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Abstract

Recent imaging studies suggest that object knowledge is stored in the brain as a
distributed network of many cortical areas. Motivated by these observations, we study
a multi-modular associative memory network, whose functional goal is to store patterns
with different coding levels, i.e., patterns that vary in the number of modules in which
they are encoded. We show that in order to accomplish this task, synaptic inputs should
be segregated into intra-modular projections and inter-modular projections, with the
latter undergoing additional nonlinear dendritic processing. This segregation makes
sense anatomically if the inter-modular projections represent distal synaptic connections
on apical dendrites. It is then straightforward to show that memories encoded in more
modules are more resilient to focal afferent damage. Further hierarchical segregation
of inter-modular connections on the dendritic tree improves this resilience, allowing

memory retrieval from input to just one of the modules in which it is encoded.



1 Introduction

The knowledge of concrete objects, such as their physical features and functional properties,
is stored in the brain in a distributed network of discrete cortical areas. Imaging studies
[Martin et al., 1995, Martin et al., 1996] have shown that attributes that define an object
are represented close to the cortical regions that mediate perception of these attributes.
Moreover, the brain regions active during object identification are dependent on intrinsic
properties of the object presented.

Cortical modules were observed in the somatosensory [Mountcastle, 1957], visual [Hubel
and Wiesel, 1977] and association [Hevner, 1993] cortices. These modules differ in their
structure and function but are likely to be elementary units of processing in the mammalian
cortex. Within each module the neurons are interconnected. Input and output fibers to
and from other cortical modules and subcortical areas connect to these neurons. In some
parts of the cortex modules were shown to function as memory units (see [Amit, 1995] for
a review).

It therefore behooves us to study neural networks of associative memory with modules
representing different modalities or features. Previous studies of modular networks [O’Kane
and Treves, 1992, O’Kane and Sherrington, 1993, Viana and Martinez, 1995] were limited to
memory patterns which where coded in a fixed number of modules, equal for all memories.
The computational challenge of storing memory patterns that are coded in a variable number
of modules was first introduced by [Lauro-Grotto et al., 1994]. The authors addressed the
problem by using the category to which each memory belongs (which determines its level
of coding) to modulate synapses and neuronal thresholds during retrieval. This process has
led [Lauro-Grotto et al., 1994] to conclude that storage and retrieval of memories that are
coded in a variable number of modules must involve consciousness.

In this paper we introduce a low-level mechanism that solves the problem without re-



quiring explicit knowledge of the coding level of each memory. Our solution is based on
a functional distinction between the intra-modular and inter-modular couplings. While
intra-modular connections are summed up in the conventional linear manner, we introduce
a non-linear dendritic function that processes the activations arriving via the inter-modular
connections. This non-linear processing operates as a squashing function on the inputs
coming from other modules, thus eliminating the difference between contributions to the
postsynaptic potential generated by memories with different levels of activity.

The biological motivation for intra/inter modular synaptic segregation hinges on the ob-
servation that neurons from distant modules synapse onto the distal part of the dendritic tree
[Markram et al., 1997, Yuste et al., 1994, Hetherington and Shapiro, 1993]. Furthermore,
[Yuste et al., 1994] have suggested that neocortical pyramidal neurons have two functional
zones: a basal compartment, comprising the basal dendrites, cell body, and the proximal
300um of the apical dendrite; and an apical compartment, formed by the rest of the apical
dendrite. Evidence for non-linear processing comes from the observation that neocortical
apical dendrites are capable of producing regenerative events and thus may be involved in
boosting distal synaptic inputs [Yuste et al., 1994, Magee and Johnston, 1995, Johnston
et al., 1996, Yuste and Tank, 1996]. [Stuart et al., 1997] have found that proximal synap-
tic stimulation (in layer 4) of layer 5 pyramidal neurons initiated action potentials first at
the soma, whereas distal stimulation (upper layer 2/3) could initiate dendritic regenerative
potential prior to somatic action potentials.

The need to store memories with different coding levels necessarily entails a significant
loss of memory capacity in conventional associative memory networks. The concept of
critical capacity needs to be modified to accommodate the fact that populations of memories
with different coding levels have distinct critical capacities. The introduction of non-linear
processing enables the storage of a broad spectrum of such populations and considerably

increases the network’s information capacity compared with conventional networks. Yet,



the resulting critical capacity levels are still significantly smaller than those obtained in
networks storing memories with a single, uniform coding level.

