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Abstract

We study a general class of statistical detection problems where the underlying objective is to detect items

belonging to a rare class from a very large database. We propose a computationally efficient method to

achieve this goal. Our method consists of two steps. In the first step, we estimate the density function of the

rare class alone with an adaptive bandwidth kernel density estimator. The adaptive choice of the bandwidth

is inspired by the ancient Chinese board game known today as Go. In the second step, we adjust this density

locally depending on the density of the background class nearby. We show that the amount of adjustment

needed in the second step is approximately equal to the adaptive bandwidth from the first step, which gives

us additional computational savings. We name the resulting method LAGO for “locally adjusted Go-kernel

density estimator.” We then apply LAGO to a real drug discovery data set and compare its performance

with a number of existing and popular methods.
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1 The Statistical Detection Problem

Suppose we have a large collection of items, C, of which only a fraction π (π ¿ 1) is relevant to
us. We are interested in computational tools to help us identify and single out these items. The
reason an item is considered relevant depends on the context of a specific problem. For example, for
fraud detection (e.g., Bolton and Hand 2002) the relevant items are individual transactions that are
fraudulent; for drug discovery the relevant items are chemical compounds that are active against a
specific biological target (such as the HIV virus); and so on.

New Data Results
Ranking

Training Data

Model

Supervised Learning

Figure 1: Illustration of the typical modelling and prediction process.

Typically, we have a training data set {(yi,xi)}
n
i=1, where xi ∈ Rd is a vector of predictors, yi = 1

if observation i is relevant and yi = 0 otherwise. Supervised learning methods (e.g., classification
trees, neural networks) are used to build a predictive model using the training data. The model is
then used to screen a large number of new cases; it often produces a relevance score or an estimated
probability for each of these new cases. The top-ranked cases can then be passed onto further stages
of investigation. A summary of this process is provided in Figure 1.

If it is decided that the top 50 cases should be investigated further, we shall say that these 50 cases
are the ones “detected” by the model or the algorithm, although, strictly speaking, the algorithm
really does not detect these cases per se; it merely ranks them as being more likely than others to
be what we want.

The data structure and the types of supervised learning methods often used here are similar to
those encountered in a standard two-class classification problem. However, the underlying objective
is very different. In particular, automatic classification is of little interest. This is because further
investigation of the top-ranked candidates is almost always necessary. For example, in the drug
discovery application, one never starts to manufacture a drug without further testing a compound;
in the fraud detection application, one seldom terminates a credit card account without confirming
the suspected fraud. Therefore, we are most interested in producing an effective ranking of all the
candidates so that any further investigation (often very expensive) is least likely to be carried out
in vain.
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1.1 Performance Evaluation

Bolton and Hand (2002) emphasized that, because relevant cases are quite rare for these detection
problems, “simple misclassification rate cannot be used as a performance measure” for evaluating
different methods. For example, if only 0.1% of the transactions are fraudulent, then a model that
simply classifies everything as non-fraudulent will have a misclassification rate of only 0.001, but it
is clearly not a useful model.

Hits: h(t)

Detected

t

Relevant: π

Collection

100%

Figure 2: Illustration of a typical detection operation. A small fraction π of the entire collection C is

relevant. An algorithm detects a fraction t from C and h(t) is later confirmed to be relevant.

Suppose an algorithm detects (in the sense made explicit above) a fraction t ∈ [0, 1] from C and
h(t) ∈ [0, t] is later confirmed to be relevant; these are often called “hits” (as opposed to “misses”).
Figure 2 provides a schematic illustration; Table 1 is the corresponding confusion matrix.

Table 1: The Confusion Matrix.

Relevant Irrelevant Total
Detected h(t) t− h(t) t
Undetected π − h(t) (1− t)− (π − h(t)) 1− t
Total π 1− π 1

The function h(t) is called a “hit curve” (e.g., Wang 2005, Chapter 2). Figure 3 shows some typical
hit curves for a hypothetical case where only 5% of all cases are of interest. The dotted curve on
the top, hP (t), is an ideal curve produced by a perfect algorithm; every item detected is an actual
hit until all potential hits (5% in total) are exhausted. The diagonal dotted curve, hR(t), is the
expected hits under random selection. The solid (blue) and dashed (red) curves, hA(t) and hB(t),
are those of two typical detection algorithms.

The hit curve h(t) tells us a lot about the performance of a model or an algorithm. For example,
if hA(t) > hB(t) for every t, then algorithm A is unambiguously superior to algorithm B. If an
algorithm consistently produces hit curves that rise up very quickly as t increases, then it can often
be regarded as a strong algorithm. In particular, a perfect algorithm would have a hit curve that
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Figure 3: Illustration of some hit curves for a situation with 5% interesting cases. The curve hP (t) is an

ideal curve produced by a perfect algorithm; hR(t) corresponds to the case of random detection; hA(t) and

hB(t) are hit curves produced by typical detection algorithms.
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rises with a maximal slope of one until t = π, i.e., everything detected is a hit until all possible hits
are exhausted; afterwards the curve necessarily stays flat (see the curve hP (t) in Figure 3).

Table 1 also makes it clear that the hit curve h(t) is related to the well-known receiver operating
characteristic (ROC) curve (e.g., Cantor and Kattan 2000) but the two are not the same. While
both have h(t) on their vertical axes, the horizontal axis for the ROC curve is t− h(t) instead of t.
In medicine, the area under the ROC curve is often used to measure the effectiveness of diagnostic
tests.

