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Models of adaptive evolution often have the property that change is guided by, but not fully determined by fit-
ness. In a given situation many different mutant phenotypes may have a fitness advantage over the residents, and 
are thus potential invaders, implying that the mutational process plays an important role in deciding which par-
ticular invasion will take place. By introducing an imaginary ‘Darwinian demon’ in charge of mutations, one can 
examine the maximal role that mutation could play in determining evolutionary change. Taking into account plei-
otropic mutations and shifting fitness landscapes, it seems likely that a Darwinian demon could exert considerable 
influence and most likely would be able to produce any viable form of organism. This kind of perspective can be 
helpful in clarifying concepts of evolutionary stability.  
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1. Introduction 
 

The idea of spontaneous production of new herita-
ble variants which may differ in reproductive suc-
cess is fundamental in Darwin's theory of natural 
selection. Mutations are often thought of as ran-
dom, primarily in the general sense of being inde-
pendent of whatever modification of function they 
may cause, but also in the particular sense of fol-
lowing some distribution. At the same time, there 
is an emphasis on selection as the process respon-
sible for the appearance of function, so that muta-
tion plays the role of providing raw material for 
selection to act on. It is common that explanations 
of evolutionary change are formulated only in 
terms of selection and that mutation is treated as a 
relatively uninteresting background process. 

New variants arising independently of their 
function is a feature which distinguishes Dar- 
winism from Lamarckism and which has long been 
accepted as empirically valid. Even so it is still of 

interest to examine, as a matter of principle, what 
the relative roles of mutation and selection can be 
in determining evolutionary change. Such an ex-
amination can increase our awareness of the role 
the mutational process might play in directing evo-
lution. It could also help sharpen our concepts of 
evolutionary stability, which traditionally have 
been formulated in terms of selection only. In gen-
eral, the evolutionary stability of some trait combi-
nation may depend on the mutational process. 

To gain an understanding of the potential role of 
mutations, it can be illustrative to think in terms of 
the ability of a ‘Darwinian demon’ to influence 
evolutionary change. A Darwinian demon is a hy-
pothetical being with power to decide exactly 
which mutations appear, but without any influence 
over the ensuing natural selection. The name is 
coined in analogy with the famous Maxwell’s de-
mon, whose activities of selectively letting fast and 
slow gas molecules pass between two compart-
ments were aimed at violating the second law of 
thermodynamics (Maxwell, 1908). A Darwinian 
demon does not violate any law of nature, but 
shares with Maxwell’s demon an uncanny ability 
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to be informed about the world together with an 
inclination towards mischief. One can then ask 
how much of an influence a Darwinian demon 
could have over the outcome of evolutionary 
change. Is it perhaps the case that the demon could, 
in a somewhat roundabout fashion, produce essen-
tially any forms of organisms in whatever combi-
nation, or would the influence of the demon be 
restricted to relatively minor modifications? My 
conclusion here will be that the former case, with 
great influence for the demon, is closer to the truth. 

A single mutation often affects several traits of 
an organism. This phenomenon is called pleiotropy 
and implies that changes in several traits are se-
lected as a unit. A modification of one trait, which 
might be disfavoured by selection on its own, 
could then be pulled along by a favoured modifica-
tion of another trait. Pleiotropy greatly increases 
the possibilities for a Darwinian demon. Another 
factor working in the demon's favour will be fit-
ness interactions among traits. Fitness interactions 
are present when the strength and possibly also the 
direction of selection acting on variation in one 
trait depend on other traits in a population. The 
importance of fitness interactions is that they cor-
respond to a shifting fitness landscape. 

In the following, I will bring up a few points 
about the importance of pleiotropy and fitness 
interactions for evolutionary change. The model-
ling framework I will use is that of mutation-
limited adaptive dynamics in large populations 
(Metz et al., 1996; Geritz et al., 1998), where a 
succession of mutations either fail to invade or go 
to fixation, or possibly produce additional poly-
morphism. Evolution is then a sequence of fixa-
tions, each happening by natural selection. This 
corresponds to a long-term perspective on evolu-
tionary change.  

