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Abstract. One of the challenges in designing systems is adopting a de-
sign method with compositional properties. Compositional functionality
guarantees that two components that each perform a task can be in-
tegrated without a�ecting the semantics of either task. Compositional
performance means that two components can be integrated so that the
timing of neither components changes. In this paper we describe the
hardware and software needed in order to build cache memories that
have those compositional properties. This partitioned cache allows the
system designer to design individual components of an application pro-
gram in the knowledge that cache performance is fully deterministic;
ie. integrating these components will not a�ect the performance of any
component.

1 Introduction

When designing systems one of the main challenges is adopting a design ap-
proach that is compositional. Compositional design means that one can design
components of a system independently and compose them without a�ecting
functionality or performance. This applies to the design of parts of an applica-
tion program, an item of hardware speci�ed in VHDL, or some software library
module.

In this paper we are going to focus on one component found in many systems:
the cache memory. Functionally, a cache is mostly transparent to the program-
mer. From a performance viewpoint, the cache may have a signi�cant impact.
On average, introducing a cache will improve the performance, but very little
can be predicted about cache performance of speci�c applications. Even if we
know the exact performance characteristics of two software modules when exe-
cuting on a speci�c cache, it is still very di�cult to predict the performance of
the combined modules.

Many solutions have been proposed to improve cache performance, including
set-associative caches [1] and victim caches [2], but all work on statistical prop-
erties which are of little value when designing a real-time system. We present a
solution where the cache is exposed to the compiler and has some extra hardware
attached that allows data streams to be segregated where necessary. The com-
piler analyses the application program and automatically generates code with
composable performance properties.

? This work supported by EPSRC grant GR/L78970.



In Section 2 we will �rst elaborate on compositional properties, before quanti-
fying conventional cache performance and its lack of composability. As a solution
we suggest the use of partitioned caches as described in Sections 3 and 4. Like
conventional caches they are transparent to the programmer in terms of func-
tionality but, in addition, have compositional performance characteristics. This
means that system designers can produce software components in the knowledge
that the cache performance is predictable. We quantify these performance results
in Sections 5 and 6.

2 Compositional Design Strategies

Composability is an issue in designing any type of system; whether it is special
purpose hardware, general purpose processors, or software. This issue must be
addressed by the tools and software library modules that are used for design
and implementation, for example, the hardware description language used to
design hardware, and the programming language used for implementing pro-
grams. Composability spans the hardware software divide in that composability
of software may be restricted by the underlying hardware.

As an introduction to composability we will �rst discuss two programming
languages in Sections 2.1 and 2.2. Compositional properties of programming lan-
guages are well studied, since a major issue in designing a programming language
is to allow programmers to design, implement, and test modules independently,
before integrating them in a �nal phase.

After that, we discuss cache memories which present some major issues in
producing composable systems. A cache is functionally transparent, and im-
proves the performance of a program on average. However, even though the
performance improves on average, it is very di�cult to predict what exactly
happens to the performance of two components that both use the same cache.
Subsequent sections present a novel caching strategy which addresses this issue.

2.1 Example 1: Haskell

Haskell [3] is a purely functional programming language, de�ned in the mid-
1990's. Purely functional programming requires the programmer to write a func-
tion that given some input produces some output. A fundamental requirement
of such a function is that it can only operate on the input passed to the function;
there is no global state on which functions can operate.

As a direct consequence of this purely functional approach, the language has
very strong compositional properties. Two functions that are de�ned can be
executed in any order, including in parallel, and they will always produce the
same result. Once a module has been de�ned to implement, for example, a hash-
table, this module can be employed in any other place and will always implement
a hash-table. This can be achieved in other languages, such as C, C++ and Java,
but Haskell enforces compositional behaviour; one cannot implement side e�ects.