In the next Section, we present a model of a multi-modular associative memory, storing
memory patterns encoded in a variable number of modules. In Section 3 we motivate
the usage of non-linear dendritic processing, characterize the optimal dendritic processing
function and study the network’s memory capacity. Section 4 investigates the fault tolerance
properties of a modular network and its consequences. Finally, the last Section summarizes

our results. Details of analytic calculations are provided in Appendices.

2 Multi-Modular Organization

We study an excitatory-inhibitory associative memory network, storing M memory patterns
in L modules of N binary neurons each. Each memory n* is defined on a subset of size
QF of the L modules. We refer to Q as its modular coding. The sparse coding level inside
a module is p << 1. The synaptic efficacy Jij”“ between the jth (presynaptic) neuron
from the kth module and the ith (postsynaptic) neuron from the /th module is chosen in a
Hebbian manner
1 M
lk
Jij " = N St - (1)
P
This synaptic matrix is a natural extension of [Tsodyks, 1989] formulation for the case of
multi-modular network. The updating rule for the activity state V;' of the ith binary neuron

in the [th module is given by
Vil (t+1) = O [Bil(8) = 0] (2)

where O[z] is the step function and 6, is the neuronal threshold. The neuron’s local field,

or membrane potential, has two components

hil(t) = hilinternal(t) + hilea:ternal(t) : (3)



The internal field is

N
hilinternal(t) = Z Jijll‘/jl(t) —Tn Ql(t) ) (4)
J#1

with inhibition proportional to the total activity inside the module

I 1 &
Q(t) = N—pZVj (t) (5)
J

The external field is
l [ L N L '|
hi' external(t) = G [Z T V) — e Y QR () - 9dJ ; (6)
kAL 5 kL
where G[z| represents dendritic processing of post-synaptic currents from neurons situated
in other cortical modules, and allows for the freedom of using more complicated behavior
than the standard G[z] = z one.

Both local and global inhibition are used to keep the means of the internal and ex-
ternal crosstalk noise terms near zero, otherwise the capacity vanishes. Evidence for the
existence of local cortical inhibition is abundant but that for global inhibition is weaker.
Such global cortical inhibition may be mediated through diffuse thalamo cortical projections
that terminate on certain classes of inhibitory interneurons (see [Mountcastle, 1997] for a
review).

The retrieval quality at each recall trial is measured by the overlap function that de-
scribes the similarity between the final state V' the network converges to and the memory
pattern n* that is cued in each trial. It is defined by

("3 — p) Vi¥(2) , (7)

L N
1
=1

where Q¥ is the modular coding of n*.



3 Dendritic Processing
3.1 Motivation

The dendritic processing function G[z| separates between the proximal (intra-modular) and
distal (inter-modular) synaptic connections. Hence, synaptic inputs from neurons that are
situated in other modules undergo additional processing compared with inputs from neurons
that belong to the same module. We first compare in simulations the linear (and, so far,
standard) case G[z| = x of dendritic processing with the non-linear G[z] = AO[z], where ©

is the Heaviside step function.
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Figure 1: Quality of retrieval vs. memory modular coding. The dark shading represents the
mean overlap of retrieved memories with different modular codings achieved by a network
with linear synaptic couplings. The light shading represents the mean overlap of a network
with non-linear processing of the inter-modular connections. The latter achieves perfect
recall of all memory patterns. The simulation parameters are: L = 10, N = 500, M =
50, p = 0.05, A = 0.7, 8; = 2 and 6, = 0.6. The encoded memories are distributed

homogeneously over all possible modular codings.

Figure 1 shows the performance of the two networks when the stored memories have

different levels of modular codings. We measure the network’s performance by the mean



overlaps of the retrieved memory patterns. We choose the modular coding Q* to be ho-
mogeneously distributed with equal proportions for all memories e.g., we store 5 memories
with Q¥ = 1, another 5 memories with Q# = 2, and so on. As can be seen the linear network
can only sustain memories with high modular codings. In order to retrieve patterns with

low Q# non-linear inter-connections are needed.
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Figure 2: Critical capacities for different modular codings as function of threshold param-
eters. (a) A modular network with linear G[z] = z. The network has L = 5 modules with
N = 1000 neurons in a module and stores memory patterns with p = 0.05. (b) A mod-
ular network with non-linear G[x] = AO|z], using the same architecture with parameters

0, = 0.7 and A = 0.5. Finite a,. > 0.05 for all € is obtained for 8, > 2.

