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Abstract. Numerous measures are used for performance evaluation in
machine learning. In predictive knowledge discovery, the most frequently
used measure is classification accuracy. With new tasks being addressed
in knowledge discovery, new measures appear. In descriptive knowledge
discovery, where induced rules are not primarily intended for classifica-
tion, new measures used are novelty in clausal and subgroup discovery,
and support and confidence in association rule learning. Additional mea-
sures are needed as many descriptive knowledge discovery tasks involve
the induction of a large set of redundant rules and the problem is the
ranking and filtering of the induced rule set. In this paper we develop
a unifying view on some of the existing measures for predictive and de-
scriptive induction. We provide a common terminology and notation by
means of contingency tables. We demonstrate how to trade off these
measures, by using what we call weighted relative accuracy. The paper
furthermore demonstrates that many rule evaluation measures develo-
ped for predictive knowledge discovery can be adapted to descriptive
knowledge discovery tasks.

1 Introduction

Numerous measures are used for performance evaluation in machine learning and
knowledge discovery. In classification-oriented predictive induction, the most fre-
quently used measure is classification accuracy. Other standard measures include
precision and recall in information retrieval, and sensitivity and specificity in me-
dical data analysis. With new tasks being addressed in knowledge discovery, new
measures need to be defined, such as novelty in clausal and subgroup discovery,
and support and confidence in association rule learning. These new knowledge
discovery tasks belong to what is called descriptive induction. Descriptive induc-
tion also includes other knowledge discovery tasks, such as learning of properties,
integrity constraints, and attribute dependencies.

This paper provides an analysis of selected rule evaluation measures. The
analysis applies to cases where single rules have to be ranked according to how
well they are supported by the data. It also applies to both predictive and de-
scriptive induction. As we argue in this paper, the right way to use standard rule
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evaluation measures is relative to some threshold, e.g., relative to the trivial rule
‘all instances belong to this class’. We thus introduce relative versions of these
standard measures, e.g., relative accuracy. We then show that relative measures
provide a link with descriptive measures estimating novelty. Furthermore, by
taking a weighted variant of such relative measures we show that we in fact ob-
tain a trade-off between several of them by maximizing a single measure called
weighted relative accuracy.

The outline of the paper is as follows. In Section Bl we introduce the termino-
logy and notation used in this paper. In particular, we introduce the contingency
table notation that will be put to use in Section[3], where we formulate predictive
and descriptive measures found in the literature in this framework. Our main
results concerning unifications between different predictive measures, and bet-
ween predictive and descriptive measures, are presented in Section [l In Section
Bl we support our theoretical analysis with some preliminary empirical evidence.
Finally, in Section [6] we discuss the main contributions of this work.

2 Terminology and Notation

In this section we introduce a terminology and notation used throughout the
paper. Since we are not restricted to predictive induction, the rules we consider
have a more general format than the format of prediction rules that have a
single classification literal in the conclusion of a rule. Below we only assume that
induced rules are implications with a head and a body (Section 21J). Due to
this general rule form, the notions of positive and negative example have to be
generalized: predicted positives/negatives are those instances for which the body
is true/false, and actual positives/negatives are instances for which the head is
true/false. In this framework, a contingency table, as explained in Section [22]
is used as the basis for computing rule evaluation measures.

2.1 Rules
We restrict attention to learning systems that induce rules of the form
Head < Body

Predictive induction deals with learning of rules aimed at prediction and/or
classification tasks. The inputs to predictive learners are classified examples, and
the outputs are prediction or classification rules. These rules can be induced by
propositional or by first-order learners. In propositional predictive rules, Body is
(typically) a conjunction of attribute-value pairs, and Head is a class assignment.
In first-order learning, frequently referred to as inductive logic programming, pre-
dictive rules are Prolog clauses, where Head is a single positive literal and Body
is a conjunction of positive and/or negative literals. The important difference
with propositional predictive rules is that first-order rules contain variables that
are shared between literals and between Head and Body.
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Descriptive induction deals with learning of rules aimed at knowledge disco-
very tasks other than classification tasks. Those include learning of properties,
integrity constraints, functional dependencies, as well as the discovery of inte-
resting subgroups, association rule learning, etc. The input to descriptive learners
are unclassified instances, i.e., descriptive induction is unsupervised. In compa-
rison with propositional prediction rules, in which Head is a class assignment,
association Tules allow the Head to be a conjunction of attribute tests. Pro-
positional association rules have recently been upgraded to the first-order case
[2]. Descriptive first-order rules also include general clauses, which allow for a
disjunction of literals to be used in the Head.

