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Abstract: This paper presents methods to generate fuel type maps from remote sensing data at a spatial and temporal
scale adequate for operational fire management applications. Fuel type maps account for structural characteristics of
vegetation related to fire behaviour and fire propagation. A fuel type classification system adapted to the ecological
characteristics of the European Mediterranean basin was adopted for this study. The Cabañeros National Park (in cen-
tral Spain) area was selected for testing and validating the methods. Fuel type maps were derived from two Landsat
TM satellite images and digital elevation data. Atmospheric and topographic corrections of the satellite images were
performed to reduce spectral variability. A sensitivity analysis was carried out to determine the most appropriate bands
for fuel type mapping. The final classification was checked by an intense field survey, the final classification accuracy
being estimated at 83%. The main problem was discriminating among those fuel types that differ only in vegetation
height or composition of the understory layer. The mean mapping accuracy was 15 m (0.6 pixels), and no areal dis-
crepancy or boundary displacement with vegetation maps was apparent.

Résumé : Cet article présente des méthodes pour générer des cartes de types de combustible à partir de données de té-
lédétection à des échelles spatiale et temporelle adéquates pour être utilisées dans la gestion opérationnelle des feux.
Les cartes de types de combustible tiennent compte des caractéristiques structurales de la végétation en lien avec le
comportement et la propagation du feu. Un système de classification des types de combustible adapté aux caractéristi-
ques écologiques du bassin de la Méditérannée européenne a été adopté pour cette étude. La région du parc national
Cabañeros (dans le centre de l’Espagne) a été choisie pour tester et valider les méthodes. Les cartes de types de com-
bustible ont été produites à partir de deux images satellitaires Landstat capteur TM et de données digitales d’altitude.
Les images satellitaires ont été corrigées pour tenir compte des conditions atmosphériques et topographiques afin de ré-
duire la variabilité spectrale. Une analyse de sensibilité a été effectuée pour déterminer quelles bandes sont les plus ap-
propriées pour cartographier les types de combustible. La classification finale a été vérifiée par un inventaire intensif
sur le terrain et sa précision a été estimée à 83 %. La principale difficulté consiste à distinguer les types de combus-
tible qui diffèrent seulement par la hauteur ou la composition de la végétation de sous-étage. La précision moyenne de
la cartographie est de 15 m (0,6 pixels) et aucune divergence dans la superficie ni modification des contours ne sont
apparentes comparativement aux cartes de végétation.

[Traduit par la Rédaction] Riaño et al. 1315

Introduction

The conjugation of human development and sustainability
of natural resources is a critical issue to our present society.
The role of human activity in fire occurrence is a good ex-
ample of the difficult dialogue between development and
conservation. Recent changes in land-use patterns in the
Mediterranean basin have implied the reduction or abandon-
ment of traditional activities, such as extensive grazing or
wood harvesting, which reduced the amount of fuel available

for burning. Consequently, once forest fires occur, the prob-
ability of larger events increases, since fuels are more abun-
dant and some barriers related to land-use fragmentation are
lost. The fires also increase the probability of severe soil
erosion and vegetation degradation. The knowledge of fuel
load and composition is, therefore, critical for improving
current fire prevention and modelling programs and to alle-
viate the negative effects of fire on the ecosystem.

Fire behaves according to three interacting physical fac-
tors: fuel availability, weather, and terrain. Fuel conditions
refer to the morphological (i.e., height, density) and physio-
logical (i.e., moisture status) characteristics of vegetation.
Weather conditions of primary importance are wind speed
and direction, temperature, and relative humidity, while ter-
rain characteristics refer to the slope and aspect, which mod-
ify fire propagation patterns.

Because the description of fuel properties is usually very
complex, fire managers have described fuel classes by
grouping vegetation types with similar fire behaviour char-
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acteristics. More specifically, a fuel type has been defined as
“an identifiable association of fuel elements of distinctive
species, form, size, arrangement, and continuity that will ex-
hibit characteristic fire behaviour under defined burning
conditions” (Merrill and Alexander 1987). Vegetation spe-
cies are not necessarily relevant for fire management, since
the same species may present completely different fire prop-
agation rates if their fuel load, density, vertical continuity,
compactness, or surface area to volume ratio characteristics,
among others, change (Deeming et al. 1978; Anderson 1982;
Andrews 1986).

