
Figure 1: WildFire connects up to four E6000 by inserting
one WildFire Interface Board (WFI) in each node.

Memory

I/O CPUI/O... CPU ...
30

WFI
WFI

WFI WFI

E6000

E6000

E6000

E6000

WildFire: A Scalable Path for SMPs

Erik Hagersten and Michael Koster
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303

Abstract

 Researchers have searched for scalable alternatives to the
symmetric multiprocessor (SMP) architecture since it was
first introduced in 1982. This paper introduces an alterna-
tive view of the relationship between scalable technologies
and SMPs. Instead of replacing large SMPs with scalable
technology, we propose new scalable techniques that allow
large SMPs to be tied together efficiently, while maintain-
ing the compatibility with, and performance characteristics
of, an SMP. The trade-offs of such an architecture differ
from those of traditional, scalable, Non-Uniform Memory
Architecture (cc-NUMA) approaches.
 WildFire is a distributed shared-memory (DSM) prototype
implementation based on large SMPs. It relies on two tech-
niques for creating application-transparent locality: Coher-
ent Memory Replication (CMR), which is a variation of
Simple COMA/Reactive NUMA, and Hierarchical Affinity
Scheduling (HAS). These two optimizations create extra
node locality, which blurs the node boundaries to an ap-
plication such that SMP-like performance can be achieved
with no NUMA-specific optimizations.
 We present a performance study of a large OLTP bench-
mark running on DSMs built from various-sized nodes and
with varying amounts of application-transparent locality.
WildFire’s measured performance is shown to be more
than two times that of an unoptimized NUMA implementa-
tion built from small nodes and within 13% of the perfor-
mance of the ideal implementation: a large SMP with the
same access time to its entire shared memory as the local
memory access time of WildFire.

1. Introduction

 There has been a concentrated effort in academia to find a
scalable replacement for the SMP architecture. There still
seems to be a wide-spread belief that SMPs will not scale
over time. Many, including the authors of this paper, have
claimed for a decade that the bandwidth limitations of the
SMP "backplane" would eventually prevent the implemen-
tation of yet another generation of scalable SMPs. When
we wrote this in 1988, the backplane of the state-of-the-art
Sequent Symmetry had an effective bandwidth of about 40
MB/s. Today, some 10 years later, the passive backplane
has been replaced by an active switch in Sun’s E10000
"Starfire" capable of 12.5 GB/s [4]. SMP bandwidth has
improved by roughly a factor of 300 over a time period of

10 years. This is faster than doubling every 18 months, as
predicted by Moore’s law for CPU development, which
yields a factor of 128 improvement over the same time pe-
riod. Thus, SMP bandwidth has scaled faster than Moore’s
law over the past 10 years.
 Meanwhile, some companies have abandoned their SMP
product lines and instead offer implementations of cc-
NUMA architectures. While cc-NUMA architectures have
the potential for greater scalability, they are less optimal for
access patterns caused by "real" communication, such as
producer-consumer and migratory data [1]. They also re-
quire substantial application and operating-system optimi-
zation in order to handle capacity and conflict misses well.
Nor is the scheduling algorithm for cc-NUMA trivial. A
process migrated to a different node may perform much
worse than if it had stayed in the same node, because of a
higher ratio of remote traffic.
 SMPs provide a simpler model than NUMA for several
architectural reasons. The SMP’s uniform access time to
shared memory provides a simple programming and perfor-
mance model. An SMP does not require data and code to be
placed in any special way for the application to run well.
Popular code and data structures are easily shared by all the
CPUs. This simplifies algorithms for managing resources,
such as memory, processors and I/O devices. A suspended
process may be re-scheduled on any other processor at a
relatively small cost, even though running it on the CPU
where it last ran has an advantage (affinity), leveraging its
hot cache. Managing the memory is also easier; any free
physical memory can be utilized when a page gets paged in.
Non-uniform memory makes all these tasks more difficult.
SMPs are also more efficient in handling communication
misses (coherence misses), which are common in

commercial applications [1, 3]. The SMP’s current imple-
mentation style, often based on some kind of broadcast in-
terconnect, is best served when fit into one cabinet. Physi-
cal constraints on the size of the cabinet, such as the size of
an elevator or the cargo hold of an airplane, put an upper
bound on the scalability of SMPs. Today, there are several
SMP implementations scaling between 16 and 30 CPUs [2,
17] and one that scales all the way to 64 CPUs [4]. Our
experience and several benchmark world records show
these systems’ bandwidths to be more than sufficient for the
most important and fairly bandwidth-hungry commercial
applications. Actually, published benchmarks for com-
mercial workloads show that SMPs often scale better than
cc-NUMAs [18].
 SMPs are definitely alive and thriving. There is no appar-
ent reason why they will suddenly disappear in a few years.

2. Scalability goal of MSMP

 If we accept the fact that SMPs remain one of the primary
alternatives for commercial server systems up to a certain
scale for many years to come, the question of how to build
"scalable" systems needs to be reformulated. The SMP’s
major limitation is not its viability, but rather that it is dif-
ficult to build an SMP with a huge number of CPUs span-
ning several physical boxes. The question is not how to re-
place SMPs with a new technology, such as cc-NUMA, but
rather how to create a technology that allows high-end
SMPs to be part of a scalable family of products providing
growth beyond the box limit. We would simply like to ride
the SMP curve for as long as it is technically and economi-
cally feasible and extend the SMP with a scalable technol-
ogy such that SMP applications would also be able to run
on configurations larger than a single SMP. We call such a
scalable technology multiple SMP (MSMP).
 The rules for designing an MSMP differ somewhat from
other scalable systems. The MSMP should coexist with the
SMP, which can be expected to account for far more rev-
enue than the MSMP. The MSMP must, therefore, impose
minimal additional complexity and cost on the SMP. Since
running on an MSMP should have no impact on the ap-
plication, it must run the same operating system as the SMP
and cannot expect substantial OS modifications to accom-
modate its special needs. These constraints can often neces-
sitate less optimal DSM solutions than traditional cc-
NUMA implementations and add to the remote latency.
 There are also several advantages to using large SMP
nodes in an MSMP architecture. Large nodes reduce the
number of nodes in a large-scale configuration which al-
lows for simple, nonscalable approaches in the cache-
coherence protocol. The DSM protocol only needs to keep
a handful of nodes coherent and can avoid scalable and
complicated solutions, such as SCI’s linked lists. The com-
plexity and latency of the interconnect is also reduced by a
smaller number of nodes. Furthermore, each large node
contains more memory banks, thereby allowing a higher
degree of memory interleaving within a node. Large nodes

