An Introduction to Malliavin Calculus

Courant Institute of Mathematical Sciences

New York University ${ }^{1}$

Peter K. Friz

August 3, 2002 (update: April 10, 2005)

These notes available on
www.statslab.cam.ac.uk/~ peter
Please send corrections to
P.K.Friz@statslab.cam.ac.uk

[^0]These notes are based on a couple of seminar-talks I gave at Courant in Spring 2001 in Prof. S.R.S. Varadhan's PhD seminar. I'm very grateful to him for supporting and stimulating my interest in Malliavin Calculus. I am also indebted to Nicolas Victoir, Enrique Loubet for their careful reading of this text.
-Peter F. New York 2001

It appears many people found these informal notes useful "as are". I have therefore not attempted any changes but I did get rid of a number of typos at the occasion of the INI lecture.
-P.F. Cambridge 2005

Notations:

$\Omega \ldots$ Wienerspace $C[0,1]$ resp. $C\left([0,1], \mathbb{R}^{m}\right)$
\mathcal{F}... natural filtration
$H \ldots L^{2}[0,1]$ resp. $L^{2}\left([0,1], \mathbb{R}^{m}\right)$
$H^{\otimes k} \ldots$ tensorproduct $\cong L^{2}\left([0,1]^{k}\right), \quad H^{\hat{\otimes} k} \ldots$ symmetric tensorproduct
$\tilde{H} \ldots$ Cameron-Martin-space $\subset \Omega$, elements are paths with derivative in H
$W: \mathcal{F} \rightarrow \mathbb{R} \ldots$ Wiener-measure on Ω
$\beta_{t}=\beta(t) \ldots$ Brownian Motion (= coordinate process on (Ω, \mathcal{F}, W))
$W: H \rightarrow L^{2}(\Omega) \ldots$ defined by $W(h)=\int_{0}^{1} h d \beta$
$\mathcal{S}_{2} \ldots$ Wiener polynomials, functionals of form $\operatorname{polynomial}\left(W\left(h_{1}\right), \ldots, W\left(H_{n}\right)\right.$
$\mathcal{S}_{1} \ldots$ cylindrical functionals, $\subset \mathcal{S}_{2}$
$\mathcal{D}^{k, p} \ldots \subset L^{p}(\Omega)$ containing k-times Malliavin differentiable functionals
$\mathcal{D}^{\infty} \ldots \cap_{k, p} \mathcal{D}^{k, p}$, smooth Wiener functionals
$\lambda, \lambda^{m} \ldots$ (m-dimensional) Lebesgue-measure
$\nu, \nu^{n} \ldots$ (n-dimensional) standard Gaussian measure
$\nabla \ldots$ gradient-operator on \mathbb{R}^{n}
$L^{p}(\Omega, H) \ldots H$-valued random-variables s.t. $\int_{\Omega}\|\cdot\|_{H} d W<\infty$
$D \ldots$ Malliavin derivative, operator $L^{p}(\Omega) \rightarrow L^{p}(\Omega, H)$
$\delta \ldots=D^{*}$ the adjoint operator, also: divergence, Skorohod Integral
$L \ldots=\delta \circ D$, Ornstein-Uhlenbeck operator $L^{p}(\Omega) \rightarrow L^{p}(\Omega)$
$W^{k, p} \ldots$ Sobolev-spaces built on $\mathbb{R}^{n} \quad H^{k} \ldots W^{k, 2}$
$\partial \ldots$ (for functions $f: \mathbb{R} \rightarrow \mathbb{R}$) simple differentiation
$\partial^{*} \ldots$ adjoint of ∂ on $L^{2}(\mathbb{R}, \nu)$
$\mathcal{L} \ldots=\partial^{*} \partial$, one-dimensional OU-operator
$\partial_{i}, \partial_{i j} \ldots$ partial derivatices w.r.t. x_{i}, x_{j} etc
$\mathcal{L} \ldots$ generator of m-dimensional diffusion process, for instance $\mathcal{L}=E^{i j} \partial_{i j}+B^{i} \partial_{i}$ $H_{n} \ldots$ Hermite-polynomials
$\Delta_{n}(t) \ldots n$-dimensional simplex $\left\{0<t_{1}<\ldots<t_{n}<t\right\} \subset[0,1]^{n}$
$J(\cdot)$... Iterated Wiener-Ito integral, operator $L^{2}\left[\Delta_{n}\right] t o \mathcal{C}_{n} \subset L^{2}(\Omega)$
$\mathcal{C}_{n} \ldots n^{\text {th }}$ Wiener Chaos
$\alpha \ldots$ multiinex (finite-dimensional)
$X \ldots m$-dimensional diffusion process given by SDE, driven by d BMs $\Lambda=\Lambda(X) \ldots<D X, D X>_{H}$, Malliavin covariance matrix
$V, W \ldots$ vectorfields on \mathbb{R}^{m}, seen as map $\mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ or as first order differential operator
$B, A_{0} \ldots$ vectorfields on \mathbb{R}^{m}, appearing as drift term in Ito (resp. Stratonovich) SDE
$A_{1}, \ldots, A_{d} \ldots$ vectorfields on \mathbb{R}^{m}, appearig in diffusion term of the SDE
$\circ d \beta \ldots$ Stratonovich differential $=$ Ito differential $+(\ldots) d t$
$X \ldots$ diffusion given by $\operatorname{SDE}, X(0)=x$
$Y, Z \ldots \mathbb{R}^{m \times m}$-valued processes, derivative of X w.r.t. $X(0)$ resp. the inverse $\partial \ldots \partial V$ is short for the matrix $\partial_{j} V^{i}, \quad \nabla_{W} V \ldots$ connection, $=(\partial V) W$
[$V, W] \ldots$ Lie-bracket, yields another vectorfield
Lie $\{\ldots\}$... the smallest vectorspace closed under Lie-brackets, containing $\{\ldots\}$
$\mathcal{D} \ldots=C_{c}^{\infty}$, test-functions
$\mathcal{D}^{\prime} \ldots$ Schwartz-distributions $=$ cont. functionals on \mathcal{D}

Chapter 1

Analysis on the Wiener Space

1.1 Wiener Space

Ω will denote the Wiener Space $C([0,1])$. As usual, we put the Wiener measure W on Ω therefore getting a probability space

$$
(\Omega, \mathcal{F}, W)
$$

where \mathcal{F} is generated by the coordinate maps. On the other hand we can furnish Ω with the $\|\cdot\|_{\infty}$ - norm making it a (separable) Banach-space. \mathcal{F} coincides with the σ-field generated by the open sets of this Banach-space. Random-variables on Ω are called Wiener functionals. The coordinate process $\omega(t)$ is a Brownian motion under W, with natural filtration $\sigma(\{\omega(s): s \leq t\}) \equiv \mathcal{F}_{t}$. Often we will write this Brownian motion as $\beta(t)=\beta(t, \omega)=\omega(t)$, in particular in the context of stochastic Wiener-Itô integrals.

1.2 Two simple classes of Wiener functionals

Let f be a polynomial, $h_{1}, \ldots, h_{n} \in H \equiv L^{2}[0,1]$. Define first a class of cylindrical functionals

$$
\left.\mathcal{S}_{1}=\left\{F: F=f\left(\beta_{t_{1}}, \ldots, \beta_{t_{n}}\right)\right)\right\}
$$

then the larger class of Wiener polynomials

$$
\mathcal{S}_{2}=\left\{F: F=f\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right)\right\}
$$

where $W(h) \equiv \int_{0}^{1} h d \beta$.
Remarks: - Both \mathcal{S}_{i} are algebras. In particular \mathcal{S}_{2} is what [Malliavin2] p13 calls the fundamental algebra.

- A \mathcal{S}_{2}-type function with all h_{i} 's deterministic step functions is in \mathcal{S}_{1}.
- In both cases, we are dealing with r.v. of the type

$$
F=f(n \text {-dimensional gaussian })=\tilde{f}(n \text { indep. std. gaussians })
$$

Constructing \tilde{f} boils down to a Gram-Schmidt-orthonormalization for the h_{i} 's. When restricting discussion to \mathcal{S}_{2}-functionals one can actually forget Ω and simply work with $\left(\mathbb{R}^{n}, \nu^{n}\right)$, that is, \mathbb{R}^{n} with n-dimensional standard Gaussian measure $d \nu^{n}(x)=(2 \pi)^{-n / 2} \exp \left(-|x|^{2} / 2\right) d x$.
This remark looks harmless here but will prove useful during the whole setup of the theory.

- $\mathcal{S}_{1} \subset \mathcal{S}_{2} \subset L^{p}(\Omega)$ for all $p \geq 1$ as t he polynomial growth of f assures the existence of all moments. From this point of view, one could weaken the assumptions on f, for instance smooth and of maximal polynomial growth or exponential-martingale-type functionals.

1.3 Directional derivatives on the Wiener Space

Recall that $[W(h)](\omega)=\int_{0}^{1} h d \beta(\omega)$ is constructed as L^{2}-limits and hence, as element in $L^{2}(\Omega, W)$, only W-a.s. defined. Hence, any $\mathcal{S}_{2^{-}}$or more general Wiener functional is only W-a.s. defined.
In which directions can we shift the argument ω of a functional while keeping it a.s. well-defined? By Girsanov's theorem, the Cameron-Martin-directions

$$
\tilde{h}(\cdot):=\int_{0} h(t) d t \in \Omega \text { with } h \in H
$$

are fine, as the shifted Wiener-measure $\left(\tau_{\tilde{h}}\right) W$ is equivalent to W. The set of all \tilde{h} is the Cameron-Martin-space \tilde{H}. It is known that for a direction $k \in \Omega-\tilde{H}$ the shifted measure is singular wrt to W, see [RY], Ch. VIII/2. Hence, $F(\omega+k)$ does not make sense, when F is an a.s. defined functional, and neither does a directional derivative in direction k.

Remarks: - The paths \tilde{h} are sometimes called finite energy paths

- The set $\tilde{H} \subset \Omega$ has zero W-measure, since every \tilde{h} is of bounded variation while W-a.s. Brownian paths are not.
- The map $h \longmapsto \tilde{h}$ is a continuous linear injection from H into $\left(\Omega,\|\cdot\|_{\infty}\right)$.
- Also, $h \longmapsto \tilde{h}$ is a bijection from $H \rightarrow \tilde{H}$ with inverse $\frac{d}{d t} \tilde{h}(t)=h(t)$. This derivative exists $d t$-a.s. since \tilde{h} is absolutely continuous, moreover $h \in H$ i.e. square-integrable.
In particular, we can use this transfer the Hilbert-structure from H to \tilde{H}. For $g, k \in \tilde{H}$ let \dot{g}, \dot{k} denote their square-integrable derivatives. Then

$$
<g, k>_{\tilde{H}} \equiv<\dot{g}, \dot{k}>_{H}=\int_{0}^{1} \dot{g} \dot{k} d \lambda
$$

- In a more general context \tilde{H} (or indeed H) are known as reproducing kernel space for the Gaussian measure W on the Banach space Ω (terminology from [DaPrato], p40).

1.4 The Malliavin derivative D in special cases

Take $F \in \mathcal{S}_{1}$, with slightly different notation

$$
F(\omega)=f\left(\omega\left(t_{1}\right), \ldots, \omega\left(t_{n}\right)\right)=f\left(W\left(1_{\left[0, t_{1}\right]}\right), \ldots, W\left(1_{\left[0, t_{n}\right]}\right)\right.
$$

Then, at $\epsilon=0$

$$
\frac{d}{d \epsilon} F(\omega+\epsilon \tilde{h})
$$

equals

$$
\sum_{i=1}^{n} \partial_{i} f\left(\omega\left(t_{1}\right), \ldots, \omega\left(t_{n}\right)\right) \int_{0}^{t_{i}} h d \lambda=<D F, h>_{H}
$$

where we define

$$
D F=\sum_{i} \partial_{i} f\left(W\left(1_{\left[0, t_{1}\right]}\right), \ldots, W\left(1_{\left[0, t_{n}\right]}\right) 1_{\left[0, t_{i}\right]} .\right.
$$

This extends naturally to \mathcal{S}_{2} functionals,

$$
D F=\sum_{i} \partial_{i} f\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right) h_{i},
$$

and this should be regarded as an H-valued r.v.
Remarks: - D is well-defined. In particular for $F=W(h)=\int_{0}^{1} h d \beta$ this is a consequence of the Ito-isometry.

- Sometimes it is convenient to write

$$
D_{t} F(\omega)=\sum_{i} \partial_{i} f\left(W\left(h_{1}\right)(\omega), \ldots\right) h_{i}(t)
$$

which, of course, is only $\lambda \times W$-as well-defined.

- Since $D\left(\int_{0}^{1} h d \beta\right)=D(W(h))=h$,

$$
D F=\sum_{i} \partial_{i} f\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right) D\left(W\left(h_{i}\right)\right),
$$

which is the germ of a chain-rule-formula.

- Here is a product rule, for $F, G \in \mathcal{S}_{2}$

$$
\begin{equation*}
D(F G)=F D G+G D F \tag{1.1}
\end{equation*}
$$

(Just check it for monomials, $F=W(H)^{n}, G=W(g)^{m}$.) See [Nualart], p34 for an extension.

- As f has only polynomial growth, we have $D F \in L^{p}(\Omega, H)$ i.e. $\int_{\Omega}\|D F(\omega)\|_{H}^{p} d W<$ ∞. For $p=2$, this can be expressed simpler, $D F \in L^{2}([0,1] \times \Omega)$, (after fixing a version) $D F=D F(t, \omega)$ can be thought of a stochastic process.

1.5 Extending the Malliavin Derivative D

So far we have

$$
D: \quad L^{p}(\Omega) \supset \mathcal{S}_{2} \rightarrow L^{p}(\Omega, H)
$$

It is instructive to compare this to the following well-known situation in (Sobolev-)analysis. Take $f \in L^{p}(U)$, some domain $U \subset \mathbb{R}^{n}$. Then the gradientoperator $\nabla=\left(\partial_{i}\right)_{i=1, \ldots, n}$ maps an appropriate subset of $L^{p}(U)$ into $L^{p}\left(U, \mathbb{R}^{n}\right)$. The \mathbb{R}^{n} comes clearly into play as it is (isomorphic to) the tangent space at any
point of U.
Going back to the Wiener-space we see that H (or, equivalently, \tilde{H}) plays the role of the tangent space to the Wiener spaces. ${ }^{1}$

Again, ∇ on $L^{P}(U)$. What is its natural domain? The best you can do is $\left(\nabla, W^{1, p}\right)$, which is a closed operator, while $\left(\nabla, C_{c}^{1}\right)$ (for instance) is a closable operator. This closability (see $[R R]$) is exactly what you need to extend to operator to the closure of C_{c}^{1} with respect to $\|\cdot\|_{W^{1, p}}$ where

$$
\|f\|_{W^{1, p}}^{p}=\int_{U}|f|^{p} d \lambda^{n}+\sum_{i=1}^{n} \int_{U}\left|\partial_{i} f\right|^{p} d \lambda^{n}
$$

or equivalently

$$
\int_{U}|f|^{p} d \lambda^{n}+\int_{U}\|\nabla f\|_{\mathbb{R}^{n}}^{p} d \lambda^{n}
$$

Using an Integration-by-Parts formula (see the following section on IBP), (D, \mathcal{S}_{2}) is easily seen to be closable (details found in [Nualart] p26 or [Uestuenel]). The extended domain is denoted with $\mathcal{D}^{1, p}$ and is exactly the closure of \mathcal{S}_{2} with respect to $\|\cdot\|_{1, p}$ where

$$
\begin{aligned}
\|F\|_{1, p}^{p} & =\int_{\Omega}|F|^{p} d W+\int_{\Omega}\|D F\|_{H}^{p} d W \\
& =\mathbb{E}|F|^{p}+\mathbb{E}\|D F\|_{H}^{p}
\end{aligned}
$$

Remarks: - Look up the definition of closed operator and compare Bass' way to introduce the Malliavin derivative [Bass], p193, with the classical result in [Stein] p122.

