
On the Effects of Bandwidth Reduction Techniques in Distributed Applications

Hanping Lufei†, Weisong Shi†, and Lucia Zamorano¶

† Department of Computer Science ¶ Department of Neurological Surgery

Wayne State University Wayne State University

431 Stat Hall, Detroit, MI 48202 39 Lande Building, Detroit, MI 48201

Phone: (313)577-3186 Phone: (313)966-0342

{hlufei,weisong}@wayne.edu lzamorano@neurosurgery.wayne.edu

Abstract

Communication optimization plays an important role in
building networked distributed applications. In this paper,
we systematically evaluate four bandwidth reduction al-
gorithms, namelydirect sending, delta-encoding, fix-sized
blocking, andvary-sized blocking, using five types of doc-
uments includingsource code, images, Web contents, Mi-
crosoft Word documents, andLatex files. The experiments
were performed under four representative network connec-
tion technologies. Performance evaluation results show that
different approaches have different performance in terms
of different metrics. Completely different results can be
achieved by the same algorithm with respect to different
types of documents. Network condition can affect some al-
gorithms substantially. Furthermore, the effect of block size
to the system performance was also studied.

1 Introduction

More and more distributed applications, such as dis-
tributed and wide-area file systems [1, 8, 10, 15], Inter-
net backup system [2, 12, 17], Web application [5] and
distributed database have been deployed on top of the In-
ternet. Meanwhile, we have witnessed the fast growth
of diverse network connection techniques, such as local
area network (LAN), 802.11 series wireless network (e.g.,
802.11a,b,g) [9], cable modem, digital subscription line
(DSL), Wireless 3G [26], Bluetooth [7], and traditional
phone Dialup service etc. A real challenge in building a
distributed application across these heterogeneous network
environments is the bandwidth reduction technique.

Several application-specific optimization techniques
have been proposed in different contexts. For example,
delta-encoding (Delta) was proposed by Mogulet al. in
the context of HTTP traffic [14] to exploit the similarity
of Web documents. Rsync [25] synchronizes different ver-

sions of the same data by using fix-sized chunks for com-
munications. LBFS [15] takes this a step further by reusing
the data chunks across multiple similar files (including mul-
tiple versions of the same file).

Although these previous results are promising, two re-
lated issues are neglected in these previous efforts. First,
none of them take document characteristics into considera-
tion. Second, the adaptability of these algorithms to hetero-
geneous network environments is yet to be studied in their
design. In this paper we systematically evaluate four band-
width reduction algorithms, namelydirect sending, delta-
encoding (vcdiff)[11], fix-sized blocking, and vary-sized
blocking, in terms of two performance metrics:comput-
ing overheadandbandwidth requirement. Although there
are quite a few different types of files existing on the In-
ternet, we identified five representative file types based on
their usage pattern, and used them as test cases for algorithm
comparison purpose. The five types of files are:source
code(e.g., C/C++ code),images, Web contents, Microsoft
Word documents, and Latex files. The experiments were
performed under four representative network connection
technologies:100Mbps switched Ethernet, 802.11b wire-
less LAN, cable modem, andphone dialup. Additionally,
the effect of different block sizes on the fix-sized blocking
algorithm was also investigated. Several interesting obser-
vations are found in this paper. Specifically, our experimen-
tal results show that:

• Overall, no single algorithm outperforms others in all
cases. and different approaches have different perfor-
mance in terms of different metrics. In general, we
found that when the network condition is good, the
total time is dominated by the computing overhead,
while the bandwidth requirement dominates when the
network is slow.

• With regards to the computing overhead, obviously,
direct sendingwith the compression operation is the

1



fastest. However, surprisingly,delta-encodingusing
vcdiff always generates the smallest difference be-
tween two consecutive versions.

• A completely different results can be achieved by the
same algorithm when it is applied against different
type of documents. Some algorithms have different
performance for diverse document types. One exam-
ple is that for image files,fix-sized blocking
is the best one in computing time, but for other docu-
ment types, it is the second worst one among the four
algorithms.

• Network bandwidth affects the performance of al-
gorithms substantially. For instance,fix-sized
blocking is much better than other algorithms for
image files as far as total time is concerned in fast net-
works such as LAN or Wireless LAN. But in relatively
slow networks like cable modem or dialup, it is not the
best solution anymore.

• The result of performance can be influenced by dif-
ferent parameter settings of the same algorithm. In
the fix-sized blocking algorithm, changing the
block size from 2K bytes to 8K bytes provides a fac-
tor of 11.1% reduction of the bandwidth requirement
for some kinds of documents. While doing the same
thing may result in the increasing of computing time
for some other document types such as images.

In summary, each algorithm has its own advantages and
disadvantages. They beat each other in different circum-
stances. Based on these observations an adaptive type-
specific model needs to be devised to dynamically choose
different approach according to different networks, files and
application requirements.