The general idea that an analysis of fitness dif-
ferences is not enough to understand evolutionary 
change and stability is not new to my treatment 
here, but has been explored a number of times (e.g. 
Lande, 1981; Friedman, 1991; Pomiankowski et 
al., 1991; Abrams et al., 1993; Motro, 1994; Mar-
row et al., 1996; Eshel et al., 1997), including the 
idea that mutation can have a qualitative influence 
on the outcome of evolution (Matessi and Di 
Pasquale, 1996). Compared to earlier work, my 
emphasis will be on considering all changes that 
are consistent with natural selection, corresponding 

to the concept of a Darwinian demon, rather than 
on the question of which changes are expected 
given some mutational process. Thus, my intention 
is not to study which changes are most likely to 
happen, but rather to study which changes are pos-
sible.  

 
 

2. Gradual change and trait space  
dimensionality 

 
Many mutations that are fixed during evolution 
have small effects whereas others have larger ef-
fects. The importance of differently sized muta-
tions for evolutionary change has been debated 
(e.g. Orr, 1998), but here I will limit the presenta-
tion to small effects. Allowing also larger effects 
would of course increase the possibilities for a 
Darwinian demon. Note first that in a one-
dimensional trait space, the direction of gradual 
change is entirely determined by selection. If x is a 
phenotype that is not a local fitness extremum and 

x∆  is a small increment, then either the phenotype 
x x+ ∆  or the phenotype x x− ∆ , but not both of 
them, will be able to replace x. Thus, mutations 
cannot influence the direction of gradual change in 
a one-dimensional trait space; they can only influ-
ence the rate at which changes occur. The situation 
is drastically different when there are two or more 
traits, corresponding to a multidimensional space. 
Looking at a fitness landscape in the vicinity of 
some phenotype vector x, any small increment 
vector x∆  that points in an uphill direction is a 
modification that would be favoured by selection. 
This uphill requirement becomes less of a con-
straint on change the higher the number of dimen-
sions of the space. If we think of the trait combina-
tion that corresponds to the steepest slope of the 
local landscape as an abstract trait, only this trait is 
selected for and the rest will change because of 
pleiotropy. For high numbers of traits, selection 
thus appears rather weak in directing evolution.  

When moving uphill in a fitness landscape of 
fixed shape, an evolutionary sequence would even-
tually come to a fitness peak from which no further 
change is possible. Although the peak could be 
reached by a multitude of different paths that are 
uphill every step of the way, the long-term out-
come is not influenced by pleiotropy, apart from a 
possible choice between different peaks to climb. 
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Thus, it is not so much the local structure of a fit-
ness landscape that constrains evolution but rather 
the global properties. A fixed landscape contains 
many regions whose borders can only be crossed 
by adaptive evolution in the inward direction; all 
regions defined by fitness being above a given 
level are of this kind. Some shifting landscapes can 
in principle also have this property, but it seems 
reasonable to doubt that most would have it. On 
the other hand, if there are few or no regions in the 
trait space from which an adaptive evolutionary 
sequence cannot escape, adaptive change can range 
widely over the space.  

 
 
2.1. Invasion fitness and the selection gradient 
 

To shed some light on the properties of fitness 
landscapes that determine the possible range of 
gradual adaptive change, we can look at the case of 
a single large monomorphic population with multi-
dimensional trait space. For a trait vector x of the 
resident population, with component traits ix , the 
invasion fitness of a mutant x′  is given by 

( , )F x x′ . Invasion fitness plays the role of deter-
mining with what probability a mutant can invade 
and corresponds to the mean rate of change of the 
logarithm of the size of the mutant gene subpopu-
lation (Metz et al., 1992; Rand et al., 1994; Ferri-
ere and Gatto, 1995; Dieckmann and Law, 1996). 
When the mutant is the same as the resident, the 
rate of change is zero, so that ( , ) 0F x x =  must 
hold. A mutant with ( , ) 0F x x′ <  has no chance of 
invading whereas one with ( , ) 0F x x′ >  has a 
positive probability of invasion. If in addition 

( , ) 0F x x′ < , the mutant can drive the previous 
resident to extinction, so that substitution may take 
place. To study gradual change one can introduce 
the selection gradient F′∇ , whose ith compo- 
nent is  

 
( , )

( , )i
i x x

F x x
F x x

x ′=

′∂′∇ =
′∂

. (1) 

The selection gradient is sometimes called selec-
tion derivative (Marrow et al., 1992) or selective 
pressure (Rand et al., 1994) and indicates the direc-
tion of steepest slope of the local fitness landscape. 
A point in the trait space where the selection gradi-
ent is zero is called singular. For a non-singular 
point x and a mutant x′  close to x, Taylor expan-

sion of ( , )F x x′  shows that x′  has a chance to 
invade when the first order increment in fitness 

 ( )( , )i i iF x x x x′ ′∇ −∑  (2) 

is positive, whereas the mutant cannot invade when 
the increment is negative.  

