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Covering Radius- Survey and Recent Results 
GBRARD D. COHEN, MEMBER,  IEEE, MARK G. KARPOVSKY, MEMBER,  IEEE, H. F. MATTSON, JR., 

MEMBER,  IEEE, AND JAMES R. SCHATZ 

Abstract-All known results on covering radius are presented, as well as 
some new results. There are a number of upper and lower bounds, 
including asymptotic results, a few exact determinations of covering radius, 
some extensive relations with other aspects of coding theory through the 
Reed-Muller codes, and new results on the least covering radius of any 
linear [II, k] code. There is also a recent result on the complexity of 
computing the covering radius. 

I. INTRODUCTION 

T HE COVERING RADIUS of a block code of length 
n is defined as the smallest integer p such that all 

vectors in the containing space are within Hamming dis- 
tance p of some codeword. Thus, for the binary case, the 
covering radius t(C) of C is 

t(C)=max{min{~x+c~;cEC};xEZ~} (1) 

We restrict attention to binary codes except when we 
discuss Reed-Solomon codes and, briefly, one or two other 
cases. We assume no coordinate is identically zero. 

The covering radius is a basic geometric parameter of a 
code, important, for example, in these respects. 

1) It is a measure of the quality of a code in that 
maximal codes C, i.e., those having no proper supercode 
with the same length and m inimum distance, are char- 
acterized by the condition t(C) I d(C) - 1. The proof is 
at the end of Subsection A, following. 

2) Define d[ n, k] to be the largest m inimum distance 
attained by any linear [n, k] code [17]. For all n, k with 
d[n, k] > d[n, k + 11, we have t[n, k] I d[n, k + 11, and 
the [n, k, d[n, k]] codes are maximal (see Appendix A for 
the definition of t[n, k]). For the proof, see Section III-F. 

3) )If the code C is used for data compression, the 
covering radius is a measure of the maximum distortion 
141: if for error correction. then t(C) is the maximum 

have applications to quantization and to coding for the 
Gaussian channel [62], 1631. An application to speech 
processing is mentioned in [72]. 

5) Some nonlinear codes, such as the Kerdock code, are 
the union of a linear code with its cosets of maximum 
weight. 

6) The covering radius is used to upperbound the weight 
of “zero neighbors” in a new decoding procedure set forth 
in [80]. 

A. The Translate Leader 

When C is linear, t(C) is the weight of a coset leader of 
greatest weight. Also, if H is any parity check matrix for C, 
then t(C) is the least integer p such that every syndrome is 
a sum of some p or fewer columns of H. (By the term 
syndrome we mean a column vector of n - k entries, 
where C is an [n, k] code and H is an (n - k) X n 
matrix.) The least integer w allowing such a sum for the 
syndrome s is the weight of a leader of the coset associated 
with s. 

More generally, t(C) is the weight of a translate leader 
of greatest weight, where a translate of C is x + C = {x 
+c; cEC} for xEZ;, and any vector of m inimum 
weight in a translate is called a leader of that translate. 
There is a simple criterion for x to be a translate leader. 
For convenience, we identify each vector with its support, 
which is the subset of coordinate places where the vector is 
one. Then x is a leader of x + C if and only if 

But 
lx + cl 2 1x1, for all c E C. 

IX + CI = 1x1 + ICI - 2)~ n CJ 2 1x1, 
. aI \ , 

weight of a correctable random error. and so our criterion, to be used in Section IV, is that x is a 
4) The related problem of the covering radius‘of a lattice translate leader for C if and only if for all c E C, 21x n c( 

in Euclidean space has been addressed 1611. Such lattices I ICI. 
To prove that a code C is maximal if and only if 
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radius f of a  code C defined as [30, p. 1721 weight. Therefore both 

f= m in {max { ]u - u]; u  E C}; u  E Z;} 

bears a  simple relationship to the covering radius, name ly 
2i-igf(Cj (2i 1  I.) ’ 2n-k-1 

f + t(C) = n  [26, Eq. 591. To  prove this, we let Q(e) stand (2) 
for the function max{min{(*); u  E C}; u  E Z;}. Then  
-f = Q(-lu - ui), so n -f= Q(n - Ju - VI) = Q(lti - must hold for even linear codes C [2]. 

u]) = t(C), by (1). Here U is the complement of u. W e  now derive lower bounds on  the covering radii of 
codes constructed in various ways from two other codes. 

C. Outline of Paper Let C, and  C, be  [n,, k,,d,], and  [n2, k?,d,], codes, 
respectively, with generator matrices G , and G ,. 

Our original intention was to survey all known results on  
covering radius, but in the process of organizing them we C. The  Cartesian Product 
found, and  have included here, some new results as well. 
They are found in Lemma 1, Proposit ion 1  (more on  the Define C = C, X C, = {(a,b); a  E C,, b  E C,}. I’hen 

supercode, lemma), Equation (4) and  Lemma 2  (all in C, the Cartesian product or external direct sum of C, and  

Section III). Another result, on  leader codes of second-order C,, is a  code of type [ni + n&k, + k,, m in { d,, a,}], and  

Reed-MuBer codes, appears in Theorem 11 (Section IV). 
Section IV-C presents a  characterization of “structure 

t(c) = t(q) + t(q). 

codes.” Sections V and VI introduce and study an  entirely 
new function of interest on  which asymptotic results ap- 
pear in Section VII and  a  table of values in Appendix B. A 
new result of T ietevainen is ment ioned in Theorem 16 
(Section VIII). 

provides some additional, m iscellaneous results. F inally, in 
Section IX, we give some open problems. In addition, 
Appendix B provides some codes of known covering radius 

The  plan of the paper  is the following. Lower and upper  
bounds on  covering radius are given in Sections II and  III, 
respectively. Section IV gives covering radius results for 
Reed-Muller codes, and  Section V deals with the least 
covering radius of (n, K) codes. In Section VI, t [ n, k] is 
determined for small k. The  asymptotic results ment ioned 
above are presented in Section VII, and  Section VIII 

D. Catenation C, + d  ‘L  of Cl and  C, 

Here we take k, I 1  ! and  define the generator matrix of 
C as G i, G ,, where G ; is G , with k, - k, rows of zeros 
attached. This construction may give different codes C as 
one chooses different generator matrices for the same 
codes C, and  C,. C is an  [ni + n2, k,, d] code, where 
d  z m in { d,, d, }, for which the covering radius satisfies 

t(c) 2  t(c,) + t(c,). 

If n, = n2, and  C, _$  C,, then C is def ined as 

c = {(u,u + u); u  E Cl, u  E c2}. 

E. (u, u  + u) Construction [30, Ch. 2, Sec. 9] 

and  the table of values of t[ n, k] for n  I 32  and k I 25. 
Appendix A provides a  list of the nomenclature used 

C is a  code of type [2n,, k, + k,,min {2d,, d,}], and  

throughout this work. 
t(c) 2. 2t(C ) 

To  verify & bound on  t(C), let a  be  a  coset leader of 

II. LOWER BOUNDS ON COVERING RADIUS 

A. Perfect Codes and Quasi-perfect Codes 

For any code C, we define 

A(C) = t(C) - e(C) 2  0. 

C is called perfect [quasi-perfect] if and  only if A(C) = 0  
[ = 11. A result on  A(C) for large n  appears in Theorem 14 
(Section VII). For each of the bounds below one can easily 
find a  code meeting it with equality. 

B. Sphere-Packing and Sphere-Couering Bou~$v 

Theorem 1: For any ( n, K) code C 

C, of maximum weight. Then  (a, a) is a  coset leader for C, 
and  I(a, a)[ = 2t(C,). 

F. Direct (Kronecker) Product [30, p. 5681 

The  direct product of the codes C, and  C, produces an  
[n1n2, k,k,, d,d,] code C for which the covering radius 
satisfies 

t(C) 2  max {W(G), n2f(C1)}. 

G . Lengthening a  Code 

It is always possible to adjoin another column h  to the 
k x n generator matrix G  of an  [n, k] code C. Then G  
becomes G ; h, where h  is a  k X 1 vector; the latter is the 
generator matrix of an  [n + 1, k] code C’. Obviously, the 
covering radius of C’ is either the same as or one  greater 
than that of C. Consider, for example, the (2” - 1, m) 
simplex code, with covering radius 2”-l - 1. Imagine con- 

The  latter bound,  first remarked in 1541, is called the strutting it one  coordinate at a  time, starting from the 
sphere-couering bound.  If the linear code C is even, then generator matrix 1,. As we “add” 2” - m  - 1  columns, 
half of its cosets have odd weight and  half have even the covering radius increases from 0  to 2”-’ - 1; thus 
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slightly more than half of the time, the increase is by one. 
The following result gives a criterion for this situation. 
Since the new column h is another parity check, the 
vectors of C’ have the form (c, c . b), where c E C and b 
is a fixed vector of length n. 

Lemma I: When the [n, k] code C is lengthened to an 
[n + 1, k] code C’ via a new parity check b, then t(C’) = 
1 + t(C) if and only if in some coset u + C of coset 
weight r(C) = ]u], all coset leaders u satisfy (U + v) . b = 0. 