- For simplicity take $p=2$ and consider $F=f\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right)$ with h_{i} 's in H. As mentioned in section 1.2, there is n.l.o.g. by assuming the h_{i} 's to be orthonormal.

Then

$$
\|D F\|_{H}^{2}=\sum_{i=1}^{n}\left(\partial_{i} f(n \text { iid std gaussians })\right)^{2}
$$

and $\|F\|_{1,2}^{2}$ simply becomes

$$
\int_{\mathbb{R}^{n}} f^{2} d \nu^{n}+\int_{\mathbb{R}^{n}}\|\nabla f\|_{\mathbb{R}^{n}}^{2} d \nu^{n}
$$

which is just the norm on the weighted Sobolev-space $W^{1, p}\left(\nu^{n}\right)$. More on this link between $\mathcal{D}^{1, p}$ and finite-dimensional Sobolev-spaces is to be found in [Malliavin1] and [Nualart].

- A frequent characterization of Sobolev-spaces on \mathbb{R}^{n} is via Fourier transform (see, for instance, [Evans] p 282). Let $f \in L^{2}=L^{2}\left(\mathbb{R}^{n}\right)$, then

$$
f \in H^{k} \quad \text { iff }\left(1+|x|^{k}\right) \hat{f} \in L^{2} .
$$

[^1]Moreover,

$$
\|f\|_{H^{k}} \sim\left\|\left(1+|x|^{k}\right) \hat{f}\right\|_{L^{2}} .
$$

In particular, this allows a natural definition of $H^{s}\left(\mathbb{R}^{n}\right)$ for all $s \in \mathbb{R}$. For later reference, we consider the case $k=1$. Furthermore, for simplicity $n=1$. Recall that $i \partial$ is a self-adjoint operator on $\left(L^{2}(\mathbb{R}),<\cdot, \cdot>\right)$

$$
\begin{aligned}
<(1+x) \hat{f},(1+x) \hat{f}> & =<(1+i \partial) f,(1+i \partial) f> \\
& =<f, f>+<i \partial f, i \partial f> \\
& =<f, f>+<f,-\partial^{2} f> \\
& =<f,(1+A) f>
\end{aligned}
$$

where A denotes the negative second derivative. In Section 1.10 this will be linked to the usual definition of Sobolev-spaces (as seen at the beginning of this section), both on $\left(\mathbb{R}^{n}, \lambda^{n}\right)$ as on (Ω, W).

- The preceding discussion about how to obtain the optimal domain for the gradient on $\left(\mathbb{R}^{n}, \lambda^{n}\right)$ is rarely an issue in practical exposures of Sobolev Theory on \mathbb{R}^{n}. The reason is, of course, that we can take weak derivatives resp. distributional derivatives. As well known, Sobolev-spaces can then be defined as those L^{p}-functions whose weak derivatives are again in L^{p}. A priori, this can't be done on the Wiener-spaces (at this stage, what are the smooth test-functions here?).

1.6 Integration by Parts

As motivation, we look at (\mathbb{R}, λ) first. Take f smooth with compact support (for instance), then, by the translation invariance of Lebesgue-measure,

$$
\int f(x+h) d \lambda=\int f(x) d \lambda
$$

and hence, after dividing by h and $h \rightarrow 0$,

$$
\int f^{\prime} d \lambda=0
$$

Replacing f by $f \cdot g$ this reads

$$
\int f^{\prime} g d \lambda=-\int f g^{\prime} d \lambda
$$

The point is that IBP is the infinitesimal expression of a measure-invariance. Things are simple here because λ^{n} is translation invariant, $\left(\tau_{h}\right)_{*} \lambda^{n}=\lambda^{n}$. Let's look at $\left(\mathbb{R}^{n}, \nu^{n}\right)$. It is elementary to check that for any $h \in \mathbb{R}^{n}$

$$
\frac{d\left(\tau_{h}\right)_{*} \nu^{n}}{d \nu^{n}}(x)=\exp \left(\sum_{i=1}^{n} h_{i} x_{i}-\frac{1}{2} \sum_{i=1}^{n} h_{i}^{2}\right) .
$$

The corresponding fact on the Wiener space (Ω, W) is the Cameron-Martin theorem. For $\tilde{h} \in \tilde{H} \subset \Omega$ and with $\tau_{\tilde{h}}(\omega)=\omega+\int_{0}^{.} h=\omega+\tilde{h}$

$$
\frac{d\left(\tau_{\tilde{h}}\right)_{*} W}{d W}(\omega)=\exp \left(\int_{0}^{1} h d \beta(\omega)-\frac{1}{2} \int_{0}^{1} h^{2} d \lambda\right) .
$$

Theorem 1 (IBP on the Wiener Space) Let $h \in H, F \in S_{2}$. Then

$$
\mathbb{E}\left(<D F, h>_{H}\right)=\mathbb{E}\left(F \int_{0}^{1} h d \beta\right)
$$

Proof: (1st variant following [Nualart]) By homogeneity, w.l.o.g. $\|h\|=1$. Furthermore, we can find f such that $F=f\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right)$, with $\left(h_{i}\right)$ orthonormal in H and $h=h_{1}$. Then, using classical IBP

$$
\begin{aligned}
\mathbb{E}<D F, h> & =\mathbb{E} \sum_{i} \partial_{i} f<h_{i}, h> \\
& =\int_{\mathbb{R}^{n}} \partial_{1} f(x)(2 \pi)^{-n / 2} e^{-|x|^{2} / 2} d x \\
& =-\int_{\mathbb{R}^{n}} f(x)(2 \pi)^{-n / 2} e^{-|x|^{2} / 2}\left(-x_{1}\right) d x \\
& =\int_{\mathbb{R}^{n}} f(x) \cdot x_{1} d \nu^{n} \\
& =\mathbb{E}\left(F \cdot W\left(h_{1}\right)\right) \\
& =\mathbb{E}(F \cdot W(h))
\end{aligned}
$$

(2nd variant following an idea of Bismut, see [Bass]) We already saw in section 1.4 that for $F \in \mathcal{S}_{1}$ the directional derivative in direction \tilde{h} exists and coincides with $\langle D F, h\rangle$. For such F

$$
\begin{aligned}
\int_{\Omega} F(\omega) d W(\omega) & =\int_{\Omega} F\left(\tau_{-\tilde{h}}(\omega)+\tilde{h}\right) d W(\omega) \\
& =\int_{\Omega} F(\omega+\tilde{h}) d\left(\tau_{-\tilde{h}}\right)_{*} W(\omega) \\
& =\int_{\Omega} F\left(\omega+\int_{0} h d \lambda\right) \exp \left(-\int_{0}^{1} h d \beta+\frac{1}{2} \int_{0}^{1} h^{2} d \lambda\right) d W(\omega),
\end{aligned}
$$

using Girsanov's theorem. Replace h by ϵh and observe that the l.h.s. is independent of ϵ. At least formally, when exchanging integration over Ω and $\frac{d}{d \epsilon}$ at $\epsilon=0$, we find

$$
\int_{\Omega}\left(<D F, h>-F(\omega) \int_{0}^{1} h d \beta\right) d W(\omega)=0
$$

as required. To make this rigorous, approximate F by F 's which are, together with $\|D F\|_{H}$ bounded on Ω. Another approximation leads to \mathcal{S}_{2}-type functionals.
Remarks: - IBP on the Wiener spaces is one of the cornerstones of the Malliavin Calculus. The second variant of the proof inspired the name Stochastic Calculus of Variations: Wiener-paths ω are perturbed by paths $\tilde{h}($.$) . Stochastic$ Calculus of Variations has (well, a priori) nothing to do with classical calculus of variations.

- As before we can apply this result to a product $F G$, where both $F, G \in \mathcal{S}_{2}$. This yields

$$
\begin{equation*}
\mathbb{E}(G<D F, h>)=\mathbb{E}(-F<D G, h>+F G W(h)) \tag{1.2}
\end{equation*}
$$

1.7 Itô representation formula / Clark-OconeHaussmann formula

As already mentioned $D F \in L^{2}([0,1] \times \Omega)$ can be thought of a stochastic process. Is it adapted? Let's see. Set

$$
F(s):=\mathcal{E}_{s}(h):=\exp \left(\int_{0}^{s} h d \beta-\frac{1}{2} \int_{0}^{s} h^{2} d \lambda\right)
$$

an exponential martingale. $F:=\mathcal{E}(h):=F(1)$ is not quite in \mathcal{S}_{2} but easily seen to been in $\mathcal{D}^{1, p}$ and, at least formally and $d \lambda(t)$-a.s.

$$
\begin{aligned}
D_{t} F & =e^{-\frac{1}{2} \int_{0}^{1} h^{2} d \lambda} D_{t}\left(\exp \int_{0}^{1} h d \beta\right) \\
& =e^{-\frac{1}{2} \int_{0}^{1} h^{2} d \lambda} \exp \left(\int_{0}^{1} h d \beta\right) h(t) \\
& =F h(t)
\end{aligned}
$$

The used chain-rule is made rigorous by approximation in \mathcal{S}_{2} using the partial sums of the exponential.
As F contains information up to time $1, D_{t} F$ is not adapted to \mathcal{F}_{t} but we can always project down

$$
\begin{aligned}
\mathbb{E}\left(D_{t} F \mid \mathcal{F}_{t}\right) & =\mathbb{E}\left(F(1) h(t) \mid \mathcal{F}_{t}\right) \\
& =h(t) \mathbb{E}\left(F(1) \mid \mathcal{F}_{t}\right) \\
& =h(t) F(t),
\end{aligned}
$$

using the martingale-property of $F(t)$. On the other hand, F solves the SDE

$$
d F(t)=h(t) F(t) d \beta(t)
$$

with $F(0)=1=\mathbb{E}(F)$. Hence

$$
\begin{align*}
F & =\mathbb{E}(F)+\int_{0}^{1} h(t) F(t) d \beta(t) \\
& =\mathbb{E}(F)+\int_{0}^{1} \mathbb{E}\left(D_{t} F \mid \mathcal{F}_{t}\right) d \beta(t) \tag{1.3}
\end{align*}
$$

By throwing away some information this reads

$$
\begin{equation*}
F=\mathbb{E}(F)+\int_{0}^{1} \phi(t, \omega) d \beta \tag{1.4}
\end{equation*}
$$

for some adapted process ϕ in $L^{2}([0,1] \times \Omega)$. We proved (1.4) for F of the form $\mathcal{E}(h)$, sometimes called Wick-exponentials, call \mathcal{E} the set of all such F s. Obviously this extends the the linear span (\mathcal{E}) and by a density argument, see [Oksendal1] for instance, to any $F \in L^{2}(\Omega, W)$. This is the Itô representation theorem. Looking back to (1.3), we can't expect this to hold for any $F \in$ $L^{2}(\Omega, W)$ since D is only defined on the proper subset $\mathcal{D}^{1,2}$. However, it is true for $F \in \mathcal{D}^{1,2}$, this is the Clark-Ocone-Haussmann formula.

Remarks: - In most books, for instance [Nualart], the proof uses the Wiener-Ito-Chaos-decomposition, although approximation via the $\operatorname{span}(\mathcal{E})$ should work. - A similar type of computations allows to compute, at least for $F \in \operatorname{span}(\mathcal{E}),{ }^{2}$ and $d \lambda(t) \times d W(\omega)$ a.s.

$$
D_{t} \mathbb{E}\left(F \mid \mathcal{F}_{s}\right)=\mathbb{E}\left(D_{t} F \mid \mathcal{F}_{s}\right) 1_{[0, s]}(t)
$$

In particular,

$$
\begin{equation*}
F \text { is } \mathcal{F}_{s}-\text { adapted } \Rightarrow D_{t} F=0 \text { for Lebesgue-a.e. } t>s \tag{1.5}
\end{equation*}
$$

The intuition here is very clear: if F only depends on the early parts of the paths up to time s, i.e. on $\left\{\omega\left(s^{\prime}\right): s^{\prime} \leq s\right\}$, perturbing the pathes later on (i.e. on $t>s$) shouldn't change a thing. Now recall the interpretation of $<D F, h>=\int D_{t} F h(t) d t$ as directional derivatives in direction of the perturbation $\tilde{h}=\int_{0}^{\cdot} h d \lambda$.

- Comparing (1.4) and (1.3), the question arises what really happens for $F \in L^{2}-\mathcal{D}^{1,2}$. There is an extension of D to \mathcal{D}^{\prime}, the space of Meyer-Watanabedistribution built on the space \mathcal{D}^{∞} (introduced a little bit later in this text), and $L^{2} \subset \mathcal{D}^{\prime}$. In this context, (1.3) makes sense for all $F \in L^{2}$, see [Uestuenel], p42.

1.8 Higher derivatives

When $f: \mathbb{R}^{n} \supset U \rightarrow \mathbb{R}$ then $\nabla f=\left(\partial_{i} f\right)$ is a vector field on U, meaning that at each point $\nabla f(x) \in T_{x} U \cong \mathbb{R}^{n}$ with standard differential-geometry notation. Then $\left(\partial_{i j}\right) f$ is a (symmetric) 2-tensor field, i.e. at each point an element of $T . U \otimes T . U \cong \mathbb{R}^{n} \otimes \mathbb{R}^{n}$. As seen in section 1.5 the tangent space of Ω corresponds to H, therefore $D^{2} F$ (still to be defined!) should be a $H \otimes H$-valued r.v. (or $H \hat{\otimes} H$ to indicate symmetry). No need to worry about tensor-calculus in infinite dimension since $H \otimes H \cong L^{2}\left([0,1]^{2}\right)$. For $F \in \mathcal{S}_{2}$ (for instance), randomness fixed

$$
D_{s, t}^{2} F:=D_{s}\left(D_{t} F\right)
$$

is $d \lambda^{2}(s, t)$-a.s. well-defined, i.e. good enough to define an element of $L^{2}\left([0,1]^{2}\right)$. Again, there is closability of the operator $D^{2}: L^{p}(W) \rightarrow L^{p}(W, H \hat{\otimes} H)$ to check, leading to a maximal domain $\mathcal{D}^{2, p}$ with associated norm $\|\cdot\|_{2, p}$ and the same is done for higher derivatives. Details are in [Nualart],p26.
Remarks: - $\mathcal{D}^{k, p}$ is not an algebra but

$$
\mathcal{D}^{\infty}:=\cap_{k, p} \mathcal{D}^{k, p}
$$

is. As with the class of rapidly decreasing functions, underlying the tempered distributions, \mathcal{D}^{∞} can be given a metric and then serve to introduce continuous functionals on it, the Meyer-Watanabe-distributions. This is quite a central point in many exposures including [IW], [Oksendal2], [Ocone] and [Uestuenel]. - Standard Sobolev imbedding theorems, as for instance [RR], p215 tell us that for $U=\mathbb{R}^{n}$

$$
W^{k, p}(U) \subset C_{b}(U)
$$

[^2]whenever $k p>\operatorname{dim} U=n$. Now, very formally, when $n=\infty$ one could have a function in the intersection of all these Sobolev-spaces without achieving any continuity. And this is what happens on $\Omega!!!$ For instance, taking $F=W(h), h \in H$ gives $D F=h, D^{2} F=0$, therefore $F \in \mathcal{D}^{\infty}$. On the other hand, [Nualart] has classified those h for which a continuous choice of $W(h)$ exists, as those L^{2}-functions that have a representative of bounded variation, see [Nualart] p32 and the references therein.

