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T he development of operating sys- 
tems for parallel computers has 
closely followed that for serial 

computers. At first, the most advanced 
parallel computers ran in batch mode or 
single-user mode. At best, they allowed a 
static partitioning among a number of 
users. They were typically designed with a 
specific computational task in mind or for 
a certain class of computations. Like serial 
computers, they are currently evolving 
towards general-purpose, interactive, 
multiuser parallel systems. 

To explain the underlying motivation 
for our work, we note that a general-pur- 
pose, interactive, multiuser, multipro- 
gramming parallel environment has the 
following advantages (in addition to the 
traditional advantages in uniprocessor 
environments, such as cost effectiveness): 

l This environment provides users with 
a spectrum of computational powers, cov- 
ering the range from personal computers to 
supercomputers. A user requiring more 
computational power can simply use more 
processors. Thus, a short response time for 
both simple and computationally intensive 
tasks is possible. 

l The spectrum of powers also aids pro- 
gram development and evaluation. Ini- 
tially, only one processor is needed. Addi- 
tional processors can be added later with- 

May 1990 

A novel design using a 
hierarchy of controllers 

effectively controls a 
multiuser, 

multiprogrammed 
parallel system. Such a 

structure allows 
dynamic repartitioning 
according to changing 

job requirements. 

out changing the interface. Contrast this 
with network-based systems, in which 
program development takes place on a 
front-end processor and the program is 
downloaded to the parallel machine for 
execution. 

l This environment makes efficient use 
of hardware by sharing it between several 
jobs with complementary requirements at 
every given moment. This generalizes 
common practice on uniprocessors, such 
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as overlapping the computation of one 
program with the I/O of another. 

l This environment can aid in the devel- 
opment of large, modular parallel systems 
by allowing the different modules to be 
programmed and executed as if they were 
independent jobs. This relieves the pro- 
gram developer of the need to fit modules 
together and to coordinate the division of 
resources among them. 

Support for the simultaneous execution 
of a number of parallel programs implies 
that the system must coordinate the parti- 
tioning of resources among the running 
programs, as well as any dynamic reparti- 
tioning required due to the changing needs 
of executing programs. Of prime impor- 
tance is the allocation of processors to the 
different programs. Two basic driving 
forces govern this. On the one hand is the 
drive for efficiency, which usually implies 
that the various devices all be kept busy. 
On the other hand is the drive to be fair to 
all users, giving them equal shares of the 
available resources (or unequal shares 
proportional to their needs). Achieving 
fairness is complicated by the fact that 
different users have different types of re- 
quirements, sometimes hard to compare. 
For example, while some users execute 
computation-bound programs, others run 
I/O-bound ones. These two forces, effi- 
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Figure 1. Busy waiting is the most efftcient way to implement fine-grained inter- 
actions between threads, provided they are gang scheduled. As the size of blocks 
between synchronization points becomes smaller, the time to execute them tends 
to zero. With a sleep/awake mechanism, the interaction time is bounded from be- 
low by the context-switch overhead. 

ciency and fairness, sometimes conflict. 
We cannot prevent programs that cause 
inefficiencies from running, as this vio- 
lates fairness. 

Note that it is also desirable for general- 
purpose parallel systems to support vari- 
ous abstractions. Support for abstractions 
is, after all, an important duty of operating 
systems. As in the case of the other impor- 
tant duty, resource allocation, the abstrac- 
tions supported by a parallel system neces- 
sarily differ from those on a uniprocessor. 
For example, the conventional process 
abstraction might be replaced by two types 
of processes: heavy-weight processes 
(similar to the well-known Unix process) 
and light-weight processes (sometimes 
called rhreads). 

Heavy-weight processes allow modular 
and structured design of large systems by 
creating distinct contexts for independent 
computations, separated and protected 
from each other. This is also true for inde- 
pendent users. Threads allow fine-grained 
parallelism; many threads can exist within 
the context of one process, cooperating to 
perform the computation and sharing ad- 
dress space, open files, etc. Likewise, 
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abstractions for information interchange 
should be augmented with more powerful 
mechanisms than files. Various flavors of 
message passing fall into this category. 

This article focuses on the coordination 
of activities in a parallel machine rather 
than on the abstractions presented to the 
user. The discussion emphasizes the map- 
ping and scheduling of processes on pro- 
cessors. We start by outlining the specific 
goals that the system must meet in this 
area, then present the distributed hierarchi- 
cal control concept designed to meet these 
goals. To keep matters simple, we limit the 
discussion to the shared memory model 
with uniform memory access. (However, 
each processor may also have a private 
local memory in addition to the uniform- 
access shared memory.) The results extend 
to other models. 

We give detailed algorithms for the new 
control structure, as well as simulation 
results that tabulate its effectiveness. 
Comparisons to other systems that attempt 
to solve the same problems in different 
ways provide an overview of approaches 
to various issues in parallel operating 
systems. 

Design goals 
One goal of an operating system is to 

allow the user to program at a higher level 
of abstraction. Unfortunately, in many 
parallel systems the user program largely 
dictates the allocation of resources. The 
Occam programming language, for ex- 
ample, requires the user to explicitly as- 
sign processes to processors and virtual 
communication channels to physical links, 
leaving only the runtime implementation 
to the operating system. Past experience 
with uniprocessors, however, suggests the 
benefits of keeping the level of user in- 
volvement as low as possible. Partitioning 
the job into threads is part of program 
development and, as such, is the responsi- 
bility of the user or compiler. Mapping 
and scheduling these threads is the respon- 
sibility of the operating system and should 
be out of bounds to users. Likewise, we 
should avoid user involvement in memory 
management. 