In the abstract framework of this paper, rules are binary objects consisting of
Head and Body. Rule evaluation measures are intended to give an indication of
the strength of the (hypothetical) association between Body and Head expressed
by such a rule. We assume a certain unspecified language bias that determines
all possible heads and bodies of rules. We also assume a given set of instances,
i.e., classified or unclassified examples, and we assume a given procedure by
which we can determine, for every possible Head and Body, whether or not it
is true for that instance. We say that an instance is covered by a rule Head <
Body if Body is true for the instance. In the propositional case, an instance is
covered when it satisfies the conditions of a rule (all the conditions of a rule
are evaluated true given the instance description). In the first-order case, the
atom(s) describing the instance are matched with the rule head, thus determining
a substitution 6 by which the variables in the rule head are replaced by the terms
(constants) in the instance description. The rule covers the instance iff Body# is
evaluated as true.

2.2 Contingency Table

Given the above concepts, we can construct a contingency table for an arbitrary
rule H < B. In Table[d, B denotes the set of instances for which the body of
the rule is true, and B denotes its complement (the set of instances for which
the body is false); similarly for H and H. H B then denotes H N B, HB denotes
H N B, and so on.

Table 1. A contingency table.
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We use n(X) to denote the cardinality of set X, e.g., n(HB) is the number
of instances for which H is false and B is true (i.e., the number of instances
erroneously covered by the rule). N denotes the total number of instances in
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the sample. The relative frequency w associated with X is denoted by p(X )
All rule evaluation measures considered in this paper are defined in terms of
frequencies from the contingency table only.

Notice that a contingency table is a generalisation of a confusion matrix,
which is the standard basis for computing rule evaluation measures in binary
classification problems. In the confusion matrix notation, n(H) = P, — the
number of positive examples, n(H) = N, — the number of negative examples,
n(B) = P, — the number of examples covered by the rule therefore predicted as
positive, n(B) = N, — the number of the examples not covered by the rule and
therefore predicted as negative, n(HB) = TP — the number of true positives,
n(HB) = TN — the number of true negatives, n(HB) = FP — the number of

false positives, and n(HB) = FN — the number of false negatives.

3 Selected Rule Evaluation Measures

In this section, selected rule evaluation measures are formulated in the con-
tingency table terminology, which is the first step towards the unifying view
developed in Section Hl The definitions are given in terms of relative frequencies
derived from the contingency table. Since our framework is not restricted to pre-
dictive induction, we also elaborate some novelty-based measures found in the
knowledge discovery literature; see [95] which discuss also other measures and
the axioms that rule evaluation measures should satisfy. The usefulness of our
unifying framework is demonstrated in Section H] where we point out the many
relations that exist between weighted and relative variants of these measures.

Definition 1 (Rule accuracy). Acc(H < B) = p(H|B).
Definition 2 (Negative reliability). NegRel(H < B) = p(H|B).
Definition 3 (Sensitivity). Sens(H < B) = p(B|H).

Definition 4 (Specificity). Spec(H < B) = p(B|H).

Accuracy of rule R = H < B, here defined as the conditional probability
that H is true given that B is true, measures the fraction of predicted positives
that are true positives in the case of binary classification problems:

TP n(HB)  nHB) "HB ,HB)
ACC(R)_TP+FP_H(HB)—l—’n(ﬁB)_ n(B) - ngB) - p(B) _p(H|B>

Rule accuracy is also called precision in information retrieval. Furthermore, ac-
curacy error Err(H < B) =1 — Acc(H < B) = p(H|B).

Our definition of rule accuracy is intended for evaluating single rules, and
therefore biased towards the accuracy of positive examples. As such, it is dif-
ferent from what we call rule set accuracy [6], defined as Acc = w =

! In this paper we are not really concerned with probability estimation, and we inter-
pret the sample relative frequency as a probability.
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p(HB) + p(HB), which is standardly used for evaluation of hypotheses compri-
sed of several rules.

Given our general knowledge discovery framework, it can now also be seen
that rule accuracy is in fact the same as confidence in association rule learning.
Rule accuracy can also be used to measure the reliability of the rule in the
prediction of positive cases, since it measures the correctness of returned results.

