
Preference-based Frequent Pattern Mining
Moonjung Cho University at Buffalo, mcho@cse.buffalo.edu

Jian Pei Simon Fraser University, jpei@cs.sfu.ca

Haixun Wang IBM T.J Watson Research Center,hanxun@us.ibm.com

Wei Wang Fudan University, weiwang1@fudan.edu.cn

ABSTRACT
Frequent pattern mining is an important data mining problem with broad applications.

Although there are many in-depth studies on efficient frequent pattern mining algorithms and

constraint pushing techniques, the effectiveness of frequent pattern mining remains a serious

concern: it is non-trivial and often tricky to specify appropriate support thresholds and proper

constraints.

In this paper, we propose a novel theme of preference-based frequent pattern mining. A

user can simply specify a preference instead of setting detailed parameters in constraints. We

identify the problem of preference-based frequent pattern mining and formulate the preferences

for mining. We develop an efficient framework to mine frequent patterns with preferences.

Interestingly, many preferences can be pushed deep into the mining by properly employing the

existing efficient frequent pattern mining techniques. We conduct an extensive performance

study to examine our method. The results indicate that preference-based frequent pattern mining

is effective and efficient. Furthermore, we extend our discussion from pattern-based frequent

pattern mining to preference-based data mining in principle and draw a general framework.

Keywords: Data mining, Frequent-pattern mining

mailto:mcho@cse.buffalo.edu
mailto:jpei@cs.sfu.ca
mailto:weiwang1@fudan.edu.cn

1. INTRODUCTION
Frequent pattern mining (Agrawal et al., 1993) is an important data mining task with

broad applications. In the last decade, there are many in-depth studies on frequent pattern mining,

which can be grouped into two categories. The first category of studies (e.g., (Agrawal & Srikant,

1994; Han et al., 2000; Zaki et al., 1997a; Agarwal et al., 2001)) focus on developing efficient

algorithms for frequent pattern mining. With the exciting progress, mining frequent patterns from

large databases becomes highly feasible, though the development of faster algorithms is still

demanding to catch up with the speed of data accumulation. On the other hand, it has been well

recognized that the effectiveness of frequent pattern mining is a critical concern (Zheng et al.,

2001). In many cases, frequent pattern mining may return such a huge number of frequent

patterns that a user cannot handle. To tackle this problem, the constraint-based frequent pattern

mining framework is proposed (Ng et al., 1998). Various constraints can be raised and only the

frequent patterns satisfying the constraints should be mined. Efficient algorithms have been

developed to push different kinds of constraints deep into the mining (e.g., (Ng et al.,

1998;Lakshmanan et al., 1999; Pei & Han, 2000; Pei et al., 2001; Kifer et al., 2003)).

With the current frequent pattern mining algorithms and constraint pushing techniques,

is frequent pattern mining effective and efficacious enough?

Example 1 (Motivating example 1) Suppose a manager in a large supermarket wants to

find frequent patterns containing expensive items from customer transactions. In the constraint-

based mining framework, to make the mining more selective, the manager may specify some

constraints, such as each pattern should contain an item with price more than 100 dollars and

the total amount of each pattern should be at least 500 dollars.

The quality of the above mining highly depends on whether the user can specify some

proper constraints. However, the constraint specification is often challenging. For example,

without a real test, it is hard to quantify “expensive item(s)" in a constraint. In practice, a user

often has to adopt a make-do-and-mend approach. Finding the appropriate values for parameters

in constraints by running the mining algorithms again and again is usually time consuming.

Example 2 (Motivating example 2) Consider mining frequent patterns for classification.

Several recent studies (e.g., (Liu et al., 1998; Wang et al., 2000; Dong & Li, 1999; Li et l.,2001))

have shown that classification based on frequent patterns, such as associative classification and

classification by emerging patterns, can achieve high accuracy and good understand-ability.

Intuitively, given a training data set where the records are grouped into two classes, positive

samples C+ and negative samples C-, we want to find patterns frequent in one class and

infrequent in the other. Moreover, the longer a frequent pattern (i.e., the more features a pattern

covers), the better the predictability of a pattern. Thus, a user may specify a constraint on the

length of the patterns. Again, quantifying the constraints is tricky. Without many real tests and

fine tuning, there is no guarantee on the quality of the mining.

As shown in the above examples, even with the progress on efficient frequent pattern

mining algorithms and constraint pushing techniques, the effectiveness of frequent pattern

mining still remains a serious concern. The major bottleneck is that a user has to specify the

appropriate constraints, which is often beyond the user's knowledge about the data.

In this study, we propose preference-based frequent pattern mining, a novel theme of

frequent pattern mining. Instead of specifying solid constraints, a user can simply specify

preferences. In Example 1, the manager in the supermarket can write a preference “mine patterns

from the transaction database, the more frequent a pattern and the more expensive the total

amount of items in a pattern, the better the result. I definitely do not want to see any pattern

whose frequency is less than 0.1%.” In Example 2, to build a classifier using frequent patterns,

we may write a preference “mine patterns from C+ and C-, the larger difference between the

frequencies of a pattern in the two classes and the longer the pattern, the better the pattern is

preferred. But I am not interested in any patterns that are more frequent in C- than in C+, or

whose frequency is lower than 0.1%.” Clearly, compared to constraints, preferences are much

easier to write and capture the users' requirements more accurately.

In this paper, we study the problem of preference-based frequent pattern mining and

make the following contributions. First, we identify the problem of preference-based frequent

pattern mining, and formulate the preferences for mining. Second, we develop an efficient

framework to mine frequent patterns with preferences. Interestingly, many preferences can be

pushed deep into the mining by properly employing the existing efficient frequent pattern mining

techniques. We conduct an extensive performance study to examine our method. The results

indicate that preference-based frequent pattern mining is effective and efficient. Last, we extend

our discussion from preference-based frequent pattern mining to preference-based data mining in

principle and draw a general framework.

The rest of the paper is organized as follows. The problem of preference-based frequent

pattern mining is described in Section 2. In Section 3, efficient mining algorithms are developed.

An extensive performance study is reported in Section 4. We review related work and discuss a

general framework of preference-based data mining in Section 5. Section 6 concludes the paper.

2. PREFERENCE-BASED FREQUENT PATTERN MINING
Let I = {i1, … ,in} be the set of items. An itemset (or pattern) is a subset of I. For the sake of

brevity, we often write an itemset as a string of items and omit the parentheses. For example,

itemset {a, b, c, d} is written as abcd. The number of items in an itemset is called its length. That

is, len(X) = ||X||.

