

Précis: A Design-Time Precision Analysis Tool

Mark L. Chang and Scott Hauck

Department of Electrical Engineering
University of Washington, Seattle, WA
{mchang,hauck}@ee.washington.edu

Abstract

Currently, few tools exist to aid the FPGA developer in
translating an algorithm designed for a general-purpose-
processor into one that is precision-optimized for FPGAs.
This task requires extensive knowledge of both the
algorithm and the target hardware. We present a design-
time tool, Précis, which assists the developer in analyzing
the precision requirements of algorithms specified in
MATLAB. Through the combined use of simulation, user
input, and program analysis, we demonstrate a
methodology for precision analysis that can aid the
developer in focusing their manual precision optimization
efforts.

1. Introduction

One of the most difficult tasks in implementing an
algorithm in an FPGA-like substrate is dealing with
precision issues. Typical general-purpose processor
concepts such as word size and data type are no longer
valid in the FPGA world, which is dominated by finer-
grained computational structures, such as look-up tables.
Instead, the designer must use and implement bit-precise
data paths.

More specifically, in a general-purpose processor,
algorithm designers can typically choose from a
predefined set of variable types that have a fixed word
length. Examples of these predefined types are the C data
types such as char, int, float, double. These data
types correspond to specific memory storage sizes, and
subsequently, into different ways of handling operations
upon these memory locations within the microprocessor.
Much of the work of padding, word-boundary alignment,
and operation selection is hidden from the programmer by
compilers and assemblers, which make the use of one data
type equally easy as another.

In contrast, an FPGA does not have predefined data
widths for its data path. Instead, designers must provide
all the structures necessary to handle operations on
different data widths and types. Therefore, it is paramount

that FPGA designers implement their algorithms such that
they utilize resources efficiently and accurately. Too many
bits allocated to a particular operation is wasteful, while
too few can result in erroneous output.

The difficulty is in the translation of an initial
algorithm into one that is precision-optimized for FPGAs.
This task requires extensive knowledge of both the
algorithm and the target hardware. Unfortunately, there
are few tools that aid the would-be FPGA developer in
this translation. In this paper, we discuss our work in
filling that gap by introducing a developer-oriented tool
for the design-time analysis of the impact of precision on
algorithm implementation.

2. Background

Currently, the typical tool flow for development of an
FPGA-targeted algorithm is as shown in Figure 1.

HDL
Description

HDL
Description

Compiler
+

Synthesizer

Compiler
+

Synthesizer

SimulatorSimulator

Place
&

Route

Place
&

Route
BitstreamBitstream

Algorithm

translation

Figure 1. Typical tool flow for implementing a high level

language specified algorithm on an FPGA.

At the head of the development chain is the algorithm.
Often, the algorithm under consideration has been
implemented in some high-level language, such as
MATLAB, C, or Java, targeted to run on a general
purpose processor, such as a workstation or desktop
personal computer. The most compelling reason to utilize
a high level language running on a workstation is that it
provides infinite flexibility and a comfortable, rich
environment in which to rapidly prototype algorithms. Of
course, the reason one would convert this algorithm into a
hardware implementation is to gain considerable

advantages in terms of speed, size, and power.
This tool flow requires the developer to first convert a

software prototyped algorithm into a hardware
description. From this hardware description language
(HDL) specification, various stages and intermediate tools
are used to perform simulation and generate target
bitstreams, which are then executed on reconfigurable
logic. As mentioned earlier, one of the more difficult steps
in implementing the algorithm in hardware is highlighted
in Figure 1 with a dashed arrow – the conversion from a
high-level software language, such as C, Java, or
MATLAB, into an HDL description.

A simple conversion without precision analysis would
most likely yield an unreasonably large hardware
implementation. For example, by blindly choosing a fixed
32-bit data path throughout the system, the developer may
encounter two problems: wasted area and incorrect results.
The former arises when the actual data the algorithm
operates upon does not require the full 32-bit data path. In
this case, much of the area occupied by the oversized data
path could be pruned. There are several benefits to area
reduction of a hardware implementation: reduced power
consumption, reduced critical path delay, and the
increased probability of parallelism by freeing up more
room on the device to perform other operations
simultaneously. On the other hand, the latter case occurs
when the algorithm actually requires more precision for
some data sets than the 32-bit data path provides. In this
case, the results obtained from the algorithm could
potentially be incorrect due to unchecked overflow or
underflow conditions.

