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Notations:
Ω ... Wienerspace C[0, 1] resp. C([0, 1],Rm)
F ... natural filtration
H ... L2[0, 1] resp. L2([0, 1],Rm)
H⊗k ... tensorproduct ∼= L2([0, 1]k), H⊗̂k ... symmetric tensorproduct
H̃ ... Cameron-Martin-space ⊂ Ω, elements are paths with derivative in H
W : F → R ... Wiener-measure on Ω
βt = β(t) ... Brownian Motion (= coordinate process on (Ω,F ,W ))
W : H → L2(Ω) ... defined by W (h) =

∫ 1

0
hdβ

S2 ... Wiener polynomials, functionals of form polynomial(W (h1), ...,W (Hn)
S1 ... cylindrical functionals, ⊂ S2

Dk,p ... ⊂ Lp(Ω) containing k-times Malliavin differentiable functionals
D∞ ... ∩k,pDk,p, smooth Wiener functionals
λ, λm ... (m-dimensional) Lebesgue-measure
ν, νn ... (n-dimensional) standard Gaussian measure
∇ ... gradient-operator on Rn

Lp(Ω,H) ... H-valued random-variables s.t.
∫
Ω
‖ · ‖HdW <∞

D ... Malliavin derivative, operator Lp(Ω) → Lp(Ω,H)
δ ... = D∗ the adjoint operator, also: divergence, Skorohod Integral
L ... = δ ◦D, Ornstein-Uhlenbeck operator Lp(Ω) → Lp(Ω)
W k,p ... Sobolev-spaces built on Rn Hk...W k,2

∂ ... (for functions f : R → R) simple differentiation
∂∗ ... adjoint of ∂ on L2(R, ν)
L ... = ∂∗∂, one-dimensional OU-operator
∂i, ∂ij ... partial derivatices w.r.t. xi, xj etc
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L ... generator ofm-dimensional diffusion process, for instance L = Eij∂ij+Bi∂i

Hn ... Hermite-polynomials
∆n(t) ... n-dimensional simplex {0 < t1 < ... < tn < t} ⊂ [0, 1]n

J(·) ... Iterated Wiener-Ito integral, operator L2[∆n] toCn ⊂ L2(Ω)
Cn ... nth Wiener Chaos
α ... multiinex (finite-dimensional)
X ... m-dimensional diffusion process given by SDE, driven by d BMs
Λ = Λ(X) ... < DX,DX >H , Malliavin covariance matrix
V,W ... vectorfields on Rm, seen as map Rm → Rm or as first order differential
operator
B,A0 ... vectorfields on Rm, appearing as drift term in Ito (resp. Stratonovich)
SDE
A1, . . . , Ad ...vectorfields on Rm, appearig in diffusion term of the SDE
◦dβ ... Stratonovich differential = Ito differential + (...)dt
X ... diffusion given by SDE, X(0) = x
Y, Z ... Rm×m-valued processes, derivative of X w.r.t. X(0) resp. the inverse
∂ ... ∂V is short for the matrix ∂jV

i, ∇WV ... connection, = (∂V )W
[V,W ] ... Lie-bracket, yields another vectorfield
Lie {...} ... the smallest vectorspace closed under Lie-brackets, containing {...}
D ... = C∞c , test-functions
D′ ... Schwartz-distributions = cont. functionals on D
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Chapter 1

Analysis on the Wiener
Space

1.1 Wiener Space

Ω will denote the Wiener Space C([0, 1]). As usual, we put the Wiener measure
W on Ω therefore getting a probability space

(Ω,F ,W )

where F is generated by the coordinate maps. On the other hand we can furnish
Ω with the ‖·‖∞ - norm making it a (separable) Banach-space. F coincides with
the σ-field generated by the open sets of this Banach-space. Random-variables
on Ω are called Wiener functionals. The coordinate process ω(t) is a Brownian
motion under W , with natural filtration σ({ω(s) : s ≤ t}) ≡ Ft. Often we will
write this Brownian motion as β(t) = β(t, ω) = ω(t), in particular in the context
of stochastic Wiener-Itô integrals.

1.2 Two simple classes of Wiener functionals

Let f be a polynomial, h1, . . . , hn ∈ H ≡ L2[0, 1]. Define first a class of cylin-
drical functionals

S1 = {F : F = f(βt1 , . . . , βtn
))},

then the larger class of Wiener polynomials

S2 = {F : F = f(W (h1), . . . ,W (hn))}

where W (h) ≡
∫ 1

0
hdβ.

Remarks: - Both Si are algebras. In particular S2 is what [Malliavin2] p13
calls the fundamental algebra.
- A S2-type function with all hi’s deterministic step functions is in S1.
- In both cases, we are dealing with r.v. of the type

F = f(n-dimensional gaussian) = f̃(n indep. std. gaussians).
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Constructing f̃ boils down to a Gram-Schmidt-orthonormalization for the
hi’s. When restricting discussion to S2-functionals one can actually forget Ω and
simply work with (Rn, νn), that is, Rn with n-dimensional standard Gaussian
measure dνn(x) = (2π)−n/2 exp(−|x|2/2)dx.
This remark looks harmless here but will prove useful during the whole setup
of the theory.
- S1 ⊂ S2 ⊂ Lp(Ω) for all p ≥ 1 as t he polynomial growth of f assures
the existence of all moments. From this point of view, one could weaken the
assumptions on f , for instance smooth and of maximal polynomial growth or
exponential-martingale-type functionals.

1.3 Directional derivatives on the Wiener Space

Recall that [W (h)](ω) =
∫ 1

0
hdβ(ω) is constructed as L2-limits and hence, as

element in L2(Ω,W ), only W -a.s. defined. Hence, any S2- or more general
Wiener functional is only W -a.s. defined.
In which directions can we shift the argument ω of a functional while keeping
it a.s. well-defined? By Girsanov’s theorem, the Cameron-Martin-directions

h̃(·) :=
∫ .

0

h(t)dt ∈ Ω with h ∈ H

are fine, as the shifted Wiener-measure (τh̃)W is equivalent to W . The set
of all h̃ is the Cameron-Martin-space H̃. It is known that for a direction
k ∈ Ω − H̃ the shifted measure is singular wrt to W , see [RY], Ch. VIII/2.
Hence, F (ω+k) does not make sense, when F is an a.s. defined functional, and
neither does a directional derivative in direction k.

Remarks: - The paths h̃ are sometimes called finite energy paths
- The set H̃ ⊂ Ω has zero W-measure, since every h̃ is of bounded variation
while W -a.s. Brownian paths are not.
- The map h 7−→ h̃ is a continuous linear injection from H into (Ω, ‖ · ‖∞).
- Also, h 7−→ h̃ is a bijection from H → H̃ with inverse d

dt h̃(t) = h(t). This
derivative exists dt-a.s. since h̃ is absolutely continuous, moreover h ∈ H i.e.
square-integrable.
In particular, we can use this transfer the Hilbert-structure from H to H̃. For
g, k ∈ H̃ let ġ, k̇ denote their square-integrable derivatives. Then

< g, k >H̃≡< ġ, k̇ >H=
∫ 1

0

ġk̇dλ

- In a more general context H̃ (or indeed H) are known as reproducing kernel
space for the Gaussian measure W on the Banach space Ω (terminology from
[DaPrato], p40).

1.4 The Malliavin derivative D in special cases

Take F ∈ S1, with slightly different notation

F (ω) = f(ω(t1), . . . , ω(tn)) = f(W (1[0,t1]), . . . ,W (1[0,tn])
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Then, at ε = 0
d

dε
F (ω + εh̃)

equals
n∑

i=1

∂if(ω(t1), . . . , ω(tn))
∫ ti

0

hdλ =< DF, h >H

where we define

DF =
∑

i

∂if(W (1[0,t1]), . . . ,W (1[0,tn])1[0,ti].

This extends naturally to S2 functionals,

DF =
∑

i

∂if(W (h1), . . . ,W (hn))hi,

and this should be regarded as an H-valued r.v.

Remarks: - D is well-defined. In particular for F = W (h) =
∫ 1

0
hdβ this is

a consequence of the Ito-isometry.
- Sometimes it is convenient to write

DtF (ω) =
∑

i

∂if(W (h1)(ω), . . .)hi(t)

which, of course, is only λ×W -as well-defined.
- Since D(

∫ 1

0
hdβ) = D(W (h)) = h,

DF =
∑

i

∂if(W (h1), . . . ,W (hn))D(W (hi)),

which is the germ of a chain-rule-formula.
- Here is a product rule, for F,G ∈ S2

D(FG) = FDG+GDF. (1.1)

(Just check it for monomials, F = W (H)n, G = W (g)m.) See [Nualart], p34
for an extension.

- As f has only polynomial growth, we haveDF ∈ Lp(Ω,H) i.e.
∫
Ω
‖DF (ω)‖p

HdW <
∞. For p = 2, this can be expressed simpler, DF ∈ L2([0, 1]× Ω), (after fixing
a version) DF = DF (t, ω) can be thought of a stochastic process.

1.5 Extending the Malliavin Derivative D

So far we have
D : Lp(Ω) ⊃ S2 → Lp(Ω,H).

It is instructive to compare this to the following well-known situation in
(Sobolev-)analysis. Take f ∈ Lp(U), some domain U ⊂ Rn. Then the gradient-
operator ∇ = (∂i)i=1,...,n maps an appropriate subset of Lp(U) into Lp(U,Rn).
The Rn comes clearly into play as it is (isomorphic to) the tangent space at any
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point of U .
Going back to the Wiener-space we see that H (or, equivalently, H̃) plays the
role of the tangent space to the Wiener spaces. 1

Again, ∇ on LP (U). What is its natural domain? The best you can do is
(∇,W 1,p), which is a closed operator, while (∇, C1

c ) (for instance) is a closable
operator. This closability (see [RR]) is exactly what you need to extend to
operator to the closure of C1

c with respect to ‖ · ‖W 1,p where

‖f‖p
W 1,p =

∫
U

|f |pdλn +
n∑

i=1

∫
U

|∂if |pdλn

or equivalently ∫
U

|f |pdλn +
∫

U

‖∇f‖p
Rndλ

n.

