
DIRAC: A Software-based Wireless Router System

Petros Zerfos, Gary Zhong, Jerry Cheng, Haiyun Luo, Songwu Lu, Jefferey Jia-Ru Li
UCLA Computer Science, Los Angeles, CA 90095.

Email: {pzerfos, gzhong, chengje, hluo, slu}@cs.ucla.edu, juru@hiq.com

ABSTRACT
Routers are expected to play an important role in the IP-
based wireless data network. Although a substantial num-
ber of techniques have been proposed to improve wireless
network performance under dynamic wireless channel condi-
tions and host mobility, a system support framework is still
missing. In this paper, we describe DIRAC, a software-based
router system that is designed for wireless networks to facil-
itate the implementation and evaluation of various channel-
adaptive and mobility-aware protocols. DIRAC adopts a
distributed architecture that is composed of two parts: a
Router Core (RC) shared by the wireless subnets, and a
Router Agent (RA) at each access point/base station. RAs
expose wireless link-layer information to the RC and enforce
the control commands issued by the RC. This approach al-
lows the router to make adaptive decisions based on link-
layer information feedback. It also permits the router to
enforce its policies (e.g., policing) more effectively through
underlying link-layer mechanisms. As showcases, we imple-
ment under DIRAC the prototypes of three wireless net-
work services: link-layer assisted fast handover, channel-
adaptive scheduling, and link-layer enforced policing. Our
implementation and experiments show that our distributed
wireless router provides a flexible framework, which enables
advanced network-layer wireless services that are adaptive
to channel conditions and host mobility.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Design, Performance, Experimentation

Keywords
Distributed Router Architecture, Wireless Network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’03,September 14–19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-753-2/03/0009 ...$5.00.

1. INTRODUCTION
Routers have been a key architectural component in the

IP-based wired Internet. As wireless data services become
increasingly popular and wireless networks move toward an
IP-based paradigm, routers are expected to play an equally
important role in the emerging wireless Internet era.

The main functionality of a router is data-plane packet
forwarding and control-plane routing and management [1,
2]. The evolution of the Internet has also made a case for
new services such as packet filtering, intrusion detection,
level-n switching, and packet tagging [2]. Despite all such
advances, current router systems do not work well in wireless
networks because they do not consider the issues of wireless
link and host mobility.

In recent years, a large number of protocols [3, 4, 5, 6, 7]
have been proposed to achieve the above goal. At the core
of such protocols, they use link-layer information feedback,
e.g., channel errors and link handoff events, to make channel-
adaptive and mobility-aware decisions. These solutions have
been carefully analyzed and evaluated through simulations.
However, they have not been able to materialize in practice.
The key missing piece is a system framework that facilitates
the real implementation, experimental evaluation and field
deployment of such new solutions. Developing a router sys-
tem that provides such a system framework is the subject
of this work.

This paper describes the design and implementation of
DIRAC1, a software-based wireless router system. DIRAC
currently works with IEEE 802.11b, but its design princi-
ples apply to other wireless technologies such as 802.11a,
802.11g, and wide-area 3G and 4G. The key technical inno-
vation of DIRAC is a distributed router architecture (shown
in Figure 1), consisting of a router core (RC), and several
router agents (RAs), each of which runs on an 802.11 ac-
cess point (AP). The RC is shared by the wireless subnets
and carries the main functionality of a router. It interacts
with each RA through a lightweight communication proto-
col. Each RA collects and reports link-layer information
back to the RC, and accepts and enforces router policies
such as policing via link-layer mechanisms (e.g., Authenti-
cation/Reauthentication of 802.11 standard). The resulting
benefits of such a design are twofold: (1) It enables the
router to make informed, adaptive packet forwarding deci-
sions on the data plane and improved mobility management
on the control plane, based on link-layer information feed-
back. (2) It allows the router to directly execute its network-

1DIRAC denotes DIstributed Router ArChitecture for wire-
less networks.

1

Router Agent Router AgentRouter Agent

Router Core

Figure 1: Distributed wireless router architecture

level policies via the exposed link-layer mechanisms. As a
result, DIRAC gains from the enhanced interactions with
the link layer and facilitates the implementation, evaluation
and deployment of wireless-specific protocols and services.

The distributed architecture of DIRAC is motivated by
the fact that link-layer information, on per host basis, is
location dependent and only accessible at each AP. More-
over, DIRAC stays in the middle ground of two extreme
architectural alternatives: the intelligent AP approach that
provides adaptive link-layer operations at each AP but re-
mains network-layer oblivious, and the ubiquitous router ap-
proach, which converts every AP into a full-blown router,
and enables all network-layer functions at the cost of in-
creased complexity in management and administration. The
DIRAC design allows for cost-effective and rapid develop-
ment of wireless services by upgrading software only at the
RC, without modifying the hardware and/or software of
each AP. It facilitates monitoring and configuration of the
network, since most complexity is placed on the RC, and en-
hances robustness by keeping each access point simple. Last,
DIRAC not only simplifies the implementation and evalua-
tion of adaptive, wireless protocols designed for a single cell,
but also permits the deployment of inter-cell coordinated re-
source management protocols.

With the architecture in place, we have implemented sev-
eral prototype services to demonstrate its viability and prac-
ticability. The three services implemented are wireless and
mobility specific, and include a link-layer informed, fast han-
dover protocol on the control plane that minimizes transient
packet losses during handoffs, a channel-adaptive, FEC-based,
packet forwarding solution that solves the head-of-line block-
ing issue over wireless links, and a link-layer assisted polic-
ing that penalizes overly aggressive, wireless clients. The
list of these three example protocols demonstrates the wide
spectrum of wireless router services enabled by DIRAC.
Other services, such as inter-AP coordinated resource man-
agement, mobility-aware firewall, adaptive wireless schedul-
ing, and cross-cell QoS support for VoIP, can also be imple-
mented.

The implementation of DIRAC architecture and services
is developed using off-the-shelf hardware and open-source
software. The router core is written in Click [8], an extensi-
ble and modular software router framework, and runs on a
commodity PC. The router agents are implemented on the
Instant AP platform [9]. Our experiments show that the
system is able to support a large number of access points as
well as clients per AP using commodity hardware: process-
ing statistics reports from 50 APs requires only 140µsecs,
and it takes less than 1µsec to process channel states for 50
clients per AP.

The rest of this paper is organized as follows. Background
introduction is provided in Section 2. Motivation for DIRAC
is given in Section 3. The design and implementation of
the basic DIRAC framework are given in Sections 4 and 5,

Port

Input

Classifier

Forwarder

Scheduler

Output

Port

Data Plane
Control Plane

OSPF

.

Figure 2: A Wired Router

respectively. Section 6 describes three prototype services for
wireless routers. Section 7 evaluates the system performance
of DIRAC. Discussions and lessons learned are provided in
Section 8. Section 9 compares with related work and the
paper is concluded in Section 10.

2. BACKGROUND
The target scenario is a packet-switched wireless data

network, based on the 802.11b wireless access technology.
In a typical enterprise/campus environment, mobile hosts
access the Internet via the access point (AP) in each cell
over the wireless channel, and APs are interconnected via
the wired backbone. Multiple cells form a subnet, sev-
eral subnets together cover the entire enterprise/campus and
are interconnected via an access router. Mobile hosts may
roam between adjacent cells, possibly across different sub-
nets. Packet transmissions can be downlink (from the net-
work to a mobile host), or uplink (from a mobile host to
the network). The scenario we focus on –a typical one
in practice– assumes that the wired network has sufficient
bandwidth, and the wireless link poses as the bottleneck.

A typical wired router (shown in Figure 2) consists of a
data-plane forwarding engine that forwards packets, and a
control plane where signaling protocols run. In the forward-
ing engine [1], a classifier first reads packets from an input
port, and based on certain fields in the packet header, se-
lects a forwarder to process the packet and send it to the
output queue. Finally, an output scheduler selects one of its
output queues and transmits the packet to the output port.
The control plane of a wired router executes signaling pro-
tocols like OSPF and LDP and assists the packet forwarding
engine in the process of packet delivery.

The above wired router system does not work well in a
wireless network. The fundamental problem is that it does
not consider the issues of dynamic wireless link quality and
host mobility. The resulting performance degradation is
well documented in the literature, in the context of wire-
less scheduling [4], adaptive error control [7], micro-mobility
management [10], and admission control, to name a few.

3. DESIGN RATIONALE

3.1 Motivation
In recent years, the demand for wireless services, such

as carrier-grade data delivery, security protection, and QoS
support for delay-sensitive or communication-intensive ap-
plications including VoIP, interactive multiplayer gaming,
and multimedia instant messaging, has significantly increased.
In order to offer such wireless-specific services, numerous
protocol solutions have been devised. Examples include
adaptive error control mechanisms, wireless packet schedul-

2

ing, mobility-aware admission control, firewall for roaming
users, micro-mobility management protocols, adaptive band-
width reservation for VoIP, etc. The fundamental principle
behind such wireless protocol proposals is to adapt to wire-
less channel dynamics and also be mobility aware. The de-
sign tenet is to allow for closer but constrained interactions
with the underlying link-layer to improve protocol perfor-
mance and adaptability. In order to enable the implementa-
tion and deployment of such wireless networking protocols,
a system support framework that enhances this interaction
between the edge router and the network access technology
is needed.