Therefore, within the HDL description, it is important
that the developer determine more accurate bounds on the
data path. Typically, this involves running a software
implementation of the algorithm with representative data
sets and performing manual fixed-point analysis. At the
very least, this requires the re-engineering of the software
implementation to record the ranges of variables
throughout the algorithm. From these results, the
developer could infer candidate bit-widths for their
hardware implementation. Even so, these methods are
tedious and often error-prone.

Unfortunately, while many of the other stages of
hardware development have well-developed tools to help
automate difficult tasks, few tools can automate HDL
generation from a processor-oriented higher level
language specification. And while there are C-to-
Verilog[1] and C-to-VHDL[2] tools in existence, they do
not offer such “designer aids” that would help with
precision analysis of existing algorithms implemented in a
high level language.

3. Précis

In order to fill this void in hardware development tools,
we are developing Précis, a design-time precision analysis

tool. Précis utilizes MATLAB as an input specification for
algorithms and is designed to interact with the developer
in order to assist them in making the best choices
regarding data path precision. Currently, Précis aids the
developer by providing a constraint propagation engine,
simulation support, range finding capabilities, and
performing precision slack analysis.

HDL
Description

HDL
Description

Compiler
+

Synthesizer

Compiler
+

Synthesizer

SimulatorSimulator

Place
&

Route

Place
&

Route
BitstreamBitstream

Algorithm Précis

translation

Figure 2. Précis’ role in the tool chain.

Précis is designed to complement the existing tool flow
in the manner shown in Figure 2. Précis is not meant to be
an HDL generator, a MATLAB-to-HDL converter, or an
optimizing compiler of any sort. Instead, it is meant to
provide a convenient way for the user to interact with the
algorithm under consideration. Our goal is for the
knowledgeable user, after interacting with our tool, to
have a much clearer idea of the precision requirements of
their data path. It is our belief that the developer of the
algorithm, with suitable software assistance, can perform
much better precision analysis and optimization than a
fully automated tool could ever achieve. In the following
sections, we describe in more detail the constituent parts
of Précis.

3.1. MATCH front-end

The front-end of Précis comes from Northwestern
University in the form of a modified MATCH
compiler[3,4]. The MATCH compiler understands a
subset of the MATLAB language and can transform it into
efficient implementations on FPGAs, DSPs, and
embedded CPUs. It is used here primarily as a pre-
processor to parse MATLAB codes. The MATCH
compiler was chosen as the basis for the MATLAB code
parsing because no official grammar is publicly available
for MATLAB. We are not constrained to using the
MATCH compiler, though, as our tool may be updated to
accommodate an alternate MATLAB-aware parser.

MATLAB was chosen as the target high level language
because the researchers involved in this work also
contribute to the MATCH project at Northwestern
University. From this work, it has become clear that
MATLAB is a strong favorite for algorithm prototyping

and exploration, especially among scientists that might
have little to no hardware design expertise. With the
proliferation of reconfigurable co-processor boards
capable of providing great speedups to many classes of
algorithms, it would be advantageous to provide tools to
help these same scientists target their MATLAB
algorithms to FPGAs. Précis can be used both by
developers prototyping in MATLAB before hand
converting to an HDL, or to develop pragmas (designer
hints) for MATCH’s automatic compilation.

The MATCH compiler remains a work in progress and
is currently being marketed by AccelChip[5]. For our
purposes, we have modified the base MATCH compiler to
generate a non-hierarchical (flattened) representation of
parsed MATLAB code from its internal abstract syntax
tree. This representation is then read into the main Précis
tool for display and user interaction.

3.2. Précis application

The main Précis application is written in Java, in part,
due to its relative platform independence and ease of
graphical user interface creation. Précis takes the parsed
MATLAB code output generated from the MATCH
compiler and displays a GUI that formats the code into a
tree-like representation of statements and expressions. An
example of the GUI in operation is shown in Figure 3. The
left half of the interface is the tree representation of the
MATLAB code. The user may click on any node and,
depending on the node type, receive more information in
the right panel. The right panel displayed in the figure is
an example of the entry dialog that allows the user to
specify fixed-point precision parameters, such as range
and type of truncation. With this graphical display the user
can then perform the various tasks described in the
following sections.

Figure 3. Screen capture of the Précis GUI.

3.3. Propagation engine

A core component of the Précis tool is a constraint

propagation engine. The propagation engine simulates the
effects of using fixed-point numbers and fixed-point math
in hardware. This is done by allowing the user to
(optionally) constrain variables to a specific precision by
specifying the bit positions of the most significant bit
(MSB) and least significant bit (LSB). Variables that are
not manually constrained begin with a default width of 64
bits. Typically, a user should be able to provide
constraints easily for at least the circuit inputs and outputs.