Using an Integration-by-Parts formula (see the following section on IBP), (D,S2)
is easily seen to be closable (details found in [Nualart] p26 or [Uestuenel]). The
extended domain is denoted with D1,p and is exactly the closure of S2 with
respect to ‖ · ‖1,p where

‖F‖p
1,p =

∫
Ω

|F |pdW +
∫

Ω

‖DF‖p
HdW

= E|F |p + E‖DF‖p
H .

Remarks: - Look up the definition of closed operator and compare Bass’ way
to introduce the Malliavin derivative [Bass], p193, with the classical result in
[Stein] p122.

- For simplicity take p = 2 and consider F = f(W (h1), . . . ,W (hn)) with hi’s
in H. As mentioned in section 1.2, there is n.l.o.g. by assuming the hi’s to be
orthonormal.

Then

‖DF‖2H =
n∑

i=1

(∂if(n iid std gaussians))2.

and ‖F‖21,2 simply becomes∫
Rn

f2dνn +
∫

Rn

‖∇f‖2Rndνn

which is just the norm on the weighted Sobolev-spaceW 1,p(νn). More on this link
betweenD1,p and finite-dimensional Sobolev-spaces is to be found in [Malliavin1]
and [Nualart].

- A frequent characterization of Sobolev-spaces on Rn is via Fourier trans-
form (see, for instance, [Evans] p 282). Let f ∈ L2 = L2(Rn), then

f ∈ Hk iff (1 + |x|k)f̂ ∈ L2.

1We follow Malliavin himself and also Nualart by defining DF as H-valued r.v.. This seems
the simplest choice in view of the calculus to come. Oksendal, Uestuenel and Hsu define it as
H̃-valued r.v. As commented in Section 1.3 the difference is purely notational since there is a
natural isomorphism between H and H̃. For instance, we can write D(

∫ 1
0 hdβ) = h while the

H̃ choice leads to (H̃-derivative of)(
∫ 1
0 hdβ =

∫ .
0 hdλ.
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Moreover,
‖f‖Hk ∼ ‖(1 + |x|k)f̂‖L2 .

In particular, this allows a natural definition of Hs(Rn) for all s ∈ R. For later
reference, we consider the case k = 1. Furthermore, for simplicity n = 1. Recall
that i∂ is a self-adjoint operator on (L2(R), < ·, · >)

< (1 + x)f̂ , (1 + x)f̂ > = < (1 + i∂)f, (1 + i∂)f >
= < f, f > + < i∂f, i∂f >

= < f, f > + < f,−∂2f >

= < f, (1 +A)f >,

where A denotes the negative second derivative. In Section 1.10 this will be
linked to the usual definition of Sobolev-spaces (as seen at the beginning of this
section), both on (Rn, λn) as on (Ω,W ).
- The preceding discussion about how to obtain the optimal domain for the
gradient on (Rn, λn) is rarely an issue in practical exposures of Sobolev Theory
on Rn. The reason is, of course, that we can take weak derivatives resp. dis-
tributional derivatives. As well known, Sobolev-spaces can then be defined as
those Lp-functions whose weak derivatives are again in Lp. A priori, this can’t
be done on the Wiener-spaces (at this stage, what are the smooth test-functions
here?).

1.6 Integration by Parts

As motivation, we look at (R, λ) first. Take f smooth with compact support
(for instance), then, by the translation invariance of Lebesgue-measure,∫

f(x+ h)dλ =
∫
f(x)dλ

and hence, after dividing by h and h→ 0,∫
f ′dλ = 0.

Replacing f by f · g this reads∫
f ′gdλ = −

∫
fg′dλ.

The point is that IBP is the infinitesimal expression of a measure-invariance.
Things are simple here because λn is translation invariant, (τh)∗λn = λn. Let’s
look at (Rn, νn). It is elementary to check that for any h ∈ Rn

d(τh)∗νn

dνn
(x) = exp(

n∑
i=1

hixi −
1
2

n∑
i=1

h2
i ).

The corresponding fact on the Wiener space (Ω,W ) is the Cameron-Martin
theorem. For h̃ ∈ H̃ ⊂ Ω and with τh̃(ω) = ω +

∫ .

0
h = ω + h̃

d(τh̃)∗W
dW

(ω) = exp(
∫ 1

0

hdβ(ω)− 1
2

∫ 1

0

h2dλ).
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Theorem 1 (IBP on the Wiener Space) Let h ∈ H, F ∈ S2. Then

E(< DF, h >H) = E(F
∫ 1

0

hdβ).

Proof: (1st variant following [Nualart]) By homogeneity, w.l.o.g. ‖h‖ = 1.
Furthermore, we can find f such that F = f(W (h1), . . . ,W (hn)), with (hi)
orthonormal in H and h = h1. Then, using classical IBP

E < DF, h > = E
∑

i

∂if < hi, h >

=
∫

Rn

∂1f(x)(2π)−n/2e−|x|
2/2dx

= −
∫

Rn

f(x)(2π)−n/2e−|x|
2/2(−x1)dx

=
∫

Rn

f(x) · x1dν
n

= E(F ·W (h1))
= E(F ·W (h))

(2nd variant following an idea of Bismut, see [Bass]) We already saw in section
1.4 that for F ∈ S1 the directional derivative in direction h̃ exists and coincides
with < DF, h >. For such F∫

Ω

F (ω)dW (ω) =
∫

Ω

F (τ−h̃(ω) + h̃)dW (ω)

=
∫

Ω

F (ω + h̃)d(τ−h̃)∗W (ω)

=
∫

Ω

F (ω +
∫ .

0

hdλ) exp(−
∫ 1

0

hdβ +
1
2

∫ 1

0

h2dλ)dW (ω),

using Girsanov’s theorem. Replace h by εh and observe that the l.h.s. is inde-
pendent of ε. At least formally, when exchanging integration over Ω and d

dε at
ε = 0, we find ∫

Ω

(
< DF, h > −F (ω)

∫ 1

0

hdβ
)
dW (ω) = 0

as required. To make this rigorous, approximate F by F ’s which are, together
with ‖DF‖H bounded on Ω. Another approximation leads to S2-type function-
als. 2

Remarks: - IBP on the Wiener spaces is one of the cornerstones of the Malli-
avin Calculus. The second variant of the proof inspired the name Stochastic
Calculus of Variations: Wiener-paths ω are perturbed by paths h̃(.). Stochastic
Calculus of Variations has (well, a priori) nothing to do with classical calculus
of variations.
- As before we can apply this result to a product FG, where both F,G ∈ S2.
This yields

E(G < DF, h >) = E(−F < DG, h > +FGW (h)). (1.2)
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1.7 Itô representation formula / Clark-Ocone-
Haussmann formula

As already mentionedDF ∈ L2([0, 1]×Ω) can be thought of a stochastic process.
Is it adapted? Let’s see. Set

F (s) := Es(h) := exp(
∫ s

0

hdβ − 1
2

∫ s

0

h2dλ),

an exponential martingale. F := E(h) := F (1) is not quite in S2 but easily seen
to been in D1,p and, at least formally and dλ(t) -a.s.

DtF = e−
1
2

∫ 1
0 h2dλDt(exp

∫ 1

0

hdβ)

= e−
1
2

∫ 1
0 h2dλ exp

( ∫ 1

0

hdβ
)
h(t)

= Fh(t)

The used chain-rule is made rigorous by approximation in S2 using the partial
sums of the exponential.
As F contains information up to time 1, DtF is not adapted to Ft but we can
always project down

E(DtF |Ft) = E(F (1)h(t)|Ft)
= h(t)E(F (1)|Ft)
= h(t)F (t),

using the martingale-property of F (t). On the other hand, F solves the SDE

dF (t) = h(t)F (t)dβ(t)

with F (0) = 1 = E(F ). Hence

F = E(F ) +
∫ 1

0

h(t)F (t)dβ(t)

= E(F ) +
∫ 1

0

E(DtF |Ft)dβ(t) (1.3)

By throwing away some information this reads

F = E(F ) +
∫ 1

0

φ(t, ω)dβ (1.4)

for some adapted process φ in L2([0, 1] × Ω). We proved (1.4) for F of the
form E(h), sometimes called Wick-exponentials, call E the set of all such F s.
Obviously this extends the the linear span (E) and by a density argument, see
[Oksendal1] for instance, to any F ∈ L2(Ω,W ). This is the Itô representation
theorem. Looking back to (1.3), we can’t expect this to hold for any F ∈
L2(Ω,W ) since D is only defined on the proper subset D1,2. However, it is true
for F ∈ D1,2, this is the Clark-Ocone-Haussmann formula.
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Remarks: - In most books, for instance [Nualart], the proof uses the Wiener-
Ito-Chaos-decomposition, although approximation via the span(E) should work.
- A similar type of computations allows to compute, at least for F ∈ span(E), 2

and dλ(t)× dW (ω) a.s.

DtE(F |Fs) = E(DtF |Fs)1[0,s](t).

In particular,

F is Fs − adapted ⇒ DtF = 0 for Lebesgue-a.e.t > s. (1.5)

The intuition here is very clear: if F only depends on the early parts of the
paths up to time s, i.e. on {ω(s′) : s′ ≤ s}, perturbing the pathes later on
(i.e. on t > s) shouldn’t change a thing. Now recall the interpretation of
< DF, h >=

∫
DtFh(t)dt as directional derivatives in direction of the pertur-

bation h̃ =
∫ .

0
hdλ.

- Comparing (1.4) and (1.3), the question arises what really happens for
F ∈ L2−D1,2. There is an extension of D to D′, the space of Meyer-Watanabe-
distribution built on the space D∞ (introduced a little bit later in this text ),
and L2 ⊂ D′. In this context, (1.3) makes sense for all F ∈ L2, see [Uestuenel],
p42.

