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Abstract

This is a brief survey of product-integration for biostatisticians.

1 Product-Integration

Product-integration was introduced more than 110 years ago by the Italian
mathematician Vito Volterra, as a tool in the solution of a certain class of dif-
ferential equations. It was studied intensively by mathematicians for half a
century, but finally the subject became unfashionable and lapsed into obscurity.
That is a pity, since ideas of product-integration make a very natural appearance
in survival analysis, and the development of this subject (in particular, of the
Kaplan-Meier estimator) could have been a lot smoother if product-integration
had been a familiar topic from the start. The Kaplan-Meier estimator is the
product-integral of the Nelson-Aalen estimator of the cumulative hazard func-
tion; these two estimators bear the same relation to one another as the actual
survival function and the actual cumulative hazard function. There are many
other applications of product-integration in survival analysis, for instance in the
study of multi-state processes (connected to the theory of Markov processes),
and in the theory of partial likelihood.

Ordinary integration is a generalisation of summation, and properties of
integrals are often easily guessed by thinking of them as sums of very, very many
terms (all or most of them being very small). Similarly, product-integration
generalises the taking of products; a product integral is a product of many,
many terms (all or most of them being very close to the number 1). Thinking
of product-integrals in this simplistic way is actually very helpful. Properties of
product-integrals are easy to guess and to understand. The theory of product-
integration can be a great help in studying the statistical properties of statistical
quantities which explicitly or implicitly are defined in terms of product-integrals.

Before defining product-integrals in general and exhibiting some of their
properties, we will discuss the relation, in survival analysis, between survival
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function and hazard function. This will lead us naturally to the notion of
product-integration in the most simple possible of contexts.

Consider a survival time T with survival function S(t) = Pr(T > t), t ≥ 0;
S(0) = 1. Suppose T is continuously distributed with a density f(t) and a
hazard rate α(t). These two functions have intuitive probabilistic meanings: for
a small time interval t, t + h, the unconditional probability Pr(t ≤ T ≤ t + h) ≈
f(t).h; while the conditional probability Pr(t ≤ T ≤ t + h|T ≥ t) ≈ α(t).h. In
fact, the probability density f(t) = −(d/dt)S(t) while the hazard rate α(t) =
f(t)/S(t). One can mathematically recover the distribution function F (t) =
1−S(t) from the density by integration; F (t) =

∫ t

0
f(s)ds. Also one can recover

the survival function from the hazard rate. Noting that α(t) = −(d/dt) log S(t)
one finds by integration (and using that S(0) = 1, hence log S(0) = 0), that
− log S(t) =

∫ t

0
α(s)ds hence S(t) = exp(−

∫ t

0
α(s)ds). This is simple enough,

but neither the result nor its derivation have a probabilistic interpretation.
If the survival time T had a discrete distribution, one would introduce the

discrete density f(t) = Pr(T = t) and the discrete hazard α(t) = Pr(T =
t|T ≥ t) = f(t)/S(t−). Still the survival function can be recovered from both
density and hazard, but the formula in the latter case now seems quite different:
S(t) =

∏t
0(1−α(s)). The continuous case formula S(t) = exp(−

∫ t

0
α(s)ds) has

therefore two major defects: firstly, it does not have any intuitive interpretation;
and secondly; it gives the wrong generalisation to the discrete case.

Here is how both formulas can be unified and made intuitively interpretable.
Define the cumulative hazard A(t) by, in the continuous case, A(t) =

∫ t

0
α(s)ds,

and in the discrete case, A(t) =
∑t

0 α(s). (These two formulas are special cases
of the completely general expression A(t) =

∫ t

0
dS(s)/S(s−).) Now we can

write, both in the continuous and the discrete case,

S(t) =
t

R
0

(1− dA(s)) (1)

which can be interpreted as the product over many small time intervals s, s+ds
making up the interval [0, t], of the probability (1 − dA(s)). Since the hazard
dA(s) can be thought of as the probability of dying in the interval from s to
s+ds given survival up to the beginning of that time interval, 1 minus the hazard
is the probability of surviving through the small time interval given survival up
to its start. Multiplying over the small time intervals making up [0, t] yields
the unconditional probability of surviving past t; in other words, equation (1)
is just the limiting form of the equality

Pr(T > t) =
k∏

i=1

Pr(T > ti|T > ti−1) =
k∏

i=1

(
1− Pr(T ≤ ti|T > ti−1)

)
where 0 = t0 < t1 < · · · < tk = t is a partition of the time interval [0, t].

