WS , δQ

1 , δQ
2 〉 R:〈WQ

⋂
¬WS , δQ

1 , δQ
2 〉

δS
1 > δQ

1 P:∅ P:〈WQ, δS
1 , δS

2 〉 P:〈WS , δS
1 , δS

2 〉 P:〈WQ

⋂
WS , δS

1 , δS
2 〉

and R:〈WQ, δQ
1 , δQ

2 〉 R:〈WQ, δQ
1 , δS

1 − 1〉 R:〈WS , δQ
1 , δS

1 − 1〉 R:〈WQ

⋂
WS , δQ

1 , δS
1 − 1〉

δS
2 < δQ

2 +〈WQ, δS
2 + 1, δQ

2 〉 +〈WS , δS
2 + 1, δQ

2 〉 +〈WQ

⋂
WS , δS

2 + 1, δQ
2 〉

+〈WQ

⋂
¬WS , δQ

1 , δQ
2 〉 +〈WQ

⋂
¬WS , δQ

1 , δQ
2 〉

δS
1 ≤ δQ

1 P:∅ P:〈WQ, δQ
1 , δS

2 〉 P:〈WS , δQ
1 , δS

2 〉 P:〈WQ

⋂
WS , δQ

1 , δS
2 〉

and R:〈WQ, δQ
1 , δQ

2 〉 R:〈WQ, δS
2 + 1, δQ

2 〉 R:〈WS , δS
2 + 1, δQ

2 〉 R:〈WQ

⋂
WS , δS

2 + 1, δQ
2 〉

δS
2 < δQ

2 +〈WQ

⋂
¬WS , δQ

1 , δQ
2 〉 +〈WQ

⋂
¬WS , δQ

1 , δQ
2 〉

δS
1 > δQ

1 P:∅ P:〈WQ, δS
1 , δQ

2 〉 P:〈WS , δS
1 , δQ

2 〉 P:〈WQ

⋂
WS , δS

1 , δQ
2 〉

and R:〈WQ, δQ
1 , δQ

2 〉 R:〈WQ, δQ
1 , δS

1 − 1〉 R:〈WS , δQ
1 , δS

1 − 1〉 R:〈WQ

⋂
WS , δQ

1 , δS
1 − 1〉

δS
2 ≥ δQ

2 +〈WQ

⋂
¬WS , δQ

1 , δQ
2 〉 +〈WQ

⋂
¬WS , δQ

1 , δQ
2 〉

3.3 Caching Re-organization

After missing data is transmitted to client, data will be reconstructed for ren-
dering and cache need to be re-organized. In this section, we propose three
re-organizing schemes in client cache.

Reconstruction Scheme As the name suggests, local cache stores recon-
structed data. This scheme can avoid repeated reconstruction, but because re-
construction always companies with decompression, this method needs more
storage. As shown in Figure 4(a), given three semantic regions SA, SB , SC in
cache, δ1 of SA, SB , SC is 12; δ2 of SA, SB , SC are 13, 22, 16 respectively; the
query is ‘to find all polygons intersect window W at resolution level 16’. After
executing this query, A and C are decomposed into two parts, Part 1 is the
intersection with Q and Part2 the difference from Q. Part 1 of A, C, all data of
B and ship data are coalesced together as the data of new region. Figure 4(b)
shows the regions after Q. Note that δ2 of SB is larger than δQ

2 , data in shadow
area is at higher resolution than query needed. After repetitious queries, data in
regions may be much more than necessary.

Fragment Scheme 1 In this scheme, data are organized according to Bit Map.
The coalescence method is same as reconstruction scheme. The disadvantage of
this scheme is that data may be reconstructed duplicately. But it avoids the two
problem of reconstruct scheme. Figure 4(c) shows the regions after query. Note
region B is divided into two parts in this scheme, data of resolution 12 - 16 and
data of resolution 17 - 22. The latter part of data forms Region 6.

Fragment Scheme 2 In this scheme, data are still organized according to Bit
Map. But the coalescence method is different. In this scheme, existing regions are
not changed. Query window is divided according to difference between existing
regions as figure 4(d). This scheme may create numerous too small regions which
is easy to cause volatile of accessing database.