The propagation engine traverses the expression tree
and determines the resultant ranges of each operator
expression from its child expressions. This is done by
implementing a set of rules governing the change in
resultant range that depend upon the input operand(s)
range(s) and the type of operation being performed. For
example, in the statement a=b+c, if b and c are both
constrained by the user to a range of 2^15 to 2^0, 16
bits, the resulting output range of a would have a range of
2^16 to 2^0, 17 bits, as an addition conservatively
requires one additional high order bit for the result in the
case of a carry-out from the highest order bit. Similar
rules apply for all supported operations.

The propagation engine works in this fashion across all
statements of the program, recursively computing the
precision for all expressions in the program. This form of
propagation is often referred to as value-range
propagation. One shortcoming of the currently
implemented propagation engine is that it does not handle
loop carried variables or conditional branches. This is to
be rectified in later revisions of the tool. A more complete
study of propagation and its effects upon hardware
synthesis can be found in [6]. We plan to continue
development of our own propagation tool to a similar
extent in the near future.

An example of forward and backward propagation is
depicted in Figure 4

+
*

A

B

C

x = a + b
y = c + x

x

y

Figure 4. Simple propagation example.

In this trivial example, assume the user sets all input
values (a, b, c) to utilize the bits [15,0], i.e. have a range
from 2^16-1 to 0. Forward propagation would result in
x having a bit range of [16, 0] and c having a range of
[31, 0]. If, after further manual analysis, the user notes
that the output from these statements should be
constrained to a range of [10, 0], backwards propagation
following forward propagation will constrain the inputs (c
and x) of the multiplication to [10, 0] as well. Propagating
yet further, this constrains the input variables a and b to

the range [10, 0] as well. Obviously, these are very
conservative propagation values. Knowing strict values
for the variables would increase our accuracy, as can be
shown in [6].

The propagation engine can be used to get a quick
estimate of the growth rate of variables through the
algorithm. This is done by constraining the precision of
input variables and a few operators and performing the
propagation. This will allow the user to see a conservative
estimate of how the input bit width affects the size of
operations down stream.

While the propagation engine will provide some
information as to the effects of fixed-point operations on
the resultant data, it is at best a conservative estimate. It
would be appropriate to consider the bit widths
determined from the propagation engine to be worst-case
results, or in other words, an upper bound. This upper
bound will become useful in further analysis phases of
Précis.

3.4. Simulation support

As previously mentioned, a typical step in precision
analysis is the actual running of the algorithm in a fixed-
point environment. Précis can automatically generate
annotated MATLAB code to aid in fixed-point simulation
of the user’s algorithm. The user simply selects variables
to constrain and requests that MATLAB simulation code
be generated. The code generated by the tool includes
calls to MATLAB helper functions that we developed to
simulate a fixed-point environment. The simulation flow
is shown in Figure 5.

Matlab
Code Précis Annotated

Matlab Matlab Program
Output

Figure 5. Code generation for simulation.

In particular, a MATLAB support routine, “fixp” was
developed to simulate a fixed-point environment. Its
declaration is fixp(x,m,n,lmode,rmode), where
‘x’ denotes the signal to be truncated to ‘(m-n+1)’ bits
in width. Specifically, ‘m’ denotes the MSB bit position
and ‘n’ the LSB bit position, inclusively, with negative
values representing positions to the right of the decimal
point. The remaining two parameters, ‘lmode’ and
‘rmode’ specify the method desired to deal with overflow
at the MSB and LSB portions of the variable, respectively.
These modes correspond to different methods of hardware
implementation. Possible choices for ‘lmode’ are sat
and trunc—saturation to 2^(MSB+1)-1 and
truncation of all bits above the MSB position,
respectively. For the LSB side of the variable, there are
four modes, round, trunc, ceil, and floor. Round
rounds the result to the nearest integer, trunc truncates

all bits below the LSB position, ceil rounds up to the
next integer level, and floor rounds down to the next
lower integer level. These modes correspond exactly to
the MATLAB functions with the exception of trunc,
and thus behave as documented by Mathworks. Trunc is
accomplished through the modulo operation. An example
of output generated for simulation is shown in Figure 6.

a = 1;
b = 2;
c = 3;
d = (a+(b*c));

a=1;
b=2;
c=3;
d=(fixpp(a,12,3,’trunc','trunc')+

(b*c));

MATLAB Input Annotated MATLAB

Figure 6. Sample output generated for simulation, with

the range of a variable constrained.