1.8 Higher derivatives

When f : Rn ⊃ U → R then ∇f = (∂if) is a vector field on U , meaning that
at each point ∇f(x) ∈ TxU ∼= Rn with standard differential-geometry notation.
Then (∂ij)f is a (symmetric) 2-tensor field, i.e. at each point an element of
T.U⊗T.U ∼= Rn⊗Rn. As seen in section 1.5 the tangent space of Ω corresponds
to H, therefore D2F (still to be defined!) should be a H ⊗ H-valued r.v. (or
H⊗̂H to indicate symmetry). No need to worry about tensor-calculus in infinite
dimension since H ⊗ H ∼= L2([0, 1]2). For F ∈ S2 (for instance), randomness
fixed

D2
s,tF := Ds(DtF )

is dλ2(s, t)-a.s. well-defined, i.e. good enough to define an element of L2([0, 1]2).
Again, there is closability of the operator D2 : Lp(W ) → Lp(W,H⊗̂H) to check,
leading to a maximal domain D2,p with associated norm ‖ · ‖2,p and the same
is done for higher derivatives. Details are in [Nualart],p26.
Remarks: - Dk,p is not an algebra but

D∞ := ∩k,pDk,p

is. As with the class of rapidly decreasing functions, underlying the tempered
distributions, D∞ can be given a metric and then serve to introduce continuous
functionals on it, the Meyer-Watanabe-distributions. This is quite a central
point in many exposures including [IW], [Oksendal2], [Ocone] and [Uestuenel].
- Standard Sobolev imbedding theorems, as for instance [RR], p215 tell us that
for U = Rn

W k,p(U) ⊂ Cb(U)
2An extension to D1,2 is proved in [Nualart], p32, via WICD.
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whenever kp > dimU = n. Now, very formally, when n = ∞ one could
have a function in the intersection of all these Sobolev-spaces without achiev-
ing any continuity. And this is what happens on Ω!!! For instance, taking
F = W (h), h ∈ H gives DF = h,D2F = 0, therefore F ∈ D∞. On the other
hand, [Nualart] has classified those h for which a continuous choice of W (h)
exists, as those L2-functions that have a representative of bounded variation,
see [Nualart] p32 and the references therein.

1.9 The Skorohod Integral / Divergence

For simplicity consider p = 2, then

D : L2(Ω) ⊃ D1,2 → L2(Ω,H),

a densely defined unbounded operator. Let δ denote the adjoint operator, i.e.
for u ∈ Domδ ⊂ L2(Ω,H) ∼= L2([0, 1]× Ω) we require

E(< DF, u >H) = E(Fδ(u)).

Remark: On (Rn, λn),∫
Rn

< ∇f, u >Rn dλn =
∫

Rn

f(−divu)dλn, (1.6)

this explains (up to a minus-sign) why δ is called divergence.

Take F,G ∈ S2, h ∈ H. Then δ(Fh) is easily computed using the IBP-
formula (1.2)

E(δ(Fh)G) = E(< Fh,DG >)
= E(F < h,DG >)
= E(−G < h,DF >) + E(FGW (h))

which implies
δ(Fh) = FW (h)− < h,DF > (1.7)

Taking F ≡ 1 we immediately get that δ coincides with the Itô-integral on
(deterministic) L2-functions. But we can see much more: take F Fr-measurable,
h = 1(r,s]. We know from (1.5) that DtF = 0 for a.e. t > r. Therefore

< h,DF >=
∫ 1

0

1[r,s](t)DtFdt = 0,

i.e.

δ(Fh) = FW (h) = F (βs − βr) =
∫ 1

0

Fhdβ

by the very definition of the Itô-integral on adapted step-functions. 3

By an approximation, for u ∈ L2
a, the closed subspace of L2([0, 1]×Ω) formed

by the adapted processes, it still holds that

δ(u) =
∫ 1

0

u(t)dβ(t),

3Also called simple processes. See [KS] for definitions and density results.
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see [Nualart] p41 or [Uestuenel] p15.
The “divergence” δ is therefore a generalization of the Ito-integral (to non-
adapted integrands) and - in this context - called Skorohod-integral.

Remark: For u ∈ H, W (u) = δ(u) (1.7) also reads

δ(Fu) = Fδ(u)− < u,DF > (1.8)

and this relation stays true for u ∈ Dom(δ), F ∈ D1,2 and some integrability
condition, see [Nualart], p40. The formal proof is simple, using the product
rule

E < Fu,DG > = E < u,FDG >

= E < u,D(FG)−G(DF ) >
= E[(δu)FG− < u,DF > G]
= E[(Fδu− < u,DF >)G].

1.10 The OU-operator

We found gradient and divergence on Ω. On Rn plugging them together yields
a positive operator (the negative Laplacian)

A = −∆ = −div ◦ ∇.

Here is an application. Again, we are on (Rn, λn), < ., . > denotes the inner
product on L2(Rn).

‖f‖2W 1,2 = ‖f‖2H1 =
∫
|f |2dλn +

∫
‖∇f‖2Rndλn

=
∫
|f |2dλn +

∫
fAfdλn using (1.6)

= < f, f > + < Af, f >

= < (1 +A)f, f >
= < (1 +A)1/2f, (1 +A)1/2f > = ‖(1 +A)1/2f‖2,

using the square-root of the positive operator (1+A) as defined for instance by
spectral calculus. For p 6= 2 there is no equality but one still has

‖ · ‖W 1,p ∼ ‖(1 +A)1/2 · ‖Lp ,

when p > 1, see [Stein] p135.
Let’s do the same on (Ω,W ), first define the Ornstein-Uhlenbeck operator

L := δ ◦D.

Then the same is true, i.e. for 1 < p <∞.

‖ · ‖1,p ∼ ‖(1 + L)1/2 · ‖Lp(Ω),

with equality for p = 2, the latter case is seen as before. This result is a corollary
from the Meyer Inequalities. The proof is not easy and found in [Uestuenel]
p19, [Nualart] p61 or [Sugita] p37.
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How does L act on a S2-type functional F = f(W (h1), . . . ,W (hn)) where we
take w.l.o.g. the hi’s orthonormal? Using DF =

∑
(∂if)hi and formula (1.7)

we get

LF =
∑

i

∂ifW (hi)−
∑

i

< D∂if, hi >

=
∑

i

∂ifW (hi)−
∑
i,j

∂ijf < hj , hi >

= (L(n)f)(W (h1), . . . ,W (hn))

where L(n) is defined as the operator for functions on Rn

L(n) :=
n∑

i=1

[xi∂i − ∂ii]

= x · ∇ −∆.

Remarks: - Minus L(n) is the generator of the n-dimensional OU-process given
by the SDE

dx =
√

2dβ − xdt.

with explicit solution

x(t) = x0e
−t +

√
2e−t

∫ t

0

esdβ(s) (1.9)

and for t fixed x(t) has law N (x0e
−t, (1− e−2t)Id).

- L plays the role the same role on (Ω,W ) as L(n) on (Rn, νn) or A = −∆
on (Rn, λn).

- Here is some “OU-calculus”, (at least for) F,G ∈ S2

L(FG) = F LG+G LF − 2 < DF,DG >, (1.10)

as immediatly seen by (1.1) and (1.8).

- Some more of that kind,

δ(FDG) = F LG− < DF,DG > . (1.11)

1.11 The OU-semigroup

We first give a result from semigroup-theory.

Theorem 2 Let H be a Hilbert-space, B : H → H be a (possibly unbounded,
densely defined) positive, self-adjoint operator. Then −B is the infinitesimal
generator of a strongly continuous semigroup of contractions on H.

Proof: (−B) = (−B)∗ and positivity implies that −B is dissipative in
Pazy’s terminology. Now use Corollary 4.4 in [Pazy], page 15 (which is derived
from the Lumer-Phillips theorem, which is, itself, based on the Hille-Yoshida

13



theorem). 2

Applying this to A yields the heat-semigroup on L2(Rn, λn), applying it to
L(n) yields the OU-semigroup on L2(Rn, νn), and for L we get the OU-semigroup
on L2(Ω,W ).
Let’s look at the OU-semigroup P

(n)
t with generator L(n). Take f : Rn → R,

say, smooth with compact support. Then it is well-known that, using (1.9),

(P (n)
t f)(x) = Exf(x(t)) =

=
∫

Rn

f(e−tx+
√

1− e−2ty)dνn(y).

is again a continuous function in x. (This property is summarized by saying
that P (n)

t is a Feller-semigroup.) Similarly, whenever F : Ω → R is nice enough
we can set

(PtF )(x) =
∫

Ω

F (e−tx+
√

1− e−2ty)dW (y) (1.12)

=
∫

Ω

F (x cosφ+ y sinφ)dW (y)

A priori, this is not well-defined for F ∈ Lp(Ω) since two W -a.s. identical F ’s
could lead to different results. However, this does not happen:

Proposition 3 Let 1 ≤ p < ∞. Then Pt is a well-defined (bounded) operator
from Lp(Ω) → Lp(Ω) (with norm ≤ 1).

Proof: Using Jensen and the rotational invariance of Wiener-measure, with
R(x, y) = (x cosφ+ y sinφ,−x sinφ+ y cosφ), we have

‖PtF‖p
Lp(Ω) =

∫
Ω

[ ∫
Ω

F (x cosφ+ y sinφ)dW (y)
]p
dW (x)

≤
∫

Ω×Ω

[
|F ⊗ 1|(R(x, y))

]p
d(W ⊗W )(x, y)

=
∫

Ω×Ω

[
|F ⊗ 1|(x, y)

]p
d(W ⊗W )(x, y)

=
∫

Ω×Ω

|F (x)|pd(W ⊗W )(x, y) =
∫

Ω

|F (x)|pdW (x) = ‖F‖p
Lp(Ω).

2

It can be checked that Pt as defined via (1.12) and considered as operator
on L2(Ω), coincides with the abstract semigroup provided by the theorem at
the beginning of this section. It suffices to check that Pt is a semigroup with
infinitesimal generator L, the OU-operator, see [Uestuenel] p17.
Remark: Pt is actually more than just a contraction on Lp, it is hyper-contractive
meaning that it increases the degree of integrability, see also [Uestuenel].

1.12 Some calculus on (R, ν)

From section 1.10,

(Lf)(x) := (L(1))f(x) = xf ′(x)− f ′′(x).

14



Following in notation [Malliavin1], [Malliavin2], denote by ∂f = f ′ the differentiation-
operator and by ∂∗ the adjoint operator on L2(ν). By standard IBP

(∂∗f)(x) = −f ′(x) + xf(x).

Note that L = ∂∗∂. Define the Hermite polynomials by

H0(x) = 1, Hn = ∂∗Hn−1 = (∂∗)n1.