The main argument for allowing user 
intervention in parallel systems’ operating 
system tasks revolves around the impor- 
tance of efficiency and speed on these 
systems and the belief that only the user 
can understand the application well 
enough to decide on the optimal system 
parameters. The validity of this argument 
depends on the number and complexity of 
the parameters, since it can be extremely 
difficult to produce an optimal configura- 
tion in the face of too many details. We 
therefore argue that, to make parallel pro- 
gramming easier, high-level principles 
should replace detailed user knowledge, 
thus restoring the traditional distinction 
between the responsibilities of the user and 
the operating system. Specifically, we 
propose the following guidelines for the 
design of an operating system to support 
dynamic resource partitioning of a parallel 
computer among a number of users, with- 
out help from the users: 

l Spatial locality. The principle of local- 
ity in the logical structure of a program - 
especially in its address space - is well 
known from uniprocessors. In massively 
parallel systems this concept extends to the 
physical structure of the machine, since we 
can expect nonuniform distances between 
different elements. The principle of spatial 
locality indicates that we should map 
strongly interacting entities in close prox- 
imity, because interactions across large 
distances cost more. In other words, the 
system must endeavor to match the logical 
locality with the physical locality. For 
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example, threads created by a single con- 
struct should be mapped to a cluster of 
tightly coupled processors. Also, their 
address space should be mapped to mem- 
ory modules within the same cluster. While 
largely irrelevant to uniform-memory- 
access machines, this principle is an im- 
portant concept when considering ex- 
tensions to nonuniform-memory-access 
machines. 

l Simultaneous actions. The most 
prominent difference between parallel 
machines and uniprocessors is that in a 
parallel machine many system activities 
relating to the same program can happen 
concurrently. It is often important that a set 
of these activities happen simultaneously. 
For example, the concept of context 
switching from uniprocessors can be ex- 
tended to multithre& 9 switching, that is, 
the simultaneous switching (across a 
number of processors) from the threads of 
one task to the threads of another task. We 
need this to implement gang scheduling, 
which we define as the scheduling of a 
group of threads to run on a set of proces- 
sors at the same time, on a one-to-one 
basis. Gang scheduling helps support the 
user’s intuitive model of a totally dedi- 
cated parallel machine and allows the effi- 
cient implementation of fine-grain paral- 
lelism (see Figure 1). 

l Balancing. An important principle 
importable directly from uniprocessor 
systems is that of balancing. Adequate 
balancing ensures that the whole system 
works at full capacity. This includes bal- 
ancing the workload on different parts of 
the system, for example, by scheduling a 
good mix of computation-bound and I/O- 
bound jobs, and balancing the workload on 
replicated instances of a certain device, 
such as by interleaving an address space on 
a number of memory modules. This prin- 
ciple becomes even more important in 
multiprocessor systems, where all de- 
vices, including the processor itself, are 
replicated. 

The implementation of a parallel operat- 
ing system that coordinates the use of 
shared resources according to the above 
guidelines must be carefully designed to 
avoid compromising system scalability. A 
system that needs to consult detailed con- 
stituent data before making a decision 
would become a bottleneck. The quest for 
a truly scalable system that can handle 
hundreds or even thousands of independ- 
ent processors underlies the distributed 
hierarchical style of the design presented 
in the next sections. 
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Figure 2. Schematic representation of the logical structure of a parallel computer 
(bottom), with a hierarchical control structure over the processors. The control 
hierarchy is orthogonal to the architecture of the machine. 

Distributed 
hierarchical control 

The principles of locality, simultaneous 
actions, and balancing can help guide the 
activities of a general-purpose, multiuser 
parallel system. A novel control structure 
is proposed for the operating system, re- 
ferred to as distributed hierarchical con- 
trol. To appreciate the ways in which this 
control structure departs from common 
practices, let us first examine alternative 
approaches to the control of parallel 
computers. 

Configuration and control. Generally 
speaking, the control of resources in a 
parallel computer can be centralized or 
distributed, or some combination of the 
two. Specifically, the following configura- 
tions have been proposed (see Hwang and 
Briggs,’ section 7.4): 

(1) Master-slave configuration. In this 
centralized approach, the operating system 
runs on the master processor and down- 
loads work to the slaves. The master is a 
critical component in such systems; if it 
fails or becomes overloaded, the whole 
system is affected. As a consequence, this 
design has limited scalability. 

(2) Distributed replicated system. In 
this decentralized approach, the operating 
system runs on each processor with a full 
copy of its data structures. This avoids the 
critical master processor but places a large 
demand on storage space. Also, the main 
point in parallel computing is that the proc- 
essors interact easily, and such interaction 
is difficult to control in a loosely coupled 
system. 

(3) Symmetrical structure with shared 

data. Many systems (such as Symunix on 
the New York University Ultracomputer, 
Xylem on Cedar, and multiprocessor im- 
plementations of Mach) aspire to this ideal. 
The processors play symmetrical roles, are 
tightly coupled, and share their data struc- 
tures. This allows better load balancing 
across the system but requires careful 
coding so as not to compromise the integ- 
rity of the system. Special primitives are 
required to avoid inefficiencies resulting 
from conflicts in the access of shared data. 
In addition, coordinating the activities of 
multiple processors (such as gang schedul- 
ing of related threads) is nontrivial. 

The distributed hierarchical control 
concept departs from this latter configura- 
tion, being inherently asymmetrical. In 
fact, it more closely resembles a master- 
slave configuration than a symmetrical 
system. However, instead of a uniproces- 
sor master controlling a set of parallel 
slaves, the master is itself a parallel ma- 
chine. We refer to the master’s processors 
as controllers. A tree of controllers super- 
vises the activities of the parallel slaves 
(see Figure 2). Controllers in higher levels 
of the tree care for activities that involve a 
large degree of parallelism, with the root 
responsible for activities that need to coor- 
dinate all the slaves in a concentrated ef- 
fort. Note that the root controller does not 
limit performance; it does not become a 
sequential bottleneck. The root controller 
participates only in the scheduling of very 
large groups; due to their size, only one 
such group can be executed at a time. The 
root does not mediate between its subordi- 
nate controllers; that would indeed cause a 
bottleneck. 

Controllers in higher levels do not keep 
track of all the details relating to the indi- 
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Hierarchical control and gang scheduling 
A small number of projects over the last dozen years used the idea of a hierar- 

chical control structure for a parallel computer. The EGPA (Erlangen General- 
Purpose Array) project’ was based on a pyramidal hardware hierarchy with a 
function similar to our tree of controllers. The processors on the bottom layer 
were connected in a square mesh pattern and executed user code, while higher 
levels were used by the operating system. However, it was never extended be- 
yond two levels, and no operating system algorithms were published for it. A 
hardware hierarchy for load balancing was proposed in the AMPS (Applicative 
Multiprocessing System) project,2 but was later dropped. 

