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1 IntroductionThe knowledge of concrete objects, such as their physical features and functional properties,is stored in the brain in a distributed network of discrete cortical areas. Imaging studies[Martin et al., 1995, Martin et al., 1996] have shown that attributes that de�ne an objectare represented close to the cortical regions that mediate perception of these attributes.Moreover, the brain regions active during object identi�cation are dependent on intrinsicproperties of the object presented.Cortical modules were observed in the somatosensory [Mountcastle, 1957], visual [Hubeland Wiesel, 1977] and association [Hevner, 1993] cortices. These modules di�er in theirstructure and function but are likely to be elementary units of processing in the mammaliancortex. Within each module the neurons are interconnected. Input and output �bers toand from other cortical modules and subcortical areas connect to these neurons. In someparts of the cortex modules were shown to function as memory units (see [Amit, 1995] fora review).It therefore behooves us to study neural networks of associative memory with modulesrepresenting di�erent modalities or features. Previous studies of modular networks [O'Kaneand Treves, 1992, O'Kane and Sherrington, 1993, Viana and Mart�inez, 1995] were limited tomemory patterns which where coded in a �xed number of modules, equal for all memories.The computational challenge of storing memory patterns that are coded in a variable numberof modules was �rst introduced by [Lauro-Grotto et al., 1994]. The authors addressed theproblem by using the category to which each memory belongs (which determines its levelof coding) to modulate synapses and neuronal thresholds during retrieval. This process hasled [Lauro-Grotto et al., 1994] to conclude that storage and retrieval of memories that arecoded in a variable number of modules must involve consciousness.In this paper we introduce a low-level mechanism that solves the problem without re-1



quiring explicit knowledge of the coding level of each memory. Our solution is based ona functional distinction between the intra-modular and inter-modular couplings. Whileintra-modular connections are summed up in the conventional linear manner, we introducea non-linear dendritic function that processes the activations arriving via the inter-modularconnections. This non-linear processing operates as a squashing function on the inputscoming from other modules, thus eliminating the di�erence between contributions to thepostsynaptic potential generated by memories with di�erent levels of activity.The biological motivation for intra/inter modular synaptic segregation hinges on the ob-servation that neurons from distant modules synapse onto the distal part of the dendritic tree[Markram et al., 1997, Yuste et al., 1994, Hetherington and Shapiro, 1993]. Furthermore,[Yuste et al., 1994] have suggested that neocortical pyramidal neurons have two functionalzones: a basal compartment, comprising the basal dendrites, cell body, and the proximal300�m of the apical dendrite; and an apical compartment, formed by the rest of the apicaldendrite. Evidence for non-linear processing comes from the observation that neocorticalapical dendrites are capable of producing regenerative events and thus may be involved inboosting distal synaptic inputs [Yuste et al., 1994, Magee and Johnston, 1995, Johnstonet al., 1996, Yuste and Tank, 1996]. [Stuart et al., 1997] have found that proximal synap-tic stimulation (in layer 4) of layer 5 pyramidal neurons initiated action potentials �rst atthe soma, whereas distal stimulation (upper layer 2=3) could initiate dendritic regenerativepotential prior to somatic action potentials.The need to store memories with di�erent coding levels necessarily entails a signi�cantloss of memory capacity in conventional associative memory networks. The concept ofcritical capacity needs to be modi�ed to accommodate the fact that populations of memorieswith di�erent coding levels have distinct critical capacities. The introduction of non-linearprocessing enables the storage of a broad spectrum of such populations and considerablyincreases the network's information capacity compared with conventional networks. Yet,2