The reliability of negative predictions is in binary classification problems

computed as follows: NegRel(R) TN IN _ nUiB) _ p(IB) _ p(H|B).

T TN+FN = N, = (B »(B)

Sensitivity is identical to recall (of positive cases) used in information retrie-
val. Sensitivity, here defined as the conditional probability that B is true given
that H is true, measures the fraction of true positives that are correctly classi-

fied in the case of binary classification problems: Sens(R) = 4+t~ = LP =

m) o o) TP+FN — P,
n(HB n(HB HB e :
W B) n(iE) — (@) = pp(H) = p(B|H). Sensitivity can also be interpreted

as the accuracy of the rule B « H, which in logic programming terms is the
completion of the rule H <+ B.
Specificity is the conditional probability that B is false given that H is false.

In binary classification problems, it is equal to the recall of negative cases in

TN __ _ TN _ n(HB) _ (B
TN+FP — N, n(H) = p(B[H).
We now introduce other measures that are used to develop our unifying view

in the next section.

information retrieval: Spec(R) =

Definition 5 (Coverage). Cov(H «+ B) = p(B).

Definition 6 (Support). Sup(H < B) = p(HB).

Coverage measures the fraction of instances covered by the body of a rule. As
such it is a measure of generality of a rule. Support of a rule is a related measure
known from association rule learning, also called frequency. Notice that, unlike
the previous measures, support is symmetric in H and B.

The next measure aims at assessing the novelty, interestingness or unusualn-
ess of a rule. Novelty measures are used, e.g., in the MIDOS system for subgroup
discovery [8], and in the PRIMUS family of systems for clausal discovery [3]. Here
we follow the elaboration of the PRIMUS novelty measure, because it is formu-
lated in the more general setting of clausal discovery, and because it is clearly
linked with the contingency table framework.

Consider again the contingency table in Table [[l We define a rule H + B
to be novel if n(HB) cannot be inferred from the marginal frequencies n(H)
and n(B); in other words, if H and B are not statistically independent. We
thus compare the observed n(H B) with the expected value under independence
w(HB) = %. The more the observed value n(H B) differs from the expec-
ted value p(HB), the more likely it is that there exists a real and unexpected
association between H and B, expressed by the rule H < B. Novelty is thus
defined as the relative difference between n(H B) and p(HB).

Definition 7 (Novelty). Nov(H + B) = p(HB) — p(H)p(B).
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Notice that p(HB) is what is called support in association rule learning. The
definition of novelty states that we are only interested in high support if that
couldn’t be expected from the marginal probabilities, i.e., when p(H) and/or
p(B) are relatively low. It can be demonstrated that —0.25 < Nov(R) < 0.25: a
strongly positive value indicates a strong association between H and B, while a
strongly negative value indicates a strong association between H and B B

In the MIDOS subgroup discovery system this measure is used to detect
unusual subgroups. For selected head H, indicating a property we are interested
in, body B defines an unusual subgroup of the instances satisfying H if the
distribution of H-instances among B-instances is sufficiently different from the
distribution of H-instances in the sample. In situations like this, where H is
selected, this definition of novelty is sufficient. However, notice that Nov(H «+
B) is symmetric in H and B, which means that H «+ B and B + H will
always carry the same novelty, even though one of them may have many more
counter-instances (satisfying the body but falsifying the head) than the other.

To distinguish between such cases, PRIMUS additionally employs the mea-
sure of satisfaction, which is the relative decrease in accuracy error between the
rule H < true and the rule H < B. It is a variant of rule accuracy which takes
the whole of the contingency table into account — it is thus more suited towards
knowledge discovery, being able trading off rules with different heads as well as
bodies.

Definition 8 (Satisfaction). Sat(H + B) = %E‘

It can be shown that Sat(H < B) = %&%(H), since p(H) — p(H|B) =
(1—p(H)) — (1 —-p(H|B)) = p(H|B) — p(H). We thus see that Sat(H < B)
is similar to rule accuracy p(H|B), e.g., Sat(R) = 1 iff Acc(R) = 1. However,
unlike rule accuracy, satisfaction takes the whole of the contingency table into
account and is thus more suited towards knowledge discovery, trading off rules
with different heads as well as bodies.