Proof: For any distinct cosets x + C and y + C, the 
four C’-cosets of (x, 0), (x, l), (y, 0), and ( y, 1) are mutu- 
ally distinct. With u as given, the vector (u, 1) is a leader if 
and only if for all c E C, ](c,c * b) + (u,l)] = ]c + u] + 
]c . b + 11 2 ]u] + 1, a condition holding automatically ex- 
cept perhaps when u + c is a leader u of the coset. If and 
only if c . b = 0 for ah leaders u, (u, 1) is a leader. 

Corollary I: Appending an overall parity check or the 
zero parity check increases the covering radius by one (cf. 
[2]). Puncturing a code on p coordinates reduces the 
covering radius by at most p. 

Application of Lemma I: Appending any nonzero col- 
umn to the generator matrix of the simplex code leaves the 
covering radius unchanged. This is true because ‘there is 
only one coset of maximum weight for the simplex code 
[34]; its leaders are the complements of all the nonzero 
codewords. Thus the u + u of the lemma runs over all 
nonzero codewords, forcing b to be zero. (Here the overall 
parity check is the zero parity check.) 

If, however, we delete any column from the generator 
matrix of the simplex code, then the covering radius de- 
creases by one, because the code is even; i.e., the deleted 
column is an overall parity check on the remaining. 

Another application is a simple bound for even binary 
codes C [2]: t(C) 2 d/2 for any [II, k, d] code in which all 
weights are even, and equality holds iff C is the extension 
of a perfect code by an overall parity check. One proves 
the second part by puncturing C on one nonzero coordi- 
nate to get a code C’ that satisfies 

t(c) = t(c) - 1 = f - 1 = [?I = e(C’). 

The bound appears weak because it merely says that the 
code is not perfect, but it can be useful (see [2]). 

The criterion of Lemma 1 can be restated (in the nota- 
tion of the lemma) as follows. 

Restatement: t(C’) = f(C) iff every coset of highest 
weight for C has coset leaders u, r~ such that (u + u) . b 
= 7. 

Corollary 2: If some coset of C of highest weight has a 
unique leader, then t(C’) = t(C) + 1 (whatever b is). 

Finally, because the proof of Lemma 1 did not use the 
fact that ]u] = t(C), it in fact states a criterion for (u, 1) to 
be a coset leader of C’ when u is a coset leader of C. 

H. The Supercode Lemma 

We now define two quantities associated with codes 
Cl c C,. We say m  (C,, C,) [M(C,, C,)] is the weight of a 
translate-leader of least nonzero [greatest] weight among 

the translates of C, by elements of C,: 
m(C,,C,) = m in { Ix + Cl; x E C, - C,, c E C,} 
M(C,,C,) = IJllF m in{lx + cl; CE Cl}. (3) 

2 
When C, and C, are linear, these are the m inimum non- 
zero and maximum weights of cosets of C, mod C,. 

Proposition 1 (The Supercode Lemma): Let C, and C, be 
possibly nonlinear codes such that C, c C,. Then t(C,) 2 
M(C,, C,) r m(C,, C,) 2 d(C,). If both codes are linear, 
then, in particular, 

t(C,) 2 m in {Ix]; x E C, - C,}. 
Proof: Since t(C,) is by definition max { wt( y + C,); 

y E Z;}, we see that 

t(c,> = M( z;, Cl> 2 MC,, Cl>. 
The third inequality follows from the fact that wt(x + C,) 
for x E C, - C, is a nonzero distance in C,. When both 
codes are linear, m(C,, C,) reduces to the quantity stated 
in Proposition 1. 

A special case of this useful result first appeared in [15]. 
It was also used in [21] to show that no e-error-correcting 
BCH code BCH (e) for e 2 3 is quasi-perfect, settling a 
question raised in [15]: The BCH codes are nested, as 

BCH (1) ZI BCH (2) 3 BCH (3) 3 . . . . 
When the inclusion is proper we may apply the super- 

code lemma to see that 
t(BCH (2)) 2 d(BCH (1)) = 3 
t(BCH (3) 2 d(BCH (2)) = 5, . . . . 

The usefulness of the supercode lemma is explained in 
part by the following. 

Remark: If C, is a code for which t(C,) I d(C,), then 
there is a supercode C, for which t(C,) = d(C,). To see 
this, just let x be any vector at distance t(C,) from C,, and 
define C, as the supercode C, U (x + Cl). 

These conditions hold for all the Reed-Solomon codes, 
for which we now find the covering radii. These are [n, k, n 
- k + l] nonbinary codes [14, p. 211, [30, p. 2941, [47] 
which are nested: for fixed q and n < q - 1, there are 
codes C, c C, c C, c . . . c C,,, where Ci is an [n, i, di] 
code over GF(q) with di = n - i + 1 for 1 I i. It follows 
that t(Ci) 2 di+l = n - i for all i < n. The reverse in- 
equality follows from the redundancy bound (Section III- 
A). Thus, any Reed-Solomon code of distance d has 
covering radius d - 1, which equals the redundancy of the 
code. 

It is not necessarily true that the covering radius equals 
the redundancy for any MDS code, however [30, Ch. 111. 
Over GF(5) the [6,4,3] MDS code with check matrix [30, 
p. 3231 

111110 
123401 

has covering radius 1 but redundancy 2. 
Finally, we present a simple example showing that all 

four quantities in the statement of the supercode lemma 
(Proposition 1) Can be different from each other. Let A 
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and B be, respectively, (n, k, d) and  (n’, k’, d’) codes with 
d  < d’ < w I n’, where w is the maximum weight of 
codewords of B, and  k c n. For C, take A X B = {(u, b); 
a  EA, b  E B}, and  for C, take {(a,O); a  E A} L  C,. 
Then  the coset space C,/C, is isometric to B, so we see 
from Corollary 1  that 

r(C,) = n’ + t(A) > w = M(C2,C1) > d’ 
= m(C,,C,) > d  = d(C,). 

III. UPPER BOUNDS ON COVERING RADIUS 

A. The  Redundancy and Delsurte Bounds 

The  first and  simplest bound on  covering radius is given 
by the following proposition. 

Proposit ion 2: The  linear [n, k] code C satisfies t(C) I 
n  - k. 

Proof: The  proof is obvious if we recall that t(C) is 
the least integer w such that every syndrome is a  sum of at 
most w columns of the parity check matrix H of C, and  H 
has rank n  - k. 

Notice that Reed-Solomon codes meet this bound with 
equality. (See the Remark, and  text following, at the end of 
the previous section.) 

Proposit ion 3: The  bound t(C) < n  - k does not hold 
for nonl inear (n, K, d) codes in general  (where k = log K), 
but it does hold for maximal codes. 

Proof: If C is maximal, then t(C) I d  - 1  (See para- 
graph 1) at the beginning of the Introduction.) But d  - 1  I 
]rr - k], the Singleton bound [51]. For the general  case let 

n  be  odd and let C be  the sphere of radius n/2 about 0. 
Then  (C] = 2”-l, so n  - k = 1; but t(C) = (n + 1)/2. 

Theorem 2  (Delsurte’s Theorem [12]): Let s’ be  the ex- 
ternal distance of the code C. If C is linear, s’ is the 
number  of nonzero weights in C * ; and  if C is nonlinear, 
s’ is def ined analogously through the MacWilliams trans- 
form (see [12], [30, Ch. 51). Then  

t(c) I s’. 
No proof of this result will be  given here. F ive proofs 

have appeared:  [12], [l], [30, p. 1721 and, for the linear 
case, [58], [2]. 

Remark: There are several classes of codes for which 
Delsarte’s bound gives the exact value of the covering 
radius. Some of these are the perfect codes, the 
Reed-Muller codes RM(r, m) for m  - 3  I r I m , the 
BCH(e) codes for e  = 1, and  for e  = 2  and 3  with m  odd 
[25], and  the Reed-Solomon codes. (See also Section VIII- 
D.) But there is some slight evidence (see [31]) that the 
Delsarte bound is not very good for most codes. 

B. The  Supercode Upper Bound 

Theorem 3: Let C, c C, be  codes. Then t(C,) I t( C,) 
+ M(C,, C,), where ilrp is def ined as in Section II-H. 

Proof: Let u  be  a  vector in Z; at distance t(C,) from 
C,, and  a  a  word in C, closest to u. Then  ]a + u( I t(C& 
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Let b  be  a  word in C, closest to a. Then  ]a + bl i 
M(C,, C,). It follows that 

t(C,) I lb + UI < la + uj + la + bl 

s G> + w&C,). 
Corollary 3: W ith C,/C, as def ined in Appendix A, 

max m in 1x1 I t(C,) I r$nl XEmzxcl]x] + t(C,). 
q3c1 xsq-c, 

W e  now give an  upper  bound for codes constructed as in 
Section II-D from two linear codes C, and  C,, of lengths 
n, and  n  2, respectively. 

Proposit ion 4: Let C be  any catenation of C, and  C,. 
Then  

t(C) I m in { t(C,) + n2, t(C,) + nl}. 