Two well-known fire behaviour fuel type systems are the
Northern Forest Fire Laboratory (NFFL) system (Albini
1976) and the Canadian Forest Fire Behaviour Prediction
(FBP) system (Lawson et al. 1985). European researchers
developed a new system, in the framework of the Prome-
theus project, which is better adapted to fuels found in
Mediterranean ecosystems (http://kentauros.rtd.algo.com.gr/
promet/index.htm, Algosystems SA, Greece). These fuel
types were defined for surface fire modelling, taking into ac-
count fuel height and density. The main criterion of classifi-
cation is the propagation element, divided into three major
groups: grass, shrubs, or ground litter. The Prometheus sys-
tem is based mainly on the type and height of the propaga-
tion element, and it comprises the following seven fuel types
to be identified (Fig. 1):

(1) Ground fuels (cover >50%): grass.
(2) Surface fuels (shrub cover >60%, tree cover <50%):

grassland, shrubland (smaller than 0.3–0.6 m and with a
high percentage of grassland), and clearcuts, where
slash was not removed.

(3) Medium-height shrubs (shrub cover >60%, tree cover
<50%): shrubs between 0.6 and 2.0 m, as well as young
trees resulting from natural regeneration or forestation.

(4) Tall shrubs (shrub cover >60%, tree cover <50%): high
shrubs (between 2.0 and 4.0 m), and regenerating trees.

(5) Tree stands (>4 m) with a clean ground surface (shrub
cover <30%): the ground fuel was removed either by
prescribed burning or by mechanical means. This situa-
tion may also occur in closed canopies in which the lack
of sunlight inhibits the growth of surface vegetation.

(6) Tree stands (>4 m) with medium surface fuels (shrub
cover >30%): the base of the canopies is well above the
surface fuel layer (>0.5 m). The fuel consists essentially
of small shrubs, grass, litter, and duff.

(7) Tree stands (>4 m) with heavy surface fuels (shrub
cover >30%): stands with a very dense surface fuel
layer and with a very small vertical gap to the canopy
base (<0.5 m).

The temporal dynamism of fuel conditions traditionally
requires enormous field survey efforts to keep fuel type
maps current, thus constraining their operational use. Satel-
lite remote sensing techniques provide an alternative source
of fuel data, since they provide comprehensive spatial cover-
age and enough temporal resolution to update fuel maps in a
more efficient and operational manner than traditional aerial
photography (Oswald et al. 1999) or fieldwork. Additionally,
satellite sensors provide digital information that can easily
be connected with other spatial databases in a geographic in-
formation system (GIS) environment and imported into fire
models.

Several authors have explored the use of satellite remote
sensing to generate fuel type maps through digital image
processing, both at regional and local scales.

Most commonly, the generation of fuel maps from remote
sensing images have been based in the analysis of medium- to
high-resolution sensors, such as Landsat MSS and Landsat
TM data (Kourtz 1977; Burgan and Shasby 1984; Dixon et al.
1984; Yool et al. 1984; Agee and Pickford 1985; Castro and
Chuvieco 1998; Vasconcelos et al. 1998; Van Wagtendonk
and Root 2002). Landsat characteristics represent a good
compromise between spectral and temporal resolutions and
have an adequate spatial coverage for this application.

Other efforts have been concentrated in low-spatial resolu-
tion sensors, such as the U.S. National Oceanic and Atmo-
spheric Administration Advanced Very High Resolution
Radiometer images (McKinley et al. 1985; Zhu and Evans
1994). The main advantage of this sensor is the possibility
of having a multitemporal database because of its high tem-
poral coverage. This should be very useful to characterize
the fuel types at regional and global scales. However, the
low spatial resolution of this sensor (1 km at nadir) limits its
utility to local scale. The classification accuracy of fuel-type
discrimination may be rather low when the fuel beds and
land-use patterns are very complex, such as those found in
the Mediterranean basin.

New sensors, such as hyperspectral and radar have been
also tested for this application. For instance, the Airborne
Visible/Infrared Imaging Spectrometer imager (with 224
bands) has been used for the spectral characterization of fuel
types (Roberts et al. 1997). While sensors of this type have
great potential for mapping vegetation properties because of
their high spectral resolution, they have been limited by the
reduced spatial coverage they provide. New satellite
hyperspectral sensors, such as Hyperion (http://
eo1.gsfc.nasa.gov) and Modis (http://modis.gsfc.nasa.gov)
may change this situation in the near future.

Radar data has also provided complementary information
for fuel mapping, since radar is very sensitive to temporal
and spatial variation of the canopy biomass (Beaudoin et al.
1994).

An estimation of canopy height would help to identify the
fuel types. SPOT-HRV has been used to estimate this param-
eter using empirical approaches (De Wulf et al. 1990). Radar
data can provide a more direct estimation (Hyyppa et al.
2000; Toutin and Amaral 2000). But accuracies of these
methods do not address resolutions finer than 5 m. Upcom-
ing satellite LIDAR (active sensors working with laser) sen-
sors such as VCL or GLAS (Blair and Hofton 1999) will
provide an accuracy of 1 m (www.geog.umd.edu/vcl/). Air-
borne LIDAR has already been tested, providing better re-
sults than aerial photography or airborne profiling radar
(Hyyppa and Hallikainen 1996; Hyyppa et al. 2000, 2001;
Lefsky et al. 2001).