The rest of the paper is organized as follows. A brief
description of the four algorithms and five types of docu-
ments are presented in Section 2. Then a simple model is
abstracted to depict the time spent on a typical communica-
tion operation (file update) in Section 3. Section 4 reports
the details of performance evaluation, including experimen-
tal platforms, documents, performance analysis, and impli-
cations. Related work and conclusion remarks are listed in
Section 5 and Section 6 respectively.

2 Background

In this section, we describe four differencing algorithms
and five typical types of documents used in the following
experiments.

2.1 Differencing Algorithms

Several projects have used differencing to reduce net-
work bandwidth requirements on wide-area file system by
exploiting similarity between distinct versions of the same

files or Web pages, and even among arbitrary documents,
such as delta-encoding for Web documents [14] and email
files [4], object composition for dynamic and personalized
Web contents [19], and block-based techniques for file syn-
chronization [15, 25]. Next we will briefly describe each
algorithm and the corresponding protocol.

Delta-encoding (Delta) — It was first proposed in the
context of HTTP traffic [14]. Currently, the best delta-
encoding algorithm isvcdiff proposed by Korn and Vo
[11]. vcdiff is a general and portable encoding format
for delta compression, i.e., combined compression and dif-
ferencing.

Fix-Sized Blocking— Rsync [25] is one of the systems
taking this approach. It usesfix-sized blocking (Blockfix)
to synchronize different versions. In this approach, files are
updated by dividing both files into fix-sized chunks. The
client sends digests of each chunk to the server, and the
server responds only with new data chunks. Based on old
version and the differencing, the new version can be rebuilt.
The biggest advantage of this algorithm is simplicity.

Vary-Sized Blocking— Fix-based blocking has problem
to find the similarity of insertions and deletions in the mid-
dle of the file. Moreover, previous research results show
that great similarity exists among arbitrary files in a file sys-
tem [3, 22]. Vary-sized blockingis an approach to exploit
this fact. Vary-sized blocking (Blockvaried) was proposed
in LBFS [15] for reducing traffic further. The idea of LBFS
is the content-based chunk identification. Files are divided
into chunks, demarcated by points where the Rabin finger-
print [16] of the previous 48 bytes matches a specific poly-
nomial value. This tends to identify portion even after in-
sertions and deletions have changed its position in the file.
The boundary regions are called breakpoints. The client
then computes a digest of each chunk and sends them to the
server, which maintains a database of chunks from all local
files. The server responds to the client with bits for new
chunks. The client then sends each new chunk to the server.

Direct Sending— For comparison purposes, we imple-
ment a direct sending approach as the base line. In this al-
gorithm, we use gzip to compress the file at the sender and
decompress it at the receiver. Gzip is a popular data com-
pression program [6] which uses LZ77 algorithm. We use
gzip 1.3.3 in our implementation.

2.2 Document Classification
As we described in Section 1, five representative docu-

ment types with different characteristics are chosen for our
analysis.

Source code— Source code files are basis of any soft-
ware project. Modern software engineering requires the co-
operation of many developers at different locations simulta-
neously. How to implement synchronization, update, con-
sistency and other issues efficiently are important to the ap-
plications. One of the characters of source code is that peo-

2



ple usually randomly add, delete or change the content of
source code may evenly distributed across the file.

Image— Image files have many formats. In this paper,
only BMP images are used. For the precompressed format,
such as JPG and GIF, we found it is very difficult to find
the similarity between two files using a regular algorithm.
Therefore, a more powerful algorithm is required and this is
beyond the scope of this paper.

Web Contents— With the prevalence of WWW and re-
cent Web services, many distributed applications are Web
enabled, which means, most of the server content and func-
tionality are provided in the HTML format. Recently, sev-
eral researchers found that there is a large potential for con-
tent reusability for Web content, even for dynamic and per-
sonalized Web contents [21, 18, 27] because of the use of
many common templates across different Web contents.

Latex— Latex is the most powerful document editor and
publishing tool, especially for the documents which have a
lot of mathematical symbols. Similar to the text file, latex
source files consists of text only. The unique feature of latex
files is that they are usually modified sequentially during the
writing stage, and are modified universally during the revise
stages.

Microsoft Word Documents— Even with the appearance
of many other document editing software, Microsoft Word
is still the most popular software to prepare regular docu-
ments. Unlike the latex files, the format of Word documents
is binary, which embeds the format and layout information
as well as the content itself. As such, a minor change in
a Word document might result in a big modification of the
total file.