For a fitness landscape of fixed shape the selec-
tion gradient becomes an ordinary gradient of 
some function defined on the trait space. For in-
stance, with invasion fitness of the form 

( , ) ( ) ( )F x x R x R x′ ′= −  we have ( ) =∇′ xxF ,  

( )xR∇ , where ( ) ( )i iR x R x x∇ = ∂ ∂ . In this case 

evolutionary change can only be towards increas-
ing ( )R x . More generally, if the selection gradient 

is proportional to the gradient of a function ( )R x , 

so that ( , ) ( ) ( )F x x p x R x′∇ = ∇  for some positive 

( )p x , gradual change must increase ( )R x . On the 
other hand, it is hard to see what could limit the 
range of possible adaptive change when the selec-
tion gradient cannot be expressed as proportional 
to some ( )R x∇ . Fitness interactions, where the 
fitness increments associated with variation in a 
mutant trait ix′  depend on a resident trait jx , can 

make it impossible to express F′∇  in such a form.  
 

2.2. Examples of demonic evolution 
 

To give a perspective on the concept of evolution-
ary stability for matrix games (Maynard Smith, 
1982), let 1 2 3( , , )x x x x=  be a mixed strategy for 

the Rock–Scissors–Paper game in Table 1. There 
must be at least three pure strategies in a matrix 
game for a genuinely multidimensional trait space, 
since the components of x sum to one. For the RSP 
game, it is easy to show that the strategy 

1 1 1
3 3 3( , , )x∗ =  is an ESS, provided that the parame-

ter a is positive. For 0a = , which corresponds to 

the ‘original’ game, x∗  is only neutrally stable 
(Maynard Smith, 1982) and for negative a the 
point is unstable. From the payoff function  

 ( , ) i ij jW x x x u x′ ′=∑ ,  

where the iju  are the payoffs in Table 1, we can 
construct an invasion fitness of the form  

 ( )( , ) log ( , ) ( , )F x x W x x W x x′ ′= .  
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The evolutionary sequences in Figure 1 (where 
2a = ) illustrate that there is convergence to the 

ESS both when moving along the selection gradi-
ent and when mutational increments are randomly 
directed. Nevertheless, a Darwinian demon could 
easily arrange an adaptive escape, starting from 
nearby the ESS, for instance along the bold curve 
in Figure 1.  

The possibility of an adaptive escape depends 
on the form of the selection gradient. For a matrix 
game with three pure strategies, one finds that the 
selection gradient is proportional to the gradient of 
some function ( )R x  when the payoffs satisfy  

 12 23 31 13 21 32u u u u u u+ + = + + ,  

which becomes 2a = −  for the payoffs in Table 1. 
The selection gradient is then proportional to the 

gradient of 2 2 2
1 2 3( )R x x x x= + + . In this particular 

case of 2a = − , all gradual change must increase 

( )R x  and thus be directed away from x∗ . For all 
other values of a, the Jacobian of the selection 

gradient will be non-symmetric at x∗  and one can 
show that there will be adaptive trajectories both 

leading away from and leading towards x∗ .  
The phenomenon of adaptive escape from the 

neighbourhood of suggested stable points is not 
limited to the special fitness landscapes of matrix 
games. In a stylised example of life-history evolu-
tion (Fig. 2), the productive trait 1x  could be the 
size of the crown of a tree and the competitive trait 

2x  the height of the trunk. With ( ) =′ xxW ,  

( ) ( )xxQxP ,′′ , where ( )P x′  is survival from ger-

TABLE 1 

Payoff matrix for a generalised Rock–Scissors–Paper game 

 R S P 

R 1 2+a 0 

S 0 1 2+a 

P 2+a 0 1 

 