To understand this behavior we calculate the critical capacities a.(Q2) = % of memories
with modular coding € for the two networks as a function of threshold. We define a.(2) as
the capacity above which memories of patterns with modular coding €2 are unstable. Note
that a.(€2) depends on the modular coding distribution of the whole memory population. In
this paper, we focus on the case of equal number of memories for each modular coding (the
pertaining capacity calculations are given in Appendix A). As can be seen in Figure 2(a),

there exists no threshold for which linear modular networks can sustain their full memory

repertoire with all modular codings. Linear dendritic processing allows for the coexistence of



memories with only a relatively narrow span of different modular coding levels, as already
observed by [Lauro-Grotto et al., 1994]. However, in the case of the non-linear network
with G[z] = AO[z] shown in Figure 2(b), a stable system is obtained, in which all possible

modular codings can coexist (for values of 65 > 2).

3.2 Optimal Dendritic Functions

Next, we examine the performance of the modular network when a more general G|z] is
taken as the dendritic processing function. We define the following piecewise linear family

of functions

tan 3 - x —oco<x <0
Glz,B,7] = tanvy-z 0<z<coty (8)
tanf -z +[1 —cotytan ] coty < z < 00

plotted in Figure 3(a). Given G[z,3,7] we search for the optimal dendritic processing
function that will maximize the network’s retrieval capabilities. We use the overlap Eq. 7
as a measure of performance and calculate m”(f = 1) when pattern 5 is introduced to the
network as an input cue at ¢ = 0. This one step calculation is derived in Appendix B for

an arbitrary dendritic processing function.
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Figure 3: Performance of a modular network for different types of dendritic processing
functions. (a) Piecewise linear G[z] used for the calculation. (b) The overlaps of patterns

with © = 10 (solid) and © = 40 (dashed) for G[z] defined by Eq. 8 as a function of 8. The

results for § > 8 > 7 remain similar to those reported for 8 = 7. The modular network

has L = 50 modules and N = 1000 neurons in a module, and stores memory patterns
with p = 0.025. Other parameters are a = 0.02, ; = 1 and optimal 6,,. The results are

practically independent of the value of ~.

Figure 3(b) shows m”(t = 1) for G[z,[,v] in two cases: memories with low modular
coding (2 = 10) and with high modular coding (2 = 40), calculated for an optimal neu-
ronal threshold 6,. This analysis shows that choosing small § values (that is, a practically
bounded dendritic processing function) is necessary for sustaining memories with low mod-
ular codings. These results are independent of y. However large values of 7y (i.e. non-linear
dendritic functions such as the step function) are important for allowing strong interactions
between different modules, leading to efficient retrieval from partial cues, as discussed in

Section 4.



3.3 Memory Capacity in Networks Storing Multi-coded Memories

Storing memories with variable levels of coding necessarily results in a significant reduction
in storage capacity. This property is inherent to both modular and conventional, single
module networks. In a conventional network the critical capacities of the different memory
subpopulations strongly depend on the variance of memory coding levels. The analysis
carried out in Appendix C leads to the results displayed in Figure 4, showing the critical
capacities of two memory subpopulations 7 and ¢ with coding levels p and f respectively

(where p < f < 1) stored in a single module network.
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Figure 4: (a) The critical capacity a.e vs. f, for specific p values, # = 0.7 and N = 5000.
(b) a, vs. p for specific f values with the same parameters as in (a). The details of the

calculation are given in Appendix C.

Figure 4(a) depicts the critical capacity of the high activity memories. As evident, their
critical capacity is maximized when f = p. The larger the difference between f and p the
smaller a.¢ is. Somewhat similar behavior can be seen in Figure 4(b), where the critical
capacity of the low activity memories is plotted. In general, the wider the distribution of
coding levels the lower are the critical capacities.