A transaction T = (tid,X) is a tuple such that tid is a transaction identity and X is an

itemset. A transaction database TDB is a set of transactions. A transaction T = (tid,Y) is said

contain itemset X if X ⊆ Y . Given a transaction database TDB, the support of itemset X,

denoted as sup(X), is the number of transactions in TDB containing X, i.e., sup(X) = ||{T =

(tid,Y) |(T ∈ TDB) ∧ (X ⊆ Y)}||.

Given a transaction database TDB and a minimum support threshold min sup, an itemset

X is said a frequent pattern if sup(X) ≥ min_sup. The problem of frequent pattern mining is to

find the complete set of frequent patterns from the database.

In general, we define preferences as follows.

Definition 1 (Preference) A preference order f P is a partial order over 2I, the set of all

possible itemsets. For itemsets X and Y, X is said (strictly) preferable to Y if X f P Y.

Problem definition. An itemset X is called a preference pattern (with respect to

preference P), if there exists no any other itemset Y such that Y f P X. Given a transaction

database TDB, a preference P and a support threshold, the problem of preference-based frequent

pattern mining is to find the complete set of preference patterns with respect to P that are

frequent.

Now, let us consider how to write a preference. A simple preference such as a preference

based on support or length of the itemsets can be written using an auxiliary function f : 2I → R to

define the preference order. For example, to prefer more frequent patterns to less frequent ones,

we can have X =f sup Y if sup(X) ≥ sup(Y). As another example, to prefer longer patterns to

shorter ones, we can have X =f length Y if ||X|| ≥ ||Y||.

It becomes tricky when a user wants to integrate more than one preference. For example,

when a user prefers either more frequent patterns or longer patterns, can we just simply write

the preference as “X Y if (sup(X) ≥ sup(Y)) ∨ (len(X) ≥ len(Y))"? Unfortunately, relation

 is not loyal to the user's real intension. In fact, defined so is even not a partial order. For

example, suppose sup(abc) > sup(abcd). We have both abc abcd (due to the support

inequality) and abcd abc (due to the length inequality).

=f

=f =f

f

f

A closer look at the user's preference indicates that it should be read as follows. For any

two patterns X and Y, if sup(X) ≥ sup(Y), ||X|| ≥ ||Y||, and at least one equality does not hold,

then X is more preferable.

Based on the above analysis, we define an integration operation among preference

relations as follows.

Definition 2 (Integration of preferences) Let =f 1, . . . , =f k be k preference orders. We

define the integration of =f 1, . . . , =f k, denoted by = (=f =f 1 ⊗ . . . ⊗ =f k) as follows. For

itemsets X and Y , X Y , if for any i (1 ≤ i ≤ k), X =f =f i Y. X Y if X Y and there exists

at least one i

f =f

0 (1 ≤ i0 ≤ k) such that X f io Y.

For example, the preference “either more frequent patterns or longer patterns are

preferred” can be expressed as = (=f =f sup ⊗ =f length).

Theorem 1 (Integration of preferences) The integration of multiple preference relations

is a strict partial order.

Proof. We prove that, given partial orders =f 1 and =f 2, (=f 1 ⊗ =f 2) is a partial order.

The cases of more than two partial orders can be proved by a simple induction on the number of

integration operators, which is finite.

=f is trivially irreflexive. Suppose X Y and Y X. Then, for each =f =f =f i, we have X

=f i Y and Y =f i X. Since =f i's are partial orders, X = Y . That is, is antisymmetric. Suppose

X Y and Y Z. For each

=f

=f =f =f i, X =f i Y and Y =f i Z. Thus, X =f i Z. That means X Z.

The transitivity holds.

=f

3. ALGORITHMS
In this section, we develop the algorithms for preference-based frequent pattern mining.

We model the preference-based frequent pattern mining as a problem of search in a preference

graph. Using this general framework, various optimizations can be incorporated to achieve

efficient mining methods.

One important guideline in our design is to reuse the existing efficient mining techniques

as much as possible. The breadth-first and depth-first search methods for frequent pattern mining

have been studied extensively and substantially. Interesting, we show that many preferences can

be pushed deep into the mining by properly employing the existing efficient frequent pattern

mining techniques. Their effectiveness and efficiency have been justified and verified concretely

in the previous work.

3.1 Preference graph
We begin with the definition of preference graph, which records the preference relation

between itemsets.

Definition 3 (Preference graph) For a preference order , the preference graph G =

(2

=f
I ,E) is the transitive closure of on 2f I , where I is the set of items in the domain. An edge

Y→X ∈ E if X Y.f 1

Example 3 (Preference graph) Consider transaction database TDB in Figure 1 and

preference “at each length level, the more frequent or more expensive the pattern, the more

preferable".

f

Transaction database TDB Prices of items

 Tid Itemset Item Price

 10 abcd a 10

 20 acde b 20

 30 bdef c 30

 40 ace d 40

 e 50

 f 60

Figure 1: A Transaction database TDB.

The preference graph PG is shown in Figure 2. If the support threshold is 1, then four

patterns should be returned, e, ac, de and ace. They are underlined in the figure.

It is easy to see that a preference graph has the following property.

a(3/10) b(2/20)

c(3/30) d(2/40)

e(3/50)

ae(2/60)

cd(2/70)

ce(2/80)

de(2/90)

bd(2/60)

ad(2/50)ac(3/40)

acd(2/80)

ace(2/90)

Figure 2: The preference graph PG. The numbers in the parentheses are (sup/sum_price).

Lemma 1 A preference graph is an acyclic directed graph. An itemset X is a preference

pattern if and only if X is a sink, i.e., the outdegree of X in the preference graph is 0.

Proof. If X is a sink, there exists no any other itemset Y such that Y X. Thus, X is a

preference pattern.

f

Suppose X is a preference pattern. If there is an edge Y→X, then Y is preferable to X

according to the definition of preference graph. That leads to a contradiction to the assumption

that X is a preference pattern.

With the preference graph, the problem of preference-based frequent pattern mining is

reduced to find the complete set of preferred patterns in the preference graph.

When mining frequent patterns with constraints, if the parameters of the constraints are

inappropriate, we may get no pattern from the mining. Is it possible that the similar situation

happens in preference-based frequent pattern mining?

Lemma 2 The search of a non-empty preference graph returns at least one preference

pattern.