3 Basic Model and Metrics of Interests

We abstract a simple communication model, as illus-
trated in Figure 1, which consists of a client and a server
at the ends. Logically, the model depicts the common com-
munication paradigm between two communication entities
in any distributed application.1 Without losing generality,
we assume that both ends have an old version shown as the
shadow block in Figure 1. A difference, i.e., the black trian-
gle shown in the Figure, is calculated and sent to the coun-
terpart during the updating phase. In case that there is no
old version exists on one end, more message exchanges are
required to rebuild the new version. The total time asso-
ciated with each file update includes two parts:computing
overhead(Tcomp) andcommunication time(Tcomm). The
calculation of these two times are described as follows. In
Figure 1,Tcc andTsc are the computing times on client and
server side respectively.Tcomm is the communication time
between the client and the server. Let us denote the current
bandwidth between the client and the server byBcurrent,

1Even for peer-to-peer distributed applications, the notion of client and
server is still hold during a given period time of the communication.

New
Old Old

New

A

Tsc

A

Tcomm

A

Tcc

Client Server

delta delta

Figure 1. A basic communication model.

Server

Server

Server

CLAN

CWLAN

CCABLE

CDIALUP

Server

CLAN Server

LAN

CWLAN

Cable Modem

CCABLE

CDIALUP

Wireless LAN

Dialup

Pentium-4 2.0 GHz, 512MB RAM, RedHat 8.0,
Realtek RTL8139 Family PCI Fast Ethernet NIC

Mobile Pentium-3 1.7GHz, 256MB RAM,
RedHat 8.0, D-LInk DWL-650 802.11b adpater

Pentium-3 450 MHz, 192 MB RAM, RedHat
8.0, Netgear CM212 Broadband Cable Modem

Pentium-3 800MHZ, 512 MB, RedHat 8.0,
Realtek RTL8139 Family PCI Fast Ethernet NIC

Pentium-4 2.0 GHz, 512MB RAM, RedHat 8.0,
Realtek RTL8139 Family PCI Fast Ethernet NIC

Figure 2. Four different network configura-
tions.

the total time byTtotal, the delta file size bySdelta, and the
total computation overhead byTcomp respectively. Then the
following formulas hold:Tcomp = Tsc + Tcc, Tcomm =

Sdelta

Bcurrent
. In the next Section, we will compare different al-

gorithms in terms of two performance metrics: computing
overhead (Tcomp) and bandwidth requirement (Sdelta).

4 Performance Evaluation

In this section, we first briefly describe the four experi-
mental platforms and document sources, then in turn com-
pare different algorithms in terms of total time, computing
time and bandwidth requirement. After that we will discuss
block size effect and implications. Finally, based on these
results, an adaptive approach is proposed in the end.

4.1 Experiment Platforms and Document Source

We evaluate four different algorithms in four represen-
tative state-of-the-art network platforms as illustrated in
Figure 2, including 10/100Mbps Fast switched Ethernet
LAN, 802.11b Wireless, Cable Modem, and 56K Dialup.
To simplify the comparison, the server used in the exper-
iment is fixed, while client are different in each scenario.
The configuration of each client, namelyCLAN , CWLAN ,
CCABLE , CDIALUP are listed in the left side of Figure 2.
To evaluate these algorithms, we choose to run them in real
deployments, instead of in a simulated environment. Note

3



Figure 3. Average size(bytes) of five docu-
ment types.

that the hardware configurations of clients are not exactly
same; however, we can reasonably make an assumption that
the processing speed of four client network modules are
roughly same.

The documents used in the experiment are obtained
from different sources. Thesource code come from
another project with 9 different versions and 17 files in
each version. Images are a series of seven continu-
ously changed pictures in BMP format.Web documents
are samples of three dynamic web sites,www.cnn.com ,
www.nytimes.com andwww.slashdotcom.com , by
downloading every 10 minutes.Word documents are
three versions of a master student thesis andLatex
files come from seven versions of a research paper. The
average size of different document types are listed in Fig-
ure 3.

4.2 Comparison of Different Algorithms

In this Section, we analyze the total time from three per-
spectives, namely document types, algorithms, and network
connections. In the following discussion we will represent
direct sending by Direct , delta-encoding by
Delta , fix-sized blocking by Fix-Block , and
vary-sized blocking by Varied-Block respec-
tively. Figure 4 shows the total time in four different net-
work environments. Thex axis represents document types
and they axis shows total time in logarithmic scale. Fig-
ure 5 illustrates the computing time in different network en-
vironments. The horizontal line describes document types
and vertical line stands for computing time including both
client side and server side. Figure 6 reports the practical
bandwidth requirement of each algorithm. Thex axis still
exhibits document types andy axis displays bandwidth re-
quirements.

4.2.1 Document Types

Documents vary greatly on format, size, compression ratio
and other characteristics. Document types will in turn have
some effect not only on the efficiency of the algorithm but
also on some evaluation metrics.

In Figure 4, as far as thesource code is con-
cerned, in the LAN,Delta is the fastest algorithm and
Varied-Block is the slowest one. The three way pro-
tocol of Varied-Block algorithm determines it must
spend more time in computing on both sides. Further-
more, since the average size of thesource code files

is 3K bytes which is close to 2K, the minimal block size
of Varied-Block algorithm, so it can not take many ad-
vantages of other algorithms in terms of the final delta file
size.