C. The  p1  + p2  Bound 

This bound applies only to l inear [n, k] codes A. Take a  
parity check matrix H of A in the form H = I,, D, where 
D is an  r X k matrix of rank j, and  r = n  - k. Define A, 
as the code of type [k, k - j] with D = pcm(A,), and  set 
p1  = t(A,). Define A, as the [r, j] code spanned by the 
columns of D, and  set p1  = t(A2). 

Theorem 4  [3ZJ: t(A) 5  p1  + p2 = t(A,) + t(A,) I 
n  - k. 

Proof: If x is any syndrome, then it is at distance pz 
or less from some vector y in A,. Thus x = y + z, where z 
is the sum of at most p2  columns of 1,. The  set of all 
subsets of columns of D with sum y corresponds to a  coset 
of A,. Thus y is the sum of at most p1  columns of D. Since 
p1  I j and  p2  I r - j (see Section III-A), p1  + pz I r = n  
- k. 

W ith the same notation we can prove the following 
theorem. 

Theorem 5  [33]: Let W  be  largest weight less than 
r + p1  of any codeword of A. Then  

64) 5  1W21 + ~2. 

W e  omit the proof of this result. Sometimes Theorem 5  
gives a  better bound than Theorem 4. Both sometimes yield 
better bounds than the Delsarte bound [31], [33] where, in 
fact, sometimes the external distance is greater than the 
redundancy. These suffer, though because they bound 
covering radius in terms of covering radius, a  difficult 
quantity to compute. The  quantities j, pl, and  p2  are not 
invariants of A. F inally, there are situations in which pi or 
p2  can be  found by inspection. 

Similarly, let C be  a  nonl inear (n, k) code. Then the 
linear [n + k, k] code A with parity check matrix I,, D, 
where the columns of D are all the words of C, has 
covering radius satisfying 

t(A) I 1  + t(C). (4) 

D. The  Norse Bounds 

The  more complicated “Norse bounds,” as we call them, 
hold for restricted classes of codes, which may, however, be  
nonlinear. 
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Definition: A code has strength s if and only if every 
s-subset of coordinate places contains every binary s-tuple 
the same number of times. A code is selfcomplementuly if 
and only if the complement of every codeword is also a 
codeword. 

Theorem 6 [18]: If the code C of length n has strength 
1, then t(C) I \n/2]. 

Theorem 7 [18]: If the code C of length n has strength 
2 and is self-complementary, then t(C) I [(n - 6)/21. 

These two bounds are asymptotically the same. In [18] 
Theorem 7 is applied to the first-order Reed-Muller code, 
yielding a bound we use in Section V-B. These bounds 
appear to be best for codes of low rate. 

E. Code C’ Where t(C’) < 1 + t(C) 

Lemma 2: Let C be an [n, k, d] code with distance 
d I 3, and let {h,; . ., h It } = H be the columns of a check 
matrix of C. Suppose, as we may, that h, = 0 if d = 1, 
h, = h, if d = 2, and h, = h, + h, if d = 3. Then the 
[n + 2, k] code C’ with check matrix 

1 0 1 
H’ = 0 1 1 0 

0 0 hl h, ..a h, 

satisfies t(C’) I 1 + t(C). 

Proof: Denote the first three columns of H’ by 
ci, c2, cs, respectively. If S is any set of column vectors of 
n - k rows, denote by S’ the same set with two extra zeros 
on top of each vector: S’ = {(OOyr)‘; y E S }. For such S 
(S’) let CS (ES’) denote the sum of all elements of S (S’). 

We let s be any syndrome and divide the proof into the 
three cases: 

Case 1 Case 2 Case 3 

0 1 0 1 

s= 0 0 1 1 

X x x X , 

where x is any syndrome for C. 
Case I: Here we consider a smallest set S of columns hi 

such that x = ES. If h, G  S, then s = CS’ expresses s as a 
sum of JS] columns of H’. If h, E S, then when d = 3 we 
remove h, from S and insert h 2 and h 3; when d = 2 we 
replace h, by h,; when d = 1, h, cannot be in S. 

Case 2: Again express x = CS for a smallest S c H. If 
h, P S, then s = ci + x’ (or ca + x’). But if h, E S, then 
s = ci + cg + IS;, where S, = S - {h,}, for i = 1 or 2. 

Case 3: Here we pick a smallest set S G H such that 
x + h, = CS. If h, 4 S, then s = c3 + CS. If h, E S, then 
s = cl + c2 + CSi, where S, = S - {h,}. 

In all cases we express s as a sum of at most 1 + t(C) 
columns of H’. 

Notice that we used the hypothesis d I 3 only in Case 1 
and when h, E S. If we knew that our code C had for 

each coset of maximum weight a leader not having a 1 “at” 
h,, then we could omit any restriction on d. 

We shall use Lemma 2 in Section V. 

F. Some Links Between t(C) and d(C). 

We have noted in the Introduction that t(C) I d(C) - 1 
holds if and only if C is maximal. We present here an 
improvement of this bound in a special case. We define 
d [ n, k] as in Section I. Then we have the following. 

Proposition 5: If d[n, k] > d[n, k + 11, then t[n, k] I 
d[n, k + 11, and all [n, k, d[n, k]] codes are maximal. 

Proof: Let A be an [n, k,d[n, k]] code. Let x be a 
coset leader for A of weight t(A). Then A U (x + A) is an 
[n, k + 1, t(A)] code; thus 

t[n, k] I t(A) I d[n, k + l] 2 d[n, k] - 1. 
A is maximal because t(A) I d(A) - 1. 

IV. COVERING RADIUS RESULTS FOR 

REED-MULLER CODES 

A. Bounds on Covering Radii 

In this section we present some bounds on the covering 
radii of Reed-Muller codes and summarize the cases where 
exact results are known. R(r, m) will denote the rth order 
Reed-Muller code of type [2m,&,IiI r 7 

( 1 
,2+‘]. Let 

p(r, m) denote the covering radius of R(r, m). 
R(m, m) is simply the entire space of binary 2”‘-tuples, 

so p(m, m) = 0. R(0, m) consists of zero and the all-one 
vector, if m  2 1, so ~(0, m) = 2”-l. Almost as trivial is 
the code R(m - 1, m), which consists of all even weight 
binary 2”-tuples. Clearly, p(m - 1, m) = 1. Since R(m - 
2, m) is an extended Hamming code our earlier remark 
(Corollary 1) about overall parity checks shows that p(m 
- 2, m) = 2. So much for the easy cases. 

McLaughlin [37] determined the exact value of p( m  - 
3, m). Her theorem, that 

is proved in two parts. First, an upper bound on p(m - 
3, m) is obtained by using Delsarte’s theorem. This results 
from an upper bound on the number of nonzero weights in 
the dual code R(m - 3, m) ’ = R(2, m) found by Kasami 
1251. Next, an elegant construction produces a coset in 
which the m inimum weight meets this upper bound, and 
the result follows. It also shows that Kasami’s upper bound 
is the exact value, which became known when the weight 
distribution of R(2, m) was calculated [52]. 

Small Vulues of r: For small values of r less is known. 
When m  is even, ~(1, m) = 2”-’ - 2(“-2)‘2; for odd m , 

2”-’ - 2(m-W 5 p(l, m) < 2”-1 - pm-w* 

The lower bound comes from the supercode lemma (Pro- 
position 1) and [25], [52]; the upper bound comes from 
[18]. Aside from this there are a few isolated cases: p(l,3) 
= 2 (trivial); p(l,5) = 12, due to Berlekamp and Welch 



COHEN et al.: COVERING RADIUS SURVEY 333 

[6]; ~(1, 7) = 56, a  highly nontrivial result due  to 
Mykkeltveit 1401; p(2,6) = 18, due  to Schatz [49]; 18  I 
p(3,7) < 26; and  finally p(l,l5) 2 214 - 27  + 20  and 
p(1,2s + 1) 2  22” - 108  . 2”-7for s 2  7  [42]. 

W e  now consider some bounds on  p(r, m). 
Proposit ion 6: If 1  I r I m  then 

2p(r, m  - 1) I p(r, m) 
5  p(r,m - 1) + p(r - 1,m - 1) 

and  

p(r - 1, m  - 1) _< p(r, m). 
Proof: From the inductive definition of R(r, m) [30, 

p. 3741 we know that 
R(r,m) = {(u,u + u); u  E R(r,m - l), 

u  E R(r - 1, m  - l)}. 

Hence the result follows from Section II-E. The  same 
inductive construction appl ied to the parity check matrices 
yields the last bound of Proposit ion 6, which in particular 
implies 18  I p(3,7). 

Our next theorem is a  generalization of a  result of 
McLaughl in [ 371. 

Theorem 8: If 0  I r I m  - 3, then 

p(r, m) 2  
2m-r-3(r + 4), r even 
2m-r-3(r + 5), rodd ’ 

Proof: Let t = m  - r. W e  prove the theorem by in- 
duction on  t. If t = 3, then the bound follows from 
McLaughl in’s result on  p(m - 3, m). Now assume that 
there is a  fixed t 2  3  such that the bound holds whenever 
0  5  r < m  - 3  and m  - r = t. Suppose 0  I r I m  - 3  
and m  - r = t + 1. Then  (m - 1) - r = t, so by inductive 
hypothesis and Proposit ion 6  we have 

p(r, m) 2  2p(r, m  - 1) 

22  
i 

2(m-1)-r-3(r + 4), r even 
2(m-r)-r-3(r + 5), rodd ’ 

Hence the result holds for all r and  m  with 0  < r < m  - 3. 