the resulting critical capacity levels are still signi�cantly smaller than those obtained innetworks storing memories with a single, uniform coding level.In the next Section, we present a model of a multi-modular associative memory, storingmemory patterns encoded in a variable number of modules. In Section 3 we motivatethe usage of non-linear dendritic processing, characterize the optimal dendritic processingfunction and study the network's memory capacity. Section 4 investigates the fault toleranceproperties of a modular network and its consequences. Finally, the last Section summarizesour results. Details of analytic calculations are provided in Appendices.2 Multi-Modular OrganizationWe study an excitatory-inhibitory associative memory network, storingM memory patternsin L modules of N binary neurons each. Each memory �� is de�ned on a subset of size
� of the L modules. We refer to 
� as its modular coding. The sparse coding level insidea module is p << 1. The synaptic e�cacy Jij lk between the jth (presynaptic) neuronfrom the kth module and the ith (postsynaptic) neuron from the lth module is chosen in aHebbian manner Jij lk = 1Np MX�=1 ��il��jk : (1)This synaptic matrix is a natural extension of [Tsodyks, 1989] formulation for the case ofmulti-modular network. The updating rule for the activity state Vil of the ith binary neuronin the lth module is given by Vil(t+ 1) = � hhil(t)� �ni ; (2)where �[x] is the step function and �n is the neuronal threshold. The neuron's local �eld,or membrane potential, has two componentshil(t) = hilinternal(t) + hilexternal(t) : (3)3



The internal �eld is hilinternal(t) = NXj 6=i Jij llVj l(t)� 
nQl(t) ; (4)with inhibition proportional to the total activity inside the moduleQl(t) = 1Np NXj Vjl(t) : (5)The external �eld ishilexternal(t) = G 24 LXk 6=l NXj Jij lkVjk(t)� 
d LXk 6=lQk(t)� �d35 ; (6)where G[x] represents dendritic processing of post-synaptic currents from neurons situatedin other cortical modules, and allows for the freedom of using more complicated behaviorthan the standard G[x] = x one.Both local and global inhibition are used to keep the means of the internal and ex-ternal crosstalk noise terms near zero, otherwise the capacity vanishes. Evidence for theexistence of local cortical inhibition is abundant but that for global inhibition is weaker.Such global cortical inhibition may be mediated through di�use thalamo cortical projectionsthat terminate on certain classes of inhibitory interneurons (see [Mountcastle, 1997] for areview).The retrieval quality at each recall trial is measured by the overlap function that de-scribes the similarity between the �nal state V the network converges to and the memorypattern �� that is cued in each trial. It is de�ned bym�(t) = 1p(1� p)N
� LXk=1 NXi=1 (��ik � p)Vik(t) ; (7)where 
� is the modular coding of ��.
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3 Dendritic Processing3.1 MotivationThe dendritic processing function G[x] separates between the proximal (intra-modular) anddistal (inter-modular) synaptic connections. Hence, synaptic inputs from neurons that aresituated in other modules undergo additional processing compared with inputs from neuronsthat belong to the same module. We �rst compare in simulations the linear (and, so far,standard) case G[x] = x of dendritic processing with the non-linear G[x] = ��[x], where �is the Heaviside step function.
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Figure 1: Quality of retrieval vs: memory modular coding. The dark shading represents themean overlap of retrieved memories with di�erent modular codings achieved by a networkwith linear synaptic couplings. The light shading represents the mean overlap of a networkwith non-linear processing of the inter-modular connections. The latter achieves perfectrecall of all memory patterns. The simulation parameters are: L = 10, N = 500, M =50, p = 0:05, � = 0:7, �d = 2 and �n = 0:6. The encoded memories are distributedhomogeneously over all possible modular codings.Figure 1 shows the performance of the two networks when the stored memories havedi�erent levels of modular codings. We measure the network's performance by the mean5



overlaps of the retrieved memory patterns. We choose the modular coding 
� to be ho-mogeneously distributed with equal proportions for all memories e.g., we store 5 memorieswith 
� = 1, another 5 memories with 
� = 2, and so on. As can be seen the linear networkcan only sustain memories with high modular codings. In order to retrieve patterns withlow 
�, non-linear inter-connections are needed.(a) (b)
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Figure 2: Critical capacities for di�erent modular codings as function of threshold param-eters. (a) A modular network with linear G[x] = x. The network has L = 5 modules withN = 1000 neurons in a module and stores memory patterns with p = 0:05. (b) A mod-ular network with non-linear G[x] = ��[x], using the same architecture with parameters�n = 0:7 and � = 0:5. Finite �c � 0:05 for all 
 is obtained for �d > 2.To understand this behavior we calculate the critical capacities �c(
) = MLN of memorieswith modular coding 
 for the two networks as a function of threshold. We de�ne �c(
) asthe capacity above which memories of patterns with modular coding 
 are unstable. Notethat �c(
) depends on the modular coding distribution of the whole memory population. Inthis paper, we focus on the case of equal number of memories for each modular coding (thepertaining capacity calculations are given in Appendix A). As can be seen in Figure 2(a),there exists no threshold for which linear modular networks can sustain their full memoryrepertoire with all modular codings. Linear dendritic processing allows for the coexistence of6