Delta is the best algorithm for small sizesource
code files across various network connections. For large
sizesource code files, a prediction could be made that
Delta still might be a good choice because people usually
change thesource code randomly from one version to
another instead of appending something at the end, which
makesFix-Block not work well because of the inflexi-
bility of fixed block to handle random insertion and dele-
tion.

Image is an interesting file type in our evaluation. It
does not follow the same pattern assource code file
for different network connections. From Figure 6, in com-
parison with other three methods,Direct , Fix-block
and Varied-block , Delta gets the smallest transfer
size. But for the total time in LANFix-Block becomes
the best one amazingly. There are two reasons: First, in
Figure 5 the computing time ofDelta is much slower
than that ofFix-Block in unit of millisecond. Second,
in 100Mbps LAN transferring 5M Bytes image file only
takes about 1-2 seconds. The advantage on transfer size is
dramatically reduced by the 100Mbps bandwidth of LAN.
But for Varied-Block change of content may introduce
new chunks, merge old chunks or split one chunk into two
chunks, which will incur more computing time on compari-
son of different chunks. It is not good at handlingimages .
Comparing four pictures in Figure 4, we can find that
the advantage ofFix-Block decreases with the reduc-
tion of network bandwidth. In Cable Modem network it
becomes worse thanDelta and ever more in Dialup. It is
because with low bandwidth the disadvantage of long trans-
fers overwhelms the advantage of small computing time for
Fix-Block . Therefore, we argue that for images trans-
mission an adaptive optimization technique should be cho-
sen according to different network environments.

In terms of Web contents , Direct needs more
bandwidth requirement than others as shown in Figure 6,
because there are many similarities inWeb contents re-
sulted from using the same templates. But the computing
time of Direct beats other methods. In some cases com-
puting time plays a more important role than bandwidth
requirement in total time. But for most of the situations
Delta is still a very good solution forWeb contents .

For Word documents , although Varied-Block
achieves as good bandwidth requirement asDelta does,
as illustrated in Figure 6, but it costs too much more time
than any other algorithm. This makes the varied-block al-
gorithm unrealistic forWord documents transmission in
terms of total time. of these four algorithms demonstrates
better results than others in terms of bandwidth require-

4



1

10

100

1000

10000

100000

1000000

source image web doc latex

Document type

T
o

ta
l t

im
e 

(m
s)

Direct Delta Fix-Block Varied-Block

1

10

100

1000

10000

100000

1000000

source image web doc latex

Document type

T
o

ta
l t

im
e 

(m
s)

Direct Delta Fix-Block Varied-Block

(a) LAN (b) Wireless LAN

1

10

100

1000

10000

100000

1000000

source image web doc latex

Document type

T
o

ta
l t

im
e 

(m
s)

Direct Delta Fix-Block Varied-Block

1

10

100

1000

10000

100000

1000000

source image web doc latex

Document type

T
o

ta
l t

im
e 

(m
s)

Direct Delta Fix-Block Varied-Block

(c) Cable Modem (d) Dialup

Figure 4. A comparison of total time in different differencing algorithms in four different network
environments: (a) LAN, (b) Wireless LAN, (c) Cable Modem, and (d) Dialup.

ment except that, in the LAN,Delta seems doing slightly
better than others. Similar pattern is observed forLatex
files .

4.2.2 Algorithms

Now we are in the position to compare different differenc-
ing algorithms. IntuitivelyDirect should be the fastest
one in computing time. Figure 5 validates this in most
cases except for image files.2 For bandwidth requirement
Direct is comparable with other algorithms in all doc-
ument types except image as shown in Figure 6. From
Figure 4 (a) and (b) we can findDirect uses the least
total time among four algorithms forWord documents .
Direct is also useful for some small devices that can not
afford expensive computing.

We can easily find thatDelta always gets the smallest
in bandwidth requirement in four methods. With regards to
the total time,Delta is the winner forsource code ,
in most network cases forWeb contents , Word, and
Latex documents. For many file types the performance
of Vcdiff outperforms other algorithms especially in band-
width requirement.

Fix-Block is easy to implement. Although it is not
better thanDelta for most file types it works very well

2We think Gzip is the culprit of the anomaly computing time for images
in Direct.

for images in broadband network. The implementation
of Fix-Block ensures that the computing time keeps ap-
proximately same for the image files with same file size.

Varied-Block is an algorithm based on Rabin Fin-
gerprint. The most significant contribution of this algo-
rithm is to find the similarity of two unrelated files. From
Figure 6, it can be seen thatVaried-Block is better
thanFix-Block for Source code , Word contents
and Latex in terms of bandwidth requirement. But
Varied-Block is so bad at computing time, as shown
in Figure 5 that it is not suitable for any tested document
types. For some infrequently changed files like system files
dividing them into chunks and saving them into database
in advance will greatly improve the overall performance of
Varied-Block . One of the implementations of this idea
is described in LBFS [15].