Proof. Every non-empty acyclic directed graph has at least one vertex of outdegree 0.

Thus, if and only if the set of vertices in the preference graph is not empty, the preference graph

must contain some preference pattern.

Lemma 2 indicates a nice property of frequent pattern mining with preference: applying

a preference to the mining guarantees finding some answer. It also shows a major difference

between preference-based and constraint-based mining.

3.2 Search in a Preference Graph
As shown in Example 3, a preference graph may or may not be connected, or even

weakly connected2. An intuitive and basic method to search a preference graph systematically is

as follows. We start from the vertices of indegree 0, and traverse every edge and thus every

vertex. Now, let us justify such a strategy is feasible.

In a preference graph, an undirected connected component is a maximal subgraph such

that for every pair of vertices u, v in the subgraph, there is an undirected path from u to v. Please

note that an undirected connected component is weaker than a weakly connected component.3

Theorem 2 (Searchability) In a preference graph, (1) each undirected connected

component has at least one vertex of indegree 0; and (2) for each vertex u of indegree k > 0,

there exists a vertex v of indegree 0 in the same undirected connected component such that there

is a directed path from v to u.

Proof. Since a preference graph is a directed acyclic graph, each undirected connected

component is also a directed acyclic graph. Thus, we have the first half of the theorem

immediately.

To show the second half of the theorem, we consider all vertices P(u) = {w|w → u is an

edge}. If every vertex in P(u) is of indegree l > 0, then there must be a directed cycle, which

leads to a contradiction. Thus there must be a vertex w0 ∈ P(u) of indgree 0. Since w0 → u is an

edge, u and w0 are in the same undirected connected component.

Based on Theorem 2, we can start from the vertices with indgree 0 and traverse the edges

and vertices. The theorem says that such a search is complete.

It would be interesting to ask the following question. Given a preference P = P1 ⊗ ⋅ ⋅ ⋅ ⊗

Pk, how many undirected connected components are there in the preference graph?

Example 4 Let us consider the following preference on transaction database TDB in

Figure 1: “support is at least 2, the larger the better, the length is at least 2, and the larger the

sum of price, the better". The preference graph PGQ′ is shown in Figure 3. As can be seen, in

general the preference graph may contain more than one undirected connected component.
ac(3/40)

ae(2/60)

cd(2/70)

bd(2/60)

ad(2/50)

ce(2/80)acd(2/80)

de(2/90)ace(2/90)

Figure 3: The preference graph PGQ′ . The numbers in the parentheses are (sup/sum_price).

3.3 Monotonic Preference Functions
There often exist a huge number of possible combinations of items in a large transaction

database. All possible itemsets form a lattice according to the containment relation. For example,

the itemset lattice of the transaction database TDB in Figure 1 is shown in Figure 4.

ab

abdabc

abcd

abcdef

abcde abcdf abcef abdef acdef bcdef

a

...abdeabcfabce

...

...bcafaeadac

{}

fedcb

Figure 4: The itemset lattice.

Almost every frequent pattern mining method searches the itemset lattice from the

bottom (i.e., ∅). One of the essential differences among various methods is the search strategies,

which vary from breadth-first search to depth-first search, as well as their combinations (hybrid

methods).

Now, the problem becomes, “Given a preference, can we search the itemset lattice

efficiently by pruning the unpromising branches using the preference?”

Let us first consider the simplest case, where the preference is in the form of

maximizing/minimizing a preference function f(X).

Definition 4 (Monotonic preference function) A preference function f(X) is called

monotonic increasing, if for any itemsets X, Y such that X ⊂ Y , we have f(X) ≤ f(Y). The function

is called strictly monotonic increasing if the equality always fails.

Similarly, a preference function f(X) is called monotonic decreasing, if for any itemsets X,

Y such that X ⊂ Y , we have f(X) ≥ f(Y). The function is called strictly monotonic increasing if the

equality always fails.

A preference function is called monotonic if it is either monotonic increasing or

monotonic decreasing.

The monotonicity of some commonly used functions is listed in Figure 5. The correctness

of the table can be verified according to Definition 4 and the definitions of the functions.

Based on the monotonicity of the preference functions, we can predict whether a super-

set of an itemset can be a preference pattern. The idea is elaborated in the following example.

Example 5 (Pruning using monotonic functions) Suppose that we want to mine

patterns with preference “sup(X) MAX". Since sup(X) is a monotonic decreasing function, for

every superset Y ⊇ X, we have sup(Y) ≤ sup(X). If itemset X is not a preference pattern, then

every superset of X cannot be a preference pattern, either. In other words, we even do not need to

search any superset of X provided that X is not a preference function.

As another example, let us consider mining with preference “sum(X) MAX", where every

item has a positive value. According to Figure 5, sum(X) is a monotonic increasing function.

That is, for any itemsets X and Y such that X ⊆ Y, sum(X) ≤ sum(Y). If Y is not a preference

pattern, then X cannot be a preference pattern, either.

Last, let us consider an example of integration of preferences. Consider preference

“(sum(X) MAX) ⊗ (len(X) MAX)". It can be easily verified that, for itemsets X and Y such that X

⊆ Y, if Y is not a preference pattern, then X cannot be a preference pattern, either.

Function Monotonicity

min(X) monotonic decreasing

max(X) monotonic increasing

sup(X) monotonic decreasing

sum(X) monotonic increasing if every item has a non-negative value

monotonic decreasing if every item has a non-positive value

otherwise, non-monotonic

avg(X) non-monotonic

len(X) strictly monotonic increasing

-f(X) (strictly) monotonic increasing if f(X) is (strictly) monotonic decreasing

(strictly) monotonic decreasing if f(X) is (strictly) monotonic increasing

f(X) + g(X) (strictly) monotonic increasing/decreasing if both f(X) and g(X) are

(strictly) monotonic increasing/decreasing

)(
1
Xf

(strictly) monotonic increasing/decreasing if f(X) is (strictly) monotonic

decreasing/increasing

f(X) ⋅ g(X)
(strictly) monotonic increasing/decreasing if both f(X) and g(X) are

positive and (strictly) increasing/decreasing

Figure 5: The monotonicity of some commonly used functions

In general, we have the following result.

Definition 5 (Monotonicity of preferences) A preference P is called monotonic if for

any pattern X, X is not a preference pattern implies that every sub-pattern of X is not a preference

pattern, either. A preference P′ is called anti-monotonic if for any pattern X, X is not a preference

pattern implies that every super-pattern of X is not a preference pattern, either.