Accurate fuel type maps provide information for fire man-
agers to carry out prevention, detection, and suppression
strategies, such as forest cleaning, prescribed burning, and
vigilance tower locations.

Objectives
The goal of this paper is to evaluate the potential of Land-

sat TM bands in combination with ancillary data to discrimi-

© 2002 NRC Canada

1302 Can. J. For. Res. Vol. 32, 2002

I:\cjfr\cjfr3208\X02-052.vp
Wednesday, July 17, 2002 10:23:31 AM

Color profile: Generic CMYK printer profile
Composite  Default screen



nate Mediterranean fuel types as defined in the Prometheus
project, and to develop a robust methodology to operatively
obtain fuel-type maps for fire prevention and fire-behaviour
modelling.

Topographic variables and texture bands have been suc-
cessfully added to the original bands for digital classification
of fuel types (Chuvieco and Salas 1996). Therefore, the abil-
ity to improve classification accuracy using these variables
was also tested. The mapping accuracy was also assessed.

Study area

Cabañeros National Park is located about 200 km south of
Madrid (Fig. 2) on the western area of Spain’s southern pla-
teau, and occupies an area of around 41 000 ha.

The Park forms part of the southern limit of the Toledo
Mountains, which comprise a series of small mountain
ranges or “sierras” with a NW–SE direction. Elevations vary
from around 900–1400 m along the sierra ridges, to about

© 2002 NRC Canada
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Fig. 1. Scheme used to identify the fuel types.
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500–700 m at the foot of the valleys. The Park’s main fea-
tures consist of a series of Paleozoic sierras intermingled
with Plioquaternary conglomerates or “rañas” which are flat
wide plains formed of eroded quartzite pebbles from the sur-
rounding sierras. Predominant lithology includes quartzites,
sandstone, slates, and conglomerates. Because of their dif-
ferent resistance to erosion, these rocks have formed an un-
even Appalachian relief in which the hard rocks like
sandstone and quartzites tend to remain on the higher areas,
whereas the softer ones (slate and schists) form the valley
bottoms.

The climate in Cabañeros is a clear example of the char-
acteristic warm temperate inland Mediterranean type in
Spain (mean temperature around 13–16°C), where cold rainy
winters, short wet springs and autumns, and hot dry sum-
mers, best describe the general climatic characteristics,
which can, however, vary locally in the mountainous areas.
Thus, on northwest-facing slopes, temperatures may drop
from 0.4 to 0.6°C/100 m depending on the season, and
yearly rainfalls range from 500 to 850 mm/year. Summer
weather produces by far the greatest fire danger conditions,
because the months of June, July, and August get only 7–
12% of the annual rainfall, and the mean temperatures range
from 23 to 25°C.

Cabañeros is one of the best examples of Iberian–

Mediterranean forest. The Park’s main forest species, in or-
der of importance and abundance, are holm oak (Quercus
ilex), cork oak (Quercus suber), and gall oak (Quercus
faginea). The distribution and density of trees vary greatly
according to terrain, temperature, and humidity. In the flat
low “rañas” we find parklike woodlands or “dehesa”, that is,
large grazing pastures with scattered old holm oaks. This
area has traditionally been used for extensive grazing or cul-
tivation and, therefore, is cleared of shrubs, leaving only tall
graminea grass species.

In the steeper, more mountainous areas, oakwoods with
Q. faginea and Quercus pyrenaica are found in colder,
damper climates at the mesomediterranean vegetation level.
Quercus pyrenaica and Sorbus torminalis usually grow to-
gether at high altitudes (1000 m and over), or in valleys with
deep soil and a high water table. Quercus ilex tends to grow
in drier areas together with Q. suber. Degraded areas are
dominated by heliophilae species, mainly rock roses (Cistus
ladanifer, Cistus populifolius) and heather (Erica australis,
Erica umbellata, and Erica arborea). Generally, these trees
and shrubs species are very flammable, especially during the
summer (Vélez 2000).

Methodology
The main steps in the mapping process were the identifi-

Fig. 2. Study area. Spring image (May 5, 1998).
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cation of fuel types in Cabañeros National Park according to
the Prometheus system and the discrimination of these
classes using multitemporal Landsat TM images and ancil-
lary data (Fig. 3).

Identification of fuel types
A total of 102 land plots were located and sampled in the

field, exhaustively covering the study area (Fig. 2). These
plots were located in homogenous fuel areas using a global
positioning system (GPS) differential receiver. Main vegeta-
tion species, density, coverage, height, slope, aspect, loca-
tion, and date were noted. Stratified sampling was used to
select an equal number of samples per fuel type according to
their abundance, based on previous knowledge of the terrain.
The scheme shown in Fig. 1 was used to identify the Prome-
theus fuel types. This ground-truth information was used to
train the classification algorithm and assess the results.