also have a positive impact on node locality. Having fewer
nodes implies that a larger fraction of random accesses will
be local. Large popular data structures can also be more
cheaply replicated in all the nodes of a system built from
few nodes. Further, a node-aware load balancer is more
likely to find an idle local processor if the nodes are large.

3. WildFire system overview

 WildFire is an internal code name for a prototype shared-
memory multiprocessor developed by Sun Microsystems.
WildFire supports up to 112 UltraSPARC I or II processors,
runs a slightly modified version of Solaris 2.6, and is 100%
application-binary-interface (ABI) compatible with Sun’s
SMP multiprocessors. WildFire first booted in February
1997. This paper has been edited using a WildFire running
Solaris 2.6. WildFire connects two to four unmodified Sun
Enterprise E6500/E5500/E4500/E3500TM SMP servers.
Supporting the entire SMP family can allow for flexibility
in choosing the system’s node size. The rest of this paper
assumes nodes built from the largest SMP member, E6500,
supporting up to 30 CPUs.
 Each E6500 has a GigaPlaneTM bus connecting up to 16
dual-processor or I/O boards. Boards are interchangeable
so a system with minimal I/O (one I/O board) can have up
to 30 processors (15 dual CPU boards). GigaPlane sup-
ports 50 M transactions/sec, 112 outstanding transactions, a
peak data bandwidth of 3.2 GBytes/s, and an lmbench la-
tency today of 252 ns to the entire shared memory [17, 15].
A WildFire Interface (WFI) board replaces a dual-processor
or I/O board. Up to four E6500 nodes can be connected
through their WFI board. WildFire supports full cache co-
herence and Total Store Order (TSO), like other Sun sys-
tems. By default, WildFire is a "Cache-Coherent Non-
Uniform Memory Access" machine (cc-NUMA) built from
unusually large nodes.
 Wildfire appears as a single system to most layers of the
operating system. Remote program-controlled I/O and
DMA are transparently handled by the WFI; a process need
not know whether an I/O device is connected to its local
SMP node or a remote SMP node. Inter-node interrupts are
handled uniquely on WildFire, but differences are invisible
to processes and drivers. Only the low-level machine-
specific layers of Solaris need know of Wildfire’s hierarchi-
cal structure. Memory allocation is also segregated by node.
Wherever possible, local memory is used to satisfy process
memory allocation requests.
 Shared memory across the system is supported both
through multithreading of individual processes and explicit
sharing of memory between processes. Wherever possible,
threads of a multithreaded process are kept together on the
same node. Only when a process has more threads than
there are processors on a node does the process begin to
span multiple nodes, causing process memory to be shared
across the WildFire interconnect.
 To reduce remote-memory traffic and improve average
memory latency, WildFire also supports "Coherent

DATA [288 signals] @ 83MHz

ADDR [70signals] @83 MHz

MTAG+

Dir$NIAC

ctrl

GigaPlaneignore

NIDCDCDCNIDCDCDC
NIDC

800 MB/s

800 MB/s

Head
P
$

AC

P
$mem

DDDDACDDDD

I/O devices

CPU BoardI/O BoardWildFire Interface Board

GA2LPA$

I/F
LPA2GA

(SRAM)

(SRAM)

R HS

...15...

Point-to-point Network

GC

Memory Replication" (CMR). CMR is a version of a
"Simple Cache-Only Memory Architecture" (S-COMA)
[8], but cannot be called a true COMA since the coherence
protocol assumes a fixed home location for each address.
Specifically, CMR allows an SMP to allocate local
"shadow" physical pages to correspond to remote physical
pages. The operating system allocates and reclaims pages
for replicated data. Coherence, however, is maintained by
hardware at the 64-byte block level.
 To avoid performance problems related to memory pres-
sure [16], WildFire can switch between cc-NUMA and
CMR at page-by-page and node-by-node granularity. All
new pages are created as cc-NUMA pages. The Solaris op-
erating system makes use of integrated hardware counters
to determine which pages to switch from cc-NUMA to
CMR. The selection is done using a variant of the Reactive
NUMA (R-NUMA) algorithm [6]. This adaptive algorithm
responds to memory-access patterns in order to dynamically
decide when CMR can improve performance over cc-
NUMA, and vice versa. Early evaluations showed this to be
more useful for long-running commercial applications than
starting all pages in CMR and converting some of them to
cc-NUMA, as proposed for the PRISM architecture [5]
based on SPLASH simulations.
 WildFire’s has a fairly conservative replication strategy in
order to avoid situations where its associated overhead
would increase the execution time rather than help. Exces-
sive communication to a remote page will initially result in
page migration. Page replication is only used for pages for
which the migration does not help. The amount of local
memory used for replication is dynamically adjusted and
depends on the current memory pressure.
 The Solaris 2.6 port that runs on Wildfire does include a
number of changes to optimize performance. A hierarchi-
cal affinity scheduler tries to schedule a process first on the
processor it last ran, then on some processor on the same
node. Only when load imbalance exceeds a specified
threshold is the process scheduled on a remote node. This
scheduler increases the time each process spends in a node,
increasing the benefit from the state built up in the large

CMR memory. The first version of the WildFire operating
system has some limitations in its CMR algorithm.
Memory-resident pages and "large" physical pages cannot
be replicated. These types of pages may still be "explicitly"
replicated when created.