1.2 Average Precision

While the hit curve provides an effective visual performance assessment, modelling algorithms also
require quantitative performance measures. Often an algorithm will have a number of tuning or
regularization parameters that must be chosen empirically with a semi-automated procedure such as
cross-validation. For example, for the K nearest-neighbor algorithm we must select the appropriate
number of neighbors, K. This is done by calculating a cross-validated version of the performance
criterion for a number of different Ks and selecting the one that gives the best cross-validated
performance. For this purpose, we clearly prefer a numeric performance measure, not an entire
curve!

In this article, we shall use a numeric performance measure that is most widely used in the infor-
mation retrieval community known as the average precision (AP; see, e.g., Deerwester et al. 1990;
Dumais 1991; Peng et al. 2003). Appendix A gives more details on how the average precision is
defined and calculated. As far as we are aware of, the precise connection between the AP and the
area under the ROC curve is not known. In fact, trying to establish this connection is part of our
ongoing research program. For most readers whose primary interests are in the modelling aspect of
our work, it suffices to know that the AP is a numeric summary of the hit curve h(t), and that if
method A has a higher AP than method B then method A can be regarded as the better method.

2 A General Paradigm for Efficient Modelling

We first propose a general paradigm that is efficient for constructing computational models for the
statistical detection problem. Recall that we are most interested in the ranking of all potential
candidates. Given a vector of predictors x, the posterior probability is arguably a good ranking
function, i.e., items with a high probability of being relevant should be ranked first. By Bayes’
Theorem, the posterior probability can be expressed as

g(x) ≡ P (y = 1|x) =
π1p1(x)

π1p1(x) + π0p0(x)
. (1)

Here π0 and π1 are prior probabilities; p0 and p1 are conditional density functions of x given y = 0
and y = 1, respectively. In order to rank items from a new data set {xi; i = 1, 2, ..., N}, it is clear
that a very accurate estimate of g(xi) is not necessary as long as the estimated function ranks these
observations in the correct order. As far as ranking is concerned, all monotonic transformations of
g are clearly equivalent. Therefore it suffices to concentrate on the ratio function

f(x) =
p1(x)

p0(x)
(2)
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since the function g is of the form

g(x) =
af(x)

af(x) + 1

for some constant a not depending on x, which is clearly a monotonic transformation of f .

A key feature for the statistical detection problems is that most observations are from the background
class (class 0; C0) and only a small number of observations are from the class of interest (class 1;
C1). This important feature allows us to make the following assumptions:

A1. For all practical purposes the density function p1(x) can be assumed to have bounded local
support, possibly over a number of disconnected regions, Sγ ⊂ Rd, γ = 1, 2, ...,Γ, in which
case the support of p1 can be written as

S =

Γ
⋃

γ=1

Sγ ⊂ Rd.

A2. For every observation xi ∈ C1, there are at least a certain number of observations, say m,
from C0 in its immediate local neighborhood; moreover, the density function p0(x) in that
neighborhood can be assumed to be relatively flat in comparison with p1(x). We shall be more
specific about what we mean by the “immediate local neighborhood” in Section 3.2.

Regions outside S are clearly not of interest since f(x) would be zero there and can, therefore, be
completely ignored; see equation (2). Assumptions A1 and A2 above then imply that, in order to
estimate the function f , we can simply estimate p1 and adjust it locally according to the density
p0 nearby. Notice that this strategy would give us a significant computational advantage since the
number of observations belonging to class 1 is typically very moderate even for very large data sets.
We shall exploit this general principle below to construct a computationally efficient method.

3 LAGO: Univariate Model Construction

To apply the general principles outlined in the previous section, we first assume the predictor x ∈ R
is just a scalar. We will generalize this to Rd for d > 1 in Section 4.

3.1 Step 1: Estimating p1

The first step is to estimate p1. To do so, we use an adaptive bandwidth kernel estimator:

p̂1(x) =
1

n1

∑

yi=1

K (x;xi, ri) , (3)

where n1 is the number of observations belonging to class 1 and K(x;xi, ri) denotes a kernel function
centered at xi with bandwidth ri. For each xi ∈ C1, we choose ri adaptively to be the average
distance between xi and its K-nearest neighbors from C0, i.e.,

ri =
1

K

∑

wj∈N(xi,K)

|xi − wj | (4)
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where the notation N(xi,K) is used to refer to the set that contains the K-nearest class-0 neighbors
of xi. The number K here is a tuning parameter that must be selected empirically (e.g., via cross-
validation).

The original inspiration of this particular bandwidth choice comes from the ancient Chinese game
of Go (Figure 4). In this game, two players take turns to place black or white stones onto a 19× 19
board and try to conquer as many territories as possible. At any given stage during the game, any
serious player must evaluate the relative strength of his or her position on the board as well as the
strategic value of a number of possible moves. Ignoring the various rules of the game which are
irrelevant for this article, the basic principles behind such evaluation can be roughly summarized
as follows: any given stone on the board exerts a certain amount of influence over its immediate
neighborhood region; the amount of influence is inversely related to how close the opponent’s stones
are lying around it.

Figure 4: The ancient Chinese game of Go is a game in which each player tries to claim as many territories

as possible on the board. Image taken from http://go.arad.ro/Introducere.html.