The plots accounted for different exposures, slopes, den-
sity, and species. A total of nine pixels per plot were se-
lected for the classification accuracy assessment, whereas
the surrounding area with the same fuel type was used for
the training. Therefore, no training pixels were used for the
classification accuracy assessment.

Generation of digital elevation model data
A digital elevation model (DEM) of the area was gener-

ated by spatial interpolation of digitized contour lines from a
1 : 50 000 scale map (contours every 20 m), using the dis-
tance transform algorithm (Rosenfeld and Pfaltz 1968).
Since all the fieldwork was carried out in the National Park,
elevation data was only produced within the Park and the
surrounding areas (Fig. 4). The DEM was used to generate
the slope and illumination map. The slope computed at each

pixel is the plane formed by the vector connecting the left
and right neighbours versus the vector connecting the upper
and lower neighbours of the pixel. The illumination of each
pixel was computed considering the solar zenith and azi-
muth angle when each Landsat TM image was acquired, as
well as the slope and aspect of each pixel.

Selection and processing of satellite images
Landsat TM images were selected for this project because

of the good spatial and spectral resolution provided by this
sensor. As is well known, Landsat TM data include spectral
information from visible (three bands in the blue, green, and
red wavelengths), near infrared (0.7–0.9 µm), and short-
wave infrared bands (two bands at 1.6 and 2 µm) with a spa-
tial resolution of 30 × 30 m and a thermal infrared (10–
12 µm) band with a 120 × 120 m resolution.

A spring image (May 5, 1998) and a summer image (July
24, 1998) were chosen for this project. They presented sea-
sonal differences that account for phenological changes in
the vegetation. The images were cloud free and had good il-
lumination (large sun elevation angle), which minimized the
topographic distortion.

The spring image was georeferenced using a set of 40
ground control points extracted from 1 : 50 000 scale maps.
The multitemporal matching of the summer scene was as-
sured by finding common points to the georeferenced spring
image. During the geometric correction, the pixel size was
changed from the original 30 × 30 to 25 × 25 m to improve
the integration of the image with other data sources. For
resampling, the bilinear interpolation algorithm was se-
lected, since the original pixel size was changed.

Bilinear interpolation was used to keep better the linear
structures (road, paths) of the image for an easier location
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Fig. 3. Fuel type mapping methodology.
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for field sampling. Some authors have proven that
resampling of spectral data does not produce a reduction in
the classification accuracy (Dikshit and Roy 1996).

For reducing external effects on vegetation reflectance, an
atmospheric correction was applied, assuming a flat surface
and lambertian reflectivity. The technique used was the de-
fault transmittance method proposed by Chavez (1996),
which recommends extrapolation of the downwelling trans-
mittance from other images. Values for bands TM1–TM4
were taken from Chavez (1996), but since the correction was
proposed for neither TM5 nor TM7, transmittance values
were taken from Gilabert et al. (1994) for these bands.

After performing atmospheric correction, reflectance pat-
terns found in the images followed the most accepted criteria
for assessment (PCI 1999): (i) the vegetation should have a
reflectance peak in the green; (ii) water reflectance should
be 0–1% for near (NIR) and short-wave infrared (SWIR);
and (iii) bare soil reflectance increases with wavelength
(steeper slope after correction, mainly for visible (VIS)
bands).

Topographic correction was performed to alleviate the ef-
fects of topography on surface reflectance, namely the shad-
owing and change in the sun incidence angle. A non-
Lambertian surface was assumed. Illumination images from
both image dates were generated considering sun zenith and
azimuth angles, as well as slope and aspect. Homogenization
of shaded and illuminated slopes was based on the C-

correction method proposed by Meyer et al. (1993). This
method applies different weights to each spectral band,
based on a regression between the illumination image and
the calibrated reflectance for each TM band (Fig. 5).

The topographic correction was verified not only visually
but also by analyzing the spectral variability before and after
the correction of the 19 spectral classes that will be used in
the classification process. If the correction were adequate, it
would reduce the internal variability of spectral classes lo-
cated on different topographic positions, since it would im-
ply a homogenization of illumination conditions. As a matter
of fact, after the topographic correction, a reduction in vari-
ability (standard deviation) of the reflectance was observed
within each spectral class (Table 1), except for some TM
bands of nonfuel classes and fuel types 1 and 2. Therefore,
there was a homogenization of illumination conditions, at
least for the fuel types that are more difficult to classify,
such as medium-high shrubs and trees.

