
TWO-DIMENSIONAL DIGITAL FILTERING
USING CONSTANT-I/O SYSTOLIC ARRAYS

Mokhtar A. Aboelaze, De-Lei Lee, Benjamin W. Wah
Dept. of Computer Science Coordinated Science Laboratory

York University University of Illinois
4700 Keele Street 1308 West Main Street

North York, Ontario M3J 1P3 Urbana, IL 61801-2307
CANADA U.S.A.

ABSTRACT

We present in this paper systolic arrays with con-
stant number of input/output (I/O) ports for two-
dimensional (2-D) FIR and IIR filtering. Our design has
an array of L × N processing elements (PE’s), where L
(≤ N) is a technology-dependent parameter related to the
number of I/O ports. Each PE in our design has a
microprogrammed arithmetic logic unit (ALU), a con-
trol unit, a fixed number of I/O buffers, and O (N /L)
memory. Our design specializes to a square mesh when
L = N, and a linear array when L = 1. It can implement
both FIR and IIR filtering in O (N 2M /L) time which is
asymptotically optimal.

1. INTRODUCTION

Systolic arrays [5] are widely considered to be
efficient hardware solutions for satisfying the ever-
increasing computational demands in 2-D digital signal
processing. However, a large majority of previous
designs require I/O ports that grow as polynomial func-
tions of problem sizes. This is a major limitation that
restricts the application of systolic arrays to relatively
small problems. Recently, there have been considerable
interests in the design of linear systolic arrays [6, 7] that
require a constant number of I/O ports. These are
exemplified by many designs of linear systolic arrays for
2-D image processing and 2-D signal filtering [1, 2, 3,
4]. Unfortunately, I/O in these linear designs is often
the bottleneck, as it takes N 2 units of time to input an
N-by-N array of numbers.
hhhhhhhhhhhhhhh
Research of M. Aboelaze were supported by National
Science and Engineering Research Contract NSERC-
OGP0009196. Research of D. Lee were supported by
National Science and Engineering Research Contract
NSERC-OGP0043688. Research of B. Wah was
supported by Joint Services Electronics Program Grant
N00014-90-J-1270.

Proc. IEEE Int’l Symp. on Circuits and Systems, 1993.

In this paper, we investigate the design of a pro-
grammable systolic array with constant number of I/O
ports for 2-D FIR and IIR filtering. Our array is in the
form of an L-by-N rectangular mesh with O (L) I/O
ports, where 1 ≤ L ≤ N. Our design specializes to be a
linear array when L = 1, and a square mesh when L = N,
where N is related to the problem size. Depending on
the number of pins available, our design can provide a
suitable trade-off between computational overhead and
I/O complexity.

The architecture of each PE is simple: each PE
has a control unit, an ALU that is capable of executing a
small number of instructions, O (c)-word memory, and a
fixed number of I/O buffers. We illustrate our design by
showing optimal systolic arrays for implementing the
M’th order 2-D FIR and IIR digital filters.

2. 2-D FIR DIGITAL FILTERING

An M’th-order 2-D FIR digital filter processes
inputs {xi, j , 0 ≤ i, j < N} to form outputs {ym,n , 0 ≤ i, j
< N}, where

ym,n =
i =0
Σ

M −1

j =0
Σ

M −1

ai, j xm −i,n −j . (1)

=
j =0
Σ

M −1

ym,n
(j) , (2a)

where ym,n
(j) =

i =0
Σ

M −1

ai, j xm −i,n −j . (2b)

2.1. 2-D FIR Filter in an N-by-M Processor Array

In this section we present the design of an N-by-M
processor array for 2-D FIR filtering. Given an N-by-N
array of numbers, we map the computation of each point
in Eq. (2a) to a unique PE. Figure 1 shows the computa-
tion of y 4,4 in a 3-by-3 window (M = 3). Column i of
processors compute y4,4