For kernel density estimation, the situation is analogous: each observation xi ∈ C1 exerts a certain
amount of influence over its immediate neighborhood region; the extent of this influence is controlled
by the bandwidth parameter. Following the basic evaluation principle from the game of Go, we allow
each xi to have a different bandwidth parameter ri depending on the distance between xi and its
neighboring observations from C0. We shall refer to this special kernel density estimator as the
“Go-kernel density estimator.”

3.2 Step 2: Local Adjustment of p1

The next step is to adjust the density estimate p̂1 locally according the density of class 0 nearby.
Here we view (3) as a mixture and adjust each mixture component (centered at xi) accordingly.
Based on (2), we should estimate p0 locally around every xi ∈ C1, say p0(x;xi), and divide it into
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K(x;xi, ri). Assumption A2 implies that we can simply estimate p0(x;xi) locally as a constant, say
ci. This means our estimate of f should be of the form:

f̂(x) =
1

n1

∑

yi=1

K(x;xi, ri)

ci
(5)

for appropriately estimated constants ci, i = 1, 2, ..., n1. Below, we present an argument that makes
the estimation of ci unnecessary in practice, which gives us an additional computational advantage.

Intuitively, if p0(x;xi) ≈ ci is roughly a constant nearby, then ci should on the average be inversely
proportional to the adaptive bandwidth ri given in (4), i.e., if the density of class 0 nearby is low,
we will expect the average distance between xi and its K-nearest neighbors from C0 to be large, and
vice versa.

Theorem 1 below (see Appendix B for a proof) makes this intuition more precise in an idealized
situation where, instead of saying p0(x;xi) ≈ ci, we shall explicitly assume that, for every xi ∈ C1,
there exist i.i.d. observations w1, w2, ..., wm from C0 that can be taken to be uniformly distributed
on the interval [xi− 1/2ci, xi+1/2ci]. Such an idealization does not make a significant difference in
practice but will allow us to provide a proof that is accessible to a much wider audience.

Theorem 1 Let x0 be a fixed observation from class 1. Suppose w1, w2, ..., wm are i.i.d. observations
from class 0 that are uniformly distributed around x0, say on the interval [x0 − 1/2c0, x0 + 1/2c0].
If r0 is the average distance between x0 and its K nearest neighbors from class 0 (K < m), then we
have

E(r0) =
K + 1

4(m+ 1)c0
. ¥

For the idealized situation, the statement in Theorem 1 is exact. In practice, we can assume (see
A2) there are at least m observations from C0 distributed approximately uniformly around every
xi ∈ C1. For K < m, then, Theorem 1 above allows us to conclude that ri will be approximately
proportional to 1/ci. Therefore, having already computed ri in the previous step, we can avoid
having to estimate ci separately for each xi and simply express our estimate of f as

f̂(x) =
1

n1

∑

yi=1

ri K (x;xi, ri) . (6)

We shall use the acronym LAGO to refer to the resulting estimator f̂ as the “locally adjusted
Go-kernel density estimator.”

3.3 Discussions

It is important to realize that, while A1 and A2 are sufficient conditions for LAGO to work, they are
by no means necessary conditions. Approximating functions locally as a constant is not uncommon.
For example, in regression trees (CART; Breiman et al. 1984), one approximates the regression
function f(x) with a piecewise constant surface even if one knows a priori that the function is
not truly piecewise constant. Therefore, assumption A2 merely provides us with the motivation
for estimating p0 locally as a constant in Step 2 (Section 3.2), but one may proceed with such an
approximation regardless of whether one believes in A2 or not.
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4 LAGO: The General Multivariate Model

We now extend the methodology presented above to Rd for d > 1. For multivariate predictor x ∈ Rd,
we simply apply the näıve Bayes principle (see, e.g., Hastie et al. 2001, Section 6.6.3), i.e., we model
each dimension independently and multiply the marginal models together:

1. For every training observation in class 1, xi ∈ C1, find its K-nearest class-0 neighbors in
Rd and compute a specific bandwidth vector ri = (ri1, ri2, ..., rid)

T , where rij is the average
distance between xi and its K-nearest class-0 neighbors in the jth dimension.

2. For every new observation x = (x1, x2, ..., xd)
T where a prediction is required, score and rank

x according to:

f(x) =
1

n1

∑

yi=1







d
∏

j=1

rij K (xj ;xij , rij)







. (7)

Generally speaking, using the näıve Bayes principle is the same as using ellipsoidal (e.g., Gaussian)
or rectangular (e.g., uniform) kernel functions whose principal axes are aligned with the coordinate
system. If initial exploratory analysis should indicate the existence of fairly strong correlations
among the predictors, making the näıve Bayes principle inappropriate, one could transform the data
with methods such as principal component analysis and apply LAGO in the transformed space, as
is often done in density estimation (see, e.g., Silverman 1986, p. 77–78).

4.1 Choice of Kernel

In practice we must choose a kernel function K(u). Common choices include the uniform kernel,
the triangular kernel and the Gaussian kernel (see Figure 5). Our experience has indicated that if
the uniform kernel is used, many observations can be tied in terms of their rank score (7); this does
not produce an effective ranking. Significant improvements can, therefore, be obtained by choosing
K(u) to be Gaussian or triangular. In addition, there is usually no significant difference between
the Gaussian and the triangular kernel (see Section 6 below), making the triangular kernel the most
attractive choice due to its compact local support.