Using the commutation relation ∂∂∗ − ∂∗∂ = Id, an induction (one-line) proof
yields ∂Hn = nHn−1. An immediate consequence is

LHn = nHn.

Since Hn is a polynomial of degree n, ∂mHn = 0 when m > n, therefore

< Hn,Hm >L2(ν) = < Hn, (∂∗)m1 >
= < (∂)mHn, 1 >
= 0

On the other hand, since ∂nHn = n!

< Hn,Hn >L2(ν)= n!,

hence
{

1
(n!)1/2Hn

}
is a orthonormal system which is known to be complete, see

[Malliavin2] p7. Hence, given f ∈ L2(ν) we have

f =
∑

cnHn with cn =
1
n!
< f,Hn > .

Assume that all derivatives are in L2, too. Then

< f,Hn >=< f, ∂∗Hn−1 >=< ∂f,Hn−1 >= . . . =< ∂nf, 1 > .

Denote this projection on 1 by E(∂nf) and observe that it equals E((∂nf)(X))
for a standard gaussian X. We have

f =
∞∑

n=0

1
n!
E(∂nf)Hn. (1.13)

Apply this to ft(x) = exp(tx − t2/2) where t is a fixed parameter. Noting
∂nft = tnft and E(∂nft) = tn we get

exp(tx− t2/2) =
∞∑

n=0

tn

n!
Hn(x).

Remark: [Malliavin1], [Malliavin2] extend ∂, ∂∗, L in a straightforward-
manner to (RN, νN) which is, in some sense, (Ω,W ) with a fixed ONB in H.
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1.13 Iterated Wiener-Ito integrals

There is a close link between Hermite polynomials and iterated Wiener-Ito in-
tegrals of the form

Jn(f) :=
∫

∆n

fdβ⊗n :=
∫ 1

0

. . .

∫ t1

0

f(t1, . . . tn)dβt1 ...dβtn
,

(well-defined) for f ∈ L2(∆n) where ∆n := ∆n(1) := {0 < t1 < . . . ... < tn <
1} ⊂ [0, 1]n. Note that only integration over such a simplex makes sure that
every Ito-integration has an adapted integrand. Note that Jn(f) ∈ L2(Ω). A
straight-forward computation using the Ito-isometry shows that for n 6= m

E(Jn(f)Jm(g)) = 0

while
E(Jn(f)Jn(g)) =< f, g >L2(∆n) .

Proposition 4 Let h ∈ H with ‖h‖H = 1. Let h⊗n be the n-fold product, a
(symmetric) element of L2([0, 1]n) and restrict it to ∆n. Then

n!Jn(h⊗n) = Hn(W (h)). (1.14)

Proof: Set

Mt := Et(g) and Nt := 1 +
∞∑

n=1

∫
∆n(t)

g⊗ndβ⊗n

where g ∈ H. By the above orthonormality relations Nt is seen to be in L2.
Moreover, both Y = M resp. N solve the integral equation,

Yt = 1 +
∫ t

0

Ysg(s)dβs.

By a uniqueness result for SDEs (OK, it’s just Gronwall’s Lemma for the L2-
norm of Mt−Nt) we see that W -a.s. Mt = Nt Now take f ∈ H with norm one.
Use the above result with g = τf , t = 1

exp(τ
∫ 1

0

fdβ − 1
2
τ2) = 1 +

∞∑
n=1

τnJn(f⊗n), (1.15)

and using the generating function for the Hermite polynomials finishes the proof.
2

A simple “geometric” corollary of the preceding is that for h, g both norm
one elements in H,

E(Hn(W (h))Hm(W (g)) = 0

if n 6= m and
E(Hn(W (h))Hn(W (g)) = n!(< h, g >H)n.

Remark: If it were just for this corollary, an elementary and simple proof is
contained in [Nualart].
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1.14 The Wiener-Ito Chaos Decomposition

Set
Cn := {Jn(f) : f ∈ L2(∆n)} (nth Wiener Chaos)

a family of closed, orthogonal subspaces in L2(Ω).
For F = E(h) ∈ L2(Ω) we know from the proof of proposition 4 that

F = 1 +
∞∑

n=1

Jn(h⊗n) (orthogonal sum).

Less explicitly this is an orthogonal decomposition of the form

F = f0 +
∞∑

n=1

Jn(fn)

for some sequence of fn ∈ L2(∆n). Clearly, this extends to span (E), and since
this span is dense in L2(Ω) this further extends to any F ∈ L2(Ω) which is the
same as saying that

L2(Ω) =
∞⊕

n=0

Cn (orthogonal).

when setting C0 the subspace of the constants. Indeed, assume that is a non-zero
element G ∈ (

⊕
Cn)⊥, wlog of norm one. But there is a F ∈ span(E) ⊂ (

⊕
Cn)

arbitrarily close - contradiction. This result is called the Wiener-Ito Chaos
Decomposition.
Remarks: - A slightly different description of of the Wiener-Chaos,

Cn = closure of span{Jn(h⊗n) : ‖h‖H = 1}
= closure of span{Hn(W (h)) : ‖h‖H = 1}. (1.16)

The second equality is clear by (1.14). Denote by Bn the r.h.s., clearly Bn ⊂ Cn.
But since span (E) ⊂

⊕
Bn, taking the closure yields

⊕
Bn = L2, hence

Bn = Cn.

We now turn to the spectral decomposition of the OU-operator L

Theorem 5 Let Πn denote the orthogonal projection on Cn, then

L =
∞∑

n=1

nΠn.

Proof: Set X = W (h), Y = W (k) for two norm one elements in H,
a =< h, k >, F = Hn(X). Then

E(LF,Hm(Y ) = E < DHn(X), DHm(Y ) >
= E < nHn−1(X)h,mHm−1(Y )k > using H ′

n = ∂Hn = nHn

= nmaE(Hn−1(X),Hm−1(Y ))

which, see end of last section, is 0 when n 6= m and

nma(n− 1)!an−1 = nn!an = nE(Hn(X),Hm(Y ))
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otherwise i.e. when n = m. By density of the linear span of such Hn(X)’s the
result follows. 2

Another application of Hermite polynomials is the fine-structure of Cn. Let
p : N → N0 such that |p| =

∑
n p(n) <∞. Fix a ONB ei for H and set

Hp :=
∏
n

Hp(n)(W (en)) (1.17)

well-defined since H0 = 1 and p(n) = 0 but finitely often. Set p! =
∏
p(n)!

Proposition 6 The set

{ 1
(p!)1/2

Hp : |p| = n}

forms a complete orthonormal set for the nth Wiener-chaos Cn.

Note that this proposition is true for any ONB-choice in H.
Proof: Orthonormality is quickly checked with the ⊥-properties of Hn(W (h))
seen before. Next we show that Hp ∈ Cn. We do induction by N ,the number
of non-trivial factors in (1.17). for N = 1 this is a consequence of (1.14). For
N > 1, Hp splits up in

Hp = Hq ×Hi with Hi = Hi(W (ej))

some i, j where Hq ∈ S2 is a Wiener-polynomial in which W (ej) does not appear
as argument. Randomness fixed, it follows by the orthonormality of the ei’s that

DHq ∈ e⊥j hence DHq ⊥ DHi.

By induction hypothesis, Hq ∈ C|q| = Cn−i. Hence

LHq = (n− i)Hq

using the the spectral decomposition of the OU-operator. By (1.10),

L(Hp) = L(HqHi)
= HqLHi +HiLHq − 2 < DHq, DHi >

= Hq(iHi) +Hi(n− i)Hq

= nHp,

hence Hp ∈ Cn. Introduce C̃n, the closure of the span of all Hp’s with |p| = n.
We saw that C̃n ⊂ Cn and we want to show equality. To this end, take any
F ∈ L2(Ω,W ) and set

fk := E[F |σ(W (e1), . . . ,W (ek))].

By martingale convergence, fk → F in L2. Furthermore

fk = gk(W (e1), . . . ,W (ek))
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for some gk ∈ L2(Rk, νk) = (L2(R, ν))⊗k. Since the (simple) Hermite polyno-
mials form an ONB for L2(R, ν) its k-fold tensor product has the ONB

{ 1
(q!)1/2

k∏
i=1

Hq(i)(xi) : all multiindices q : {1, . . . , k} → N}.

Hence

fk ∈
∞⊕

i=0

C̃i,

Set fn
k := Πnfk, then we still have limk→∞ fn

k = F , while fn
k ∈ Cn for all k.

Therefore C̃n = Cn as claimed. 2

Remarks: - Compare this ONB for Cn with (1.16). Choosing h = e1, e2, . . .

in that line will not span Cn. The reason is that (e⊗n
i )i is not a basis for H⊗̂n,

the symmetric tensor-product space, whereas h⊗n for all unit elements is a basis.
For instance, look at n = 2. A basis is (e⊗2

i )i and (ei⊗̂ej)i,j and

(ei + ej)⊗2 − e⊗2
i − e⊗2

j = ei ⊗ ej + ej ⊗ ei,

the last expression equals (up to a constant) ei⊗̂ej .
- The link between Hermite-polynomials and iterated Wiener-Ito integrals, can
be extended to this setting. For instance,

Hp = H2(W (e1))×H1(W (e2)) = (some constant)× J3(e1⊗̂e1⊗̂e2).

There is surprisingly little found in books about this. Of course, it’s contained
in Ito’s original paper [Ito], but even [Oksendal2] p3.4. refers to that paper
when it comes down to it.