Haskell is strong at compositional functionality but it is not very strong at
compositional performance. One example of this fact is as a result of the Haskell
garbage collection system. Garbage collection is an essential part of the language
but the user cannot determine at compile-time when garbage collection will take
place. Even if the performance characteristics of two functions are known exactly,
the performance may therefore change when they are composed, because the
garbage collector may require a signi�cant execution time in one function since
the other function has produced a lot of garbage.

2.2 Example 2: Occam

Occam [4] has a di�erent approach to guarantee composability. Side e�ects are
an essential part of Occam, but at compile time a disjointness check is performed.
This checks which variables are used in a module and that they are not used by
any other module that executes concurrently. The disjointness check guarantees
that any program that is accepted by the compiler will not contain any state
modi�cations that are unsafe.

The Occam approach gives a degree of composability in that any concurrent
activity that is accepted by the compiler will run deterministically since there
are no race conditions on the global state. Of course, one can write an Occam
program in which a module relies on side e�ects, and hence di�erent compositions
of function calls will result in di�erent answers.

Occam has a very strong compositional performance model. The language
is designed so that all memory allocation, including any stacks, is performed
at compile-time. Hence, the order in which functions are executed is irrelevant
to the performance. When functions are executed concurrently, the performance
will rely on what the underlying hardware can achieve. Having said that, there is
one element of the hardware where the performance cannot easily be predicted:
the cache memory. The performance of a function will always depend on what
is present in the cache, and on which other functions are being executed.

2.3 Compositional Caching

As stated earlier, composability is not strictly a property of either hardware
or software. As an example, suppose that we have two modules, one producing
elements and one consuming elements, which are executed a the for-loop sketched
in Figure 1. Ideally the performance of this loop would be equivalent to the
performance of the producer being called a 1000 times, the consumer being
called a 1000 times plus the overhead of a for-loop. Unfortunately, this is not
necessarily the case depending on the cache architecture of the host system.

Suppose that the system employs a direct mapped data cache. If the function
produce is called 1000 times in a row, each nth iteration would cause a cache
miss, where n is the line size of the cache. Similarly, the consumer would have
one cache miss every n iterations.

When the two functions are integrated and called subsequently from one for-
loop, the arrays y and z may map on the same line in the cache (which is very



int y[ 16384 ];

int z[ 16384 ];

int produce( int index )

{

return y[ index ];

}

void consume( int index, int value )

{

z[ index ] = value;

}

void main()

{

int i;

int x;

for( i = 0; i < 1000; i++ )

{

x = produce( i );

consume( i, x );

}

}

Fig. 1. Example program with poor composability due to cache performance.

likely given that the array y is exactly a power of 2 in size), and we will end up
with a cache miss on every entrance to both the producer and the consumer.
One cache miss to load the line covering the y array, which will displace the line
of z, which is to be reloaded when consumer is called.

Although this may seem like a contrived example there are actually many
programs where this interference occurs. Powers of two are often used as array
sizes, and even within functions such as matrix multiplications, various data
structures can interfere in the cache. An interesting example is a GIF decoder
which uses two arrays, each sized a power of 2. Figure 2 plots the execution time
of a GIF decoder. We have manually inserted some padding between those arrays;
and depending on the amount of padding we can see the performance vary. On
this particular machine, a Silicon Graphics in�nite reality engine, the e�ects
are relatively minor, but on other architectures we have observed performance
variations of up to 30%.

Unpredictable behaviour is exacerbated when we run programs on a multi-
threaded machine, modelled on the HEP [5] and *T [6] multi-threaded architec-
tures, as is shown in Figure 3. Here we show the hit-ratios of a cache running
1, 2, 4, and 8 GIF decoders in parallel on a multi-threaded machine. One can
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Fig. 2. Performance of a GIF decoder, along the horizontal axis we have inserted a
varying amount of padding. The vertical error bars denote the standard deviation.
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(a) 1 GIF Decoder thread(s). (b) 4 GIF Decoders thread(s).

Fig. 3. Multi-threaded performance of multiple GIF decoder threads.

observe that depending on the number of threads and the associativity of the
caches performance deteriorates; we will come back to this in Section 6.