For the next theorem we assume that the reader is 
familiar with the basic properties of cyclic codes. 

Theorem 9: If m  2  6  and 2  I r I m  - 3, then 

p(r, m) 2  2”-’ 
Proof: Let cx be  a  primitive element of GF(2m). 

R( r, m) * (the punctured Reed-Muller code) is a  cyclic 
code with zeros (Y$ for all s such that 1  < s I 2” - 2  and 
1  I w2(s) I m  - r - 1, where w2(s) is the number  of 
ones in the binary expansion of s. (A proof of this fact is 
given in [30, p. 3821.) Let B(r, m)* denote the binary BCH 
code of length 2M - 1  with zeros 1~’ for all t = 
1,2, * * . , 2”-’ - 2. By the BCH bound,  B(r, m)* has 
m inimum distance at least 2”-’ - 1. However, it is clear 
that R(r,m)* c B(r,m)* so B(r,m)* has m inimum dis- 
tance 2”-’ - 1. 

Now, if B(r, m)* is a  proper supercode of R(r, m)*, 
then the supercode lemma (Section II-H) implies that 
R(r, m)* has covering radius at least 2”-’ - 1, and  so 
p(r, m) 2  2”-’ from Corollary 1. W e  claim that when 
m  2  6  and 2  I r I m  - 3, B(r, m)* is a  proper super- 
code of R(r, m)*. It suffices to prove that there exists a  
binary m-tuple s = (s,,; . ., si) with 1  I w2(s) I m  - r - 
1  and such that the associated integer value of s, and  each 
cyclic shift of s, is at least 2”-‘. (Such an  s and its cyclic 
shifts correspond to (Y~ and the set of all conjugates of aS; 
the properties sought for show that these are roots of the 
generator polynomial of R(r, m)* but not of B(r, m)*.) 

Let m  = qr + k, 0  I k < r. W e  define 

a=10 *** 0  10  **a 0  10  *** 0  
k r r 

. . . 10  ... 0, 
r 

where a  contains q  blocks of length r. Since the length of 
any string of zeros is at most r - 1, the integer value of a  
and all its cyclic shifts is at least 2”-‘. To  finish the proof, 
we must show that if k 2  0, then q  + 1  I m  - r - 1, 
while if k = 0, then q  I m  - r - 1. However, these results 
follow from the restrictions on  m  and r. This completes 
the proof. 

Two comments are in order now. F irst, for r 2  5, Theo-  
rem 9  yields a  better bound than Theorem 8. Second, 
Theorem 9  shows that for m  2  6, 2  I r I m  - 3, R(r, m) 
is a  weak code in the sense that is a  proper subcode of a  
code with the same m inimum distance. 

B. O ther Results for R(l, m) and R(2, m) 

W e  now turn to some results of a  different nature 
concerning R(l, m) and R(2, m). Theorem 10 below shows 
that the covering radius question for R(l, m) is equivalent 
to an  existence problem involving self-complementary bi- 
nary linear codes. Theorem 11 extends these ideas in the 
direction of a  necessary condit ion on  the coset leaders of 
R(2, m). W e  first list a  few definitions and facts on  
Reed-Muller codes. 

Form the m  x 2” matrix whose ith column is the binary 
expansion of i for 0  I i I 2” - 1. Adjoin a  row of ones to 
obtain an  (m + 1) X 2”’ matrix M(m). Then  M(m) is a  
generator matrix for R(l, m). For m  = 3, 

rl 1  I I I 1  1  11  
M(3) = 1  

00001111 
00110011’ 

Lo  1  0  1  0  1  0  11  

W e  identify vectors of length 2” with their supports to 
get a  one-to-one correspondence between subsets of the set 
GF(2)” of binary m-tuples and the set of binary vectors of 
length 2”. An r-flat of GF(2)” is an  r-dimensional sub- 
space or a  coset of such a  subspace. The  m inimum-weight 
codewords in R(r, m) are precisely the 2”-long incidence 
vectors of the (m - r)-flats in GF(2)“. This important fact 
is proved in [30, p. 3801, for example. F inally, we recall that 
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a binary linear code is called self-complementary if it 
contains the all-one vector. 

The following theorem is due to Mattson and Schatz 
[48], and independently to Mykkeltveit [40]. 

Theorem 10: R(1, m) has a coset leader of weight n, 
with Zrnp2 < n < Zrnpl, if and only if there exists a self- 
complementary [n, m + 1, d] code C such that d 2 n - 
2m-2 and d 1 2 3, where d ’ is the minimum distance of 
CL. 

Proofi Let n be a fixed integer such that 2”-2 < n < 
2m-1, and let u be a coset leader of R(l, m) with wt(u) = n. 
The support of u selects n columns from M(m), the 
generator matrix for R(l, m). Let G  denote the (m + 1) x n 
matrix formed by these columns. Note that 

G= 
[ 

111 ee.1 
T 1 

for some m x n matrix T. Let C be the code generated by 
G . C is called the leader code of u. 

First note that C is self-complementary and d * 2 3 
since the columns of G  are distinct. Let x be the 2”-tuple 
corresponding to an (m - l)-dimensional subspace X of 
GW”, and let X be the complementary 2”-tuple. Then 
x,X E R(l, m) and, since u is a coset leader, we know from 
Section I-A that 

wt (u n x) < 2”-2 (7) 
Similarly, 

wt(u n x) s 2”-2. (8) 
Let c be any codeword of C other than 0 or 1 (the all-one 
vector.) There exists an a E GF(2)” such that either c = UT 
or c = UT + 1. Assume that c = UT. Let x be the 2”‘-tuple 
corresponding to the (m - l)-dimensional subspace {a} ’ 
= { b E G_(2)“; a ’ b = O> = x. A column t of T be- 
longs to X if and only if a . t = 1. Thus the weight of c 
can be expressed as 

wt(c) = wt(u n X) = n - wt(u n x). 
Using (7) and (8) we conclude that 

(9) 

n - 2”-’ I wt (c) I 2”-2. 

Moreover, since wt (c + 1) = n - wt( c), we have 
(10) 

n - 2”-2 I wt (c + 1) I 2”-2. (11) 
It follows from (10) and (11) that the minimum distance d 
of C satisfies d 2 n - 2”-2. Since n > 2m-2, it also fol- 
lows that all nontrivial linear combinations of rows of T 
produce nonzero vectors of weight less than n. Hence C 
has dimension m + 1. 

Conversely, suppose that we are given a self-complemen- 
tary [n, m + 1, d] code C with d 2 n - 2m-2, dL 2 3, 
and 2”-2 < n < 2”-l. Then C has a generator matrix G  
of the form (6). G  has distinct columns since d L 2 3. Let u 
be the 2”-tuple that corresponds to the set of columns of 
G . We must show that wt(u + r) 2 wt (u) for each r E 
R(l, m). Since n < 2”-r, wt(u + 1) 2 wt(u) = n. For r 
# 0,l either r = x or r = X, where x is the 2”-tuple 

corresponding to some (m - l)-dimensional subspace X of 
GF  (2)“. We can express X as {a} ’ for some nonzero 
a E GF(2)“. One easily reverses the arguments leading to 
(7), (8), (9), and (10) to show that wt (u + r) 2 wt (u) for 
all r E R(l, m). This completes the proof. 

The theorem above is the basis for Mykkeltveit’s proof 
that p(1,7) = 56. It was known that there exists a self- 
complementary [56,8,24] code so p(l,7) 2 56 was clear. 
Mykkeltveit proved that p(l,7) = 56 by showing that there 
does not exist a self-complementary [57,8,25] code. The 
proof is difficult. The interested reader should see [40] for 
details. 

Theorem 11: Let m 2 6 and let n 2 2m-2. Suppose that 
uisacosetleaderofR(2,m)withwt(u)=n.LetGbethe 
matrix formed by the columns of M(m) selected by u, and 
let C be the code generated by G . The C is a self-comple- 
mentary [n, m + 1, d] binary linear code with d 2 n - r, 
where r = ~(1, m - 1). 

