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Abstract

We describe the automatic generation of a complete, realistic
compiler from formal specifications of the syntax and seman-
tics of Sol/C, a nontrivial imperative language “sort of like
C.” The compiler exhibits a three pass structure, is efficient,
and produces object programs whose performance characteris-
tics compare favorably with those produced by commercially
available compilers. To our knowledge, this is the first time
that this has been accomplished.

1 Introduction

We report on our experimentation with the semantics directed
compiler generator MESS. In earlier papers [LeP86] [LeP87]
[P1L87] we have already described the semantic foundations
of our high-level semantics approach to language specifica-
tion, and the principles embodied by our system. MESS auto-
matically produces realistic compiler implementations from the
high-level semantics of a language. The generated compilers
are realistic in the following sense:

1. They compile nontrivial imperative programming lan-
guages into object code for standard machine architec-
tures.

2. Their internal structure resembles that of conventional
non-optimizing compilers. Specifically, MESS-generated
compilers consist of three passes which communicate via
intermediate languages. They perform the usual com-
pile time computations, such as type checking, at compile
time.

3. Both the compilers and the object code they produce ex-
hibit good performance characteristics. In particular, the
size and speed of the object programs compare favorably
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with the size and speed of code produced by commercially
available non-optimizing compilers.

The structure of this paper is as follows. The next section
briefly reviews the architecture of the MESS system. Section 3
informally describes the language Sol/C, and sketches small
portions of the various specifications from which the Sol/C
compiler is obtained. Section 4 discusses the generation of the
compiler. In Section 5, the transformation of a small source
code fragment into assembly code is traced through the com-
piler passes. Section 6 evaluates the performance of the Sol/C
compiler and the object code it produces, Section 7 discusses
our extensive experience with the MESS system during the past
two years. Finally, we summarize related work in Section 8,
and sketch future research endeavors,

2 The Semantics Directed Compiler Gener-
ator MESS

Figure 1 shows the overall structure of the MESS system, which
runs on an IBM PC. It consists of two major components, the
front-end generator FTEGe [Ple87], and the semantics analyzer
SA. FrEGe processes a context-free grammar together with tree-
building rules and declarations of syntactic domains (FE spec.).
It produces LALR(1) parse tables, syntax error recovery tables,
and tree building tables for a skeletal compiler front-end (FE),
along with a description of the abstract syntax interface (AS
spec.) for the semantics analyzer. This interface is used by the
semantics analyzer to ensure that the abstract syntax expres-
sions appearing in semantic equations match the tree shapes
produced by the compiler front-end. The generated front-ends
and FrEGe itself are written in TURBO Pascal [Bor85].

The semantics analyzer SA is written in TI PC SCHEME
[TI87]. It processes both the semantic and microsemantic
specifications, written in an extension of the applicative subset
of Standard ML [Mil85]. A microsemantic specification (Mi
spec.) defines the names and types of operators (signature) in
a semantic algebra of actions, together with an interpretation
for the algebra. The signature is exported to a (macro)semantic
specification via a microsemantics interface file (Mi int.). The
implementation of the operators is transformed into an equiv-
alent SCHEME program. Note that any two microsemantic
specifications which yield identical signatures are *“plug com-
patible.” In this paper, we describe a formal specification for
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This picture of MESS shows the various phases of compiler
generation. The semantics directed compiler writer provides
specifications for the front-end, the macrosemantics, and the
microsemantics (FE spec., Ma spec., and one of CG spec., A
spec., or AM spec.). The specification of the abstract syntax
(AS spec.) is automatically provided by the front-end generator
FrEGe.

The semantics analyzer (SA) processes the semantic descrip-
tions and generates the compiler core (CC). In addition, it pro-
duces an implementation of the microsemantic operators in a
form corresponding to the type of microsemantics specified:
either a code generator (CG), a set of functions written in the
A-calculus (M), or an abstract machine (AM). A microsemantics
interface file (Mi int.) is produced as a by-product of microse-
mantics analysis, and this is used by the SA to process the
macrosemantics.

If a code generator is produced, the combination of
FE+CC+CG constitutes a realistic compiler.  Otherwise,
FE+CC is a compiler that produces prefix-form operator terms
(POTs). These can be interpreted by either a A-calculus ma-
chine enriched with the A-functions, or the abstract machine
(AM).

Figure 1: Das MESS.
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a code generator (CG spec.), and the resulting code generator
implementation (CG).

The (macro)semantic definition (Ma spec.) of a language
uses both the abstract syntax and microsemantic interface files.
It describes the static semantic aspects of the language and
a translation to terms of action operator applications. These
prefix form operator terms (POTs) may quite comfortably be
viewed as sentences in a high-level intermediate language di-
rectly based on the formal semantics of the language. The
semantics analyzer generates the compiler core (CC), written
in SCHEME, from the semantics.