1.9 The Skorohod Integral / Divergence

For simplicity consider $p=2$, then

$$
D: L^{2}(\Omega) \supset \mathcal{D}^{1,2} \rightarrow L^{2}(\Omega, H)
$$

a densely defined unbounded operator. Let δ denote the adjoint operator, i.e. for $u \in \operatorname{Dom} \delta \subset L^{2}(\Omega, H) \cong L^{2}([0,1] \times \Omega)$ we require

$$
\mathbb{E}\left(<D F, u>_{H}\right)=\mathbb{E}(F \delta(u))
$$

Remark: On $\left(\mathbb{R}^{n}, \lambda^{n}\right)$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}<\nabla f, u>_{\mathbb{R}^{n}} d \lambda^{n}=\int_{\mathbb{R}^{n}} f(-\operatorname{div} u) d \lambda^{n} \tag{1.6}
\end{equation*}
$$

this explains (up to a minus-sign) why δ is called divergence.
Take $F, G \in \mathcal{S}_{2}, h \in H$. Then $\delta(F h)$ is easily computed using the IBPformula (1.2)

$$
\begin{aligned}
\mathbb{E}(\delta(F h) G) & =\mathbb{E}(<F h, D G>) \\
& =\mathbb{E}(F<h, D G>) \\
& =\mathbb{E}(-G<h, D F>)+\mathbb{E}(F G W(h))
\end{aligned}
$$

which implies

$$
\begin{equation*}
\delta(F h)=F W(h)-<h, D F> \tag{1.7}
\end{equation*}
$$

Taking $F \equiv 1$ we immediately get that δ coincides with the Itô-integral on (deterministic) L^{2}-functions. But we can see much more: take $F \mathcal{F}_{r}$-measurable, $h=1_{(r, s]}$. We know from (1.5) that $D_{t} F=0$ for a.e. $t>r$. Therefore

$$
<h, D F>=\int_{0}^{1} 1_{[r, s]}(t) D_{t} F d t=0
$$

i.e.

$$
\delta(F h)=F W(h)=F\left(\beta_{s}-\beta_{r}\right)=\int_{0}^{1} F h d \beta
$$

by the very definition of the Itô-integral on adapted step-functions. ${ }^{3}$
By an approximation, for $u \in L_{a}^{2}$, the closed subspace of $L^{2}([0,1] \times \Omega)$ formed by the adapted processes, it still holds that

$$
\delta(u)=\int_{0}^{1} u(t) d \beta(t)
$$

[^3]see [Nualart] p41 or [Uestuenel] p15.
The "divergence" δ is therefore a generalization of the Ito-integral (to nonadapted integrands) and - in this context - called Skorohod-integral.

Remark: For $u \in H, W(u)=\delta(u)$ (1.7) also reads

$$
\begin{equation*}
\delta(F u)=F \delta(u)-<u, D F> \tag{1.8}
\end{equation*}
$$

and this relation stays true for $u \in \operatorname{Dom}(\delta), F \in \mathcal{D}^{1,2}$ and some integrability condition, see [Nualart], p40. The formal proof is simple, using the product rule

$$
\begin{aligned}
\mathbb{E}<F u, D G> & =\mathbb{E}<u, F D G> \\
& =\mathbb{E}<u, D(F G)-G(D F)> \\
& =\mathbb{E}[(\delta u) F G-<u, D F>G] \\
& =\mathbb{E}[(F \delta u-<u, D F>) G] .
\end{aligned}
$$

1.10 The OU-operator

We found gradient and divergence on Ω. On \mathbb{R}^{n} plugging them together yields a positive operator (the negative Laplacian)

$$
A=-\Delta=-\operatorname{div} \circ \nabla
$$

Here is an application. Again, we are on $\left.\left(\mathbb{R}^{n}, \lambda^{n}\right),<,.\right\rangle$ denotes the inner product on $L^{2}\left(\mathbb{R}^{n}\right)$.

$$
\begin{aligned}
\|f\|_{W^{1,2}}^{2}=\|f\|_{H^{1}}^{2} & =\int|f|^{2} d \lambda^{n}+\int\|\nabla f\|_{\mathbb{R}^{n}}^{2} d \lambda^{n} \\
& =\int|f|^{2} d \lambda^{n}+\int f A f d \lambda^{n} \text { using (1.6) } \\
& =<f, f>+<A f, f> \\
& =<(1+A) f, f> \\
& =<(1+A)^{1 / 2} f,(1+A)^{1 / 2} f>=\left\|(1+A)^{1 / 2} f\right\|^{2},
\end{aligned}
$$

using the square-root of the positive operator $(1+A)$ as defined for instance by spectral calculus. For $p \neq 2$ there is no equality but one still has

$$
\|\cdot\|_{W^{1, p}} \sim\left\|(1+A)^{1 / 2} \cdot\right\|_{L^{p}}
$$

when $p>1$, see [Stein] p135.
Let's do the same on (Ω, W), first define the Ornstein-Uhlenbeck operator

$$
L:=\delta \circ D .
$$

Then the same is true, i.e. for $1<p<\infty$.

$$
\|\cdot\|_{1, p} \sim\left\|(1+L)^{1 / 2} \cdot\right\|_{L^{p}(\Omega)}
$$

with equality for $p=2$, the latter case is seen as before. This result is a corollary from the Meyer Inequalities. The proof is not easy and found in [Uestuenel] p19, [Nualart] p61 or [Sugita] p37.

How does L act on a \mathcal{S}_{2}-type functional $F=f\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right)$ where we take w.l.o.g. the h_{i} 's orthonormal? Using $D F=\sum\left(\partial_{i} f\right) h_{i}$ and formula (1.7) we get

$$
\begin{aligned}
L F & =\sum_{i} \partial_{i} f W\left(h_{i}\right)-\sum_{i}<D \partial_{i} f, h_{i}> \\
& =\sum_{i} \partial_{i} f W\left(h_{i}\right)-\sum_{i, j} \partial_{i j} f<h_{j}, h_{i}> \\
& =\left(L^{(n)} f\right)\left(W\left(h_{1}\right), \ldots, W\left(h_{n}\right)\right)
\end{aligned}
$$

where $L^{(n)}$ is defined as the operator for functions on \mathbb{R}^{n}

$$
\begin{aligned}
L^{(n)} & :=\sum_{i=1}^{n}\left[x_{i} \partial_{i}-\partial_{i i}\right] \\
& =x \cdot \nabla-\Delta
\end{aligned}
$$

Remarks: - Minus $L^{(n)}$ is the generator of the n-dimensional OU-process given by the SDE

$$
d x=\sqrt{2} d \beta-x d t
$$

with explicit solution

$$
\begin{equation*}
x(t)=x_{0} e^{-t}+\sqrt{2} e^{-t} \int_{0}^{t} e^{s} d \beta(s) \tag{1.9}
\end{equation*}
$$

and for t fixed $x(t)$ has law $\mathcal{N}\left(x_{0} e^{-t},\left(1-e^{-2 t}\right) \mathrm{Id}\right)$.

- L plays the role the same role on (Ω, W) as $L^{(n)}$ on $\left(\mathbb{R}^{n}, \nu^{n}\right)$ or $A=-\Delta$ on $\left(\mathbb{R}^{n}, \lambda^{n}\right)$.
- Here is some "OU-calculus", (at least for) $F, G \in \mathcal{S}_{2}$

$$
\begin{equation*}
L(F G)=F L G+G L F-2<D F, D G> \tag{1.10}
\end{equation*}
$$

as immediatly seen by (1.1) and (1.8).

- Some more of that kind,

$$
\begin{equation*}
\delta(F D G)=F L G-<D F, D G> \tag{1.11}
\end{equation*}
$$

1.11 The OU-semigroup

We first give a result from semigroup-theory.
Theorem 2 Let \mathcal{H} be a Hilbert-space, $B: \mathcal{H} \rightarrow \mathcal{H}$ be a (possibly unbounded, densely defined) positive, self-adjoint operator. Then $-B$ is the infinitesimal generator of a strongly continuous semigroup of contractions on \mathcal{H}.

Proof: $(-B)=(-B)^{*}$ and positivity implies that $-B$ is dissipative in Pazy's terminology. Now use Corollary 4.4 in [Pazy], page 15 (which is derived from the Lumer-Phillips theorem, which is, itself, based on the Hille-Yoshida
theorem).
Applying this to A yields the heat-semigroup on $L^{2}\left(\mathbb{R}^{n}, \lambda^{n}\right)$, applying it to $L^{(n)}$ yields the OU-semigroup on $L^{2}\left(\mathbb{R}^{n}, \nu^{n}\right)$, and for L we get the OU-semigroup on $L^{2}(\Omega, W)$.
Let's look at the OU-semigroup $P_{t}^{(n)}$ with generator $L^{(n)}$. Take $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, say, smooth with compact support. Then it is well-known that, using (1.9),

$$
\begin{aligned}
\left(P_{t}^{(n)} f\right)(x) & =\mathbb{E}^{x} f(x(t))= \\
& =\int_{\mathbb{R}^{n}} f\left(e^{-t} x+\sqrt{1-e^{-2 t} y}\right) d \nu^{n}(y) .
\end{aligned}
$$

is again a continuous function in x. (This property is summarized by saying that $P_{t}^{(n)}$ is a Feller-semigroup.) Similarly, whenever $F: \Omega \rightarrow \mathbb{R}$ is nice enough we can set

$$
\begin{align*}
\left(P_{t} F\right)(x) & =\int_{\Omega} F\left(e^{-t} x+\sqrt{1-e^{-2 t} y}\right) d W(y) \tag{1.12}\\
& =\int_{\Omega} F(x \cos \phi+y \sin \phi) d W(y)
\end{align*}
$$

A priori, this is not well-defined for $F \in L^{p}(\Omega)$ since two W-a.s. identical F 's could lead to different results. However, this does not happen:
Proposition 3 Let $1 \leq p<\infty$. Then P_{t} is a well-defined (bounded) operator from $L^{p}(\Omega) \rightarrow L^{p}(\Omega)$ (with norm ≤ 1).

Proof: Using Jensen and the rotational invariance of Wiener-measure, with $R(x, y)=(x \cos \phi+y \sin \phi,-x \sin \phi+y \cos \phi)$, we have

$$
\begin{aligned}
\left\|P_{t} F\right\|_{L^{p}(\Omega)}^{p} & =\int_{\Omega}\left[\int_{\Omega} F(x \cos \phi+y \sin \phi) d W(y)\right]^{p} d W(x) \\
& \leq \int_{\Omega \times \Omega}[|F \otimes 1|(R(x, y))]^{p} d(W \otimes W)(x, y) \\
& =\int_{\Omega \times \Omega}[|F \otimes 1|(x, y)]^{p} d(W \otimes W)(x, y) \\
& =\int_{\Omega \times \Omega}|F(x)|^{p} d(W \otimes W)(x, y)=\int_{\Omega}|F(x)|^{p} d W(x)=\|F\|_{L^{p}(\Omega)}^{p}
\end{aligned}
$$

It can be checked that P_{t} as defined via (1.12) and considered as operator on $L^{2}(\Omega)$, coincides with the abstract semigroup provided by the theorem at the beginning of this section. It suffices to check that P_{t} is a semigroup with infinitesimal generator L, the OU-operator, see [Uestuenel] p17.
Remark: P_{t} is actually more than just a contraction on L^{p}, it is hyper-contractive meaning that it increases the degree of integrability, see also [Uestuenel].

1.12 Some calculus on (\mathbb{R}, ν)

From section 1.10,

$$
(\mathcal{L} f)(x):=\left(L^{(1)}\right) f(x)=x f^{\prime}(x)-f^{\prime \prime}(x) .
$$

Following in notation [Malliavin1], [Malliavin2], denote by $\partial f=f^{\prime}$ the differentiationoperator and by ∂^{*} the adjoint operator on $L^{2}(\nu)$. By standard IBP

$$
\left(\partial^{*} f\right)(x)=-f^{\prime}(x)+x f(x) .
$$

Note that $\mathcal{L}=\partial^{*} \partial$. Define the Hermite polynomials by

$$
H_{0}(x)=1, H_{n}=\partial^{*} H_{n-1}=\left(\partial^{*}\right)^{n} 1 .
$$

Using the commutation relation $\partial \partial^{*}-\partial^{*} \partial=\mathrm{Id}$, an induction (one-line) proof yields $\partial H_{n}=n H_{n-1}$. An immediate consequence is

$$
\mathcal{L} H_{n}=n H_{n} .
$$

Since H_{n} is a polynomial of degree $n, \partial^{m} H_{n}=0$ when $m>n$, therefore

$$
\begin{aligned}
<H_{n}, H_{m}>_{L^{2}(\nu)} & =<H_{n},\left(\partial^{*}\right)^{m} 1> \\
& =<(\partial)^{m} H_{n}, 1> \\
& =0
\end{aligned}
$$

On the other hand, since $\partial^{n} H_{n}=n$!

$$
<H_{n}, H_{n}>_{L^{2}(\nu)}=n!
$$

hence $\left\{\frac{1}{(n!)^{1 / 2}} H_{n}\right\}$ is a orthonormal system which is known to be complete, see [Malliavin2] p7. Hence, given $f \in L^{2}(\nu)$ we have

$$
f=\sum c_{n} H_{n} \quad \text { with } \quad c_{n}=\frac{1}{n!}<f, H_{n}>.
$$

Assume that all derivatives are in L^{2}, too. Then

$$
<f, H_{n}>=<f, \partial^{*} H_{n-1}>=<\partial f, H_{n-1}>=\ldots=<\partial^{n} f, 1>
$$

Denote this projection on 1 by $E\left(\partial^{n} f\right)$ and observe that it equals $\mathbb{E}\left(\left(\partial^{n} f\right)(X)\right)$ for a standard gaussian X. We have

$$
\begin{equation*}
f=\sum_{n=0}^{\infty} \frac{1}{n!} E\left(\partial^{n} f\right) H_{n} \tag{1.13}
\end{equation*}
$$

Apply this to $f_{t}(x)=\exp \left(t x-t^{2} / 2\right)$ where t is a fixed parameter. Noting $\partial^{n} f_{t}=t^{n} f_{t}$ and $E\left(\partial^{n} f_{t}\right)=t^{n}$ we get

$$
\exp \left(t x-t^{2} / 2\right)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} H_{n}(x)
$$

Remark: [Malliavin1], [Malliavin2] extend $\partial, \partial^{*}, \mathcal{L}$ in a straightforwardmanner to $\left(\mathbb{R}^{\mathbb{N}}, \nu^{\mathbb{N}}\right)$ which is, in some sense, (Ω, W) with a fixed ONB in H.