Consider now the statistical problem of estimating the survival curve S(t)
given a sample of independently censored survival times. Let t1 < t2 < . . .

2



denote the distinct times when deaths are observed; let rj denote the number of
individuals at risk just before time tj and let dj denote the number of observed
deaths at time tj . We estimate the cumulative hazard function A corresponding
to S with the Nelson-Aalen estimator

Â(t) =
∑
tj≤t

dj

rj
.

This is a discrete cumulative hazard function, corresponding to the discrete
estimated hazard α̂(tj) = dj/rj , α̂(t) zero for t not an observed death time.
The product-integral of Â is then

Ŝ(t) =
t

R
0

(1− dÂ) =
∏
tj≤t

(1− dj

rj
),

which is nothing else than the Kaplan-Meier estimator.
The actual definition of the product-integral in (1) is the following:

t

R
0

(1− dA(s)) = lim
max |ti−ti−1|→0

∏
(1− (A(ti)−A(ti−1)))

where the limit is taken over a sequence of ever finer partitions 0 = t0 < t1 <
· · · < tk = t of the time interval [0, t].

From this point we can choose either to study properties of the product-
integral or define it in greater generality. Both aspects are important in appli-
cations. Let us first give a more general definition. The important generalisation
is that we will define product-integrals of matrix-valued functions, rather than
just scalar valued functions. The concept now really comes into its own, because
when we multiply a sequence of matrices together the result will generally de-
pend on the order in which the matrices are taken. Even in the continuous case
there will not be a simple exponential formula expressing the result in terms
of an ordinary integral. Multiplying products of matrices turns up in the the-
ory of Markov processes, and this connects directly to the statistical analysis of
multi-state models in survival analysis.

Suppose X(t) is a p × p matrix-valued function of time t. Suppose also X
(or if you like, each component of X) is right continuous with left hand limits.
Let I denote the identity matrix. The product-integral of X over the interval
[0, t] is now defined as

t

R
0

(I + dX(s)) = lim
max |ti−ti−1|→0

∏
(I + (X(ti)−X(ti−1)))

where as always the limit is taken over a sequence of ever finer partitions 0 =
t0 < t1 < · · · < tk = t of the time interval [0, t]. For the limit to exist, X has to
be of bounded variation; equivalently, each component of X is the difference of
two increasing functions.
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2 Application to Markov processes

We briefly sketch the application of product-integration to Markov processes.
Suppose an individual moves between p different states as time proceeds, stay-
ing in each state for some random length of time and then jumping to another.
Suppose the individual has intensity αij(t) of jumping from state i to state j at
time t, given the whole past history (in other words, the process is Markov: the
intensity only depends on the present time and the present state). Define cu-
mulative intensities Aij(t) =

∫ t

0
αij(s)ds and negative total cumulative intensity

of leaving a state Aii = −
∑

j 6=i Aij . Collect these into a square matrix valued
function of time A. Then one can show that the matrix of transition probabili-
ties P (0, t), whose ij component is the probability of being in state j at time t
given the individual started at time 0 in state i, is given by a product-integral
of A:

P (0, t) =
t

R
0

(I + dA(s)).

This formula generalises the usual formula for transition probabilities of a dis-
crete time Markov chain, since the matrix (I + dA(s)) can be thought of as the
transition probability matrix for the small time interval s, s + ds.

Given possibly censored observations from a Markov process, one can esti-
mate the elements of the matrix of cumulative intensities A by Nelson-Aalen es-
timators. The corresponding estimate of the transition probabilities, the Aalen-
Johansen estimator, is found by taking the product-integral of Â.