A

c

B

Q

4

1

2

3

5

4

6
1

2

3

5

(a) (b) (c)

9

8

7
1

2

3

4

5 6

10

(d)

Fig. 4. Three schemes of client cache

4 Experiments and Results

In this section, we investigate the performance of various cache strategies on
spatial queries. The data used for experiments are from California SEQUOIA
polygon dataset. It contains 20,137 objects which are composed of 2,635,065
points. We have produced tests on various aspects of cache scheme to check the
efficiency of semantic caching for web-based spatial applications and to determine

the most efficient semantic caching scheme. These aspects include: 1) size of cache
in client side; 2) three different data organizations, SR (single resolution), MP
(multirepresentation), BM (our proposed method); 3) For BM , three different
re-organizing schemes in client side as discussed in Section 3.3. The primary
measurement we use is the amount of transmission as it affects the response
time dominantly for spatial query. Other measurements such as time of accessing
database, time of data processing are also used. Note that data processing include
query trimming, cache region management and data refinement etc. The results
of each test are obtained by running 30 groups of queries. Each group begins
with an empty cache and performs a window query with the following actions in
succession: zoom in, zoom in, zoom in, pan, pan, pan, zoom out, pan, zoom out,
pan, zoom in, zoom in, pan, pan, pan. The location of the first window and the
extent of zoom in, zoom out, pan is randomly generated. The area of the largest
query window is 36% of the whole map, the smallest query window is 0.5%.

4.1 Three Different Data Organizations

We first study the performance of the three data organizations in database:
SR (Single Resolution), MP (Multi-representation) and BM (Bit Map). In our
experiments, data stored in SR require 33.438MB for storage and 152.313MB
in MP , 21.501M in BM . All data in client cache are organized as polygons.
The y-axis of figures in Figure 5 (a), (b), (c) and (d) are the time of accessing
database, the time of processing data, the amount of transmission and the total
response time respectively; the x-axes of the figures are the size of cache (0
means no cache). From figure 5(a) we can see that our proposed data model
BM always has the least database accessing time, about 20% lower than that of
SR and MP takes less time than SR. However, the difference of data accessing
time between three data models is not so significant compared to the amount of
data transmitted. Figure 5(b) demonstrates the time cost for data processing in
client side. BM spends more time than SR and MP in data processing because
it needs extra time for reconstruction. But data processing time has little effect
on the whole performance as it is much less than the time cost for accessing
database, which is nearly 10 times of the processing time. The most significant
difference is the amount of data transmitted. Spatial data is more complex than
aspatial data, there needs at least 20 MB data transmission in only 16 queries for
SR. As SR always accesses data at the highest resolution, the amount is far more
than other models. The amount of data transmitted for BM is the lest because
it avoid the repeat farthest. Figure 5(d) shows the total response time with a
quite high transmission speed at 512Kbps on the internet. Compared to Figure
5(c), we can see that the trend of three models are very similar in the amount
of data transmission and total response time. That is because data transmission
is the most time consuming stage for spatial queries which occupies around 95%
of the total response time for SR, 80% for MP and 60% for BM respectively
even in such a high transmission speed. Moreover, with limited transmission
speed, the effect of other factor except the size of data transmission can even

be ignored. Compared to two other kinds of data organization, BM achieves a
great performance for spatial web-application.

0

5

10

15

20

25

0 256 512 1024 2048

Cache Size(KB)

T
im

e
 o

f
A

c
c
e
s
s
in

g
 D

B
(S

)

SR

MP

BM

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 256 512 1024 2048

Cache Size(KB)

T
im

e
 o

f
p

ro
c
e
s
s
in

g
(S

)

SR

MP

BM

(b)

0

2

4

6

8

10

12

14

16

18

20

22

24

0 256 512 1024 2048

Cache Size(KB)

A
m

o
u

n
t

o
f

T
ra

n
s
m

is
s
io

n
 D

a
ta

(M
B

)

SR

MP

BM

(c)

0

50

100

150

200

250

300

350

400

0 256 512 1024 2048

Cache Size(KB)

T
h

e
 R

e
s
p

o
n

s
e
 T

im
e
 (

S
)

SR

MP

BM

(d)

Fig. 5. Comparing SR, MP and BM

4.2 Different caching schemes under BM

We have also studied the performance of different caching schemes under BM
which includes RS (reconstruction scheme), F1 (Fragment Scheme 1) and F2
(Fragment Scheme 2). From figure 6 we can see that F1 is the best scheme
under various cache size with the least time of database accessing and the least
amount of data transmission. Data processing only takes one fourth of the time
of database accessing which is similar as in Figure 5. The total response time
is mainly affected by the time of data transmission and the time of database
access. To sum up, F1 is the best scheme for the whole performance with the

least response time while RS is the worst. The response time for all curves tends
to decrease with the cache size increasing. Moreover, data accessing becomes
more important and has influence on the overall performance of all schemes
under BM because of the minimum size of data transmission.