3 Partitioned Cache Hardware

In order to address some of the problems with designing composable cache sys-
tems we propose the use of a partitioned cache. This novel design consists of a
direct-mapped style cache that can be dynamically partitioned into protected
regions by the use of specialised cache management instructions. By modify-
ing the load/store mechanism and tagging each memory access with a partition
identi�er, each access is routed through a partition dedicated to dealing with it.

Unlike conventional caches, the partitioned cache is visible to software run-
ning on the host processor. This allows the compiler and operating system to
allocate partitions of the cache to speci�c data objects and streams of instruc-
tions so as to control persistence and eliminate interference. This has the knock
on e�ect of improving the predictability and determinism of the cache.

The idea of exposing the cache to the programmer has been proposed be-
fore [7], and has been worked on by Juan et. al. [8], Kirk [9] and Mueller [10]. The



Partition Identifier

Address Address Translation

Match

Tag DataValid

And

Hit Data

Start Size Stride

Fig. 4. A 
ow-diagram of a partitioned cache.

most obvious de�ciency of all these systems is the in
exible manner in which
cache partitions are allocated and the blinkered approach in using entirely hard-
ware or software based designs. These techniques lack interaction from the one
component, the compiler, that enables them to revolt against conventional, aver-
age case optimised cache design. By employing the compiler to analyse the source
program and con�gure the cache so as to achieve the best performance possible,
a partitioned cache bene�ts from a combined hardware/software approach. This
sidesteps the problems of being tied to one paradigm in particular, and allows the
cache to reap the bene�ts of being specialised to any given application program.

3.1 Architecture

Our partitioned cache [11] is a direct-mapped like block of cache memory which
uses a partition descriptor table to hash incoming memory address tra�c into
cache line addresses. Figure 4 shows a 
ow-diagram of the operation of a par-
titioned cache. Information is extracted from the partition descriptor table by
using an index, the partition identi�er, provided with each memory access. This
information is used to hash the memory address so that it maps onto a subsec-
tion, or partition, of the cache.

In order to maximise the density of useful data stored, the partitioned cache
allows each cache line to be �lled with data from non-contiguous, regularly
strided memory locations. The stride, or distance between each address in a
cache line, is a property of the partition owning the cache line and is used in
the translation of memory accesses to map memory locations into the cache.
For example, as demonstrated in Figure 5, a conventional cache with 4 words in
each cache line will need 4 lines to store the addresses 0, 4, 8, 12 which could be
generated by an array reference such as a[4 � i], without con
ict. A partitioned
cache can store these accesses in one line provided the partition is con�gured
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Fig. 5. Strided cache lines in a partitioned cache.

with a stride of 4. In order for this scheme to be successful, we assume that lower
levels of the memory hierarchy [12{14] can e�ciently service such requests.

The presence of strided cache lines requires that the address translation mech-
anism which converts memory addresses into cache addresses is slightly more
complex than usual. The purpose of the address translation mechanism, or ad-
dress hashing function, is to distribute memory addresses in the cache so as to
use all of the available cache space. In the context of a partitioned cache, the
hash function needs to restrict the mapping so that memory addresses can only
appear in the cache space owned by the target partition, and to populate the
cache partition as fully as possible with incoming references.

Considering Figure 4 where pstart, pstride and psize are the start line, stride
and size of a partition p, we can express our hashing function as follows:

poffset = ((addr=nwords)� lsb(pstride)) mod psize
pline = pstart + poffset

That is, the cache line pline for an address addr is given by the sum of the starting
line of the partition, pstart, and an o�set poffset. The �rst stage in computing
the o�set is given by the incoming address, addr, divided by the number of
words per cache line, nwords, which must be a power of two. This is shifted
right by the position of the least signi�cant 1 bit of the partitions stride, pstride,
and �nally restrict the cache line to the available space by taking the remainder
after division by the partition size, psize.