In summary, Delta is a good bandwidth reduction
technique for many document types exceptimages .
Fix-Block is the first choice forimages in high speed
network. For low speed networksDelta can replace
Fix-Block as the better choice forimages .

4.2.3 Network Connections

We use four types of networks in our evaluation. Their
speeds range from 100Mbps to 56Kbps. With the decreas-
ing of network bandwidth, the average total time of each

5



1

10

100

1000

10000

100000

1000000

source image web doc latex

Document type

C
o

m
p

u
ti

n
g

 t
im

e 
(m

s)

Direct Delta Fix-Block Varied-Block

1

10

100

1000

10000

100000

1000000

source image web doc latex

Document type

C
o

m
p

u
ti

n
g

 t
im

e 
(m

s)

Direct Delta Fix-Block Varied-Block

(a) LAN (b) Wireless LAN

1

10

100

1000

10000

100000

1000000

source image web doc latex

Document type

C
o

m
p

u
ti

n
g

 t
im

e 
(m

s)

Direct Delta Fix-Block Varied-Block

1

10

100

1000

10000

100000

1000000

source image web doc latex

Document type

C
o

m
p

u
ti

n
g

 t
im

e 
(m

s)

Direct Delta Fix-Block Varied-Block

(c) Cable Modem (d) Dialup

Figure 5. A comparison of computing time in different differencing algorithms in four different network
environments: (a) LAN, (b) Wireless LAN, (c) Cable Modem, and (d) Dialup.

algorithm increases accordingly. The size of the final trans-
ferred bytes, which is not a concern in fast network like
LAN, has more and more affect on the total time when
bandwidth reduces. This can be validated by the increas-
ing lengths of bars from LAN to Dialup.

In LAN, as shown in Figure 4(a), the diversity of
total time for text files, likesource code and Web
contents , is much smaller than that of other files, like
images andWord documents . On the other hand, the
speed of LAN amortizes, to some extent, the difference of
bandwidth requirements for different document types. Thus
the total time is roughly dominated by the computing time.
The plots of the total time in Figure 4(a) and Figure 5 follow
roughly the same pattern.

In Wireless LAN, bandwidth requirements has more in-
fluence on the total time. The advantage ofFix-block in
the total time forimages is diminishing with the decreas-
ing of bandwidth. Only for theWord documents the
total time almost has the same shape as computing time be-
cause of the close bandwidth requirement among different
method. An anomaly phenomena is inWeb contents
thatDelta , who is the winner in computing time (Figure 5)
and bandwidth requirement(Figure 6) turns into the loser in
total time (Figure 4).

For Cable Modem and Dialup, bandwidth requirement
gradually dominates the total time, as illustrated in Figure 6
and Figure 4.Fix-block in total time for image com-

1

10

100

1000

10000

100000

1000000

10000000

source image web doc latex

Document type

B
an

dw
id

th
 r

eq
ui

re
m

en
t 

(b
yt

es
)

Direct Delta Fix-Block Varied-Block

Figure 6. A comparison of different differenc-
ing algorithms for bytes transferred.

pletely loses the leading position. In Dialup we found out-
line of total time is completely controlled by bandwidth re-
quirement because it dominates the total time.

4.3 Effect of Block Size

Block-based algorithms have good performance in band-
width requirement, as illustrated in Figure 6. Furthermore it
is also an excellent method for image files over high speed
networks in terms of the total time. In this Section, we are
interested in answering the following question:How does
the block size as a parameter affect the performance of the
block-based algorithm?In order to evaluate the effect of

6



block size, we choose different block sizes to do the exper-
iment in terms of computing time and bandwidth require-
ment.

In Figure 7, horizontal axis represents the individual ver-
sions of a specific document type. The left side vertical
axis shows computing time that corresponds to three bars
for each version in three block sizes test environments. The
right side vertical axis stands for bandwidth requirement
corresponding to three curves for three block sizes.

4.3.1 Bandwidth Requirement

It can be seen from Figure 7 that the bandwidth require-
ments forsource code , Web contents , andLatex
documents remain almost same in different block size cases.

For source code , from v2 to v5 most of the files are
below 2K bytes, which explains why bandwidth require-
ment performance overlap for 2K, 4K and 8K block size.
With the increasing of file size from v5 to v9 2K block size
shows a little bit better achievement than 4K and 8K, which
is because the change in text file orsource code is al-
ways localized and forsource code most the change is
likely to be less than 2K. In other words, 2K block size is
the best fitting size to reflect random changes insource
code file among these three block sizes. Lines of 4K and
8K block sizes are still nearly identical because size of most
files from v5 to v9 is still below 4k bytes. Same reasons
can be used to explain the bandwidth requirement forWeb
contents .