1.13 Iterated Wiener-Ito integrals

There is a close link between Hermite polynomials and iterated Wiener-Ito integrals of the form

$$
J_{n}(f):=\int_{\Delta_{n}} f d \beta^{\otimes n}:=\int_{0}^{1} \ldots \int_{0}^{t_{1}} f\left(t_{1}, \ldots t_{n}\right) d \beta_{t_{1}} \ldots d \beta_{t_{n}},
$$

(well-defined) for $f \in L^{2}\left(\Delta_{n}\right)$ where $\Delta_{n}:=\Delta_{n}(1):=\left\{0<t_{1}<\ldots . .<t_{n}<\right.$ $1\} \subset[0,1]^{n}$. Note that only integration over such a simplex makes sure that every Ito-integration has an adapted integrand. Note that $J_{n}(f) \in L^{2}(\Omega)$. A straight-forward computation using the Ito-isometry shows that for $n \neq m$

$$
\mathbb{E}\left(J_{n}(f) J_{m}(g)\right)=0
$$

while

$$
\mathbb{E}\left(J_{n}(f) J_{n}(g)\right)=<f, g>_{L^{2}\left(\Delta_{n}\right)} .
$$

Proposition 4 Let $h \in H$ with $\|h\|_{H}=1$. Let $h^{\otimes n}$ be the n-fold product, a (symmetric) element of $L^{2}\left([0,1]^{n}\right)$ and restrict it to Δ_{n}. Then

$$
\begin{equation*}
n!J_{n}\left(h^{\otimes n}\right)=H_{n}(W(h)) . \tag{1.14}
\end{equation*}
$$

Proof: Set

$$
M_{t}:=\mathcal{E}_{t}(g) \text { and } N_{t}:=1+\sum_{n=1}^{\infty} \int_{\Delta_{n}(t)} g^{\otimes n} d \beta^{\otimes n}
$$

where $g \in H$. By the above orthonormality relations N_{t} is seen to be in L^{2}. Moreover, both $Y=M$ resp. N solve the integral equation,

$$
Y_{t}=1+\int_{0}^{t} Y_{s} g(s) d \beta_{s}
$$

By a uniqueness result for SDEs (OK, it's just Gronwall's Lemma for the L^{2} norm of $M_{t}-N_{t}$) we see that W-a.s. $M_{t}=N_{t}$ Now take $f \in H$ with norm one. Use the above result with $g=\tau f, t=1$

$$
\begin{equation*}
\exp \left(\tau \int_{0}^{1} f d \beta-\frac{1}{2} \tau^{2}\right)=1+\sum_{n=1}^{\infty} \tau^{n} J_{n}\left(f^{\otimes n}\right) \tag{1.15}
\end{equation*}
$$

and using the generating function for the Hermite polynomials finishes the proof.

A simple "geometric" corollary of the preceding is that for h, g both norm one elements in H,

$$
\mathbb{E}\left(H_{n}(W(h)) H_{m}(W(g))=0\right.
$$

if $n \neq m$ and

$$
\mathbb{E}\left(H_{n}(W(h)) H_{n}(W(g))=n!\left(<h, g>_{H}\right)^{n} .\right.
$$

Remark: If it were just for this corollary, an elementary and simple proof is contained in [Nualart].

1.14 The Wiener-Ito Chaos Decomposition

Set

$$
\mathcal{C}_{n}:=\left\{J_{n}(f): f \in L^{2}\left(\Delta_{n}\right)\right\} \quad\left(n^{\text {th }} \text { Wiener Chaos }\right)
$$

a family of closed, orthogonal subspaces in $L^{2}(\Omega)$.
For $F=\mathcal{E}(h) \in L^{2}(\Omega)$ we know from the proof of proposition 4 that

$$
F=1+\sum_{n=1}^{\infty} J_{n}\left(h^{\otimes n}\right) \quad \text { (orthogonal sum). }
$$

Less explicitly this is an orthogonal decomposition of the form

$$
F=f_{0}+\sum_{n=1}^{\infty} J_{n}\left(f_{n}\right)
$$

for some sequence of $f_{n} \in L^{2}\left(\Delta_{n}\right)$. Clearly, this extends to span (\mathcal{E}), and since this span is dense in $L^{2}(\Omega)$ this further extends to any $F \in L^{2}(\Omega)$ which is the same as saying that

$$
L^{2}(\Omega)=\bigoplus_{n=0}^{\infty} \mathcal{C}_{n} \quad \text { (orthogonal) }
$$

when setting \mathcal{C}_{0} the subspace of the constants. Indeed, assume that is a non-zero element $G \in\left(\bigoplus \mathcal{C}_{n}\right)^{\perp}$, wlog of norm one. But there is a $F \in \operatorname{span}(\mathcal{E}) \subset\left(\bigoplus \mathcal{C}_{n}\right)$ arbitrarily close - contradiction. This result is called the Wiener-Ito Chaos Decomposition.
Remarks: - A slightly different description of of the Wiener-Chaos,

$$
\begin{align*}
\mathcal{C}_{n} & =\text { closure of } \operatorname{span}\left\{J_{n}\left(h^{\otimes n}\right):\|h\|_{H}=1\right\} \\
& =\text { closure of } \operatorname{span}\left\{H_{n}(W(h)):\|h\|_{H}=1\right\} . \tag{1.16}
\end{align*}
$$

The second equality is clear by (1.14). Denote by \mathcal{B}_{n} the r.h.s., clearly $\mathcal{B}_{n} \subset \mathcal{C}_{n}$. But since span $(\mathcal{E}) \subset \bigoplus \mathcal{B}_{n}$, taking the closure yields $\bigoplus \mathcal{B}_{n}=L^{2}$, hence $\mathcal{B}_{n}=\mathcal{C}_{n}$.

We now turn to the spectral decomposition of the OU-operator L
Theorem 5 Let Π_{n} denote the orthogonal projection on \mathcal{C}_{n}, then

$$
L=\sum_{n=1}^{\infty} n \Pi_{n}
$$

Proof: Set $X=W(h), Y=W(k)$ for two norm one elements in H, $a=<h, k>, F=H_{n}(X)$. Then

$$
\begin{aligned}
\mathbb{E}\left(L F, H_{m}(Y)\right. & =\mathbb{E}<D H_{n}(X), D H_{m}(Y)> \\
& =\mathbb{E}<n H_{n-1}(X) h, m H_{m-1}(Y) k>\quad \text { using } H_{n}^{\prime}=\partial H_{n}=n H_{n} \\
& =n m a \mathbb{E}\left(H_{n-1}(X), H_{m-1}(Y)\right)
\end{aligned}
$$

which, see end of last section, is 0 when $n \neq m$ and

$$
n m a(n-1)!a^{n-1}=n n!a^{n}=n \mathbb{E}\left(H_{n}(X), H_{m}(Y)\right)
$$

otherwise i.e. when $n=m$. By density of the linear span of such $H_{n}(X)$'s the result follows.

Another application of Hermite polynomials is the fine-structure of \mathcal{C}_{n}. Let $\mathbf{p}: \mathbb{N} \rightarrow \mathbb{N}_{0}$ such that $|\mathbf{p}|=\sum_{n} \mathbf{p}(n)<\infty$. Fix a ONB e_{i} for H and set

$$
\begin{equation*}
H_{\mathbf{p}}:=\prod_{n} H_{\mathbf{p}(n)}\left(W\left(e_{n}\right)\right) \tag{1.17}
\end{equation*}
$$

well-defined since $H_{0}=1$ and $p(n)=0$ but finitely often. Set $\mathbf{p}!=\prod p(n)$!
Proposition 6 The set

$$
\left\{\frac{1}{(\mathbf{p}!)^{1 / 2}} H_{\mathbf{p}}:|\mathbf{p}|=n\right\}
$$

forms a complete orthonormal set for the $n^{\text {th }}$ Wiener-chaos \mathcal{C}_{n}.
Note that this proposition is true for any ONB-choice in H.
Proof: Orthonormality is quickly checked with the \perp-properties of $H_{n}(W(h))$ seen before. Next we show that $H_{\mathbf{p}} \in \mathcal{C}_{n}$. We do induction by N, the number of non-trivial factors in (1.17). for $N=1$ this is a consequence of (1.14). For $N>1, H_{\mathbf{p}}$ splits up in

$$
H_{\mathbf{p}}=H_{\mathbf{q}} \times H_{i} \quad \text { with } \quad H_{i}=H_{i}\left(W\left(e_{j}\right)\right)
$$

some i, j where $H_{q} \in \mathcal{S}_{2}$ is a Wiener-polynomial in which $W\left(e_{j}\right)$ does not appear as argument. Randomness fixed, it follows by the orthonormality of the e_{i} 's that

$$
D H_{\mathbf{q}} \in e_{j}^{\perp} \text { hence } D H_{\mathbf{q}} \perp D H_{i} .
$$

By induction hypothesis, $H_{\mathbf{q}} \in \mathcal{C}_{|\mathbf{q}|}=\mathcal{C}_{n-i}$. Hence

$$
L H_{\mathbf{q}}=(n-i) H_{\mathbf{q}}
$$

using the the spectral decomposition of the OU-operator. By (1.10),

$$
\begin{aligned}
L\left(H_{\mathbf{p}}\right) & =L\left(H_{\mathbf{q}} H_{i}\right) \\
& =H_{\mathbf{q}} L H_{i}+H_{i} L H_{\mathbf{q}}-2<D H_{q}, D H_{i}> \\
& =H_{\mathbf{q}}\left(i H_{i}\right)+H_{i}(n-i) H_{\mathbf{q}} \\
& =n H_{\mathbf{p}}
\end{aligned}
$$

hence $H_{\mathbf{p}} \in \mathcal{C}_{n}$. Introduce \tilde{C}_{n}, the closure of the span of all $H_{\mathbf{p}}$'s with $|\mathbf{p}|=n$. We saw that $\tilde{C}_{n} \subset \mathcal{C}_{n}$ and we want to show equality. To this end, take any $F \in L^{2}(\Omega, W)$ and set

$$
f_{k}:=\mathbb{E}\left[F \mid \sigma\left(W\left(e_{1}\right), \ldots, W\left(e_{k}\right)\right)\right] .
$$

By martingale convergence, $f_{k} \rightarrow F$ in L^{2}. Furthermore

$$
f_{k}=g_{k}\left(W\left(e_{1}\right), \ldots, W\left(e_{k}\right)\right)
$$

for some $g_{k} \in L^{2}\left(\mathbb{R}^{k}, \nu^{k}\right)=\left(L^{2}(\mathbb{R}, \nu)\right)^{\otimes k}$. Since the (simple) Hermite polynomials form an ONB for $L^{2}(\mathbb{R}, \nu)$ its k-fold tensor product has the ONB

$$
\left\{\frac{1}{(\mathbf{q}!)^{1 / 2}} \prod_{i=1}^{k} H_{\mathbf{q}(i)}\left(x_{i}\right): \text { all multiindices } \mathbf{q}:\{1, \ldots, k\} \rightarrow \mathbb{N}\right\}
$$

Hence

$$
f_{k} \in \bigoplus_{i=0}^{\infty} \tilde{C}_{i}
$$

Set $f_{k}^{n}:=\Pi_{n} f_{k}$, then we still have $\lim _{k \rightarrow \infty} f_{k}^{n}=F$, while $f_{k}^{n} \in \mathcal{C}_{n}$ for all k. Therefore $\tilde{C}_{n}=\mathcal{C}_{n}$ as claimed.

Remarks: - Compare this ONB for \mathcal{C}_{n} with (1.16). Choosing $h=e_{1}, e_{2}, \ldots$ in that line will not $\operatorname{span} \mathcal{C}_{n}$. The reason is that $\left(e_{i}^{\otimes n}\right)_{i}$ is not a basis for $H^{\otimes \otimes n}$, the symmetric tensor-product space, whereas $h^{\otimes n}$ for all unit elements is a basis. For instance, look at $n=2$. A basis is $\left(e_{i}^{\otimes 2}\right)_{i}$ and $\left(e_{i} \hat{\otimes} e_{j}\right)_{i, j}$ and

$$
\left(e_{i}+e_{j}\right)^{\otimes 2}-e_{i}^{\otimes 2}-e_{j}^{\otimes 2}=e_{i} \otimes e_{j}+e_{j} \otimes e_{i}
$$

the last expression equals (up to a constant) $e_{i} \hat{\otimes} e_{j}$.

- The link between Hermite-polynomials and iterated Wiener-Ito integrals, can be extended to this setting. For instance,

$$
H_{\mathbf{p}}=H_{2}\left(W\left(e_{1}\right)\right) \times H_{1}\left(W\left(e_{2}\right)\right)=(\text { some constant }) \times J_{3}\left(e_{1} \hat{\otimes} e_{1} \hat{\otimes} e_{2}\right)
$$

There is surprisingly little found in books about this. Of course, it's contained in Ito's original paper [Ito], but even [Oksendal2] p3.4. refers to that paper when it comes down to it.

1.15 The Stroock-Taylor formula

Going back to the WICD, most authors prove it by an iterated application of the Ito-representation theorem, see section 1.7. For instance, [Oksendal2], p1.4 writes this down in detail. Let's do the first step

$$
\begin{aligned}
F & =\mathbb{E} F+\int_{0}^{1} \phi_{t} d \beta_{t} \\
& =\mathbb{E} F+\int_{0}^{1}\left(\mathbb{E}\left(\phi_{t}\right)+\int_{0}^{t} \phi_{s, t} d \beta_{s}\right) d \beta_{t} \\
& =\mathbb{E} F+\int_{0}^{1} \mathbb{E}\left(\phi_{t}\right) d \beta_{t}+\int_{\Delta_{2}} \phi(s, t, \omega) d \beta_{s} d \beta_{t} \\
& =f_{0}+J_{1}\left(f_{1}\right)+\int_{\Delta_{2}} \phi(s, t, \omega) d \beta_{s} d \beta_{t}
\end{aligned}
$$

when setting $f_{0}=\mathbb{E}(F), f_{1}=E(\phi)$. It's not hard to see that $\int_{\Delta_{2}} \phi(s, t, \omega) d \beta_{s} d \beta_{t}$ is orthogonal to \mathcal{C}_{0} and \mathcal{C}_{1} (the same proof as for deterministic integrands it always boils down to the fact that an Ito-integral has mean zero), hence
we found the first two f 's of the WICD. But we also saw in section 1.7 that $\phi_{t}=\mathbb{E}\left(D_{t} F \mid \mathcal{F}_{t}\right)$, hence

$$
f_{1}(t)=\mathbb{E}\left(D_{t} F\right)
$$

$d \lambda(t)$-a.s. and for $F \in \mathcal{D}^{1,2}$. Similarly,

$$
f_{2}(s, t)=\mathbb{E}\left(D_{s, t}^{2} F\right)
$$

$d \lambda^{2}(s, t)$-a.s. and so for "higher" f_{n} 's, provided all necessary Malliavin-derivatives of F exist. We have

Theorem 7 (Stroock-Taylor) Let $F \in \cap_{k} \mathcal{D}^{k, 2}$, then the following refined WICD holds,

$$
\begin{aligned}
F & =\mathbb{E} F+\sum_{n=1}^{\infty} J_{n}\left(\mathbb{E}\left(D^{n} F\right)\right) \\
& =\mathbb{E} F+\sum_{n=1}^{\infty} \frac{1}{n!} I_{n}\left(\mathbb{E}\left(D^{n} F\right)\right)
\end{aligned}
$$

where

$$
I_{n}(f):=\int_{[0,1]^{n}} f d \beta^{\otimes n}:=n!J_{n}(f)
$$

for any $f \in L^{2}\left(\Delta^{n}\right)$ (or symmetric $f \in L^{2}[0,1]^{n}$), this notation only introduced here because of its current use in other texts.
Example: Consider $F=f(W(h))$ with $\|h\|_{H}=1$ a smooth function f which is together with all its derivatives in $L^{2}(\nu)$. By iteration,

$$
D^{n} F=\left(\partial^{n} f\right)(W(h)) h^{\otimes n}
$$

hence

$$
\begin{aligned}
\mathbb{E}\left(D^{n} F\right) & =h^{\otimes n} \mathbb{E}\left(\left(\partial^{n} f\right)(W(h))\right. \\
& =h^{\otimes n} E\left(\partial^{n} f\right)
\end{aligned}
$$

where we use the notation from 1.12,

$$
E(f)=\int f d \nu
$$

Then

$$
\begin{aligned}
J_{n}\left(\mathbb{E}\left(D^{n} F\right)\right) & =E\left(\partial^{n} f\right) J_{n}\left(h^{\otimes n}\right) \\
& =E\left(\partial^{n} f\right) \frac{1}{n!} H_{n}(W(h))
\end{aligned}
$$

and Stroock-Taylor just says

$$
f(W(h))=E(f)+\sum_{n=1}^{\infty} \frac{1}{n!} E\left(\partial^{n} f\right) H_{n}(W(h))
$$

which is, unsurprisingly, just (1.13) evaluated at $W(h)$.