3 Mathematical properties

A very obvious property of product-integration is its multiplicativity. Defining
the product-integral over an arbitrary time interval in the natural way, we have
for 0 < s < t

t

R
0

(I + dX) =
s

R
0

(I + dX)
t

R
s

(I + dX).

We can guess many other useful properties of product-integrals by looking at
various simple identities for finite products. For instance, it is often important
to study the difference between two product-integrals. Now if a1,. . . ,ak and
b1,. . . ,bk are two sequences of numbers, we have the identity:∏

(1 + ai)−
∏

(1 + bi) =
∑

j

∏
i<j

(1 + ai)(aj − bj)
∏
i>j

(1 + bi).

This can be easily proved by replacing the middle term on the right, (aj − bj),
by (1 + ai) − (1 + bi). Expanding about this difference, the right hand side
becomes ∑

j

(
∏
i≤j

(1 + ai)
∏
i>j

(1 + bi)−
∏

i≤j−1

(1 + ai)
∏

i>j−1

(1 + bi)).
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This is a telescoping sum; writing out the terms one by one the whole expression
collapses to the two outside products, giving the left hand side of the identity.
The same manipulations work for matrices. In general it is therefore no surprise,
replacing sums by integrals and products by product-integrals, that

t

R
0

(I + dX)−
t

R
0

(I + dY ) =
∫ t

s=0

s−

R
0

(I + dX)(dX(s)− dY (s))
t

R
s+

(I + dY ).

This valuable identity is called the Duhamel equation.
As an example, consider the scalar case, let A be a cumulative hazard func-

tion and Â the Nelson-Aalen estimator based on a sample of censored survival
times. Let S be the corresponding survival fucntion and Ŝ the Kaplan-Meier
estimator. The Duhamel equation then becomes the identity

Ŝ(t)− S(t) =
∫ t

s=0

Ŝ(s−)(dÂ(s)− dA(s))(S(t)/S(s))

which can be exploited to get both small sample and asymptotic results for the
Kaplan-Meier estimator. We illustrate one other important identity in a similar
manner. Note that∏

i≤j

(1 + ai)−
∏

i≤j−1

(1 + ai) =
∏

i≤j−1

(1 + ai)aj .

Adding over j from 1 to k gives us∏
i≤k

(1 + ai)− 1 =
∑

j

∏
i≤j−1

(1 + ai)aj .

Now we can guess the identity

t

R
0

(I + dX)− I =
∫ t

s=0

s−

R
0

(I + dX)dX(s).

This is essentially Kolmogorov’s forward equation from the theory of Markov
processes, and it is the type of equation—solve Y (t) = I +

∫ t

0
Y (s−)dX(s) for

unknown Y , given X—which originally motivated Volterra to invent product-
integration. Y (t) = Pt

0(I + dX) is the unique solution of this equation. (It
is also just a special case of the Duhamel equation when we take the second
integrand Y identically equal to zero).

4 Concluding remarks

The product-integral seems first to have been used as a fundamental tool in
modern survival analysis by Aalen and Johansen (1978), though it also ap-
pears in a more informal context in Cox (1972) and in Kalbfleisch and Prentice
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(1980). Surveys of the theory of product-integration are given by Gill and Jo-
hansen (1990), Gill (1994). The former paper also pays attention to the earlier
history of the subject. In particular, it is worth mentioning that a large variety
of notations has been used for the product-integral, including large curly P’s,
product-symbols, and the ordinary integral sign embellished with a half circle
over the top.

As well as playing a role in the theory of the Kaplan-Meier and the Aalen-
Johansen estimators, the product-integral is also a useful way to write likeli-
hoods and partial-likelihoods in survival analysis, since these can be usefully
thought of as continuous products of conditional likelihoods for the data in each
new infinitesimal time interval given the past. The product-integral is also useful
in multivariate survival analysis. In particular, Dabrowska’s 1988 multivariate
product-limit estimator is based on a representation of a multivariate survival
function in terms of product-integrals of a collection of higher-dimensional joint
and conditional hazard functions. The book Andersen et al. (1993) gives a brief
survey of the theory and many detailed applications, covering all the topics
mentioned above.
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