Theorem 3 (Monotonic/anti-monotonic preferences) Let f, f′ be monotonic increasing

functions, and g, g′ be monotonic decreasing functions.

1. Preferences f(X) MIN, g(X) MAX, (f(X) MIN) ⊗ (f′(X) MIN), (g(X) MAX) ⊗ (g′(X)

MAX), and (f(X) MIN) ⊗ (g(X) MAX) are anti-monotonic.

2. Preference f(X) MAX, g(X) MIN, (f(X) MAX) ⊗ (f′(X) MAX), (g(X) MIN) ⊗ (g′(X)

MIN), and (f(X) MAX) ⊗ (g(X) MIN) are monotonic.

Proof. The monotonicity of the preferences can be easily verified by the definitions.

Limited by space, we omit the details here.

Now, we are ready to explore how to push preferences into frequent pattern mining. Most

of the frequent pattern mining methods can be divided into two categories: breadth-first search

approaches, such as Apriori (Agrawal & Srikant, 1994) and its enhancements, and depth-first

search approaches, such as FP-growth (Han et al., 2000) and TreeProjection (Agarwal et al.,

2001). In the next two subsections, We will study preference pushing in breadth-first search

approaches and in depth-first search approaches, respectively.

3.4 Pushing Preferences into Breadth-first Frequent Pattern Mining
Apriori (Agrawal & Srikant, 1994) is a typical breadth-first search method of frequent

pattern mining. It mines the frequent patterns by multiple scans of the transaction database.

In the first scan, it counts the support for every item. Then, infrequent items are discarded.

Each pair of frequent items generates a length-2 candidate itemset. In the second scan, the

support of every length-2 candidate itemset is counted. Those candidates failing the support

threshold are discarded. A length-3 candidate itemset X is generated if every length-2 subset of X

is frequent. Such a candidate-generation-and-test process continues. In general, in the k-th scan,

length-k candidates are counted. Infrequent candidates are discarded. The frequent length-k

candidates are used to generate length-(k +1) candidates. A length-(k +1) itemset X is a candidate

if every length-k subset of X is frequent. The iteration proceeds until there is no candidate is

frequent after one scan or there is no longer candidate can be generated from the current set of

frequent patterns.

Many enhancements of Apriori work in the above framework, with various

improvements on candidate generation or counting. Now, let us consider how to push a

preference into the above breadth-first frequent pattern mining process.

Monotonic and anti-monotonic preferences can be pushed deep into the mining. If a

preference is anti-monotonic, once an itemset X is not a preference pattern, any superset of X

should not be generated as a candidate. By doing so, the number of candidates may be reduced.

A monotonic preference cannot be pushed into a breadth-first frequent pattern mining

method directly. We need some auxiliary mechanisms. We illustrated the idea in the following

example.

Example 6 (Pushing preference into breadth-first frequent pattern mining) Let us

consider mining with preference sum(X) MAX with support threshold 2 on the transaction

database shown in Figure 1.

At the beginning, we generate 6 length-1 candidates, i.e., a, b, c, d, e, f. In the first scan of

the database, we count the support of the candidates. Besides, we sort all the items alphabetically,

and also count the support of speculating candidates abcdef, bcdef, cdef, def and ef. The benefit

of counting these itemsets is clear. For example, if abcdef is a frequent pattern, it must be the

longest one and thus the preference pattern. If so, the mining is done. For other speculating

patterns, such as cdef, if they are frequent, any subset of them cannot be preference pattern and

thus can be pruned from the candidate generation.

By the second scan of the database, we found that f is infrequent and none of the

speculating patterns is frequent. We generate length-2 candidates, i.e., ab, ac, Moreover, we

generate the speculating candidates abcde, bcde and cde. This procedure can continues until all

preference patterns are found.

The above speculate-and-test idea was firstly used by Bayardo in mining max-patterns

(Bayardo, 1998). Here, we extend the method to incorporate preferences.

In general, let R be a global order of items. In every itemset, we list all the items in the

order of R. After the k-th scan of the database, the set of frequent k-patterns (i.e., the frequent

itemsets of length k) are found. The speculating candidates are generated as follows. For every

frequent k itemset X = x1 ⋅ ⋅ ⋅ xk, let {Y1, ⋅ ⋅ ⋅,Ym} be the complete set of frequent k-itemsets having

prefix x1 ⋅ xk-1. Suppose Yi = x1 ⋅ ⋅ ⋅ xk-1yi (1 ≤ i ≤ m). Then, itemset x1 ⋅ ⋅ ⋅ xky1 ⋅ ⋅ ⋅ ym is a

speculating candidate.

Based on the above discussion, we have the algorithm in Figure 6 to push preferences

into the breadth-first frequent pattern mining.

Algorithm 1 (Pushing preference into breadth-first search)

Input: a mining query with a preference, the preference is either monotonic or anti-monotonic;

Output: the complete set of preference patterns;

Method:

 conduct breadth-first search, in each round, do

 IF the preference is anti-monotonic

 THEN every superset of a non-preference pattern should not be generated as a

candidate;

 IF the preference is monotonic

 THEN

 generate and test speculating candidates;

 for any a speculating candidate which is a non-preference pattern,

 its subsets should not be generated as candidates

Figure 6: The algorithm pushing preferences into breadth-first search

Pushing Preferences into Depth-first Frequent Pattern Mining

A typical depth-first frequent pattern mining method (e.g., FP-growth (Han et al., 2000)

and TreeProjection (Agarwal et al., 2001)) works as follows.

First, the transaction database is scanned and all frequent items are identified. The

frequent items are sorted in an order R = x1x2 ⋅ ⋅ ⋅ xn. The set of frequent patterns can be divided

into n subsets: the ones containing x1, the ones containing x2 but not x1, the ones containing x3 but

not x1 or x2, ⋅ ⋅ ⋅ , the pattern xn.

To find patterns containing x1, the x1-projected database is formed by collecting the

transactions containing x1. Frequent items, except for x1 itself, within the x1-projected database

are identified. For each frequent item xj (xj ≠ x1) within x1-projected database, x1xj is a length-2

frequent pattern. The subset of frequent patterns containing x1 can be further partitioned

according to the frequent items within the x1-projected database, and the search can be

conducted recursively.

To find patterns containing x2 but not x1, the x2-projected database is formed by collecting

the transactions containing x2 and ignore the occurrences of x1 in them. The x2-projected database

can be mined recursively.