17.5

18

18.5

19

19.5

20

256 512 1024 2048

Cache Size(KB)

T
im

e
 o

f
A

c
c

e
s

s
in

g
 D

B
(S

)

(a)

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

256 512 1024 2048

Cache Size (KB)

T
im

e
 o

f
P

ro
c

e
s

s
in

g
 (

S
)

RS

F1

F2

(b)

1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

1900

256 512 1024 2048

Cache Size(KB)

A
m

o
u

n
t

o
f

T
ra

n
s

m
is

s
io

n
 D

a
ta

(K
B

)

(c)

44

46

48

50

52

54

256 512 1024 2048

Cache Size(KB)

T
h

e
 R

e
s

p
o

n
s

e
 T

im
e

(S
)

(d)

Fig. 6. Different schemes under BM

5 Conclusion

In this paper, we have investigated the effect of semantic caching on the perfor-
mance of web based spatial applications. We have focused on three problems:
data organization, query trimming and caching re-organization. By comparing
three major measurements: database accessing time, data processing time and
the amount of data transmission for three different data models under vari-
ous client cache sizes, we found that with limited network transmission speed

(less than 512Kbps), the amount of data transmission is the most dominant fac-
tor that affects the response time. Among the three models, BM outperforms
the other two by a significant margin, which further improves with the cache
size increasing. In order to achieve the optimal caching strategy, we have also
constructed three different schemes for BM and tested their performance. Ex-
perimental results demonstrated that scheme F1 performs better than RS and
F2 under various cache sizes.
Acknowledgment: The work reported in this paper has been partially sup-
ported by grant DP0345710 from the Australian Research Council. We thank
Sham Prasher and David Horgan for many helps received from them during this
project.

References

1. J. Cai, K.-L. Tan, and B. C. Ooi. On incremental cache coherency schemes in
mobile computing environments. In ICDE, 1997.

2. B. Y. Chan, A. Si, and H. V. Leong. Cache management for mobile databases:
Design and evaluation. In ICDE, 1998.

3. X. Chen, Y. Chen, and F. Rao. An efficient spatial publish/subscribe system for
intelligent location-based services. In 2nd International Workshop on Distributed
Event-Based Systems, 2003.

4. S. Dar, M. J. Franklin, B. Jonsson, D. Srivastava, and M. Tan. Semantic data
caching and replacement. In VLDB, 1996.

5. J. Gryz. Query folding with inclusion dependencies. In ICDE, 1998.
6. A. M. Keller and J. Basu. A predicate-based caching scheme for client-server

database architectures. The VLDB Journal, 5(1):35–47, 1996.
7. J. Orenstein and T.H.Merrett. A class of data structures for associative searching.

In PODS, pages 181–190, 1984.
8. W.-C. Peng and M.-S. Chen. Mining user moving patterns for personal data

allocation in a mobile computing system. In Proceedings of the 29th International
Conference on Parallel Processing, 2000.

9. X. Qian. Query folding. In ICDE, 1996.
10. Q. Ren and M. H. Dunham. Using semantic caching to manage location depen-

dent data in mobile computing. In Proceedings of the 6th annual International
Conference on Mobile Computing and Networking, pages 210 – 221, 2000.

11. S. Sun, S. Prasher, and X. Zhou. A scaleless data model for direct and progressive
spatial query processing. In The First International Workshop on Conceptual
Modeling for GIS, 2004.

12. J. F. Yao and M. H. Dunham. Caching management of mobile dbms. Integrated
Computer-Aided Engineering, 8(2):151–169, 2001.

13. B. Zheng, J. Xu, and D. L. Lee. Cache invalidation and replacement strategies for
location-dependent data in mobile environment. IEEE Transactions on Computers,
51(10):1141–1153, 2002.

14. X. Zhou, S. Prasher, S. Sun, and K. Xu. Multiresolution spatial databases: Making
web-based spatial applications faster. In Proceedings of Asia-Pacific Web Confer-
ence 2004, pages 36–47, 2004.