4. WildFire implementation

 WildFire’s interface is divided into two different ASICs:
the Network Interface Address Controller (NIAC), which
implements the coherence protocol, and the bit-sliced Net-
work Interface Data Controller (NIDC), which provides a
fat connection to/from the interconnect, as shown in the
figure above. The four NIDC chips are controlled by the
NIAC chip. Each WFI board exports three high-speed links
of 800 MB/s in each direction, allowing construction of a
four-node system without introducing the extra cost and
latency of a switched network. Each link is bit-sliced and
connected to all four NIDC chips, providing a fat and fast
connection for the data transactions between the node’s
data bus and the interconnect. Interfacing a large SMP node
puts a higher bandwidth demand on the coherence interface
than a traditional DSM implementation; this is what
prompted our bit-sliced solution. The smaller address trans-
actions and the header part of a data transaction are de-
toured through the NIAC and its coherence protocol.
 NIAC functionality is divided into two parts: the bus in-
terface (I/F) and the global-coherence layer (GC). I/F acts
as a proxy in the node’s SMP protocol. It detects transac-
tions which need attention from the global coherence proto-
col and asserts an "ignore" signal for those transactions.
This signal, which effectively removes the transaction from
the local snoop order, is one of the few hooks included in
E6500’s protocol in order to allow for MSMP implementa-
tions. Adding the WFI board slows down the access time to
local memory by up to two cycles compared to the E6500,
since the WFI board does not support the "fast arbitration
mode" of the E6500 [17].
 WildFire supports a global physical address space where
higher-order address bits determine the node on which

home memory resides. Remote cc-NUMA requests appear
as GigaPlane transactions to memory physically residing on
another SMP node; the I/F detects this by checking the
higher-order bits. The memory tag (MTAG) data structure
contains 2 bits of MOSI state per 64-byte block in the local
physical memory. The I/F performs a lookup in the MTAG
for each local access to the node’s memory. If the state is
inadequate (e.g., a "read exclusive" to a "shared" block),
WFI asserts the "ignore" signal and invokes the global co-
herence layer (GC). Otherwise, the transaction proceeds as
in a single SMP.
 The global cache-coherence protocol is implemented in
the GC layer of the NIAC, similarly to the Dash implemen-
tation [13]. Three protocol agents (Request, Home, and
Slave) exchange messages over the global interconnect.
The GC protocol is efficiently implemented directly in
hardware and supports up to 40 simultaneous ongoing
transactions in each WFI. A directory cache tracks the nec-
essary coherence-directory state needed by the GC proto-
col, similarly to the FLASH prototype [9]. The SMP’s
memory is used to back the directory cache.
 Part of the SMP’s memory can be used to cache remote
data by using the CMR technique. A remote page (backed
by local CMR memory) is referenced on the local bus by
using the CMR page’s local physical address. Upon an ac-
cess miss to the CMR page (insufficient MTAG state), the
ignore signal is asserted and the transaction removed from
the node’s snoop order. The local physical address needs to
be translated to the corresponding global address of the re-
mote page before a remote request can be sent by the local
WFI. To support CMR, WFI provides a data structure to
translate between local physical CMR addresses and the
global (remote) physical addresses in the home node. We
call this translation Local Physical Address to Global Ad-
dress, LPA2GA. The second address translation needed to
support CMR, the reverse address translation (GA2LPA),
is stored in an SRAM cache backed by memory. Unlike
traditional S-COMA, the GA2LPA translation is only
needed by the slave agents. The greater part of the extra
hardware needed to implement CMR comes from these two
address translation tables. All other hardware support
needed to implement CMR is negligible.
 The WFI has associative counters to monitor capacity and
conflict behavior of accesses to remote pages and provide
input to the operating-system policy deciding which pages
should use CMR. This policy is similar to R-NUMA [6].
Software initializes a counter as "free." The first remote
access which is identified as a capacity or conflict miss, a
so-called excess misses (E-miss), initializes the address part
of the counter with its page number. All subsequent E-
misses to the same page will cause the counter to incre-
ment. Software periodically monitors and frees these
counters. Pages showing an appropriate sharing pattern for
a long duration will get replicated. This fairly conservative
way of choosing CMR pages keeps the software overhead
associated with setting up coherently shared pages low.
WildFire’s software also supports interfaces for placement
and replication of pages under user control.

 The "scalability" requirements for MSMP architectures
are quite different from other DSM systems. Here, only a
handful of nodes need be connected and simplicity is the
guiding principle. Scalable directory approaches, such as
linked lists, are not needed. WildFire uses a fairly tradi-
tional MOSI write-invalidate coherence protocol with a
full-mapped directory representing each node in the system
with one bit, and two bits identifying one node as the
owner. This allows for very compact representation in the
directory cache. WildFire implements a three-hop protocol
to minimize latency to remote dirty data in nodes other than
the home node or request node. The extra throughput re-
quirement prompted by the large nodes precluded us from
implementing a programmable protocol [9]. Instead, we
designed a simple coherence protocol with no corner cases.
This allowed for a fairly straightforward verification strat-
egy and gave us the confidence to implement the protocol
directly in hardware. The protocol was bug-free in first sili-
con. We call the approach a "deterministic directory." Un-
like most other coherence-directory protocols, this
protocol’s directory state and the state of the caches are al-
ways in agreement. This is achieved by two separate fea-
tures: the blocking directory and three-phase writebacks.
The blocking directory only allows for one outstanding
transaction per cache line; in other words, the protocol
guarantees that all previous read requests to the same cach-
eline have been completed before new requests to the cache
line are serviced. Nor are writebacks started until all previ-
ous requests to the cache line have been serviced. This
guarantees that the cache line’s state as represented by the
directory always corresponds to the cache state in the dif-
ferent nodes and corner cases are avoided. Two simplified
examples can be found in the Appendix. As can be seen
from those examples, most global accesses will involve a
total of three bus transactions; two in the requesting node
and one in either the home node or the owning node. This
may create a bandwidth problem for applications with poor
memory locality, the effects of which are discussed further
in Section 8. On the other hand, applications with poor lo-
cality will experience a latency problem in DSMs anyhow
(as shown in Figure 6.)