Systems like Micro.9 and Chopp’ (Columbia Homogeneous Parallel Processor) 
used the software approach, creating a virtual hierarchy dynamically as needed. 
Thus, some of the processors were used for control, and those left over were 
available for users. These hierarchies were only used to map groups of pro- 
cesses to processors, thus partitioning the machine. Once a group of processes 
was mapped, it was executed without preemption until all the processes termi- 
nated. Therefore, these systems were not interactive. 

The same is true of Pasm (Partitionable SIMD/MIMD),S which uses a static 
two-level hardware structure. The mapping algorithms developed for Pasm are 
similar to ours in their dealing with fragmentation issues, but they are based on a 
centralized mapper with full knowledge. Hence, they are less scalable. Because 
only two levels are used, the partitioning is also less flexible. Xylem, the Cedar 
operating system,B also employs a two-level scheme that uses clusters of proces- 
sors as the unit of allocated processing power. All these systems support batch- 
style gang scheduling. 

The only interactive parallel operating system so far to support gang schedul- 
ing of groups with varying sizes was Medusa, one of the two operating systems 
for Cm’.’ Actually, this system introduced the concept. It used a very simple 
scheduling algorithm, where a central controller attempts to pack groups into sets 
so that the sum of the sizes of all the groups in a set is smaller than the number 
of processors. Then the controller broadcasts the ID of the set that should be 
scheduled next. This scheme was sufficient because of the size of Cm’ (50 pro- 
cessors) and the relatively low load placed on the system. 
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vidual slaves’ states; rather, they use con- level of the hierarchy control disjoint sets 
densed data supplied by controllers in of slaves, thus providing a spatial parti- 
lower levels. When global coordination is tioning of the machine. 
not needed, the controllers in the lower This structure provides local control 
levels control the slaves according to local when possible and global coordination 
considerations. Controllers in the same when needed. Consider the interesting 
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analogy of modern democratic gover- 
ments. The higher levels of government 
delegate much of their authority to lower, 
local officials, while they themselves deal 
only with global issues. The local officials 
supply condensed and abstracted data 
about the various locales, thus relieving 
the top levels from the flood of details. 
Nobody knows everything going on in the 
system, but it seems to work. 

The idea of distributed hierarchical 
control should be distinguished from other 
hierarchical or clustered approaches pro- 
posed for parallel computing. Such pro- 
posals are usually motivakd by memory 
latency considerations and the desire to 
build a scalable system (examples include 
Cm* and Cedar). The hierarchy is there- 
fore visible to the user in its effect on the 
communication between various proces- 
sors. With distributed hierarchical control, 
the operating system uses the hierarchy as 
a control structure. In principle, it is or- 
thogonal to the interconnection pattern 
between the processors as the user sees it. 
The sidebar “Hierarchical control and gang 
scheduling” reviews several related pro- 
posals that also use a hierarchical structure 
for control. 

Implementation issues. Implementa- 
tion of a distributed hierarchical control 
scheme can take one of two forms: a soft- 
ware abstraction or a separate hardware 
structure. 

At first glance, the software abstraction 
method seems more natural-the control- 
lers are simply mapped onto the underly- 
ing processors, which switch between user 
and supervisor modes of operation. This 
approach has a number of drawbacks, 
however. For one thing, it wastes the power 
of a tightly coupled machine on operating 
system tasks that do not require such close 
interactions. In addition, the switching 
between modes might interfere with the 
gang scheduling of related user threads. 

Users of uniprocessor systems accept 
the fact that the operating system uses up to 
25 or even 50 percent of the CPU cycles. 
Why not devote a similar percentage of the 
processors to the operating system in a 
multiprocessor system? The construction 
of a control hierarchy in hardware might 
seem wasteful because at least some of 
these processors will lie idle at any given 
moment. However, such a construction has 
the advantage of allowing the architect to 
optimize distinct processors for their in- 
tended tasks. Specifically, we could make 
the controllers in the operating system 
hierarchy less powerful than the proces- 
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sors provided for users; for example, these 
processors do not need floating-point ac- 
celerators. In addition, they need only a 
simple interconnection pattern, no shared 
memory, and a small amount of local 
memory. 

While such an approach introduces 
some asymmetry and might increase the 
complexity of the. system, this increase is 
small-all the controllers in the hierarchy 
are uniform. Likewise, uniprocessor archi- 
tectures also suffer from hardware com- 
plexity added to support operating system 
functions such as virtual memory. 

The processor-chauvinistic approach 
that laments any idle time of the operating 
system controllers is out of place for two 
reasons. First, once processors have a 
specific task, it is wrong to think that their 
idle time reflects a degradation of system 
performance. Such an approach would 
imply that we should not use integer-based 
programs when floating-point accelerators 
are available, and that we should not exe- 
cute computation-bound jobs on machines 
with I/O processors. Second, the correct 
approach should be “expensive-part chau- 
vinism,” meaning we should identify the 
most expensive part of the machine and 
keep it busy at the possible expense of 
other, less expensive parts. 

Thirty years ago the most expensive part 
was the processor. In the parallel machines 
of today and the near future, the expensive 
part is the tightly coupled structure of 
processors, interconnection network, and 
memory modules. Thus, we should keep 
this structure busy executing user code by 
sharing it among a number of user pro- 
grams. System-related activities should be 
offloaded from this structure and executed 
by less expensive peripheral processors. 
Useful computation can overlap with oper- 
ating system work, just as it traditionally 
overlaps with I/O. 

In fact, using separate processors for 
operating system tasks is not new at all. It 
exists not only in certain master-slave 
configurations, but also in the majority of 
supercomputers, where a host takes care of 
most of the scheduling and I/O operations. 
The innovation in the present proposal lies 
in the fact that the operating system also 
runs on a parallel machine tightly coupled 
with the target machine. 

Just as operating system processing is 
offloaded from the user processors, so 
operating system storage should be 
offloaded from the expensive shared 
memory. With distributed hierarchical 
control, some of the system tables and the 

May 1990 

kernel code move to the controllers’ local 
memories. 