To see how this scheme will distribute the data, consider a stride of twenty
which has a binary representation of 10100. After dividing the incoming address
by the number of words per line we shift it right by two, the least signi�cant
non-zero bit of the stride being the bit two. If we set size of the partition to
eight lines and we assume a standard of four words per cache line, the �rst ten
accesses, to addresses 0; 20; 40; 60; 80; 100; 120; 140; 160; 180, will be placed
in lines 0; 1; 2; 3; 5; 6; 7; 0; 2; 3 of the partition. This technique ensures that as
long as the partition descriptor table is con�gured correctly, accesses to memory
using di�erent partition identi�ers will always map into disjoint partitions and
will utilise all cache lines in the partition. However, the scheme may not use
the lines in an optimal manner, with some being used more often than others
depending on the size, stride and line length of the partition.

3.2 Partition Management

Before we consider how memory is accessed though cache partitions, it is im-
portant to understand how the partition descriptor table is managed so that the
cache can operate correctly. The management of the cache is performed dynam-
ically, under control of the running program or operating system. This is done
by using additional machine level instructions which alter the con�guration of
the cache. Table 1 details the extra instructions required to manage the table of
partition descriptors. An alternative to this implementation may be to o�er the
partition descriptor table as a memory mapped block of address space so that
the programmer can access it using standard load and store instructions.

In our instruction based management scheme, the CREPAR instruction adds
an entry to the partition descriptor table, creating a new partition. The partition
descriptor is con�gured so that the partition is tagged with an identi�er of id and
has a stride of stride. Furthermore, the management mechanism ensures that
the partition starts on a cache line such that the partition is size cache lines in
size. Creation of a partition which causes partitions with duplicate identi�ers is
considered an error.

The DELPAR instruction acts to delete the partition with an identi�er of
id from the partition descriptor table. In this study, the deletion of partitions
under program control, thus creating truly dynamic con�guration of the cache,
is not discussed. Speci�cally, this is due to the complexity introduced by such
usage which may include, for example, fragmentation of the partitionable cache
space.

Partitions may be invalidated, that is their contents marked as invalid, so
that the partition is e�ectively emptied or 
ushed, using an INVPAR instruction.
Finally, the SETIPAR instruction is used to control the value of the partition
through which instructions are loaded by the fetch/execute engine.

3.3 Partition Access

In order for accesses to memory to be routed through the correct partition in the
cache, the memory access mechanism must be augmented to provide a partition



Instruction Meaning

CREPAR id; size; stride Add partition.

DELPAR id Remove partition.

INVPAR id Invalidate partition.

SETIPAR id Set instruction partition.

Table 1. Partitioned cache management instructions.

Instruction Meaning

LOAD dst; add; id R[dst] M [add; id]

LOADIDX dst; add; off; id R[dst] M [add+ off; id]

STORE src; add; id M [add; id] R[src]

STOREIDX src; add; off; id M [add+ off; id] R[src]

Table 2. Partitioned cache access instructions.

identi�er. The simplest way to pass the partition identi�er is by using an extra
operand in each instruction. This strategy requires that the instruction set be
altered and may reduce code density by increasing the number of bits required to
encode each instruction. Table 2 shows the modi�ed memory access instructions
where R[n] denotes an access to general purpose register n, M [add; id] denotes
an access to memory, through the cache, at address add using partition id.

There are other techniques for passing the partition to the cache (such as
stealing memory address bits, or maintaining a \current partition register"), but
because our research is mainly based in the techniques for using a partitioned
cache e�ectively and not issues of implementation, we opted for the simplest
strategy. It is important to note that the partition identi�ers are e�ectively con-
stants and hence it should be easy to pipeline accesses to the partition descriptor
table such that the performance overhead of doing so is minimal.

Finally, where an invalid or reserved partition identi�er is used, the cache
foregoes the standard behaviour and passes the access straight through to the
next level of the memory hierarchy. This is used to achieve cache bypass where
the cache state is unaltered by the memory access and is useful in this context for
avoiding situations where a miscon�gured cache may otherwise give unde�ned
results.