5. Simple latency comparison

How does WildFire’s MSMP approach compare to other
system families? That question cannot be answered by
looking at a single latency or bandwidth number since it
involves a wide range of system sizes. We have elected to
compare our DSM approach with the two commercially
available systems: Origin 2000TM from SGI and NUMA-
QTM from Sequent. The three systems represent three very
different approaches to building DSM systems, as shown in
Figure 2. In order to compare technology from the same
timeframe we use the data from Sun’s previous generation
SMPs, E6000, here.
 Origin is a DSM-optimized architecture focused on reduc-
ing the remote latency to clean remote data. Each DSM

1The NUMA-Q number are not explicitly published and have been extracted from [14], the Origin 2000 numbers are from [10]
2UltraSPARC I of 167 HMz and 0.5 Mbyte caches are used in this study.
3This is the current access time for E6500, the number used for the comparison and in Section 8 are based on the older E6000 with 167 MHz CPUs.

Figure 2 A simplified view of the three compared architectures.

NIAC

WildFire Node

NIDC

2.4GB/s

US US

Mem Dir$

Network

... 28 ...

2.7GB/s

P6 P6 P6 P6

Mem I/F

DP

GC

N$

Dir

DP DP

Network

NUMA-Q Node

500MB/s

1GB/s

R10000 R10000

HubMem+
Dir

R

R

R R

R

Network

Origin 2000 Node

800MB/s

800MB/s

Table 1 The latency of some scalable architectures measured
by the lm-bench benchmark [15]

Origin1 NUMA-Q1 WildFire
CPU R10000 P6 UltraSPARC I/II
CPU cache 1-4 MB .5 MB .5 - 4 MB2

#CPUs/node 2 4 28
Node cache None 32 MB 0-6 GB (CMR)
Page replication Read Read Read/Write
Local memory
Latency

472 ns 250 ns 330 ns
(252 ns)3

Local cache2cache
Latency

1036 ns 300 ns 470 ns
(400ns)3

Remote memory la-
tency (nearest node)

704 ns 2000 ns 1762 ns

Remote cache2cache
(3hop nearest nodes)

1272 ns 2500 ns 2150 ns

Latency for extra
 router hop

50 ns 20 ns No router

Memory overhead
replicating 10% of the
data in all the nodes
(~100 CPUs)

490% 240% 30%
(3 extra copies)

router hops grows Log Linearly No router

node consists of two R10000 CPUs connected to a memory
controller (Hub in Figure 2). The directory state is co-
located with the data in the DRAM banks, allowing the
large directory state to be accessed cheaply if the data are
clean in the home node. However, the directory lookup in
DRAM also will be on the critical path for accesses to dirty
data in the cache of another node. Each CPU has a fairly
large cache, but there is no node cache (a.k.a. remote access
cache [13]) to help create extra node locality. Instead, a
high-bandwidth interconnect of hypercube type is imple-
mented by distributed routers (R) to handle the increased
global traffic. The bisectional bandwidth of a system with
32 CPUs is 6.4 GB/s [10, 12].
 NUMA-Q is built from small proprietary SMP building
blocks with four P6 processors in each node. Each node
has a node cache of 32 MB (N$), shared by all the CPUs.
Since the nodes are built from SMP nodes, each with its
own memory controller, the directory could not be co-
located with the data. However, the directory is still imple-
mented using SDRAM. The coherence protocol is a

variation of the SCI, with a four-hop dirty-data protocol. It
is implemented in two chips (here called: I/F and GC) in a
programmable fashion to lower the risk of protocol bugs.
Nodes are connected using an SCI ring of 1 GB/s, imple-
mented with DatapumpTM chips by Vitesse (DP) [14].
 Table 1 lists some properties of the compared systems.
WildFire’s local latency is shorter than Origin’s and longer
than NUMA-Q’s. For remote traffic, the order is reversed
with Origin as the fastest, followed by WildFire and
NUMA-Q. Origin’s and NUMA-Q’s remote latency are
more dependant on system size than WildFire. WildFire’s
larger nodes also incurs a lower cost to replicate data.
 The remote-latency numbers in Table 1 are fairly hard to
compare out of context. A system built from large nodes
will not experience any remote latency until the system size
is larger than its node size, which is at 28 CPUs for Wild-
Fire. Even above 28 CPUs, a comparison is not straightfor-
ward. At this size, traditional DSMs will experience, on
average, a much longer latency than the quoted latency in
the table, which is to "nearest node."
 A normal SMP application is not optimized for an archi-
tecture with non-uniform memory-access time. If the ap-
plication and the operating system are not rewritten, we can
assume that the access pattern is randomly distributed over
the entire shared address space.
avg_latency=locality*local_latency+(1-locality)*remote_latency [F1]
For random accesses with no extra optimizations, the local-
ity is approximately 1/N, where N is the number of nodes in
the system. As N grows, this locality-for-free effect dimin-
ishes. Figure 3 shows the average access time to clean data
from memory, assuming random distribution of accesses. In
the 4 to 28 CPU range, traditional DSMs have an access
time 2 to 8 times that of WildFire’s. This is not surprising
since WildFire simply behaves as an E6000 for this system
size. It should be noted that this is really the sweet spot of
the market for servers. Origin shows a slightly better la-
tency than WildFire for systems above 28 CPUs.
 In systems with large caches, a large fraction of accesses
is to migratory-shared data structures. Typically, such data
structures will not be found clean in the home memory and

Figure 3. The average latency to shared memory for cache
misses, assuming random distribution.