memories with only a relatively narrow span of di�erent modular coding levels, as alreadyobserved by [Lauro-Grotto et al., 1994]. However, in the case of the non-linear networkwith G[x] = ��[x] shown in Figure 2(b), a stable system is obtained, in which all possiblemodular codings can coexist (for values of �d > 2).3.2 Optimal Dendritic FunctionsNext, we examine the performance of the modular network when a more general G[x] istaken as the dendritic processing function. We de�ne the following piecewise linear familyof functions G[x; �; 
] = 8><>: tan� � x �1 < x < 0tan 
 � x 0 < x < cot 
tan� � x+ [1� cot 
 tan�] cot 
 < x <1 ; (8)plotted in Figure 3(a). Given G[x; �; 
] we search for the optimal dendritic processingfunction that will maximize the network's retrieval capabilities. We use the overlap Eq. 7as a measure of performance and calculate m�(t = 1) when pattern �� is introduced to thenetwork as an input cue at t = 0. This one step calculation is derived in Appendix B foran arbitrary dendritic processing function.
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Figure 3: Performance of a modular network for di�erent types of dendritic processingfunctions. (a) Piecewise linear G[x] used for the calculation. (b) The overlaps of patternswith 
 = 10 (solid) and 
 = 40 (dashed) for G[x] de�ned by Eq. 8 as a function of �. Theresults for �2 � � � �4 remain similar to those reported for � = �4 . The modular networkhas L = 50 modules and N = 1000 neurons in a module, and stores memory patternswith p = 0:025. Other parameters are � = 0:02, �d = 1 and optimal �n. The results arepractically independent of the value of 
.Figure 3(b) shows m�(t = 1) for G[x; �; 
] in two cases: memories with low modularcoding (
 = 10) and with high modular coding (
 = 40), calculated for an optimal neu-ronal threshold �n. This analysis shows that choosing small � values (that is, a practicallybounded dendritic processing function) is necessary for sustaining memories with low mod-ular codings. These results are independent of 
. However large values of 
 (i.e. non-lineardendritic functions such as the step function) are important for allowing strong interactionsbetween di�erent modules, leading to e�cient retrieval from partial cues, as discussed inSection 4.
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3.3 Memory Capacity in Networks Storing Multi-coded MemoriesStoring memories with variable levels of coding necessarily results in a signi�cant reductionin storage capacity. This property is inherent to both modular and conventional, singlemodule networks. In a conventional network the critical capacities of the di�erent memorysubpopulations strongly depend on the variance of memory coding levels. The analysiscarried out in Appendix C leads to the results displayed in Figure 4, showing the criticalcapacities of two memory subpopulations � and � with coding levels p and f respectively(where p < f � 1) stored in a single module network.(a) (b)
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Figure 4: (a) The critical capacity �c� vs: f , for speci�c p values, � = 0:7 and N = 5000.(b) �c� vs: p for speci�c f values with the same parameters as in (a). The details of thecalculation are given in Appendix C.Figure 4(a) depicts the critical capacity of the high activity memories. As evident, theircritical capacity is maximized when f = p. The larger the di�erence between f and p thesmaller �c� is. Somewhat similar behavior can be seen in Figure 4(b), where the criticalcapacity of the low activity memories is plotted. In general, the wider the distribution ofcoding levels the lower are the critical capacities.The critical capacities of memories stored in a linear modular network are lower than9