Similarly, the remaining subsets of frequent patterns can be mined by forming

appropriate projected databases and mining them recursively.

Conceptually, the depth-first frequent pattern mining conducts a depth-first search over

the itemset lattice following a expanding tree based on the order R. For example, if the

alphabetical order is taken in the depth-first mining of the itemset lattice in Figure 4, then the

expanding tree is as shown in Figure 7.

fedcba

ab

abdabc

abcd

abcdef

abcde abcdf abcef

{}

...

bcdfbcde

bcd

...abdeabcfabce

...

...bcafaeadac

abdef acdef bcdef

Figure 7: The expanding tree of the itemset lattice in Figure 4, where the alphabetical order is used.

How can we push a preference into the depth-fistrst frequent pattern mining? On the one

hand, if a preference is anti-monotonic, then for any itemset X that is not a preference pattern, we

can prune the whole sub-tree rooted at X (i.e., the itemsets having X as a subset). This follows

the first case in Theorem 3.

On the other hand, if a preference is monotonic, then for any itemset X, we can compare

X with the preference patterns already found. If there exists a preference pattern Y such that Y is

preferable to X, then the subtree rooted at X can be pruned. Moreover, let Z be the frequent items

in the X-projected database.

Based on the above discussion, we have the algorithm in Figure 8.

Algorithm 2 (Pushing preference into depth-first search)

Input and output: same as Algorithm 1;

Method:

 conduct depth-first search, at each node, do

 IF the preference is anti-monotonic THEN

 stop recursion if the itemset at the current node is not a preference pattern;

 IF the preference is monotonic THEN

 compare the itemset X in the current node to the preference patterns found so

 far;

 IF X is not a preference pattern THEN stop recursion

Figure 8: The algorithm to push preferences into depth-first search

Handling Non-monotonic Functions

Theorem 3 supports efficient pruning for preferences written in monotonic functions and

in one of the forms listed in the theorem. Corresponding algorithms are developed. Now, the

remaining problem is “What can we do for a preference using a non-monotonic function?”

There are two ways to handle the non-monotonic functions. On the one hand, as shown in

(Pei et al., 2001), some non-monotonic functions, such as avg(), can be “converte” so that they

partially have the monotonic property. Take avg() as an example. In general, neither avg(X) ≤

avg(Y) nor avg(X) ≥ avg(Y) always hold for any itemsets X, Y such that X ⊆ Y . However, if we

sort items in value descending order and list items in any itemset in this order, then for any

itemsets X, Y such that X is a prefix of Y , we have avg(X) ≥ avg(Y). Such functions are called

convertible monotonic functions (Pei et al., 2001).

It is hard to push a preference with convertible monotonic functions into a breadth-first

frequent pattern mining method, since the order of items is hard to incorporate into the mining.

Fortunately, preferences involving convertible functions can be pushed deep into the depth-first

frequent pattern mining methods. For example, to push a preference avg(X) MAX, we can use

the value descending order and thus the function becomes convertible monotonic decreasing with

respect to the order. We also use this order to generate the expanding tree. It can be easily

verified that Algorithm 2 still holds. Limited by space, we omit the details here.

On the other hand, in the case that a function f is even not convertible monotonic, we may

also find some monotonic or convertible monotonic function f′ such that f′ can bound f. We

show the idea using the following example. Limited by space, we omit the formal results.

Example 7 (Using a monotonic function to bound a non-monotonic one) Consider

aggregate function tran_avg(X) =
sup(Y)

Ysum
YXTDBYtid∑ ⊆∈ ,),(

)(
. In words, tran_avg(X) computes the

average value of the transactions containing itemset X. Clearly, function tran_avg is neither

monotonic nor convertible monotonic.

Suppose a user want to mine frequent patterns with support threshold 100 and prefer the

patterns in transactions of high values. We can define an auxiliary function top_100_tran_avg(X)

as the average value of the top-100 transactions containing itemset X. For any itemsets X, Y such

that X ⊆ Y, every transaction containing itemset Y must also contain X. Thus, top_100_tran_

avg(X) ≥ top_100_tran_avg(Y). That is, function top_100_tran_avg(X) is monotonic decreasing.

Moreover, for any itemset X, top_100_tran_avg(X) ≥ tran_avg(X).

Therefore, instead of pushing the original preference, we can push a preference

top_100_tran_avg (X) MAX. If the top_100_tran_avg value of the current pattern is smaller than

the tran_avg value of a preference pattern, the tran_avg value of the current pattern must be also

smaller than that of the preference pattern, and thus the current pattern can be pruned. When a

preference pattern with respect to preference top_100_tran_avg (X) MAX is found, we can test

whether it is a preference pattern with respect to tran_avg(X) MAX.

3.5 Handling Complex Integrations of Preferences
Using the integration operator, we can write complex preferences. Theorem 3 gives a

guidance on how to push the integration of preferences in the form of P1 ⊗ P2 into frequent

pattern mining, where both P1 and P2 are preferences listed in one case in the theorem. However,

in practice, we may have some complex situation. Let us consider the following example.

Example 8 (Pushing complex integration of preferences) Suppose we want to mine

patterns with preference P = (len(X) MAX) ⊗ (max(X) MIN). The preference is neither

monotonic nor anti-monotonic even though it is written in monotonic functions.

Preference P can be pushed deep into a depth-first search as follows. At each node of the

search, we know the (frequent) items in the projected database. They are the items can be used to

assemble longer patterns from the current pattern. Thus, we know the upper bound of len(X) and

the lower bound of the value of items in X for any possible pattern X in the recursive search.

Using this information, we can determine whether it is promising to find new preference patterns.

If not, the current search branch can be pruned.

Similarly, the preference can also be pushed into a breadth-first search. The major idea is

that we use the speculate candidate to prune if the upper bound of the len(X) and the lower bound

of the minimum item value are subsumed by a preference pattern. Limited by space, we omit the

details.

4. EMPIRICAL EVALUATION
In this section, we report an empirical evaluation on preference-based frequent pattern

mining. We test our methods on both synthetic data sets and real data sets. Limited by space, we

only report our results on some synthetic data sets and two real data sets. The results on other

data sets are consistent.

We implement all the algorithms in C++. All the experiments are run on a PC with a

Pentium 4 Processor at 2.0GHz and 512M main memory. The three data sets are as follows.