Some of the aforementioned wireless services, such as fast
handoffs for micro-mobility management, admission control
for roaming users, and adaptive reservation for mobile VoIP
calls, require not only closer interaction with the link layer
in a single cell, but also inter-cell coordination across mul-
tiple APs. The fundamental problem is that roaming users
incur resource dynamics in both the time and the spatial
domain. Thus, wireless resource management schemes have
to coordinate decisions among neighboring cells. The re-
sulting benefits not only enable seamless services for mobile
users, but also minimize the inter-cell channel interferences.
DIRAC seeks to enable such inter-cell coordinations.

Furthermore, a typical enterprise or campus wireless net-
work needs a large number of APs (up to several hundreds)
to cover the entire service area. This fact poses the challenge
of minimizing the software and hardware upgrade cost, and
the associated management overhead, when deploying new
services. The solution lies on intelligently partitioning the
software between the access points and the access router, so
as to place most of the complexity at the centralized router,
while keeping the distributed software module at each AP
simple and generic. DIRAC fulfills this requirement.

Finally, recent trend in Internet edge router design advo-
cates the use of software-based frameworks, which provide
extensibility and flexibility. The software-based router accel-
erates the implementation, experimentation and deployment
of new network protocols and algorithms. The potential per-
formance penalty can be offset by combining this approach
with network processor cards. DIRAC also follows this trend
and takes the software-based router design approach. In
some sense, flexibility of the access router system is more
important than mere data-forwarding speed in the wireless
domain because of the fundamental limit of wireless channel
capacity.

3.2 Architecture Alternatives
The design of DIRAC stays in the middle ground of several

extreme architectural options.
The first option is the oblivious approach followed by cur-

rent practice, in which the edge router remains oblivious
of the wireless characteristics, and the AP delivers 802.11
MAC functionality only. However, this suffers from severe
performance degradation as exemplified by the head-of-line
blocking problem over the wireless channel in Section 6.2.

The next alternative is the intelligent AP approach, in
which adaptive link-layer services are implemented at each
network-layer oblivious access point. The shortcomings of
such an approach are also well understood: network-layer
functions that require knowledge and handling of the IP
characteristics of the packets, in order to distinguish flows
for admission control, identify subnets for fast handoffs be-

tween cells, and measure bandwidth for reservation pur-
poses, cannot be enabled with link-layer mechanisms only.
Moreover, this approach may also need high-end hardware
on each AP to run processor-intensive tasks. For exam-
ple, the achievable throughput for the proposed FEC service
(see Section 6) on an i486 processor at 66MHz is around
4.05Mb/sec, while the AP processor is even less powerful (it
is an AMD SC400 at 33MHz in our testbed). The through-
put offered by the current AP hardware is not sufficient for
an 11Mbps 802.11b network, and certainly inadequate for
802.11a/g. Furthermore, interoperability issues among dif-
ferent network access technologies such as 802.11 and 3G,
802.11b and 802.11a, also arise.

Another extreme alternative is the ubiquitous router ap-
proach, which converts each AP into a router. It also ex-
hibits several downsides. Since network routers are far more
complex devices, the management and monitoring of such
a large number of routers (e.g. 50 to 100 in a typical en-
terprise subnet) become problematic. It incurs considerable
workload for the administrator, and the deployment of new
services is nontrivial. A large number of nodes have to be
upgraded, both in hardware and software, each time a new
service is deployed. Moreover, it still does not enable inter-
cell coordination needed for some wireless services; inter-cell
information is still not available at a centralized point. Fur-
thermore, since there is a large number of devices that need
to be replicated, and this task incurs considerable adminis-
trative and deployment cost.

From the above, it is clear that DIRAC arbitrates the ex-
treme architectural options previously discussed. It seeks
to preserve the best features and avoid the drawbacks of
each approach, and balance between performance, complex-
ity, cost and manageability.

4. DESIGN

4.1 Overview
DIRAC adopts a distributed router architecture that con-

sists of two main software components: a generic Router
Core (RC), and multiple lightweight, network-specific Router
Agents (RAs). The architecture is distributed in the sense
that each RA runs at an AP, while the RC runs on a com-
modity PC. They collaborate to provide router functions
and services – data-plane packet forwarding and control-
plane management – to each mobile host. The RC inter-
acts with the wireless link layer through each RA, without
changing the functionality of the IP layer. The interaction
between RC and RA is constrained; it takes three forms:
events, statistics and actions, to be elaborated in Section 4.2.

The RC carries out the regular operations of a router for
each wireless subnet it connects. It has a packet forwarding
engine and a control plane. The forwarding engine is ren-
ovated to address wireless link issues. It accepts link-layer
information feedback, in the form of channel statistics of
each mobile host from the RA, and, based on such informa-
tion, it performs adaptive forwarding operations. The data
forwarding plane also requests the RAs for actions. Such
actions will be executed using link-layer mechanisms. The
control plane of the RC accepts events from the RA. These
may in turn trigger management operations on the RC. A
DIRAC control engine has been added to the RC, which ar-
bitrates the flow and dissemination of events, statistics, and
actions.

3

The Router Agent is link-layer specific and light-weight. It
does not perform conventional router forwarding and man-
agement functionality. Instead, it serves as a messenger be-
tween the RC and the link-layer device driver. Communica-
tion between the RC and the RA is carried out via standard
UDP sockets over the wired backbone.

4.2 Forms of Interaction
The interaction of DIRAC and the underlying 802.11 link

layer takes three forms: events, actions, and statistics. Ta-
ble 1 illustrates the typical events, statistics and actions im-
plemented by the DIRAC router for the 802.11b technology.
It shows a representative set of primitives supported by most
wireless access technologies.

Events denote occurrences of asynchronous link-layer ac-
tivity in the cell, detected by the access point and reported
back to the RC control engine. For example, a Reassocia-
tion event informs on a layer-2 handoff by a roaming host.
DIRAC acts upon events to make mobility-aware decisions.

Statistics report the latest information on channel quality
that each host perceives, which is location-dependent. Such
information can be expressed in link-layer frame loss per-
centage, or even SNR (Signal-to-Noise Ratio) in dB. DIRAC
uses such statistics to make channel-adaptive packet delivery
via its renovated scheduler or forwarder.

Actions are requested by RC in order to enforce its poli-
cies. Router Agents, which receive these requests, execute
them at each AP’s link-layer, either by tuning the parame-
ters of the 802.11b MAC protocol, or by adjusting the con-
figuration settings of the driver. For example, Deauthenti-
cation action will trigger the AP to deny the channel access
by the target host; Set Retransmissions action will ask the
AP to reset the maximum retransmission count.

Events Actions Statistics
New host Signal-Noise Ratio

(Association) Accept/Reject host (dB)
Host Leaves Association Channel Quality

(Disassociation) Variation
Security Binding Authentication
(Authentication) Deauthentication Frame Retxmits

Roaming host (frame loss %)
(Reassociation) Set maximum CommTallies

Power Saving mode retransmit count
(PS) Latency

Table 1: Events, Actions, and Statistics

4.3 Router Core
The Router Core renovates its data-plane forwarding en-

gine and control-plane management protocols to make them
wireless adaptive and mobility aware.

4.3.1 Control plane
The control plane of DIRAC consists of two types of com-

ponents: routing and management protocols, and a control
engine. DIRAC does not mandate a specific choice of the
former and leaves it to the users. The control engine in
DIRAC is the OS support to enable the cross-layer interac-
tions via events, statistics and actions. It consists of four
components: EventProcessor, StatisticsMonitor, ActionPro-
cessor, and RegistrationDB.

EventProcessor accepts messages carrying events reported
by each RA and notifies each interested party of such events.
Any component on the data plane (e.g., the forwarder) or

on the control plane (e.g., the fast handover module) can
request and will be informed of a specific event upon its oc-
currence. This functionality is provided by a callback mecha-
nism. Each module interested in an event provides a callback
function handler to the EventProcessor, one for each event
type. Upon arrival of an event notification, its registered
callbacks are executed.

StatisticsMonitor provides a centralized repository to main-
tain the latest channel quality information for each host.
Other elements of the router can query it, retrieve the up-
dated link-layer statistics, and adapt their operations ac-
cordingly. The statistics information is updated periodically
via messages reported by RAs to the RC over the wired con-
nection. To minimize the memory overhead, we store only
the latest received report, along with a timestamp.

ActionProcessor sends an action request message to the
appropriate RA, upon request from any module within the
RC. It serves as an interface between the RC and the link-
layer AP. It encapsulates each action request into a UDP
message, and sends it to the corresponding RA.