1.15 The Stroock-Taylor formula

Going back to the WICD, most authors prove it by an iterated application of
the Ito-representation theorem, see section 1.7. For instance, [Oksendal2], p1.4
writes this down in detail. Let’s do the first step

F = EF +
∫ 1

0

φtdβt

= EF +
∫ 1

0

(
E(φt) +

∫ t

0

φs,tdβs

)
dβt

= EF +
∫ 1

0

E(φt)dβt +
∫

∆2

φ(s, t, ω)dβsdβt

= f0 + J1(f1) +
∫

∆2

φ(s, t, ω)dβsdβt

when setting f0 = E(F ), f1 = E(φ). It’s not hard to see that
∫
∆2
φ(s, t, ω)dβsdβt

is orthogonal to C0 and C1 (the same proof as for deterministic integrands -
it always boils down to the fact that an Ito-integral has mean zero), hence
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we found the first two f ’s of the WICD. But we also saw in section 1.7 that
φt = E(DtF |Ft), hence

f1(t) = E(DtF ),

dλ(t)-a.s. and for F ∈ D1,2. Similarly,

f2(s, t) = E(D2
s,tF )

dλ2(s, t)-a.s. and so for “higher” fn’s, provided all necessary Malliavin-derivatives
of F exist. We have

Theorem 7 (Stroock-Taylor) Let F ∈ ∩kDk,2, then the following refined
WICD holds,

F = EF +
∞∑

n=1

Jn(E(DnF ))

= EF +
∞∑

n=1

1
n!
In(E(DnF ))

where
In(f) :=

∫
[0,1]n

fdβ⊗n := n!Jn(f)

for any f ∈ L2(∆n) (or symmetric f ∈ L2[0, 1]n), this notation only introduced
here because of its current use in other texts.
Example: Consider F = f(W (h)) with ‖h‖H = 1 a smooth function f which
is together with all its derivatives in L2(ν). By iteration,

DnF = (∂nf)(W (h))h⊗n,

hence

E(DnF ) = h⊗nE((∂nf)(W (h))
= h⊗nE(∂nf)

where we use the notation from 1.12,

E(f) =
∫
fdν.

Then

Jn(E(DnF )) = E(∂nf)Jn(h⊗n)

= E(∂nf)
1
n!
Hn(W (h)),

and Stroock-Taylor just says

f(W (h)) = E(f) +
∞∑

n=1

1
n!
E(∂nf)Hn(W (h))

which is, unsurprisingly, just (1.13) evaluated at W (h).
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Chapter 2

Smoothness of laws

2.1

Proposition 8 Let F = (F1, ..., Fm) be an m-dimensional r.v. Suppose that
for all k and all multi-indices α with |α| = k there is a constant ck such that
for all g ∈ Ck(Rm)

|E[∂αg(F )]| ≤ ck‖g‖∞. (2.1)

Then the law of F has a C∞ density.

Proof: Let µ(dx) = P(F ∈ dx) and µ̂ its Fourier-transform. Fix u ∈ Rm and
take g = exp(i < u, · >). Then, when |α| = k,

|uα||µ̂(u)| = |E[∂αg(F )]| ≤ ck.

For any integer l, by choosing the right α’s of order l and maximizing the l.h.s
we see that

( max
i=1,...,m

|ui|)l‖µ̂(u)| ≤ cl

Hence, at infinity, µ̂(u) decays faster than any polynomial in |u|. On the other
hand, as F-transform µ̂ is bounded (by one), therefore µ̂ ∈ L1(Rm). By standard
Fourier-transform-results we have

F−1(µ̂) =: f ∈ C0(Rm)

and since f̂ = µ̂, by uniqueness, dµ = fdλm. Replacing α by α+(0, . . . , 0, l, 0, . . . , 0)
we have

|ui|l|uα||f̂(u)| ≤ ck+l

But since |uα||f̂(u)| = | ˆ∂αf | we conclude as before that ∂αf ∈ C0. 2

Remark: - Having (2.1) only for k ≤ m+ 1 you can still conclude that
µ̂(u) = O( 1

|u|m+1 ) and hence in L1, therefore dµ = fdλ for continuous f . How-
ever, as shown in [Malliavin1], having (2.1) only for k = 1, i.e. only involving
first derivatives, one still has dµ = fdλm for some f ∈ L1(Rm).
Now one way to proceed is as follows: for all i = 1, . . . ,m let Fi ∈ D1,2 (for the
moment) and take g : Rm → R as above. By an application of the chain-rule, j
fixed,

< Dg(F ), DFj > = < ∂ig(F )DFi, DFj >

= ∂ig(F ) < DFi, DFj >
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Introducing the Malliavin covariance matrix

Λij =< DFi, DFj > (2.2)

and assuming that
Λ−1 exists W − a.s. (2.3)

this yields a.s.

∂ig(F ) = (Λ−1)ij < Dg(F ), DFj >

= < Dg(F ), (Λ−1)ijDFj >

and hence

E[∂ig(F )] = E < Dg(F ), (Λ−1)ijDFj >

= E[g(F ), δ((Λ−1)ijDFj)]

by definition of the divergence δ while hoping that (Λ−1)ijDFj ∈ Domδ. In this
case we have

E[∂ig(F )] ≤ ‖g‖∞E[δ((Λ−1)ijDFj)]

and we can conclude that F has a density w.r.t. Lebesgue measure λm. With
some additional assumptions this outline is made rigorous: 1

Theorem 9 Suppose F = (F1, . . . , Fm), Fi ∈ D2,4 and Λ−1 exists a.s. Then
F has a density w.r.t. to λm.

Under much stronger assumptions we have the following result.

Theorem 10 Suppose F = (F1, . . . , Fm) ∈ D∞ and Λ−1 ∈ Lp for all p then F
has a C∞-density.

For reference in the following proof,

D(g(F )) = ∂ig(F )DF i (2.4)
L(g(F ) = ∂ig(F )LF i − ∂ijg(F )Λij (2.5)
L(FG) = FLG+GLF − 2 < DF,DG > (2.6)

the last equation was already seen in (1.10). The middle equation is a simple
consequence of the chain-rule (2.4) and (1.8).
Also, D, L and E are extended componentwise to vector- or matrix-valued r.v.,
for instance < DF,DF >= Λ.
Proof: Since 0 = D(ΛΛ−1) = L(ΛΛ−1) we have

D(Λ−1) = −Λ−1(DΛ)Λ−1

and
L(Λ−1) = −Λ−1(LΛ)Λ−1 − 2 < Λ−1DΛ,Λ−1(DΛ)Λ−1 >

Take a (scalar-valued) Q ∈ D∞ (at first reading take Q = 1) and a smooth
function g : Rm → R. Then

E[Λ−1 < DF,D(g ◦ F ) > Q] = E[Λ−1 < DF,DF > (∇g ◦ F )Q]
= E[(∇g ◦ F )Q]. (2.7)

1 [Nualart], p81
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We also have

L(F (g ◦ F )) = F (L(g ◦ F )) + (LF )(g ◦ F )− 2 < DF,D(g ◦ F ) > .

This and the self-adjointness of L yields

E[Λ−1 < DF,D(g ◦ F ) > Q] =
1
2

E[Λ−1{−L(F (g ◦ F )) + F (L(g ◦ F )) + (LF )(g ◦ F )}Q]

=
1
2

E[−F (g ◦ F )L(Λ−1Q) + (g ◦ F )L(Λ−1FQ) + (g ◦ F )Λ−1(LF )Q]

= E[(g ◦ F )R(Q)] (2.8)

with a random vector

R(Q) =
1
2
[−FL(Λ−1Q) + L(Λ−1FQ) + Λ−1(LF )Q].

From the vector-equality (2.7) = (2.8)

E[(∂ig ◦ F )Q] = E[(g ◦ F ){ei ·R(Q)}],

with ith unit-vector ei. Now the idea is that together with the other assumptions
Q ∈ D∞ implies (componentwise) R(Q) ∈ D∞. To see this you start with
proposition 3 but then some more information about L and its action on D∞ is
required. We don’t go into details here, but see [Bass] and [IW].
The rest is easy, taking Q = 1 yields

|E[∂ig ◦ F ]| ≤ c1‖g‖∞

and the nice thing is that we can simply iterate: taking Q = ej ·R(1) we get

E[∂jig ◦ F ] = E[(∂ig ◦ F )(ej ·R(1))] = E[(g ◦ F )ei ·R(ej ·R(1))]

and you conclude as before. Obviously we can continue by induction. Hence,
by the first proposition of this section we get the desired result. 2
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Chapter 3

Degenerated Diffusions

3.1 Malliavin Calculus on the d-dimensional Wiener
Space

Generalizing the setup of Chapter 1, we call

Ω = C([0, 1],Rd)

the d-dimensional Wiener Space. Under the d-dimensional Wiener measure on Ω
the coordinate process becomes a d-dimensional Brownian motion, (β1, . . . , βd).
The reproducing kernel space is now

H = L2([0, 1],Rd) = L2[0, 1]× . . .× L2[0, 1] (d copies).

As in Chapter 1 the Malliavin derivative of a real-valued r.v. X can be consid-
ered as a H-valued r.v. Hence we can write

DX = (D1X, . . . ,DdX).

For a m-dimensional random variable X = (Xi) set

DX = (DjXi)ij ,

which appears as a (m× d)-matrix of L2[0, 1]-valued r.v. The Malliavin covari-
ance matrix, as introduced in Chapter 2, reads

Λij =< DXi, DXj >H=
d∑

k=1

< DkXi, DkXj >L2[0,1],

or simply
Λ =< DX, (DX)T >L2[0,1] . (3.1)

3.2 The problem

Given vector-fields A1, . . . , Ad, B on Rm consider the SDE

dXt = Aj(Xt)dβ
j
t +B(Xt)dt (3.2)
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For some fixed t > 0 (and actually t ≤ 1 due to our choice of Ω) we want to
investigate the regularity of the law of X(t), i.e. existence and smoothness of
a density with respect to λm on Rm. We assume all the coefficients as nice as
we need (smooth, bounded, bounded derivatives etc). Indeed, the degeneration
we are interested in lies somewhere else: taking all coefficients zero, the law of
X(t) is just the Dirac-measure at X(0) = x, in particular there doesn’t exist a
density.