• Synthetic data set D: T20I10D10k. We use synthetic data sets generated by the well

known IBM transactional data generator (Agrawal & Srikant, 1994). In particular, the

data set D: T20I10D10k contains 10,000 transactions. The average length of the

transactions is 20. It contains many long patterns.

• Real data set Retail. The data set is a subset of transactions collected from a retail

company. It contains 100,000 transactions.

• Real data set Gazelle. It is a web store visit (clickstream) data set from Gazelle.com.4 It

contains 59,601 transactions, while there are up to 267 items per transaction. This data set

is extensively used in as a benchmark of frequent pattern mining.

4.1 The effectiveness of preference-based mining
To illustrate the effectiveness of preference-based mining, we evaluate the preference

preferring frequent, long patterns.

Data sets D (min_sup=0.03%) Retail
(min_sup=0.02%) Gazelle(min_sup=0.059%)

length # pref pat sup (%) # pref pat sup (%) # pref pat sup (%)
1 1 8.64 1 5.132 1 5.987
2 1 2.68 1 2.235 1 2.020
3 2 2.05 1 1.895 1 0.700
4 11 1.90 1 1.729 1 0.344
5 1 1.77 1 1.637 1 0.176
6 1 1.67 1 1.572 1 0.116
7 1 1.46 1 1.524 2 0.094
8 1 1.37 2 1.476 1 0.089
9 2 1.07 1 1.432 3 0.081
10 1 1.03 1 0.904 1 0.081
11 1 0.97 1 0.868 1 0.076

12 1 0.62 1 0.562 1 0.069
13 1 0.30 1 0.353 1 0.064
14 1 0.17 1 0.337 40 0.060
15 3876 0.05 1 0.020 2 0.060
16 969 0.05 6 0.059
17 171 0.05
18 19 0.05
19 1 0.05
20 2 0.04
21 2 0.03

Figure 9: The number of preference patterns of various lengths and their supports.

In Figure 9, we show the number of preference patterns of various lengths and their

supports. To facilitate comparison, we report the relative supports of the patterns, i.e.,

%100⋅
TDB

sup(X) . To avoid the noise caused by patterns of very low support, we set the minimum

support thresholds as indicated in the table.

From the table, we can observe some interesting features of the distribution of preference

patterns.

1. In this particular example, at most length levels, we have only a very small number of

preference patterns (often less than 3 in Figure 9.) In general, the number of

preference patterns depends on the preference, the data set and related parameters.

However, a common feature from all of our experiments is that preference-based

mining consistently returns a very small number of preference patterns comparing to

the frequent pattern mining. In other words, even though there are many patterns,

mining with the preference may effectively presents only the patterns interesting to

the users.

2. In this particular example, at some length levels, we may have many preference

patterns, such as the preference patterns of length 15 to 18 in synthetic data set D, and

the patterns of length 14 in real data set Galleze. We printed out the patterns and

found that those are noisy patterns with very low supports. Similar phenomenon is

also observed in some of other experiments on different preferences and data sets.

When the support threshold is very low, there are many “noisy” preference patterns

caused by coincident sharing among transactions. However, even though in such

extreme cases, the number of preference patterns is still much smaller than the

number of frequent patterns at the same support level. We recommend that a small

support threshold should be used as a constraint for preference-based mining to prune

such noisy patterns.

3. Interestingly, in this particular mining query, those very long preference patterns are

formed by small subsets of transactions sharing the patterns. In general, by observing

the statistics of preference patterns, we may find some interesting clusters hidden in

the data. Such clusters are often hard to find by conventional frequent pattern mining

since their supports are too low.

 1000

 10000

 100000

 1e+06

 1e+07

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 fr

eq
ue

nt
 p

at
te

rn
s

Support threshold %

Gazelle
Retail

T20I10D10k

Figure 10: The number of frequent patterns with respect to support threshold.

Figure 10 plots the distribution of frequent patterns in the three data sets with respect to

support threshold. In general, when the support threshold goes low, the number of frequent

patterns increases dramatically. (Please note that the number of patterns is plotted in logarithmic

scale.) Without preference-based mining, a user may have to go through hundreds of thousands

or even millions patterns to find the preferable ones that are identified in Figure 9. Clearly, the

effectiveness of the mining is the most important benefit of preference-based mining.

4.2 The efficiency of preference-based mining
The efficiency of pushing a preference into frequent pattern mining highly depends on

the preference, the data set, and the related parameters (e.g., the available constraints). In Section

3, we developed some general techniques to push various preferences. As discussed before, the

preference pushing techniques we developed in this paper have been used in the previous studies.

In this paper, we generalize some of them and integrate them for pushing preferences into

frequent pattern mining. The empirical evaluations reported in those previous studies (e.g.,

(Bayardo, 1998; Pei et al., 2001; Han et al., 2001)) fully indicate the efficiency of the techniques,

respectively. Please note that, given a specific preference, it is highly possible that further

pruning techniques with respect to the preference can be developed to improve the efficiency

substantially. We do not discuss such specific techniques in this paper since the main task in this

paper is to establish a general framework.

Limited by space, in this section, we only report results on an example case to illustrate

the efficiency of pushing anti-monotonic preferences.

To test the efficiency of pushing anti-monotonic preferences, we use the mining query

Qtest. Figure 11 shows the efficiency of the mining. The depth-first search implementation is

based on FP-growth (Han et al., 2000), and the breadth-first search method is based on Apriori

(Agrawal & Srikant, 1994). From the figure, we can observe that, in general, depth-first search is

more efficient and can touch to lower support threshold than breadth-first search. We believe that

the efficiency difference is from the inherent difference between depth-first search and breadth-

first search, as extensively studied before (e.g., (Agarwal et al., 2001; Han et al., 2000; Zaki et al.,

1997a)).

Data sets Depth-first search runtime (seconds) Breadth-first search runtime (seconds)
T20I10D10k 678.527 (min_sup=0.03%) 2893.843 (min_sup=0.2%)

Retail 404.629 (min_sup=0.02%) 2390.326 (min_sup=0.1%)
Gazelle 132.084 (min_sup=0.059%) 1245.232 (min_sup=0.1%)

Figure 11: The efficiency of pushing anti-monotonic preferences.

 1

 10

 100

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
un

tim
e

(s
ec

on
ds

)

Support threshold %

w/o preference
w preference

Figure 12: Comparison of the depth-first search runtime with and without preference Qtest on data

set Gazelle.