Proof: First note that since m 2 6 there do exist coset 
leaders of weight 2”-2 by Theorem 9, so the assertion is 
not vacuous. Let u be as above. Let x and 5 be the 
2”-long incidence vectors of an (m - 1)-dimensional sub- 
space X of Zr and its complement, respectively. Now 
x, X E R(2, m) and again by Section I-A we have 

wt(unx)s2m-2 (12) 
wt ( u n 2) I 2m-2. (13) 

We wish to improve these bounds. 
Suppose that S is an (m - 2)-dimensional subspace of 

Z,M such that S c X, and let the proper cosets of S be 
S,, S,, S,, where S, c X, and S, and S, are contained in 
the complement X of X. The incidence vectors of these 
flats are denoted by s, si, s2, and ss, respectively, Now 
since s and si belong to R(2, m), for i = 1,2,3, and since u 
is a coset leader, we obtain 

and 
wt (0 n S) I 2m-3 (14) 

wt (u n si) I 2”-3. (15) 
Regarding G  as a set of columns, let w and z denote the 
2”-long incidence vectors of the sets G  n X and G  n x, 
respectively. Let f: X -+ Zr-l be an isomorphism of 
vector spaces. Then each of the sets f(S), f (S,), and 
f (G n X) has a corresponding incidence vector of length 
2”-l denoted by s’, si, and w’, respectively. Moreover, by 
(12), (14), and (15) we have 

and 

wt(w’) = wt(w) I 2m-2 (16) 
wt(wf n s’) = wt(u n S) 5 2m-3 (17) 

wt(d n s;) = wt(u n s,) I 2m-3. (18) 
But, the inequalities (16), (17), and (18) are equivalent to 
the inequalities wt (w’ + 1) 2 wt (w’), wt (w’ + s’) 2 
wt (w’), and wt (w’ + si) 2 wt (w’), respectively. More- 
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over, these inequalities hold for any (m - 2)-dimensional distributions: 
subspace S contained in X and its coset S, contained in X. 
It follows that w’ is a  coset leader of R(1, m  - 1). Hence 

weight number  of codewords 
0  1  

wt(u n x) = wt(w’) 5  p(l,m - 1). (19) 2”-2 - 2(m-W2 2” - 1  
2m-2 2” - 1  

This improves the bound (12). n  1. 
The  improvement of the bound (13) proceeds in a  simi- 

lar manner,  except that we first introduce a  translation. 
That is, fix an  element a  E 3  and define a  map  g: x + S 
by g(u) = u  + a. W e  now have 

and both f and  g  are bijections. Applying the map  fg to 
the sets S,, S,, and  G  n x, we obtain subsets of Z2m-l 
whose length 2”-’ incidence vectors are denoted by s;, s& 
and z’, respectively. By (16) and  (17) we have 

wt(z’) = wt(z) I 2”-2 

wt(tt n 3;) = wt(u n  s2) I 2m-3 
w(z) n 3;) = wt(u n  s3) I 2m-3. 

Again, these inequalities are equivalent to wt (z’ + 1) 2  
wt(z’), wt(z’ + s;) 2  wt(z’), and  wt(z’ + s;) 2  wt(z’). 
And, since these bounds hold for any (m - 2)-flat S, 
contained in x and  its complement S, contained in x, it 
follows that z’ is a  coset leader of R(1, m  - 1). Hence 

wt(u n X) = wt(z’) 2  p(l,m - 1). (20) 

Many of these codes and their anticodes have the maxi- 
mum d  for the given n  and k. 

Bent functions are another approach to these ideas. If m  
is even, a  bent function is def ined as a  polynomial in m  
variables xi; . a, x, over Z, that (in effect) produces as its 
list of values over ZF  a  vector of length 2” that is a  coset 
leader of maximum weight for the code R(1, m). (See [30, 
Ch. 14.51 and [75], [76].) The  code of Theorem 12 is the 
leader code of the support of a  bent function. 

Another use of bent functions is in [26], where it is 
proved that if the characteristic function h(x,, . . . , x,,-~) 
of the set of columns of the check matrix of the code C is 
bent, then t(C) = 2. 

[136,9,64] Code: There is a  [136,9,64] code; it has the 
largest m inimum distance d[136,9] of all [136,9] codes. It 
is constructed from the [120,9] code of Theorem 12 as 
follows. W e  delete the all-one vector to get a  [120,8] code 
of two weights 56  and 64. Its ant icode is therefore a  [136,8] 
code of weights 64  and 72. By adding the all-one vector, we 
make it a  [136,9,64] code, optimal by the Griesmer bound.  

F inally, p(r, m) is known for all values of r when 
m  I 6. The  smallest Reed-Muller codes for which the 
covering radius is not known are R(2,7) and  R(3,7). 

W e  now use the fact that wt (v n X) = n - wt (v n x) c. Structure codes 
together with (19) and  (20) to obtain Consider the simplex code S,,, of type [2” - 1, m , 2”-l]. 

n-rIwt(unZ)lr, (21) 
If u  is a  coset leader of S,, the structure code of u  [53] is 
the orthogonal code of the leader code of u  (cf. Section 

where r = ~(1, m  - 1). As we saw in the proof of theorem 
10, the numbers wt (u n X) and n  - wt (u n X) are pre- 
cisely the weights of the codewords of C. Hence the 
m inimum distance d  of C satisfies d  2  n  - r. Moreover, 
we have assumed that 2”-2 I n  and that ~(1, m  - 1) < 
2”-2 (for the latter, see “Small Values of r ” in Subsection 
A, above). Hence, using (21), we can argue as in the 
previous proof that C has full d imension m  + 1. This 
completes this proof. 

It is known [49] that p(2,6) = 18. Hence Theorem 11 
shows that a  weight-18 coset leader of R(2,6) yields an  
[18,7,6] code. For m  2  7, ~(2, m) is unknown. 

Theorem 10 is much more useful than Theorem 11 for 
demonstrat ing that certain codes exist. In fact, a  unified 
approach to the existence of a  large number  of interesting 
codes can be  based on  the fact that ~(1, m) is known for 
all even m . It can be  shown that the codes corresponding 
to maximum-weight coset leaders of R(1, m) for even m  
have exactly three nonzero weights. 

Theorem 12 [48]: For all even m  2  4  there are [n = 
2”-i - 2cme2)12, m  + l] codes with the following weight 

IV - B) generated by the submatrix of G ,,, (the generator 
matrix of S,) the columns of which correspond to the 
support of u. The  question posed in [53], to characterize 
the structure codes of coset leaders of S,,,, and  the analo- 
gous question for R(l, m), are answered by Theorem 10, 
because it characterizes the leader codes. 

Corollary 4  (Corollary to Theorem 10 [48]): The  [n, n  - 
k, d] code A with k I m  and d  2  3  is the structure code 
of a  coset leader of S, if and  only if the maximum weight 
2  in A’ satisfies d  I 2”-‘. 

A recasting of Theorem 10 yields the analogous result 
for the structure code of R(1, m): the [n, n  - m  - 1, d] 
code B with 2”-2 < n  < 2”-’ and d  2  4  is the structure 
code of a  coset leader of R(l, m) if and  only if B is even 
and d(B ‘) 2  n  - 2”-2. 

V. ON THE LEAST COVERING RADIUS OF (n, K) 
CODES 

In this section we estimate the functions t[ n, k] and  
t(n, K), def ined as the least value of t(C) as C runs over 
the class of, respectively, all binary linear [n, k] codes and 
all binary (n, K) codes. As we shall see below, the codes 
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with the smallest covering radius do not necessarily have 
the largest packing radius. 

A table of the function t[n, k] for n I 32 and k I 25 is 
given in Appendix B. 

A. Lower Bounds on t[n, k] and t(n, K) 

The sphere covering bound 

,&$, ,,i:i 2 2n’K (22) 
leads to the following proposition. 

Proposition 7: t(n, K) 2 n/2 - 2-3/2(Kn)1/2 

Olson-Spencer: 

t(n, K) 2 n/2 -(2K)“210g,2K. 
Beck-Fiala: 

t(n, K) 2 n/2 - 8(2Klog,2K)“‘. 

The Signature Bound: The following bound on t[n, k] is 
useful when k is small. Recall that our codes have no 
coordinates identically zero. 

Proposition 8: If 2 I k I 1 + log n, then t [ n, k] 
2 [n/2] - 2k-2. 

Proof: Let C be an [n, k] code with covering radius 

Proof: Let the (n, K) code C have covering radius t(C). For each i = 1; * a, 2k - 1, denote by n, the number 

t(n, K). Then (22) implies that for odd n of columns in a generator matrix G of C that represent the 

2”-l - isly$; ,,( ‘i’) 2 2”/K. 

integer i in the base 2. Call the vector (ni) the signature of 
the code. Now permute the columns of G so that G = 
G,,G,, where G, is a generator matrix of a code C, of 
signature (2 [ni/2]), and G, is that for Cl of signature 

In other words, t(n, K) 2 pot where pa is defined as the (ni - 2[ni/21). F rom Section II-D we see that t(C) 2 
smallest integer for which t(C,) + t(Q. Now C, = CR,, where the Ri are 

n-l-p, 

= 0 
PO+1 

7 I 2” - 2,+l/K. 
[2 [nJ2], l] repetition codes, so t(C,,) 2 D(Ri) = 

(23) c lni/21. 
C, is the simplex code, punctured m = 2k - 1 - C( ni 

Now we estimate the sum in (23) by considering the - 2 1 n J21) times. 
random variable wt (x) = wt (xi,. . I, x,), where the xi are Hence from Corollary 1 we find that 
independent random variables with Pr ( xi = 0) = Pr ( xi = 
1) = l/2, and wt is the Hamming weight function. Then 

t(C,) >_ 2k-’ - 1 - m 

wt (x) is binomial with E(wt (x)) = n/2 and var (wt (x)) = C(ni - 2[ni/2]) - 2k-’ 
= n/4. Now (23) can be rewritten as = n - 2k-1 

P = Pr(ln/2 - wt(x)] <n/2 - pO) I 1 - 2/K. 
- 2C lni/21. 