3.3 SDEs and Malliavin Calculus, the 1-dimensional
case

For simplicity take m = d = 1 and consider

Xt = x+
∫ t

0

a(Xs)dβs +
∫ t

0

b(Xs)ds. (3.3)

Our try is to assume 1 that all Xs are in the domain of D and then to bring D
under the integrals. To this end recall from section 1.7 that for fixed s and a
Fs-measurable r.v. F one has DrF = 0 for λ-a.e. r > s.
Let u(s, ω) be some Fs-adapted process, and let r ≤ t. Then

Dr

∫ 1

0

u(s)ds =
∫ t

0

Dru(s)ds =
∫ t

r

Dru(s)ds,

the first step can be justified by a R-sum approximation and the closedness of
the operator D. The stochastic integral is more interesting, we restrict ourself
to a simple adapted process 2 of the form

u(t, ω) = F (ω) h(t)

with h(t) = 1(s1,s2](t) and Fs1-measurable F . Again, let r ≤ t. Then

Dr

∫ t

0

Fh(s)dβ(s) = Dr

[ ∫
[0,r)

Fh(s)dβ(s) +
∫

[r,t]

Fh(s)dβ(s)
]

= 0 +Dr

∫ 1

0

Fh(s)1[r,t](s)dβ(s)

= Dr

[
FW (h1[r,t])

]
= (DrF )W (h1[r,t]) + Fh(r)

=
∫ 1

0

DrFh1[r,t](s)dβ(s) + u(r)

= u(r) +
∫ t

r

Dru(s)dβ(s) (∗)

Let us comment on this result. First, if it makes you uncomfortable that our only
a.s.-well-defined little r pops up in intervals, rewrite the preceding computation
in integrated form, i.e. multiply everything with some arbitrary deterministic

1For a proof see [IW], p393.
2We already proceeded like this in section 1.9 when computing δ(u).
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L2[0, 1]-function k = k(r) and integrate r over [0, 1]. (Hint: interchange inte-
gration w.r.t dβs and dr).
Secondly, a few words about (∗). The reduction from

∫ t

0
on the l.h.s. to

∫ t

r
at

the end is easy to understand - see the recall above. Next, taking t = r + ε we
can, at least formally, reduce (∗) to u(r) alone. Also, the l.h.s. is easily seen to
equal Dr

∫ t

r−ε
. That is, when operating Dr on

∫ r+ε

r−ε
udβ we create somehow a

Dirac point-mass δr(s). But that is not surprising! Formally, DrY =< Y, δr >
corresponding to a (non-admissible!) perturbation of ω by a Heaviside-function
with jump at r, say H(·−r) with derivative δr. Now, very formally, we interpret
β as Brownian path perturbed in direction H(· − r.) Taking differentials for use
in the stochastic integral we find the Dirac mass δr appearing.

(A detailed proof is found in [Oksendal2], corollary 5.13.)

Back to our SDE, applying these results to (3.3) we get

DrXt = a(Xr) +
∫ t

r

Dra(Xs)dβs +
∫ t

r

Drb(Xs)ds

= a(Xr) +
∫ t

r

a′(Xs)DrX(s)dβs +
∫ t

r

b′(Xs)DrX(s)ds

Fix r and set X̃ := DrX. We found the (linear!) SDE

dX̃t = a′(Xt)X̃tdβt + b′(Xt)X̃tdt, t > r (3.4)

with initial condition X̃r = a(Xr).

3.4 Stochastic Flow, the 1-dimensional case

A similar situation occurs when investigating the sensitivity of (3.3) w.r.t. the
initial condition X(0) = x. Set

Y (t) =
∂

∂x
X(t).

(A nice version of) X(t, x) is called stochastic flow.

A formal computation (see [Bass], p30 for a rigorous proof) gives the same
SDE

dYt = a′(Xt)Ytdβt + b′(Xt)Ytdt, t > 0

and clearly Y (0) = 1. Matching this with (3.4) yields

DrX(t) = Y (t)Y −1(r)a(X(r)). (3.5)

Remark: In the multidimensional setting note that for ω fixed

DrX(t) ∈ Rm×d

while
Y (t) ∈ Rm×m.

( [Bass] actually makes the choice m = d for a simpler exposure.)
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3.5 SDE/flows in multidimensional setting

Rewrite (3.2) in coordinates

dXi = Ai
k(X)dβk +Bi(X)dt, i = 1, . . . ,m (3.6)

with initial condition X(0) = x = (xj) ∈ Rm. Set

(Y )ij = ∂jX
i ≡ ∂

∂xj
Xi.

As before (formally)

d∂jX
i = ∂lA

i
k∂jX

ldβk + ∂lB
i∂jX

ldt

To simplify notation, for any vector-field V on Rm, considered as map Rm →
Rm, we set 3

(∂V )ij = ∂jV
i. (3.7)

This yields the following (m×m)-matrix SDE

dY = ∂Ak(X)Y dβk + ∂B(X)Y dt
Y (0) = I

and there is no ambiguity in this notation. Note that this is (as before) a linear
SDE. We will be interested in the inverse Z := Y −1. As a motivation, consider
the following 1-dimensional ODE

dy = f(t)ydt

Clearly z = 1/y satisfies
dz = −f(t)zdt.

We can recover the same simplicity in the multidimensional SDE case by using
Stratonovich Calculus, a first-order stochastic calculus.

3.6 Stratonovich Integrals

3.6.1

Let M,N be continuous semi-martingales, define 4∫ t

0

Ms ◦ dNs =
∫ t

0

MsdNs +
1
2
< N,M >t

resp.

Mt ◦ dNt = MtdNt +
1
2
d < N,M >t .

The Ito-formula becomes

f(Mt) = f(M0) +
∫ t

0

f ′(Ms) ◦ dMs. (3.8)

3If you know classical tensor-calculus it is clear that ∂jV i corresponds to a matrix where
i represent lines and j the columns.

4Do not mix up the bracket with the inner product on Hilbert Spaces.
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See [Bass]p27 or any modern account on semi-martingales for these results. A
special case occurs, when M is given by the SDE

dMt = utdβt + vtdt or dMt = ut ◦ dβt + ṽtdt

Then
Mt ◦ dβt = Mtdβt +

1
2
utdt. (3.9)

One could take this as a definition ( [Nualart], p21 does this).

3.6.2

Of course there is a multidimensional version of (3.8) (write it down!). For
instance, let V : Rm → Rm and X some m-dimensional process, then

dV (X) = (∂V )(X) ◦ dX. (3.10)

It also implies a first order product rule

d(MN) = N ◦ dM +M ◦ dN

where M,N are (real-valued) semi-martingales.

For later use we discuss a slight generalization. Let Y,Z be two matrix-
valued semi-martingales (with dimensions such that Y ·Z makes sense). Define
d(Y Z) component-wise. Then

d(ZY ) = (◦dZ)Y + Z ◦ dY. (3.11)

This might look confusing at first glance, but it simply means

Zi
k(t)Y k

j (t) = Zi
k(0)Y k

j (0) +
∫ t

0

Y k
j ◦ dZi

k +
∫ t

0

Zi
k ◦ dY k

j .

3.6.3

Let M,N,O, P be semi-martingales and

dP = NdO.

Then it is well-known that 5

MdP = MNdO. (3.12)

A similar formula, less well-known, holds for Stratonovich differentials. Let

dP = N ◦ dO

then
M ◦ dP = MN ◦ dO. (3.13)

5 [KS], p145.
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Proof: The equals MdP + 1
2d < M,P >= M(NdO + 1

2d < N,O >) + 1
2d <

M,P > so the only thing to show is

Md < N,O > +d < M,P >= d < MN,O > .

Now d < M,P >= N < M,O > ( [KS], p143). On the other hand

d(MN) = MdN +NdM + d(bounded variation)

shows d < MN,O >= Md < N,O > +N < M,O > (since the bracket kills the
bounded variation parts) and we are done. 2

3.7 Some differential geometry jargon

3.7.1 Covariante derivatives

Given two smooth vector fields V , W (on Rm) and using (3.7)

(∂V )W = W j∂jV
i∂i,

where we follow the differential geometry usage to denote the basis by (∂1, . . . , ∂m).
This simply means that (∂V )W is a vector whose ith component is W j∂jV

i.
Also, we recognize directional derivatives (in direction W ) on the r.h.s. In Rie-
mannian geometry this is known as the covariante derivative 6 of V in direction
W . A standard notation is

∇WV = W j∂jV
i∂i.

∇ is called connection.

3.7.2 The Lie Bracket

Let V,W be as before. It is common in Differential Geometry that a vector
V (x) = (V i(x)) is identified with the first order differential operator

V (x) = V i(x)∂i |x .

Consider the ODEs on Rm given by

dX = V (X)dt.

It is known 7 that there exists (at least locally) an integral curve. More precisely,
for every x ∈ Rn there exists some open (time) interval Ix around 0 and a
smooth curve Xx : I(x) → Rm which satisfies the ODE and the initial condition
Xx(0) = x. By setting

Vt(x) = Xx(t)

we obtain a so-called local 1-parameter group. For t fixed Vt(·) is a diffeomor-
phism between appropriate open sets. [Warner] p37 proves all this, including
existence, on a general manifold.

6On a general Riemannian manifold there is an additional term due to curvature. Clearly,
curvature is zero on Rm.

7A simple consequence of the standard existence/uniqueness result for ODEs.
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Consider a second ODE, say dY = W (Y )dt with local one-parameter group
Wt(·). Then, for t small enough everything exists and a second order expansion
yields

W−t ◦ V−t ◦Wt ◦ Vt(x) ∼ t2.

Dividing the l.h.s. by t2 and letting t→ 0 one obtains a limit in Rm depending
on x, say [V,W ](x), the so-called Lie Bracket. We see that it is measures how
two flows lack to commute (infinitesimally).

Considering [V,W ] as first order operator one actually finds

[V,W ] = V ◦W −W ◦ V,

where the r.h.s. is to be understood as composition of differential operators.
Note that the r.h.s. is indeed a 1st order operator, since ∂ij = ∂ji (when
operating on smooth functions as here). We see that the Lie bracket measures
how much two flows lack to commute.
It is immediate to check that 8

[V,W ] = ∇V W −∇WV

= (∂W )V − (∂V )W

Generally speaking, whenever there are two vector fields “mixed together”
the Lie bracket is likely to appear.
Example: Let A be a vector field. Inspired by section 3.5 consider

dX = A(X)dt, X(0) = x

and
dY = ∂A(X)Y dt, Y (0) = I

Consider the matrix-ODE

dZ = −Z∂A(X)dt, Z(0) = I. (3.14)

By computing d(ZY ) = (−Z∂A(X)dt)Y + Z(∂A(X)Y dt = 0 we see that Y −1

exists for all times and Z = Y −1. Without special motivation, but for later use
we compute

d[ZtV (Xt)] = (dZt)V (Xt) + ZtdV (Xt)
=

[
− Z∂A(Xt)V (Xt) + Zt∂V (Xt)A(Xt)

]
dt

= Z
[
∂V (Xt)A(Xt)− ∂A(Xt)V (Xt)

]
dt

= Z[A, V ](Xt)dt (3.15)

3.8 Our SDEs in Stratonovich form

Recall

dX = Ak(X)dβk +B(X)dt
= Ak(X) ◦ dβk +A0(X)dt (3.16)

8In Riemannian geometry, the first equation is known as the torsion-free-property of a
Riemanniann connection ∇.