Finally, RegistrationDB offers a registry to store infor-
mation regarding each mobile host and its associated AP.
Each host is assigned a unique ID throughout the router
system. This way, even though different underlying network
technologies may use different link-layer IDs, the router still
treats them in a coherent way.

4.3.2 Data plane
The data-plane forwarding engine allows components such

as schedulers and forwarders to implement channel-adaptive
protocols, based on link-layer feedback. DIRAC does not
stipulate the specific choice of such protocols; many solu-
tions in the literature may serve this purpose.

A distinctive feature of the forwarding engine is that it
provides asymmetric operations for uplink and downlink flows
(shown in Figure 3). The downlink service is proactive and
the service provided via wireless scheduler or forwarder is
fine grained with a time granularity of tens to hundreds of
milliseconds. The uplink service is reactive and the service
provided via policing is coarse grained with a time granu-
larity of seconds.

The above design choice is motivated by the inherent wire-
less network constraint. The router core has complete con-
trol and accurate flow information (e.g., the arrival time
and length of each packet) for downlink flows. However,
flow information for uplink flows is spread at each mobile
host. The router core does not have full control and accu-
rate information for uplink flows. Early research [3] takes
the alternative approach of symmetric operations for both
uplink and downlink flows. Its downside is that each host
has to propagate its flow information back to the router core
on a per-packet basis. This incurs heavy communication and
processing overhead, which we seek to avoid.

The resultant asymmetric services for uplink and down-
link also fit well with the wireless traffic characteristics. Cur-
rent wireless traffic measurements [11] show that 66% of the
traffic is downlink, largely due to applications that download
data from Internet servers.

4.4 Router Agent
The RA at each AP bridges the interaction between the

RC and the wireless link layer. The goal is not to facil-
itate generic programmability of the access point, but to

4

Statistics
Monitor

Port

Input

Scheduler

Forwarder

Forwarder

Classifier

Port

Input Wireless

Scheduler

Wireless

Link

Forwarder
Downlink Path

Wireline

Link

Control Plane EventProcessor ActionProcessor RegistrationDB

Data Plane

Data Plane

Forwarder

Classifier/Policing

to Router Agents

from Router Agents

Wireless Module

Uplink Path

Figure 3: Conceptual model of the Router Core

run a light-weight messenger between layer-2 of the AP and
layer-3 of the access router. Thus, its tasks include: (1)
Monitoring the state and channel quality for each of its as-
sociated hosts, as reported by the device driver. (2) Sending
appropriate messages to the RC, when events occur in the
cell. (3) Intercepting messages sent by the RC, requesting
action messages from the AP device driver, and delivering
other messages to the mobile host in the form of link-layer
frames.

Link-layer statistics are collected for each mobile host by
the RA periodically. The collection frequency reflects a
tradeoff between state accuracy and communication over-
head. A rough calculation shows that the frequency need
not be high, since the channel coherence time (i.e., the pe-
riod during which channel conditions does not vary much)
is about 50-100ms for walking-speed hosts.

4.5 Architectural Features
The cost saving provided by DIRAC comes from “economies

of scale” in two aspects: hardware investment, and “soft-
cost” associated with management and administration. The
former is relatively easy to assess, while the latter is harder
to gauge quantitatively. For the hardware, only upgrad-
ing the access router is needed in DIRAC each time a new
service requires more computational power. This can be
done by using network processor cards. For example, using
the Intel IXP 1200 network processor cards for a moder-
ate US $700 per piece, one can parallelize operations and
aggregate services while providing high performance (up to
5Gbps). On the other hand, upgrading each AP can be
much more expensive if one does not use DIRAC. Though
each AP typically costs about US $150, one has to take into
account that a large number of them (in the order of 50 to
100 per access router, according to a study by Juniper Re-
search [12] for campus-sized environments) will have to be
upgraded. Moreover, since the centerpiece is placed at the
RC in DIRAC, centralized management for subnets is made
possible, which in turn reduces the administration overhead.

DIRAC also takes an asymmetric approach to functional
partition between the RC and each RA. RAs are controlled
by the RC to certain extent, while wireless network ser-

vices are centrally implemented at the RC. Maximum pro-
grammability is allowed at the RC, but not at RAs. In
addition, the Router Core is rather link-layer technology in-
dependent. When applied to a new link-layer technology, it
can be kept intact and only updating the lightweight RAs
is needed. This improves portability of the system to other
wireless technologies.

5. IMPLEMENTATION
This section describes DIRAC implementation, including

how the RC and each RA work together in the specific hard-
ware and software environment. The RC is about 5900 lines
of code, and the RA is about 1000 lines.

5.1 Router Core
The RC works with the IPv6 protocol on a commodity

PC. We choose IPv6 as our working protocol environment
because its extensibility and inherent mobility support have
been well articulated in the literature [13]. In fact, the cellu-
lar network industry has been favoring Mobile IPv6 over Mo-
bile IPv4. Our implementation is therefore based on IPv6,
but it can be easily ported to IPv4.

RC is implemented as a set of Click elements within the
Click router framework [8], under Linux. We chose Click as
the implementation platform for the RC, since its extensi-
ble and modular architecture allows for rapid prototyping.
Click also provides standard functionality of the forward-
ing path, such as routing table and address resolution. For
DIRAC, we developed 13 new Click elements (Table 2 pro-
vides a glossary, along with a short description) that imple-
ment the desired functionality. Unlike most existing Click
elements, they are shared and comparatively larger, due to
the complicated operations that they carry out.

Figure 4 shows a two-interface (one wireless, and one
wired) router core configuration with the Click elements.
IP6FastHandover and DownlinkScheduling are two compound
Click elements to be described in Section 6. The downlink
and uplink packet forwarding engines are shown in dotted
lines in the figure.

5

Class Element Description
EventProcessor Processes event-messages from RAs; invokes callback functions of other elements

Control ActionProcessor Encapsulates actions requested by other elements into UDP messages sent to RA
Engine IP6L2Statistics Stores statistics about each mobile host. Statistics are sent as UDP messages by RA

RegistrationDB Stores matchings between hosts and RAs; stores addresses, and assigns IDs
IP6MobilityNewAR Implements the micro-mobility management protocol –new AR (Section 5.1)
IP6MobilityOldAR Implements the micro-mobility management protocol –old AR (Section 5.1)

Mobility IP6Tunnel Implements IPv6-IPv6 tunneling as virtual interfaces
Management IP6Buffer Buffers packets, as it waits for a Fast Neighbor Advertisement message to arrive

IP6FNDSolicitor A neighbor solicitor for IPv6 that also handles Fast Neighbor Advertisements
IP6RAdvertiser Sends Router Advertisements, both solicited and unsolicited (also see [14])

Downlink FECEncoder Performs packet FEC enconding on k packets, producing n− k redundant ones
path FECController Controls the FECEncoder by setting k and n according to the channel quality

Uplink path PolicingMeter Police aggressive uplink flows

Table 2: Element Glossary

U
pl

in
k

Fo
rw

ar
di

ng
 E

ng
in

e
D

ow
nl

in
k

Fo
rw

ar
di

ng
 E

ng
in

e

From

To

From

To

Strip802Header CheckIP6Header DLookupIP6Route

IP6 Fast Handover

Policing

Uplink

HopCountDec

HopCountDec

ICMPv6Error

ICMPv6Error

to checkIP6Header

to checkIP6Header

Neighbor
Solicitor

802Classifier

ND Classifier

ND Classifier

802Classifier

Wired i/f

Wired i/f

Queue
Wired

ND Advertiser

Advertiser
Router

Scheduling
Downlink

Queue

to Queue wired

to Queue wired

to Neighbor Solicitor (wired i/f)

RouterAgent i/f
EventProcessor ActionProcessor IP6L2Statistics RegistrationDB

ND Advertiser

Router
Advertiser

to Queue RouterAgent

to Queue RouterAgent

to Neighbor Solicitor (RouterAgent i/f)

RouterAgent i/f

RouterAgent

IP6FND
Solicitor

WirelessModule
Classifier

Flow of packet
Element interaction
Uplink path
Downlink path

Figure 4: Click element configuration diagram for the Router Core.

6

execute(out status-code, in node-id,
in action-type, in params)

(a) Request for Action (ActionProcessor)

cancel(in request-id)
register(in event-type, in element-name,

in callback-function, out request-id)
(b) Registration for Events (EventProcessor)

element.callback(in request-id,
in event-type, in params)

(c) Callback Function (EventProcessor)

get stat(in node-id, in stat-type, out value)
(d) Retrieval of Statistics for link-quality (IP6L2Statistics)

get assoc(inout node-id, inout router-agent-id)
get node(in node-id, out ip6-addr,

out ll-addr-type, out ll-addr)
(e) Queries to the RegistrationDB

Figure 5: API provided by DIRAC control engine

The downlink forwarding engine operates as follows. In-
coming packets from the device interface go through the
802.1d frame classifier 802Classifier to check whether it is
an IPv6 neighbor discovery message [14], followed by the
neighbor discovery classifier NDClassifier to check whether
it is a router advertisement message. The 802.1d header
is stripped by the Strip802Header, and the remaining IPv6
header is examined by CheckIP6Header. DLookupIP6Route
performs routing table lookup for the packet, HopCountDec
decrements its hop count, and passes it on to the FNDSo-
licitor which handles the address resolution. It then goes
through the Downlink Scheduler and finally is delivered to
the interface where the Access Point/Router Agent is con-
nected. The uplink forwarding engine works similarly except
that it goes through an Uplink Policing element first.