4.2 A Radial Basis Function (RBF) Network

The LAGO estimator can be viewed as a radial basis function (RBF) network. An RBF network
(e.g., Hastie et al. 2001, Section 6.7) is a model for functional estimation that estimates an arbitrary
function using a number of kernel functions as basis functions. In general, an RBF network has the
form:

f(x) =

n
∑

i=1

βi K(x;µi, ri), (8)

where K(x;µ, r) is a kernel function centered at location µ with radius (or bandwidth) vector
r = (r1, r2, ..., rd)

T . Clearly, in order to construct an RBF network, one must make specific decisions
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Gaussian Triangular Uniform

Figure 5: Some commonly used kernel functions: Gaussian (left), triangular (middle), and uniform (right).

about the centers µi and the radii ri for i = 1, 2, ..., n or specify an algorithm to pick them. For
d-dimensional problems (d > 1), it is not uncommon to specify the kernel function K as a product
of d univariate kernel functions as in (7) (e.g., Hastie et al. 2001).

LAGO can be viewed as a highly specialized RBF network. In particular, we have specifically chosen
to put basis functions at and only at all the class-1 observations in the training data, each with a
rather specific radius vector defined separately in each dimension by equation (4). Once the centers
and the radii are specified, the coefficients βi (i = 1, 2, ..., n) are often estimated empirically. In
constructing the LAGO model, we have, instead, specified these coefficients implicitly in the model
as well, i.e.,

βi =
1

n1

d
∏

j=1

rij .

4.3 A More General Parameterization

To the extent that LAGO can be viewed as an RBF network, it is possible to consider a more direct
and slightly more general way of parameterizing such a model. Start with the adaptive bandwidth
kernel density estimator for p1 described in Section 3.1. Figure 6 illustrates the effect of the density
p0 on the ranking function f that is of interest. In this simplified and hypothetical illustration,
the density p1 has two components. If the background class has a flat density function p0, then the
ranking function f is clearly equivalent to p1. Now suppose the background class has density function
p′0 instead. Figure 6 shows that this will in general have two effects on the ranking function f . For
any given kernel component of f , if p′0 is relatively low nearby, we should stretch its bandwidth (or
radius) and lift its height. On the other hand, if p′0 is relatively high nearby, we should dampen its
bandwidth (or radius) and lower its height. We shall call the effect on the bandwidth (or radius)
the α-effect and the one on the height, the β-effect.

We can then parameterize these two effects explicitly. To construct an RBF network, suppose each
component is a kernel function belonging to a location-scale family, i.e.,

1

ri
K

(

x− xi
ri

)

.
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Figure 6: Illustration. Left: Density functions p0 and p1. Right: The ratio function f(x).

If ri is chosen adaptively as in (4) and hence can be taken on average to be inversely proportional to
the density p0 in a local neighborhood around xi (Section 3.2), we can then explicitly parameterize
the α- and β-effects as follows:

rβ
′

i

1

αri
K

(

x− xi
αri

)

∝ rβ
′−1

i K

(

x− xi
αri

)

≡ rβi K

(

x− xi
αri

)

,

where α and β are tuning parameters to be selected empirically.

We have in effect argued in Section 3.2 that the parameter β should, in theory, be set to 0 (or
β′ = 1). The parameter α, on the other hand, can be beneficial in practice. Theorem 1 makes
it clear that ri will generally increase with K. For relatively large K, we have found that we can
usually obtain a model with very similar performance by setting α > 1 and using a much smaller
K; this is also quite intuitive. Therefore, by retaining the parameter α in the model, we can restrict
ourselves to a much narrower range when selecting K by cross-validation, which is computationally
attractive. Hence, the final LAGO model that we will fit is of the form:

f(x) =
1

n1

∑

yi=1







d
∏

j=1

rij K (xj ;xij , αrij)







, (9)

with altogether two tuning parameters, K and α.

5 Support Vector Machines (SVMs)

The support vector machine (e.g., Cristianini and Shawe-Taylor 2000) has, in recent years, become
a very popular and successful supervised learning technique. Schölkopf et al. (1997) argued that
the SVM can be viewed as an automatic way of constructing an RBF network. In this section, we
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give a very brief and highly condensed overview of what the SVM is, how it can be used for the
statistical detection problem, and why it can be viewed as an RBF network and hence becomes
directly relevant for us.

5.1 Overview of SVM

A hyperplane in Rd is characterized by

f(x) = βTx + β0 = 0.

Given xi ∈ Rd and yi ∈ {−1,+1} (two classes), a hyperplane is called a separating hyperplane if
there exists c > 0 such that

yi(β
Txi + β0) ≥ c ∀i. (10)

Clearly, a hyperplane can be reparameterized by scaling, e.g.,

βTx + β0 = 0 is the same as s(βTx + β0) = 0

for any scalar s. A separating hyperplane satisfying the condition

yi(β
Txi + β0) ≥ 1 ∀i, (11)

i.e., scaled so that c = 1 in (10), is sometimes called a canonical separating hyperplane (Cristianini
and Shawe-Taylor 2000).

Margin (Worse)

Margin (Better)

Figure 7: Two separating hyperplanes, one with a larger margin than the other.