The critical capacities of memories stored in a linear modular network are lower than



the ones observed in a single module network, but again, memories with higher modular
coding have a much lower critical capacity than low-coded memories. An example of this
behavior can be seen in Figure 5, comparing a single module network with both linear and
non-linear modular networks, all storing the same population of memories. It should be
noted that critical capacities depend strongly on both p and N, therefore we have made

sure that these values are the same for all the networks that we compare with one another.
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Figure 5: Critical capacities for conventional (single module), linear and non-linear modular
networks storing two populations of memories. All three networks have 5000 neurons, and
the activities of the two memory populations are 50 and 250 neurons correspondingly (that
is, diffused activities of 0.01 and 0.05 in the single module network and two populations of
Q2 =1,5and p = 0.05 in the modular networks). Other parameters are L = 5, § = 6,, = 0.7,
0; =2 and A =0.5.

As evident, the non-linear modular network has a lower critical capacity of the small
memories but is significantly better for the large memories. As a result, the information
capacity [Frolov et al., 1997] of the non-linear modular network is considerably larger than

that of the other networks.
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4 Fault Tolerance in Multi-Modular Networks

We turn now to the effects of pathological input alterations on the retrieval of memories with
different modular codings in a network characterized by a non-linear dendritic transmission
function G[z] = AO[z]. We start by using randomly distorted input cues in which all modules
have the same probability for error. We find that regardless of their modular codings (2,
all memories are equally susceptible to this kind of homogeneous random input noise. The
situation is fundamentally different if spatially localized damage is introduced, by setting
the input cues to some of the modules to zero. Figure 6 shows the pattern completion

quality of a network in which 6 of the 10 modules have their inputs shut off.
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Figure 6: The performance of a multi-modular network when 6 of the 10 modules do not
receive input cues. The mean overlap is plotted versus modular coding. The bars represent
results of one simulation. The dashed line represents average over many simulations that
is estimated analytically. The simulation parameters are: L = 10, N = 500, M = 50,
p=0.05, A=0.7, 03 =2 and 6, = 0.6.

The choice of 8; = 2 in this simulation ensures that the presence of two active external
modules is sufficient for the activation of any other module in a memory. Thus, as demon-

strated by the shaded bars, memories with modular codings {2 = 8 and above will always be

11



successfully retrieved. The probability for successful retrieval decreases with the modular
coding level.

Figure 6 shows that memories that have larger modular codings are more resilient to
afferent damage, since their chances of retaining the minimal number of modular inputs
required for activating all modules in a memory pattern are significantly higher. Interest-
ingly, these results can account for the psychological findings that concrete items are more
resilient to brain damage than abstract ones [Jones, 1985, Warrington and Shallice, 1984].
This follows if one accepts the assumption that concrete items have more attributes than
abstract ones (see [Hinton and Shallice, 1991] and [Friedemann, 1998] for a review), which
implies that concrete items have higher modular coding, and hence are more resilient.

The use of non-linear step functions such as Gi[z] = AO[z] enabled us to model non-
linear processing of distal inputs. Once we allow for non-linear dendritic processing we
may envision more complicated structures of G[z]. An extreme case is one of hierarchical

inter-modular connectivity resulting in nested step-functions, such as

L N
Go =20 Y0 > 7"V () — vaQu(t) — Ok | — 0a| - (9)
k#l j

This would correspond to a situation in which every external module connects to a different
branch of the dendritic tree, and each branch produces its own non-linear processing that
is further modulated on the way to the soma by an additional non-linearity. Such semi-
local dendritic processing gains biological support from the dynamical behavior of dendritic
voltage-gated channels. Multiple EPSPs occurring on the same branch and within a narrow
time window may activate voltage-gated channels and produce a much larger response
than would occur if they were on separate branches or occurred outside this time window
[Johnston et al., 1996]. Currently there exists no direct biological evidence in cortex for focal
spatial connectivity of the sort implied by Gy, but the specificity of synaptic connections

in other brain regions such as the cerebellum [Ito, 1984] and the olfactory bulb [Shepherd,

12



1990] may indicate that such connectivity may be plausible.