After the user has constrained the variables of interest
and indicated the mechanism by which to control
overflow of bits beyond the constrained precision, Précis
can generate annotated MATLAB. The user can then run
the generated MATLAB code with real data sets. The
purpose of these simulations is to determine the effects of
constraining variables on the correctness of the
implementation. Not only might the eventual output be
erroneous, but the algorithm may also fail to operate
entirely due to the effects of precision constraints.

If the user finds the algorithm’s output to be
acceptable, they might consider constraining additional
key variables, thereby further reducing the eventual size
of the hardware circuit. On the other hand, if the output
generates unusable results, the user knows then that their
constraints were too aggressive and that they should
increase the precision of some of the constrained
variables. Note that it is typically not sufficient to merely
test whether the fixed precision results are identical to the
unconstrained precision results, since this is too
restrictive. In situations such as image processing, lossy
compression, and speech processing, users may be willing
to trade some result quality for a more efficient hardware
implementation. Précis, by being a designer assistance
tool, allows the designer to create their own “goodness”
function, and make this tradeoff as they see fit. With the
Précis environment, this iterative development cycle is
shortened, as the fixed-point simulation code can be
quickly generated.

3.5. Range finding

While the simulation support described above is very
useful on its own for fixed-point simulation, it is only
truly useful if the user can accurately identify the
variables that they feel can be constrained. If the user does
not really have an idea of where to begin, one place to
start is utilizing the Précis range finding capability. The
development cycle utilizing range finding is shown in

Figure 7.

Matlab
Code Précis Annotated

Matlab Matlab

Variable
Stats

Program
Output

Figure 7. Development cycle for range finding analysis.

After the MATLAB code is parsed into the tool, the
user can select variables they are interested in monitoring.
Variables are targeted for range analysis and annotated
MATLAB is generated, much like the simulation code is
generated in the previous section. Instead of fixed-point
simulation, though, Précis annotates the code with another
MATLAB support routine that monitors the range of the
values that the variables under question take on.

This support routine, ‘rangefind’, monitors the
maximum and minimum values attained by the variables.
The annotated MATLAB is run with some sample data
sets to gather range information on the variables under
consideration. The user can then save these values in data
files that can be fed back into Précis with another routine,
‘saverangefind’. Example range finding output is
shown in Figure 8.

a = 1;
b = 2;
c = 3;
d = (a+(b*c));

a=1;
b=2;
c=3;
d=(a+(b*c));
rangeFind(d,'rfv_d');

MATLAB Input Range Finding Output

Figure 8. Sample range finding output.

The user then loads the resultant range values
discovered by rangefind back into the Précis tool and
(optionally) constrains the variables. The user now has an
idea of what precision each variable requires for the
sample data. Propagation can now be performed to
determine the effect these precisions have on the rest of
the system. Another useful step that the user can perform
is to constrain the variables under question even further
and perform a simulation to see how much error it
introduces into the output. The results from this range
finding method, however, are data set dependent. If the
user is not careful to use representative data sets, the final
hardware implementation could still generate erroneous
results if the data sets were significantly different in
precision requirements, even on the same algorithm.

For this reason we will consider range-gathered
precision information to be somewhat of a lower bound.
Given that the precisions obtained from propagation are

conservative estimates, or an upper bound, manipulating
the difference between these two bounds leads us to
another method of precision analysis—slack analysis.

4. Slack analysis

One of the goals of this tool is to provide the user with
“hints” as to where the developer’s manual precision
analysis and hardware tuning efforts should be focused.
Ultimately, it would be extremely helpful for the
developer to be given a list of “tuning points” in
decreasing order of potential overall reduction of circuit
size. This way, the developer could start a hardware
implementation using more generic data path precision
and iteratively optimize code sections that would give
them the most benefit to meet constraints, such as time,
cost, area, performance, or power. We believe this type of
“tuning list” would give a developer a head start on
precision analysis and put them on the right path of
development faster than non-automated techniques.

As mentioned earlier, if the user performs range
finding analysis and propagation analysis on the same set
of variables, the tool would obtain what would amount to
a lower bound from range analysis and an upper bound
from propagation. We consider the range analysis a lower
bound because it is the result of true data sets. While other
data sets may require even lower amounts of precision, we
know we need at least the ranges gathered from the range
analysis. Further testing with other data sets may show
that some variables would require more precision. Thus, if
we implement the design with the precision found, we
might encounter errors on output, thus the premise that
this is a lower bound.