Control over 
processors 

The fact that a multiprocessor has many 
processors adds a new dimension to the 
problem of allocating processing power to 
user programs. The operating system must 
decide not only which program executes 
when, but also where. Specifically, we can 
allocate groups of processors to distinct 
parallel programs that run side by side, 
rather than always giving the whole ma- 
chine to one program and switching from 
one program to another. To ensure effi- 
cient and fair use of the processors, this 
partitioning should change dynamically 
over time. Thus, it seems that the processor 
allocation problem on a multiprocessor 
more closely resembles the memory allo- 
cation problem on a uniprocessor than the 
scheduling problem on a uniprocessor. 
Indeed, the distributed hierarchical control 
scheme calls to mind the “buddy system” 
method for memory allocation.* 

The analogy between the processor allo- 
cation problem and the memory allocation 
problem extends to the adverse effects 
suffered by various algorithms for their 
solution.3 Processor fragmentation refers 
to a situation in which some processors are 
left over when others are allocated, and the 
leftover processors are either insufficient 
in number or unsuitably organized to sup- 
port the requirements of waiting jobs. 

The term processor thrashing describes 
a situation in which threads cannot make 
any progress because related threads with 
which they must interact do not run at the 
same time, resulting in excessive context 
switching. Gang scheduling is meant to 
eliminate this phenomenon, analogous to 
allocating memory frames for a whole 
working set of pages at once to forestall 
additional page faults. 

There have been attempts to extend the 
analogy even further. The main idea is to 
provide the user with virtual processors 
(analogous to virtual memory pages), leav- 
ing hidden the mapping to real processors. 
A full implementation of this extension 
suffers from a number of drawbacks: 

l The success of virtual memory is a 
result of the locality property of most pro- 
grams; at any given time, these programs 
use only a small part of their virtual ad- 
dress space. There is no evidence that a 
parallel program would use only a small 

portion of its virtual processors at any 
given time. 

l Virtual processors encourage the user 
to request processors without regard for 
hardware limitations, which might cause 
inefficiencies in the mapping. For ex- 
ample, a user might request many more 
processors than are physically available. 

l Providing a virtual processor abstrac- 
tion might be inefficient, as it adds another 
software layer that is not strictly neces- 
sary. 

l The operating system should map vir- 
tual processors to physical ones subject to 
interaction patterns between the virtual 
processors, yet typically we do not know 
these patterns in advance. For example, we 
might obtain large benefits by mapping 
two virtual processors that use the same 
data to the same physical processor, 
thereby allowing them to share its cache. 

Note, however, that any high-level pro- 
gramming construct implies virtual proc- 
essors in some sense. The point is that they 
should not be too virtual, but rather have a 
strong relation to the real machine. A gang- 
scheduling policy does this by allowing the 
virtual processors to relate to each other as 
do real processors. 

Approaches to the mapping and 
scheduling problems. The problem of 
mapping processes to processors and the 
problem of scheduling these processes to 
run are not necessarily independent. In 
fact, we can consider them together as a 
variant of the two-dimensional bin-pack- 
ing problem, where one dimension repre- 
sents the processors and the other repre- 
sents time. Each group of threads is then 
represented by a rectangle that defines how 
many processors it needs for how long. 
This depends on the assumption that the 
number of threads in a group does not 
change and, specifically, that they all ter- 
minate at the same time. However, the 
assumption does not imply a constant 
number of threads in the whole program. 
Existing groups can terminate and new 
groups can be created dynamically. 

Existing algorithms for mapping and 
scheduling are not limited to the packing of 
predefined rectangles. Four approaches 
stand out in the literature: 

(1) Self-service. This approach contains 
no mapping per se. It maintains a central 
queue of ready threads, and idle processors 
in search of work simply help themselves. 
This is sometimes called load sharing to 
distinguish it from load-balancing 

69 



. Preemption is used to support an interactive system with many independent 
jobs, as opposed to batch scheduling. 

l Related threads are gang scheduled one-to-one on a set of processors to en- 
sure efficiency by matching the user’s concept of a parallel machine. 

l Loads are balanced (to the degree possible with limited knowledge) to help 
maintain fairness. 

l Threads are not moved once started, to keep contexts local and to increase 
caching efficiency. 

. Centralized control that might become a bottleneck is not used; rather, a hier- 
archical structure provides coordination when needed without compromising 
scalability. 

Figure 3. Characterization of the distributed hierarchical control scheme. 

cl Controller 
cl 

Controller 

Figure 4. Schematic representation of the control hierarchy over the processors. 
(PE: processing element.) 

schemes in which work is allocated on a 
more permanent basis. 

This approach has certain advantages. It 
distributes the load evenly across the proc- 
essors, assures that no processors lie idle 
while work remains, and uses no central- 
ized control. Its disadvantages include 

l The central queue might become a 
bottleneck when many processors look 
for work at the same time. We need 
special hardware primitives such as 
fetch-and-add to avoid this danger.“ 

l Preempted threads are unlikely to res- 
ume execution on the same processor. 
Thus, we lose the opportunity to ex- 
ploit any storage associated with the 
processor for local state information 
(such as the stack). Caching also be- 
comes less efficient. 

l It appears that coordinating the proc- 
essors to guarantee gang scheduling of 
related threads requires a high over- 
head. This overhead is unacceptable 
unless we adopt a batch-scheduling 
discipline. 

Despite these objections, this scheme is 
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widely used in contemporary parallel 
machines. Examples include Symunix on 
the NYU Ultracomputer, Dynix on the 
Sequent Balance, and Umax and Mach on 
the Encore Multimax. (For descriptions of 
most of the systems mentioned here and in 
the following paragraphs, refer to the book 
by Almasi and Gottlieb.5) 

This scheme typically relies on a central 
mapper using rather sophisticated algo- 
rithms (see, for example, Lo7). This is 
considered permissible because the map- 
per is only invoked once to determine the 
scheduling sequence of the threads in a 
new job. Such algorithms are used only in 
real-time systems. 

(2) Nonpreemptive mapping. The oppo- 
site of the self-service approach, this ap- 
proach features implicit scheduling de- 
fined by the mapping. The processors are 
divided between the running programs in a 
quasi-static manner. Each program is allo- 
cated a number of processors equal to the 
number of threads in the program, for the 
duration of the program execution. When 
the program terminates, the processors 
return to the general pool for possible allo- 
cation to another program. 