R S

P

FIG. 1. Trajectories of gradual adaptive change for a Rock–
Scissors–Paper game. For the payoff parameters used (Table 1 

with a = 2) the mixed strategy phenotype x* 
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shown by the filled dot, is an ESS. The trajectories consist of 
sequences of small but finite increments, each corresponding 
to the fixation of a mutant, and the arrows show the direction 
of change. For the dashed curve, which converges to the ESS, 
each increment is in the direction of the selection gradient. 
The thin solid curve also converges to the ESS and is the 
result of generating randomly directed mutational increments. 
The thick solid curve illustrates an adaptive escape from the 
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FIG. 2. Trajectories of adaptive change for two life-history 
traits: x1 is an investment in productive capacity and x2 an 
investment in competitive ability (see text). The point x* = 
(1,1), shown by the filled dot, is uninvadable and strongly 
convergence stable. The trajectories consist of sequences of 
small increments, corresponding to the fixation of mutants, 
and the arrows show the direction of change. The dashed 
curve follows the selection gradient and the thin solid curve is 
produced from randomly directed mutational increments; both 
these curves converge to x*. The thick solid curve is an adap-
tive escape from the neighbourhood of x* and the dash-dotted 
circuit illustrates that, for arbitrary points A and B, there are 

adaptive paths leading from A to B and back 
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minating seed to adult plant and ( , )Q x x′  the seed 

production, the fitness ( ) =′ xxF ,  

( ) ( )( )xxWxxW ,/,log ′=  corresponds to discrete 
generations and regulation of the size of the popu-
lation of germinating seeds. Using  

21
1 22 1 2 2( 1) (1 )( )    and   ( , )x x x x xP x e Q x x e
′ ′− + − ′ ′+ −′ ′= = ,  

a mutant’s seed production depends on its competi-
tive investment in relation to the residents. We 
then have the fitness gradient =∇′F , 
( )221 1,2 xxx −−−  which is zero at (1,1)x∗ = . 
This singular point is clearly uninvadable and also 
possesses some convergence stability. From the 
criterion of negative definiteness of the Jacobian 
matrix of the selection gradient, x∗  is strongly 
convergence stable (Leimar, 2002), which means 
that it will attract solutions of the so-called canoni-
cal equation (Dieckmann and Law, 1996). Also, 
performing two separate one-dimensional analyses, 
one finds that 1 22x x= −  is a global fitness maxi-
mum for 1x  with 2x  held fixed and that  2 1x =   is  
a global fitness maximum for 2x  with 1x  held 
fixed. Although there seems to be little reason to 
worry about the stability of x∗ , a Darwinian de-
mon could in fact produce an adaptive escape from 
the neighbourhood of x∗  (Fig. 2; see also appen-
dix). The reason is that the Jacobian matrix of the 
selection gradient is non-symmetric at x∗ , which 
means that the selection gradient cannot be ap-
proximated as proportional to the gradient of some 

( )R x  near x∗ .  
 
 

2.3. Invariance under adaptive change 
 

It can be useful to think in terms of subsets of the 
trait space that are invariant under adaptive change, 
in the sense that any adaptive sequence starting in 
such a subset cannot leave it. For the life-history 
example, the point x∗  is invariant under adaptive 
change, but there is only one other such set, 
namely the entire trait space. Barring extinction of 
the population, there are adaptive trajectories lead-
ing from any point except x∗  to any other point in 
the trait space (see Fig. 2). This situation may be 
fairly typical, although it is not universal. One 
important exception would be trait spaces with 
boundaries forming corners, as in Figure 1. If the 

selection gradient points in the general direction of 
a corner, there may be no adaptive trajectories 
leading away from it. For the RSP game, this hap-
pens for 2a ≤ − .  
 
 

3. Absolute convergence stability 
 

An absolutely convergence stable point is a local 
attractor for all gradual adaptive change. For fit-
ness landscapes of fixed shape, the local fitness 
maxima are absolutely convergence stable. For 
shifting fitness landscapes, we wish to find condi-
tions on the fitness function ensuring that any 
gradualistic adaptive sequence starting near to the 
point will converge to it. From our previous rea-
soning, it is clear that if the selection gradient can 
be expressed as  

 ( , ) ( ) ( )F x x p x R x′∇ = ∇ ,  (3) 

where p(x) is positive and R(x) has a local maxi-
mum at x*, then this point is absolutely conver-
gence stable. To search for a condition expressed 
in fitness derivatives, we can look at the Taylor 
expansion of the selection gradient around x∗ . We 
can write the expansion as  