(i) , 0 ≤ i < 3, and the last row of
processors compute y 4,4 according to Eq. (2b). Notice
that the processor in the upper left-hand corner multi-
plies x 2,4 a 2,0 to form part of y 4,4; it then multiplies



y 3,4

y 2,4

y 4,4

y4,4
(0) y4,4

(1) y4,4
(2)

x 4,4

x 3,4

x 2,4
x 2,3

x 3,3

x 4,3

x 2,2

x 3,2

x 4,2

Figure 1. Computation of y 4,4

PE 2,1

PE 3,1

PE 4,1

x 4,3

x 3,3

x 2,3

D

D

D

PE 4,0

PE 3,0

PE 2,0

x 4,4

x 3,4

x 2,4

y2,4
(0)

y3,4
(0)

y4,4
(0)

a 2,0

a 1,0

a 0,0

a 0,0

a 1,0

a 2,0

a 2,0R 2
a 1,0R 1
a 0,0R 0

Figure 2
Calculation of y4,4

(0) in the first column of the PE array
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

x 2,4 a 1,0 to form part of y 3,4, and x 2,4 a 0,0 to form part
of y 2,4. This means that each processor must have M
different coefficients; i.e. PEi, j has a (), j, 0 ≤ () < M. Non-
neighboring communication can be eliminated by pipe-
lining intermediate results through neighboring PE’s

The PE’s can be arranged in an N-by-M mesh
with each PE connected to its four neighbors. Each PE
is assumed to have 6 I/O registers, 4 horizontal com-
munication registers Rw 1

, Rw 2
(west), Re 1

, Re 2
(east),

and two vertical communication registers, Rn (north),
and Rs (south).

Figure 2 shows the data distribution in the first
column of the array. Every PE has M registers (R 0, R 1,
R 2 for M = 3). PEi, j receives input x via Rw 1

, y () (0 for
the leftmost column) via Rw 2

, and a partial result of R ()

(0 for the top row) via Rn. It stores the y’s received in
the appropriate registers, multiplies x by a (), j, 0 ≤ () < M,
and adds the result to register R (). It then forwards the
content of R 0 east to PEi, j +1 via Re 2

, and sends x to
PEi, j +1 after one unit of delay via Re 1

. It also sends the
contents of R (), 1 ≤ () < M, south to be stored in R () −1 in

PEi +1, j via Rs .

Figure 2 further shows the computation of y4,4
(0) .

PE 2,0 receives x 2,4, multiplies it by a 2,0 and adds the
result to R 2, multiplies it by a 1,0 and adds the result to
R 1, and multiplies it by a 0,0 and adds the result to R 0.
The content of R 0 is sent to the next column as y2,4

(0) . At
the same time, x 2,4 is sent to the next column after one
unit of delay. In the next time step, y2,4

(0) meets x 2,3, and
y2,4

(1) is computed. The contents of R 1 and R 2 of PE 2,0

are sent to PE 3,0 to be stored in R 0 and R 1, respectively.
PE 3,0 stores x 3,4a 2,0 in R 2 to produce the first com-
ponent of y 5,4. It also adds x 3,4a 1,0 to the content of R 1

to produce x 3,4a 1,0 + x 2,4a 2,0. Finally, it adds x 3,4a 0,0

to the content of R 0. PE 3,0 then sends the content of
register 0 to PE 3,1 as y3,4

(0) . It also sends the contents of
R 1 and R 2 to be stored in R 0 and R 1, respectively, in
PE 4,0. PE 4,0 stores x 4,4a 2,0 in R 2, and adds x 4,4a 1,0 to
register R 1. It adds x 4,4a 0,0 to register R 0 to produce
y4,4

(0) = x 4,4a 0,0 + x 3,4a 1,0 + x 2,4a 2,0. Finally, PE 4,0 sends
the content of R 0 to PE 4,1 (next column), and sends the
contents of registers R 1 and R 2 to PE 5,0 to be stored in
registers R 0 and R 1, respectively.

The above array requires a memory of at least
2M +1 words: M words to store the M filter coefficients,
M words to store the intermediate results of y (i) , and one
memory location to simulate the delay register D.

The time required to complete the operations is
O (NM). Since the total number of operations is N 2M 2

and the number of processors is NM, the time complex-
ity is asymptotically optimal. The number of buffer
required for each PE is 2M +1, where M is the order of
the filter.

2.2. 2-D FIR Filter in a Constant I/O Mesh

The previous design needs O (N) I/O ports, which
is prohibitively expensive for large values of N. In this
section, we show the design of a 2-D FIR filter on an L-
by-M processor array with O (L) I/O ports. This design
reduces the number of I/O ports from N to L at the
expense of increasing its time complexity from O (NM)
to O (N 2M /L).