With respect to the calibration of the thermal band (TM6),
surface temperatures were computed after inverting Plank’s
equation, using a mean value of emissivity for vegetation
equal to 0.985 (Wukelic et al. 1989). This band was also
resampled to 25 × 25 m.

Digital classification
Supervised classification techniques were applied to gen-

erate the fuel types using the maximum-likelihood algo-
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Fig. 4. Digital elevation model of the Cabañeros National Park.
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rithm. Variables included in the classifications were spectral
vegetation indices, endmembers, and spatial texture. Target
spectral classes were defined, and the classification algo-
rithm was applied to assign each pixel to one of the defined
classes.

Generation of variables
The following variables were tested in the classification

process: (i) TM1 to TM5 and TM7, after atmospheric and
topographic correction; (ii) TM6 converted into surface tem-
perature; (iii) elevation and derived variables (slope and illu-
mination); (iv) spectral vegetation indices; (v) green
vegetation, nonphotosynthetic vegetation and shadow

endmembers; (vi) spatial texture (homogeneity and contrast)
from the co-occurrence matrix.

Spectral vegetation indices emphasize vegetation charac-
teristics. The vegetation indices used were the normalized
difference vegetation index (NDVI) (Rouse et al. 1974),
NDII5 (Hunt and Rock 1989), and NDII7 (the latter two with
a similar formulation as the NDVI but changing the red
channel by the 1.6 and 2 µm SWIR bands, respectively).

Spectral mixture analysis generates endmember bands,
which are defined as the proportion of each pixel covered by
a basic spectral class (Shimabukuro and Smith 1991). In this
case, the endmembers chosen were shadow, green vegeta-
tion, and nonphotosynthetic vegetation. Each pixel is consid-
ered to be a linear combination of those three components,

© 2002 NRC Canada
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Fig. 5. Window of the original image (left) and topographically corrected image (right). Summer image (July 24, 1998). Solid arrows
show examples of places where topographic correction was effective.

Class Description TM1 TM2 TM3 TM4 TM5 TM7

1 Stony ground 0.01* –0.05 –0.07 –0.22 0.13* 0.13*
2 Bare soil 0.01* –0.01 –0.01 0.01* 0.07* 0.06*
3 Water 0.00 0.00 0.00 0.00 0.00 0.00
4 Fuel type 1, crop –0.02 0.00 –0.03 –0.04 0.03* 0.13*
5 Fuel type 1, pasture 0.00 0.02* 0.01* 0.06* 0.07* 0.04*
6 Fuel type 1, dehesa 0.02* 0.07* 0.01* 0.03* 0.08* 0.00
7 Fuel type 2, E. australis and C. ladanifer 0.03* 0.03* 0.06* 0.05* 0.18* 0.12*
8 Fuel type 2, C. ladanifer on slates –0.04 –0.05 –0.01 0.09* 0.06* 0.02*
9 Fuel type 3, A. unedo and C. ladanifer after fire –0.02 –0.04 –0.03 –0.02 –0.09 –0.04
10 Fuel type 3, C. ladanifer, E. australis, and A. unedo –0.05 –0.08 –0.10 –0.01 –0.36 –0.26
11 Fuel type 4, C. ladanifer, E. australis, and A. unedo –0.04 –0.05 –0.04 –0.15 –0.14 –0.07
12 Fuel type 4, Q. pyrenaica –0.04 –0.10 –0.11 –0.13 –0.48 –0.29
13 Fuel type 5, P. pinaster 0.00 0.00 –0.01 –0.11 –0.07 –0.02
14 Fuel type 5, Q. suber and Q. ilex 0.02* 0.02* 0.06* –0.06 –0.03 0.01*
15 Fuel type 5, Q. pyrenaica and Q. ilex –0.01 –0.04 –0.02 –0.31 –0.16 –0.08
16 Fuel type 6, P. pinaster –0.01 –0.02 –0.02 –0.19 –0.10 –0.04
17 Fuel type 6, Q. pyrenaica and Q. ilex –0.01 0.00 –0.01 –0.16 –0.12 0.00
18 Fuel type 7, mixed forest –0.07 –0.09 –0.10 –0.23 –0.37 –0.23
19 Fuel type 7, Q. pyrenaica 0.00 –0.05 –0.04 –0.27 –0.36 –0.11

*No reduction observed.

Table 1. Standard deviation reduction, in percent reflectance, after topographic correction within each spectral class
for summer image (July 24, 1998).
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and it is assumed that the sum is equal to one and that no
negative values are allowed.