 ( , ) ( )i ij j jF x x J x x∗′∇ ≈ −∑ ,  (4) 

where the ijJ  are the elements of the so-called 

Jacobian matrix. For selection gradients of the 

form (3), it is easy to see that the Jacobian at x∗  
will be a symmetric matrix. More generally, if the 
Jacobian is symmetric and negative definite we can 
use the quadratic form  

 ( )( )ij i i j jJ x x x x∗ ∗− −∑  

as R(x), so that (3) holds to first order. On the other 
hand, a singular point for which the Jacobian of the 
selection gradient is non-symmetric cannot be ab-
solutely convergence stable, which follows from a 
simple matrix algebra result (see appendix).  

 
 

3.1. Stability criterion 
 

We can then formulate a stability criterion: For the 
singular point x∗  to be absolutely convergence 
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stable, it is necessary that the Jacobian of the selec-
tion gradient at x∗  is symmetric and sufficient that 
it is symmetric and negative definite. Note that the 
argument for the sufficient condition is that there is 
an ( )R x  such that (3) holds to first order near x∗ , 
which means that the criterion is approximate in 
this sense.  

For one-dimensional trait spaces, absolute con-
vergence stability is the same as traditional con-
vergence stability (Eshel and Motro, 1981; Eshel, 
1983; Taylor, 1989; Christiansen, 1991). However, 
with two or more traits the Jacobian will not be 
symmetric unless fitness interactions are absent or 
have a very special form. Thus, absolute conver-
gence stability is a very strict requirement and is of 
limited practical use for adaptive dynamics model-
ling. The main importance of the concept lies in 
clarifying how we would need to define conver-
gence stability if we wanted to avoid assumptions 
about the mutational process.  

Absolute convergence stability does not guaran-
tee complete evolutionary stability. Apart from the 
possibility of invasion by large effect mutants, 
there can also be evolutionary branching at such a 
point (Christiansen, 1991; Geritz et al., 1998). 
Since one-dimensional convergence stability im-
plies absolute convergence stability, any branching 
in a one-dimensional trait space is an example of 
this.  

 
3.2. Product rules 

 
There are special classes of simple fitness func-
tions that are used in modelling and for which ab-
solute convergence stability is a natural stability 
criterion. The most well-known such case is the 
application of product rules in sex allocation the-
ory. This approach was initiated by MacArthur 
(1965) and has since been widely used (e.g. Char-
nov, 1982; Pen and Weissing, 2002). With an ex-
pression for reproductive success of a mutant x′  in 
the Shaw and Mohler (1953) form  

 
( ) ( )

( , )
( ) ( )

m x f x
W x x

m x f x

′ ′′ ∝ + , 

where m and f are reproductive success through 
male and female function, the fitness gradient can 
be written in the form (3) using the product 

( ) ( )m x f x , or the logarithm of this product, as 
( )R x . The product rule is to find stable sex alloca-

tion equilibria as maxima of m(x)f(x) and these 
points will then be absolutely convergence stable. 
In general, with an expression for reproductive 
success of the form  

 
( )

( , )
( )

k

k k

w x
W x x

w x

′′ ∝∑  

there is a product rule, which will locate absolutely 
convergence stable equilibria. Such expressions for 
fitness can be useful when a modeller wants to 
simplify a phenomenon as much as possible.  

 
 

4. Discussion 
 
The combination of pleiotropic mutations and 

shifting fitness landscapes can evidently have a 
strong impact on the range of possible adaptive 
change. For the technical issue of which criteria for 
evolutionary stability will be most useful, it is clear 
that concepts of convergence stability need to in-
volve genetic correlations in some way. Absolute 
convergence stability is extreme in this regard, 
allowing for any kind of changing pattern of corre-
lations. A probably more useful concept is strong 
convergence stability (Leimar, 2002), which en-
tails convergence for any constant or slowly vary-
ing correlation structure. A sufficient condition for 
strong convergence stability is that the symmetric 
part of the Jacobian matrix of the selection gradient 
is negative definite, but the Jacobian matrix need 
not be symmetric (Leimar, 2002). This condition is 
a summary and generalisation of previous work on 
stability criteria (e.g. Lessard, 1990; Abrams et al., 
1993; Marrow et al., 1996; Matessi and Di 
Pasquale, 1996). Depending on the kind of adap-
tive dynamics one studies, there are of course a 
great number of stability issues and dynamical 
phenomena to consider, and this field is now quite 
advanced (Hofbauer and Sigmund, 1998).  