On the other hand, propagation analysis is very
conservative. For example, in the statement a=b+c,
where b and c have been constrained to be 16 bits wide
by the user, the resultant bit width of a may be up to 17
bits due to the addition. But in reality, both b and c may
be well within the limits of 16 bits and an addition might
never overflow into the 17th bit position. For example, if
c=λ-b, the range of values a could ever take on is
governed by λ. To a person investigating section of code,
this seems very obvious when c is substituted into
a=b+c, but these types of more “macroscopic”
constraints in algorithms can be difficult or impossible to
find automatically. It is because of this that we can
consider propagated range information to be an upper
bound.

Given a lower and upper bound on the bit width of a
variable, we can consider the difference between these
two bounds to be the slack. The actual precision
requirement is most likely to lie between these two
bounds. Manipulating the precision of nodes with slack
can net gains in precision system-wide, as changes in any
single node may impact many other nodes within the

circuit. The reduction in precision requirements and the
resultant improvements in area, power, and performance
can be considered gain. Through careful analysis of the
slack at a node, we can calculate how much gain can be
achieved by manipulating the precision between these two
bounds. Additionally, by performing this analysis
independently for each node with slack, we can generate
an ordered list of “tuning points” that the user should
consider.

For this paper, we consider the reduction of the area
requirement of a circuit to be gain. In order to compute the
gain of a node with respect to area, power and
performance, we need to develop basic hardware models
to capture the effect of precision changes upon these
parameters. One simple implementation that we have
utilized is to provide simple weighting parameters for
different operator types. Thus, for example, if an adder
has an area model of x, it indicates that as the precision
decreases by one bit, the area reduces linearly and the gain
increases linearly. In contrast, a multiplier has an area
model of x^2, indicating that the area reduction and gain
achieved are proportional to the square of the word size.
Intuitively, this would give a higher overall gain value for
bit reduction of a multiplier than of an adder. Using these
parameters, our approach can more effectively choose the
nodes with the most possible gain to suggest to the user.
We detail our methodology in the next section.

4.1. Performing slack analysis

The goal of slack analysis is to identify which nodes,
when constrained by the user, are likely to have the
greatest impact upon the overall circuit area. While we do
not believe it is realistic to expect users to constrain all
variables, most users would be able to consider how to
constrain a few “controlling” values in the circuit.

Our method seeks to efficiently use designer time by
guiding them to the next important variables to consider
for constraining. Précis can also provide a stopping
criterion for the user: we can measure the maximum
possible benefit from future constraints by constraining all
variables to their lower bounds. The user can then decide
to stop further investigation when the difference between
the current and “lower bound” areas is no longer worth
further optimization.

Our methodology is straightforward. For each node
that has slack, we set the precision to the range-find value,
the lower bound. Then, we propagate the impact of that
change over all nodes and calculate the overall gain for
the change, system-wide. We record this value as the
effective gain as a result of modifying that node. We then
reset all nodes and repeat for the remaining nodes that
have slack. We then order the resultant list of gain values
in decreasing order and present this information to the
user in a dialog window. The user then can see which
nodes to change to get the highest gain and in what order.

It is then up to the designer to consider these nodes and
determine which, if any, should actually be more tightly
constrained.

To further illustrate this analysis method, refer to the
pseudo-code shown below.

Algorithm: Slack Analysis
User Step #1: Constrain known variables
User Step #2: Perform propagation
User Step #3: Load range data for some set of variables
‘n’

set list_of_gains to empty list
for each variable ‘m’ in ‘n’
 set aggregate_gain = 0
 constrain range of ‘m’ to the range analysis value
 perform forward and reverse propagation over all
variables
 for all variables
 if range of variable is narrower than range originally
propagated in ‘User Step #2
 set aggregate_gain += old_area – new_area
 end
 next
 add (variable ‘m’ and aggregate_gain) to list_of_gains
 for all variables
 reset range of variable to range originally propagated in
‘User Step #2’
 next
next

sort(list_of_gains) by decreasing aggregate_gain

5. Benchmarks

In order to determine the effectiveness of our slack
analysis methodology, we allowed the tool to perform
slack analysis with propagated and range-found range
values. To gauge how effective the suggestions were, we
constrained the variables the tool suggested in the order
they were suggested to us, and calculated the resulting
area. The area was determined utilizing the same area
model discussed in previous sections, i.e. giving adders a
linear area model while multipliers are assigned an area
model proportional to the square of their input word size.
We also determined an asymptotic lower bound to the
area by implementing all suggestions simultaneously to
determine how quickly our tool would converge upon the
lower bound.

5.1. Wavelet Transform

The first benchmark we present is the wavelet
transform. The wavelet transform is a form of image
processing, primarily serving as a transformation prior to
applying a compression scheme, such as SPIHT[8]. A
typical discrete wavelet transform runs a high-pass filter
and low-pass filter over the input image in one dimension.