Several authors have included textural measurements in the
discrimination of fuel types (Cosentino et al. 1981; Yool et al.
1984). For this project, textural measurements were computed
from the 3 × 3 pixel moving window co-occurrence matrix,
based on a square matrix that includes the relative frequency
of each pair combination of contiguous pixels (Haralick et
al. 1973). Using this matrix, a measurement of the homoge-
neity and contrast was computed for each pixel in the TM3
band. Additionally, a measure of the occurrence matrix, such
as the local standard deviation (SD) in the same 3 × 3 pixel
moving window, was calculated (Fig. 6). As shrub height
and density increases, roughness decreases, because the
amount of bare soil and (or) dead fuels observed by the sat-
ellite also decreases. When the shrubs are mixed with trees
(fuel type 7) roughness decreases, because shrubs again
cover the bare soil and (or) dead fuels.

Training
Classification techniques rely on identifying the spectral

classes present on the image. Although fuel types are based
mainly on height and density, spectral response can be very
different, e.g., pine forest and oak forest. Grouping them in-
side the same spectral class can give rise to classes with high

spectral variability. When the spectral groups do not corre-
spond to thematic groups, the user needs to merge or split
them, with the former being the simplest process. For this
project, a set of 19 relatively homogenous spectral classes
(Table 1) were defined for training, since it was found that
some fuel types present very diverse spectral behaviours
and, therefore, should be considered independently first,
then merged at the end of the process.

Assignment
Supervised and unsupervised digital classifications have

been widely used. New classifiers, e.g., neural networks,
have been also tested for fuel-type mapping (Vasconcelos et
al. 1998). In this work, each pixel was assigned to the class
to which it had the highest probability of belonging, accord-
ing to the maximum likelihood algorithm (Swain and Davis
1978).

Assessment
The classification accuracy measured in previous fuel type

mapping studies ranged widely (65–85%) (Agee and
Pickford 1985; Vasconcelos et al. 1998) according to the
fuel types considered and the verification methods used,
such as field data or aerial photographs (Kourtz 1977;
Burgan and Shasby 1984; Dixon et al. 1984; Yool et al.
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Fig. 6. Texture image of the Cabañeros National Park computed with the standard deviation (SD) method (in percent reflectance).
Spring image (May 5, 1998).
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1984; Agee and Pickford 1985; Castro and Chuvieco 1998;
Vasconcelos et al. 1998). In this work the classification ac-
curacy assessment was based on the fieldwork previously
mentioned. A total of 9 pixels were chosen for each of the
102 land plots sampled in the field. The confusion matrix
(Congalton 1991), relating the referenced and classified
data, was used to identify the main sources of error and to
numerically validate the accuracy of each classification trial.

Literature consulted on vegetation mapping using optical
remote sensing data focuses mainly on classification accu-
racy. This concept implies the assessment on the level of
agreement between classified and ground-observed catego-
ries (Congalton 1991; Fenstermaker 1994; Congalton and
Green 1999; Khorram 1999). Most authors consider that
mapping accuracy (the degree of geometric adjustment be-
tween classified and real boundaries) is assessed by measur-
ing the mean root mean square of geometric correction
(Congalton and Green 1999). If the images are well geo-
referenced there should not be areal discrepancy or boundary
displacement errors in the output map. Coordinates from 40
ground-control points were taken in each image and com-
pared with a topographic map (scale 1 : 50 000) to measure
the mapping accuracy. These points were independent from
the geometric correction model. Furthermore, a vegetation
map independently generated from the fuel type map was
used to reinforce mapping accuracy assessment. This vegeta-
tion map was produced by National Park personnel based on
photointerpretation of aerial photography (1 : 10 000) and
extensive fieldwork.

Results

Transformed divergence (Kumar and Silva 1977) between
pairs of classes was calculated to measure the statistical sep-
arability of training statistics (Table 2). A value of 100% in-
dicates excellent separability; 95–99.9%, good; and values
under 95%, poor. Separabilities were poor for classes 10 and
17. The worst separabilities were for fuel types 5, composed
of Q. pyrenaica and Q. ilex (class 15) and fuel type 6, com-
posed of the same species (class 17). There were also poor
separabilities between fuel type 3 (class 10) and fuel types 2
(class 7) and 4 (class 12).

Table 3 ranks the discrimination ability of each variable
according to transformed divergence (Kumar and Silva
1977). TM7 information does not significantly help in sepa-
rating target classes, so it was removed from the classifica-
tion process. Synthetic bands (vegetation indices and
endmembers) were not included in this analysis, because
their information, which is already included in the original
spectral bands, would produce a change in the ranking of the
original TM bands (see the improvement in global classifica-
tion accuracy assessment after adding different layers).

Confusion diagrams were also built with the mean and
standard deviation of each class to illustrate the potential
overlapping between classes. Figure 7 shows an example of
this confusion diagrams for TM 5 band reflectance. Accord-
ing to the figure, this band would be very useful to distin-
guish classes 13 and 16 from the rest of vegetated areas.