0.9- b

0.8F , i

0.7r i

<m>

0 . . .
0 0.2 0.4 0.6 0.8 1

m(t=0)

Figure 7: The pattern completion performance of modular networks with different types of
non-linear dendritic processing. The mean overlap is plotted vs. the overlap of the input
cue. The solid line represents the performance of the Go network and the dash-dot line
represents Gi. The left curve of Gy corresponds to the case when full input is presented
to only one module (out of the 5 that comprise a memory), while the right solid curve
corresponds to partial input to all modules. The G; network cannot retrieve the memory
under the first condition, but performs better for the case of partial inputs to all modules,
as shown by the dash-dot curve. Parameters are L =5, N = 1000, p = 0.05, A =0.8, 2 =5
0, = 1.5 and 6, = 0.7.

It is interesting to compare the results of the two functions Gi[z] and Go[z]. We tested
pattern completion under two forms of external partial inputs: 1. an uncorrupted input
cue was presented to a single module within the subset of modules in which the memory
was encoded, and no input was provided to all other modules. 2. an input cue was given
at the same level of partial activity to all modules. As evident from Figure 7, the nested
nonlinearities of Gs enable retrieval even in the extreme case in which only one module is

activated by the cue.
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5 Summary

In this paper we use the modular structure of the brain as the basis for modelling an
associative memory network that can accomodate memories with very different activity
levels. All these memories are assumed, for simplicity, to have the same sparseness within a
module, but they may have very different numbers of modules in which they are encoded.

To achieve our goal we have made a distinction between two types of synaptic connec-
tions, proximal ones that occur on basal dendrites and correspond to inputs from near-by
neurons, and distal ones that occur on apical dendrites and transmit information from
far-away neurons belonging to different modules. Moreover, we have made the strong as-
sumption that the synaptic currents of the distal synapses are further processed non-linearly
by the dendritic tree on their way to the soma. Representing this nonlinear processing by
a Heaviside threshold function has the important advantage that the neuronal input that
is due to activity in other modules will always have a standard strength. Thus a neuron
activated during memory retrieval feels the input of all other neurons in its own module
as well as a standard strong input reflecting the fact that several other modules of the
same memory pattern are active, but it is not sensitive to the exact number of other active
modules. This solves the problem that prevents standard neural networks from accomo-
dating patterns with different activities (or different modular codings using our underlying
modular structure). Since these neurons are sensitive to the signal to noise ratio, their pa-
rameters have to be tuned to a particular activity level, thus allowing only a limited range
of variation. In our case this is no problem since the sparseness within a module is kept
constant and the external signal is standardised.

An interesting outcome of our model is its resilience to corrupted input, or afferent
damage, of a focused nature. In conventional neural network models one studies basins of

attraction by considering diffuse damage, i.e. random corruption of inputs. Here we have
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an ordered system, at least as far as its modular structure is concerned. Hence we can
study its behavior under focused damage, when some of the modules are deprived of their
afferent inputs while keeping all lateral connections intact. The results are very interesting.
They show the resilience of memories that have large modular coding. A fact that can be
connected to the interesting psychological observation of the resilience of natural memories
in patients with focal damages. Moreover, we find that further dendritic nonlinearities,
such as nested Heaviside functions specifying the information transfer between every pair of
modules, lead to stronger resilience to focal damage and weaker resilience to diffuse damage.

We believe that the concept of multi-modular networks is necessary for a meaningful
implementation of associative neural networks in models of the cortex. A module is naturally
described in terms of neurons that share with one another a large number of synaptic
connections through the grey matter. We have labeled them as proximal synapses in our
work, introducing a distinction between them and the distal apical connections. Whereas
in Nature the situation may be much more complicated, it stands to reason that this simple
dichotomy should play a leading role, distinguishing between near-by and far-away inputs.
It remains to be seen if, indeed, the latter are subject to further nonlinear processing, and if
our simple representation can do justice to the complicated dynamical mechanisms that go
on in real neural circuits. In any case, we have seen that it leads to interesting consequences

and allows for simple modelling that was not possible without it.