5.1.1 API
The aforementioned wireless network services, as well as

new ones to be deployed in the future, make use of an API
provided by the control engine of the Router Core. Each
service consists of its own elements (in the Click framework),
but all services use the same API to interact with the RC.
Four elements of DIRAC (EventProcessor, Action Processor,
IP6L2Statistics, and RegistrationDB) implement and make
this interface available to the other elements of the Click
configuration.
Taking actions Elements take link-layer actions using
the API provided by the execute call of Figure 5 (a). The
execute call takes input on which host requests the call, the
type of action requested, and the parameters for the ac-
tion type, and returns a status code of failure/success. The
ActionProcessor element, which actually implements the ac-
tion, looks up the requesting host’s link-layer address and
the respective RA using the API provided by RegistrationDB
of Figure 5 (e). If the action is not targeted to a mobile host
(for example, it is to set retransmissions on/off on the par-
ticular AP), the node-id parameter is discarded.
Notifying elements In order for elements to be no-
tified upon an event that happened in the cell, they must
register first with the EventProcessor via the register API
of Figure 5 (b). The register call lets the element specify the

Linux Kernel
driver
wireless card

Userspace Router
AgentDaemon

Figure 6: Implementation of the Router Agent.

type of events it is interested in, its name, and a callback
function. EventProcessor subsequently returns a unique ID
for that request. The callback function is then stored in a
linked list, one for each type of event.

Once EventProcessor receives an event notification mes-
sage from an RA, it invokes the callback mechanism, which
provides exactly-once, in-order semantics for each element
to be notified of a concrete event. Specifically, it traverses
the linked list and invokes the callback call of Figure 5 (c).
The call specifies who requests callback, the type of events
for callback, and event parameters.
Monitoring link quality An element learns of the chan-
nel statistics each host perceives by invoking the get stat

call of Figure 5 (d). The call asks for the host ID, the type of
statistics it is interested in, and returns the current channel
statistics. The current implementation returns only a sin-
gle normalized value for channel quality computed by the
RA. We plan to enrich the statistics with more elaborate
information in the near future.

In the current implementation, elements learn the statis-
tics via queries. A more proactive mechanism could follow
the approach of [15]: Interested elements specify the lower
and upper bounds for the value of a statistic; IP6L2Statistics
element then triggers callback handlers when the statistic
falls into these predefined bounds.

5.2 Router Agent
The RA is implemented on the OpenAP platform [9].

The hardware consists of a WL11000 SA-N board, which
is equipped with a wired Ethernet controller (NE2000), an
AMD ELAN SC400 embedded processor running at 33MHz,
1MB of Flash RAM, and a RS-232 serial interface for the
output of the console. The wireless PCMCIA 802.11b net-
work card is made by U.S. Robotics, using Intersil Prism2
chipset. The hardware platform is programmable through
a relatively simple process; it runs an embedded version of
Linux 2.4.17 in our implementation.

The Intersil chipset offers a “Host AP” operation mode.
In this mode, the card and the host driver act as an AP
for mobile clients and provide all management and control
functionality of the 802.11 standard. The firmware handles
time-critical tasks such as beaconing and frame acknowledg-
ment, while the management functionality is provided by the
host driver. Part of the driver, which provides the interface
to the card, runs as a kernel module, and the remaining
piece that handles the 802.11 management sublayer runs as
a user-space daemon [16]. The user-space daemon opens a
raw socket to the device that appears as a virtual interface
to Linux. Through this socket, it is able to transmit and
receive management frames.

The RA (see Fig. 6) is implemented as part of the host
computer driver [16], and extends both of its kernel- and
user-level components. To collect the link-layer statistics,
we implemented an ioctl() call in the kernel driver that up-

7

dates variables in the driver from the hardware configuration
records of the card. A more efficient implementation that
would also eliminate context switches, would update these
values using task queues [17]. However, for the purposes
of our experiments, and since statistics are reported every
100ms –sufficient for capturing the behavior of the channel
for a user moving at walking speed – the solution with the
ioctl() was preferred. The user-level part of the RA period-
ically calls this ioctl(), and the results are sent to the RC
via the wired network.

The user-space component of the RA also registers with
the event-loop of the driver. It intercepts management frames,
recognizes events, and sends event notifications as UDP mes-
sages to the core. Similarly, actions received in the form of
messages from the RC are interpreted in a hardware-specific
manner by the RA. Either customized 802.11 management
frames are sent to the mobile host (e.g. Re-association re-
ply frame), or configuration settings of the card are changed
(e.g. MAC access lists).

5.3 RC↔RA Communication Protocol
RC and its associated RAs communicate through a simple

protocol implemented in UDP, which runs over the wired
backbone. This protocol is used for exchanging informa-
tion that enables the two-way interaction. The packets ex-
changed between the RAs and the RC follow the generic
TLV (Type-Length-Value) format, enhanced with a subtype
field:

| Type | Subtype| Length| Value ... |

In the above-defined packet, The “Type” field specifies the
type of interaction that the packet carries, and can be one
of the four types: Statistics, Event, Action, or Registration
of an RA to RC. The “Subtype” field specifies the specific
subtype of Statistics, Action, Event, or Registration. For
example, for Statistics on channel quality, the subtype can
be SNR, Frame Loss, Latency, or Variance. The “Length”
field denotes the size (in bytes) of the “Value” field. It is
used when multiple values of the subtype of the interaction
are carried in the same packet, such as statistics reports
for multiple clients. Finally, the ”Value” field carries the
actual information. It is subtype-specific and depends on
the subtype of the interaction. For example, the “Value”
field for statistics on each node can be:

--
| Mobile Node LL Addr. | Measurement | Interval |
--

where the first field is the link-layer (Ethernet) address of
the mobile node, the second field is the measured statistics
value, and the third field is the interval during which this
value was calculated.

The “Value” field for actions follows the format:

--
| Mobile Node Link Layer Addr. | Code |
--

where the first field is the link-layer address of the mobile
node upon which the action is to be taken, and the second
field stipulates the action to be taken.

The “Value” field for events also has a subtype-specific
format, although in most cases it follows the format of the
action, as shown above. However, in certain cases, it may
take a richer form, such as in the event of a roaming host,
where the old AP is also provided:

(8
) F

BU

(2
) A

ut
h

Re
pl

y

(1
) A

ut
h

Re
q

(3
) R

ea
ss

oc
 R

eq

(6
) R

ea
ss

oc
 R

ep
ly

(7
) P

rR
tA

dv

Old

AR

New

AR

MN

(4) HI

(5) HAck

Figure 7: Link-layer informed fast handover

| MN LL Addr. | New AP LL Addr. | Old AP LL Addr. |

6. PROTOTYPE WIRELESS SERVICES
To demonstrate the practicability of DIRAC in imple-

menting wireless and mobility aware services, we design and
implement three protocols within the DIRAC router frame-
work. All three protocols are wireless specific and they
are: (1) a link-layer informed fast handover protocol, (2) a
channel-adaptive FEC-based packet forwarding solution and
(3) link-assisted policing. The above three services sample
the rich wireless-adaptive protocols in the literature. They
span both the control and data planes, and both uplink and
downlink. Not only do they provide considerable perfor-
mance gains, they also showcase the viability of these new
wireless services within our router framework, which are oth-
erwise not feasible in current router systems.

6.1 Link-Layer Informed Fast Handover
The fast handover service showcases how the control-plane

element benefits from link-layer feedback. When a mobile
user roams between subnets in a campus environment and
uses Mobile IPv6 only [13], the handover latency can be sig-
nificant and the transient packet loss non-negligible [18]. A
fast handover protocol helps to reduce this latency and min-
imize loss through setting up a tunnel between two access
routers (ARs) during handoff, so that packets in transit can
be forwarded by the old AR to the mobile node (MN) via the
new AR. Recent work [6, 19] proposes to use link-layer trig-
gers to either predict or respond to a handover event. Our
protocol adapts such earlier proposals [6] to the specific
802.11 link-layer technology. We do not claim much novelty
of our design; we use it to showcase how such protocols can
be easily implemented within DIRAC.

The main idea of the proposed solution is as follows: when
a MN roams from one cell in a subnet to another cell in a
different subnet, link-layer handover will happen first. This
signals the earliest time the IP-layer fast handover may hap-
pen. We may simply use the link-layer handoff signal to trig-
ger the IP-layer handover, and embed the IP-layer handover
in the link-layer process. In the 802.11b network, we make
use of the ReAssociation message of the link-layer handover
process that precedes the network layer, and use it as the
event that triggers the network-layer handoff service. Fig-
ure 7 shows the message exchange of the protocol. It involves
8 messages, similar to the recent IETF draft [6].