the ones observed in a single module network, but again, memories with higher modularcoding have a much lower critical capacity than low-coded memories. An example of thisbehavior can be seen in Figure 5, comparing a single module network with both linear andnon-linear modular networks, all storing the same population of memories. It should benoted that critical capacities depend strongly on both p and N , therefore we have madesure that these values are the same for all the networks that we compare with one another.
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 = 1; 5 and p = 0:05 in the modular networks). Other parameters are L = 5, � = �n = 0:7,�d = 2 and � = 0:5.As evident, the non-linear modular network has a lower critical capacity of the smallmemories but is signi�cantly better for the large memories. As a result, the informationcapacity [Frolov et al., 1997] of the non-linear modular network is considerably larger thanthat of the other networks.
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4 Fault Tolerance in Multi-Modular NetworksWe turn now to the e�ects of pathological input alterations on the retrieval of memories withdi�erent modular codings in a network characterized by a non-linear dendritic transmissionfunction G[x] = ��[x]. We start by using randomly distorted input cues in which all moduleshave the same probability for error. We �nd that regardless of their modular codings 
,all memories are equally susceptible to this kind of homogeneous random input noise. Thesituation is fundamentally di�erent if spatially localized damage is introduced, by settingthe input cues to some of the modules to zero. Figure 6 shows the pattern completionquality of a network in which 6 of the 10 modules have their inputs shut o�.
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Figure 6: The performance of a multi-modular network when 6 of the 10 modules do notreceive input cues. The mean overlap is plotted versus modular coding. The bars representresults of one simulation. The dashed line represents average over many simulations thatis estimated analytically. The simulation parameters are: L = 10, N = 500, M = 50,p = 0:05, � = 0:7, �d = 2 and �n = 0:6.The choice of �d = 2 in this simulation ensures that the presence of two active externalmodules is su�cient for the activation of any other module in a memory. Thus, as demon-strated by the shaded bars, memories with modular codings 
 = 8 and above will always be11



successfully retrieved. The probability for successful retrieval decreases with the modularcoding level.Figure 6 shows that memories that have larger modular codings are more resilient toa�erent damage, since their chances of retaining the minimal number of modular inputsrequired for activating all modules in a memory pattern are signi�cantly higher. Interest-ingly, these results can account for the psychological �ndings that concrete items are moreresilient to brain damage than abstract ones [Jones, 1985, Warrington and Shallice, 1984].This follows if one accepts the assumption that concrete items have more attributes thanabstract ones (see [Hinton and Shallice, 1991] and [Friedemann, 1998] for a review), whichimplies that concrete items have higher modular coding, and hence are more resilient.The use of non-linear step functions such as G1[x] = ��[x] enabled us to model non-linear processing of distal inputs. Once we allow for non-linear dendritic processing wemay envision more complicated structures of G[x]. An extreme case is one of hierarchicalinter-modular connectivity resulting in nested step-functions, such asG2 = ��24 LXk 6=l�24 NXj Jij lkVjk(t)� 
dQk(t)� �k35� �d35 : (9)This would correspond to a situation in which every external module connects to a di�erentbranch of the dendritic tree, and each branch produces its own non-linear processing thatis further modulated on the way to the soma by an additional non-linearity. Such semi-local dendritic processing gains biological support from the dynamical behavior of dendriticvoltage-gated channels. Multiple EPSPs occurring on the same branch and within a narrowtime window may activate voltage-gated channels and produce a much larger responsethan would occur if they were on separate branches or occurred outside this time window[Johnston et al., 1996]. Currently there exists no direct biological evidence in cortex for focalspatial connectivity of the sort implied by G2, but the speci�city of synaptic connectionsin other brain regions such as the cerebellum [Ito, 1984] and the olfactory bulb [Shepherd,12