After maximum likelihood classification, the 19 spectral
classes were reclassified into 7 target fuel type classes. Ad-
ditionally, another nonfuel class was extracted, to represent
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stony ground, bare soil, and water. A 3 × 3 modal filter was
used to smooth the results of the classification (Fig. 8).

Table 4 shows the improvement in global classification
accuracy after adding different layers to the Landsat bands
TM1–TM5. As can be seen, topographic variables, the ther-
mal band, and textures improve the classification. However,
synthetic bands (endmembers and vegetation indices) do not
significantly improve the results.

The global classification accuracy (Table 5) using TM1–
TM5 was 57.8%. After taking into account the spring and
summer images, the classification accuracy increased to
67.3%. This implies a significant improvement, at the 95%
confidence level, versus the analysis using TM1–TM5. The
confidence intervals do not overlap. The results improve to
79.4% classification accuracy after adding the topographic
variables, a significant difference versus previous analysis at
the 95% confidence level. Finally, including textures and the
thermal band increased the classification accuracy to 82.8%,
which is not a significant difference versus previous case, at
the 95% confidence level. The Kappa index, a widely used
statistic in classification accuracy assessment (Congalton
1991), makes it possible to compare results from different
classification methods. In this case the best result, after in-
cluding the TM1–TM5, the topographic variables, textures
and thermal band, provides a Kappa index of 0.793, which

indicates that the classification was 79.3% better than ex-
pected by chance.

Table 6 presents the confusion matrix after the classifica-
tion stage. The main problems were distinguishing fuel type
3 (medium height shrub) from 2 (low shrub) and 4 (tall
shrub), according to the best classification produced (using
TM1–TM6 from both dates, plus elevation, slope, illumina-
tion, and texture layers). Discrimination between fuel types
5 and 6 (mixtures on shrubs and trees with different cover
density) was an additional problem.

The mapping accuracy was estimated by the mean dis-
placement of 40 independent ground-control points located
in both images. Estimated error was 15 m (0.6 pixels). Over-
lapping the classified image and boundaries of the photo-
interpretation map for selected categories confirmed the
appropriate mapping accuracy of the final fuel type map
(Figs. 9 and 10).

Discussion

The global classification accuracy of the fuel type map
significantly increased after including two seasonal Landsat
TM images, because the phenological state of the fuel types
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Separability Layer

High Illumination
Elevation
TM5
TM3
Texture TM3
TM4
Slope
TM6
Texture TM5
TM2
Homogeneity (TM3)
TM1
Homogeneity (TM5)

Low TM7

Table 3. Bands ordered in terms of separabil-
ity for the spectral classes (only one date in-
cluded).

Layers

Improvement in
global accuracy
(%)

TM6 2.07
DEM 5.55
Slope 3.92
Illumination 1.63
Homogeneity (TM3) 2.29
Homogeneity (TM5) 0.98
DT (TM3) 0.76
DT (TM5) 0.55
GV –0.11
NPV –2.29
Shadow –4.03
NDVI 0.11
NDII5 0.19
NDII7 0.09

Table 4. Improvement in global accuracy after
adding to the classification the layers shown
in the table.
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Fig. 7. Mean and standard deviation of each spectral class for TM5. Spring image (May 5, 1998).
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was taken into account. A deciduous forest in spring does
not cover the entire ground surface so the presence of
understory vegetation can be distinguished. Therefore, a fuel
type 5 could be discriminated from 6, even though both of
them were composed of deciduous forest.

Synthetic bands (endmembers and vegetation indices) are
commonly used to enhance certain properties of the vegeta-
tion. However, according to our results they did not improve
fuel type mapping (Table 4), since the original Landsat
bands already contain the most significant information.
Using both the original and synthetic bands did not improve
the classification process. Equally, TM7 does not help in
separating the fuel types according to Table 3, because the
information to distinguish fuel types is already included in
other bands (mainly TM5). Therefore, it was not taken into
account in the classification process.

Topographic layers such as elevation, slope, and illumina-
tion were important in classifying the fuel types (Table 4),
because environments and, therefore, fuel types differ ac-
cording to altitude, slope, and aspect. Fuel types that had
similar spectral response, e.g., fuel type 5 composed of pine
forest and fuel type 6 composed of pine forest with
understory vegetation, could be better separated using these
ancillary variables.

Spatial texture retrieves differences between fuel types in
terms of vegetation density, and indirectly, vegetation height.
However, some misclassifications (Table 6), which were al-
ready predictable through a priori analysis of separability,
remained (Table 2). There were problems in distinguishing
fuel type 3 from fuel types 2 and 4, which differed primarily
in vegetation height. Fuel type 2 (<0.6 m) versus 4 (>2.0 m)
error was smaller, since the vegetation height difference is
larger. There were also errors between fuel types 5 and 6 be-
cause of difficulty in identifying the presence–absence of
understory. On the other hand, fuel type 7 provided better
classification accuracy, even though there is understory, be-
cause of more widely spaced trees, which provides more
light for the understory to grow and, consequently, a differ-
ent spectral signal.