To this we can apply the Bienayme-Chebyshev inequality, Now if C [nJ2] 2 n/2 - 2k-2, which is nonnegative by 

that hypothesis, then t(C) 2 t(C,,) 2 n/2 - 2k-2. If however 
C [n,/2] < n/2 - 2k-2, then 

Pr(]V- E(V)] < X) > 1 - var(V)/X’, 
t(c) 2 two) + t(G) 

where I/ is a random variable. By setting v = wt (x) and 
A = n/2 - pO, we get 2 n - 2k-1 - C[ni/2] > n/2 - 2k-2. 

l- n/4 2~P<l-2/K, To compare these lower bounds, we note that (22) can be 

(n/2 - 1-44 used for any n and K. As we remark in Subsection B 
below (in regard to the nonconstructive upper bound), with 

from which the result follows. The case when n is even is n < R log K (R constant), (22) is asymptotically tight. 
similar. Subsequent bounds can be used for small K and large n. If 

The bound (22) is good, much better for covering radius k I 7, then use Proposition 8; if 7 I k I 63, use the 
than the sphere-packing bound is for packing radius. See Olson-Spencer bound; and for 64 < k use the Beck-Fiala 
Theorem 15 in Section VII for details. bound. If n < 32(k + l), then Proposition 7 is better than 

Olson-Spencer and Beck-Fiala Bounds: Define f(K) to the Beck-Fiala bound* 
be the smallest integer such that for all K-subsets L of Z; 
there is a vector x E Z; with 1x1 2 n/2 such that for all B. UPPer Bounds for dn? kl 
v E L, ] Iv n xl - ]v n z] ] I f(K). (Here the outer verti- 
cal bars mean absolute value, and the inner ones mean the 

All the upper bounds presented in this section are con- 

weight; we identify vectors with their supports, as before.) 
structive except for (32). 

Since JV n XI - Iv n X] = Ix] - Ix + u], the definition of 
First we note from the direct-sum construction (see 

f(K) implies that for all v E L, 
Section II-c) that 

Ix + v( 2 n/2 -f(K). t [ Cni, Cki] s Ct[ni, ki]- (24) 

Using estimates on f(K) from [3] and [41], we have the In particular, t[n, k] I t[n - 1, k - l] and t[n + 1, k] I 
following bounds on t(n, k). 1 + t[ n, k]. Using Hamming codes and this bound, we 
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have 

t[ C(2”l - l), C(2”l - n, - l)] I q, (25) 
where q  is the number  of summands.  

W e  can always choose a  parity check matrix in the form 

H = I,, l’, H’, 
where here 1’ stands for a  column of r l’s, and  r = n  - k. 
Thus 

t[n, k] I [(n - k)/2]. (26) 
This simple bound in many cases gives the exact value of 
t[n, k]. W e  shall now improve it. 

Proposit ion 9: Suppose that for a  given k there are 
integers n,, . * . , n  4  such that 

k>A= c (2”(-n,-1). 
l l iS<q 

Then n  2  k implies 

t[n,k] I i 
I( 

n-k+l- c n, +q. 
l<i<q )I 

Proof: Set B = k - A. Then  using (24)-(26) we see 
that for B 2  1  

t[n, k] = t[n - k + A + B, A + B] 
I t[n - k + A + 1, A + l] 

= t[n - k - cni + 1  

+ x(2”< - l), C(2”f - n, - 1) + l] 

I t[n - k + 1  - En,,11 

+t[C(2”( - l), C(~“J - n, - l)] 

I [$(n - k + 1  - Eni) + q. 

As a  special case we get another upper  bound for t[n, k] 
by setting q  = 1  if k > 2” - m  - 1, name ly, 

t[n, k] I If(n - k + 1  - m)l + 1  

I [i(n-k+l-[logk]]+l. (27) 

Taking ni = m  for all i, we have from Proposit ion 9  when 
k > q(2” - m  - 1) 

t[n, k] I [i(n - k + 1  - qm)] + q. (28) 

W e  apply this bound,  for example, to the case n  = 62, 
k = 52, taking q  = 2  and m  = 5. From (28) and (22) we 
see that t[62,52] = 2. Notice that t[62,51] 2  t[63,52] = 3, 
by Sections II-B and C. 

W e  may use codes other than Hamming codes when we 
specialize (24); for example, similar results arise when we 
replace some of the Hamming codes by Go lay codes. 

The  bound (4) yields the following result on  t[n, k] if we 
choose for C a  code of type (n - k, K) of smallest cover- 

331 , 

ing radius. After replacing n  - k by n, we get 

t[n + k, K] I 1  + t(n, K). (29) 
W ith (29) we could make a  different proof of the upper  
bounds in Proposit ion 11  for k = 4. 

Upper Bounds for t[ n, k] Based on  F irst-Order 
Reed-Muller Codes RM(1, m): Using t[RM(l, m)] < 
2”-l - 2crne2)12 (Theorem 7) we deduce 

t[n, k] I (n - 2  ll”gnl/’ - k + [logn] + 2)/2 (30) 

for n  5  2k-2. To  see why this is so, one  can write n  = (n 
- 2 llwd) + 2 Llognl and k = (k - llogn] - 1) + llogn] 
+ 1  and then use (24) and  (26). 

The  bound (30) can be  further improved if we use (28) 
instead of (26), but we do  not state the result here. 

For n  2  2k-2 we have the bound 

t[n, k] I ]n/2] - [2(k-4)/2]. (31) 
To  prove this, we set m  = k - 2  and split n, k as n  = 2” 
+ (n - 2ffl), k = (m + 1) + 1. W e  note that these last two 
bounds are useful for large n. 

Nonconstructive Upper Bound for t[ n, k]: Using prob- 
ability, we have found [9] an  upper  bound valid for all 
large n: 

t[n, k] I nH-‘(1 - k/n) + O(n-‘logn). (32) 

Here H-’ is the inverse function of H(x) = -x logx - (1 
- x) log(1 - x). If k/n has a  lim it R > 0, then (32) gives 
the exact asymptotic value: 

t[n, Rn] - nH-‘(1 - R). (3% 
Compar ing these upper  bounds we see that they can be  

best used according to the following table. 
Range of n  Appropriate Bound 

n  I (constant) k (32) 
n  I k2/4 (26)-(29) 

k2/4 I n  I 2k-2 (30) 
Zkp2 < n  - (31) 

VI. DETERMINATIONOF t[n,k] FORSMALL k 

Proposit ion 10: 

tin,11 
tin,21 

t[2s + 1,3] 

= 14 
= ](n - 1)/2], n  2  2  
=s-1, s 2  1. 

Proof: W e  combine the lower bound from Proposit ion 
8  with the upper  bound (31). 

Theorem 13: If n  > 2k - max{2(k-2)/2, k}, then [n, k] 
codes C with t(C) = t[ n, k] and  no  columns of zeros in G  
are not projective (i.e., they have repeated columns in their 
generator matrices), and  

t[n, k] 2  t[n - 2, k] + 1. 

Proof: If such a  code C had no  repeated columns, 
then it would be  a  punctured simplex code; by Corollary 1  
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we see that b > 0 such that A(C) 2 b * n, for all sufficiently large i 

t(C) 2 2k-1 - 1 - (2k - 1 - n) = n - 2k-‘. ~321. 

Now also (31) and (26) tell us that Proof: The sphere-covering lower bound on t( C,)/n i 

t(C) I min { n/2 - 2ckp4)12, (n - k)/2}. 
for large n is strictly above the Elias or McEliece et al. 
upper bounds on e(Ci)/ni. See [43, p. 791 or [5, p. 3021 or 

These inequalities contradict each other when n satisfies L30~ P. 5641. 
the hypothesis of Theorem 13. Now that there is at least 
one column appearing twice in G , we regard C as the 

Corollary 5: Define e [n, k] to be the largest packing 

catenation (Section II-D) of Cl and C,, where Cl is a [2, l] 
radius of any [n, k] code. Then if k/n is bounded away 
from 0 and I, 

code and C, is an [n - 2, k’] code with k’ _< k. From 
Section II-D we find that 

t[n, k] - e[n, k] = O(n). 

t(C) 2 t(C,) + t(C,) 2 1 + t[n - 2, k], 
Theorem 15 [9]: For all n, k such that 2 log n < k < n, 

the [n, k] codes C satisfy 
where we have also used the obvious bound t(C) < nH-‘(1 - k/n + 2logn/n) 

t[n, k’] 2 t[n, k] if k’ I k. for at least the proportion 1 - 2-k of such codes. 
We note that no [n, k] code C with t(C) = t[n, k] need 

have any column of zeros in its generating matrix; in fact, 
The asymptotic form of .this result shows that the 

sphere-covering bound is good: for constant R, 0 < R < 1 
by Corollary 1, we might decrease t(C) if we replace a and all large n 
column of zeros by a nonzero column. > 

Remark: An affirmative solution to problem 5) in Sec- t(n, nR) - nH-‘(1 - R). 
tion X would imply that, under the same hypothesis on n, Proposition 13 [lo]: Let e 2 2. For all sufficiently large 
t[n, k] = t[n - 2, k] + 1. n, it is true that 

Proposition 11: 
t [2s, 31 = s - 1 

t[n,n -[elogn]] = e + 1. 

t[2s+1,4]=s-2ors-1 
For example, for large m we find that t[2” - 1,2” - 

me - l] = e + 1, which tells us that BCH codes with e > 2 
t[2s,4] = s - 2. do not realize t [ n, k] for large n. 