To compare the mining efficiency with and without preferences, we plot Figure 12. The

test is on depth-first search methods with and without preference Qtest. In order to show the

difference of the runtime clearly, the runtime is plotted in logarithmic scale. From the figure, we

can clearly see the pruning power of the techniques. The depth-first search with preference is

always 2-3 times faster than the one without the preference.

We also test the scalability of the preference pushing techniques. As an example, we

mine frequent patterns with preference Qtest on synthetic data set T20I10D10 - 1000k of 10,000 to

1,000,000 transactions. The support threshold is set to 0.1%. The depth-first search is used. The

result is shown in Figure 13. Roughly, the curve is linear. (It takes 7 seconds on the data set of 10,

000 transactions and 792 seconds on the data set of 1,000,000 transactions). We also test some

other cases. They are all scalable with respect to the number of transactions in the data sets.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800 900 1000

R
un

tim
e

(s
ec

on
ds

)

Number of transactions (thousands)

T20I10D10-1000k

Figure 13: The scalability of preference pushing with respect to database size.

5. RELATED WORK AND DISCUSSION
In this section, we first briefly review related work. Then, we discuss a general

framework of preference-based data mining.

5.1 Related Work

The research on preference-based frequent pattern mining is related to two categories of

previous studies: preference queries and frequent pattern mining techniques.

The problem of preference queries is firstly addressed by Lacroix and Lavency in

(Lacroix & Lavency, 1987). They formulate preferences as a series of conditions for selection.

The nonempty set of answer satisfying the longest sub-series of conditions should be returned.

The compositions of preferences are not considered.

Several logical approaches to preferences are proposed in the context of deductive

databases, including (Govindarajan et al., 1995; K. Govindarajan and B. Jayaraman and S.

Mantha, 2001; Kostler et al., 1995). The formal languages of preference relations are developed

in (Kiessling, 2002; Kiessling & Kostler, 2002; Chomicki, 2002). The idea of specifying

preferece-based mining queries in this paper is similar to those in the above studies.

The problem of frequent pattern mining is firstly identified by Agrawal et al. as a key

step in association rule mining (Agrawal et al., 1993). Many algorithms have been designed to

mine frequent patterns efficiently, e.g., (Agrawal & Srikant, 1994; Han et al., 2000; Agarwal et

al., 2001; Zaki et al., 1997b). As indicated by many studies (e.g., (Zheng et al., 2001)), frequent

pattern mining often returns a huge number of patterns. To improve the effectiveness as well as

the efficiency of frequent pattern mining, the problem of constraint-based frequent pattern

mining is studied recently (e.g., (Ng et al., 1998; Lakshmanan et al., 1999; Pei et al., 2001)).

Constraints are classified into various categories, e.g., monotonic, anti-monotonic, succinct, and

convertible ones. Constraints in each category share some computational properties. Methods

have been developed to push various constraints deep into the mining.

Some special cases of preference-based frequent pattern mining have been studied

recently. For example, (Bayardo & Agrawal, 1999) proposes mining the most interesting rules.

(Fu et al., 2000) studies mining the top-k frequent itemsets. In (Han et al., 2002), an efficient

algorithm for mining the top-k frequent closed itemsets is proposed.

To the best of our knowledge, this paper is the first study systematically tackling the

problem of preference-based frequent pattern mining. We address both the effectiveness and the

efficiency of the preference-based frequent pattern mining. We provide simple and sufficient

mechanisms to support users' specification of preferences and explore efficient methods to push

preferences into the mining.

5.2 A General Framework of Preference-based Data Mining
The general idea of preference-based frequent pattern mining can be extended and

generalized. Here, we propose a general framework of preference-based data mining.

In principle, a data mining query should contain the following three components.

1. The specification of types of patterns. For example, a user may say she/he wants to

mine frequent patterns, association rules, classification rules/classifiers, or clusters.

This component is obligatory.

2. The specification of constraints. This component is optional. If constraints present,

only the patterns satisfying the constraints should be returned to the users.

3. The specification of preferences. This component is also optional. A preference

specifies how to select the patterns most interesting to users from all the feasible

answers satisfying all constraints.

To some extent, a preference can be regarded as a soft constraint. That is, the patterns

best satisfy the preference are output.

Based on the above framework, two important directions for the future studies on

preference-based data mining are as follows.

1. Specification of preferences. Concise and effective methods should be developed to

facilitate users' specification of various preferences. In general, a user's preference

may have multiple goals. Specifying complex preferences is far from trivial.

2. Pushing preferences into mining. Preference-based data mining may improve not

only the effectiveness but also the efficiency of the mining. Proper preference

pushing techniques should be developed to utilize the preference to prune

unpromising searches.

6. CONCLUSIONS
In this paper, we study the problem of preference-based frequent pattern mining. A user

can simply specify a preference instead of setting detailed parameters and constraints. We

identify and formulate the problem and the preferences for mining. We propose a SQL-like

query language construct for effective specification of preference-based frequent pattern mining

queries. Using some typical examples, we show that preference-based frequent pattern mining

queries can be used to describe users' mining requirements effectively. We develop an efficient

method to mine frequent patterns with preferences. Instead of identifying various specific kinds

of preferences and develop individual preference mining algorithms, our method is general and

can handle many preferences. Interestingly, many preferences can be pushed deep into the

mining by properly employing the existing efficient frequent pattern mining techniques. We

conduct an extensive performance study to examine our method. The results indicate that

preference-based frequent pattern mining is effective and efficient. Furthermore, we extend our

discussion from pattern-based frequent pattern mining to preference-based data mining in

principle and draw a general framework. Several interesting problems for future studies are

discussed.

References
Agarwal, R. C., Aggarwal, C. C., & Prasad, V. V. V. (2001). A tree projection algorithm for

generation of frequent item sets. Journal of Parallel and Distributed Computing, 61, 350-

371.

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items

in large databases. Proc. 1993 ACM-SIGMOD Int. Conf. Management of Data

(SIGMOD'93) (pp. 207-216). Washington, DC.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Proc. 1994 Int.

Conf. Very Large Data Bases (VLDB'94) (pp. 487-499). Santiago, Chile.

Bayardo, R. J. (1998). Efficiently mining long patterns from databases. Proc. 1998 ACM-

SIGMOD Int. Conf. Management of Data (SIGMOD'98) (pp. 85-93). Seattle, WA.

Bayardo, R. J., & Agrawal, R. (1999). Mining the most interesting rules. Proc. 1999 Int. Conf.

Knowledge Discovery and Data Mining (KDD'99) (pp. 145-154). San Diego, CA.