As illustrated in Figure 7, there exist an infinite number of separating hyperplanes if two classes
are perfectly separable. Given a training data set, any separating hyperplane can be characterized
by its margin, a geometric concept illustrated in Figure 7. Strictly speaking, the margin is equal to
2min{yidi} where di is the signed distance between observation xi and the hyperplane; in particular,
di is equal to (see, e.g., Cristianini and Shawe-Taylor 2000; Hastie et al. 2001, Section 4.5)

di =
1

‖β‖
(βTxi + β0). (12)
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It is then easy to see from (11) that a canonical separating hyperplane has margin equal to 2min{yidi} =
2/‖β‖.

The support vector machine is based on the notion that the “best” canonical separating hyperplane
to separate two classes is the one with the largest margin. Therefore, we are interested in solving
the following convex optimization problem:

min
1

2
‖β‖2 + γ

n
∑

i=1

ξi (13)

subject to ξi ≥ 0 and yi(β
Txi + β0) ≥ 1− ξi ∀i. (14)

Notice that in general we must introduce the extra variables ξi to relax the separability condition
(10) so that some observations are allowed to cross over to the other side of the hyperplane because
we can’t assume the two classes are always perfectly separable. The term γ

∑

ξi acts as a penalty
to control the degree of such relaxation.

The optimization problem above has a quadratic objective function and linear inequality constraints,
making it a standard quadratic programming problem. We will omit the details here (see Cristian-
ini and Shawe-Taylor 2000) and simply state what the solution looks like. The solution for β is
characterized by

β̂ =
∑

i∈SV

α̂iyixi,

where α̂i ≥ 0 (i = 1, 2, ..., n) are solutions to the dual optimization problem and SV, the set of
“support vectors” with α̂i > 0 strictly positive. This means the resulting hyperplane can be written
as

f̂(x) = β̂
T
x + β̂0 =

∑

i∈SV

α̂iyix
T
i x + β̂0 = 0.

Up to this point it appears that the SVM is a strictly linear classifier. However, it is easy to replace
the inner product xTi x with a kernel function K(x;xi) to get a nonlinear decision boundary:

f̂(x) =
∑

i∈SV

α̂iyiK(x;xi) + β̂0 = 0. (15)

The boundary is linear in the space of h(x) where h(·) is such that K(u;v) = 〈h(u), h(v)〉 is the
inner product in the space of h(x). Note that the mapping h(·) is not explicitly required.

To fit the SVM, two tuning parameters are required: the penalty parameter γ and a bandwidth
parameter σ for the kernel K(x;xi). The software we shall use is the function svm from a library
called e1071 in R (R Development Core Team 2004).

5.2 SVM for Detection Problems

To classify a new observation x, all that is needed is whether f̂(x) is positive or negative. For
detection problems, however, we must assign every new observation a rank score. A natural choice
is to use the signed distance between x and the estimated decision boundary

d(x) =
1

‖β̂‖
(β̂

T
x + β̂0).
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For ranking purposes, all monotonic transformations of d(x) are equivalent so it suffices to use just
the inner product

β̂
T
x =

∑

i∈SV

α̂iyix
T
i x.

If the inner product xTi x is replaced with a kernel function K(x;xi), the final ranking function then
becomes

Fsvm(x) =
∑

i∈SV

α̂iyiK(x;xi). (16)

5.3 SVM as an RBF network

Notice the similarity between (16) and (8). The ranking function produced by the SVM is a linear
combination of a number of kernel functions centered at all the support points xi ∈ SV . Hence
SVM can be viewed as an automatic way of constructing an RBF network since the SVs and
the coefficients α̂i are automatically determined by the algorithm. Since LAGO can be viewed
as a specially constructed RBF network (Section 4.2), an automatically constructed RBF network
provides a good benchmark for us. In addition, it is also instructive to compare the centers chosen
by the automatic SVM algorithm (the support vectors) with the ones we choose (all the class-1
observations); see Section 6.5.

5.4 SVM with Asymmetric Class Weights (ASVM)

It is also possible to weigh observations from the two classes differently in SVM, something that could
potentially benefit these highly asymmetric detection problems. Suppose w0 and w1 are weights for
C0 and C1, respectively. The convex optimization problem (13) becomes

min
1

2
‖β‖2 + γ1

∑

yi=1

ξi + γ0
∑

yi=0

ξi, (17)

where γ1 = γw1, γ0 = γw0, and the constraints remain the same as (14). Solving (17) is the same
as solving (13), except the penalty term involving γ is split into two separate terms, one with γ1 for
yi = 1 and another with γ0 for yi = 0. We shall call this the asymmetric support vector machine
(ASVM), which can be fitted using the same function svm in R but with four tuning parameters
— σ, γ, w0 and w1. Without loss of generality, we can fix w0 = 1 and tune the remaining three
parameters, σ, γ and w1, simultaneously.

6 An Application: Drug Discovery

In this section, we illustrate the use of LAGO with a real drug discovery data set. First, we give
some background on the drug discovery problem.
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6.1 Drug Discovery

Recent technological advances in high-throughput screening (HTS) have allowed chemists to screen
large numbers of chemical compounds against specific biological targets such as the HIV virus. As
a result of HTS, each compound can be classified as being active (y = 1) or inactive (y = 0) against
the biological target under investigation. Here being active usually means that the compound is able
to inhibit a certain protein and hence protect the cells against the target such as a virus. Active
compounds are then passed onto further stages of drug development.