For Latex , although it is hard to see any difference be-
tween these three curves from the figure, we can observe
that the bandwidth requirement goes down a little with the
increasing block size from 2K to 8K. The smaller the block
size is, the more granularity the delta between versions is
divided into, and the more overhead of bandwidth require-
ment is needed to organize these small blocks. So 8K block
size has the best bandwidth requirement and 2K has the
worst.

On the contrary, compared withLatex , bandwidth re-
quirement pattern is reversed for image files. The smaller
the block size is, the lower the bandwidth requirement is.
Examining Figure 6, we can see that forimages Delta
has much lower bandwidth requirement thanFix-Block .
By halving the block size, we achieve an obvious improve-
ment, as shown in Figure 7. It is possible that 1k might
get even better result than 2K block size, but one thing is
already clear that choosing the appropriate block size can
effectively reduce the bandwidth requirement.

In terms ofWord documents , a clear relationship is
shown between block sizes and bandwidth requirement. Big
block size surpasses small block size as far as bandwidth re-
quirement is concerned. As we know,Word documents
are binary files that store information about structured text.

A small modification in Word editor environment may
result in a big difference in binaryWord documents .
Sometimes the size of this difference is bigger than what
2k or 4k block size can hold.

4.3.2 Computing Time

The computing time of different block sizes is very in-
teresting. First let us have a look at the image files, 2K
block size is the winner for computing time. Let us as-
sume compression time isTz2k, Tz4k, Tz8k for 2K, 4K,
8K bytes block sizes respectively andTc is the comparison
time for 2K bytes block then we know that the relationship
of Tz2k < Tz4k < Tz8k holds.

Because the differencing size is assumed to be 2K and
the comparison time increases linearly with the block size
we have the following relationship of total computing time
for 8K bytes between these 3 cases:4Tc + Tz2k < 4Tc +
Tz4k < 4Tc +Tz8k It follows the relationship shown in (b)
of Figure 7.

For other document types, namelysource code , Web
content , Word document andLatex files , gen-
erally 2K block size has the longest computing time and 8k
has the shortest among three block sizes. As we discussed
in Section 2, inFix-block algorithm, difference in one
place may affect the following blocks, so for a 8K bytes
data block 4K block size approach may need compression
2 times and 2k block size approach needs 4 times. So we
have the following inequations:Tz8k < 2Tz4k < 4Tz2k

Combining compression time and comparison time we have
4Tc + Tz8k < 4Tc + 2Tz4k < 4Tc + 4Tz2k. This expla-
nation complies with the evaluation results shown in Fig-
ure 7. Some abnormal data, like the computing time for
v8 in source code and v7 forLatex , is probably con-
tributed to the specific distribution and size of differencing
data in a specific file and some deviations in the experiment.

4.4 Implications

Going through the evaluation we find not even one algo-
rithm is good for all document types and all network config-
urations. For example, althoughDelta benefitssource
code , Web document , and Latex documents, it de-
lays images in terms of the total time.Fix-Block is
perfect for images in Wireless and LAN but it is horri-
ble in Cable Modem and Dialup. Even for the same al-
gorithm different parameter settings may also make totally
different performance. As an example, reducing block size
from 8K to 2K bytes ends up with 50% improvement in
the bandwidth requirement forimages , while same action
on Word documents may deteriorate the bandwidth re-
quirement.

Above observations imply that an adaptive, type-specific
communication optimization technique is promising to sup-
port applications deployed in heterogeneous and dynamic

7



0

5

10

15

20

25

30

35

v2 v3 v4 v5 v6 v7 v8 v9

Versions

C
o

m
p

u
ti

n
g

 t
im

e 
(m

s)
0

5000

10000

15000

20000

25000

B
an

dw
id

th
 r

eq
ui

re
m

en
t 

(B
yt

es
)

2k

4k

8k

2k

4k

8k

0

5

10

15

20

25

30

35

40

45

img2 img3 img4 img5 img6 img7

Versions

C
o

m
p

u
ti

n
g

 t
im

e 
(m

s)

0

200000

400000

600000

800000

1000000

1200000

B
an

dw
id

th
 r

eq
ui

re
m

en
t 

(B
yt

es
)

2k

4k

8k

2k

4k

8k

(a) Source code (b) Image

0

5

10

15

20

25

30

35

40

45

50

v2 v3 v4 v5 v6 v7

Versions

C
o

m
p

u
ti

n
g

 t
im

e 
(m

s)

0

100000

200000

300000

400000

500000

600000

B
an

dw
id

th
 r

eq
ui

re
m

en
t 

(B
yt

es
)

2k

4k

8k

2k

4k

8k

0

20

40

60

80

100

120

140

160

v2 v3 v4

Versions

C
o

m
p

u
ti

n
g

 t
im

e 
(m

s)

0

50000

100000

150000

200000

250000

300000

350000

B
an

dw
id

th
 r

eq
ui

re
m

en
t 

(B
yt

es
)