Acknowledgments: We thank Isaac Meilijson for very helpful discussions.
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A Appendix A: Capacity of a Multi-Modular Network
A.1 Linear Dendritic Processing (G[z] = )

Consider a modular network in which G[z] = z. The network stores memory patterns

with variable modular coding with a given distribution and p < 1. The degree of global

inhibition is taken to be -y, = <L&>Mp2 and g = <5221:<§> Mp?, where (Q) and (©2) are the

first two moments of the distribution of modular codings. We calculate the critical capacity

of the modular network using mean-field analysis similar to [Herrmann et al., 1995]. We

18



assume that pN > 1 and p < 1, and that memory pattern n” has macroscopic overlap. We

then derive the fixed-point equations for the modular overlap

| N
mh(t) = — Y n"u Vi) | (10)
pN =

and activity Q;(¢) for each one of the I modules in the network!.
Writing the local field of the i’th neuron in module [ in terms of the modular overlap

mY;(t) and modular activity Q;(t) we get
L .
hi (8) = 1"y Y m"k () + ¢ + ¢ (11)
k

where ¢, and @¢¢*t

i . are the crosstalk internal and external noise terms that result from

)

the overlapping patterns. For large N and finite L, we assume that the sum of ¢, and

$°**, is nearly normally distributed with zero mean and variance ¢?(t) = ¢2,,(t) + 2, (t) +

ext

20int—ext(t) (the central-limit theorem), where

Gru(t) = alQpQi(t) [1+ Np*Qu(t)] | (12)
L
$lalt) = oy ou(t) [1 4+ Np?Qi(t)]
k£l
L
+ol A NG S 0kt Q) (13)
(k n)
) L
int-ent(t) = NP Q1) Y Qk(t) (14)
k1

The capacity, «, is % and the sum over (kK n) denotes summation over all pairs k # n
from the interval [1,---,1—1,1+1,---, L]. Terms of the order of ap? were neglected in both
expressions.

The fixed point equations for the modular overlap and activity are calculated from Eq. 2,

Eq. 10, Eq. 5 and Eq. 11 by replacing the average over the sites with an average over the

!Using both order parameters one can derive the overlap function given in Eq. 7.
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Gaussian noise terms. The resulting equations for module / are:

O, + 04— S Lmy 1_/6,+6
myl:@( +d kak)a Ql:myl'l_]_)@( +d>a (15)

¢ ¢

where

0 22\ dz
P(x) = / exp | —— . 16
@ = [ exp ( g ) N (16)
Solving all 2L equations simultaneously for the overlap and activity of memory patterns

with modular coding ©Q we look for the critical capacity «a.(2) at which these equations

become unstable.

A.2 Non-linear Dendritic Processing with the Step Function (G[z] = A\O[z])

Consider a modular network similar to the one introduced in Appendix A.1 in which G[z] =
AO[z]. The local field of the i’th neuron in module [ in terms of the modular overlap m"(t)
and modular activity Q,(¢) is:
l v v int [ v - v ert -‘
hi'(t) = 0" ym"i(t) + ¢ i+>‘®[77 a > m'i(t) + i_edJ ; (17)

kAl

For large N and finite L we assume that ¢!, and ¢**!; are nearly normally distributed

2
int

with zero mean and variance ¢? ,(t) and ¢2,,(t) given in Eq. 12 and Eq. 13 respectively.
The fixed point equations for the modular overlap and activity are calculated from Eq. 2,

Eq. 7, Eq. 5 and Eq. 17. For G[z] = AO[xz] the internal and external components of the local

field are independent random variables?, but this is not the case for a general G[z] as will

be shown in Appendix B. Thus, by averaging over these two independent Gaussian noise

terms we get for the modular overlap and activity

0, — L v Y
I PR 2kt mYk @<9n mz)
¢ea}t ¢int
0 _ L v mY, -
o T 2k <1><9" o A) , (18)
¢ezt ¢int

2The correlation coefficient of the internal and external components can be calculated numerically by
using the bivariate density function given in Eq. 24, and Eq. 21, Eq. 22 and Eq. 23. The calculation yields
p[Y,0[X]] =0, where X and Y are defined in Appendix B.
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and

Q=" +115{[1 - <¢eeit>} ® <¢9:lt> e

a.(£2) is obtained as in Appendix A.1.