Additionally, it was proven that map accuracy was high.
Figures 9 and 10 show how the boundaries extracted from
the vegetation map matches those derived from the classified
fuel type map. In the case of Fig. 9, it is shown the agree-
ment between pine forest extracted from the vegetation map
and the fuel type classes 5 and 6 (corresponding both to for-
ested stands). Figure 10 illustrates the degree of correspon-
dence between boundaries of shrub lands, which
corresponds mainly to shrub fuel types 3 and 4.
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Fig. 8. Fuel type map.
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Global
accuracy
(%) 95% CI κ

TM1–TM5 bands 57.8 54.6–61.0 0.508
TM1–TM5 bands (multitemporal) 67.3 64.3–70.4 0.613
Multitemporal + DEM + slope + illumination 79.4 76.8–82.0 0.754
Multitemporal + DEM + slope + illumination + TM6 + texture 82.8 80.3–85.2 0.793

Table 5. Global accuracy and kappa (κ) statistics for different digital classifications, with the
confidence interval (CI).

Reference fuel type

Classified fuel type 1 2 3 4 5 6 7
No
fuel Total

User’s
accuracy
(%)

Error of
commission
(%)

1 134 0 0 2 3 0 0 1 140 95.7 4.3
2 0 34 14 2 1 0 0 0 51 66.7 33.3
3 0 5 186 32 3 2 3 0 231 80.5 19.5
4 0 1 19 105 0 5 2 0 132 79.5 20.5
5 1 5 6 1 114 10 1 0 138 82.6 17.4
6 0 0 9 9 14 127 5 0 164 77.4 22.6
7 0 0 0 2 0 0 43 0 45 95.6 4.4
No fuel 0 0 0 0 0 0 0 17 17 100.0 0.0
Total 135 45 234 153 135 144 54 18 918

Producer’s accuracy (%) 99.3 75.6 79.5 68.6 84.4 88.2 79.6 94.4
Error of omission (%) 0.7 24.4 20.5 31.4 15.6 11.8 20.4 5.6

Table 6. Confusion matrix using TM1–TM6 from both images, DEM, slope, illumination and texture layers.

Fig. 9. The boundary of pine stands (Pinus pinaster) from the photointerpreted map are superimposed on the fuel type map produced
by digital classification.
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Conclusions

The main conclusions are as follows.
(1) Atmospheric disturbances and topographic shadowing

affects the distinction of fuel types. Atmospheric correc-
tion produced an improvement in the spectral character-
ization of the fuel types classes, and topographic
correction reduced spectral variability within each class.

(2) The best layers for the classification of fuel types were
texture, topographic variables, and TM1–TM6 from
both dates (May 5, 1998, and July 24, 1998).

(3) Synthetic variables (vegetation indices, endmembers)
were not particularly useful, because the original vari-
ables were already involved in the classification. There-
fore,  to  avoid  redundant  information,  neither  of  them
should be used.

(4) Satellite data and ancillary information provide an accu-
rate discrimination of fuel types (global classification
accuracy 82.8%).

(5) Remote sensing (Landsat TM) relies on superficial ob-
servation of reflectance or temperature from the canopy
layer, and therefore, it is difficult to identify the
understory component of the forest depth. Additionally,
reflectance is not directly related to vegetation height,
which is a critical variable to discriminate fuel types.
Surface temperature is more related to it, since the pat-
tern of surface temperature depends on the height of the
vegetation.

(6) An operational methodology was provided to identify
fuel types at regional scale, based on the use of remote
sensing (Landsat TM), ancillary layers, and limited
fieldwork.

Future research should be directed to avoiding
misclassifications by retrieving more direct information on
vegetation height. Radar has been tested to obtain canopy
height in the Brazilian forests (Toutin and Amaral 2000), but
accuracy was only ±5 m. Its vertical accuracy cannot be less

than 1 m because of issues underlying microwave reflections
(Hill et al. 2000). This is too coarse for fuel types descrip-
tion in Mediterranean ecosystems. In addition, it is difficult
to correct topographic distortion in radar data. Other tech-
niques such as LIDAR (active sensors working with laser)
should be tested (Blair et al. 1999). This technology will be
useful not only for overstory vegetation height estimation
but also for the estimating the height of understory vegeta-
tion, with accuracy up to ±0.10 m. Spectral characterization
of fuel types using a hyperspectral sensor will improve clas-
sification results (Ustin and Trabucco 2000). These new
technologies should become available at regional scale.
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