0 10 20 30 40 50 60 70 80 90 100
#CPUs

0
500

1000
1500
2000
2500
3000
3500
4000

La
te

nc
y

(n
s)

Avg. latency for clean data
No created locality

WildFire

Origin

NUMA-Q

Figure 4. The average access time to satisfy a migratory
cache miss, assuming random distribution.

0 10 20 30 40 50 60 70 80 90 100
CPUs

0
500

1000
1500
2000
2500
3000
3500
4000

Avg latency for migratory data
No created locality.

WildFire

Origin

NUMA-Q

Figure 5. The average latency to satisfy a cache miss as-
suming 50% cache-to-cache misses and average distribu-
tion of memory accesses to the shared address space.

0 10 20 30 40 50 60 70 80 90 100
#CPUs

0
500

1000
1500
2000
2500
3000
3500
4000

La
te

nc
y

(n
s)

Avg latency for mixed traffic
No created locality.

WildFire

Origin

NUMA-Q

Figure 6. The effect of created locality on the average ac-
cess time assuming 50% cache-to-cache misses

0 10 20 30 40 50 60 70 80 90 100
#CPUs

0
500

1000
1500
2000
2500
3000
3500
4000

La
te

nc
y

(n
s)

WildFire, Mixed traffic
Varying the created locality

0%
25%
50%
75%
90%
100%

will be satisfied from some other cache. In a NUMA sys-
tem, that cache will typically be in a node other than the
requesting node or home node. Figure 4 shows the average
latency for this type of accesses. The figure shows an even
larger latency difference between WildFire and other DSMs
for systems with less than 28 CPUs. The reason for this is
the rather efficient cache-to-cache implementation within a
single WildFire SMP node supported by a broadcast snoop-
ing protocol. In a DSM system, a cache-to-cache transfer
most often involves a so-called three-hop or four-hop trans-
action: a remote access to the home node, a lookup in the
directory, a remote access to a third node where the dirty
data resides and, finally, a remote data packet sent back to
the home node. Both NUMA-Q and Origin implement their
directory structure in SDRAM. WildFire has a large direc-
tory cache implemented in SRAM. The data set size for
migratory data tends to be fairly small and fits in the direc-
tory cache. This reduces the directory-lookup overhead for
systems larger than 28 CPUs.
 Another factor that reduces the random cache-to-cache
latency is the 1/N effect of WildFire’s rather large nodes.
This makes up for WildFire’s long latency to remote nodes
and makes it the overall fastest solution for migratory data.
 A real application would experience an access mix of the
two access types discussed above. The ratio between the
two categories varies widely with applications. We have

seen many commercial applications with 40--60% cache-to-
cache accesses, which have also been reported by others
[1]. Figure 5 shows the average access time for the three
systems assuming 50% of each kind. The figure shows that
the WildFire approach is very advantageous in systems up
to 28 CPUs. Above 28 CPUs, WildFire is roughly on par
with Origin, but still far ahead of NUMA-Q.
 If the application and the operating system are altered, or
large node cache added, more locality can be created. The
total locality will have a component caused by this optimi-
zation. We call it "created locality" and define it as the frac-
tion of accesses that are made local to a node due to some
extra measure. The remaining transactions will still be ran-
domly distributed and experience the 1/N locality:
locality = created_locality + (1-created_locality) / N [F2]
This way we isolate the locality effect caused by the large
nodes from the forced locality effect, which is less depen-
dant on the number of nodes in the system.
 One way of creating locality is by adding a third-level
node cache, such as in the NUMA-Q, or by adding support
for migration and read-only replication with a page granu-
larity, as done by Origin. WildFire’s CMR can be viewed
as a large node cache, but will also effectively support page
migration and read-only or read/write replication of pages
with a coherence unit of one cache line. The effect of
WildFire’s average latency as a function of its created

locality can be studied in Figure 6. This figure assumes that
the created locality is independent of the number of nodes
in the system.
 It is apparent that DSMs, regardless of the efficiencies of
their implementations, require a substantial amount of cre-
ated locality in order to run applications well. The OLTP
application studied in this paper resulted in 75% created
locality. A 75% created locality (highlighted in the picture)
keeps the average latency in the range of 1.5 times the
SMP’s latency.

6. Application-transparent optimizations

To successfully exploit WildFire as a large SMP, it should
not be required that user processes be aware of their loca-
tions, or the node locations of their memory regions, to get
good performance and scalability. WildFire uses additional
kernel modules for Coherent Memory Replication and Hi-
erarchical Affinity Scheduling control. CMR and HAS poli-
cies are implemented by daemon processes which periodi-
cally sample CPU load and the excess-remote-cache-miss
counters. Set-aware load balancing moves processes from
one node to another to balance CPU load, and the CMR
daemon will migrate or replicate memory pages to mini-
mize the frequency of remote memory cycles. In this way,
WildFire transparently and continuously optimizes the loca-
tion of both processes and their favorite memory regions for
best application performance. Additionally, the system will
attempt to optimize the initial placement of processes and
memory for improved locality. The kernel itself is repli-
cated transparently on all nodes at boot time; but, the proto-
type OS used in the tests described below does not replicate
many of its data structures.
 To analyze the application-transparent optimizations, the
following questions were asked:
 1. Is MSMP as implemented in WildFire viable for com-
mercial workloads running unmodified SMP applications?
 2. What operating system features can be used to ef-
fectively hide the latency of remote memory from the ap-
plication?
 3. How close to an SMP’s performance characteristics is
an MSMP?