) Ca)

B Appendix B: The Overlap Function for a General Den-

dritic Function

We derive m"” (1) for an arbitrary dendritic function G[z]. We start when the network is in
state 0¥ at t = 0 and we wish to find the network’s overlap with this memory pattern at

t = 1. For this purpose we write the overlap function Eq. 7 as

v _ L v -k _ v o _
m”(1) = o0 = p)” [(1 = p) Pr(n”y = 1) Pr(Vi"(1) = 1|n*; = 1)
— pPr(n”y = 0) Pr(Vi*(1) = 115"y = 0)]
0 y L —pQ¥ [ y
= /Gn Pr(hz’l\ﬁ il = 1)dh;' — m /6n Pr(hilln il = )dhi' . (20)

The conditional probabilities Pr(h;'|n;, = 1) and Pr(h;'|n”; = 0) are the joint density
functions of two random variables, the internal and external fields of neuron ¢ in module [
given the state of this neuron in pattern n”. To calculate these density functions we assume
that the internal field, given in Eq. 4, is distributed normally and we will denote it as Y.

Y has mean puy =n"; — 0, and variance
2 _ 2
ov? = a(@)p (1+ Np?) . (21)

We denote the external field, given in Eq. 6, as G[X] and assume that X is a random variable

that distributes normally with mean px = (Q” — 1)n”;, — 6, and variance

2y v 3y_3(02 Qv —1
ox? = a7 — 1) (14 Np?) + o L2020 ( ) )Nﬁ )

The two random variables X and Y have a non-zero correlation coefficient

MQV_lei
= il Ll (23

O0X0y
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and together they possess a bivariate normal distribution with a joint density function

o (-t [ () + (1500)" - 20 (2508) (s5) |}

1/2

fxv(z,y) = (24)

2roxoy (1 — p?)

The density function of h;'! = Y + G[X] for an arbitrary dendritic function G[z] is

calculated using the following substitution of variables: U = X, V =Y + G[X] and W =
G U — V] leading to

fv(v) = /0C fxy (= Glw],w)dw . (25)

—o0
The conditional probabilities: Pr(h;'[n”;; = 1) and Pr(h;![n”;, = 0) are then calculated by
choosing G[z], n”;; and Q, and the overlap function is calculated by using these results as

the integrands of Eq. 20.

C Appendix C: Memories with Different Levels of Activity
in a Single Module Network

In order to compare the results of our multi-modular network with a standard associative
memory model, we study here a single module network[Tsodyks, 1989] with N excitatory
neurons. We assume that the network stores M; memory patterns n* of sparse coding level
p and M patterns {” with coding level f such that p < f << 1. The synaptic efficacy J;;
between the jth (presynaptic) neuron and the ith (postsynaptic) neuron is chosen in the
Hebbian manner
1 & 1 &
Jij = Np ot + Np PR (26)
p=1 p=1

The updating rule for the activity state V; of the ith binary neuron is given by

Vi(t+1) =0 [hi(t) — 6] , (27)
where 0 is the threshold and
h(e) = Wi(2) — Q1) (28)



is the local field. It includes the excitatory Hebbian coupling of all other excitatory neurons,

N
hi(t) = JiVi(t) | (29)
i

and global inhibition that is proportional to the total activity of the excitatory neurons

o) = EN:Vj(t) : (30)
N <
J

The overlap m(t) between the network activity and the memory patterns is defined for the

two memory populations as
1 Y 1 Y
me" (t) = N7 > & Vi(t) myt(t) = N5 > Vi) - (31)
i P

In a model with single sparse coding, the critical value of the storage capacity a =

SIS

is known to be a function of both IV and the sparse coding level. Here we will therefore
encounter two critical values: ¢ above which the population of {¥ patterns is unstable and
¢y above which the population of n* patterns is unstable. We calculate them for the case
of My = My = % and v = le2 + Myp?, using a mean-field analysis similar to [Herrmann

et al., 1995] . They are given by the fixed points of the following equations:

0— 0
mn=¢< ¢m"> : Q=pmn+@<$> , (32)
and
g— L
me =® (ng) , 0= fme+o(3) (33)
where
1 2 1 3
»? = 502 (1 + £—2> + §oszQ2 (1 + %) (34)
and

0 P z
O(z) = /I exp <?> \jﬂ . (35)

To find the critical capacity, a., that corresponds to the n memory patterns, we look

for the capacity at which the fixed-point equations become marginally stable, using the
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limit N > 1 and fN > 1.

and ¢ solves

Thus, ., solves

50° (s

30" (5

o™
Q=p

)

)=
o=f
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