The protocol is implemented as a compound element in
Click, i.e., IP6FastHandover in Figure 4. It consists of four
elements in Figure 8. IP6MobilityNewAR implements the
operations of the new access router for the mobile node. It

8

from EventProcessor

CheckIP6Header DLookupIP6Route

Fast Handover
Classifier

to Forwarding Path

to Forwarding Path

to CheckIP6Header element

IP6Tunnel

IP6Buffer to ActionProcessor

IP6MobilityOldAR IP6MobilityNewAR

from Input Devices

to ActionProcessor

Figure 8: The compound IP6 Fast Handover element

HopCount
Dec

flow
classifier

FEC
Controller

QueueQueue

DRR

ToDevice

Scheduling
Downlink

IP6L2StatisticsFEC Controller

FECEncoder FECEncoderFECEncoder

Figure 9: The compound element for the adaptive FEC

registers with EventProcessor in order to be notified upon
the occurrence of a reassociation event. It also takes action
employing ActionProcessor to allow link-layer association by
the RA. IP6MobilityOldAR implements the operations of the
old access router for the mobile node, while IPTunnel and
IP6Buffer elements establish tunnels and temporarily buffer
packets, respectively.

This protocol also requires implementation efforts on the
mobile node part. We developed the client-side functionality
and integrated it with a publicly-available distribution of
Mobile IPv6 [20] for Linux. The protocol runs as part of
the MIPv6 kernel module, and is enabled at runtime via
a sysctl() call. This function also temporarily disables the
native movement detection algorithm of MIPv6.

6.2 Channel-Adaptive FEC-Based Downlink
Forwarding

Adaptive FEC-based forwarding seeks to address the wire-
less Head-of-Line (HoL) blocking problem. When the des-
tination host of the HoL packet experiences channel error
burst, the packet is retransmitted continually until the max-
imum retransmission count is reached. This blocks trans-
missions of subsequent in-queue packets destined to other
hosts perceiving error-free channels. Its negative effect in-
cludes considerable transmission delay and jitter, and re-
duced throughput. Many recent wireless scheduling propos-
als solve the above problem in principle. However, this is
typically achieved with per-packet information feedback, in-
curring considerable overhead. We thus devise a lightweight
FEC-based solution.

The protocol works as follows: the RC requests an ac-
tion from the RA to disable retransmissions, since they in-
cur HoL blocking over the error-prone channel. However,
in order to compensate for loss of reliability due to lack of
retransmissions-based error recovery, FEC is used to recover
losses. It is implemented at the Router Core, which adapts

its encoded redundancy based on link-layer channel statis-
tics provided by the RA. RAs do not have retransmission
queues, and report link-layer statistics measured in frames
lost due to errors. Lost frames are identified by the re-
spective lost ACKs of the 802.11 protocol. The FEC-based
forwarder implements Deficit Round Robin scheduling on
a per-host basis, to avoid transmitting consecutive packets
from an error-prone flow.

The chosen FEC algorithm [21] operates at the packet
level. It takes two parameters (n, k), where k denotes the
number of application packets, and n denotes the total num-
ber of packets (including the redundant n−k packets) to be
transmitted during an interval [t, t+ T]. We adjust k and n
based on the channel statistics, i.e., the frame loss2 measured
for each host and calculated as frames loss = frames errors

frames txmit
·,

where frames errors is the number of lost frames due to er-
rors, and frames txmit is the total number of transmitted
frames. Then, k and n are adjusted periodically to satisfy
the relation of k

n
= 1 − frames loss. The receiving host

is able to reconstruct the original k packets whenever it re-
ceives any k copies out of these n packets.

The above design is implemented in two Click elements
shown in Figure 9: FECController and FECEncoder. FEC-
Controller periodically queries the IP6L2Statistics element
for channel statistics, and adjusts k and n of the FECEn-
coder element. FECEncoder encodes packets sent by Flow-
Classifier, and produces (n − k) redundant packets. The
packet header used for the adaptive FEC is shown in Fig-
ure 10. The 8-byte header is derived from the requirements
for decoding at the receiver using the FEC algorithm of [21].
Ideally, this header should be implemented as a Destination
Options Header in the IP. Our current implementation im-
plements it after the UDP header of the packet to minimize
development effort.

index pkt_size

pkt_lengthnk

1 byte 2 bytes1 byte

group_id

Figure 10: Header used for the adaptive FEC

6.3 Link-Layer Assisted Uplink Policing
This protocol seeks to police aggressive uplink flows via

link-layer mechanisms. In a link-layer unaware scheme, the
router posterior drops all the packets once they reach the
router, but they have already consumed the wireless band-
width. In the link-layer assisted design, the router uses the
link-layer access control mechanism at the AP, i.e. 802.11
Deauthentication, to police the aggressive flow. This effec-
tively denies such a flow temporary network access over the
wireless channel. By appropriately choosing the period for
access denial, it prevents the aggressive flow from stealing
extra wireless link bandwidth.

The protocol has two building blocks: arbitrator and en-
forcer. The arbitrator decides which uplink flows are aggres-
sive by checking a flow’s actual transmission rate Ractual
against its expected fair share Rshare. The enforcer takes

2We also experimented with other link-layer metrics, e.g.,
channel quality expressed in dBm reported by the wireless
card. However, our results show that there seems to be no
quantifiable correlation between this value and the actual
frame loss.

9

node (role) Hardware
S (Source) Intel Pentium III 450MHz, 128MB
(CN/SA) Intel Ethernet Express 10/100

MN1, MN2, MN3 Intel Pentium III 1.1GHz, 256MB
(Mobile Nodes) Tulip & Netgear Fast Ethernet Cards

R1, R2 Intel Pentium III 900MHz
(Routers) 256MB, Intel Ethernet Express 10/100

Table 3: Testbed components used in the experiments.

two progressively severe shaping actions with increasing drop-
ping intensity over time: RED-like dropping, and temporary
denial of access. For aggressive, responsive flows (e.g. TCP
friendly flows), RED-like dropping should be sufficient to
shape the flow over the uplink wireless channel. For persis-
tent non-responsive flows, temporary denial of access con-
trols the damage. However, such flows are still granted long-
term fair share over [t, t+T]. This is achieved by setting the
access denial period tdenial as tdenial = (1−Rshare/Ractual)·
T . The tdenial value is notified to the RA which informs the
link layer to enforce it.

The protocol is implemented as a Click element. It invokes
the 802.11 Deauthentication mechanism in the device driver
to temporarily deny a flow’s access.

7. SYSTEM EVALUATION
The evaluation of our “proof-of-concept” prototype seeks

to answer two questions:

• How much overhead do the primitives of link-layer in-
formation introduce to the system?

• How beneficial is such an “informed” operation of the
router for the wireless part of the network?

For the first question, we measure the overhead for process-
ing events, actions, and statistics. For the second question,
we evaluate the three wireless services of Section 6. The net-
work components used in the testbed experiments are listed
in Table 3. The specific configuration for each experiment
is to be described in each subsection.

7.1 System Overhead
We first gauge how much processing overhead DIRAC in-

curs. We measure the consumed CPU time using the Pen-
tium cycle counter [22], when running the code relevant to
the processing of events, actions, and statistics. The results
are then compared with the forwarding cost associated with
delivering a packet from one interface of the RC to another.
This provides a relative measure for the overhead of the con-
trol engine in DIRAC, and demonstrates the scalability of
the approach in an enterprise environment, where there are
a large number of APs connected to the same access router,
all of which transmit link-layer information periodically.

The microbenchmarks for this experiment are collected
on machine R1 of Table 3, which serves as the RC. We per-
form repetitive invocations of the functions that process the
primitives of Section 4, and compute the average cost of
each. The cost of the basic packet forwarding is defined as
the amount of CPU time spent in the elements of Figure 4
of the forwarding path divided by the number of packets
delivered. It is obtained by using host S of Table 3 as the
source, host MN1 as the destination, and R1 as the router.
The input load is 100,000 packets, generated at a relatively
low rate in order not to overwhelm the hardware that runs
the RC with interrupt handling.

Operation Time(ns)
Action 498
Event 1712
Statistics report 32
Basic forwarding 1299

Table 4: Average CPU time cost for the primitives and

basic forwarding (in nanoseconds).

Table 4 gives the experimental results. The processing
overhead for each of the three primitives of actions, events
and statistics is comparable to the forwarding cost. Actions
and Statistics incur minor processing overhead, but events
incur more. Specifically, for statistics processing, only 32ns
are required by the IP6L2Statistics element to extract and
store the values for a report from a RA. Our experiment
also shows that additional 95ns are required to classify the
packet as a report message that should be pushed to the
IP6L2Statistics element for further processing.