2k

4k

8k

2k

4k

8k

(c) Latex (d) Word documents

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ny
tim

es
2

ny
tim

es
3

ny
tim

es
4

ny
tim

es
5

ny
tim

es
6

ny
tim

es
7

ny
tim

es
8

ny
tim

es
9

ny
tim

es
10

Versions

C
o

m
p

u
ti

n
g

 t
im

e 
(m

s)

0

2000

4000

6000

8000

10000

12000

14000

16000

B
an

dw
id

th
 r

eq
ui

re
m

en
t 

(B
yt

es
)

2k

4k

8k

2k

4k

8k

(e) Web contents

Figure 7. A comparison of different block sizes of Fix-Block algorithm in terms of computing time
and bandwidth requirements over five difference types of documents: (a)Source code, (b) Image, (c)
Latex, (d) Word documents, and (e) Web contents.

changing environments,such as distributed mobile file sys-
tems, applications have multiple clients with heterogeneous
devices. Currently, we have embedded this adaptive ap-
proach in Cegor file system prototype [20], and are deploy-
ing this in a computer-assisted surgery applications [13].

The basic idea is as follows. Let us denote the current
bandwidth between a client and a server byBcurrent, the
original file size bySoriginal, and the computation overhead
of each differencing approach byTdirect, Tdelta, Tfixed,
and Tvaried. The corresponding difference sizes are de-
noted bySdirect, Sdelta, Sfixed, andSvaried respectively.
Ideally, for each specific file and a specific connection, the
approach with the minimal value of the total latency should
be chosen. This is defined as follows

T = min(Ti+
Si

Bcurrent
), i ∈ (direct, delta, fixed, varied)

As we found in our experimental results, different ap-
proaches have different computation complexity and out-
put delta sizes. To adapt to the dynamic changing environ-

ments, anadaptive decision moduleis built which takes as
inputs the current bandwidth, the target write back file, and
the last version of the same file, then outputs an appropriate
differencing approach. We plan to investigate this tradeoff
in our future work. The more details of this approach are
beyond the scope of this paper.

5 Related work

This paper is motivated by several bandwidth reduction
techniques in distributed systems. To the best of our knowl-
edge, our work is the first effort on a comprehensive study
and evaluation of these differencing algorithms in a general
framework.

Delta-encoding (Delta) was first proposed by Mogulet
al. in the context of HTTP traffic [14]. This approach
could dramatically reduce network traffic in cases where
a client and server shared a past version of a Web page,
termed a ”delta-eligible” response. Currently, the best delta-
encoding algorithm is Korn and Vo’svcdiff [11]. Fix-sized
blockingwas used in the Rsync [25] software to synchro-

8



nize different versions of the same data. In this approach,
files are updated by dividing both files into fix-sized chunks.
The client sends digests of each chunk to the server, and
the server responds only with new data chunks.Vary-sized
blockingwas proposed in LBFS [15] for further reducing
traffic. The idea behind LBFS is that of content-based
chunk identification. Files are divided into chunks, de-
marcated by points where the Rabin fingerprint [16] of the
previous 48 bytes matches a specific value. This tends to
identify a portion even after insertions and deletions have
changed its position in the file.

Recently, several projects such as CASPER wide-area
file system [24], Pond prototype [17], Pastiche backup sys-
tem [2], adopt vary-sized blocking to either improve the sys-
tem performance or reduce the storage requirements. We
believe our work compliments these efforts, and the result
of this paper can be applied in their work directly.

Spring and Wetherall have proposed a protocol inde-
pendent technique for eliminating redundant network traf-
fic [23]. When one end wants to send data that already ex-
ists at other end, it instead sends a token specifying where
to find the data at the other end.

6 Conclusions and Future Work

In this paper, a comprehensive study of four bandwidth
reduction techniques is presented, in terms of two perfor-
mance metrics:computing overheadand bandwidth re-
quirement. The evaluation performed under four repre-
sentative state-of-the-art network connection technologies,
against five representative types of documents. We found
that different approaches have different computation com-
plexity and output delta sizes. No one is the best for all
kinds of document in all network environments. Implied by
these observations, we argue that an adaptive type-specific
approach which considers both the computing overhead and
dynamic changing network is promising. Our future work
includes evaluating this adaptive approach in the context
of some real distributed applications, such as computer-
assisted surgery application, distributed file systems, peer-
to-peer backup system, and distributed database systems.

References
[1] B. Callaghan and P. Staubach. NFS Version 3 Protocol Spec-

ification, rfc 1813, June 2000.

[2] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making
backup cheap and easy.Proc. of the Fifth USENIX Sym-
posium on Operating Systems Design and Implementation,
Dec. 2002.

[3] J. R. Douceur and W. J. Bolosky. A large-scale study of file
system contents.Proceedings of the International Confer-
ence on Measurement and Modeling of Computer Systems,
pp. 59-70, May 1999.