Proof: t[6,3] = 2 implies t[8,3] 2 3, by Theorem 13; Furthermore, since 

now, by iteration of Theorem 13 we get t[2s, 31 2 s - 1. n -[elogn] > n + 2 -[(e + 2)log(n + 2)1, 
On the other hand, t[h, 31 I t[2s - 1,2] = s - 1 by we find that 
Proposition 10. 

For t[2s + 1,4] we have t[11,4] 2 3 by Section III-B, t[n + 2,n - [elogn]] 
the sphere-covering bound. Using Theorem 13 repeatedly, I t[n + 2,n + 2 - 
as above, we find that t[2s + 1,4] 2 s - 2. For the upper 
bound we use t[2s + 1,4] I t[2s, 31 = s - 1. I e + 2 = t[n,n - 

We begin the final section of the proof by showing that This result can be stated as 

Ke + Wxtn + 411 
[elogn]] + 1. (35) 

t[12,4] = 4. (34) 
For if not, then t[12,4] = 3, and there must be repeated 
columns in the generator matrix of a [12,4] code C with 
t(C) = 3, for otherwise C is the [15,4] simplex code punc- 
tured three times, so t(C) would be at least 7 - 3 = 4. 
Therefore t[12,4] 2 t[10,4] + 1 = 4 by Theorem 13. It fol- 
lows that t[2s,4] 2 s - 2 for all s 2 2. But from (26) we 
get the reverse inequality. 

Proposition 14: For n large enough with respect to n - 
k, t[n + 2, k] 5 t[n, k] + 1. 

Corollary 6 (Corollary to Proposition 12): For all positive 
integers c and p, there are integers n, k such that 

t[n, k] = t[n + 1, k] 

Proposition 12: t[2s,5] I s - 3 if s 2 4 and t[2s + 1,5] 
Is-2ifs22. 

= . . . = t[n + c, k] =p. 
In a similar vein, following an idea of Helleseth [22], we 

have the next proposition. 
Proposition 15: For all c with 0 < c < l/2, there are 

n, k such that t[n, k - l] > t[n, k] + 2ck. 

Proof: Proof: If not, then there is a c < l/2 such that for all 
t[2s,5] I t[2s - 7,1] + t[7,4] 

<s-3; 
t[2s + 1,5] I t[2s,4] IS - 2. 

n, k 
t[n, k - l] I t[n, k] + 2”k. 

Iterating this inequality we get 

VII. ASYMPTOTIC RESULTS 
t[n, k - 21 I t[n, k] + 2ck + 2c(k-1), 

Theorem 14: For each i 2 1 let Ci be an ( ni, Ki) code 
and eventually 

such that ni + co. If the information rate log Ki/ni is [n/2] = t[n,l] I t[n, k] + k2ck, 
bounded away from zero and one, then there is a constant which contradicts (31). 
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VIII. MISCELLANEOUSRESU~TSONCOVERING 
RADIUS 

A. BCH Codes 

Let us begin by summarizing what is known on  the 
covering radii of the BCH codes of length n  = 2” - 1. Let 
BCH( e) denote the BCH code of packing radius e. B&I(l) 
is of course the Hamming code, with covering radius 1. 
BCH(2) has covering radius 3  [15], and  BCH(3) has cover- 
ing radius 5  [24], [19], [77]. The  last result required consid- 
erable effort and, for the case m  = 4N C 2, rested on  the 
bound of Carlitz-Uchiyama [78], which in turn depended 
on  the proof [57] by W e il of the Riemann hypothesis for 
function fields over finite fields of constants. More recently 
Helleseth [23] has used that bound to prove the following. 

Theorem 16: 2e  - 1  I t(BCH(e)) I 2e  -t 1  for large 
m . This result also holds for nonprimitive BCH codes. 
T ietevainen [71] has improved the upper  bound of this 
theorem to 2e. 

B. Recent Work of Helleseth 

Here we summarize part of [23]. The  problem of finding 
the covering radius of a  binary cyclic code with irreducible 
generator polynomial is equivalent to Waring’s problem in 
G i;(2m). Hence bounds on  covering radius yield informa- 
tion on  Waring’s problem. 

One  can in principle use cyclotomic numbers to de- 
termine the covering radius and m inimum distance in a  
cyclic code with irreducible generator polynomial over 
GF(q) for any q. There is Theorem 16, above, and  a  class 
of BCH(e) codes for which t 2  2e  + 1. 

C. A W a lsh-Transform Approach 

In [26] the W a lsh transform of the characteristic func- 
tion h  of the columns of the parity check matrix for C is 
used to formulate an  algorithm for the calculation of t(C). 
The  number  of addit ions required is at most t( C)(n - 
k)2”-“, of mu ltiplications (t(C) - 1)2”-k, and  of memory 
cells 3  . 2”-k. 

D. Results of W o lfmann  and Assmus-Pless 

These results explore the situation when the Delsarte 
bound is attained. 

Theorem 17 [%I: If C is an  [n, k] code over GF(q), 
and  d,; . ., d, are the nonzero weights of vectors in C 1  , 
then t(C) = N implies that the number  of coset leaders in 
any coset of weight t(C) is constant, name ly 

(d, .a. d,)/N!q? 

Theorem 17 was extended to the next theorem. 

Theorem 18 [2]: Under the same hypotheses, the weight 
distribution of any coset of weight t(C) = N is uniquely 
determined. 

Theorem 18 also follows from [12, Theorem 3.21. 
In the next result the hypothesis t(C) = N is not used. 

Theorem 19 [58]: Under the same notation, we find 
that (d, . . . dN) = 0  (mod t(C)!) and  if k 2  N, the same 
congruence holds mod  t( C)!q k- N. 

From Theorem 19 W o lfmann  concludes that a  doubly 
even [112,56] self-dual code has at least 16  nonzero weights, 
and  that the quadratic-residue code of type [14,7,6] over 
GF(4) has covering radius 3. (For the latter, the weights are 
6,8,12,14, the product of which is not 0  mod4!43.) 

There are five mutually inequivalent extremal doubly 
even binary [32,16,8] self-dual codes, and  all have covering 
radius 6  [2]. 

E. Nonbinary BCH Codes; Complexity 

Nonbinary BCH Codes: Consider BCH codes over GF(q) 
of length q” - 1, where q  is a  prime power. 

Theorem 20 [55]: Let q  be  odd. Then the BCH code of 
designed distance at least 3  has covering radius 

3  if n  is even or q  = 3  
2  i fnisoddandq9 3. 

A formula for the number  of coset leaders of each weight 
appears in [20]. 

Complexity: Starting from related work [7], McLaughl in 
has recently shown in [38] that the problem of finding the 
covering radius is not only NP-hard, but is even II$-hard 
(in the terminology of [39]). By the, latter term we mean  
that a  problem that is complete for the class II$ is reduc- 
ible to the covering radius problem. Thus to find the 
covering radius is strictly harder than any NP-complete 
problem unless the polynomial hierarchy collapses with 
NP = IQ. 

IX. OPENPROBLEMS 

1) F ind t(RM(l, 2s + 1)). It is conjectured [42] that this 
quantity is asymptotic to 22” - 2(2s-1)/2, the upper  bound 
in Section IV-A (re “Small Values of r “). 

2) For given n, k, which codes realize t[ n, k]? 
3) Define K(n, p) as the m inimum cardinality of any 

code, not necessari ly linear, with length n  and covering 
radius p. W e  know only a  few values of K(n, p). For 
example, when p  = 1, K(n, 1) = 2, 2, 4, 7, 12, 16, 32  for 
n  = 2, 3, 4, 5, 6, 7, 8. It would be  interesting to find more 
values of K(n, p). (See [64]-[70] and  [79].) 

4) Denote by M(A) the largest e  such that there is a  
nontrivial l inear binary code with covering radius t and  
packing radius e  such that t - e  1; A. Is it true that 
M(A) -Z cc for all A? W e  know that M(0) = 3. The  point 
of the question is whether M(A) remains finite for all 
infinite sequences of codes with lengths tending to infinity. 
By Theorem 14 we know it does so if the rate is bounded 
away from zero and one. For general  q  z 2  the only 
known fact is M(0) < cc [8]. 

5) Isittruethatt[n+2,k]<t[n,k]+lforalln,k?It 
is proved when the code has distance I 3  (Lemma 2) or 
when n  is large with respect to n  - k (35). 

6) Determine the covering radii of some classes of codes 
(e.g., Goppa,  Justesen, cyclic, quadratic residue, 
Reed-Muller). 
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7) For K = 2k, is t(n, K) always attained by linear 
codes? 

8) For all n, k is there a code C realizing t[n, k] with 
the all-one vector in C? 

9) We know that for fixed k and large enough n, 

n/2 - 8( k + 1)1’2(log e)-1’22(k+1)‘2 

I t[n, k] I n/2 - 2(k-4)/2. 