The large difference between processing a statistics report
and an event, is because the former has been highly op-
timized: only three memory-copy operations using pointer
arithmetic are required to extract the values stored in the 10-
byte report of channel quality statistics per host. However,
the EventProcessor element still uses the highly convenient,
but expensive string operations that the Click framework
provides. It can definitely be optimized similarly; we leave
it as future work. It should be noted, however, that events,
as well as actions do not happen very frequently in prac-
tice, probably in the order of once every few hundreds of
milliseconds at most. Therefore, the system overhead asso-
ciated with them is not a primary concern.

To explore the scalability of the RC with the number of
registered APs, we set up machine S as a source that trans-
mits packets carrying dummy statistics. The UDP packets
are generated directly from the kernel to avoid the expense
of system calls. They are transmitted at several rates, to
emulate various numbers of APs (from 1 to 200), each of
which transmits one report every 50ms. Each packet carries
reports for 10 clients. The results are shown in Figure 11.
From Figure 11, we note that the overhead for extracting
and storing a large number of statistics from several clients is
affordable. For example, the cost for processing 1000 packets
per second from 50 APs is in the order of 140µsecs. It also
scales linearly as more APs register with the RC. However,
it should be noted that these results show the performance
of the RC in a better light than it might be seen in a real
network: packets are generated from a single source and all
reports carry statistics for the same “clients.” These two fac-
tors exploit the L1 data cache of the processor. Nevertheless,
the results give an estimate about the overhead associated
with processing statistics reports, a potential performance
bottleneck.

To study the scalability of the RC as the number of mobile
nodes associated with each AP increases, we use the setup of
the previous experiment. Packets are transmitted at a high
transmission rate of 2,000 packets per second, emulating the
operation of 100 APs connected to the RC, each of which
transmits a report every 50ms. The results are plotted in
Figure 12. From Figure 12 we observe that even when the
number of mobile clients associated with a cell increases, the
overhead is still minimal. For example, the cost of retrieving
the channel statistics for 50 mobile nodes that are all carried

10

 0

 100

 200

 300

 400

 500

 600

 20 40 60 80 100 120 140 160 180 200

Pr
oc

es
si

ng
 O

/H
 (i

n
us

ec
)

of Access Points

Processing Overhead for Statistics Reports

processing O/H

Figure 11: Overhead for processing reports from mul-

tiple access points (in microseconds)

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100 120 140

Proc
essi

ng O
/H (n

sec)

mobile hosts / Access Point

Overhead for processing a statistics report

’ubenchmarks’

Figure 12: Overhead for processing a single statistics

report (in nanoseconds)

in the same packet is only 629ns, still 50% smaller than what
is required for basic forwarding. As a final observation, we
note that as the number of clients grows, the overhead grows
somewhat sub-linearly. Since the same small piece of code
is executed repeatedly, instruction cache hits (L1 I-cache of
16Kbytes) minimize the clock-cycle overhead.

7.2 Performance of Wireless Services
The ultimate goal of DIRAC as a wireless router system

is to improve the router performance in wireless networks.
This will be achieved through implementing wireless services
described in Section 6, which address host mobility, improve
packet forwarding over wireless links, and provide better
sharing of the channel. Our measurements show that such
services indeed provide considerable performance gains.

7.2.1 Host mobility
We use the testbed configuration of Figure 13 to evaluate

the performance of the link-layer informed fast handover
proposal of Section 6.1. A node roams from the vicinity of
the cell served by access router R1, to the one served by R2.
Node S acts both as a Home Agent (HA) for mobile host
MN1 and as a Correspondent Node (CN) that transmits
traffic to MN1.

A total number of 10 handoffs are performed, and different
types of traffic (CBR, video over UDP, audio over TCP) are
transmitted from one run to another. We use tcpdump to
measure the time when the signals of the protocol are sent
and received on the new access router (R2). Table 5 breaks
down the delays of signaling messages involved in the fast
handover protocol (see also Figure 7). The table shows that
only 7.9ms –in addition to the inevitable link-layer switching
delay from one AP to another, typically several hundred

R1R2

CN/HA

100Mbit/sec

100Mbit/sec100Mbit/sec

10Mbit/sec

MN

AP1AP2

10Mbit/sec

Figure 13: Experiment environment for the fast han-

dover protocol evaluation

mean median stdv
HAck - HI 4.2 3.6 1.5

ReAssocReply - ReAssocReq 7.9 7.4 1.8
PrRtAdv - ReAssocReply 18.6 18.8 3

FBU - PrRtAdv 8.1 6 6

Table 5: Latency involved in the link-layer informed fast

handover protocol (in milliseconds).

milliseconds [23]– is required to establish the tunnel, which
is created after the ReAssociation Reply message is sent by
the new AR. Once the tunnel is set up, data packets for the
MN arrive at the new AR via the tunnel with the old AR,
thus minimizing transient packet loss.

From Table 5, it takes the mobile node 18.6ms to receive
its new Care-of-Address and gateway (PrRtAdv message)
after it starts receiving packets from the new point of at-
tachment. This delay is large compared with the other table
values. This is due to the fact that the PrRtAdv message
is sent after the receipt of a notification message from the
RA that completes transmission of the ReAssocReply mes-
sage. However, since the Router Agent runs as a user-level
program at the AP, its execution is deferred due to the ex-
ecution of the driver code (also the code for the bridge),
which runs in the kernel, has higher priority, and keeps the
processor busy by forwarding data traffic.

Figure 14 plots the average end-to-end delay of UDP pack-
ets transmitted at a rate of 50 packets/sec with a packet size
of 512 bytes, during the layer-3 handoff experiment. The
particular version of our wireless cards (Orinoco Gold for
the mobile node and Prism2 for the AP) gives a link-layer
(L2) switching latency of around 500ms, which matches the
value reported by another independent experiment in the
literature [23]. The tunnel setup time of the L3 handover
protocol is 8.2ms, after which the packets are transmitted
over the tunnel for about 5 seconds (we artificially delayed
the transmission of a Binding Update of the MIPv6 pro-
tocol [13], to observe the tunneling effect). Shown in the
figure, for the duration of the tunnel, packets experience an
increase of 5ms in their end-to-end delay, making the in-
troduced overhead acceptable even for demanding real-time
applications. As a last note, the latencies measured are very
close to the ones reported by Koodli and Perkins in [10].

7.2.2 FEC-based downlink forwarding
We now demonstrate the Head-of-Line blocking problem

of Section 6.2, and evaluate the FEC-based solution.

11

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 200 400 600 800 1000 1200 1400 1600 1800

T
im

e
 (

se
c)

Data Packet Seq. No.

End to End Delay Graph

"e2e-delay"

Tunneling Ends

Delay

8.2ms

L2 Switching
Tunnel Setup

Time

Figure 14: Average end-to-end delay of UDP packets

during the fast handover experiment.

average quality stdv MN1 MN2 MN3
10.38 1.53 9903 9830 2647
12.38 1.46 9980 9940 7450
15.02 2.01 9980 9978 9581
20.17 1.54 9943 9903 9985
25.32 1.23 9925 9951 9984
35.53 1.97 9942 9936 9949
44.77 2.27 9928 9927 9954

Table 6: Packets received by each node, for various

channel qualities of node MN3, using the FEC-based so-

lution.

The testbed consists of a source machine (S), an access
router (R1), and three mobile nodes (MN1, MN2, & MN3).
The source transmits 10,000 packets, 1024 bytes each, to
each mobile node at a rate of 65 packets/second/node. Two
of the mobile nodes (MN1, and MN2) experience excellent
channel quality. For the third one, we change its location
by selecting seven spots so that its perceived channel quality
varies from really bad to very good, one spot at a time, as
shown in Tables 6 and 7. We compare the performance of
the FEC-based solution against the default method for link-
layer retransmissions, the default value of which is 8 in our
cards. For each location and method, we run 3 rounds of
experiments interleaving the two methods, in order to min-
imize fluctuations in channel quality due to interferences.
Moreover, to provide fair comparisons, we lock the receiving
rates for all mobile nodes to 11Mbps, by disabling the mul-
tirate support of the driver in the AP card. The link-layer
statistics sampling interval at an AP is 100ms.

Tables 6 and 7 show the number of packets received by
each node, out of the 10,000 packets sent to each one of
them, for various channel qualities experienced by MN3.
From the tables, we make the following observations:

First, the HoL blocking problem and its solution by the
FEC-based approach are demonstrated from the results of
the first two rows of both tables. With the link-layer retrans-
mission method, the throughput of MN1 and MN2 has cou-
pling effect with MN3. When MN3 experiences bad channel
and its throughput suffers, so do MN1 and MN2. However,
in the FEC-method, this negative effect does not show up
any more. Even though MN3 still suffers from low through-
put, MN1 and MN2 enjoy very high throughput. This ex-
actly shows the impact of HoL blocking. In the retrans-

average quality stdv MN1 MN2 MN3
9.47 2.17 4808 4807 3038
12.21 1.81 7559 7554 6558
14.81 1.76 9999 9999 9822
20.44 1.98 9999 9999 9988
25.38 1.15 9999 9999 9990
35.11 2.29 9999 9999 9996
45.35 2.42 9998 9999 9998

Table 7: Packets received by each node, for various

channel qualities of node MN3, using the default method

of link-layer retransmissions.