4 Using A Partitioned Cache

Automation of partition management and con�guration requires the application
of a number of simple algorithms in suitable compiler modules. These algorithms
act to disperse a complex stream of memory accesses into a number of more
simple streams. We separate memory accesses to data objects into vector, scalar
and stack classes. A number of partitions are allocated to each of these classes
which are con�gured to suit the access properties of each class.



{ Vector data partitions are perhaps the most interesting data access segrega-
tion to consider. Each vector within the program normally has at least one
partition dedicated to it. Deciding the parameters for a partition, and how
many there should be for each vector is computed from the set of references
made in the application source code.

{ Scalar data partitions cache accesses to ordinary, non-vector variables. The
pattern of access to scalars is determined by the register spilling and loading
of scalar data generated by the compiler. Normally, the compiler can remove
most scalar memory accesses using traditional optimisation techniques. The
accesses that remain can be routed through a single scalar partition whose
size is related to the number of scalars in each of the procedures.

{ The stack partition is sized to manage stack frames e�ectively. In a similar
way to the scalar partition, we see highly localised access patterns. The
algorithm takes into consideration the stack frame size of each procedure
within the program, and the existence of any recursive procedure calls. The
result is a stack partition large enough to contain the most recent n-levels
of recursion in protected cache space.

We �rst establish properties of the memory accesses, whereupon the compiler
partitions the program over the cache. For a full description of the algorithms
used see [15, 16]

4.1 References

The compiler takes a source program as input which declares a number of scalar
and vector variables and uses a number of statements and expressions to perform
operations on those variables. Figure 6 shows a kernel from the Livermore Loop
Fortran Kernels [17] suite of benchmark programs, which computes an Incom-
plete Cholesky Conjugate Gradient or ICCG. This program typi�es the kinds of
operations performed by an application program on declared data objects.

The �rst section of the program declares two vector variables, named v and
x, and �ve scalar variables, named ipnt, ipntp, ii, i and k. The variables are
then used in a number of references, which mark instances of data access to the
variable, in a sequence of statements or expressions. In the example program
there are two references to the variable v, four to x, two to ipnt, six to ipntp,
�ve to ii, four to i and nine to k.

We can compute a set of references for all variables in the program, even if
the set turns out to be empty. From this information we can determine further
properties, called the stride, the group and the window, which are associated
with variable references and will guide the partitioning process. Given that the
7! operation is used to denote a mapping between a symbol and a set of references
to that symbol, the reference sets for our ICCG example in Figure 6 look like:



void iccg()

{

double v[ 1024 ];

double x[ 1024 ];

double ipnt;

double ipntp;

double ii;

int i;

int k;

ii0 = 1024;

ipntp0 = 0;

do

{

ipnt0 = ipntp1;

ipntp2 = ipntp3 + ii1;

ii2 = ii3 / 2;

i0 = ipntp4 - 1;

for( k0 = ipnt1 + 1; k1 < ipntp5; k2 = k3 + 2 )

{

i1 = i2 + 1;

x0[ i3 ] = x1[ k4 ] - v0[ k5 ] * x2[ k6 - 1 ]

- v1[ k7 + 1 ] * x3[ k8 + 1 ];

}

}

while( ii4 > 0 );

}

Fig. 6. An example implementation of an ICCG kernel annotated with reference num-
bers.

v 7! f v0, v1 g
x 7! f x0, x1, x2, x3 g
ipnt 7! f ipnt0, ipnt1 g
ipntp 7! f ipntp0, ipntp1, ipntp2, ipntp3, ipntp4, ipntp5 g
ii 7! f ii0, ii1, ii2, ii3, ii4 g
i 7! f i0, i1, i2, i3 g
k 7! f k0, k1, k2, k3, k4, k5, k6, k7, k8 g

4.2 Strides

The stride of a reference is the distance between successive accesses to the as-
sociated variable. This comes about through the use of subscripted references
to vector variables in the program. As the subscript expression changes value,
usually due to iteration of a loop, successive accesses to the variable are gen-



erated that are spaced apart by a potentially constant distance. Because our
partitioned cache has a facility for strided cache lines which improve the density
of useful data, the detection and use of this property is desirable.