We accomplish this reduction in I/O ports by
combining the S = N / L PE’s into one PE and the
S = N / L I/O ports into one port. In doing so, we merge
the memories of the S PE’s into the memory of one PE.
Data movements in this design are the same as before,
with the difference that data moving among the S PE’s
are now confined to one PE. Figure 3 shows this case
when S = 3 and M = 3, and depicts the first column of the
array with the appropriate inputs. There are two differ-
ences between this design and the previous one.

(1) In combining S PE’s into one PE, data moving
among these S PE’s are now local movement in the



x 7,4 x 6,4 x 5,4

x 4,4 x 3,4 x 2,4

S delay buffers

S delay buffers

Figure 3
Combining the memory of 3 PE’s into a single PE

a 3,0 b 3,3
a 2,0 b 2,3
a 1,0 b 1,3
a 0,0 b 0,3

a 3,1 b 3,2
a 2,1 b 2,2
a 1,1 b 1,2
a 0,1 b 0,2

a 3,2 b 3,1
a 2,2 b 2,1
a 1,2 b 1,1
a 0,2 b 0,1

a 3,3 b 3,0
a 2,3 b 2,0
a 1,3 b 1,0
a 0,3 b 0,0

t 0
x 2,4

y 2,1

x 2,1

y 2,2

t 0 + 1
x 2,3

y 2,2

x 2,0

y 2,3

t 0 + 2
x 2,5

y 2,2

x 2,2

y 2,3

t 0 + 2
x 2,4

y 2,3

x 2,1

y 2,4

Figure 4
The first row of a VLSI array for IIR at times t 0

. . . t 0+2
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

same PE (represented by downward diagonal
arrows in Figure 3).

(2) To guarantee correctness, x is delayed by S time
units instead of one time unit.

Figure 3 shows the first column of such an array
with the appropriate input for M = 3 and S = 3. Notice
that 3 PE’s are combined into one PE, which has 3 sets
of buffers (S = 3), with 3 buffers each (M = 3) in the
form of an M-by-S matrix. The arrows in Figure 3 indi-
cate the data movement from R () to R () −1. However, each

column of this matrix is used just once in a cycle, which
means that we can replace the M S buffers by an array of
S buffers and use this array M times.

Appendix I shows the algorithm (written in a C-
like language) executed in each PE for 2-D FIR filtering
in an L-by-N processor array. Note that the correspond-
ing algorithm for a square processor array can be
obtained by setting S = 1.

3. 2-D IIR Digital Filter

A 2-D IIR digital filter is represented as follows.

ym,n =
i =0
Σ

M −1

j =0
Σ

M −1

ai, j xm −i,n −j +

a +b≠0
i =0
Σ

M −1

j =0
Σ

M −1

bi, j ym −i,n −j (3)

where xi, j is the input array, and yi, j is the output array.
As is done in the FIR case, Eq. (3) can be rewritten as

ym,n =
j =0
Σ

M −1

ym,n
(j) (4)

where ym,n
(j) =

i =0
Σ

M −1

ai, j xm −i,n −j +
i =0
Σ

M −1

bi, j ym −i,n −j . (5)

In computing yi, j , we have to use the previously calcu-
lated y′s. This can be achieved by feeding back the out-
put of the PE array, as is shown in Figure 4, with two
noticeable differences.

(1) PEi, j has the coefficients a (),i, b (),M −i −1, 0 ≤ () < M.
PEi, j calculates xk,za (),i + yk,z +2i +1−Mb (),M −i −1 as parts
of yk +(),z +i, 0 ≤ () < M.

(2) In order for the right data to be at the right place at
the right time, we have to input x to the PE array
every other time unit. This lengthens the time for
computing the IIR filter to 2N time units. Hence,
the processors will alternate between idle cycles
and busy cycles. Further, the speed of propagation
of x is 1/3, i.e. x is delayed for 2 extra time units in
each PE. The speed of propagation for y is 1.

Figure 4 shows the first row of the array for 4 consecu-
tive time units. The rest of the columns behaves simi-
larly as is in Figure 4. The algorithm for the 2-D IIR
filtering is very similar to that for the 2-D FIR filtering
except for two points.

(1) x is entered in a shift register of length 2 before it is
sent to the next PE (delay of 3 per PE).