30



with X(0) = x. It is easy to check that

Ai
0 = Bi − 1

2
Aj

k∂jA
i
k, i = 1, . . . ,m.

In the notations introduced in the last 2 sections,

A0 = B − 1
2
(∂Ak)Ak

= B − 1
2
∇Ak

Ak.

With Y defined as as in section 3.5 we obtain

dY = ∂Ak(X)Y ◦ dβk + ∂A0(X)Y dt
Y (0) = I

and Z = Y −1 exists for all times and satisfies a generalized version of (3.14),

dZ = −Z∂Ak(X) ◦ dβk − Z∂A0(X)Zdt
Z(0) = I. (3.17)

The proof goes along (3.14) using (3.11): Since we already discussed the deter-
ministic version we restrict to the case where A0 ≡ 0. Then

d(ZY ) = (◦dZ)Y + Z ◦ dY
= −Z∂Ak(X)Y ◦ dβk + Z∂Ak(X)Y ◦ dβk

= 0

(References for this and the next section are [Bass] p199-201, [Nualart]
p109-p113 and [IW] p393.)

3.9 The Malliavin Covariance Matrix

Define the (m× d) matrix

σ = (A1| . . . ...|Ad).

Then a generalization of (3.5) holds (see [Nualart] p109 for details)

DrX(t) = Y (t)Y −1(r)σ(Xr)
= Y (t)Z(r)σ(Xr),

andDrX(t) appears at a (random) Rm×d-matrix as already remarked at the end
of section 3.4. Fix t and write X = X(t). From (3.1), the Malliavin covariance
matrix equals

Λ = Λt =
∫ 1

0

DrX(DrX)T dr

= Y (t)
[ ∫ t

0

Z(r)σ(Xr)σT (Xr)ZT (r)dr
]
Y T (t). (3.18)
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3.10 Absolute continuity under Hörmander’s con-
dition

We need a generalization of (3.15).

Lemma 11 Let V be a smooth vector field on Rm. Let X and Z be processes
given by the Stratonovich SDEs (3.16) and (3.17). Then

d(ZtV (Xt)) = Zt[Ak, V ](Xt) ◦ dβk + Zt[A0, V ](Xt)dt
= Zt[Ak, V ](Xt)dβk (3.19)

+Zt

(1
2
[Ak, [Ak, V ]] + [A0, V ]]

)
(Xt)dt. (3.20)

First observe that the second equality is a simply application of (3.9) and (3.19)
with V replaced by [Ak, V ]. To see the first equality one could just point at
(3.15) and argue with “1st order Stratonovich Calculus” . Here is a rigorous
Proof: Since the deterministic case was already considered in (3.15) we take
w.l.o.g A0 ≡ 0. Using (3.10) and (3.11) we find

d(ZV (X)) = (◦dZ)V (X) + Z ◦ dV
= (−Z∂AkV ) ◦ dβk + (Z∂V Ak) ◦ dβk

= Z
(
[Ak, V ] |X

)
◦ dβk

2

If you don’t like Stratonovich differentials, a (straight forward but longer) com-
putation via standard Ito calculus is given in [Nualart], p113.

Corollary 12 9 Let τ be a stopping time and y ∈ Rm such that

< ZtV (Xt), y >Rm≡ 0 for t ∈ [0, τ ].

Then for i = 0, 1, . . . , d

< Zt[Ai, V ](Xt), y >Rm≡ 0 for t ∈ [0, τ ].

Proof: Let’s prove

ZtV (Xt) ≡ 0 ⇒ Zt[Ai, V ](Xt) ≡ 0.

(The proof of the actual statement goes along the same lines.) First, the as-
sumption implies that

Zt[Ak, V ](Xt)dβk + Zt

(1
2
[Ak, [Ak, V ]] + [A0, V ]]

)
(Xt)dt ≡ 0 for t ∈ [0, τ ].

By uniqueness of semi-martingale decomposition into (local) martingale and
and bounded variation part we get (always for t ∈ [0, τ ])

Zt[Ak, V ](Xt) ≡ 0 for k = 1, . . . , d

and
Zt

(1
2
[Ak, [Ak, V ]] + [A0, V ]]

)
(Xt)dt ≡ 0

9Compare [Bell], 75
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By iterating this argument on the first relation

Zt[Ak, [Aj , V ]](Xt) ≡ 0 for k, j = 1, . . . , d

and together with the second relation we find

Zt[A0, V ](Xt) ≡ 0

and we are done. 2

In the following the range denotes the image Λ(Rm) ⊂ Rm of some (random,
time-dependent) m×m - matrix Λ.

Theorem 13 Recalling X(0) = x, for any t > 0 it holds that

span
{
A1 |x, . . . , Ad |x, [Aj , Ak] |x, [[Aj , Ak], Al] |x ; j, k, l = 0, . . . , d

}
⊂ range Λt a.s.

Proof: For all s ≤ t define

Rs = span {Z(r)Ai(Xr) : r ∈ [0, s], i = 1, . . . , d}

and
R = R(ω) =

⋂
s>0

Rs.

We claim that Rt = range Λt. From (3.18) it follows that

range Λt = range
∫ t

0

Z(r)σ(Xr)σT (Xr)ZT (r)ds (3.21)

and since, any r ≤ t fixed, span {Z(r)Ai : i = 1, . . . , d} = range Z(r)σ(Xr) ⊇
range Z(r)σ(Xr)σT (Xr)ZT (r) the inclusion Rt ⊇rangeΛt is clear. On the other
hand take some v ∈ Rm orthogonal to range Λt. Clearly

vT Λtv = 0.

Using (3.21) we actually have∫ t

0

|vTZsσ(Xs)|2Rm =
d∑

k=1

∫ t

0

|vTZrA(Xk)|2 = 0

Since every diffusion path Xk(ω) is continuous we see that the whole integrand
is continuous and we deduce that, for all k and r ≤ t,

v ⊥ ZrAk(Xr).

We showed ( Range Λt)⊥ ⊆ R⊥t and hence the claim is proved.

Now, by Blumenthal’s 0-1 law there exists a (deterministic) set R̃ such that
R̃ = R(ω) a.s. Suppose that y ∈ R̃⊥. Then a.s. there exists a stopping time τ
such that Rs = R̃ for s ∈ [0, τ ]. This means that for all i = 1, . . . , d and for all
s ∈ [0, τ ]

< ZsAi(Xs), y >Rm= 0.
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or simply y ⊥ ZsAi(Xs). Moreover, by iterating Corollary 12 we get

y ⊥ Zs[Aj , Ak], Zs[[Aj , Ak], Al], . . .

for all s ∈ [0, τ ]. Calling S the set appearing in the l.h.s. of (3.21) and using
the last result at s = 0 shows that y ∈ S⊥. So we showed S ⊆ R̃. On the other
hand, it is clear that a.s. R̃ ⊆ Rt = Range Λt as we saw earlier. The proof is
finished. 2

Combing this with Theorem (9) we conclude

Theorem 14 Let A0, . . . , Ad be smooth vector fields (satisfying certain bound-
edness conditions 10 ) on Rm which satisfy “Hörmander’s condition” (H1)

that is that 11

A1 |x, . . . , Ad |x, [Aj , Ak] |x, [[Aj , Ak], Al] |x . . . ; j, k, l = 0, . . . (3.22)

span the whole space Rm. Equivalently we can write

Lie {A1|x, . . . , Ad|x, [A1, A0]|x, . . . , [Ad, A0]|x} = Rm. (3.23)

Fix t > 0 and let Xt be the solution of the SDE

dXt =
d∑

k=1

Ak(Xt) ◦ dβt +A0(Xt)dt. X(0) = x.

Then the law of X(t), i.e. the measure P[X(t) ∈ dy], has a density w.r.t. to
Lebesgue-measure on Rm.

3.11 Smoothness under Hoermander’s condition

Under essentially the same hypothesis as in the last theorem 12 one actually has
a smooth density of X(t), i.e. ∈ C∞(Rm). The idea is clearly to use Theorem
10, but there is some work to do. We refer to [Norris] and [Nualart], [Bass]
and [Bell].

3.12 The generator

It is well-know that the generator of a (Markov) process given by the SDE

dX = Ak(X) ◦ dβk +A0(X)dt
= Ak(X)dβk +B(X)dt
= σdβ +B(X)dt. (3.24)

is the second order differential operator

L =
1
2
Eij∂ij +Bi∂i (3.25)

10Bounded and bounded derivatives will do - we have to guarantee existence and uniqueness
of X and Y as solution of the corresponding SDEs.

11Note that A0 |x alone is not contained in the following list while it does appear in all
brackets.

12One requires that the vector fields have bounded derivatives of all orders, since higher-
order analogues to Y come into play.
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with (m×m) matrix E = σσT (or Eij ≡
∑d

k=1A
i
kA

j
k. in coordinates). Identi-

fying a vector field, say V , with a first order differential operator, the expression
V 2 = V ◦V makes sense as a second order differential operator. In coordinates,

V i∂i(V j∂j) = V iV j∂ij + V j(∂jV
i)∂i.

Note the last term on the r.h.s is the vector V ∂V = ∇V V . Replacing V by Ak

and summing over all we see that

Eij∂ij =
d∑

k=1

A2
k −

∑
k

∇Ak
Ak.

We recall (see chapter 3.8) that A0 = B − 1
2

∑
k ∇Ak

Ak. Hence

L =
1
2

d∑
k=1

A2
k +A0. (3.26)

Besides giving another justification of the Stratonovich calculus, it is impor-
tant to notice that this “sum-of-square”-form is invariant under coordinate-
transformation, hence a suited operator for analysis on manifolds.