The results are down sampled by a factor of two,
effectively spatially compressing the wavelet by a factor
of two. The filtering is done in each dimension, vertically
and horizontally for images. Each pass results in a new
image composed of a high-pass and low-pass sub-band,
each half the size of the original input stream. These sub-
bands can be used to reconstruct the original image.

This algorithm was hand-mapped to hardware as part
of work done by Thomas Fry[8]. The hardware utilized
was a WildStar FPGA board from Annapolis
Microsystems consisting of three Xilinx Virtex 2000E
FPGAs and 48 MBytes of memory. Significant time was
spent converting the floating-point source algorithm into a
fixed-point representation by utilizing methodologies
similar to those we present in this paper. The result was an
implementation running at 56MHz, capable of
compressing 8-bit images at a rate of 800Mbits/sec. This
represents a speedup of nearly 450 times as compared to a
software implementation running on a Sun SPARCStation
5.

The wavelet transform was implemented in MATLAB
and passed into Précis. In total, 27 variables were selected
to be constrained. These variables were then marked for
range-finding analysis and annotated MATLAB code was
generated. This code was then run in the MATLAB
interpreter with a sample image file (Lena) to obtain range
values for the selected variables. These values were then
loaded into Précis to obtain a lower bound to be used
during the slack analysis phase. The results of the slack
analysis are shown in Figure 9.

Wavelet: Area vs. Number of selected moves

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of suggested moves taken

Lo
g

of
 N

or
m

al
iz

ed
 a

re
a

Wavelet area
Lower bound

Figure 9. Wavelet area vs. number of suggestions

implemented.

These results are normalized to the lower bound
obtained by setting all variables to their lower bound
constraints and computing the resulting area. This graph
shows that between the upper bound and lower bound,
there is a theoretical area difference of about three orders
of magnitude. The slack analysis results suggested
constraining the output image array, then the low and high
pass filter coefficients, and then the results of the

additions in the multiply-accumulate structure of the
filtering operation. By taking the suggested moves in
order and recomputing the order at each step, we were
able to reach with ten percent of the lower bound area of
the system in eleven moves. Perhaps more importantly,
the tool was able to suggest a pattern of moves that would
allow us to reach within a factor of three from the lower
bound in just four moves. Finally, by about thirteen
moves, the normalized area was within less than three
percent of the lower bound, and further improvements
were negligible. At this point a typical user may choose to
stop optimizing the system.

It is important to note that the area values obtained by
Précis are simply calculated by reducing the range of a
number of variables to their range-found lower bounds.
This yields what could be considered the “best-case”
solution when optimizing. In reality, though, one would
add another step to the development cycle whereby upon
choosing the variable for optimization as suggested by the
tool, the developer would perform an intermediate
simulation step to determine if, by lowering the precision
requirements of that variable, any error would be
introduced in the results. This step is made easier by the
automatic generation of annotated simulation code for use
in MATLAB. In many cases, there might be an intolerable
amount of error introduced by utilizing the lower bound,
in which case the user would choose an appropriate
precision range, fix that value as a constraint upon that
variable in Précis and continue utilizing the slack analysis
phase to find the next variable for optimization.

5.2. Probabilistic Neural Network: PNN

Another benchmark we investigated was a multi-
spectral image-processing algorithm designed for NASA
satellite imagery that is similar to clustering analysis or
image compression. More details can be found in [7].
Briefly, each multi-spectral image pixel vector is
compared to a set of “training pixels” or “weights” that
are known to be representative of a particular class. The
probability that the pixel under test belongs to the class
under consideration is given by the formula depicted in
Equation 1.

∑
=

 −−
−=

kP

i

ki
T

ki

k
ddk

WXWX
P

SXf
1

22/ 2
)()(exp1

)2(
1)|(

σσπ

Equation 1. The core PNN formula.

Here, X
r

 is the pixel vector under test, kiW
r

is the

weight i of class k , d is the number of spectral bands,
k is the class under consideration, σ is a data-dependent
“smoothing” parameter, and kP is the number of weights

in class k . This formula represents the probability that

pixel vector X
r

 belongs to the class kS . This
comparison is then made for all classes and the class with
the highest probability indicates the closest match.

This algorithm was manually implemented on a
WildChild board and described in [7]. The WildChild
board from Annapolis Microsystems consists of eight
Xilinx 4010E FPGAs, a single Xilinx 4028EX FPGA, and
5MBytes of memory. Like the wavelet transform
described earlier, significant time and effort was spent on
variable range analysis, with particular attention being
paid to the large multipliers and the exponentiation
required by the algorithm. This implementation obtained
speedups of 16 versus a software implementation on an
HP workstation.