The drawbacks are that the algorithms 
require too much knowledge: first, the 
generation of the precedence graph, then 
the expected runtimes of the basic blocks 
to yield the total runtime of the resulting 
schedule for evaluation. In addition, the 
algorithms cannot coordinate the schedul- 
ing of independent jobs. 

The Cedar multiprocessor system also 
uses a precedence graph, but only to ensure 
correctness, not to minimize response 
time. Therefore, it does not really belong in 
this class. 

This scheme assures gang scheduling The distributed hierarchical control so- 
and efficient caching (since threads do not lution to mapping and scheduling attempts 
move). But it does not suit interactive to achieve the advantages of the different 
systems, it cannot deal with programs with schemes while avoiding the disadvantages. 
more threads than processors, and proces- The guidelines that characterize this solu- 
sors stay idle if queued jobs require more tion appear in Figure 3. The algorithms are 

processors than are currently available. 
The Pasm, Micros, and Chopp projects 

use nonpreemptive mapping. 
(3) Local queues. This approach is typi- 

cally used in distributed systems andmulti- 
computers rather than in multiprocessors. 
Examples include transputer-based sys- 
tems and hypercubes. It involves the map- 
ping of threads to processors, whereupon 
each processor employs time sharing to 
service the threads mapped to it. 

This scheme suits a loosely coupled 
system. Because threads stay in the same 
processor, caching is efficient and context 
information does not have to be moved. 
The main disadvantage is that loads might 
become skewed, compromising fair sched- 
uling and degrading performance. In ex- 
treme cases certain processors may lie idle 
while others become overloaded. This 
implies that a runtime load-balancing 
mechanism should be introduced.6 An- 
other disadvantage-the lack of coordina- 
tion between processors - makes gang 
scheduling difficult to achieve. 

(4) Precedence graph. The precedence 
graph shows how the program is decom- 
posed into independent basic blocks (the 
nodes of the graph) and how these basic 
blocks depend on each other (directed 
arcs). The execution time of each block is 
usually also given. The mapper analyzes 
this graph and decides which blocks should 
be executed when and on what processor. 

COMPUTER 



designed for a hierarchical structure of 
controllers interconnected to form a binary 
X-tree, as in Figure 4. We chose the binary 
tree for the purpose of presentation only, as 
it simplifies the algorithms. A real im- 
plementation would probably use a tree of 
higher degree, thus reducing the height of 
the tree and the number of controllers. 

To keep the algorithms straightforward, 
we make two additional simplifying as- 
sumptions. First, we assume that all the 
threads in the system are always ready to 
run. We do not have to keep track of threads 
that become blocked and unblocked. While 
somewhat unrealistic, this assumption is 
necessary because the whole issue of how 
to treat blocked threads in conjunction with 
a gang-scheduling requirement is far from 
being resolved. Once the desired seman- 
tics are decided, the algorithms can be 
refined to support them. Second, we as- 
sume that the architecture supports a uni- 
form-access shared memory, and therefore 
the mapping of threads to processors is 
independent of the allocation of memory. 
In a nonuniform memory access machine, 
we must take the available memory into 
account when performing the mapping. 

Mapping and 
load balancing 
with distributed 
hierarchical control 

A good mapping algorithm should pave 
the way for efficient gang scheduling. The 
requirement of gang scheduling indicates 
that threads should be mapped to distinct 
processors. To fulfill this requirement, 
related threads must first be identified as 
such. We refer to a set of related threads as 
a group. A possible way to identify groups 
is to use the syntactic structure of the pro- 
gram as an indicator for the degree of 
proximity between threads.3 In other 
words, we assume that threads generated 
by the same construct interact strongly, 
while we hope that threads from distinct 
constructs do not. In terms of the process 
tree generated by the task, this means that 
at any given moment the sets of leaves with 
a common parent constitute the groups of 
threads that should be mapped together 
and gang scheduled (see Figure 5). This 
notion is also well suited to the dynamics 
of program execution, because the threads 
in such groups are actually spawned 
together. 

The mapping of a newly spawned group 
of threads proceeds as follows: The group 
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Figure 5. A code segment (using Occam notation) and its process tree. Sets of leaf 
processes with a common parent are assumed to interact strongly with each 
other and are therefore gang scheduled. This case has two such sets: ( 1,2,3 ) 
and { 5, 6,7 }. 

In controllers: 

total = total[left-child] + totaZ[right-child] 
groups = max( groups[left-child], groups[right-child]] 

+ number of groups controlled by this controller 
threads = threads[left-child] + threads[right-child] 

+ number of threads in groups controlled by this controller 

threads = number of single threads on this processor 

Figure 6. The generation of state information in the tree of controllers. Single 
threads are threads that do not belong to any group. This information is later 
used for load balancing, mapping, and scheduling. 

is spawned by an existing thread running 
on some processor. The request to create 
the new group is passed from the processor 
to its direct controller, and then up the tree 
of controllers until it reaches the level that 
caters to groups of this size. (Counting 
from the leaves upward, level i manages 
groups in the range of sizes from 2’-’ + 1 to 
2’.) The request is then passed among 
controllers within that level to the least 
loaded, most quickly found controller - 
this is the reason for the horizontal connec- 
tions in the X-tree of controllers. Finally, 
the group is mapped to the processors 
under the chosen controller. 

This procedure divides the events lead- 
ing to the execution of the new threads into 
two steps: load balancing between the 
controllers and mapping to the processors 
under a specific controller. The load-bal- 
ancing step requires controllers to have 

some notion of the load under them. Be- 
cause of scalability constraints, this cannot 
be a detailed knowledge of the load on each 
of the underlying processors. Therefore, 
the details are condensed into a single 
value - the total number of threads on all 
the processors -as they are passed up the 
tree. This data (and other data used for 
scheduling) is maintained recursively as 
shown in Figure 6. 

This measure of load can be used to 
select the best controller. However, the 
scalability requirement precludes compar- 
ing the loads of all controllers in the level 
to find the optimal one. Implementation is 
further simplified if each controller con- 
nects to only a few other controllers and 
data transfers only between neighbors. In 
this case we can envision load balancing as 
a diffusion of load along the edges of a 
network of controllers. The effectiveness 
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Simulation methodology 
The system we have presented here is a paper design, not yet implemented. 