7. Application example

 We have chosen to study two of the key features and their
impact on performance in more detail: the coherent
memory replication and the scheduling policies. A large
commercial OLTP benchmark workload is used. It exhibits
intense shared-data update activity, stressing the ability of
the system to deal with migratory data sharing. Cache-miss
ratios and memory traffic are high, even for commercial
workloads, and this workload imposes a unique demand for
a very large, shared-memory region.
 The system was scaled to 900 warehouses on 240 disks
connected to one of the nodes through 8 fiber- channel in-
terfaces. WildFire’s I/O architecture does not add

significant performance penalties for inter-node pro-
grammed I/O or DMA operations. The shared memory was
configured to be approximately 2 GB in size, and 4 GB of
physical memory were configured on each node so as to
have enough memory for both the Shared Global Area
(SGA) and process private memory.
 Database testing was done on a 16 CPU E6000 and on a
two-node E6000 WildFire with 8 CPUs in each node. For
the two-node tests, the second node was connected to the
existing system and half the CPU boards (including their
memory) were moved over. As mentioned before, the I/O
was left connected to only one of the nodes. This small-
scale evaluation using only 16 CPUs allowed us to compare
our results with an equivalent "ideal" SMP system as a
standard for comparison and to avoid software contention
which would impose an artificial limit on the performance
of both configurations. We wanted to focus primarily on the
effect of remote-memory latency in these experiments.

8. Experimental results

 The effects of the different optimizations were studied by
first turning them on one by one, and later turning them all
on, while measuring the execution time and the ratio of
memory accesses staying local in one node. The following
configurations are compared:
 NUMA fat nodes represents the expected performance of
a NUMA system built from hardware identical to
WildFire’s, but running a completely unmodified operating
system resulting in random distribution of accesses. Still,
50% of the memory accesses are local since the system is
built from only two nodes. However, no completely unopti-
mized WildFire operating system exists, so this perfor-
mance number had to be modelled based on the number of
L2 cache misses measured on a real WildFire system, and
the average access time assuming 50% local accesses [F1].
 NUMA thin nodes is modelled similarly to the NUMA
fat nodes, but assumes a system built from eight nodes with
two CPUs in each node, i.e., 12.5% local accesses, and a
local and remote latency equal to WildFire’s. The perfor-
mance of this system is set to 1.0 in Figure 7. The increased
memory locality of NUMA with fat nodes gives it a 35%
performance edge over the NUMA built from thin nodes.
 WildFire base is the real WildFire system with as many
optimizations as possible turned off. The allocation of
memory is locality aware and some kernel text and data
structures are statically replicated by this kernel. This ver-
sion of the kernel has a flat affinity scheduler. WildFire
base runs 21% faster than NUMA fat. It can be expected
that a NUMA thin would experience a similar speedup if a
similarly optimized kernel was used.
 HAS only is running WildFire base with the hierarchical
affinity scheduling turned on. This will maximize the time a
process stays within a node; it also introduces some over-
head in the scheduler and adds some extra imbalance to the
system. On the positive side there is an increased likelihood
of finding requested data in a cache local to the node.

Figure 7. Relative OLTP performance from different DSM
and SMP implementations.

1.00

1.35

1.64

1.66

1.82

2.13

2.44

NUMA-thin
nodes(est.)

NUMA-fat
nodes(est.)

WF base

HAS only

CMR only

HAS + CMR

Ideal (SMP)

0.0 1.3 2.5

Relative OLTP Performance

Figure 8. The locality of traffic, i.e., what ratio of cache
misses is satisfied locally in a node.

13%

50%

71%

87%

100%

NUMA-thin
nodes(est.)

NUMA-fat
nodes(est.)

WF base

HAS + CMR

Ideal (SMP)

0% 25% 50% 75% 100%
Memory Bus Requests Local/Total

However, the state stored in the local caches is not large
enough to make this a huge advantage and the measured
performance gain is very small compared to WildFire base.
 CMR only is running WildFire base with the coherent
memory replication turned on. Some pages will be repli-
cated in both nodes. Processes frequently migrate between
nodes; but, since much of the important read-mostly data is
replicated in both nodes, the memory locality is increased
enough to give this system an 82% performance advantage
over a NUMA built of thin nodes.
 HAS and CMR has both the hierarchical affinity sched-
uler and the coherent memory replication turned on. The
combination of rare process migration between nodes and
the huge read/write caches supported by CMR result in a
multiplication effect compared to using only one of the two
techniques at a time. The net result is a 113% performance
increase compared to the plain NUMA built from thin
nodes.
 Ideal SMP is built from a single SMP with 16 processors,
as discussed earlier, and thus experiences "100% memory
locality." This represents the upper bound for these kinds of
locality optimizations. The performance of the HAS and
CMR system is only 13% slower than this ideal system
when running this unaltered commercial SMP application
on the WildFire port of the Solaris operating system.
 The most performance-critical property of the different
systems is the amount of memory locality. Memory locality
was measured as the ratio of local memory accesses to total

memory traffic (L2 cache misses and DMA traffic) using
hardware counters on the WFIs, as shown in Figure 8. Ex-
pected locality for the modeled fat/thin NUMA systems is
also shown as a reference. Kernel replication and initial
placement policy together accounted for 71% of the local
memory cycles, up from an expected 50% for random
placement. Coherent Memory Replication increased the
measured locality to 87%.
 A measured locality of 87% in a two-node system implies
a "created locality" of 75%. This is a measure of the ef-
fectiveness of the kernel replication and CMR. With a cre-
ated locality of 75%, the remaining 25% will be distributed
equally among the two nodes, resulting in a 75% +
(100% - 75%)/2 equals the 87.5% measured locality on a
two node system.
 As mentioned before, a global transaction will generate a
total of three bus transactions while local transaction only
generates one transaction. This increase in bus traffic is the
bandwidth bottleneck in WildFire. However, good locality
will limit the negative effect. The SMP equivalent band-
width, SysBW, can be derived as:
SysBW * (locality+3*(1-locality))= BusBW*#Nodes ==>
SysBW = BusBW *#Nodes/(3-2*Locality) = (using [F2])
= BusBW*#Nodes/(3-2*(created_locality+(1-created_locality)/N)) [F3]