Finally, we mention that PRIMUS trades off novelty and satisfaction by

multiplying them, resulting in a y2-like statistic:

(Np(HB) — n(HB))?
u(HB)

Nov(H < B) x Sat(H + B) =

This is one term in the x? sum for the contingency table, corresponding to the
lower left-hand cell (the counter-instances). We omit the details of the norma-
lization.

2 Since negative novelty can be transformed into positive novelty associated with the
rule H < B, systems like MIDOS and PRIMUS set Nov(H + B) = 0 if p(HB) <
p(H)p(B). The more general expression of Definition [7 is kept because it allows a
more straightforward statement of our main results.

3 Again, in practice we put Sat(R) = 0 if p(H) > p(H|B).
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4 A Unifying View

In the previous section we formulated selected rule evaluation measures in our
more general knowledge discovery framework. In this section we show the use-
fulness of this framework by establishing a synthesis between these measures.
The main inspiration for this synthesis comes from the novelty measure, which
is relative in the sense that it compares the support of the rule with the expected
support under the assumption of statistical independence (Definition [7)).

Definition 9 (Relative accuracy). RAcc(H < B) = p(H|B) — p(H).

Relative accuracy of a rule R = H < B is the accuracy gain relative to the fixed
rule H < true. The latter rule predicts all instances to satisfy H; a rule is only
interesting if it improves upon this ‘default’ accuracy. Another way of viewing
relative accuracy is that it measures the utility of connecting body B with a
given head H.

Similarly, we define relative versions of other rule evaluation measures.

Definition 10 (Relative negative reliability).
RNegRel(H + B) = p(H|B) — p(H).

Definition 11 (Relative sensitivity). RSens(H < B) = p(B|H) — p(B).
Definition 12 (Relative specificity). RSpec(H <+ B) = p(B|H) — p(B).

Like relative accuracy, relative negative reliability measures the utility of connec-
ting body B with a given head H. The latter two measures can be interpreted
as sensitivity /specificity gain relative to the rule true < B, i.e., the utility of
connecting a given body B with head H. Notice that this view is taken in rule
construction by the CN2 algorithm [I], which first builds a rule body and sub-
sequently assigns an appropriate rule head.

To repeat, the point about relative measures is that they give more infor-
mation about the utility of a rule than absolute measures. For instance, if in a
prediction task the accuracy of a rule is lower than the relative frequency of the
class it predicts, then the rule actually performs badly, regardless of its absolute
accuracy.

There is however a problem with relative accuracy as such: it is easy to obtain
high relative accuracy with highly specific rules, i.e., rules with low generality
p(B). To this end, a weighted variant is introduced, which is the key notion in
this paper.

Definition 13 (Weighted relative accuracy).

W RAcc(H « B) = p(B)(p(H|B) — p(H)).

Weighted relative accuracy trades off generality and relative accuracy. It is known
in the literature as a gain measure, used to evaluate the utility of a literal L
considered for extending the body B of a rule: p}ngL)) (p(H|BL) — p(H|B)).

We now come to a result, which — although technically trivial — provides
a significant contribution to our understanding of rule evaluation measures.
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Theorem 1. WRAcc(R) = Nov(R).

Proof. WRAcc(H < B) = p(B)(p(H|B) —p(H)) = p(B)p(H|B) — p(H)p(B) =
p(HB) — p(H)p(B) = Nov(H + B). m|

Theorem [ has the following implications.

1. Rules with high weighted relative accuracy also have high novelty, and wvice
versa.

2. High novelty is achieved by trading off generality and rule accuracy gained
in comparison with a trivial rule H < true. This also means that having
high relative accuracy is not enough for considering a rule to be interesting,
since the rule needs to be general enough as well.

This link between predictive and descriptive rule evaluation measures has — to
the best of our knowledge — not been published before.

We proceed to show that weighted relative accuracy is one of the most fun-
damental rule evaluation measures, by showing that it also provides a trade-off
between accuracy and other predictive measures such as sensitivity. To do so,
we first define weighted versions of the other relative measures defined above.

Definition 14 (Weighted relative negative reliability).
WRNegRel(H < B) = p(B)(p(H|B) — p(H)).

The weight p(B) is motivated by the fact that overly general rules trivially have
a high negative reliability.

Definition 15 (Weighted relative sensitivity).
WRSens(H + B) = p(H)(p(BIH) — p(B)).