We therefore cannot provide measured performance figures. There are two ways 
to estimate the performance of a system without implementing it: one, by analyti- 
cal modeling, and two, by simulation. We chose simulations because it is pos- 
sible to simulate the system under study in a direct manner, thus lending credibil- 
ity to the results. Analytical modeling typically requires additional assumptions, 
and such assumptions might have unforeseeable influences on the results. 

We used special checks to verify the correctness of the simulations. For ex- 
ample, the running time of groups of different sizes and the total processor idle 
time were tabulated independently. At the end of the simulation, the sum of the 
runtimes weighted by the number of groups of each size, plus the idle time, 
should equal the total processing resources. 

The results presented are derived from the simplest possible simulations. We 
simulated systems of 16, 32, and 64 processors. The workloads were synthetic; 
each consisted of a number of groups with sizes selected at random from a 
uniform distribution. The sizes typically ranged from 1 to p, the number of 
processors. In the simulations used to check the load-balancing algorithms, we 
also used a range of 1 to p/l 0. This was necessary to bring out the differences 
between the various load-balancing schemes, because large groups always 
need the whole machine and therefore mask the effects of load balancing. We 
set the number of groups so that the total number of threads in all the groups 
would conform with the load parameter, which was an input parameter of the 
simulation. Each point in the graphs represents an average of up to a thousand 
such workloads. 
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number of parameters: 

l The interconnection degree and topol- 
ogy. 

. The propagation distance allowed. 
Loads can move only from a controller 
to its direct neighbor, or to the neigh- 
bor’s neighbor. etc. 

l The driving force, meaning the differ- 
ence in loads or some other function of 
the loads. (See. for example. Lin and 
Keller.‘) 

The effectiveness of load-balancing 
depends heavily on workload statistics. 
Simulation results using a workload of 
small groups indicate that fairly simple 
schemes can provide very good perform- 
ance, (For a short discussion of the simula- 
tion methodology. see the sidebar on that 
topic.) The controllers in the simulationa 
were connected In a linear array or in a 
hypercube pattern. A request could move a 
distance of either one or three hops. 

Figure 7 shows the distributions of loads 
generated by the different schemes. It indl- 
cates the near optimality of linear connec- 
tions with three hops and cube connections 
~ithonly one hop. Linearconnections with 
only one hop do not provide enough band- 
width for good balancing, but even this is 

J much better than no balancing at all 

0.8 

x g 
B x 0.6 
$2 
a 

0.4 

n No balancing 
q Linear neighbors 
W  Linear 3 hops 
17 Cube neighbors 
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3 4 5 6 7 8 9 10 

Load (threads per processor) 

Figure 7. Simulation results for the distribution of loads generated by variouS load-balancing schemes, for 32 processors 
under a low load of small groups only. For each scheme the bars show the probability that a certain processor would have 
a specific load. 
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When the workload contains large 
groups, the results are completely differ- 
ent. Because large groups need more proc- 
essors to support gang scheduling, the load 
is always spread across the machine. 
Therefore, overloading of some proces- 
sors while others lie idle is unlikely. 

Simulations for a load with uniformly 
distributed group sizes from 1 to p, the 
number of processors, support these obser- 
vations. Indeed, the results indicate distri- 
butions that include large groups do not 
require active load balancing. These re- 
sults highlight an interesting difference 
between gang scheduling systems, where 
load balancing results automatically be- 
cause of the gang scheduling, and distrib- 
uted systems, where load balancing must 
be handled explicitly.6 

Balancing the loads on different proces- 
sors is important because it reduces the 
variance in the runtimes given to distinct 
threads and thus improves the fairness. But 
the balancing must not cause substantial 
fragmentation of the processors, because 
such fragmentation makes it harder to map 
independent jobs side by side. Having 
chosen the least loaded controller (under 
the restrictions of the load-balancing 
scheme), the new threads have to be 
mapped onto processors under its control. 
This is done according to the minimal- 
fragmentation criterion cited above. A 
controller at level i that has to map a group 
of s threads divides it into two disjoint 
subgroups of sizes s, and s2, one for each of 
its subordinate controllers. The division is 
such that one of the groups has exactly 
2-l threads in it, and the other has the rest 
of the threads. Because the capacity of 
each subordinate is exactly 2’-‘, such a 
group does not cause fragmentation on the 
controller that receives it. 

support for 
gang scheduling 

We can define the scheduling problem 
as the problem of choosing which job to 
execute. In an interactive system, the ques- 
tion of how long to execute it compounds 
the problem. Both of these questions be- 
come even more complicated in a multi- 
processor system, where a number of jobs 
might be scheduled to run simultaneously 
on disjoint sets of processors. 

The distributed hierarchical control 
scheduling algorithm is based on the same 
hierarchy of controllers used for the map- 
ping. Not surprisingly, each controller is 
directly responsible for scheduling the 
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Figure 8. Selective disabling can increase efficiency by allowing leftover proces- 
sors to schedule smaller groups. 

threads of groups mapped to it. The sched- 
uling proceeds as follows: At any given 
moment a front of controllers across the 
tree actively schedules groups of threads 
on the underlying processors. In each 
scheduling round this front starts at the 
root and sweeps down the tree. Controllers 
above the front have completed their 
scheduling for the current round and lie 
inactive, waiting for the next round. Con- 
trollers below the front are disabled by the 
currently active controllers in the front. 

The front is created on a local basis by 
the following interactions between adja- 
cent controllers: Each controller (starting 
with the root) divides its time into two 
phases. In the first phase it disables its 
subordinate controllers and directs the 
underlying processors to schedule the 
threads of its own groups. To do so, the 
active controller sends a wave of interrupts 
down the subtree rooted at its location. It 
sends a new wave for every group sched- 
uled. Because the wave reaches the proces- 
sors at the leaves at about the same time, it 
effectively gang schedules all the threads 
in a group. After a controller completes the 
scheduling of its groups, it enters the sec- 
ond phase. In the second phase it reacti- 
vates its child controllers so that they, too, 
can schedule their groups, thus moving the 
active front downwards. Naturally, a con- 
troller only executes this algorithm when 
not itself disabled by its superiors. 