The algorithm was implemented in MATLAB and
passed into Précis. From here, twelve variables were
selected for range finding analysis, annotated MATLAB
was generated, range-analysis was performed, and slack
analysis was run utilizing the derived lower and upper
bounds.

Again, all results were normalized to the lower bound
area. As shown in Figure 10, the tool behaved similarly to
the wavelet benchmark in that it was able to reach within
five percent of the lower bound within six moves, where
after additional moves serve to make only minor
improvements in area. However, with the PNN algorithm,
we are able to demonstrate even further refinement of the
slack analysis approach.

PNN Standard
Area vs. Number of suggestions taken

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of suggestions taken

No
rm

al
iz

ed
 A

re
a

Standard area
Lower Bound

Figure 10. PNN area vs. number of suggestions

implemented utilizing only range-analysis-discovered
values.

For a seasoned developer that has a deeper insight into
the algorithm, or for one that already has an idea of how
the algorithm would map to hardware, the range-analysis
phase sometimes returns results that are sub-optimal. For
example, the range-analysis of the PNN algorithm upon a
typical dataset resulted in several variables being
constrained to ranges such as [2^0,2^-25], [2^8,2^-135],
[2^0,2^-208], and so on. This simply means that the

range-finding phase discovered values that were
extremely small and thus recorded the range as requiring
many bits to the right of decimal point to capture all the
precision information. The shortcoming of the automated
range-analysis is that it has no means by which to
determine at what precision values become too small to
affect follow-on calculations, and therefore might be
considered unimportant. With this in mind, the developer
would typically restrict the variables to narrower ranges
that preserve the correctness of the results while requiring
fewer bits of precision.

Précis provides the functionality to allow the user to
make these decisions in its annotated MATLAB code
generation. In this case, the user would choose a narrower
precision range and a method by which to constrain the
variable to that range consistent with how they will be
implementing the operation in hardware—truncation,
saturation, rounding, or any of the other methods
presented in previous sections. Then, the developer would
generate annotated MATLAB code for simulation
purposes, and re-run the algorithm in MATLAB with
typical data sets. This would allow the user to determine
how narrow of a precision range would be tolerable, and
subsequently constrain the variables in Précis accordingly.
The user can perform this determination either during
slack analysis, or prior to beginning slack analysis.

There are two types of scenarios that may occur
depend primarily on the experience level of the developer.
With a developer that has not dealt with precision analysis
and software to hardware mappings extensively, it may be
that they wouldn’t notice the unreasonable range
information obtained by the range-finding analysis phase
until the variable was suggested for optimization by the
tool. For this case, the user would perform an appropriate
simulation of the variable at that stage of the slack
analysis and obtain tighter bounds. On the other hand, for
a more experienced hardware designer that has
encountered precision analysis before, they might look
closely at the range-finding results prior to running the
slack analysis. In this case, they would most likely run
simulations and find more reasonable precision ranges for
the variables in question, and constrain them before even
beginning the slack analysis phase.

The results for these two scenarios are shown plotted
together in Figure 11, normalized to the lowest bound
among all three approaches. To differentiate the three
methods, the first proposed method is shown as “simple”,
and is the same method used to plot the results for the
wavelet benchmark. The “user guided” method refers to
fixing the variables during slack analysis. Finally, the
“start constrained” method denotes fixing the variables in
question prior to starting slack analysis.

PNN Area vs. Number of Suggestions Taken

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of suggestions taken

Lo
g

of
 N

or
m

al
iz

ed
 A

re
a

Simple
User guided
Start constrained
Lower Bound

Figure 11. PNN area with user-defined variable

precision ranges. Moves that had variables constrained to
more reasonable ranges are highlighted with arrows.

At first glance, one can see that all three methods
provide similar trends, approaching the lower bound
within five to seven moves. This behavior is expected and
is consistent with the results of the wavelet benchmark.
However, one might expect that the start-constrained and
user-guided methods would reach near the lower bound
more quickly than the simple method. Instead, they take
one or two additional moves to get near the lower bound
compared to the simple method. This can be explained by
understanding how the tool performs propagation across
variables whose ranges are constrained by the user. By
fixing the range of a variable, neither forward nor
backward propagation will alter their precision ranges. In
effect, we trust the user’s decision when they fix a
variable’s precision range. The net effect is that any gains
that might have been realized through back-propagation of
smaller ranges will not be achieved if they must propagate
through a variable whose range has been fixed. Finally, as
the method used to compute the order of variables to
constrain is greedy by nature, changing the order in which
constraints are applied will alter the curve slightly.