A pharmaceutical company usually has a large chemical library — a collection of different chemical
compounds. In order to reduce cost, we can screen only part of the chemical library and use the
results to build a computational model to screen the remaining compounds and identify the ones
that would have tested active. In fact, these models can even be used to virtually screen compounds
not yet in the company’s chemical library. In order to build such a computational model, we need to
have a number of predictors to characterize each compound, e.g., by its molecular structure. These
are often computed with various algorithms from computational chemistry. A commonly used set
of predictors is called BCUT numbers (Burden 1989; Lam et al. 2002); here we omit the details of
exactly what the BCUT numbers are as these details are not directly relevant to us.

HTS

Compounds

   chemistry

  library

Y

p

1

X

X
Computational

Chemical

Figure 8: Illustration of the high throughput screening process.

Figure 8 summarizes the process described above. For any given biological target, active compounds
are almost always quite rare. Therefore, building a computational model in order to identify these
active compounds for drug discovery is exactly a statistical detection problem. Figure 8 also illus-
trates an important feature of statistical detection problems: the inexpensive availability of predictor
variables for observations that have not yet had y measured.

6.2 Data

The data set we use is the AIDS antiviral database from the National Cancer Institute (NCI). The
October 1999 release of the NCI data, available at http://dtp.nci.nih.gov/docs/aids/aids_

data.html were used in this analysis. The publicly available data set identifies each compound by
name and provides the response value y. There are 29, 812 chemical compounds, of which only 608
are active against the HIV virus. Each compound is described by d = 6 BCUT numbers, which
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are generated and kindly provided to us by computational chemists at GlaxoSmithKline, Inc. The
BCUT numbers can be thought of as mapping compounds into a six-dimensional space in which
activity occurs in local regions. Again, for details of what these BCUT numbers are, refer to Burden
(1989).

6.3 Methods

We apply LAGO with three different kernel functions, uniform, triangular and Gaussian, and use
the following algorithms as benchmarks: the SVM and ASVM for reasons discussed above (Section
5) and the K-nearest neighbor classifier (KNN). For both SVM and ASVM, the Gaussian kernel is
used. KNN is chosen here as a benchmark for two reasons. First, the way the adaptive bandwidths
are computed in LAGO has a similar flavor to the KNN algorithm. Secondly, an earlier study
(Wang 2005) using the same data set has already concluded that KNN is one of the best methods
amongst a number of techniques compared including trees, neural networks, MARS (Friedman 1991),
generalized additive models and logistic regression. In that study, four experiments were conducted
to evaluate the performance of different methods. In each experiment, the data set was randomly
split using stratified sampling into a training set and a test set, each with n = 14, 906 compounds, of
which 304 are active compounds. Performance was then assessed by the AP on the test set. Over the
four replications, a paired t-test concluded that KNN significantly outperformed all other methods
at a 5% significance level.

Here, we also conduct four experiments, using the same four splits of the data set. The four exper-
iments will also be referred to as “Split 1”, . . . , “Split 4” in the text below. In each experiment,
all tuning parameters are selected using 5-fold cross-validation on the training set whereas all per-
formance measures are computed on the test set. For KNN, there is only one tuning parameter
K. For SVM, there are two tuning parameters, γ and σ (see Section 5.1); for ASVM, there is an
additional tuning parameter for the class weights (see Section 5.4). For LAGO, there are two tuning
parameters, K and α (see Section 4.3). The actual tuning parameters selected for LAGO are given
in Table 2.

Table 2: Tuning Parameters Selected for LAGO Using Different Kernels.

Uniform Triangular Gaussian
K α K α K α

Split 1 7 1 4 3 3 3
Split 2 7 1 2 5 2 4
Split 3 7 1 4 3 5 2
Split 4 7 1 4 3 4 2

Remark. In deciding to use 50% of the data for training, we attempt to represent a large-scale
drug discovery problem with a smaller, public-domain data set. We seek to balance two factors:
(1) the NCI data set consists of nearly 30,000 compounds while real pharmaceutical libraries can
contain a million compounds; (2) as such, a training set selected from a real pharmaceutical library
would often contain far fewer than 50% of all compounds — in fact, they might well contain roughly
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the same number of compounds as our training set (approximately 15,000). Thus, the size of our
training set matches real problems but our test set is smaller than usual. However, despite this
smaller test set, results in Section 6.4 are still statistically significant. In addition, the proportion of
active compounds in our data set (about 2%) is also typical of real problems.

Index of Split

1 2 3 4

0.
18

0.
20

0.
22

0.
24

0.
26

Gaussian
Triangular
Uniform
KNN
SVM
ASVM

Average Precision

Figure 9: The average precision of all algorithms evaluated on the test data. The terms “Gaussian,”

“Triangular” and “Uniform” refer to our LAGO model using the corresponding kernel functions.

6.4 Results

Figure 9 plots the average precision and Figure 10 shows the hit curves when different methods are
applied to different test data. Because we measure performance four times using slightly different
training and test data, it is also possible to perform an ANOVA comparison of these different
methods. Let µK , µS , µA, µU , µT and µG denote the average performance (measured by average
precision) of KNN, SVM, ASVM and LAGO using the uniform, the triangular and the Gaussian
kernels, respectively; we construct five (non-orthogonal) contrasts (see Table 3). The ANOVA result
is given in Table 4. The main conclusion, at either a 1% or a 5% significance level, is the following:

(Triangle LAGO ∼ Gaussian LAGO) Â ASVM Â SVM Â (Uniform LAGO ∼ KNN),

where “∼” means “not significantly different from” and “Â” means “significantly better than.”