An obvious optimization of the basic 
algorithm is not to disable all subordinate 
controllers upon scheduling a group of 
threads, but rather to use selective dis- 
abling. Assume that the number of threads 
in the group being scheduled is smaller 

than the number of processors under the 
controller. Then we need to disable only 
controllers situated along the paths from 
the scheduling controller to the processors 
used for threads of the current group; all 
other controllers in the subtree remain 
enabled. These active controllers can 
schedule other, smaller groups of threads. 
(As a special case, any processor left inac- 
tive can run any thread mapped to it.) 

For example, if the top controller in a 
three-level tree schedules a group of five 
threads on processors l-5 (see Figure 8), 
we should not disable the controller of 
processors 7 and 8; it can then use these 
two processors to schedule a two-thread 
group. Simulations show that selective 
disabling improves the run ratio of small 
groups, without any ill effect on large 
groups (see Figure 9). (We define the run 
ratio as the quotient of the execution time 
divided by the response time, that is, the 
fraction of the time the threads actually 
run.) 

To evaluate the performance of a sched- 
uling algorithm, we need a suitable metric. 
The metric must, of course, correspond to 
the original goals that guided the algo- 
rithm’s design. Theoretical scheduling 
algorithms are usually designed to maxi- 
mize throughput or minimize response 
time. To do so, they must have knowledge 
about the expected runtime of the various 
jobs. The distributed hierarchical control 
algorithm, on the other hand, does not 
assume any such knowledge. In addition, 
its design goal is the support of gang sched- 
uling. Therefore, the metric for its evalu- 
ation should be the gang-scheduling effi- 
cacy achieved, that is, the percentage of 
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Figure 9. With selective disabling, previously wasted processing power runs 
small groups. The run ratio measures the fraction of the time that a group is 
actually executing. Large groups are unaffected. 
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Figure 10. Example of scheduling groups with four and one threads. Waste is 
reduced if the time slices are determined by group weights, because the one- 
thread group that causes more waste is scheduled for less time. (PE: processing 
element.) 

processors effectively used to gang sched- 
ule user tasks. 

The only parameter in the algorithm we 
can modify to optimize this metric is the 
division of time between a controller and 
its subordinates. Interactive uniprocessor 
systems typically give the same time quan- 
tum to all ready jobs, with round-robin 
scheduling. (CPU-bound jobs may get 
longer quantums - and lower priorities - 
as they continue to execute, but a-priori all 
jobs get the same service.) Extending this 
to the distributed hierarchical control 
scheme is not trivial, because the number 
of groups of threads in distinct branches of 
the controller tree might differ. Therefore, 
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controllers must keep track of the maximal 
number of groups in any of the branches 
under them; they do this with the groups 
variable in Figure 6. In short, executing 
each group for a period proportional to 
l/groups achieves uniform time slices. 

Because of the gang-scheduling require- 
ment, scheduling with such uniform time 
slices can be very inefficient. Consider an 
example in which the workload on a sub- 
tree with four processors consists of only 
two groups, one with four threads and the 
other with one thread. Using uniform time 
slices wastes 37.5 percent of the-process- 
ing power, because when the single-thread 
group runs, three processors are left idle 

(see Figure 10). Note, however, that the 
four-thread group does not waste re- 
sources. This points out a method for 
improving efficiency, namely, letting 
large groups run more than small groups. 

Formally, the alternative to uniform 
scheduling is scheduling by weight. We 
define a group’s weight as the number of 
its threads and a controller’s weight as the 
total number of threads in all groups 
mapped directly to it. We can compute 
weight using the variable threads of 
Figure 6, as 

weight = threads - ( threads[left-child] 
+ threads[right-child] ) 

To divide the time according to weights, a 
controller computes the ratio of its weight 
to the total number of threads in its subtree, 
that is, weight/threads. This ratio gives the 
proportion of time allocated to its own 
groups. Simulation results indicate that 
using this scheme substantially reduces 
wasted processing power (see Figure 11). 

An obvious drawback of dividing time 
by weights is that it impairs fairness. In the 
example given above, the single-thread 
group gets to run for only a quarter of the 
time that the four-thread group runs. 
However, this effect only exists when the 
workload is skewed, that is, when the vari- 
ous groups cannot fit together so as to use 
all of the processors. Had there been four 
single-thread groups in our example, their 
combined weight would have equaled that 
of the four-thread group, resulting in equal 
run ratios. Moreover, the use of selective 
disabling tends to favor small groups by 
giving them additional runtime. This more 
than compensates for the reduced time 
allocated in many cases, as shown in 
Figure 9. 

Availability and 
fault tolerance 

The trend in parallel operating system 
design has been from master-slave con- 
figurations towards symmetric configura- 
tions. At first, it was important for the 
system simply to work, even if it meant 
that a single failure (of the master) would 
bring down the entire system. After the art 
of getting systems to work was mastered, 
attention turned to making them more fault 
tolerant by, for example, using symmetri- 
cal systems. Replacing the single master 
with a tree of controllers achieves the same 
effect. As we show below, no controller is 
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critical for system operation. At most, a 
controller failure degrades performance. 

The algorithms described in the previ- 
ous sections are designed for a full tree of 
controllers supervising a set of processors 
whose number is a power of two. A real 
system, however, would have to contend 
with less ideal circumstances. Specifi- 
cally, two situations we might expect are 

(1) The number of processors is not a 
power of two. In large systems, the differ- 
ences between successive powers of two 
are large, and it is unreasonable to disallow 
systems with intermediate sizes. 

(2) There are not enough processors to 
satisfy a request. For example, the user 
might want to spawn more threads than 
there are processors. 

The first problem has an algorithmic 
solution. In the original algorithms, con- 
trollers implicitly deduce the number of 
processors under their control by knowing 
their level in the tree. If the tree is not full, 
they must keep track of the number of 
processors explicitly. The same type of 
information filtration used to track loads in 
Figure 6 can be applied here. This knowl- 
edge is then taken into account in the 
mapping algorithms. 

The solution to the second problem is to 
multiplex the processors. A too-large re- 
quest propagates up the tree until it reaches 
the root. Since the root controller cannot 
pass the request further up, it maps the 
request itself. It splits the request into two 
requests and forces the subordinate con- 
trollers to care for them despite the fact that 
they are too large. The subordinate con- 
trollers continue this procedure until they 
reach the underlying processors. Because 
there are not enough processors, some of 
them will receive orders to care for more 
than one thread. When the order to gang 
schedule these threads later arrives, the 
processor must switch between them. Note 
that this is less expensive than conven- 
tional context switches, because threads 
belonging to the same group share all of 
their context except the processor state. 