6. Related work

While there have been several recent research efforts
targeting precision analysis, none have approached it in
such an interactive fashion. As mentioned in previous
sections, Mark Stephenson and Jonathan Babb’s work
developing the Bitwise compiler at MIT [6] is an excellent
foundation work regarding precision propagation
techniques. They have applied their techniques in the
SUIF compiler infrastructure and are targeting the C
language for silicon compilation.

Anshuman Nayak’s work at Northwestern University
[9] is very relevant to our own research, as it is based
upon the same MATCH compiler framework as our own.
This work utilizes a similar propagation engine within the
MATCH compiler as optimization phases and attempts to

perform all analysis, including error, automatically,
generating RTL VHDL suitable for synthesis.

Two other research efforts, one at the University of
Southern California and one at Imperial College in
London, approach the precision matter in an entirely
different way. Kiran Bondalapati’s work on dynamic
precision management of loop computations [10]
concentrates on developing a formal methodology for
analyzing the precision requirements of loop structures.
Finally, George A. Constantinides, et. al. have developed
a Synoptix-based system for the analysis and automated
generation of DSP applications[11].

7. Conclusions

In this paper we have demonstrated the need for
precision analysis tools in the development cycle of
software to hardware mapping. To direct the developer’s
efforts in hand-optimizing the precision of algorithms
mapped to hardware, we have developed and
demonstrated a tool, Précis, which allows the user to
automate many tasks necessary for effective precision
analysis. We have demonstrated how our tool can aid the
developer in simulation of fixed-point math with
automatic annotated MATLAB code generation. We have
also developed MATLAB scripts that support range
analysis of a user’s MATLAB code in order to deduce a
theoretical lower bound to the precision of selected
variables. We have also presented a framework for
propagation of precision range information over a
MATLAB program. Finally, we have described our
methodology of slack analysis, and have shown how the
suggestions provided by this methodology can be helpful
in guiding the user in their manual precision optimization
on real-world benchmarks.

8. Acknowledgements

This research was supported by contracts with NASA
and DARPA, and a grant from NSF. Scott Hauck was
supported in part by an NSF CAREER award and a Sloan
Research Fellowship.

9. References

[1] Synopsis CoCentric SystemC Compiler.
http://www.synopsys.com/products/cocentric_systemC
/cocentric_systemC_ds.html

[2] Celoxia Handel-C Compiler.
http://www.celoxica.com/products/technical_papers/da
tasheets/DATHNC002_0.pdf

[3] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C.
Bachmann, M. Chang, M. Haldar, P. Joisha, A. Jones,
A. Kanhare, A. Nayak, S. Periyacheri, M. Walkden.
“MATCH: A MATLAB Compiler for Configurable
Computing Systems”. Technical report CPDC-TR-

9908-013, submitted to IEEE Computer Magazine,
August 1999.

[4] P. Banerjee, A. Choudhary, S. Hauck, N. Shenoy.
“The MATCH Project Homepage”.
http://www.ece.nwu.edu/cpdc/Match/Match.html (1
Sept. 1999).

[5] AccelChip, info@accelchip.com,
http://www.accelchip.com.

[6] Mark Stephenson. “Bitwise: Optimizing Bitwidths
Using Data-Range Propagation”. Master's thesis.
Massachusetts Institute of Technology. May 2000.

[7] Mark L. Chang. “Adaptive Computing in NASA
Multi-Spectral Image Processing”. Master’s Thesis.
Northwestern University, Evanston, IL. December
1999.

[8] Thomas W. Fry. “Hyperspectral Image Compression
on Reconfigurable Platforms”. Master’s Thesis.
University of Washington, Seattle, IL. May 2001.

[9] A. Nayak, M. Haldar, A. Choudhary, P. Banerjee,
“Precision And Error Analysis Of MATLAB
Applications During Automated Hardware Synthesis
for FPGAs”, Proc. Design Automation and Test in
Europe (DATE 2001), Berlin, Germany. Mar. 2001.

[10] Kiran Bondalapati and Viktor K. Prasanna, “Dynamic
Precision Management for Loop Computations on
Reconfigurable Architectures”, IEEE Symposium on
Field-Programmable Custom Computing Machines,
April 1999.

[11] George A. Constantinides, Peter Y.K. Cheung, Wayne
Luk, “The Multiple Wordlength Paradigm”, IEEE
Symposium on Field-Programmable Custom
Computing Machines, April 2001.