Notice that, although the hit curve for ASVM can sometimes be higher than that of LAGO, e.g.,
for n > 300 in Splits 2 and 4, the hit curve for LAGO is always higher initially. This means the top-
ranked compounds identified by LAGO are more likely to be active than the top-ranked compounds
identified by ASVM. LAGO has consistently higher average precision because this measure puts
greater weight on early detection.
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Table 3: Estimated Contrasts.

Contrast Expression Estimate
Cntr1 µT − µG 0.0027
Cntr2 µG − µA 0.0339
Cntr3 µA − µS 0.0230
Cntr4 µS − (µK + µU )/2 0.0157
Cntr5 µU − µK 0.0014
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Figure 10: The hit curve on test data. Only the initial part of the curves (up to n = 500) are shown. The

terms “Gaussian,” “Triangular” and “Uniform” refer to our LAGO model using the corresponding kernel

functions.
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Table 4: ANOVA Analysis of Differences Among Methods.

Source SS (×10−4) df MS (×10−4) F0 P-Value
Methods 233.504 5 46.701 64.307 <0.0001

Cntr1 0.140 1 0.140 0.193 0.6664
Cntr2 22.916 1 22.916 31.556 <0.0001
Cntr3 10.534 1 10.534 14.505 0.0017
Cntr4 6.531 1 6.531 8.994 0.0090
Cntr5 0.036 1 0.036 0.050 0.8258

Splits 18.877 3 6.292 8.664 0.0014
Error 10.893 15 0.726
Total 263.274 23

6.5 Comparison with SVM and ASVM

As mentioned in Section 5, since both LAGO and SVM can be viewed as RBF networks (constructed
using entirely different approaches), it is instructive to examine in more detail the structure of these
two RBF network models. Recall the main feature of our RBF network LAGO is that we choose
to put basis functions at and only at all the class-1 observations in the training set, which is very
efficient since class 1 is the rare class. Recall also that the SVM will put basis functions at all the
support points.

Table 5 lists the number of training observations from both classes that are chosen as support vectors
by SVM and ASVM. In all cases, almost every observation from class 1 (active compounds) is chosen
as a support vector. This suggests using all class-1 observations in the training data is a good idea.
On the other hand, both SVM and ASVM also use a fairly large number of observations from class
0 (inactive compounds) as support vectors. Given that the overall performance of SVM and ASVM
is inferior to that of LAGO, these extra support vectors seem to be quite wasteful.

We must also stress here that fitting the ASVM is an extremely expensive computational exercise.
Over 26 days of CPU time were needed to produce the results for all four splits. This was made
feasible by a powerful parallel computing cluster with 38 nodes.

Table 5: Number of Support Vectors from Classes C0 and C1.

SVM ASVM
C0 C1 C0 C1

Split 1 11531 294 5927 291
Split 2 11419 303 3472 284
Split 3 11556 293 11706 290
Split 4 1863 293 6755 281

Total Possible 14602 304 14602 304
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6.6 Empirical Evidence for β = 0

Finally, we present some empirical evidence to support the theoretical claim that the extra parameter
β in the more general parameterization of LAGO (Section 4.3) should be set to 0. To do so, we treat
β as an extra tuning parameter. With K and α, we now have altogether three tuning parameters,
which makes cross-validation slightly more difficult and tedious. To simplify the computation, we
conduct an experiment on the NCI AIDS antiviral data by fixing the parameter K and using cross-
validation to select α and β simultaneously. We use the Gaussian kernel and simply fix K = 5,
which is a reasonable choice based on results from Table 2. Figure 11 shows that cross validation
selects β = 0, completely in agreement with our theoretical choice!
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Figure 11: Choosing α and β (while fixing K = 5) using 5-fold cross-validation on the training data. The

contours are calculated on a 9 × 9 grid, for α = 0.1, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5 and β = -1, -0.5, -0.1,

-0.01, 0, 0.01, 0.1, 0.5, 1.
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7 Summary

We now summarize the main contributions of this article. First of all, we outlined a general paradigm
for constructing efficient computational models for the statistical detection problem. This paradigm
can be summarized as follows: Estimate the density for the rare but important class alone and adjust
locally depending on the density of the background class nearby. The two steps are: estimation and
adjustment. Significant computational saving can be achieved because we need only model the rare
class.

Secondly, based on the general paradigm, we developed the new LAGO model. A powerful feature
of LAGO is that the two steps (estimation and adjustment) are computationally combined into
one. In particular, we estimate p1 with an adaptive bandwidth kernel density estimator and can
show that the adjustment needed in the second step is proportional to the adaptive bandwidth
already calculated in the first step. Hence, we obtain additional computational saving because the
adjustment step is automatic and requires no extra computation.

Finally, we showed that LAGO could be viewed as an RBF network. Based on this point of view,
we presented a more general parameterization for LAGO and illustrated its usefulness with a real
data set from drug discovery. We showed that LAGO was competitive and, when the Gaussian or
the triangular kernel was used, it outperformed both SVM and KNN.