Is it true that t[n, k] - n,‘2 - C . 2k/2 for some constant 
C, or that for constants C,,C, 

Cl < (n/2 - t[n, k])2-“1” < C, 

for all large k?’ 
10) Among [n, k] codes realizing t[ n, k], is there one 

with the all-one vector in a column of a parity check matrix 
H if H has the form H = Inpk; D? 

11) For r + m  - 1, does the Reed-Muller code 
RM(r, m) have even covering radius? It does for r = 0, 1 
(m even), m  - 3, m  - 2, m , and similarly for other ex- 
tended cyclic codes. 

12) For m  > m ,(e), prove t(BCH,) = 2e - 1 (conjec- 
tured in [23]). 

13) Is t [2s f 1,4] = s - 2? 
14) What can be determined about the complexity of 

computing t[n, k]? 
15) Is there a relation between the covering radius of a 

linear code and that of its orthogonal code? Is there a sort 
of MacWill iams relation for the coset spaces of the two 
codes? 
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APPENDIX A  
NOMENCLATURE 

A  code. 
Code orthogonal, or dual, to C when C is 
linear. 
M  Gmum Hamming distance of C. 
= ! i d(C) - 1)/21, Packing radius of C. 
Co. :ring radius of C. 
Length, dimension, and d(C) for linear 
code C. 
Length, cardinality, and d(C) for nonlin- 
ear code C. 
Minimum covering radius among all [ n , k] 
codes. 
Minimum covering radius among all non- 
linear ( n , K) codes. 
= t(C) - e(C). 
Hamming weight of vector x or cardi- 
nality of x as support of vector. 
All-l or all-0 vector of length determined 
by context. 
Logarithm to the base 2. 
- xlogx - (1 - x)log(l - x). 
m  x m  identity matrix. 
Least Hamming distance from vector u to 
points of A c Z$‘. 
Field of two elements. 
Set of all n-tuples over Z,. 
Set of nonzero coset leaders of C, mod C, , 
one leader per coset. 
Proper inclusion. 

APPENDIX B 

TABLE I 
SOMECODESOFKNOWNCOVERINGRADIUS 

Code C 
Repetition C, 
Hamming C, 
Golay Cd 
Repetition C, 
Extended C, 
Extended Cc 
CH x Gf 
CH x cc 

Uniformly 
packed 

2-e.c. BCH 
Punctured 

Preparata 
Zetterberg 
Red. Goppa 

A n k t(C) Reference 
0 2s + 1 1 s 
0 2m - 1 2m-m-l 1 
0 23 12 3 
1 2s 1 s 
1 2m 2”-m-1 2 
1 24 12 4 
1 2(2m - 1) 2(2” - m  - 1) 2 
1 22 + 2m 2” - n + 11 4 

1 r(2” - 1) r(2m - 1)-2m 2 
1 2” - 1 2m - 2m - 1 3 Section VIII-A 

1 2” - 1 2n-2m+1 3, m  even, m  r 4 
1 2” + 1 n - 2m 3,meven, m  > 4 [741 
1 2” - 2 n - 2m 3,meven, m  > 4 ]731 
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TABLE I (Continued) _-__lli_l_ll”l~-- 
Code C A n  k t(c) Reference 

bred. Goppa 
Melas 
Red. Goppa 
Irred. Poppa 
3-e.c. BCH 
Quadratic 

residue 
Doubly even, etc. 
Geometry code 
Simplex 
First-order Reed-- 

Muller RM(I, nz) 

RM(m - 3, W I) 

2 41 
3 32 
5 13 
2”’ -- 2 2”’ .- 1 

o! 2”’ 

m  + 8 -.- 3 2”’ 
(y = 2”’ -2 

-- 2(“‘--2)/2 -~ ] 

n ~~ 2m 3, m  odd 
n - 2m  3, m  odd 
n -- 2rn 4, m  odd 1731 
n -. 2nr 4, m  even [741 
2”’ ~. 3 ,I? -.. , 5 Section VIII-A 

24 ‘7 1121 
16 6 Section VIII-D 
45 9 [461 
m y-1 _  1  [30, p. 1731 

m  i- 1 2”’ 1 -- 2”‘/2mm ’ 1 m  even Section V 
m  odd 
m  even 

Section V 

TABLE II 
VALUES AND BOUNDS ON t[ II, k] FOR !I I 32  AND k <  25” 

PART 1 
_-__--...-. -_I.. 

\ k n  - 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

1 1 2 2 3 3 4 4 5 5 6 6 7 I 8 8 9 9 10 10 
2 11223344 5 5 6 6 I I 8 8 9 9 10 
3 01122334 4 5 5 6 6 7 I 8 8 9 9 
4 011.1223 3 4 4 5 5 6 6 7 7--f! 8 8-9 
5 0 1 1 1 2 2 3 3 3--4 4 445 4-5 5--6 5-6 5-l 6-7 668 
6 01112 2 3 3 3 3-4 4-5 4-5 5 5-6 5-6 6 
I 0 1 1 1 2 2 2-3 3 3 3-4 4 4-5 4-5 5 5-6 
8 0111222 3 3 3-4 4 4-5 445 5 
9 0111 2 2 2 2-3 3 3-4 3-4 4-5 4-5 

10 011122 2 2-3 3 3 3-4 4 
11 011112 2 2-3 3 3 3-4 
12 0 1 1 1 1 2 2 2-3 3 3 
73 0 1 I 1 1 2 2 2-3 3 
14 01111222 
15 0 1 1 1 1 2 2 
16 0 1 1 1 1 2 
17 0 1 1 1 1 
18 0 1 1 1 
19 0 1 1 
20 0 1 
21 0 
22 
23 
24 
25 

“Here we present a table of values of and bounds on l[ n , k] for n I 32 and /c < 25. The values for 
/c I 4 were dcrivcd from the results in Section VI, and hy a small computer search [79] for the values 
t[15,4], t[17,4j, t[16,6], and t[18,6]. The values for k =  5  come from the bound t[2s + 1,5] I 
t[2s, 41 = s ~~ 2, (see Proposition ll), from t[2s, 51 I s  ~ 3, and from the sphere-covering lowet 
bound in Section II-B. For k = 6 we use t[ n,6] I t[ II --- 1,5] and the lower hound in Section II-B. 
For k > 6 we use the upper bound t[ n +- ?I’, k  -1 k’] 5  t[n, k] -t t[n‘, /c’] and Lemma 2. Our most 
frcyuently used lower bound is from Section II-B. 

An improved table of t[ n, k] appears in [72], where, in particular, t[ II, 41 and t[ ft, 51 are 
determined for all ~1. Although we have seen that table, W C  have tried to exclude any of its new results 
from our table. 

PARI 2 
___-. 

1 11 11 12 12 13 13 14 14 15 15 16 
2 10 11 11 12 12 13 13 14 14 15 15 
3 10 10 11 11 12 12 13 13 14 14 15 
4 9 9910 10 10-11 11 ll--12 12 12-13 13 13-14 14 
5 ‘7-8 7-8 889 8-10 9910 9911 9-11 10-12 lo--12 10-13 11-13 
6 667 6-l 7---8 7--8 889 8810 8810 9910 9911 IO--l1 IO--l2 
7 5--6 6-7 6--l 7--8 ‘7-8 7--9 889 8810 8-10 9-11 9911 
8 5-6 5-6 6-l 6--l 6-8 ‘l-8 l--9 l--9 8-10 8-10 o-11 
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PI 

PI 

131 

[41 

151 

[61 

[71 

PI 

[91 

WY 

IllI 

WI 

P31 

[I41 

[I51 

WI 
P71 

WI 

P91 

WI 
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TABLE II, PART 2 (Continued) 

n 
k 22 23 24 25 26 27 28 29 30 31 32 

9 4-5 5-6 5-6 5-l 6-l 6-8 7-8 7-9 7-9 8-10 8-10 
10 4-5 4-5 5-6 5-6 5-7 6-7 6-8 6-8 7-9 7-9 7-9 
11 4 4-5 4-5 5-6 5-6 5-7 6-7 6-8 6-8 7-9 7-9 
12 3 3 4 4 4-5 5-6 5-6 5-7 6-7 6-8 6-8 
13 3 3 3 4 4 4-5 5 5-6 5-6 6-7 6-7 
14 3 3 3 3 4 4 4-5 5 5-6 5-6 6-7 
15 2 2-3 3 3 3 4 4 4-5 5 5 5-6 
16 2 2 2-3 3 3 3 4 4 4 4-5 5 
17 2 2 2 2-3 3 3 3 4 4 4 4-5 
18 1 2 2 2 2-3 3 3 3 3-4 4 4 
19 1 1 2 2 2 2-3 3 3 3 3-4 4 
20 1 1 1 2 2 2 2-3 3 3 3 3-4 
21 1 1 1 1 2 2 2 2-3 3 3 3 
22 0 1 1 1 1 2 2 2 2 3 3 
23 0 1 1 1 1 2 2 2 2 2-3 
24 0 1 1 1 1 2 2 2 2 
25 0 1 1 1 1 2 2 2 
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