1990] may indicate that such connectivity may be plausible.
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Figure 7: The pattern completion performance of modular networks with di�erent types ofnon-linear dendritic processing. The mean overlap is plotted vs: the overlap of the inputcue. The solid line represents the performance of the G2 network and the dash-dot linerepresents G1. The left curve of G2 corresponds to the case when full input is presentedto only one module (out of the 5 that comprise a memory), while the right solid curvecorresponds to partial input to all modules. The G1 network cannot retrieve the memoryunder the �rst condition, but performs better for the case of partial inputs to all modules,as shown by the dash-dot curve. Parameters are L = 5, N = 1000, p = 0:05, � = 0:8, 
 = 5�d = 1:5 and �k = 0:7.It is interesting to compare the results of the two functions G1[x] and G2[x]. We testedpattern completion under two forms of external partial inputs: 1. an uncorrupted inputcue was presented to a single module within the subset of modules in which the memorywas encoded, and no input was provided to all other modules. 2. an input cue was givenat the same level of partial activity to all modules. As evident from Figure 7, the nestednonlinearities of G2 enable retrieval even in the extreme case in which only one module isactivated by the cue. 13



5 SummaryIn this paper we use the modular structure of the brain as the basis for modelling anassociative memory network that can accomodate memories with very di�erent activitylevels. All these memories are assumed, for simplicity, to have the same sparseness within amodule, but they may have very di�erent numbers of modules in which they are encoded.To achieve our goal we have made a distinction between two types of synaptic connec-tions, proximal ones that occur on basal dendrites and correspond to inputs from near-byneurons, and distal ones that occur on apical dendrites and transmit information fromfar-away neurons belonging to di�erent modules. Moreover, we have made the strong as-sumption that the synaptic currents of the distal synapses are further processed non-linearlyby the dendritic tree on their way to the soma. Representing this nonlinear processing bya Heaviside threshold function has the important advantage that the neuronal input thatis due to activity in other modules will always have a standard strength. Thus a neuronactivated during memory retrieval feels the input of all other neurons in its own moduleas well as a standard strong input re
ecting the fact that several other modules of thesame memory pattern are active, but it is not sensitive to the exact number of other activemodules. This solves the problem that prevents standard neural networks from accomo-dating patterns with di�erent activities (or di�erent modular codings using our underlyingmodular structure). Since these neurons are sensitive to the signal to noise ratio, their pa-rameters have to be tuned to a particular activity level, thus allowing only a limited rangeof variation. In our case this is no problem since the sparseness within a module is keptconstant and the external signal is standardised.An interesting outcome of our model is its resilience to corrupted input, or a�erentdamage, of a focused nature. In conventional neural network models one studies basins ofattraction by considering di�use damage, i.e. random corruption of inputs. Here we have14



an ordered system, at least as far as its modular structure is concerned. Hence we canstudy its behavior under focused damage, when some of the modules are deprived of theira�erent inputs while keeping all lateral connections intact. The results are very interesting.They show the resilience of memories that have large modular coding. A fact that can beconnected to the interesting psychological observation of the resilience of natural memoriesin patients with focal damages. Moreover, we �nd that further dendritic nonlinearities,such as nested Heaviside functions specifying the information transfer between every pair ofmodules, lead to stronger resilience to focal damage and weaker resilience to di�use damage.We believe that the concept of multi-modular networks is necessary for a meaningfulimplementation of associative neural networks in models of the cortex. A module is naturallydescribed in terms of neurons that share with one another a large number of synapticconnections through the grey matter. We have labeled them as proximal synapses in ourwork, introducing a distinction between them and the distal apical connections. Whereasin Nature the situation may be much more complicated, it stands to reason that this simpledichotomy should play a leading role, distinguishing between near-by and far-away inputs.It remains to be seen if, indeed, the latter are subject to further nonlinear processing, and ifour simple representation can do justice to the complicated dynamical mechanisms that goon in real neural circuits. In any case, we have seen that it leads to interesting consequencesand allows for simple modelling that was not possible without it.Acknowledgments: We thank Isaac Meilijson for very helpful discussions.References[Amit, 1995] D. J. Amit. The Hebbian paradigm reintegrated: local reveberations as inter-nal representations. Behavioural and Brain Science, 18:617, 1995.15
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assume that pN � 1 and p� 1, and that memory pattern �� has macroscopic overlap. Wethen derive the �xed-point equations for the modular overlapm�l(t) = 1pN NXi=1 ��ilVil(t) ; (10)and activity Ql(t) for each one of the L modules in the network1.Writing the local �eld of the i'th neuron in module l in terms of the modular overlapm�l(t) and modular activity Ql(t) we gethil(t) = ��il LXk m�k(t) + �inti + �exti ; (11)where �inti and �exti are the crosstalk internal and external noise terms that result fromthe overlapping patterns. For large N and �nite L, we assume that the sum of �inti and�exti is nearly normally distributed with zero mean and variance �2(t) = �2int(t) +�2ext(t) +2�int�ext(t) (the central-limit theorem), where�2int(t) = �h
ipQl(t) h1 +Np2Ql(t)i ; (12)�2ext(t) = � h
2i�h
iL�1 p LXk 6=lQk(t) h1 +Np2Qk(t)i+� h
3i�3h
2i+2h
i(L�1)(L�2) Np3 LX(k n)Qk(t)Qn(t) ; (13)�int�ext(t) = � h
2i�h
iL�1 Np3Ql(t) LXk 6=lQk(t) : (14)The capacity, �, is MLN and the sum over (k n) denotes summation over all pairs k 6= nfrom the interval [1; � � � ; l�1; l+1; � � � ; L]. Terms of the order of �p2 were neglected in bothexpressions.The �xed point equations for the modular overlap and activity are calculated from Eq. 2,Eq. 10, Eq. 5 and Eq. 11 by replacing the average over the sites with an average over the1Using both order parameters one can derive the overlap function given in Eq. 7.19