Definition 16 (Weighted relative specificity).
W RSpec(H + B) = p(H)(p(B|H) — p(B)).

Again, the weights guard against trivial solutions.

This leads us to establishing a trade-off between the four standard predic-
tive rule evaluation measures, by relating them through their weighted relative
variants.

Theorem 2. WRAcc(R) = WRSens(R) = WRSpec(R) = WRNegRel(R).

Proof. WRAcc(H < B) = p(B)(p(H|B) — p(H)) = p(HB) — p(H)p(B) =
p(H)(p(B|H) — p(B)) = WRSens(H + B).
WRAcc(H < B) = p(B)(p(H|B)—p(H)) = p(HB) —
p(HB) —p(HB)) — (1 —p(B))(1 — p(H)) = (1 — p(H
p(H) — p(B) + p(H)p(B)) = p(HB) — p(H)p(B) =
W RSpec(H + B). - o o o
W RSpec(H < B) = p(H)(p(B|H)—p(B)) = p(HB)—p(H)p(B) = p(B)(p(H|B)
—p(H)) = WRNegRel(H + B). O
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We have thus established a complete synthesis between different predictive
rule evaluation measures, and between these measures and the descriptive notion
of novelty, by demonstrating that there is a single way in which all these measures
can be combined and thus traded off in a principled way.

5 Rule Evaluation Measures in Practice

In the previous section we have shown that a single measure, weighted relative
accuracy, can be used to trade off different evaluation measures such as accuracy,
sensitivity, and novelty. In this section we further support this claim with some
preliminary empirical evidence. First, we describe an experiment in which weigh-
ted relative accuracy correlates better with an expert’s intuitive understanding
of “reliability” and “interestingness” than standard rule evaluation measures. Se-
condly, we show the utility of weighted relative accuracy as a filtering measure
in database dependency discovery.

5.1 An Experiment

The purpose of this experiment was to find out whether rule evaluation measures
as discussed in this paper really measure what they are supposed to measure. To
this end we compared an expert’s ranking of a number of rules on two dimensions
with the rankings given by four selected measures. We have used a CAR data
set (see UCI Machine Learning Repository [7]), which includes 1728 instances
that are described with six attributes and a corresponding four-valued class.
The attributes are multi-valued and include buying price, price of maintenance,
number of doors, capacity in terms of persons to carry, and estimated safety of
the car.

An ML* Machine Learning environment was used to generate association
rules from the CAR dataset. The designer of the experiment has semi-randomly
chosen ten rules that he though may be of different quality in respect to the
measures introduced in this text. Note that none of the rules, however, was
explicitly measured at this stage.

The rules were then shown to the domain expert, who was asked to rank
them according to their “reliability” and “interestingness”. We chose these non-
technical terms to avoid possible interference with any technical interpretation;
neither term was in any way explained to the expert{] The domain expert first

4 During the experiment, the expert expressed some of his intuitions regarding these
terms: “reliability measures how reliable the rule is when applied for a classification”;
“an interesting rule is the one that I never thought of when building a classification
model, e.g., those without the class (car) in the head”;

“an interesting rule has to tell me something new, but needs to be reliable as well
(it would help me if T would somehow know the reliability first before ranking on
interestingness)”;

“a highly reliable rule which is at the same time unusual is interesting”;

“a rule is interesting if it tells me something new, but it’s not an outlier”.
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assigned qualitative grades to each rule (-,0,8,+), and then chose a final rank
from these grades. The results of the ranking are shown in Table [2 Note that
some rules are ranked equally (e.g., the first two rules for reliability), and in such
cases a rank is represented as an interval. The correlation between the expert’s

rankings and ranks obtained from the rule evaluation measures are given in
Table Bl

Table 2. Ten rules ranked by a domain expert on reliability (Rel) and interestingness
(Int), and corresponding rule evaluation measures.