Chapter 2

Smoothness of laws

2.1

Proposition 8 Let $F=\left(F_{1}, \ldots, F_{m}\right)$ be an m-dimensional r.v. Suppose that for all k and all multi-indices α with $|\alpha|=k$ there is a constant c_{k} such that for all $g \in C^{k}\left(\mathbb{R}^{m}\right)$

$$
\begin{equation*}
\left|\mathbb{E}\left[\partial^{\alpha} g(F)\right]\right| \leq c_{k}\|g\|_{\infty} \tag{2.1}
\end{equation*}
$$

Then the law of F has a C^{∞} density.
Proof: Let $\mu(d x)=\mathbb{P}(F \in d x)$ and $\hat{\mu}$ its Fourier-transform. Fix $u \in \mathbb{R}^{m}$ and take $g=\exp (i<u, \cdot>)$. Then, when $|\alpha|=k$,

$$
\left|u^{\alpha}\right||\hat{\mu}(u)|=\left|\mathbb{E}\left[\partial^{\alpha} g(F)\right]\right| \leq c_{k} .
$$

For any integer l, by choosing the right α 's of order l and maximizing the l.h.s we see that

$$
\left(\max _{i=1, \ldots, m}\left|u_{i}\right|\right)^{l} \| \hat{\mu}(u) \mid \leq c_{l}
$$

Hence, at infinity, $\hat{\mu}(u)$ decays faster than any polynomial in $|u|$. On the other hand, as \mathcal{F}-transform $\hat{\mu}$ is bounded (by one), therefore $\hat{\mu} \in L^{1}\left(\mathbb{R}^{m}\right)$. By standard Fourier-transform-results we have

$$
\mathcal{F}^{-1}(\hat{\mu})=: f \in C_{0}\left(\mathbb{R}^{m}\right)
$$

and since $\hat{f}=\hat{\mu}$, by uniqueness, $d \mu=f d \lambda^{m}$. Replacing α by $\alpha+(0, \ldots, 0, l, 0, \ldots, 0)$ we have

$$
\left|u_{i}\right|^{l}\left|u^{\alpha}\right||\hat{f}(u)| \leq c_{k+l}
$$

But since $\left|u^{\alpha}\right||\hat{f}(u)|=\left|\partial^{\hat{\alpha}} f\right|$ we conclude as before that $\partial^{\alpha} f \in C_{0}$.
Remark: - Having (2.1) only for $k \leq m+1$ you can still conclude that $\hat{\mu}(u)=O\left(\frac{1}{|u|^{m+1}}\right)$ and hence in L^{1}, therefore $d \mu=f d \lambda$ for continuous f. However, as shown in [Malliavin1], having (2.1) only for $k=1$, i.e. only involving first derivatives, one still has $d \mu=f d \lambda^{m}$ for some $f \in L^{1}\left(\mathbb{R}^{m}\right)$.
Now one way to proceed is as follows: for all $i=1, \ldots, m$ let $F_{i} \in \mathcal{D}^{1,2}$ (for the moment) and take $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ as above. By an application of the chain-rule, j fixed,

$$
\begin{aligned}
<D g(F), D F_{j}> & =<\partial_{i} g(F) D F_{i}, D F_{j}> \\
& =\partial_{i} g(F)<D F_{i}, D F_{j}>
\end{aligned}
$$

Introducing the Malliavin covariance matrix

$$
\begin{equation*}
\Lambda_{i j}=<D F_{i}, D F_{j}> \tag{2.2}
\end{equation*}
$$

and assuming that

$$
\begin{equation*}
\Lambda^{-1} \text { exists } W-a . s \tag{2.3}
\end{equation*}
$$

this yields a.s.

$$
\begin{aligned}
\partial_{i} g(F) & =\left(\Lambda^{-1}\right)_{i j}<D g(F), D F_{j}> \\
& =<D g(F),\left(\Lambda^{-1}\right)_{i j} D F_{j}>
\end{aligned}
$$

and hence

$$
\begin{aligned}
\mathbb{E}\left[\partial_{i} g(F)\right] & =\mathbb{E}<D g(F),\left(\Lambda^{-1}\right)_{i j} D F_{j}> \\
& =\mathbb{E}\left[g(F), \delta\left(\left(\Lambda^{-1}\right)_{i j} D F_{j}\right)\right]
\end{aligned}
$$

by definition of the divergence δ while hoping that $\left(\Lambda^{-1}\right)_{i j} D F_{j} \in \operatorname{Dom} \delta$. In this case we have

$$
\mathbb{E}\left[\partial_{i} g(F)\right] \leq\|g\|_{\infty} \mathbb{E}\left[\delta\left(\left(\Lambda^{-1}\right)_{i j} D F_{j}\right)\right]
$$

and we can conclude that F has a density w.r.t. Lebesgue measure λ^{m}. With some additional assumptions this outline is made rigorous: ${ }^{1}$

Theorem 9 Suppose $F=\left(F_{1}, \ldots, F_{m}\right), F_{i} \in \mathcal{D}^{2,4}$ and Λ^{-1} exists a.s. Then F has a density w.r.t. to λ^{m}.

Under much stronger assumptions we have the following result.
Theorem 10 Suppose $F=\left(F_{1}, \ldots, F_{m}\right) \in \mathcal{D}^{\infty}$ and $\Lambda^{-1} \in L^{p}$ for all p then F has a C^{∞}-density.

For reference in the following proof,

$$
\begin{align*}
D(g(F)) & =\partial_{i} g(F) D F^{i} \tag{2.4}\\
L(g(F) & =\partial_{i} g(F) L F^{i}-\partial_{i j} g(F) \Lambda_{i j} \tag{2.5}\\
L(F G) & =F L G+G L F-2<D F, D G> \tag{2.6}
\end{align*}
$$

the last equation was already seen in (1.10). The middle equation is a simple consequence of the chain-rule (2.4) and (1.8).
Also, D, L and \mathbb{E} are extended componentwise to vector- or matrix-valued r.v., for instance $<D F, D F>=\Lambda$.
Proof: Since $0=D\left(\Lambda \Lambda^{-1}\right)=L\left(\Lambda \Lambda^{-1}\right)$ we have

$$
D\left(\Lambda^{-1}\right)=-\Lambda^{-1}(D \Lambda) \Lambda^{-1}
$$

and

$$
L\left(\Lambda^{-1}\right)=-\Lambda^{-1}(L \Lambda) \Lambda^{-1}-2<\Lambda^{-1} D \Lambda, \Lambda^{-1}(D \Lambda) \Lambda^{-1}>
$$

Take a (scalar-valued) $Q \in \mathcal{D}^{\infty}$ (at first reading take $Q=1$) and a smooth function $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$. Then

$$
\begin{align*}
\mathbb{E}\left[\Lambda^{-1}<D F, D(g \circ F)>Q\right] & =\mathbb{E}\left[\Lambda^{-1}<D F, D F>(\nabla g \circ F) Q\right] \\
& =\mathbb{E}[(\nabla g \circ F) Q] . \tag{2.7}
\end{align*}
$$

[^4]We also have

$$
L(F(g \circ F))=F(L(g \circ F))+(L F)(g \circ F)-2<D F, D(g \circ F)>.
$$

This and the self-adjointness of L yields

$$
\begin{align*}
\mathbb{E}\left[\Lambda^{-1}<D F, D(g \circ F)>Q\right] & =\frac{1}{2} \mathbb{E}\left[\Lambda^{-1}\{-L(F(g \circ F))+F(L(g \circ F))+(L F)(g \circ F)\} Q\right] \\
& =\frac{1}{2} \mathbb{E}\left[-F(g \circ F) L\left(\Lambda^{-1} Q\right)+(g \circ F) L\left(\Lambda^{-1} F Q\right)+(g \circ F) \Lambda^{-1}(L F) Q\right] \\
& =\mathbb{E}[(g \circ F) R(Q)] \tag{2.8}
\end{align*}
$$

with a random vector

$$
R(Q)=\frac{1}{2}\left[-F L\left(\Lambda^{-1} Q\right)+L\left(\Lambda^{-1} F Q\right)+\Lambda^{-1}(L F) Q\right]
$$

From the vector-equality $(2.7)=(2.8)$

$$
\mathbb{E}\left[\left(\partial_{i} g \circ F\right) Q\right]=\mathbb{E}\left[(g \circ F)\left\{e_{i} \cdot R(Q)\right\}\right],
$$

with $i^{\text {th }}$ unit-vector e_{i}. Now the idea is that together with the other assumptions $Q \in \mathcal{D}^{\infty}$ implies (componentwise) $R(Q) \in \mathcal{D}^{\infty}$. To see this you start with proposition 3 but then some more information about L and its action on \mathcal{D}^{∞} is required. We don't go into details here, but see [Bass] and [IW].
The rest is easy, taking $Q=1$ yields

$$
\left|\mathbb{E}\left[\partial_{i} g \circ F\right]\right| \leq c_{1}\|g\|_{\infty}
$$

and the nice thing is that we can simply iterate: taking $Q=e_{j} \cdot R(1)$ we get

$$
\mathbb{E}\left[\partial_{j i} g \circ F\right]=\mathbb{E}\left[\left(\partial_{i} g \circ F\right)\left(e_{j} \cdot R(1)\right)\right]=\mathbb{E}\left[(g \circ F) e_{i} \cdot R\left(e_{j} \cdot R(1)\right)\right]
$$

and you conclude as before. Obviously we can continue by induction. Hence, by the first proposition of this section we get the desired result.

Chapter 3

Degenerated Diffusions

3.1 Malliavin Calculus on the d-dimensional Wiener Space

Generalizing the setup of Chapter 1 , we call

$$
\Omega=C\left([0,1], \mathbb{R}^{d}\right)
$$

the d-dimensional Wiener Space. Under the d-dimensional Wiener measure on Ω the coordinate process becomes a d-dimensional Brownian motion, $\left(\beta^{1}, \ldots, \beta^{d}\right)$. The reproducing kernel space is now

$$
H=L^{2}\left([0,1], \mathbb{R}^{d}\right)=L^{2}[0,1] \times \ldots \times L^{2}[0,1] \quad(d \text { copies })
$$

As in Chapter 1 the Malliavin derivative of a real-valued r.v. X can be considered as a H-valued r.v. Hence we can write

$$
D X=\left(D^{1} X, \ldots, D^{d} X\right)
$$

For a m-dimensional random variable $X=\left(X^{i}\right)$ set

$$
D X=\left(D^{j} X^{i}\right)_{i j},
$$

which appears as a $(m \times d)$-matrix of $L^{2}[0,1]$-valued r.v. The Malliavin covariance matrix, as introduced in Chapter 2, reads

$$
\Lambda_{i j}=<D X^{i}, D X^{j}>_{H}=\sum_{k=1}^{d}<D^{k} X^{i}, D^{k} X^{j}>_{L^{2}[0,1]},
$$

or simply

$$
\begin{equation*}
\Lambda=<D X,(D X)^{T}>_{L^{2}[0,1]} \tag{3.1}
\end{equation*}
$$

3.2 The problem

Given vector-fields A_{1}, \ldots, A_{d}, B on \mathbb{R}^{m} consider the SDE

$$
\begin{equation*}
d X_{t}=A_{j}\left(X_{t}\right) d \beta_{t}^{j}+B\left(X_{t}\right) d t \tag{3.2}
\end{equation*}
$$

For some fixed $t>0$ (and actually $t \leq 1$ due to our choice of Ω) we want to investigate the regularity of the law of $X(t)$, i.e. existence and smoothness of a density with respect to λ^{m} on \mathbb{R}^{m}. We assume all the coefficients as nice as we need (smooth, bounded, bounded derivatives etc). Indeed, the degeneration we are interested in lies somewhere else: taking all coefficients zero, the law of $X(t)$ is just the Dirac-measure at $X(0)=x$, in particular there doesn't exist a density.

3.3 SDEs and Malliavin Calculus, the 1-dimensional case

For simplicity take $m=d=1$ and consider

$$
\begin{equation*}
X_{t}=x+\int_{0}^{t} a\left(X_{s}\right) d \beta_{s}+\int_{0}^{t} b\left(X_{s}\right) d s \tag{3.3}
\end{equation*}
$$

Our try is to assume ${ }^{1}$ that all X_{s} are in the domain of D and then to bring D under the integrals. To this end recall from section 1.7 that for fixed s and a \mathcal{F}_{s}-measurable r.v. F one has $D_{r} F=0$ for λ-a.e. $r>s$.
Let $u(s, \omega)$ be some $\mathcal{F}_{s^{\prime}}$-adapted process, and let $r \leq t$. Then

$$
D_{r} \int_{0}^{1} u(s) d s=\int_{0}^{t} D_{r} u(s) d s=\int_{r}^{t} D_{r} u(s) d s
$$

the first step can be justified by a R-sum approximation and the closedness of the operator D. The stochastic integral is more interesting, we restrict ourself to a simple adapted process ${ }^{2}$ of the form

$$
u(t, \omega)=F(\omega) h(t)
$$

$$
\begin{aligned}
D_{r} \int_{0}^{t} F h(s) d \beta(s) & =D_{r}\left[\int_{[0, r)} F h(s) d \beta(s)+\int_{[r, t]} F h(s) d \beta(s)\right] \\
& =0+D_{r} \int_{0}^{1} F h(s) 1_{[r, t]}(s) d \beta(s) \\
& =D_{r}\left[F W\left(h 1_{[r, t]}\right)\right] \\
& =\left(D_{r} F\right) W\left(h 1_{[r, t]}\right)+F h(r) \\
& =\int_{0}^{1} D_{r} F h 1_{[r, t]}(s) d \beta(s)+u(r) \\
& =u(r)+\int_{r}^{t} D_{r} u(s) d \beta(s) \quad(*)
\end{aligned}
$$

Let us comment on this result. First, if it makes you uncomfortable that our only a.s.-well-defined little r pops up in intervals, rewrite the preceding computation in integrated form, i.e. multiply everything with some arbitrary deterministic

[^5]$L^{2}[0,1]$-function $k=k(r)$ and integrate r over $[0,1]$. (Hint: interchange integration w.r.t $d \beta_{s}$ and $d r$).
Secondly, a few words about (*). The reduction from \int_{0}^{t} on the l.h.s. to \int_{r}^{t} at the end is easy to understand - see the recall above. Next, taking $t=r+\epsilon$ we can, at least formally, reduce $(*)$ to $u(r)$ alone. Also, the l.h.s. is easily seen to equal $D_{r} \int_{r-\epsilon}^{t}$. That is, when operating D_{r} on $\int_{r-\epsilon}^{r+\epsilon} u d \beta$ we create somehow a Dirac point-mass $\delta_{r}(s)$. But that is not surprising! Formally, $D_{r} Y=<Y, \delta_{r}>$ corresponding to a (non-admissible!) perturbation of ω by a Heaviside-function with jump at r, say $H(\cdot-r)$ with derivative δ_{r}. Now, very formally, we interpret β as Brownian path perturbed in direction $H(\cdot-r$.) Taking differentials for use in the stochastic integral we find the Dirac mass δ_{r} appearing.
(A detailed proof is found in [Oksendal2], corollary 5.13.)
Back to our SDE, applying these results to (3.3) we get
\[

$$
\begin{aligned}
D_{r} X_{t} & =a\left(X_{r}\right)+\int_{r}^{t} D_{r} a\left(X_{s}\right) d \beta_{s}+\int_{r}^{t} D_{r} b\left(X_{s}\right) d s \\
& =a\left(X_{r}\right)+\int_{r}^{t} a^{\prime}\left(X_{s}\right) D_{r} X(s) d \beta_{s}+\int_{r}^{t} b^{\prime}\left(X_{s}\right) D_{r} X(s) d s
\end{aligned}
$$
\]

Fix r and set $\tilde{X}:=D_{r} X$. We found the (linear!) SDE

$$
\begin{equation*}
d \tilde{X}_{t}=a^{\prime}\left(X_{t}\right) \tilde{X}_{t} d \beta_{t}+b^{\prime}\left(X_{t}\right) \tilde{X}_{t} d t, \quad t>r \tag{3.4}
\end{equation*}
$$

with initial condition $\tilde{X}_{r}=a\left(X_{r}\right)$.