The ICCG kernel uses only simple, one-dimensional array subscripts of a
standard form. The strides for references to v and x are calculated and marked
for use in con�guring the partitions allocated to them:

v 7! f v0[stride=2], v1[stride=2] g
x 7! f x0[stride=1], x1[stride=2], x2[stride=2], x3[stride=2] g
ipnt 7! f ipnt0, ipnt1 g
ipntp 7! f ipntp0, ipntp1, ipntp2, ipntp3, ipntp4, ipntp5 g
ii 7! f ii0, ii1, ii2, ii3, ii4 g
i 7! f i0, i1, i2, i3 g
k 7! f k0, k1, k2, k3, k4, k5, k6, k7, k8 g

4.3 Groups

The purpose of a group is to collect together all references to a variable that
have a similar access properties and should therefore be placed in the same cache
partition. One method for creating groups of references is to collect them using
the stride of the reference to determine which group it should go into. Using this
strategy, each item of vector data may produce a number of reference groups,
each with di�erent strides and hence di�erent access patterns. References to
scalar variables will only ever produce one group because of the lack of associated
stride based access.

For example, in the ICCG kernel in Figure 6, both the references to v have
the same stride and so will be grouped together while the references to x will
produce two groups because there are two di�erent strides:

v 7! f v0[stride=2], v1[stride=2] g
x0 7! f x0[stride=1] g
x00 7! f x1[stride=2], x2[stride=2], x3[stride=2] g
ipnt 7! f ipnt0, ipnt1 g
ipntp 7! f ipntp0, ipntp1, ipntp2, ipntp3, ipntp4, ipntp5 g
ii 7! f ii0, ii1, ii2, ii3, ii4 g
i 7! f i0, i1, i2, i3 g
k 7! f k0, k1, k2, k3, k4, k5, k6, k7, k8 g

4.4 Windows

The �nal useful property of a group of references is something termed the win-
dow. This property is a measure of the range of di�erent data items which are
accessed with the same stride and, to some extent, relates to the persistence of
data within the cache. We use the window of a group of references as a heuristic



to guide the sizing of partitions created for that group. The window is only useful
in groups for vector variables because scalar partitions are sized to accommodate
all variables rather than a subset of some larger data object.

The ICCG example highlights this property fairly well. Within the inner loop
of the kernel, the main computational expression makes a number of references
to the variable x which have produced two reference groups. The second of these
groups contains the references x[k�1], x[k] and x[k+1] because they all have the
same stride, as determined by k. By examining these references, we can see that
as the loop is executed a number of times the value of x[k+1], for example, may
be reused as the value of x[k�1] as the value of k changes. To accommodate this
need for data persistence, the window of the group is computed as the di�erence
between the minimum and maximum o�sets from each group of references.

This is used in the ICCG example to guide the sizing of cache partitions
allocated to each group so that this potential persistence requirement is exploited
to gain higher performance:

v[window=2] 7! f v0[stride=2], v1[stride=2] g
x0[window=1] 7! f x0[stride=1] g
x00[window=3] 7! f x1[stride=2], x2[stride=2], x3[stride=2] g
ipnt 7! f ipnt0, ipnt1 g
ipntp 7! f ipntp0, ipntp1, ipntp2, ipntp3, ipntp4, ipntp5 g
ii 7! f ii0, ii1, ii2, ii3, ii4 g
i 7! f i0, i1, i2, i3 g
k 7! f k0, k1, k2, k3, k4, k5, k6, k7, k8 g

4.5 Partitioning

Once the reference analysis process is �nalised, we can create a cache partition
for each group of references to vector variables and mark them so that each
reference accesses the variable through the correct partition. The partitions are
created so that the partition stride and size are guided by the stride and window
of the group from which guided their creation. In addition to partitions for vector
variables, we create single partitions for all scalar variables and another for stack
accesses. The scalar partition is sized so that it can house all variables that do
not �t into registers.