0

5000

10000

15000

20000

25000

30000

10 15 20 25 30 35 40 45

F
ra

m
e
s

Link Quality

Frame Overhead for Node MN3

retx
fec

Figure 15: FEC overhead

mission method, excessive retransmissions for MN3 cause
buffer overflows at the AP. This buffer drop also happens for
MN1 and MN2, since all three share the buffer at the AP.
However, the FEC-based approach, which also produces lots
of redundant packets for MN3, causes buffer overflow only
for the queue of MN3 at the RC. This early drop at RC,
rather than AP, leads to isolation for the other two flows;
the FEC-based approach has an inherent rate-control mech-
anism. One could possibly implement a rate-control mech-
anism to ensure early dropping for the flow experiencing
bad channel conditions and solve the HoL blocking problem,
while still using the retransmissions-based method. How-
ever, the implementation on the access point seems much
more involved, due to the modifications required in the driver.

The second observation has more to do with the wire-
less channel itself: the more the quality metric (measured
in average quality and standard deviation in the tables) ap-
proaches the value of 10, which seems to be the threshold at
which the wireless card of the mobile node starts scanning
for another AP to initiate handoffs, the sharper the drop
is in the number of packets received. At higher values, the
channel behaves in a more predictable way.

Figure 15 plots the communication overhead using these
two methods. The overhead is defined as any redundant
copies transmitted over the air, whether it is due to retrans-
missions or due to FEC-generated redundant packets. The
figure shows that in many scenarios, FEC may even outper-
form the retransmission-based method; this is a bit counter-
intuitive. The main reason is that channel error happens in
bursts. For bursty errors, the retransmissions method leads
to consecutive packet losses. The FEC method may schedule
packets from other flows, thus avoiding back-to-back trans-
missions in the presence of error bursts.

12

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

0 10 20 30 40 50 60 70 80

by
te

s

time

TCP Throughput (Without Policing)

TCP
UDP

Figure 16: Throughput without policing

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

0 10 20 30 40 50 60 70 80 90 100

by
te

s

time

TCP Throughput (With Policing)

TCP
UDP

Figure 17: Throughput with policing

0

200

400

600

800

1000

1200

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40

rtt (m
s)

time

TCP RTT Graph (Without Policing)

rtt

Figure 18: RTT without policing

0

50

100

150

200

250

300

350

400

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40

rtt (m
s)

time

TCP RTT Graph (with Policing)

rtt

Figure 19: RTT with policing

7.2.3 Policing
We evaluate the effectiveness of policing with a testbed

consisted of two mobile nodes MN1 and MN2 competing for
the wireless channel. MN1 is running Icecast [24], an MP3
streaming server that uses the TCP protocol to deliver audio
streams at 128kps. MN2 is an aggressive UDP source that
generates 3.6Mbps of traffic, enough to consume the most
of the channel by itself.

Figure 16 shows that without a policing mechanism, the
aggressive MN2 occupies a significant portion of the wireless
channel and leaves little operational bandwidth for MN1.
From the figure, we can see that the TCP operated by MN1
is disrupted midway since it can no longer operate through-
out the experiment. Figure 18 reflects the increase of the
TCP round-trip-time for MN1.

In Figure 17 with policing, MN1 is protected from MN2’s
destructive behavior. Whenever the RC deems the MN1
being overly aggressive, it will instruct the AP to penalize
MN1 by temporarily restricting its access to the AP. Thus
the benevolent MN2 can still operate at its full capacity.
The figure shows that the throughput of MN2 is constantly
being limited by the RC and the MN1 is able to run to
the completion of our experiment without being shut down.
Figure 19 is the respective TCP round-trip-time graph.

In summary, DIRAC provides primitives for interacting
with the wireless link-layer without introducing much over-
head to the system. It scales well to the number of mobile
nodes, consuming processing power less than 2.5% of the
cost for a standard packet forwarding. It takes less than
1µsec to process channel states for 50 clients per AP. It can
also support a large number of APs; less than 140µsecs are
required to process statistics reports from 50 APs, each of
which transmits 20 reports/sec. Through its API, a number
of network services critical to the wireless environment can
be readily deployed. The fast handover service establishes

a tunnel for packet forwarding in less than 10ms. FEC-
based forwarding solves the wireless Head-of-Line blocking
problem with overhead comparable with the default retrans-
mission based solution. The policing service protects flows
from aggressive users.

8. DISCUSSIONS AND LESSONS LEARNED

8.1 Discussions
Scalability Wireless routers mostly serve as edge routers
and do not sit within the Internet backbone. Moreover, wire-
less channel capacity and constrained communication range
both limit the number of flows supported by a wireless router
to be orders of magnitude smaller than the wired scenario.
However, each router may have to serve hundreds of APs.

Applicability in outdoor wireless WANs The link
state used in the router system, such as link quality of each
host, is rather generic and available also in wide-area cellular
networks. The link-layer mechanisms and management mes-
sages, e.g. the layer-2 handover signal and the access con-
trol mechanism, are also available in such networks. Both
aspects point out that the architectural components still ap-
ply and the system can be adapted to such WWAN networks
with slight modifications of the router agent.

Changes on the mobile host To use wireless services
enabled by DIRAC, the mobile host may also need to update
its software. For example, the current implementation re-
quires the host to install modules to support fast handover,
mobile IPv6, and adaptive FEC. However, we stress that the
channel state information–frame loss statistics–is retrieved
at the AP, not from each mobile host. The device driver at
the AP computes the loss statistics based on the link-layer
ACK mechanism: a packet is considered lost if the DATA
frame is sent but ACK is not received.

13

8.2 Experiences and Lessons Learned
The first learned lesson is that, as in other systems areas,

it is important to ”make the common case fast.” This is
certainly true in the router design context, particularly on
the data path. In our system, processing channel statistics
is an important common case. Therefore, it is critical to
minimize the processing of link-layer statistics, in order to
allow the router to scale to a large number of hosts and APs.

The second issue involves the OS scheduling of compu-
tations on a device that performs forwarding. Naturally, a
higher priority is given to the basic forwarding functionality,
while other control-plane operations receive a smaller frac-
tion of the processing capacity. This also applies to the RA
on APs: Since the bridge performs a limited-scope L2 for-
warding of Ethernet frames (from the wired interface to the
wireless and backwards), the RA and user-level implemen-
tation of the 802.11 daemon have to be scheduled at regular
intervals, in order to execute the management functionality.
This can be done either by having the bridge giving up the
CPU voluntarily, in order to allow execution of the router
agent, or by implementing the latter inside the kernel.

The last issue is related to the collection of statistics that
characterize channel quality on a per-host basis. Initially,
we implemented a mechanism so that mobile nodes send
periodic reports back to the AP, regarding the perceived
channel quality. These reports used Signal-to-Noise ratio
measured in dBm. However, the estimation of frame loss
from this metric was not very accurate. For this reason, we
went ahead and modified the driver of the AP card to obtain
the frame loss statistics of Section 5. A more elaborate set of
statistics can be collected via the CommTallies [16] facility
of the wireless card, but unfortunately they are not available
on a per-host basis.

9. RELATED WORK
Motivated by enhancing routers with new capabilities such

as assorted filters, firewalls, and traffic prioritization, router
design for the wired Internet has been an active research
area recently. Most of such routers are software based and
seek to support easy customization of router functionality.
Examples of such systems include Scout [25] and its exten-
sion with network processors [1], Click [8], Router Plugins
[26] and XORP [27]. Although all of these proposals provide
extensible and general frameworks for router development,
they lack specific support for working in wireless networks.
A distributed router design appears in [28]. However, the
focus there is to achieve high throughput through a cluster
of PCs. In [29], which can also be viewed as a distributed
design over the hierarchy of network processors, the focus is
on supporting active networks.

There are home wireless router systems available in the
market, including the 3Com home wireless router, Intel Any-
Point Home Network, and Lucent Orinoco RG-1000 Resi-
dential Gateway, to name a few. The main focus of such
systems is to bridge the wireless channel with the wired
Internet. The claimed new features are mainly on secu-
rity such as integrated firewall. These systems do not take
a distributed architecture. The MIT personal router [30]
is concerned with the automatic selection of providers of
wireless access, based on dynamic modeling of the user and
knowledge of a market of wireless services. DIRAC serves as
network edge router and improves the performance of for-

warding engine over the wireless channel and support fast
handover.

Other commercial solutions for the enterprise environment
attempt to address similar issues but in a narrow scope.
The Vernier Networks 6500 [31] system focuses mostly on
security and management. The goal is to secure a wire-
less network by enabling security protocols and enforcing
access rights across multiple network domains. The Lucent
SpringTide 7000 Wireless IP Service [32] provides several
mobile IP services mainly through tunneling. The Nomadix
Service Engine Software Modules [33] use techniques based
on ARP to identify new users and address user mobility. No
data-plane forwarding issues are addressed in these systems.
In Aruba Network’s Aruba 5000 and Aruba 50 systems [34],
the proprietary APs transmit link-layer information feed-
back to the WLAN switch. However, it still falls into the
category of intelligent AP systems. The main goal is to en-
hance security and roaming functions. The design is still
mainly at the link layer and stays on the control plane.