The resulting compilers consist of three passes. The front
end parses the source file and writes a SCHEME S-expression
representing an abstract syntax tree (AST) to a file. The com-
piler core translates the AST to a POT, which is traversed by
the code generator, yielding assembly code. With the exception
of some constant folding and branch optimization performed by
the code generator, optimizations are ignored.

3 A Compiler Specification for Sol/C

Informal Overview of Sol/C

Sol/C is a strongly typed, imperative language “sort of like C.”
It features two-level binding, recursive procedures with value
and reference parameters, zero-based multidimensional arrays,
integer, boolean, and character data types, arithmetic, relational,
and boolean expressions, simple input and output, and the usual
complement of control structures. Open (i.e., conformant) array
parameters are always passed by reference.

Figure 4 shows a fragment of a sample Sol/C program for
multiplying matrices.

In the following we sketch small portions of the various
specifications from which the compiler is obtained. Due to the
limited space, only the handling of procedures is described.

Grammar and Tree-Building Rules

Figure 5 shows an excerpt from the specification of the Sol/C
grammar and tree-building rules. This specification is pro-
cessed by FrEGe into a compiler front-end (parser and tree-
builder) for Sol/C. The specification is approximately 600 lines
long, 200 of which are either commentary or blank.

Semantics

The high-level semantic specification for Sol/C describes the
static semantic constraints for Sol/C and the translation from
syntax trees into terms belonging to a semantic algebra
of actions. Actions may be declarative (belonging to do-
main DACTION), imperative (IACTION), or value-producing
(VACTION). The exact interpretation of the actions is given in
a suitable microsemantic specification, such as the code gen-
erator specification discussed in the next subsection. All static
semantic errors are flagged by the compiler generated from the
high-level semantics.



Figures 7 and 8 give a fragment of the semantic specification.
The entire specification is about 1,300 well commented lines
long.

It is important to note that, given a suitable interpretation
for the microsemantic operators, this specification formally de-
scribes the semantics of Sol/C. The semantic foundations of
high-level semantics are discussed in [P11.87] and [Lee87].

Code Generator Specification

The microsemantic specification fragment given in Figure 6 is
one of several plug compatible interpretations we have written
for the semantic algebra of actions. It is by far the most in-
volved, as it describes the generation of machine code for the
1APX8086 processor. Other interpretations, e.g. a continuation-
style denotational microsemantics, have also been specified and
(automatically) implemented. These are discussed in [Lee87].

In its entirety, the specification for the Sol/C code generator
consists of almost 300 functions, and is roughly 3,500 well
commented lines long (about 2,100 lines without comments).
Almost 500 of the 3,500 lines deal with the vagaries of code
output.

4 Generation of a Compiler for Sol/C

The Front End

The front end generator FrEGe converts the Sol/C grammar
into Pascal tables which are incorporated into a skeletal parser
and tree builder. The table sizes are as follows: 3.4K for parse
tables, 0.75K for tree building tables, 0.75K for error recovery
tables, and 2.6K for tables with symbolic information, such as
grammar symbol names used in syntax error messages, and the
names of node constructors used by the tree dumper. Front-end
generation takes approximately 49 seconds. All timings given
in this summary were taken on an IBM PC running with an
8MHz iAPX80286 processor, 640K of main memory, and a
20MB hard disk with 65 ms access time.

Although the front end is written in TURBO Pascal, it
is loaded as part of the Sol/C compiler when invoking the
SCHEME system. The remainder of the compiler calls the
front end like a library routine. This is made possible through
the external language calling interface provided by Version 3
of TI PC SCHEME.

The Compiler Core

The MESS semantics analyzer takes 5 minutes and 45 seconds
to produce a compiler core, written in SCHEME, from the Sol/C
macrosemantics. This includes roughly 53 seconds for parsing
the specification and writing its syntax tree to a file.

The Code Generator

Finally, the code generator specification is converted into a
code generator for the 8086 in roughly 16 minutes. This time
includes about 2 minutes and 45 seconds for parsing the specifi-
cation and writing its abstract syntax tree to a file. We estimate
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that about one fifth of the time is spent in garbage collections,
due to the limited amount of memory for the SCHEME heap
(fewer than 290K bytes after loading MESS).