In thinking about evolutionary stability, the 
concept of uninvadability has traditionally played a 
greater role than convergence stability. For in-
stance, the arguments used by Maynard Smith to 
motivate the definition of an ESS for a matrix 
game were formulated in terms of uninvadability 
(Maynard Smith, 1982), although such an ESS also 
possesses convergence stability (it is in fact 
strongly convergence stable; cf. Fig. 1). The so-
called streetcar theory of evolution (Hammerstein 
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and Selten, 1994; Hammerstein, 1996; Marrow et 
al., 1996) also focuses on uninvadability. A main 
aim of this theory is to show that purely pheno-
typic, fitness-based criteria can be used to deter-
mine ‘final stops’ of an evolutionary process, valid 
for quite general underlying genetic mechanisms. 
While it is certainly correct that uninvadable points 
in trait space are invariant under adaptive change, a 
possible problem with this perspective is that un-
avoidable perturbations would prevent populations 
from staying precisely at any particular point in 
trait space. As long as the trait space is fairly fine 
grained it seems that convergence stability must be 
an essential component of evolutionary stability.  

Concerning the possible influence of a Darwin-
ian demon, the conclusion seems to be that such a 
creature could transform the earth’s biota at will, 
bringing about an arbitrary collection of strange 
organisms. The mutations used by the demon for 
this purpose would of course not be random, but 
they need not be directed in the sense of having a 
non-zero average effect. By employing pairs of 
mutational increments, of equal magnitude but in 
opposite directions, only one of which would have 
a chance to invade, a demon could work without 
exerting an average mutation pressure. This dem-
onstrates that the important effect of mutations in 
directing evolution derive from genetic correla-
tions between traits.  

The image of a Darwinian demon controlling 
the long-term outcome of evolution shows that it is 
logically possible to relegate natural selection to 
the position of a relatively uninteresting back-
ground process. For real evolution it would cer-
tainly be wrong to do so, but it is worthwhile to 
realise that the role played by mutations in deter-
mining large scale evolutionary change can in 
principle be anything from very small to very big.  

 
 

APPENDIX 
 

Use the terminology that a non-symmetric matrix 
A  is positive definite if its symmetric part 
1
2 ( )T+A A  is positive definite. We have the fol-

lowing result: For any non-symmetric n n×  matrix 
J  there is a positive definite n n×  matrix A  such 
that at least one eigenvalue of AJ  has positive 
real part.  

The idea for the proof is to find an A  which 
makes the trace of AJ  positive. Since the trace of 
a matrix equals the sum of its eigenvalues, a posi-
tive trace means that some eigenvalue must have 
positive real part. Since J  is not symmetric, there 
must be some k and l with k l≠  such that 

kl lkJ J< . Consider A  of the form = +A I G , 

where I  is the identity matrix and all elements of 
G  are zero except kl lkG G g= − = . Clearly, A  is 

positive definite. One readily verifies that the trace 
of AJ  becomes positive if g is chosen large 
enough.  

To come to the issue of convergence stability, 
note from (2) that the mutational increments 

x x x′∆ = −  constructed as  

 i ij jx A Fε ′∆ = ∇∑  

have a positive probability of invasion when A  is 
positive definite and ε > 0 is small. Close to a sin-
gular point, where the approximation (4) is valid, 
we then have the dynamics  

 ( )i ij jk k kx A J x xε ∗∆ = −∑ . 

For small enough ε , the stability of x∗  for this 
dynamics is determined by the signs of the real 
parts of the eigenvalues of AJ . If J  is non-
symmetric, the result above thus shows that we can 
choose an A  that makes x∗  unstable.  

The ‘demonic trajectories’ in the examples (Figs 
1 and 2) were in fact constructed using this kind of 
matrix A . For instance, to construct the adaptive 
escape (bold curve) in Figure 2, the positive defi-
nite matrix 

 
1 4

4 1

 
=  − 

A  

was used to generate mutational increments.  
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