 SysBW(2 Nodes, 75% created locality) = 4.3 GB/s.
E6000’s CPUs share 2.7 GB/s. In WildFire, each CPU runs
at 87% the speed in E6000, so each CPU requires only 87%
of the bandwidth. The number of CPUs we can we put in
each of the two node while maintaining the equivalent per-
CPU bandwidth can be calculated as:
CPUsPerNode = 4.3/(2*0.87*2.7) = 0.91
Thus, for this kind of application, each WildFire node
should be able to have about 91% as many CPUs as a single
E6000 while maintaining the same bus utilization.
 To evaluate the effect of replicating only the frequently
accessed region of the SGA, we conducted a crude experi-
ment, relying on the known characteristics of the layout of
the SGA in memory. In particular, many of the "hot" data
structures reside in the lower address range of the SGA.
Thus, limit the replication of the SGA to the lower end of
its address range is an approximation of the performance
achieved if only 25% of SGA could be replicated. Results
are shown in Figure 9.

Figure 9. Graph showing the importance of large data rep-
lication.

0.68

0.79

0.84

0.87

1.00

No CMR

CMR no SGA

CMR 25% SGA

CMR 100%
SGA

Ideal (SMP)

0 0.25 0.5 0.75 1

Relative OLTP Performance

 Limiting replication to 25% of the SGA, or approximately
450 MBytes out of 1.8 GBytes, resulted in some 3% perfor-
mance degradation. These results imply that dynamic repli-
cation for special memory regions such as database SGAs
could result in a savings of physical memory (less physical
replication across nodes). Fat nodes are a definite advan-
tage here; where the two-node system uses 450 MBytes ex-
tra physical memory (450 MB * 1 nodes), an eight thin-
node system would need to use 3.1 GB of extra physical
memory (450 MB * 7 nodes) to replicate 25% of the SGA
region.

9. Related work

 COMA [7] and S-COMA [8, 16] are similar to, and have
inspired, the creation of WildFire. However, WildFire
hardware has been simplified and does not allow the home
to migrate between nodes and is not a true COMA. Home
migration is instead supported through the software for
page migration. WildFire also has a sophisticated algo-
rithm for deciding which data structures should be repli-
cated, while COMA and S-COMA have no support for such
a selection strategy.
 KSR-1 was architecturally very similar to WildFire in that
groups of processors, connected by a ring, formed large
nodes. Several nodes were connected together using yet
another ring structure. However, rather than using a high-
volume tight nonscalable technology to form the large
nodes, the rather ineffective ring structure was used also at
this level. KSR claimed to be a COMA; but, since each
page required space to be allocated all the time in a "home
node," it actually only implemented memory replication.
Similarly to COMA and S-COMA, KSR only supported
replication and cannot dynamically switch to/from the cc-
NUMA strategy.
 The R-NUMA [6] and the ASCOMA [11] algorithm for
page caching strategy is very similar to the one used in
WildFire; but, here WildFire chose a simplified implemen-
tation strategy based on associative counters. We have also
added a scheduling strategy and shown it to be vital to good
performance when using an algorithm such as R-NUMA.
PRISM [5] presents yet another alternative approach to
switching between cc-NUMA and S-COMA. These three
simulation studies are based on fairly short-running techni-
cal applications. The performance study presented here is
based on a real hardware implementation and a long-
running commercial application.

10. Conclusion

In conclusion, MSMP, as implemented in Sun’s WildFire
prototype, appears to be a viable architecture for OLTP
workloads. Application-transparent locality and load bal-
ancing are able to relieve the burden of memory-locality
awareness from the database application. Coherent Memory
Replication and Hierarchical Affinity Scheduling are

effective kernel features and are able to manage processes
and memory pages for good locality.
 These results on the WildFire prototype demonstrate that
MSMP with Coherent Memory Replication can effectively
hide the locality issue from user processes for the studied
application, extending the SMP model beyond the SMP
box. The performance results demonstrate 2.13 times that
of a NUMA implementation with no optimizations. While
the ideal implementation, an even larger SMP with the
same memory access time as the local memory access time
of WildFire shows 2.44 times. WildFire’s applications-
transparent optimizations bring it within 13% of the ideal
performance.
 WildFire is a prototype installed at number of external beta
sites. It is not a product offered by Sun Microsystems, Inc.

11. Acknowledgments

The WildFire architecture was developed by Sun’s High-
End Server Engineering group, based in Massachusetts. We
would like to thank the entire team for tireless and enthu-
siastic work during the WildFire hardware and software
implementation. Cathy Melior-Benoit, Anders Landin, Ken
Won, Alan Mandel, Jon Wade, Brad Carlile, Andy Phelps,
Alan Charlesworth and Ashok Singhal provided helpful
comments on early drafts of this paper. Mark Hill and
David Wood added valuable help during the development
of the WildFire architecture as well as this paper.

REFERENCES

[1] L. Barroso, K. Gharachorloo, and E. Bugnion. Memory System
Characterization of Commercial Workloads. ACM/IEEE Interna-
tional Symposium on Computer Architecture (ISCA), June 1998.

[2] T. Brewer and G. Astfalk. The Evolution of the HP/Convex
Exemplar. In Proceedings of COMPCON Spring 1997.