(2) Each PE has 6 horizontal I/O registers (Re 1
, Re 2

,
Re 3

, Rw 1
, Rw 2

, Rw 3
) and two vertical I/O registers

(Rn, Rs), where Re 3
and Rw 3

are used for storing
the value of y for feedback.

Appendix II shows an algorithm for 2-D IIR filtering.
Note that the shift register is represented as one opera-
tion; in practice, this can be implemented by using S



memory locations. The procedure for 2-D IIR filtering
using an L-by-M processor array is similar to that for 2-
D FIR filtering except that a buffer of size S is used to
delay y, and that a buffer of size 3S is used to delay x.

REFERENCES

[1] M. A. Aboelaze, D.-L. Lee, and B. W. Wah,
‘‘Two-Dimensional Digital Filtering using a Linear
Processor Array,’’ Proc. Int’l Symp. on Circuits
and Systems, Singapore, June 1991, pp. 2943-2946.

[2] M. A. Sid-Ahmed, ‘‘A Systolic Realization for 2-D
Digital Filters,’’ IEEE Trans. on Acoustics, Speech
and Signal Processing, Vol. 37, No. 4, April 1989,
pp. 560-565.

[3] C. H. Chou and Y. C. Chen, ‘‘Modular Architec-
tures for High Speed and Flexible Two-
Dimensional Digital Filters,’’ Proc. Int’l Symp. on
Circuits and Systems, New Orleans, LA, May 1-3
1990, pp. 2320-2323.

[4] C.-H. Chou, ‘‘VLSI Architecture for High-Speed
and Felxible Two-Dimentional Digital Filters,’’
IEEE Trans. on Signal Processing, Vol. 39, No.
11, Nov. 1991, pp. 2515-2523.

[5] H. T. Kung, ‘‘Why Systolic Architecture,’’ IEEE
Computer, Vol. 15, No. 1, Jan. 1982, pp. 37-46.

[6] V. K. Prasanna Kumar and Y. C. Tsai, ‘‘On Map-
ping Algorithms to Linear and Fault Tolerant Sys-
tolic Arrays,’’ Proc. Int’l Conf. on Systolic Arrays,
1988.

[7] V. K. Prasanna Kumar and Y. C. Tsai, ‘‘Designing
Linear Systolic Arrays,’’ J. of Parallel and Distri-
buted Computing, Academic Press, 1989, pp. 441-
463.

APPENDIX I

Procedure 2_D_FIR /* on L × M array */
for (()=0 to N −1) do

begin
/* get the intermediate y’s from PEi −1, j

and store them in R 0
. . . RM −2 * /

for (k =0 to M −2 ) do
MEM [k ] ← Rn

MEM [M −1] ← 0
for (s =0 to s −2) do

begin
MEM [0] ← MEM [0] + Rw 2

for (k =0 to M −1) do
MEM [k ] ← MEM [k ] + Rw 1

a [k ]
Re 2 ← MEM [0] /*output MEM [0] */
for (k =0 to M −2) do

MEM [k ] ← MEM [k +1]

MEM [M −1] ← 0
/* Delay x for S time units */
store Rw 1

in S-buffer
output S-buffer → Re 1

end
for(k =0 to M −1) do

MEM [k ] ← MEM [k ] + Rw 1
a [k ]

Re 2 ← MEM [0] /* output MEM [0] */
put Rw 1

in S-buffer /* Delay x by S time units */
output S-buffer → Re 1

for (k =1 to k =M −1) do
Rs <−MEM [k ]

end

APPENDIX II

Procedure 2_D_IIR /* on N × M array */
for(()=0 to N −1) do

begin
/* get the intermediate y’s from PEi −1, j

and store them in R 0
. . . RM −2 */

for (k =0 to M −2 ) do
MEM [k ] ← Rn

MEM [M −1] ← 0
MEM [0] ← MEM [0] + Rw 2

for(k =0 to M −1) do
MEM [k ] ← MEM [k ] + Rw 1

a [k ] + Re 3
b [k ]

Re 2 ← MEM [0] /*output MEM [0] */
Shift_register_of_length_3 ← Rw 1

Re 1 ← Shift_register_of_length_3
Rw 3 ← Re 3

for (k =1 to M −1) do
Rs ← MEM [k ]

/* Output the content of R 1 to RM −1 in PEi +1, j */
end