A The Average Precision

In this appendix, we give details about how the average precision is defined and calculated. Referring
to Figure 2, let h(t) be the hit curve; let

r(t) =
h(t)

π
and p(t) =

h(t)

t
. (18)

The average precision is defined as

AP =

∫ 1

0

p(r)dr =

∫ 1

0

p(t)dr(t) =

∫ 1

0

πr(t)dr(t)

t
. (19)

It is most instructive to examine a few concrete examples.

Example 1 (Random Selection). Suppose h(t) = πt, i.e., the proportion of relevant items
among those detected so far stays constant at π. This is the case of random selection. In this case,
r(t) = h(t)/π = t. Therefore

AP(Random) =

∫ 1

0

πr(t)dr(t)

t
=

∫ 1

0

πt

t
dt = π. ¥

Example 2 (Perfect Detection). Suppose

h(t) =

{

t, t ∈ [0, π];

π, t ∈ (π, 1].
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That is, everything detected is relevant until all relevant items are exhausted at t = π. This is the
case of ideal detection; one can’t possibly do any better than this. This implies

r(t) =

{

t
π , t ∈ [0, π];

1, t ∈ (π, 1].

Therefore,

AP(Perfect) =

∫ 1

0

πr(t)dr(t)

t
=

∫ π

0

(

π × t
π ×

1
π

t

)

dt+

∫ 1

π

(

π × 1× 0

t

)

dt = 1. ¥

Example 3 (Practical Calculation). In practice, h(t) takes value only at a finite number of
points ti = i/n, i = 1, 2, ..., n. Hence, the integral (19) is replaced with a finite sum

∫ 1

0

p(t)dr(t) =
n
∑

i=1

p(ti)∆r(ti) (20)

where ∆r(ti) = r(ti)− r(ti−1). We illustrate this with a concrete example. Table 6 summarizes the
performance of two hypothetical methods, A and B.

In this case, we have

AP(A) =
10
∑

i=1

p(ti)∆r(ti) =

(

1

1
+

2

2
+

3

4

)

×
1

3
≈ 0.92

and

AP(B) =

10
∑

i=1

p(ti)∆r(ti) =

(

1

1
+

2

4
+

3

8

)

×
1

3
≈ 0.63,

which agrees with our intuition that algorithm A performs better here because it detects the three
hits earlier on. ¥

B Proof of Theorem 1

In this appendix, we prove Theorem 1. Suppose w1, w2, ..., wm are i.i.d. observations uniformly
distributed on the interval [x0 − 1/2c0, x0 + 1/2c0]. Let zj = |wj − x0| be the distance between wj
and x0, we first claim that

E(z(k)) =
k

2(m+ 1)c0
(21)

where z(k) is the kth order statistic of zj , j = 1, 2, ...,m. We can then write the average distance
between x0 and its K nearest neighbors from wj , j = 1, 2, ...,m as

r0 =
1

K

K
∑

k=1

z(k). (22)
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Table 6: Two Algorithms for a Toy Data Set with 3 Relevant Cases.

Algorithm A Algorithm B

Item (i) Hit p(ti) ∆r(ti) Hit p(ti) ∆r(ti)

1 1 1
1

1
3 1 1

1
1
3

2 1 2
2

1
3 0 1

2 0

3 0 2
3 0 0 1

3 0

4 1 3
4

1
3 1 2

4
1
3

5 0 3
5 0 0 2

5 0

6 0 3
6 0 0 2

6 0

7 0 3
7 0 0 2

7 0

8 0 3
8 0 1 3

8
1
3

9 0 3
9 0 0 3

9 0

10 0 3
10 0 0 3

10 0
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Equation (21) above then implies

E(r0) =
1

K

K
∑

k=1

E(z(k)) =
1

K

K
∑

k=1

k

2(m+ 1)c0
=

K + 1

4(m+ 1)c0
, (23)

which completes the proof.

In order to prove equation (21), first note that we can assume x0 = 0 without loss of general-
ity. If w1, w2, ..., wm are uniformly distributed on [−1/2c0, 1/2c0], then it is easy to show that the
distribution for zj = |wj |, p(z), is uniform on the interval [0, 1/2c0], i.e., p(z) = 2c0 if 0 ≤ z ≤ 1/2c0.

Now if z(k) is the kth order statistic of z1, z2, ..., zm, then using standard results on order statistics
(e.g., Ross 2000, p. 58, Example 2.37) we can obtain the density for z(k):

fz(k)
(z) =

m!

(k − 1)!(m− k)!
(2c0) (2c0z)

k−1
(1− 2c0z)

m−k
. (24)

Using (24) we can calculate E(z(k)) as follows:

E(z(k)) =

∫ 1/2c0

0

zfz(k)
(z)dz =

∫ 1/2c0

0

m!

(k − 1)!(m− k)!
(2c0z)

k
(1− 2c0z)

m−k
dz.

By letting y = 2c0z, this integral becomes

∫ 1

0

m!

(k − 1)!(m− k)!
(y)

k
(1− y)

m−k 1

2c0
dy =

∫ 1

0

(

k

m+ 1

)

(m+ 1)!

k!(m− k)!
(y)

k
(1− y)

m−k 1

2c0
dy

=
k

2(m+ 1)c0
,

where the last step is due to the fact that

∫ 1

0

(m+ 1)!

k!(m− k)!
(y)

k
(1− y)

m−k
dy = 1

because the integrand above can be recognized as a Beta(k + 1,m− k + 1) density function.
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