5 Compilation of Sol/C Programs

Invoking the Compiler

The DOS command sclc invokes the SCHEME system and
causes it to load the three passes of the generated Sol/C com-
piler into memory. Note that TI PC SCHEME produces byte
codes rather than native 8086 code. The varicus components of
the Sol/C compiler occupy the following amounts of memory
(in bytes):

Front end 89.5K
Compiler core 26.0K
Code generator 58.0K
MESS runtime library 12.0K
MESS skeletal compiler 4.5K
TOTAL 190.0K

This leaves about 160K for the SCHEME heap. It is then
possible to compile Sol/C programs into assembly code by typ-
ing (compyle file-name) at the SCHEME system.

Parsing and Tree Building

Figure 9 shows the abstract syntax tree produced by the front-
end for the matrix initialization procedure discussed earlier.
The tree is written to a file as a SCHEME S-expression, for
subsequent analysis by the compiler core.

Producing Intermediate Code

The compiler core reads the AST from the file, performs type
checking, and converts it to a POT. Note that the front-end and
the compiler core must communicate via a disk file because
the front-end (written in Pascal) does not have access to the
SCHEME heap. The intermediate code produced by the Sol/C
compiler core for the initMatrix procedure is given in Figure 10.

Code Generation for the JAPX8086 Processor
Finally, the code generator produces 8086 assembly code from

the POT. The code for the matrix multiplication program is
given in Figure 11.

6 Performance Evaluation of the Compiler

Program Compilation

For the matrix multiplication program, the generated Sol/C
compiler exhibits the following compile times:

parsing and tree building  0.95 secs
translation to POT 3.80 secs
code generation 11.95 secs
TOTAL 16.70 secs




The above times do not include the I/O overhead due to
writing and reading the syntax tree. If the generated compiler
core and code generator were compiled to native machine code
(recall that in the TI PC SCHEME system, programs are com-
piled to interpreted byte codes), we believe they would run at
least three times faster. We estimate that such a native code
compiler would compile the matrix multiplication program in
about 5 seconds.

Object Code Execution

We now compare the performance of four Sol/C object pro-
grams with that of corresponding TURBO Pascal (Version 3.0)
programs. All of the Pascal programs were compiled with op-
tions for suppressing index and stack checking. The programs
are:

fib: compute the 22nd Fibonacci number 50 times
sort: bubble sort 1000 numbers

sieve: 30 iterations of the sieve of Eratosthenes
matMult: 100 iterations of multiplying two 20x20 matrices

Figure 2 shows the object code sizes for the programs.

fib:

sort:

sieve:

matMult:

464

ol/C

Key: Turbo Pascal

Figure 2: Object code sizes (in bytes).

The execution times for the three programs also see the Sol/C
generated code outperform the TURBO Pascal code, as shown
in Figure 3.

We can see that the Sol/C compiler performs quite well in
comparison with a hand written compiler. Similar comparisons
against other hand written compilers are given in [Lee87].

7 Correctness Concerns

Is the Sol/C compiler provably correct with respect to the stan-
dard denotational semantics of Sol/C? Unfortunately, only the
compiler core is. The correctness of the code generator would
have to be established by a tedious congruence proof involving
the microsemantics which defines the operators as higher order
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fib:

sort:

sieve:

matMult:

Key: ﬁﬁTurbo Pascal

Figure 3: Execution times (in seconds).

functions in the denotational style. However, we now sketch
ways of making this task less formidable.

In general, the code generator specification needs to be bro-
ken up into several passes, each of which implements a small
set of transformations on the POT. For example, in a first pass,
terms involving high level operators such as the While oper-
ator can be transformed into lower level terms involving labels
and jumps. Such transformations are easy to validate with re-
spect to a denotational interpretation of the While operator,
as has been done in Stoy’s book, for example. A second pass
could process the declaration operators and perform storage al-
location. It should not be very difficult to validate this pass with
respect to a denotational model which reflects certain charac-
teristics of an “abstract target machine.” Finally, instruction
selection and register allocation should occur in the last pass.
Proving their correctness would be the most involved task. On
the whole, however, the indicated separation of the code gener-
ator specification into several modules would vastly simplify a
proof that the resulting code generator, and therefore the entire
compiler, is correct.

8 A Critique of MESS

We have been experimenting with MESS for almost two years
now. Although the system was initially constructed as a testbed
of some of the principles of high-level semantics, its usefulness
for experimentation with compiler specifications has exceeded
all of our expectations. However, there are a number of short-
comings which a more complete system must remedy in order
to be a truly useful semantics directed compiler generator.

1. The system needs to support ML style modules. At the
present time, both the macrosemantic and microsemantic
specifications must be written in one monolithic piece.
More importantly, MESS does not ensure that microse-
mantic names which are not exported to the macroseman-
tics are placed in a separate name space. Several times,
this has led to interference when loading the code gener-
ator and compiler core together.