3.4 Stochastic Flow, the 1-dimensional case

A similar situation occurs when investigating the sensitivity of (3.3) w.r.t. the initial condition $X(0)=x$. Set

$$
Y(t)=\frac{\partial}{\partial x} X(t)
$$

(A nice version of) $X(t, x)$ is called stochastic flow.
A formal computation (see [Bass], p30 for a rigorous proof) gives the same SDE

$$
d Y_{t}=a^{\prime}\left(X_{t}\right) Y_{t} d \beta_{t}+b^{\prime}\left(X_{t}\right) Y_{t} d t, \quad t>0
$$

and clearly $Y(0)=1$. Matching this with (3.4) yields

$$
\begin{equation*}
D_{r} X(t)=Y(t) Y^{-1}(r) a(X(r)) \tag{3.5}
\end{equation*}
$$

Remark: In the multidimensional setting note that for ω fixed

$$
D_{r} X(t) \in \mathbb{R}^{m \times d}
$$

while

$$
Y(t) \in \mathbb{R}^{m \times m}
$$

([Bass] actually makes the choice $m=d$ for a simpler exposure.)

3.5 SDE/flows in multidimensional setting

Rewrite (3.2) in coordinates

$$
\begin{equation*}
d X^{i}=A_{k}^{i}(X) d \beta^{k}+B^{i}(X) d t, \quad i=1, \ldots, m \tag{3.6}
\end{equation*}
$$

with initial condition $X(0)=x=\left(x^{j}\right) \in \mathbb{R}^{m}$. Set

$$
(Y)_{i j}=\partial_{j} X^{i} \equiv \frac{\partial}{\partial x^{j}} X^{i}
$$

As before (formally)

$$
d \partial_{j} X^{i}=\partial_{l} A_{k}^{i} \partial_{j} X^{l} d \beta^{k}+\partial_{l} B^{i} \partial_{j} X^{l} d t
$$

To simplify notation, for any vector-field V on \mathbb{R}^{m}, considered as map $\mathbb{R}^{m} \rightarrow$ \mathbb{R}^{m}, we set ${ }^{3}$

$$
\begin{equation*}
(\partial V)_{i j}=\partial_{j} V^{i} \tag{3.7}
\end{equation*}
$$

This yields the following $(m \times m)$-matrix SDE

$$
\begin{aligned}
d Y & =\partial A_{k}(X) Y d \beta^{k}+\partial B(X) Y d t \\
Y(0) & =I
\end{aligned}
$$

and there is no ambiguity in this notation. Note that this is (as before) a linear SDE. We will be interested in the inverse $Z:=Y^{-1}$. As a motivation, consider the following 1-dimensional ODE

$$
d y=f(t) y d t
$$

Clearly $z=1 / y$ satisfies

$$
d z=-f(t) z d t
$$

We can recover the same simplicity in the multidimensional SDE case by using Stratonovich Calculus, a first-order stochastic calculus.

3.6 Stratonovich Integrals

3.6.1

Let M, N be continuous semi-martingales, define ${ }^{4}$

$$
\int_{0}^{t} M_{s} \circ d N_{s}=\int_{0}^{t} M_{s} d N_{s}+\frac{1}{2}<N, M>_{t}
$$

resp.

$$
M_{t} \circ d N_{t}=M_{t} d N_{t}+\frac{1}{2} d<N, M>_{t}
$$

The Ito-formula becomes

$$
\begin{equation*}
f\left(M_{t}\right)=f\left(M_{0}\right)+\int_{0}^{t} f^{\prime}\left(M_{s}\right) \circ d M_{s} . \tag{3.8}
\end{equation*}
$$

[^6]See [Bass]p27 or any modern account on semi-martingales for these results. A special case occurs, when M is given by the SDE

$$
d M_{t}=u_{t} d \beta_{t}+v_{t} d t \text { or } d M_{t}=u_{t} \circ d \beta_{t}+\tilde{v}_{t} d t
$$

Then

$$
\begin{equation*}
M_{t} \circ d \beta_{t}=M_{t} d \beta_{t}+\frac{1}{2} u_{t} d t \tag{3.9}
\end{equation*}
$$

One could take this as a definition ([Nualart], p21 does this).

3.6.2

Of course there is a multidimensional version of (3.8) (write it down!). For instance, let $V: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ and X some m-dimensional process, then

$$
\begin{equation*}
d V(X)=(\partial V)(X) \circ d X \tag{3.10}
\end{equation*}
$$

It also implies a first order product rule

$$
d(M N)=N \circ d M+M \circ d N
$$

where M, N are (real-valued) semi-martingales.
For later use we discuss a slight generalization. Let Y, Z be two matrixvalued semi-martingales (with dimensions such that $Y \cdot Z$ makes sense). Define $d(Y Z)$ component-wise. Then

$$
\begin{equation*}
d(Z Y)=(\circ d Z) Y+Z \circ d Y \tag{3.11}
\end{equation*}
$$

This might look confusing at first glance, but it simply means

$$
Z_{k}^{i}(t) Y_{j}^{k}(t)=Z_{k}^{i}(0) Y_{j}^{k}(0)+\int_{0}^{t} Y_{j}^{k} \circ d Z_{k}^{i}+\int_{0}^{t} Z_{k}^{i} \circ d Y_{j}^{k}
$$

3.6.3

Let M, N, O, P be semi-martingales and

$$
d P=N d O
$$

Then it is well-known that ${ }^{5}$

$$
\begin{equation*}
M d P=M N d O \tag{3.12}
\end{equation*}
$$

A similar formula, less well-known, holds for Stratonovich differentials. Let

$$
d P=N \circ d O
$$

then

$$
\begin{equation*}
M \circ d P=M N \circ d O \tag{3.13}
\end{equation*}
$$

[^7]Proof: The equals $M d P+\frac{1}{2} d<M, P>=M\left(N d O+\frac{1}{2} d<N, O>\right)+\frac{1}{2} d<$ $M, P>$ so the only thing to show is

$$
M d<N, O>+d<M, P>=d<M N, O>
$$

Now $d<M, P>=N<M, O>([\mathrm{KS}], \mathrm{p} 143)$. On the other hand $d(M N)=M d N+N d M+d($ bounded variation $)$
shows $d<M N, O>=M d<N, O>+N<M, O>$ (since the bracket kills the bounded variation parts) and we are done.

3.7 Some differential geometry jargon

3.7.1 Covariante derivatives

Given two smooth vector fields V, W (on \mathbb{R}^{m}) and using (3.7)

$$
(\partial V) W=W^{j} \partial_{j} V^{i} \partial_{i},
$$

where we follow the differential geometry usage to denote the basis by $\left(\partial_{1}, \ldots, \partial_{m}\right)$. This simply means that $(\partial V) W$ is a vector whose i th component is $W^{j} \partial_{j} V^{i}$. Also, we recognize directional derivatives (in direction W) on the r.h.s. In Riemannian geometry this is known as the covariante derivative ${ }^{6}$ of V in direction W. A standard notation is

$$
\nabla_{W} V=W^{j} \partial_{j} V^{i} \partial_{i} .
$$

∇ is called connection.

3.7.2 The Lie Bracket

Let V, W be as before. It is common in Differential Geometry that a vector $V(x)=\left(V^{i}(x)\right)$ is identified with the first order differential operator

$$
V(x)=\left.V^{i}(x) \partial_{i}\right|_{x}
$$

Consider the ODEs on \mathbb{R}^{m} given by

$$
d X=V(X) d t
$$

It is known ${ }^{7}$ that there exists (at least locally) an integral curve. More precisely, for every $x \in \mathbb{R}^{n}$ there exists some open (time) interval I_{x} around 0 and a smooth curve $X_{x}: I(x) \rightarrow \mathbb{R}^{m}$ which satisfies the ODE and the initial condition $X_{x}(0)=x$. By setting

$$
V_{t}(x)=X_{x}(t)
$$

we obtain a so-called local 1-parameter group. For t fixed $V_{t}(\cdot)$ is a diffeomorphism between appropriate open sets. [Warner] p37 proves all this, including existence, on a general manifold.

[^8]Consider a second ODE, say $d Y=W(Y) d t$ with local one-parameter group $W_{t}(\cdot)$. Then, for t small enough everything exists and a second order expansion yields

$$
W_{-t} \circ V_{-t} \circ W_{t} \circ V_{t}(x) \sim t^{2} .
$$

Dividing the l.h.s. by t^{2} and letting $t \rightarrow 0$ one obtains a limit in \mathbb{R}^{m} depending on x, say $[V, W](x)$, the so-called Lie Bracket. We see that it is measures how two flows lack to commute (infinitesimally).

Considering [V, W] as first order operator one actually finds

$$
[V, W]=V \circ W-W \circ V,
$$

where the r.h.s. is to be understood as composition of differential operators. Note that the r.h.s. is indeed a $1^{s t}$ order operator, since $\partial_{i j}=\partial_{j i}$ (when operating on smooth functions as here). We see that the Lie bracket measures how much two flows lack to commute.
It is immediate to check that ${ }^{8}$

$$
\begin{aligned}
{[V, W] } & =\nabla_{V} W-\nabla_{W} V \\
& =(\partial W) V-(\partial V) W
\end{aligned}
$$

Generally speaking, whenever there are two vector fields "mixed together" the Lie bracket is likely to appear.
Example: Let A be a vector field. Inspired by section 3.5 consider

$$
d X=A(X) d t, \quad X(0)=x
$$

and

$$
d Y=\partial A(X) Y d t, \quad Y(0)=I
$$

Consider the matrix-ODE

$$
\begin{equation*}
d Z=-Z \partial A(X) d t, \quad Z(0)=I \tag{3.14}
\end{equation*}
$$

By computing $d(Z Y)=(-Z \partial A(X) d t) Y+Z\left(\partial A(X) Y d t=0\right.$ we see that Y^{-1} exists for all times and $Z=Y^{-1}$. Without special motivation, but for later use we compute

$$
\begin{align*}
d\left[Z_{t} V\left(X_{t}\right)\right] & =\left(d Z_{t}\right) V\left(X_{t}\right)+Z_{t} d V\left(X_{t}\right) \\
& =\left[-Z \partial A\left(X_{t}\right) V\left(X_{t}\right)+Z_{t} \partial V\left(X_{t}\right) A\left(X_{t}\right)\right] d t \\
& =Z\left[\partial V\left(X_{t}\right) A\left(X_{t}\right)-\partial A\left(X_{t}\right) V\left(X_{t}\right)\right] d t \\
& =Z[A, V]\left(X_{t}\right) d t \tag{3.15}
\end{align*}
$$

3.8 Our SDEs in Stratonovich form

Recall

$$
\begin{align*}
d X & =A_{k}(X) d \beta^{k}+B(X) d t \\
& =A_{k}(X) \circ d \beta^{k}+A_{0}(X) d t \tag{3.16}
\end{align*}
$$

[^9]with $X(0)=x$. It is easy to check that
$$
A_{0}^{i}=B^{i}-\frac{1}{2} A_{k}^{j} \partial_{j} A_{k}^{i}, \quad i=1, \ldots, m .
$$

In the notations introduced in the last 2 sections,

$$
\begin{aligned}
A_{0} & =B-\frac{1}{2}\left(\partial A_{k}\right) A_{k} \\
& =B-\frac{1}{2} \nabla_{A_{k}} A_{k}
\end{aligned}
$$

With Y defined as as in section 3.5 we obtain

$$
\begin{aligned}
d Y & =\partial A_{k}(X) Y \circ d \beta^{k}+\partial A_{0}(X) Y d t \\
Y(0) & =I
\end{aligned}
$$

and $Z=Y^{-1}$ exists for all times and satisfies a generalized version of (3.14),

$$
\begin{align*}
d Z & =-Z \partial A_{k}(X) \circ d \beta^{k}-Z \partial A_{0}(X) Z d t \\
Z(0) & =I . \tag{3.17}
\end{align*}
$$

The proof goes along (3.14) using (3.11): Since we already discussed the deterministic version we restrict to the case where $A_{0} \equiv 0$. Then

$$
\begin{aligned}
d(Z Y) & =(\circ d Z) Y+Z \circ d Y \\
& =-Z \partial A_{k}(X) Y \circ d \beta^{k}+Z \partial A_{k}(X) Y \circ d \beta^{k} \\
& =0
\end{aligned}
$$

(References for this and the next section are [Bass] p199-201, [Nualart] p109-p113 and [IW] p393.)

3.9 The Malliavin Covariance Matrix

Define the $(m \times d)$ matrix

$$
\sigma=\left(A_{1}|\ldots \ldots| A_{d}\right)
$$

Then a generalization of (3.5) holds (see [Nualart] p109 for details)

$$
\begin{aligned}
D_{r} X(t) & =Y(t) Y^{-1}(r) \sigma\left(X_{r}\right) \\
& =Y(t) Z(r) \sigma\left(X_{r}\right),
\end{aligned}
$$

and $D_{r} X(t)$ appears at a (random) $\mathbb{R}^{m \times d}$-matrix as already remarked at the end of section 3.4. Fix t and write $X=X(t)$. From (3.1), the Malliavin covariance matrix equals

$$
\begin{align*}
\Lambda=\Lambda_{t} & =\int_{0}^{1} D_{r} X\left(D_{r} X\right)^{T} d r \\
& =Y(t)\left[\int_{0}^{t} Z(r) \sigma\left(X_{r}\right) \sigma^{T}\left(X_{r}\right) Z^{T}(r) d r\right] Y^{T}(t) \tag{3.18}
\end{align*}
$$

3.10 Absolute continuity under Hörmander's condition

We need a generalization of (3.15).
Lemma 11 Let V be a smooth vector field on \mathbb{R}^{m}. Let X and Z be processes given by the Stratonovich SDEs (3.16) and (3.17). Then

$$
\begin{align*}
d\left(Z_{t} V\left(X_{t}\right)\right)= & Z_{t}\left[A_{k}, V\right]\left(X_{t}\right) \circ d \beta^{k}+Z_{t}\left[A_{0}, V\right]\left(X_{t}\right) d t \\
= & Z_{t}\left[A_{k}, V\right]\left(X_{t}\right) d \beta^{k} \tag{3.19}\\
& \left.+Z_{t}\left(\frac{1}{2}\left[A_{k},\left[A_{k}, V\right]\right]+\left[A_{0}, V\right]\right]\right)\left(X_{t}\right) d t . \tag{3.20}
\end{align*}
$$

First observe that the second equality is a simply application of (3.9) and (3.19) with V replaced by $\left[A_{k}, V\right]$. To see the first equality one could just point at (3.15) and argue with "1st order Stratonovich Calculus" . Here is a rigorous Proof: Since the deterministic case was already considered in (3.15) we take w.l.o.g $A_{0} \equiv 0$. Using (3.10) and (3.11) we find

$$
\begin{aligned}
d(Z V(X)) & =(\circ d Z) V(X)+Z \circ d V \\
& =\left(-Z \partial A_{k} V\right) \circ d \beta^{k}+\left(Z \partial V A_{k}\right) \circ d \beta^{k} \\
& =Z\left(\left.\left[A_{k}, V\right]\right|_{X}\right) \circ d \beta^{k}
\end{aligned}
$$

If you don't like Stratonovich differentials, a (straight forward but longer) computation via standard Ito calculus is given in [Nualart], p113.