Even in a system with a complete tree 
and proper constraints on program re- 
quests, these two algorithmic complica- 
tions can be useful-indeed, sufficient - 
in keeping the system operational in the 
face of fail-stop faults in any of the de- 
vices. We do not propose building a fail- 
safe system that guarantees correct termi- 
nation of any job submitted despite run- 
time hardware failures; we make do with 
ensuring system availability at all times. 
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Figure 11. Simulation results show a reduction in wasted processing power when 
the scheduling times are determined by the weights of the groups of threads. 

Figure 12. When a controller fails, it can be disconnected, leaving three opera- 
tional, nearly independent systems. (PE: processing element.) 

Thus, some jobs might crash if a device 
fails, but other jobs might not be affected. 
In addition, the system as a whole stays 
operational, so the crashed jobs can be 
submitted again without delay. 

We achieve this type of fault tolerance 
as follows: When a controller fails, the tree 
is disconnected at the failed controller. 
Naturally, this requires special hardware 
support. This leaves us with three nearly 
independent systems: two small systems 
rooted at the direct subordinates of the 
failed controller, and the original system 
minus the subtree rooted at the failed con- 
troller (see Figure 12). Each of these sys- 

tems can continue to function correctly, 
albeit with possible degradation of per- 
formance. The two small systems do so by 
multiplexing the few processors they have; 
the large system simply notes it is not a full 
tree. The three are not completely inde- 
pendent, because load balancing can still 
occur at the low levels. 

Care is required, however, to handle 
failure on-line. To see that this simple 
scheme indeed works, note two additional 
points. First, a controller can fail while its 
subordinates are disabled, thus leaving 
their subtrees dormant forever. Since the 
subordinates mediate all interactions be- 
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tween a controller and its underlying proc- 

An interesting question is what happens 

essors, if the controller does not relinquish 
its hold on the processors for a long enough 
time (for example, a number of scheduling 

to those programs running when the fault 

time quantums), the subordinates can re- 
volt and regain control on behalf of the 
smaller groups of threads mapped on their 

occurs. The only groups of threads af- 

subtrees. To do so, they simply assume the 
role of a root controller and start new 
scheduling waves in their subtrees. Sec- 

fected by a controller failure are those 

ond, when the failed controller is repaired, 
renewing the connections to it will restore 
the original full system (again, with the aid 

mapped to it or to one of its superiors, 

of special hardware support). The subordi- 
nates will find that they are not roots any 
more and can therefore send large requests 

because such groups need the services of 

upward. The superiors of the repaired 
controller will find a new branch and up- 
date their count of the available processors 

the failed controller to coordinate their 

in the system. 

multiuser computer systems are paging 
and virtual memory. Paging solves the 
fragmentation and overhead problems 
associated with contiguous allocation of 
memory and provides efficient division of 
memory among multiple jobs. Virtual 
memory allows for large address spaces 
that exceed the physically available mem- 
ory and provides a level of protection be- 
tween processes. It seems reasonable to 
expect these benefits in parallel systems as 
well. 

the communication between them must be 
much larger than is common today. A natu- 
ral solution is to use numerous memory 
modules and disks in parallel, with an inter- 

The nature of a parallel system implies, 
however, that ideas that provided adequate 
performance in uniprocessors might not 

connection network between them. To 

suffice. Specifically, we can expect more 
jobs to execute concurrently, each with a 
higher data-processing capability. There- 

ensure balancing, the address space should 

fore, both the volume of the primary and 
secondary memories and the bandwidth of 

probably be interleaved across the devices. 

for the allocation of memory and disk 
space. 

Previous work in this direction falls 
short in a number of ways. The only system 
to support gang scheduling’ with preemp- 
tion was Medusa, which ran on Cm*.9 
However, a central scheduler coordinated 
the system, so it was not scalable. The 
Mach operating systemlo does not have 
truly scalable multiprocessor implementa- 
tions either, although it has been ported 
successfully to small-scale machines such 
as the Encore Multimax. In addition, the 
scheduling servers implemented so far do 
not support interactive gang scheduling. 

The distributed hierarchical control 
scheme introduced here constitutes a new 
concept in the field of parallel operating 
systems. (See the sidebar “Hierarchical 
control and gang scheduling” for a review 

gang scheduling. However, the absence of 
the controller does not imply that these 
groups cannot continue to compute. At 
most, they will suffer a degradation in 
performance because of the lack of gang 
scheduling. The only change required in 
the scheduling algorithm is that the failed 
controller’s subordinates must allocate 
some time to the orphaned groups. 

Once we have many devices at hand, the 
question of coordinating their activities 
arises. Of course, coordination is not al- 
ways necessary. For example, it seems 
senseless to create dependencies between 
distinct jobs that read or write different 
files from different disks. But we do need 
to coordinate the swapping of an address 
space that is interleaved across memory 
modules. 

bining the goals of being scalable, support- 
ing interactive use, and fulfilling the para- 

of other projects involving some sort of 

digms of locality, simultaneous actions, 
and balancing. It meets these goals in a 
potentially simple and straightforward 

hierarchical control.) This scheme pro- 

manner that also provides a degree of fault 
tolerance. When it is actually imple- 
mented, we can carry out a full cost/per- 

vides a compromise between centralized 

formance analysis.= 

master-slave-type systems, in which the 
master can become a bottleneck, and to- 
tally distributed systems, which lack 
global coordination. It is unique in com- 

A processor failure is just a special case 
of a controller failure. Its main effect is to 
decrease the system size. The controllers 
need only note the new size. The main 
difference between a processor failure and 
a controller failure is that when a processor 
fails, the threads mapped to it cannot run 
any more. Thus, the groups to which these 
threads belong must be killed, and the user 
must submit the whole program again. 

We thus face a dynamic system, where 
both independent activities and activities 
needing to coordinate arbitrary sequences 
of modules might appear. The concept of 
distributed hierarchical control is useful 
for dealing with such a system. Because 
the character of the memory-related activi- 
ties depends strongly on the details of the 
paging and interleaving, this subject re- 
quires additional research. 
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