2. The metalanguage should include ML references and as-
signments. The inability to define and maintain a global
compile time state forces one to pass state information as
arguments to most functions and return all updated infor-
mation as results, even though this information is rarely
accessed. The restriction to a purely applicative style of
programming has resulted in unnecessary clutter in the
code generator specification.

3. The messages issued by the MESS type checker are not
very illuminating when subtle type errors are detected.
Also, when a type mismatch is detected in a deeply nested
expression, a cascade of messages inundates the user.

4. The clausal style of function definitions is compiled into
very poor SCHEME code. For example, a first version
of the code generator specification was written using the
clausal form, and resulted in a SCHEME program which
was almost twice as large as the present version.

5. The initial MESS environment should include more primi-
tives for compiler writing, such as functions for generating
labels, code output, etc. This would make specifications
more abstract and compact.

6. The present implementation of MESS handles in a clean
manner only those microsemantic models which provide a
functional interpretation for the algebraic operators. For
the Sol/C compiler, this has resulted in “kludging” the
interface between the code generator and the compiler
core.

7. A truly useful system must allow the compiler writer to
specify optimization passes of a compiler. MESS has to
date purposely ignored this issue.

8. Finally, the IBM PC environment is rather cramped. The
time for iterating through the debugging loop for the Sol/C
code generator was often larger than 30 minutes. Fortu-
nately, a prototype version of the specification was de-
veloped using TURBO Prolog, with a debug cycle time
of fewer than 5 minutes. We are presently considering a
port of MESS to the Mac II, and expect at least a fourfold
performance improvement.

9 Related Work and Future Research

The work of Mosses and Watt on action semantics [MoW86a]
bears strong similarities with high-level semantics. In partic-
ular, their choice of “special” operators for the Pascal action
semantics [MoW86b] is surprisingly similar to to the choice
of operators for our Sol/C semantics. There are four principal
differences between high-level semantics and action semantics:
(1) operators in action semantics are defined by means of stan-
dard algebraic operators; (2) compile time and runtime aspects
are not distinguished in action semantics; (3) transformations on
the static environment in action semantics are also formulated
via semantic operators rather than by means of A-abstractions;
and (4) data flow within an action semantics is expressed by
explicit naming whereas in high-level semantics the nesting of
prefix terms determines the data flow.
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There are three semantics-based compiler generators which
are similar in spirit to our approach. The CERES system of
Jones and Christiansen [JoC82] accepts semantic specifications
expressed in a small number of action-oriented operators in-
spired by those of Mosses. Sethi’s system [Set82] generates
efficient compilers by treating fundamental “runtime” opera-
tors in the semantic specification as uninterpreted symbols. His
work is also motivated by that of Mosses, but still refers to mi-
crosemantic concepts such as continuations and stores. Both
systems have only been used for generating compilers for lan-
guages with control structures for sequencing, looping and de-
cision making, and simple expressions. Also, the intermediate
code produced by the generated compilers must be translated
by a code generator in an ad hoc manner. Finally, the work by
Appel [App85] extends the work of Sethi to include procedures
and more complex data flow. However, the code generators pro-
duced by his system are very slow and consume large amounts
of storage space.

We are currently planning the design of a Language De-
signer's Workbench [Lee87] based on our experience with
MESS. Our hope is that such a workbench will facilitate the de-
velopment and use of modules of (macro and micro) semantic
specifications. Presently, we are experimenting with such mod-
ularity by utilizing the functor construct of Standard ML.
We have been able to make some early tests of our ideas by
implementing the functor-based modules in the Standard ML
compiler produced by Appel and MacQueen [ApM87]. Our re-
sults thus far have been encouraging, but still quite preliminary.

We have found the MESS system to be a useful tool for
semantics directed compiler generation. In particular, the strong
polymorphic type checking and pattern matching features of the
ML-based MESS metalanguage make the process of writing
semantic descriptions much easier than with previous systems.
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In this fragment of the semantic specification, note that the microsemantic operators are spelled with the first letter capitalized. Due

al specification.

origin

to space constraints, this excerpt is presented in a more compressed format than the

Fragment of the Sol/C semantics (part 1).
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Abstract syntax trees are given as SCHEME S-expressions. Nodes with labels ID and INT are leaf nodes. They carry lexical

information in the form of line and column numbers with them.

Figure 9: Abstract syntax tree for matrix initialization routine.
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All action operator names are prefixed with exclamation marks in order to avoid name clashes with SCHEME system names. Also,

ffixes.

ing unique numeric su

N

all program variable names have been «-converted by attach:

itialization routine.

ix ini
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