At this stage, the source program is annotated in such a way that the back end
of the compiler can correctly generate machine level instructions to implement
the partitioning scheme required. However, before this is done, the total amount
of cache resource used can then be reduced by reusing partitions. A simple
technique, similar to register allocation, reuses partitions allocated to one data
object when its use doesn't interfere with another and the con�guration of the
partition matches the requirements of the two variables.



5 Compositional Performance Model

In the previous section we have described how we can segregate memory accesses.
Accesses to di�erent objects are routed through di�erent cache partitions in
order to avoid interference. Various parallel activities that operate on one or more
objects will also run in separate partitions, which allows us to de�ne an extremely
simple performance model. Below, we are going to de�ne a performance metric
P for a code segment s, P (s). The unit of this metric can be execution time or
number of cache misses depending on the prediction model used.

This section describes how the performance of an application may be calcu-
lated. We assume that we we have measurements of its constituent parts. That
is, without necessarily computing the performance of the entire application by
methods described in previous sections, we may accurately compose the appli-
cations performance from smaller, computationally cheaper and more accurate
studies of the application.

5.1 Basic composition

Assuming, that we can compute the performance P (s1) and P (s2) of two code
fragments s1 and s2, then we can now trivially compute P (s1; s2), the perfor-
mance of the sequential composition of s1 and s2. If s1 and s2 share no partitions,
then P (s1; s2) = P (s1)+P (s2). This is valid for both time and miss performance
metrics and means we can decompose large applications into more e�cient com-
ponents for performance prediction. If s1 and s2 do share partitions, then this
method of calculating P (s1; s2) can be pessimistic as the execution of s1 may
bene�t the execution of s2. In the cases where s1 and s2 share partitions, an ac-
curate performance metric is made from the whole program s1; s2 and not from
their constituent performance metrics. Iterated code segments can be treated
similarly.

5.2 Extension by composition

If we extend some fragment s, by the addition of a reference v[i] to form s0,
where v[i] is executed through a unique partition, we can count the extra misses
incurred for v[i] independently of the other references. The instruction references
require a recalculation, to consider the changed program executed through the
relevant instruction partition. This situation is similar to the case where v[i]
shares a partition with other references in the program. Prediction of the ex-
ecution time for s0 will require full static simulation and the classi�cation [18]
of the data reference v[i] may be independent, or require the reclassi�cation of
a group of references, as before, depending on whether v[i] shares a partition.
The reclassi�cation and simulation of the instruction code is also required as is
a computation for the miss counting method if that is the model used.
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(a) 1 GIF Decoder thread(s). (b) 2 GIF Decoders thread(s).
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(c) 4 GIF Decoder thread(s). (d) 8 GIF Decoders thread(s).

Fig. 7. Data cache performance of multiple GIF Decoder threads. The cache size is
measured in lines.

5.3 Multi-threading

Considering two code segments s1 and s2 executed in parallel, denoted by s1js2
and pre-computed performance metrics P (s1) and P (s2), a simple de�nition of
P (s1js2) is max(P (s1); P (s2)). This de�nition has certain constraints. As in pre-
vious examples, we assume s1 and s2 are disjoint in their use of partitions. If
this is not the case then we may either mark the shared partition references as
misses or, if the combined reference sequence can be determined, accurately pre-
dict the performance. We will also ignore inter-thread communication facilities,
suggesting that they do not dominate the performance of the tasks.

The parallel computation assumes that both tasks s1 and s2 have the same
performance metrics as when they are run independently. This is true for the
miss counting models but the runtime model makes further assumptions that
may be included in a throughput aware model [15].