Gaussian noise terms. The resulting equations for module l are:m�l = � �n + �d �PLk m�k� ! ; Ql = m�l + 1p���n + �d� � ; (15)where �(x) = Zx1exp �z22 ! dzp2� : (16)Solving all 2L equations simultaneously for the overlap and activity of memory patternswith modular coding 
 we look for the critical capacity �c(
) at which these equationsbecome unstable.A.2 Non-linear Dendritic Processing with the Step Function (G[x] = ��[x])Consider a modular network similar to the one introduced in Appendix A.1 in which G[x] =��[x]. The local �eld of the i'th neuron in module l in terms of the modular overlap m�l(t)and modular activity Ql(t) is:hil(t) = �� ilm�l(t) + �inti + ��24�� il LXk 6=lm�k(t) + �exti � �d35 ; (17)For large N and �nite L we assume that �inti and �exti are nearly normally distributedwith zero mean and variance �2int(t) and �2ext(t) given in Eq. 12 and Eq. 13 respectively.The �xed point equations for the modular overlap and activity are calculated from Eq. 2,Eq. 7, Eq. 5 and Eq. 17. For G[x] = ��[x] the internal and external components of the local�eld are independent random variables2, but this is not the case for a general G[x] as willbe shown in Appendix B. Thus, by averaging over these two independent Gaussian noiseterms we get for the modular overlap and activitym�l = "1� � �d �PLk 6=lm�k�ext !#���n �m�l�int �+� �d �PLk 6=lm�k�ext !���n �m�l � ��int � ; (18)2The correlation coe�cient of the internal and external components can be calculated numerically byusing the bivariate density function given in Eq. 24, and Eq. 21, Eq. 22 and Eq. 23. The calculation yields� [Y;�[X]] = 0, where X and Y are de�ned in Appendix B.20