Corollary $12{ }^{9}$ Let τ be a stopping time and $y \in \mathbb{R}^{m}$ such that

$$
<Z_{t} V\left(X_{t}\right), y>_{\mathbb{R}^{m}} \equiv 0 \quad \text { for } t \in[0, \tau]
$$

Then for $i=0,1, \ldots, d$

$$
<Z_{t}\left[A_{i}, V\right]\left(X_{t}\right), y>_{\mathbb{R}^{m}} \equiv 0 \quad \text { for } t \in[0, \tau] .
$$

Proof: Let's prove

$$
Z_{t} V\left(X_{t}\right) \equiv 0 \quad \Rightarrow \quad Z_{t}\left[A_{i}, V\right]\left(X_{t}\right) \equiv 0 .
$$

(The proof of the actual statement goes along the same lines.) First, the assumption implies that

$$
\left.Z_{t}\left[A_{k}, V\right]\left(X_{t}\right) d \beta^{k}+Z_{t}\left(\frac{1}{2}\left[A_{k},\left[A_{k}, V\right]\right]+\left[A_{0}, V\right]\right]\right)\left(X_{t}\right) d t \equiv 0 \quad \text { for } t \in[0, \tau]
$$

By uniqueness of semi-martingale decomposition into (local) martingale and and bounded variation part we get (always for $t \in[0, \tau]$)

$$
Z_{t}\left[A_{k}, V\right]\left(X_{t}\right) \equiv 0 \text { for } k=1, \ldots, d
$$

and

$$
\left.Z_{t}\left(\frac{1}{2}\left[A_{k},\left[A_{k}, V\right]\right]+\left[A_{0}, V\right]\right]\right)\left(X_{t}\right) d t \equiv 0
$$

[^10]By iterating this argument on the first relation

$$
Z_{t}\left[A_{k},\left[A_{j}, V\right]\right]\left(X_{t}\right) \equiv 0 \text { for } k, j=1, \ldots, d
$$

and together with the second relation we find

$$
Z_{t}\left[A_{0}, V\right]\left(X_{t}\right) \equiv 0
$$

and we are done.
In the following the range denotes the image $\Lambda\left(\mathbb{R}^{m}\right) \subset \mathbb{R}^{m}$ of some (random, time-dependent) $m \times m$ - matrix Λ.

Theorem 13 Recalling $X(0)=x$, for any $t>0$ it holds that

$$
\begin{aligned}
& \operatorname{span}\left\{\left.A_{1}\right|_{x}, \ldots,\left.A_{d}\right|_{x},\left.\left[A_{j}, A_{k}\right]\right|_{x},\left.\left[\left[A_{j}, A_{k}\right], A_{l}\right]\right|_{x} ; j, k, l=0, \ldots, d\right\} \\
& \subset \text { range } \Lambda_{t} \text { a.s. }
\end{aligned}
$$

Proof: For all $s \leq t$ define

$$
R_{s}=\operatorname{span}\left\{Z(r) A_{i}\left(X_{r}\right): r \in[0, s], i=1, \ldots, d\right\}
$$

and

$$
R=R(\omega)=\bigcap_{s>0} R_{s}
$$

We claim that $R_{t}=$ range Λ_{t}. From (3.18) it follows that

$$
\begin{equation*}
\text { range } \Lambda_{t}=\text { range } \int_{0}^{t} Z(r) \sigma\left(X_{r}\right) \sigma^{T}\left(X_{r}\right) Z^{T}(r) d s \tag{3.21}
\end{equation*}
$$

and since, any $r \leq t$ fixed, span $\left\{Z(r) A_{i}: i=1, \ldots, d\right\}=$ range $Z(r) \sigma\left(X_{r}\right) \supseteq$ range $Z(r) \sigma\left(X_{r}\right) \sigma^{T}\left(X_{r}\right) Z^{T}(r)$ the inclusion $R_{t} \supseteq$ range Λ_{t} is clear. On the other hand take some $v \in \mathbb{R}^{m}$ orthogonal to range Λ_{t}. Clearly

$$
v^{T} \Lambda_{t} v=0
$$

Using (3.21) we actually have

$$
\int_{0}^{t}\left|v^{T} Z_{s} \sigma\left(X_{s}\right)\right|_{\mathbb{R}^{m}}^{2}=\sum_{k=1}^{d} \int_{0}^{t}\left|v^{T} Z_{r} A\left(X_{k}\right)\right|^{2}=0
$$

Since every diffusion path $X_{k}(\omega)$ is continuous we see that the whole integrand is continuous and we deduce that, for all k and $r \leq t$,

$$
v \perp Z_{r} A_{k}\left(X_{r}\right) .
$$

We showed (Range $\left.\Lambda_{t}\right)^{\perp} \subseteq R_{t}^{\perp}$ and hence the claim is proved.
Now, by Blumenthal's 0-1 law there exists a (deterministic) set \tilde{R} such that $\tilde{R}=R(\omega)$ a.s. Suppose that $y \in \tilde{R}^{\perp}$. Then a.s. there exists a stopping time τ such that $R_{s}=\tilde{R}$ for $s \in[0, \tau]$. This means that for all $i=1, \ldots, d$ and for all $s \in[0, \tau]$

$$
<Z_{s} A_{i}\left(X_{s}\right), y>_{\mathbb{R}^{m}}=0
$$

or simply $y \perp Z_{s} A_{i}\left(X_{s}\right)$. Moreover, by iterating Corollary 12 we get

$$
y \perp Z_{s}\left[A_{j}, A_{k}\right], Z_{s}\left[\left[A_{j}, A_{k}\right], A_{l}\right], \ldots
$$

for all $s \in[0, \tau]$. Calling S the set appearing in the l.h.s. of (3.21) and using the last result at $s=0$ shows that $y \in S^{\perp}$. So we showed $S \subseteq \tilde{R}$. On the other hand, it is clear that a.s. $\tilde{R} \subseteq R_{t}=$ Range Λ_{t} as we saw earlier. The proof is finished.

Combing this with Theorem (9) we conclude
Theorem 14 Let A_{0}, \ldots, A_{d} be smooth vector fields (satisfying certain boundedness conditions ${ }^{10}$) on \mathbb{R}^{m} which satisfy "Hörmander's condition" (H1) that is that ${ }^{11}$

$$
\begin{equation*}
\left.A_{1}\right|_{x}, \ldots,\left.A_{d}\right|_{x},\left.\left[A_{j}, A_{k}\right]\right|_{x},\left.\left[\left[A_{j}, A_{k}\right], A_{l}\right]\right|_{x} \ldots ; \quad j, k, l=0, \ldots \tag{3.22}
\end{equation*}
$$

span the whole space \mathbb{R}^{m}. Equivalently we can write

$$
\begin{equation*}
\operatorname{Lie}\left\{\left.A_{1}\right|_{x}, \ldots,\left.A_{d}\right|_{x},\left.\left[A_{1}, A_{0}\right]\right|_{x}, \ldots,\left.\left[A_{d}, A_{0}\right]\right|_{x}\right\}=\mathbb{R}^{m} \tag{3.23}
\end{equation*}
$$

Fix $t>0$ and let X_{t} be the solution of the $S D E$

$$
d X_{t}=\sum_{k=1}^{d} A_{k}\left(X_{t}\right) \circ d \beta_{t}+A_{0}\left(X_{t}\right) d t . \quad X(0)=x
$$

Then the law of $X(t)$, i.e. the measure $\mathbb{P}[X(t) \in d y]$, has a density w.r.t. to Lebesgue-measure on \mathbb{R}^{m}.

3.11 Smoothness under Hoermander's condition

Under essentially the same hypothesis as in the last theorem ${ }^{12}$ one actually has a smooth density of $X(t)$, i.e. $\in C^{\infty}\left(\mathbb{R}^{m}\right)$. The idea is clearly to use Theorem 10 , but there is some work to do. We refer to [Norris] and [Nualart], [Bass] and [Bell].

3.12 The generator

It is well-know that the generator of a (Markov) process given by the SDE

$$
\begin{align*}
d X & =A_{k}(X) \circ d \beta^{k}+A_{0}(X) d t \\
& =A_{k}(X) d \beta^{k}+B(X) d t \\
& =\sigma d \beta+B(X) d t \tag{3.24}
\end{align*}
$$

is the second order differential operator

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} E^{i j} \partial_{i j}+B^{i} \partial_{i} \tag{3.25}
\end{equation*}
$$

[^11]with $(m \times m)$ matrix $E=\sigma \sigma^{T}$ (or $E^{i j} \equiv \sum_{k=1}^{d} A_{k}^{i} A_{k}^{j}$. in coordinates). Identifying a vector field, say V, with a first order differential operator, the expression $V^{2}=V \circ V$ makes sense as a second order differential operator. In coordinates,
$$
V^{i} \partial_{i}\left(V^{j} \partial_{j}\right)=V^{i} V^{j} \partial_{i j}+V^{j}\left(\partial_{j} V^{i}\right) \partial_{i} .
$$

Note the last term on the r.h.s is the vector $V \partial V=\nabla_{V} V$. Replacing V by A_{k} and summing over all we see that

$$
E^{i j} \partial_{i j}=\sum_{k=1}^{d} A_{k}^{2}-\sum_{k} \nabla_{A_{k}} A_{k} .
$$

We recall (see chapter 3.8) that $A_{0}=B-\frac{1}{2} \sum_{k} \nabla_{A_{k}} A_{k}$. Hence

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \sum_{k=1}^{d} A_{k}^{2}+A_{0} \tag{3.26}
\end{equation*}
$$

Besides giving another justification of the Stratonovich calculus, it is important to notice that this "sum-of-square"-form is invariant under coordinatetransformation, hence a suited operator for analysis on manifolds.

3.13

Example 1 (bad): Given two vector fields on \mathbb{R}^{2} (in 1st order diff. operator notation)

$$
A_{1}=x_{1} \partial_{1}+\partial_{2}, \quad A_{2}=\partial_{2}
$$

set

$$
\mathcal{L}=\frac{1}{2}\left(A_{1}^{2}+A_{2}^{2}\right) .
$$

Expanding,

$$
\left(x_{1} \partial_{1}+\partial_{2}\right)^{2}=x_{1}^{2} \partial_{11}+x_{1} \partial_{1}+2 x_{1} \partial_{12}+2 \partial_{22},
$$

yields

$$
\mathcal{L}=\frac{1}{2} E^{i j} \partial_{i j}+b_{i} \partial_{i}
$$

with

$$
E=\left(\begin{array}{cc}
x_{1}^{2} & x_{1} \\
x_{1} & 2
\end{array}\right)
$$

and $B=\left(x_{1}, 0\right)^{T}$. Now $E=\sigma \sigma^{T}$ with

$$
\sigma=\left(\begin{array}{cc}
x_{1} & 0 \\
1 & 1
\end{array}\right)
$$

and the associated diffusion process is

$$
\begin{aligned}
d X_{t} & =\sigma\left(X_{t}\right) d \beta_{t}+B\left(X_{t}\right) d t \\
& =A_{1}\left(X_{t}\right) d \beta_{t}^{1}+A_{2}\left(X_{t}\right) d \beta_{t}^{2}+B\left(X_{t}\right) d t
\end{aligned}
$$

We see that when we start from the x_{2}-axis i.e. on $\left\{x_{1}=0\right\}$ there is no drift, $B \equiv 0$, and both brownian motions push us around along direction x_{2}, therefore
no chance of ever leaving this axis again. Clearly, in such a situation, the law of $X(t)$ is singular with respect to Lebesgue-measure on \mathbb{R}^{2}.

To check Hörmander's condition H1 compute

$$
\begin{aligned}
{\left[A_{1}, A_{2}\right] } & =\left(x_{1} \partial_{1}+\partial_{2}\right) \partial_{2}-\partial_{2}\left(x_{1} \partial_{1}+\partial_{2}\right) \\
& =0
\end{aligned}
$$

therefore the Lie Algebra generated by A_{1} and A_{2} simply equals the span $\left\{A_{1}, A_{2}\right\}$ and is not the entire of \mathbb{R}^{2} when evaluated at the degenerated area $\left\{x_{1}=0\right\}$ - exactly as expected.

Example 2 (good): Same setting but

$$
A_{1}=x_{2} \partial_{1}+\partial_{2}, \quad A_{2}=\partial_{2}
$$

Again,

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}\left(V_{1}^{2}+V_{2}^{2}\right) \\
& =\frac{1}{2} a_{i j} \partial_{i j}+b_{i} \partial_{i}
\end{aligned}
$$

Similarly we find

$$
d X_{t}=A_{1}\left(X_{t}\right) d \beta_{t}^{1}+A_{2}\left(X_{t}\right) d \beta_{t}^{2}+B(X) d t
$$

with drift $B=(1,0)^{T}$.
The situation looks similar. On the x_{1}-axis where $\left\{x_{2}=0\right\}$ we have $A_{1}=A_{2}$, therefore diffusion happens in x_{2}-direction only. However, when we start at $\left\{x_{2}=0\right\}$ we are pushed in x_{2}-direction and hence immediatly leave the degenerated area.

To check Hörmander's condition H1 compute

$$
\begin{aligned}
{\left[V_{1}, V_{2}\right] } & =\left(x_{2} \partial_{1}+\partial_{2}\right) \partial_{2}-\partial_{2}\left(x_{1} \partial_{1}+\partial_{2}\right) \\
& =-\partial_{1}
\end{aligned}
$$

See that

$$
\operatorname{span}\left(V_{2},\left[V_{1}, V_{2}\right]\right)=\mathbb{R}^{2}
$$

for all points and our Theorem 14 applies.

Example 3 (How many driving BM?):

Consider the $m=2$-dimensioal process driven by one $\mathrm{BM}(d=1)$,

$$
\begin{aligned}
d X^{1} & =d \beta \\
d X^{2} & =X^{1} d t
\end{aligned}
$$

From this extract $A_{1}=\partial_{1}$, drift $A_{0}=x^{1} \partial_{2}$ and since $\left[A_{1}, A_{0}\right]=\partial_{2}$ Hörmander's condition holds for all points on \mathbb{R}^{2}. Actually, it is an easy exercise to see that (X^{1}, X^{2}) is a zero mean Gaussian process with covariance matrix

$$
\left(\begin{array}{cc}
t & t^{2} / 2 \\
t^{2} / 2 & t^{3} / 3
\end{array}\right)
$$

Hence we can write down explicitly a density with repsect to 2-dimensional Lebesgue-measure. Generally, one BM together with the right drift is enough for having a density.