[3] B. Carlile. Seeking the Balance: Large SMP Warehouses.
Database Programming & Design, August 1996.

[4] A. Charlesworth. STARFIRE: Extending the SMP Envelope.
IEEE Micro Jan/Feb 1998.
(http://www.sun.com/servers/enterprise/10000/wp/)

[5] K. Ekanadham, B-H. Lim, P. Pattnaik, and M. Snir. PRISM:
An Integrated Architecture for Scalable Shared Memory. In
Proc. HPCA 1998.

[6] B. Falsafi, D. Wood. Reactive NUMA: A Design for Unifying
S-COMA with CC-NUMA. ACM/IEEE International Symposium
on Computer Architecture (ISCA), June 1997.

[7] E. Hagersten, A. Landin, and S. Haridi. DDM - A Cache-Only
Memory Architecture. IEEE Computer, 25(9):44-54, Sept. 1992.

[8] E. Hagersten, A. Saulsbury, and A. Landin. Simple COMA
Node Implementations. In Proceedings of Hawaii International
Conference on System Science, January 1994.

Dir$
R H

S S

MTAG
(SRAM)I/F

BL

1. RTO(ignored)

2. R_RTO

4a. H_INV
4b. H_RTO

5b. S_DATA
5a. S_ACK

(SRAM)
3.

6. RTO

7. R_CMP

5a. RTO (invalidate)5b. RTO (retrieve & invalidate)

Requesting
Node

Owning Slave
Node

Sharing Slave
Node

Home
Node

Dir$
R H

MTAG
(SRAM)I/F

BL

1. WB(ignored)

2. R_WB

(SRAM)
3.

5. WB

7. R_DATARequesting
Node

Home
Node

4. H_ACK

6. DATA

8. WB

[9] M. Heinrich, et al. The Performance impact of flexibility in the
Stanford FLASH multiprocessor. Proceedings of the 6th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) 1994.

[10] C. Hristea, D. Lenoski, and J. Keen. Measuring Memory Hi-
erarchy Performances of Cache-Coherent Multiprocessors Using
Micro Benchmarks. In Proceedings of Supercomputing 1997.

[11] C-C. Kou, J. Carter, R. Kuramkote, and M. Swanson. AS-
COMA: An Adaptive Hybrid Shared Memory Architecture. ICPP
Aug 1998.

[12] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. ACM/IEEE International Symposium on
Computer Architecture (ISCA), June 1997

[13] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J.
Hennessy. The directory-based protocol for the DASH multipro-
cessor. International Symposium on Computer Architecture
(ISCA), 1990.

[14] T. Lovett and R. Clapp. STiNG: A cc-NUMA computer sys-
tem for the commercial marketplace. ACM/IEEE International
Symposium on Computer Architecture (ISCA), June 1996.

[15] L. McVoy and C. Staelin. lmbench: Portable tools for perfor-
mance analysis. USENIX January 1996.

[16] A. Saulsbury, T. Wilkinson, J. Carter, A. Landin, and S.
Haridi. An Argument for Simple COMA. In Proceedings of
HPCA 1995.

[17] A. Singhal, D. Broniarczyk, F. Cerauskis, J. Price, L. Yaun,
C. Cheng, D. Doblar, S. Fosth, N. Agarwal, K. Harvery, E. Hager-
sten, and B. Liencres. A High Performance Bus of Large SMPs. In
Proceedings of IEEE Hot Interconnects, P 41-52, Aug 1996.

[18] TPC-C and TPC-D Results. http://www.tpc.com/

APPENDIX

Example: Read-to-own (RTO) access, data shared in two remote non-
home nodes
1. The I/F detects an RTO which cannot be satisfied locally. It asserts the
ignore signal and queues the transaction for the GC. If the accessed page is
CMR, do an LPA2GA translation.
2. Send an R_RTO request to the home node.
3. The cache line address is marked as "blocked" in the blocking logic in
the home node; a home agent is allocated and performs a directory-cache
lookup. The directory entry identifies the two nodes with a shared copy,
one of them is identified as the "owner."
4a. The home agent sends H_INV demands to the shared node’s slave
agent. If the accessed page is CMR in the slave node, do GA2LPA.
4b. The home agent sends an H_RTO demand to the owner’s slave agent.
If the accessed page is CMR in the slave node, do GA2LPA.
5a. The shared slave agent initiates an invalidate SMP transaction (RTO)
and sends a S_ACK reply to the request agent once the SMP transaction
has been queued.
5b. The owned slave agent initiates invalidate-retrieve SMP transactions
and sends a S_DATA reply to the request agent.
6. The replies carries the "number-of-replies" which tells the request agent
to expect two replies before it reissues the RTO transaction on its SMP bus
and provides the data.

7. After receiving both replies, the request agent sends an R_CMP to the
home node’s blocking logic, which now will allow new transactions to the
cache line.

Example: Writeback (WB) NUMA, not canceled
1. The I/F detects an WB to remote memory. It asserts the ignore signal
and queues the transaction for the GC. The effect is that the issuing device
has still not seen its WB.
2. A request-agent instance is allocated in the GC and sends an R_WB
request to the home node.
3. The cache line address is marked as "blocked" in the blocking logic; a
home agent is allocated and performs a directory-cache lookup. If the re-
questing node is not the "owner," the writeback is canceled.
4. The home agent sends H_ACK demands to the shared node’s slave
agent.
5. The request agent reissues the WB transaction on its SMP bus.
6. The issuing device now sees its own WB and will provide the data to
the request agent if it is still the owner. If it is no longer the owner, it will
cancel the writeback operation.
7. The request agent sends a data packet to the home node, which unblocks
the cache line
8. The home agent reissues the WB transaction on its SMP bus and up-
dates the memory.