Rule Expert Rule evaluation measures
Rel # |Int # | Acc Sens Spec W RAcc
buying=med car=good — maint=low 7-10{ © 6 |1.000 0.053 1.000 0.010
buying=low car=v-good — lugboot=big| - 7-10| - 7-10{0.615 0.042 0.987 0.006
safety=low — car=unacc + 1 |- 7-10{1.000 0.476 1.000 0.100
persons=2 car=unacc — lugboot=big - 7-10f - 7-10|0.333 0.333 0.667 0.000
lugboot=big car=good — safety=med | O 5-6 |0 5 |1.000 0.042 1.000 0.009
car=v-good — lugboot=big ® 3 |+ 2 ]0.6150.069 0.978 0.011
car=unacc — buying=v-high e 4 |+ 3 |0.2980.833 0.344 0.033
car=v-good — safety=high + 2 |+ 1 |1.0000.113 1.000 0.025
persons=4 — lugboot=Dbig car=unacc - T7-10| - 7-10{0.153 0.239 0.641 -0.020
persons=4 safety=high — car=acc O 560 4 ]0.5630.281 0.938 0.038

Although the correlations in Table [l are quite low, the tentative conclu-
sion is that W RAcc correlates best with both intuitive notions of reliability and
interestingness. This provides some preliminary empirical support for the idea
that W RAcc provides the right trade-off between predictive and descriptive rule
evaluation measures.

Table 3. Rank correlations between two measures elicited from the expert and four
rule evaluation measures.

Acc Sens Spec WRAce
0.150 0.152 0.116 0.323
0.067 -0.006 0.029 0.177

expert’s Rel
expert’s Int

5.2 Rule Filtering

The measures discussed in this paper are primarily intended for ranking and
filtering rules output by an induction algorithm. This is particularly important
in descriptive induction tasks such as association rule learning and database
dependency discovery, since descriptive induction algorithms typically output
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several thousands of rules. We briefly describe some preliminary experience with
rule filtering using the functional dependency discovery tool fdep [4].

We ran fdep on some of the UCI datasets [7], and then used W RAcc to rank
the induced functional dependencies. Below we give some of the highest ranked
rules in several domains. They have the form Ay,..., A, — A, meaning “given
the values of attributes Ay, ..., A,, the value of attribute A is fixed”; see [4] for
details of the transformation into H < B form.

Lymphography:

[block_lymph_c,regeneration,lym_nodes_enlar,no_nodes]->[block_lymph_s]
[lymphatics,by_pass,regeneration,lym_nodes_enlar]->[lym_nodes_dimin]

Primary tumor:

[class,histologic_type,degree_of_diffe,brain,skin,neck]->[axillar]
[class,histologic_type,degree_of_diffe,bone_marrow,skin,neck]->[axillar]
[class,histologic_type,degree_of_diffe,bone,bone_marrow,skin]->[axillar]

Hepatitis:

[liver_firm,spleen_palpable,spiders,ascites,bilirubin]->[class]
[liver_big,liver_firm,spiders,ascites,varices,bilirubin]->[class]
[anorexia,liver_firm,spiders,ascites,varices,bilirubin]->[class]

Wisconsin breast cancer:

[uni_cell_size,se_cell_size,bare_nuclei,normal_nucleoli,mitoses]->[class]

[uni_cell_shape,marginal_adhesion,bare_nuclei,normal_nucleoli]->[class]

[uni_cell_size,marginal_adhesion,se_cell_size,bare_nuclei,normal_nucleoli]
->[class]

Our experience with rule filtering in these domains suggested that W RAcc(R)
would drop quite sharply after the first few rules. Notice that in the last two
domains the induced functional dependencies determine the class attribute.

6 Summary and Discussion

In this paper we have provided an analysis of selected rule evaluation measu-
res used in machine learning and knowledge discovery. We have argued that,
generally speaking, these measures should be used relative to some threshold,
e.g., relative to the situation where this particular rule head is not connected to
this particular rule body. Furthermore, we have proposed a single measure that
can be interpreted in at least 5 different ways: as weighted relative accuracy, as
weighted relative sensitivity, as weighted relative precision, as weighted relative
negative reliability, and as novelty. We believe this to be a significant contribu-
tion to the understanding of rule evaluation measures, which could be obtained
because of our unifying contingency table framework.

Further work includes the generalization to rule set evaluation measures.
These differ from rule evaluation measures in that they treat positive and ne-
gative examples symmetrically, e.g., RuleSetAcc(H < B) = p(HB) + p(HB).
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Another extension of this work would be to investigate how some of these mea-
sures can be used as search heuristics rather than filtering measures. Finally, we
would like to continue empirical evaluation of W RAcc(R) as a filtering measure
in various domains such as association rule learning and first-order knowledge
discovery.
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