and Ql = m�l + 1p ��1� �� �d�ext���� �n�int�+�� �d�ext����n � ��int �� : (19)�c(
) is obtained as in Appendix A.1.B Appendix B: The Overlap Function for a General Den-dritic FunctionWe derive m�(1) for an arbitrary dendritic function G[x]. We start when the network is instate �� at t = 0 and we wish to �nd the network's overlap with this memory pattern att = 1. For this purpose we write the overlap function Eq. 7 asm�(1) = Lp(1� p)
� h(1� p) Pr(�� il = 1)Pr(Vik(1) = 1j�� il = 1)� pPr(�� il = 0)Pr(Vik(1) = 1j�� il = 0)i= Z 1�n Pr(hilj�� il = 1)dhil � L� p
�(1� p)
� Z 1�n Pr(hilj�� il = 0)dhil : (20)The conditional probabilities Pr(hilj�� il = 1) and Pr(hilj�� il = 0) are the joint densityfunctions of two random variables, the internal and external �elds of neuron i in module lgiven the state of this neuron in pattern �� . To calculate these density functions we assumethat the internal �eld, given in Eq. 4, is distributed normally and we will denote it as Y .Y has mean �Y = ��il � �n and variance�Y 2 = �h
ip �1 +Np2� : (21)We denote the external �eld, given in Eq. 6, as G[X] and assume that X is a random variablethat distributes normally with mean �X = (
� � 1)�� il � �n and variance�X2 = � h
2i�h
iL�1 p(
� � 1) �1 +Np2�+ � h
3i�3h
2i+2h
i(L�1)(L�2)  
� � 12 !Np3 : (22)The two random variables X and Y have a non-zero correlation coe�cient� = � h
2i�h
iL�1 (
� � 1)Np3�X�Y ; (23)21



and together they possess a bivariate normal distribution with a joint density functionfXY (x; y) = exp�� 12(1��2) ��x��X�X �2 + �y��Y�Y �2 � 2� �x��X�X ��y��Y�Y ���2��X�Y (1� �2)1=2 : (24)The density function of hil = Y + G[X] for an arbitrary dendritic function G[x] iscalculated using the following substitution of variables: U = X, V = Y + G[X] and W =G�1[U � V ] leading to fV (v) = Z 1�1 fXY (v � G[w]; w)dw : (25)The conditional probabilities: Pr(hilj�� il = 1) and Pr(hilj�� il = 0) are then calculated bychoosing G[x], �� il and 
, and the overlap function is calculated by using these results asthe integrands of Eq. 20.C Appendix C: Memories with Di�erent Levels of Activityin a Single Module NetworkIn order to compare the results of our multi-modular network with a standard associativememory model, we study here a single module network[Tsodyks, 1989] with N excitatoryneurons. We assume that the network stores M1 memory patterns �� of sparse coding levelp and M2 patterns �� with coding level f such that p < f << 1. The synaptic e�cacy Jijbetween the jth (presynaptic) neuron and the ith (postsynaptic) neuron is chosen in theHebbian manner Jij = 1Np M1X�=1 ��i��j + 1Np M2X�=1 ��i��j : (26)The updating rule for the activity state Vi of the ith binary neuron is given byVi(t+ 1) = � [hi(t)� �] ; (27)where � is the threshold and hi(t) = hei (t)� 
pQ(t) (28)22



is the local �eld. It includes the excitatory Hebbian coupling of all other excitatory neurons,hei (t) = NXj 6=i JijVj(t) ; (29)and global inhibition that is proportional to the total activity of the excitatory neuronsQ(t) = 1N NXj Vj(t) : (30)The overlap m(t) between the network activity and the memory patterns is de�ned for thetwo memory populations asm��(t) = 1Nf NXj ��jVj(t) ; m��(t) = 1Np NXj ��jVj(t) : (31)In a model with single sparse coding, the critical value of the storage capacity � = MNis known to be a function of both N and the sparse coding level. Here we will thereforeencounter two critical values: �c� above which the population of �� patterns is unstable and�c� above which the population of �� patterns is unstable. We calculate them for the caseof M1 =M2 = M2 and 
 =M1f2 +M2p2, using a mean-�eld analysis similar to [Herrmannet al., 1995] . They are given by the �xed points of the following equations:m� = ��� �m�� � ; Q = pm� +�� ��� ; (32)and m� = �0@� � fpm�� 1A ; Q = fm� +�� ��� ; (33)where �2 = 12�Q 1 + f2p2!+ 12�NpQ2  1 + f3p3! (34)and �(x) = Zx1exp �z22 ! dzp2� : (35)To �nd the critical capacity, �c� that corresponds to the �� memory patterns, we lookfor the capacity at which the �xed-point equations become marginally stable, using the23



limit N � 1 and fN � 1. Thus, �c� solves@@Q�� �������Q=p = 1 ; (36)and �c� solves @@Q�� �������Q=f = 1 : (37)
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