3.13

Example 1 (bad): Given two vector fields on R2 (in 1st order diff. operator
notation)

A1 = x1∂1 + ∂2, A2 = ∂2

set
L =

1
2
(A2

1 +A2
2).

Expanding,
(x1∂1 + ∂2)2 = x2

1∂11 + x1∂1 + 2x1∂12 + 2∂22,

yields

L =
1
2
Eij∂ij + bi∂i

with

E =
(
x2

1 x1

x1 2

)
and B = (x1, 0)T . Now E = σσT with

σ =
(
x1 0
1 1

)
and the associated diffusion process is

dXt = σ(Xt)dβt +B(Xt)dt
= A1(Xt)dβ1

t +A2(Xt)dβ2
t +B(Xt)dt.

We see that when we start from the x2-axis i.e. on {x1 = 0} there is no drift,
B ≡ 0, and both brownian motions push us around along direction x2, therefore
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no chance of ever leaving this axis again. Clearly, in such a situation, the law
of X(t) is singular with respect to Lebesgue-measure on R2.

To check Hörmander’s condition H1 compute

[A1, A2] = (x1∂1 + ∂2)∂2 − ∂2(x1∂1 + ∂2)
= 0

therefore the Lie Algebra generated by A1 and A2 simply equals the span
{A1, A2} and is not the entire of R2 when evaluated at the degenerated area
{x1 = 0} - exactly as expected.

Example 2 (good): Same setting but

A1 = x2∂1 + ∂2, A2 = ∂2.

Again,

L =
1
2
(V 2

1 + V 2
2 )

=
1
2
aij∂ij + bi∂i

Similarly we find

dXt = A1(Xt)dβ1
t +A2(Xt)dβ2

t +B(X)dt.

with drift B = (1, 0)T .

The situation looks similar. On the x1-axis where {x2 = 0} we have A1 = A2,
therefore diffusion happens in x2-direction only. However, when we start at
{x2 = 0} we are pushed in x2-direction and hence immediatly leave the degen-
erated area.

To check Hörmander’s condition H1 compute

[V1, V2] = (x2∂1 + ∂2)∂2 − ∂2(x1∂1 + ∂2)
= −∂1.

See that
span(V2, [V1, V2]) = R2

for all points and our Theorem 14 applies.
Example 3 (How many driving BM?):
Consider the m = 2-dimensioal process driven by one BM (d = 1),

dX1 = dβ,

dX2 = X1dt.

From this extract A1 = ∂1, drift A0 = x1∂2 and since [A1, A0] = ∂2 Hörmander’s
condition holds for all points on R2. Actually, it is an easy exercise to see that
(X1, X2) is a zero mean Gaussian process with covariance matrix(

t t2/2
t2/2 t3/3

)
.
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Hence we can write down explicitly a density with repsect to 2-dimensional
Lebesgue-measure. Generally, one BM together with the right drift is enough
for having a density.

Example 3 (Is Hörmander’s condition necessary?):
No! Take f : R → R smooth, bounded etc such that f (n)(0) = 0 for all

n ≥ 0 (in particular f(0) = 0) and look at

2L =
(
∂1

)2 +
(
f(x1)∂2

)2
.

as arising from m = d = 2, A1 = ∂1, A2 = f(x1)∂2. Check that A2, [A1, A2], ...
are all 0 when evaluated at x1 = 0 (simply because the Lie-brackets make all
derivatives of f appear.) Hence Hörmander’s condition is not satisfied when
starting from the degenerated region {x1 = 0}. On the other hand, due to
A1 we will immediatly leave the degenerate region and hence there is a density
(some argument as in example 2).
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Chapter 4

Hypelliptic PDEs

4.1

Let V0, . . . , Vd be smooth vector fields on some open U ⊂ Rn, let c be a smooth
function on U . Define the second order differential operator (where c operates
by multiplication)

G :=
d∑

k=1

V 2
k + V0 + c.

Let f, g ∈ D′(U), assume
Gf = g

in the distributional sense, which means (by definition)

< f,G∗ϕ >=< g, ϕ >

for all test-functions ϕ ∈ D(U). We call the operator G hypoelliptic if, for all
open V ⊂ U ,

g |V ∈ C∞(V ) ⇒ f |V ∈ C∞(V ).

Hörmander’s Theorem, as proved in [Kohn], states:

Theorem 15 Assume

Lie [V0|y, . . . , Vd|y] = Rn

for all y ∈ U . Then the operator G as given above is hypoelliptic.

Remark: An example the Hörmander’s Theorem is a sufficient condition
for hypoellipticity but not a necessary one goes along Example 4 from the last
chapter.

4.2

Take X as in section (3.8), take U = (0,∞) × Rm and let ϕ ∈ D(U). For T
large enough

E[ϕ(T,XT )] = E[ϕ(0, X0)] = 0,
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hence, by Ito’s formula,

0 = E
∫ T

0

(∂t+ L)ϕ(t,Xt)dt.

By Fubini and T →∞ this implies

0 =
∫ ∞

0

∫
Rm

(∂t+ L)ϕ(t, y)pt(dy)dt

=
∫ ∞

0

∫
Rm

ψ(t, y)pt(dy)dt

for ψ ∈ D(U) as defined through the last equation. This also reads

0 =< Φ, (∂t+ L)ϕ >=< Φ, ψ >

for some distribution Φ ∈ D′(U). 1 In distributional sense this writes

(∂t + L)∗Φ = (−∂t + L∗)Φ = 0, (4.1)

saying that Φ satisfies the forward Fokker-Planck equation. If we can guarantee
that −∂t +L∗ is hypoelliptic then, by Hörmander’s theorem there exists p(t, y)
smooth in both variables s.t.

< Φ, ϕ > =
∫

(0,∞)×Rm

p(t, y)ϕ(t, y)dtdy

=
∫

(0,∞)×Rm

ϕ(t, y)pt(dy)dt.

This implies
pt(dy) = p(t, y)dy

for p(t, y) smooth on (0,∞)× Rm. 2

4.3

We need sufficient conditions to guarantee the hypoellipticity of G = −∂t + L∗
as operator on U = (0,∞)× Rm ⊂ Rn with n = m+ 1.

Lemma 16 Given a first order differential operator V = vi∂i its adjoint is
given by

V ∗ = −(V + cV )

where cV = ∂iv
i is a scalar-field acting by multiplication.

Proof: Easy. 2

As corollary,

(V 2)∗ = (V ∗)2 = (cV + V )2 = V 2 + 2cV V + c

1The distribution Φ is also represented by the (finite-on-compacts-) measure given by the
semi-direct product of the kernel p(s, dy) and Lebesgue-measure ds = dλ(s).

2Note that the smoothness conclusion via Malliavin calculus doesn’t say anything about
smoothness in t, i.e. our conclusion is stronger.
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for some scalar-field c. For L as given in (3.26) this implies

L∗ =
1
2

d∑
k=1

A2
k − (A0 − cAk

Ak) + c

for some (different) scalar-field c. Defining

Ã0 = A0 − cAk
Ak (4.2)

this reads

L∗ =
1
2

d∑
k=1

A2
k − Ã0 + c.

We can trivially extend vector fields on Rm to vector fields on U = (0,∞)×Rm

(“time-independent vector fields”). From the differential-operator point of view
it just means that we have that we are acting only on the space-variables and
not in t. Then

G =
1
2

d∑
k=1

A2
k − (Ã0 + ∂t) + c

is an operator on U , in Hörmander form as needed. Define the vector Â = Ã0 +
∂t ∈ Rn. 3 Hence Hörmander’s (sufficient) condition for G being hypoellitpic
reads

Lie {A1|y, . . . , Ad|y, Â|y} = Rn (4.3)

for all y ∈ U . Note that for k = 1, . . . , d

[Ak, ∂t] = Ai
k∂i∂t − ∂tA

i
k∂i = 0

since the Ai
k are functions in space only. It follows that 4

[Ak, Â] = [Ak, Ã0],

and similarly no higher bracket will yield any component in t-direction. From
this it follows that (4.3) is equivalent to

Lie {A1|y, . . . , Ad|y, [A1, Ã0]|y, . . . , [Ad, Ã0]|y} = Rm (4.4)

for all y ∈ Rm. Using (4.2) we can replace Ã0 in condition (4.4) by A0 without
changing the spanned Lie-algebra. We summarize

Theorem 17 Assume that Hörmander’s condition (H2) holds:

Lie {A1|y, . . . , Ad|y, [A1, A0]|y, . . . , [Ad, A0]|y} = Rm.) (4.5)

for all y ∈ Rm. Then the law of the process Xt has a density p(t, y) which is
smooth on (0,∞)× Rm.

3As vector, think of having a 1 in the 0th position (time), then use the coordinates from
Ã0 to fill up positions 1 to m.

4We abuse notation: the Bracket on the l.h.s. is taken in Rn resulting in a vector with
no component in t-direction which, therefore, is identified with the Rm-vector an the r.h.s.,
result of the bracket-operation in Rm.
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Remarks: - Compare conditions H1 and H2, see (3.23) and (4.5). The only
difference is that H2 is required for all points while H1 only needs to hold for
x = X(0). (Hence H2 is a stronger condition.)
- Using H1 (ie Malliavin’s approach) we don’t get (a priori) information about
smoothness in t.
- Neither H1 nor H2 allow A0 (alone!) to help out with the span. The intuitive
meaning is clear: A0 alone represents the drift hence doesn’t cause any diffusion
which is the origin for a density of the process Xt.
- We identified the distribution Φ as uniquely associated to the (smooth) func-
tion p(t, y) = p(t, y;x). Hence from (4.1)

∂tp = L∗p ( L∗ acts on y )

and p(0, dy) is the Dirac-measure at x. All that is usually summarized by saying
that p is a fundamental solution of the above parabolic PDE and our theorem
gives smoothness-results for it.
- Let σ = (A1| . . . |Ad) and assume that E = σσT is uniformly elliptic. We claim
that in this case the vectors {A1, . . . , Ad} already span Rm (at all points), so
that Hörmander’s condition is always satisfied.
Proof: Assume v ∈ span {A1, . . . , Ad}⊥. Then, for all k,

0 =< v,Ak >
2= |viAi

k|2 = viAi
kA

j
kv

j = vTEv.

Since E is symmetric, positive definite we see that v = 0. 2
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