Even without extension of the utilisation metric, the model is valid and useful.
It can answer, when only the cache memory hierarchy is the component under
examination, the important questions about meeting computational deadlines.
This model can also be used to build an optimisation scheme.

6 Results

The GIF image decoder is a small and manageable example of a simple multi-
media application. It is generally run in some sort of multi-threaded environment
such as the HTML rendering engine of a web browser. To represent a realistic
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(a) Tri Diagonal Gaussian Elimination. (b) 1D Particle In Cell (PIC).
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(c) Discrete Ordinates Transport. (d) All three kernels.

Fig. 8. Data cache performance of selected LLFK kernels both sequentially and in
parallel. The cache size is measured in lines.

test, we ran between one and eight decoders operating concurrently, introducing
the concurrency through the use of an explicit language level construct in the
benchmark program. The execution trace of a GIF decoder is data-dependent
and although each GIF decoder operates on a di�erent image, all threads have
a comparable run-time. The results of the experiment are shown in Figure 7.

The results for the partitioned cache are the single point in space with the
overall performance of the cache is simply composed from the performance of
the partitions. When a single GIF decoder is executed, conventional cache ar-
chitectures show comparable performance pro�les but, because of their lack of

exibility, scale badly and are not e�ective as the number of threads is increased.
Data dependent application programs such as the GIF decoder would normally
result in complex interference patterns between other threads in the system but
by eliminating inter-thread interference with a partitioned cache, thread perfor-
mance is guaranteed. In the case where there is only one thread running, the
partitioned cache performs better than same sized set-associative caches due
to the elimination of intra-thread or self interference. Although this bene�t is
largely uninteresting in multi-threaded situations, it is a potentially valuable
property in high performance computer systems.

A second set of multi-threaded experiments are constructed using kernels
taken from the LLFK benchmark suite. We performed two experiments, run-
ning three independent kernels in three threads, and running a parallelised ker-
nel against a non-parallelised version. These experiments demonstrate inter and
intra-thread interference between shared and non-shared data objects in a num-
ber of di�erent threads of comparable run-time. The results are shown in Fig-
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(a) 2D Implicit Hydrodynamics Fragment. (b) Parallelised 2D Implicit Hydrodynamics.

Fig. 9. Data cache performance of parallelised 2D Implicit Hydrodynamics Fragment
kernel.

ures 8 and 9 respectively and graph the hit-ratio of a partitioned cache compared
with a number of set-associative caches of a similar size.

In both experiments, as interference is introduced by running more threads
either as disjoint processes of part of a parallelised algorithm, the partitioned
cache can sustain high performance while the conventional caches su�er a signif-
icant drop. Although the parallelised kernel was constructed by hand, the drop
in performance demonstrates the problems that can be introduced by parallelis-
ing compilers. If these compilers are not considerate of the issues involved as
a result of their transformations, the good work done by �nding and exploiting
parallelism within a program will be undone by poor memory performance. With
careful use of a partitioned cache and associated compiler technology, the gains
from parallelisation of programs are protected against this kind of problem.

7 Conclusions

We have presented a cache architecture for which it is easy to predict the perfor-
mance of programs running on it, because of its compositional properties. The
ability to predict performance is particularly useful in real time environments,
such as a set-top box. The software modules, such as the video decoder and audio
decoder, can be developed and tuned independently, and the cache architecture
guarantees that when integrated the performance of the two modules is a simple
composition of the performance of all of the components.

Our solution partitions a direct mapped cache, each partition is used for one
or more reference streams. The use of the cache is completely under control of
the compiler. Because we expose the cache to the compiler, we need to modify
the instruction set so that we can pass the partitioning information to the cache.

The performance of each partition can either be predicted analytically, or
be measured using simulation tools. Analytical prediction of the performance
of partitioned caches is far simpler than performance prediction of traditional
caches because interference is controlled [15]. Whatever prediction method is
chosen, compositional properties allow us to reason about the performance of
the partitioned cache when the system is integrated.
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