Example 3 (Is Hörmander's condition necessary?):

No! Take $f: \mathbb{R} \rightarrow \mathbb{R}$ smooth, bounded etc such that $f^{(n)}(0)=0$ for all $n \geq 0$ (in particular $f(0)=0$) and look at

$$
2 \mathcal{L}=\left(\partial_{1}\right)^{2}+\left(f\left(x_{1}\right) \partial_{2}\right)^{2}
$$

as arising from $m=d=2, A_{1}=\partial_{1}, A_{2}=f\left(x_{1}\right) \partial_{2}$. Check that $A_{2},\left[A_{1}, A_{2}\right], \ldots$ are all 0 when evaluated at $x_{1}=0$ (simply because the Lie-brackets make all derivatives of f appear.) Hence Hörmander's condition is not satisfied when starting from the degenerated region $\left\{x_{1}=0\right\}$. On the other hand, due to A_{1} we will immediatly leave the degenerate region and hence there is a density (some argument as in example 2).

Chapter 4

Hypelliptic PDEs

4.1

Let V_{0}, \ldots, V_{d} be smooth vector fields on some open $U \subset \mathbb{R}^{n}$, let c be a smooth function on U. Define the second order differential operator (where c operates by multiplication)

$$
\mathcal{G}:=\sum_{k=1}^{d} V_{k}^{2}+V_{0}+c .
$$

Let $f, g \in \mathcal{D}^{\prime}(U)$, assume

$$
\mathcal{G} f=g
$$

in the distributional sense, which means (by definition)

$$
<f, \mathcal{G}^{*} \varphi>=<g, \varphi>
$$

for all test-functions $\varphi \in D(U)$. We call the operator \mathcal{G} hypoelliptic if, for all open $V \subset U$,

$$
\left.\left.g\right|_{V} \in C^{\infty}(V) \Rightarrow f\right|_{V} \in C^{\infty}(V)
$$

Hörmander's Theorem, as proved in [Kohn], states:
Theorem 15 Assume

$$
\operatorname{Lie}\left[\left.V_{0}\right|_{y}, \ldots,\left.V_{d}\right|_{y}\right]=\mathbb{R}^{n}
$$

for all $y \in U$. Then the operator \mathcal{G} as given above is hypoelliptic.
Remark: An example the Hörmander's Theorem is a sufficient condition for hypoellipticity but not a necessary one goes along Example 4 from the last chapter.

4.2

Take X as in section (3.8), take $U=(0, \infty) \times \mathbb{R}^{m}$ and let $\varphi \in \mathcal{D}(U)$. For T large enough

$$
\mathbb{E}\left[\varphi\left(T, X_{T}\right)\right]=\mathbb{E}\left[\varphi\left(0, X_{0}\right)\right]=0,
$$

hence, by Ito's formula,

$$
0=\mathbb{E} \int_{0}^{T}(\partial t+\mathcal{L}) \varphi\left(t, X_{t}\right) d t
$$

By Fubini and $T \rightarrow \infty$ this implies

$$
\begin{aligned}
0 & =\int_{0}^{\infty} \int_{\mathbb{R}^{m}}(\partial t+\mathcal{L}) \varphi(t, y) p_{t}(d y) d t \\
& =\int_{0}^{\infty} \int_{\mathbb{R}^{m}} \psi(t, y) p_{t}(d y) d t
\end{aligned}
$$

for $\psi \in \mathcal{D}(U)$ as defined through the last equation. This also reads

$$
0=<\Phi,(\partial t+\mathcal{L}) \varphi>=<\Phi, \psi>
$$

for some distribution $\Phi \in \mathcal{D}^{\prime}(U) .{ }^{1}$ In distributional sense this writes

$$
\begin{equation*}
\left(\partial_{t}+\mathcal{L}\right)^{*} \Phi=\left(-\partial_{t}+\mathcal{L}^{*}\right) \Phi=0 \tag{4.1}
\end{equation*}
$$

saying that Φ satisfies the forward Fokker-Planck equation. If we can guarantee that $-\partial_{t}+\mathcal{L}^{*}$ is hypoelliptic then, by Hörmander's theorem there exists $p(t, y)$ smooth in both variables s.t.

$$
\begin{aligned}
<\Phi, \varphi> & =\int_{(0, \infty) \times \mathbb{R}^{m}} p(t, y) \varphi(t, y) d t d y \\
& =\int_{(0, \infty) \times \mathbb{R}^{m}} \varphi(t, y) p_{t}(d y) d t
\end{aligned}
$$

This implies

$$
p_{t}(d y)=p(t, y) d y
$$

for $p(t, y)$ smooth on $(0, \infty) \times \mathbb{R}^{m} .{ }^{2}$

4.3

We need sufficient conditions to guarantee the hypoellipticity of $\mathcal{G}=-\partial_{t}+\mathcal{L}^{*}$ as operator on $U=(0, \infty) \times \mathbb{R}^{m} \subset \mathbb{R}^{n}$ with $n=m+1$.

Lemma 16 Given a first order differential operator $V=v^{i} \partial_{i}$ its adjoint is given by

$$
V^{*}=-\left(V+c_{V}\right)
$$

where $c_{V}=\partial_{i} v^{i}$ is a scalar-field acting by multiplication.
Proof: Easy.
As corollary,

$$
\left(V^{2}\right)^{*}=\left(V^{*}\right)^{2}=\left(c_{V}+V\right)^{2}=V^{2}+2 c_{V} V+c
$$

[^12]for some scalar-field c. For \mathcal{L} as given in (3.26) this implies
$$
\mathcal{L}^{*}=\frac{1}{2} \sum_{k=1}^{d} A_{k}^{2}-\left(A_{0}-c_{A_{k}} A_{k}\right)+c
$$
for some (different) scalar-field c. Defining
\[

$$
\begin{equation*}
\tilde{A}_{0}=A_{0}-c_{A_{k}} A_{k} \tag{4.2}
\end{equation*}
$$

\]

this reads

$$
\mathcal{L}^{*}=\frac{1}{2} \sum_{k=1}^{d} A_{k}^{2}-\tilde{A}_{0}+c .
$$

We can trivially extend vector fields on \mathbb{R}^{m} to vector fields on $U=(0, \infty) \times \mathbb{R}^{m}$ ("time-independent vector fields"). From the differential-operator point of view it just means that we have that we are acting only on the space-variables and not in t. Then

$$
\mathcal{G}=\frac{1}{2} \sum_{k=1}^{d} A_{k}^{2}-\left(\tilde{A}_{0}+\partial_{t}\right)+c
$$

is an operator on U, in Hörmander form as needed. Define the vector $\hat{A}=\tilde{A}_{0}+$ $\partial_{t} \in \mathbb{R}^{n} .{ }^{3}$ Hence Hörmander's (sufficient) condition for \mathcal{G} being hypoellitpic reads

$$
\begin{equation*}
\text { Lie }\left\{\left.A_{1}\right|_{y}, \ldots,\left.A_{d}\right|_{y},\left.\hat{A}\right|_{y}\right\}=\mathbb{R}^{n} \tag{4.3}
\end{equation*}
$$

for all $y \in U$. Note that for $k=1, \ldots, d$

$$
\left[A_{k}, \partial_{t}\right]=A_{k}^{i} \partial_{i} \partial_{t}-\partial_{t} A_{k}^{i} \partial_{i}=0
$$

since the A_{k}^{i} are functions in space only. It follows that ${ }^{4}$

$$
\left[A_{k}, \hat{A}\right]=\left[A_{k}, \tilde{A}_{0}\right],
$$

and similarly no higher bracket will yield any component in t-direction. From this it follows that (4.3) is equivalent to

$$
\begin{equation*}
\operatorname{Lie}\left\{\left.A_{1}\right|_{y}, \ldots,\left.A_{d}\right|_{y},\left.\left[A_{1}, \tilde{A}_{0}\right]\right|_{y}, \ldots,\left.\left[A_{d}, \tilde{A}_{0}\right]\right|_{y}\right\}=\mathbb{R}^{m} \tag{4.4}
\end{equation*}
$$

for all $y \in \mathbb{R}^{m}$. Using (4.2) we can replace \tilde{A}_{0} in condition (4.4) by A_{0} without changing the spanned Lie-algebra. We summarize

Theorem 17 Assume that Hörmander's condition (H2) holds:

$$
\begin{equation*}
\left.\operatorname{Lie}\left\{\left.A_{1}\right|_{y}, \ldots,\left.A_{d}\right|_{y},\left.\left[A_{1}, A_{0}\right]\right|_{y}, \ldots,\left.\left[A_{d}, A_{0}\right]\right|_{y}\right\}=\mathbb{R}^{m} .\right) \tag{4.5}
\end{equation*}
$$

for all $y \in \mathbb{R}^{m}$. Then the law of the process X_{t} has a density $p(t, y)$ which is smooth on $(0, \infty) \times \mathbb{R}^{m}$.

[^13]Remarks: - Compare conditions H1 and H2, see (3.23) and (4.5). The only difference is that H 2 is required for all points while H 1 only needs to hold for $x=X(0)$. (Hence H2 is a stronger condition.)

- Using H1 (ie Malliavin's approach) we don't get (a priori) information about smoothness in t.
- Neither H1 nor H2 allow A_{0} (alone!) to help out with the span. The intuitive meaning is clear: A_{0} alone represents the drift hence doesn't cause any diffusion which is the origin for a density of the process X_{t}.
- We identified the distribution Φ as uniquely associated to the (smooth) function $p(t, y)=p(t, y ; x)$. Hence from (4.1)

$$
\partial_{t} p=\mathcal{L}^{*} p \quad\left(\mathcal{L}^{*} \text { acts on } y\right)
$$

and $p(0, d y)$ is the Dirac-measure at x. All that is usually summarized by saying that p is a fundamental solution of the above parabolic PDE and our theorem gives smoothness-results for it.

- Let $\sigma=\left(A_{1}|\ldots| A_{d}\right)$ and assume that $E=\sigma \sigma^{T}$ is uniformly elliptic. We claim that in this case the vectors $\left\{A_{1}, \ldots, A_{d}\right\}$ already span \mathbb{R}^{m} (at all points), so that Hörmander's condition is always satisfied.
Proof: Assume $v \in \operatorname{span}\left\{A_{1}, \ldots, A_{d}\right\}^{\perp}$. Then, for all k,

$$
0=<v, A_{k}>^{2}=\left|v^{i} A_{k}^{i}\right|^{2}=v^{i} A_{k}^{i} A_{k}^{j} v^{j}=v^{T} E v
$$

Since E is symmetric, positive definite we see that $v=0$.

Bibliography

[Bass] Bass Elliptic operators and diffusion, Springer, 1997.
[Bell] Bell The Malliavin Calculus, Pitman Monographs 34, 1987.
[BH] Bouleau, Hirsch Dirichlet Forms ..., Springer, 1997.
[DaPrato] DaPrato, Zabczyk Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.
[Evans] L.C. Evans Partial Differential Equations AMS.
[IW] Ikeda Watanabe Stochastic Differential Equations and Diffusion Processes, North-Holland, 1989
[Ito] K. Ito Multiple Wiener integral, J.Math.Soc.Japan 3 (1951), 157-169
[KS] Karatzas, Shreve Brownian Motion and Stochastic Calculus, 2nd Ed, Springer.
[Kohn] J.J, Kohn Pseudo-differential Operators and Hypoellipticity Proc. Symp. Pure Math, 23, A.M.S. (1073) p61-69
[Malliavin1] P. Malliavin Probability and Integration Springer.
[Malliavin2] Malliavin Stochastic Analysis Springer.
[Norris] Norris Simplified Malliavin Calculus
[Nualart] D. Nualart Malliavin Calculus and Related Topics Springer.
[Ocone] Ocone A guide to stochastic calculus of variations LNM 1316, 1987.
[Oksendal1] B. Oksendal Stochastic Differential Equations Springer 1995.
[Oksendal2] B. Oksendal An Introduction to Malliavin Calculus with Application to Economics Lecture Notes, 1997, available on www.nhh.no/for/dp/1996/
[Pazy] A. Pazy Semigroups of Linear Operators and Applications to Partial Differential Equations Springer, 1983.
[RR] Renardy Rogers Introduction to Partial Differential Equations, Springer.
[RU] W. Rudin Functional Analysis, McGraw-Hill, 1991.
[RY] Revuz, Yor Brownian Motion and Continuous Martingales, Springer.
[Stein] Stein Singular Integrals Princeton UP, 1970.
[Sugita] H. Sugita Sobolev spaces of Wiener functionals and Malliavin's calculus, J. Math. Kyoto Univ. 25-1 (1985) 31-48
[Uestuenel] A.S. Uestuenel An Introduction to Analysis on Wiener Space, Springer LNM 1610.
[Warner] Warner Foundations of Differentiable Manifolds and Lie Groups, Springer.
[Williams] Williams To begin at the beginning., Stochastic Integrals, Lecture Notes in Math. 851 (1981), 1-55

[^0]: ${ }^{1}$ New address: Statistical Laboratory, Cambridge University

[^1]: ${ }^{1}$ We follow Malliavin himself and also Nualart by defining $D F$ as H-valued r.v.. This seems the simplest choice in view of the calculus to come. Oksendal, Uestuenel and Hsu define it as \tilde{H}-valued r.v. As commented in Section 1.3 the difference is purely notational since there is a natural isomorphism between H and \tilde{H}. For instance, we can write $D\left(\int_{0}^{1} h d \beta\right)=h$ while the \tilde{H} choice leads to (\tilde{H}-derivative of $)\left(\int_{0}^{1} h d \beta=\int_{0}^{\circ} h d \lambda\right.$.

[^2]: ${ }^{2}$ An extension to $\mathcal{D}^{1,2}$ is proved in [Nualart], p32, via WICD.

[^3]: ${ }^{3}$ Also called simple processes. See $[\mathrm{KS}]$ for definitions and density results.

[^4]: ${ }^{1}$ [Nualart], p81

[^5]: ${ }^{1}$ For a proof see [IW], p393.
 ${ }^{2}$ We already proceeded like this in section 1.9 when computing $\delta(u)$.

[^6]: ${ }^{3}$ If you know classical tensor-calculus it is clear that $\partial_{j} V^{i}$ corresponds to a matrix where i represent lines and j the columns.
 ${ }^{4}$ Do not mix up the bracket with the inner product on Hilbert Spaces.

[^7]: ${ }^{5}$ [KS], p145.

[^8]: ${ }^{6}$ On a general Riemannian manifold there is an additional term due to curvature. Clearly, curvature is zero on \mathbb{R}^{m}.
 ${ }^{7}$ A simple consequence of the standard existence/uniqueness result for ODEs.

[^9]: ${ }^{8}$ In Riemannian geometry, the first equation is known as the torsion-free-property of a Riemanniann connection ∇.

[^10]: ${ }^{9}$ Compare [Bell], 75

[^11]: ${ }^{10}$ Bounded and bounded derivatives will do - we have to guarantee existence and uniqueness of X and Y as solution of the corresponding SDEs.
 ${ }^{11}$ Note that $\left.A_{0}\right|_{x}$ alone is not contained in the following list while it does appear in all brackets.
 ${ }^{12}$ One requires that the vector fields have bounded derivatives of all orders, since higherorder analogues to Y come into play.

[^12]: ${ }^{1}$ The distribution Φ is also represented by the (finite-on-compacts-) measure given by the semi-direct product of the kernel $p(s, d y)$ and Lebesgue-measure $d s=d \lambda(s)$.
 ${ }^{2}$ Note that the smoothness conclusion via Malliavin calculus doesn't say anything about smoothness in t, i.e. our conclusion is stronger.

[^13]: ${ }^{3}$ As vector, think of having a 1 in the 0th position (time), then use the coordinates from \tilde{A}_{0} to fill up positions 1 to m.
 ${ }^{4}$ We abuse notation: the Bracket on the l.h.s. is taken in \mathbb{R}^{n} resulting in a vector with no component in t-direction which, therefore, is identified with the \mathbb{R}^{m}-vector an the r.h.s., result of the bracket-operation in \mathbb{R}^{m}.