Chomicki (2002). Querying with intrinsic preferences. Proc. 2002 Int. Conf. on Extending

DataBase Technology (EDBT'02) (pp. 34-51). Prague, Czech.

Dong, G., & Li, J. (1999). Efficient mining of emerging patterns: Discovering trends and

differences. Proc. 1999 Int. Conf. Knowledge Discovery and Data Mining (KDD'99)

(pp.43-52). San Diego, CA.

Fu, A. W.-C., Kwong, R. W.-W., & Tang, J. (2000). Mining n-most interesting itemsets.

Proc.200 Int. Symp. Methodologies for Intelligent Systems (ISMIS'00) (pp. 59-67).

Charlotte, NC.

Govindarajan, K., Jayaraman, B., & Mantha, S. (1995). Preference logic programming.

International Conference on Logic Programming (pp. 731-745).

Han, J., Pei, J., Dong, G., & Wang, K. (2001). Efficient computation of iceberg cubes with

complex measures. Proc. 2001 ACM-SIGMOD Int. Conf. Management of Data

(SIGMOD'01)(pp. 1-12). Santa Barbara, CA.

Han, J., Pei, J., & Yin, Y. (2000). Mining frequent patterns without candidate generation. Proc.

2000 ACM-SIGMOD Int. Conf. Management of Data (SIGMOD'00) (pp. 1-12). Dallas,

TX.

Han, J., Wang, J., Lu, Y., & Tzvetkov, P. (2002). Mining top-k frequent closed patterns without

minimum support. Proc. 2002 Int. Conf. on Data Mining (ICDM'02). Maebashi, Japan.

K. Govindarajan and B. Jayaraman and S. Mantha (2001). Preference Queries in Deductive

Databases. New Generation Computing, 57-86.

Kiessling, W. (2002). Foundations of preferences in database systems. Proc. 2002 Int. Conf. on

Very Large Data Bases (VLDB'02) (pp. 311-322). Hong Kong, China.

Kiessling, W., & Kostler, G. (2002). Preference sql - design, implementation, experience.

Proc.2002 Int. Conf. on Very Large Data Bases (VLDB'02) (pp. 990-1001). Hong Kong,

China.

Kifer, D., Gehrke, J., Bucila, C., & White, W. (2003). How to quickly find a witness. Proc.

2003ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems

(PODS'03).San Diego, California.

Kostler, G., Kiebling, W., Thone, H., & Guntzer, U. (1995). Fixpoint iteration with subsumption

in deductive databases.

Lacroix, M., & Lavency, P. (1987). Preferences; putting more knowledge into queries.

VLDB'87,Proceedings of 13th International Conference on Very Large Data Bases,

September 1-4, 1987,Brighton, England (pp. 217-225). Morgan Kaufmann.

Lakshmanan, L. V. S., Ng, R., Han, J., & Pang, A. (1999). Optimization of constrained frequent

set queries with 2-variable constraints. Proc. 1999 ACM-SIGMOD Int. Conf.

Management of Data (SIGMOD'99) (pp. 157-168). Philadelphia, PA.

Li, W., Han, J., & Pei, J. (2001). CMAR: Accurate and efficient classification based on multiple

class-association rules. Proc. 2001 Int. Conf. Data Mining (ICDM'01) (pp. 369-376). San

Jose, CA.

Liu, B., Hsu, W., & Ma, Y. (1998). Integrating classification and association rule mining.

Proc.1998 Int. Conf. Knowledge Discovery and Data Mining (KDD'98) (pp. 80-86). New

York, NY.

Ng, R., Lakshmanan, L. V. S., Han, J., & Pang, A. (1998). Exploratory mining and pruning

optimizations of constrained associations rules. Proc. 1998 ACM-SIGMOD Int. Conf.

Management of Data (SIGMOD'98) (pp. 13-24). Seattle, WA.

Pei, J., & Han, J. (2000). Can we push more constraints into frequent pattern mining? Proc.2000

ACM SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD'00) (pp. 350-354).

Boston, MA.

Pei, J., Han, J., & Lakshmanan, L. V. S. (2001). Mining frequent itemsets with convertible

constraints. Proc. 2001 Int. Conf. Data Engineering (ICDE'01) (pp. 433-332). Heidelberg,

Germany.

Wang, K., Zhou, S., & He, Y. (2000). Growing decision tree on support-less association rules.

Proc. 2000 ACM SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD'00) (pp.

265-269). Boston, MA.

Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W. (1997a). New algorithms for fast discovery

of association rules. Proc. 1997 Int. Conf. Knowledge Discovery and Data Mining

(KDD'97) (pp. 283-286). Newport Beach, CA.

Zaki, M. J., Parthasarathy, S., Ogihara, M., & Li, W. (1997b). Parallel algorithm for discovery of

association rules. Data Mining and Knowledge Discovery, 1, 343-374.

Zheng, Z., Kohavi, R., & Mason, L. (2001). Real world performance of association rule

algorithms. Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining (KDD'01) (pp. 401-406). San Francisco,

California: ACM Press.

f1 Please note that we can draw preference graphs in the reserve way. That is, alternatively we can define the graph as edge X Y ∈ E if X Y

. The drawing of preference graphs does not affect the mathematical meaning.

2 There are two distinct notions of connectivity in a directed graph. A directed graph is weakly connected if there is an undirected path between

any pair of vertices, and strongly connected if there is a directed path between every pair of vertices.

3 A weakly connected component is a maximal subgraph of a directed graph such that for every pair of vertices u, v in the subgraph, there is an

undirected path from u to v and a directed path from v to u

4 This data set is obtained from the KDD Cup 2001 website.

	ABSTRACT
	1. INTRODUCTION
	2. PREFERENCE-BASED FREQUENT PATTERN MINING
	3. ALGORITHMS
	3.1 Preference graph
	3.2 Search in a Preference Graph
	3.3 Monotonic Preference Functions
	3.4 Pushing Preferences into Breadth-first Frequent Pattern
	Pushing Preferences into Depth-first Frequent Pattern Mining
	Handling Non-monotonic Functions
	3.5 Handling Complex Integrations of Preferences

	4. EMPIRICAL EVALUATION
	4.1 The effectiveness of preference-based mining
	4.2 The efficiency of preference-based mining

	5. RELATED WORK AND DISCUSSION
	5.1 Related Work
	5.2 A General Framework of Preference-based Data Mining

	6. CONCLUSIONS
	References