Many components in the router system have been studied
in the literature. Wireless scheduling has been an active
research area in recent years [3][4][5]. Several fast handover
solutions [6][18] have been proposed, and system solutions
for mobility support have been devised and implemented
[35][36]. Our distributed router architecture borrows freely
from the literature, but is not tied to a particular protocol.
It rather provides all those primitives that are necessary for
the implementation and deployment of these protocols.

Cross-layer interactions have been a popular design guide-
line in wireless networking. The Mobiware toolkit [37] spans
several layers of the protocol stack, from programmable MAC,
to transport and adaptive applications. We take a more con-
trolled approach to cross-layer interactions in DIRAC, to re-
duce overhead, achieve better scalability and extensibility.

10. CONCLUSION

Router is expected to be a critical architectural compo-
nent in the emerging packet-switched cellular networks, such
as campus or enterprise wireless network based on 802.11
technology, and metropolitan wireless networks. Conven-
tional routers do not handle mobility and wireless link issues.
The solution principle, well documented in the literature, is
to take adaptive actions based on channel conditions and
mobility patterns.

This paper describes DIRAC, a wireless router system.
The goal is to design and implement a systems framework
that enables wireless protocols and provides router services
for wireless data networks. DIRAC’s unique approach is to
let the router core interact, in a controlled manner, with the
wireless link layer, which is in the best position to know the
network dynamics. The interaction is twofold: the router
core takes feedback input from the link layer, and dictates
actions to the link layer. This leads to renovated designs
in both data and control planes of a router and facilitates
implementation and deployment of new wireless services.

To this end, we implement a distributed router architec-
ture, in which the router core interacts with each router
agent at each AP. We also implement three prototype wire-
less services, spanning both control and data planes, and
covering both the uplink and downlink forwarding path on
the data plane. Together, they showcase how a wide spec-
trum of wireless protocols can be implemented and evaluated

14

within DIRAC. DIRAC is built using off-the-shelf hardware,
including a PC and several APs.

Ongoing work seeks to support firewalls for roaming users,
implement a inter-AP, coordinated resource management
protocol to support VoIP, to add energy efficiency feature
via power-saving mode for mobile hosts, to explore perfor-
mance optimization techniques in DIRAC, and to gain more
experiences through a larger testbed deployment.

11. ACKNOWLEDGMENTS
We greatly appreciate the insightful comments by our

shepherd, Dr. Ramesh Rao and the constructive critiques by
the anonymous reviewers. We also thank Dr. Lixia Zhang
for helpful comments on early drafts of the paper.

12. REFERENCES
[1] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb,

“Building a robust software-based router using
network processors,” SOSP’01, October 2001.

[2] Y. Gottlieb and L. Peterson, “A comparative study of
extensible routers,” OpenArch’02, June 2002.

[3] S. Lu, V. Bharghavan, R. Srikant, “Fair queueing in
wireless packet networks”, SIGCOMM’97, 1997.

[4] T. Nandagopal, S. Lu, and V. Bharghavan, “A Unified
Architecture for the Design and Evaluation of
Wireless Fair Queueing Algorithms,” MOBICOM’99,
August 1999.

[5] X. Liu, E.K.P. Chong, And N. B. Shroff,
“Transmission Scheduling for Efficient Wireless
Network Utilization,” INFOCOM’01, April 2000.

[6] Fast Handovers for Mobile IPv6,
draft-ietf-mobileip-fast-mipv6-05.txt, 2002.

[7] J. Ahn, and J. Heidemann, “An Adaptive FEC
Algorithm for Mobile Wireless Networks,” Technical
Report ISI-TR-555, USC/ISI, March 2002.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M.F.
Kaashoek, “The Click modular router,” ACM
Transactions on Computer Systems, August 2000.

[9] Open AP Platform
http://opensource.instant802.com/.

[10] R. Koodli and C. E. Perkins “Fast Handovers and
Context Transfers in Mobile Networks,” ACM CCR,
31(5), October 2001.

[11] D. Kotz, and K. Essien, “Analysis of a Campus-wide
Wireless Network,” MOBICOM’02, September 2002.

[12] Juniper Research. http://www.juniperresearch.com.

[13] D. Johnson, C. Perkins, J. Arkko, “Mobility support
in IPv6,” http://www.ietf.org/internet-drafts/draft-
ietf-mobileip-ipv6-18.txt.

[14] T. Narten, E. Nordmark, and W. Simpson “Neighbor
Discovery for IP Version 6 (IPv6),” IETF RFC 2461,
December 1998.

[15] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E.
Tilton, J. Flinn, K. R. Walker, “Agile Application
-Aware Adaptation for Mobility,” SOSP’97, 1997.

[16] Intersil Prism2 driver. http://hostap.epitest.fi/.

[17] A. Rubini, and J. Corbet, Linux Device Drivers, 2nd
Edition, O’REILY, ISBN 0-596-00008-1.

[18] H. Yokota, A. Idoue, T. Hasegawa, and T. Kato,
“Link layer assisted mobile IP fast handoff method
over wireless LAN networks,” MOBICOM’02, 2002.

[19] P. McCann “Mobile IPv6 Fast Handovers for 802.11
Networks,” http://www.ietf.org/internet-drafts/draft-
mccann-mobileip-80211fh-01.txt.

[20] Mobile IPv6 for Linux.
http://www.mipl.mediapoli.com/.

[21] L. Rizzo, “Effective erasure codes for reliable
computer communication protocols,” ACM CCR,
pages 24-36, 1997.

[22] “The IA-32 Intel Architecture Software Developer’s
Manual, Volume 3: System Programming Guide,”
http://developer.intel.com/design/pentium4/
manuals/245472.htm.

[23] A. Mishra, M. Shin and W. Arbaugh “An Empirical
Analysis of the IEEE 802.11 MAC Layer Handoff
Process,” Tech Report, UMIACS-TR-2002-75.

[24] Icecast Streaming Server, http://www.icecast.org/

[25] D. Mosberger and L. Peterson, “Making paths explicit
in the Scout operating system,” OSDI’96, 1996.

[26] D. Decasper, Z. Dittia, G. Parulkar, and B. Platter,
“Router plugins: A software architecture for next
generation routers,” IEEE/ACM Trans. on
Networking, February 2000.

[27] XORP: Extensible open router platform.
http://www.xorp.org/.

[28] P. Pradhan and T. Chiueh, “A Cluster-based, Scalable
Edge Router Architecture,” Technical Report,
http://www.ecsl.cs.sunysb.edu/ prashant/papers/
design.ps.gz.

[29] N. Shalaby, L. Peterson, et al. “Extensible Routers for
Active Networks,” Tech Report,
http://www.cs.princeton.edu/nsg/papers/dance.pdf

[30] P. Faratin, J. Wroclawski, G. Lee, and S. Parsons,
“The Personal Router: An Agent for Wireless
Access,” AAAI’02, July 2002.

[31] Vernier Networks System 6500.
http://www.verniernetworks.com/AMCS6500.html.

[32] SpringTide 7000 Wireless IP Service Switch Router.
http://www.lucent.com/livelink/0900940380004ac9
Brochure datasheet.pdf.

[33] Nomadix Service Engine. http://www.nomadix.com
/downloads/products/ NSE Data Sheet.pdf.

[34] Aruba 5000. http://www.arubanetworks.com/
products/5000/.

[35] A. Miu and P. Bahl, “Dynamic host configuration for
managing mobility between public and private
networks,” Usenix Internet Technical Symposium,
March 2001.

[36] M. E. Kounavis, A. T. Campbell, et al, “Design,
Implementation and Evaluation of Programmable
Handoff in Mobile Networks,” MoMuc 2000.

[37] O. Angin, A. Campbell, et al “The Mobiware Toolkit:
Programmable Support for Adaptive Mobile
Networking,” IEEE Personal Communications
Magazine, August 1998.

15

	Introduction
	Background
	Design Rationale
	Motivation
	Architecture Alternatives

	Design
	Overview
	Forms of Interaction
	Router Core
	Control plane
	Data plane

	Router Agent
	Architectural Features

	Implementation
	Router Core
	API

	Router Agent
	RCRA Communication Protocol

	Prototype Wireless Services
	Link-Layer Informed Fast Handover
	Channel-Adaptive FEC-Based Downlink Forwarding
	Link-Layer Assisted Uplink Policing

	System Evaluation
	System Overhead
	Performance of Wireless Services
	Host mobility
	FEC-based downlink forwarding
	Policing

	Discussions and Lessons Learned
	Discussions
	Experiences and Lessons Learned

	Related Work
	Conclusion
	Acknowledgments
	REFERENCES -9pt