[4] F. Douglis and A. Iyengar. Application-specific delta-
encoding via resemblance detection.Proc. of the USENIX
2003 Annual Technical Conf., June 2003.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Bernes-Lee. RFC 2616: Hypertext trans-
fer protocol, HTTP/1.1, 1999,http://www.ietf.org/
rfc/rfc2616.txt .

[6] Gzip tool,http://www.gzip.org .
[7] J. Haartsen. BLUETOOTH– The universal radio interface

for ad hoc, wireless connectivitity.Ericsson Review, 1998.
[8] J. H. Howard, M. Kazar, S. Menees, d. Nichols, M. Satya-

narayanan, R. Sidebotham, and M. West. Scale and perfor-
mance in a distributed file system.ACM Transactions on
Computer Systems6(1):51–81, Feb. 1988.

[9] IEEE. IEEE std 802.11 — wireless LAN medium access
control (mac) and physical layer (phy) specifications, 1997.

[10] M. Kim, L. Cox, and B. D. Noble. Safety, visibility, and
performnace in a wide-area file systems.Proc. of the 1st
USENIX Conf. On File and Storage Technologies, Jan. 2002.

[11] D. G. Korn and K.-P. Vo. Engineering a differencing and
compression data format.Proceedings of the 2002 USENIX
Annual Technical Conference, June 2002.

[12] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard. A cooperative internet backup scheme.Proc. of
the USENIX 2003 Annual Technical Conf., June 2003.

[13] H. Lufei, W. Shi, and L. Zamorano. A comparison of
different data compression approaches in computer-assisted
surgey. Tech. Rep. MIST-TR-2004-005, Department of
Computer Science, Wayne State University, Feb. 2004.

[14] J. C. Mogul, F. Douglis, a. Feldmann, and B. Krishnamurthy.
Potential Benefits of Delta-Encoding and Data Compression
for HTTP. Proc. of the 13th ACM SIGCOMM’97, pp. 181-
194, Sept. 1997,http://www.douglis.org/fred/
work/papers/sigcomm97.pdf .

[15] A. Muthitacharoen, B. Chen, and D. Mazières. A low-
bandwidth network file system.Proc. of the 18th ACM Symp.
on Operating Systems Principles (SOSP-18), Oct. 2001.

[16] M. O. Rabin. Fingerprinting by random polynomials. Tech.
Rep. TR-15-81, Harvard Aiken Computation laboratory,
1981.

[17] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and
J. Kubiatowicz. Pond: The oceanstore prototype.Proc. of
the 2nd USENIX Conf. On File and Storage Technologies,
pp. 1-14, Apr. 2003.

[18] W. Shi, E. Collins, and V. Karamcheti. Modeling object char-
acteristics of dynamic web content.Journal of Parallel and
Distributed Computing (to appear), Sept. 2003.

[19] W. Shi and V. Karamcheti. CONCA: An architecture
for consistent nomadic content access.Workshop on
Cache, Coherence, and Consistency(WC3’01), June 2001,
http://www.cs.wayne.eud/˜weisong/papers/
wc301.pdf .

[20] W. Shi, H. Lufei, and S. Santhosh. Cegor: An adaptive,
distributed file system for heterogeneous network environ-
ments. Tech. Rep. MIST-TR-2004-003, Department of Com-
puter Science, Wayne State University, Jan. 2004.

[21] W. Shi, R. Wright, E. Collins, and V. Karamcheti. Work-
load characterization of a personalized web site — and it’s
implication on dynamic content caching.Proc. of the 7th
International Workshop on Web Caching and Content Dis-
tribution (WCW’02), pp. 1-16, Aug. 2002,http://www.
cs.wayne.edu/˜weisong/papers/wcw02.pdf .

[22] M. Spasojevic and M. Satyanarayanan. An empirical study
of a wide-area distributed file system.ACM Transactions on
Computer Systems14(2):200–222, May 1996.

[23] N. T. Spring and D. Wetherall. A protocol independent tech-
nique for eliminating redundant network traffic.Proc. of
ACM SIGCOMM’00, pp. 87-95, Aug. 2000.

9



[24] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp, t. Bres-
soud, and a. Perrig. Opportunistic use of content addressable
storage for distributed file systems.Proc. of the USENIX
2003 Annual Technical Conf., June 2003.

[25] P. Tridgell and P. Mackerras. The rsync algorithm. Tech.
Rep. TR-CS-96-05, Department of Computer Science, Aus-
tralian National University, 1996.

[26] U. Varshney and R. Vetter. Emerging Mobile and Wireless
Networks. Communications of the ACMpp. 73–81, June
2000.

[27] C. E. Wills and M. Mikhailov. Studying the impact of more
complete server information on web caching.Proc. of the 5th
International Workshop on Web Caching and Content Distri-
bution (WCW’00), 2000.

10


